WorldWideScience

Sample records for chemiluminescent langmuirblodgett membrane

  1. Direct calculation of unambiguous electron-density distributions of Langmuir-Blodgett films normal to the membrane plane

    International Nuclear Information System (INIS)

    Frieling, M. von; Bradaczek, H.

    1990-01-01

    In regard to X-ray diffraction, Langmuir-Blodgett (LB) films consisting of lipid bilayers represent a 'one-dimensional crystal' with a very small number of unit cells in the direction of stacking. Such bounded systems yield X-ray diffraction diagrams which, in certain respects, contain more information than those of the conventional effectively infinite single crystals. This additional information consists of the profiles of the broadened reflections and their dislocation from the reciprocal-lattice points. These profiles are specific for each different structure and hence enable the direct calculation of unambiguous electron-density distributions from a single set of intensity data. At first, the Q function (the generalized Patterson function), i.e. the distance statistics of the structure sought after is calculated from the intensity data. Thereafter, the unambiguous convolution square root of the Q function must be determined, which is identical to the unknown electron-density distribution. For this purpose two mathematically completely different methods were established and compared. They were applied to diffraction patterns of Langmuir-Blodgett films of simple synthetic lipids with characteristic molecular subunits and showed identical results within the experimental resolution. This verifies the structures and the methods to calculate them. Furthermore, all features of the simple structures were compatible with the expectations. All one-dimensional electron-density distributions showed the common features of lipid bilayers. The characteristic molecular subunits can be recognized and reveal some interesting details. In general, they yield information about orientation, conformation and localization of molecular subunits and membrane components. (orig.)

  2. Langmuir-Blodgett Films of Graphene Derivatives

    DEFF Research Database (Denmark)

    Petersen, Søren Vermehren

    The work presented in this PhD thesis can be divided into two main categories: 1) Syn-thesis and Langmuir-Blodgett assembly of graphene derivatives and 2) Application and characterization of graphene derivatives as an interface material in molecular electron-ics. While the first category could...... be divided further, the synthesis and Langmuir-Blodgett results are intertwined in such a way that it would be more confusing to pre-sent them separately. The Langmuir-Blodgett deposition also played a crucial, but more isolated, part in the investigation of graphene derivatives as interface material....... Solution processable graphene in the form of chemically derived graphene has been synthesized through the modified Hummers method with subsequent reduction into reduced graphene oxide with hydrazine. The completeness of oxidation, the effect of the refinement steps and the reduction of the graphene oxide...

  3. Langmuir-Blodgett films of molecular organic materials

    International Nuclear Information System (INIS)

    Talham, Daniel R; Yamamoto, Takashi; Meisel, Mark W

    2008-01-01

    Langmuir-Blodgett methods are perhaps the original approach for achieving controlled deposition of organic thin films. Molecules are first organized into a monolayer array on the surface of water before transfer as a monolayer onto solid supports. Molecular monolayers, multilayers, and multilayered heterostructures can be achieved. The capability of exercising such control over thin film assemblies has attracted materials chemists and physicists to develop Langmuir-Blodgett films for studies on organic conductors, magnets, non-linear optics, rectifiers, and intermolecular electron transfer. This article reviews objectives in each of these areas and selects some specific examples from the literature to highlight the state of the art, mostly from the point of view of the chemical systems that are studied. Mixed organic/inorganic hybrid films represent a new direction for Langmuir-Blodgett films in materials science, combining conventional inorganic solid-state phenomena with the properties of the organic networks, and recent examples, taken principally from the authors' work, are highlighted

  4. Biofunctionalization of aqueous dispersed, alumina membrane-templated polymer nanorods for use in enzymatic chemiluminescence assays.

    Science.gov (United States)

    Mark, Sonny S; Stolper, Samuel I; Baratti, Carla; Park, Jason Y; Kricka, Larry J

    2008-09-01

    The noncovalent immobilization of alkaline phosphatase (ALP) onto aqueous dispersed nylon 6 nanorods ( approximately 310 nm mean diameter; approximately 6 microm mean length) prepared by anodic aluminum oxide (AAO) membrane templating was studied. Using multi-stacked layer-by-layer (LBL) assembly with the cationic quaternary ammonium polymer Sapphire II , the amount of ALP enzyme loaded onto the polymer nanostructures was found to be 115+/-7 microg mg(-1) nanorod. The biofunctionalized nanorods were also characterized for their chemiluminescent activity with the dioxetane substrate, CSPD . The results indicate that the kinetic parameters, K(m) and V(max), for the catalytic activity of the nanostructure-bound ALP enzyme are different from those of soluble ('free') ALP. While the K(m) value was measured to be 156 microM for free ALP, the apparent K(m) value determined for the LBL-immobilized ALP is approximately 20% lower (122 microM). Furthermore, despite the relatively high enzyme loading capacity of the nanorods, the specific activity of the bound ALP enzyme was found to be almost nine times lower than that measured for free ALP. Finally, additional experiments revealed that the catalytic activities of both free ALP and nanorod-conjugated ALP are affected similarly by changes in pH, with optimal performance levels occurring under conditions of pH 9.5. To the best of our knowledge, this study represents the first report examining the preparation of aqueous dispersed, AAO-templated polymer nanorods for potential application as enzyme scaffolds in chemiluminescent-based assay systems.

  5. An automatic enzyme immunoassay based on a chemiluminescent lateral flow immunosensor.

    Science.gov (United States)

    Joung, Hyou-Arm; Oh, Young Kyoung; Kim, Min-Gon

    2014-03-15

    Microfluidic integrated enzyme immunosorbent assay (EIA) sensors are efficient systems for point-of-care testing (POCT). However, such systems are not only relatively expensive but also require a complicated manufacturing process. Therefore, additional fluidic control systems are required for the implementation of EIAs in a lateral flow immunosensor (LFI) strip sensor. In this study, we describe a novel LFI for EIA, the use of which does not require additional steps such as mechanical fluidic control, washing, or injecting. The key concept relies on a delayed-release effect of chemiluminescence substrates (luminol enhancer and hydrogen peroxide generator) by an asymmetric polysulfone membrane (ASPM). When the ASPM was placed between the nitrocellulose (NC) membrane and the substrate pad, substrates encapsulated in the substrate pad were released after 5.3 ± 0.3 min. Using this delayed-release effect, we designed and implemented the chemiluminescent LFI-based automatic EIA system, which sequentially performed the immunoreaction, pH change, substrate release, hydrogen peroxide generation, and chemiluminescent reaction with only 1 sample injection. In a model study, implementation of the sensor was validated by measuring the high sensitivity C-reactive protein (hs-CRP) level in human serum. © 2013 Elsevier B.V. All rights reserved.

  6. Density determination of langmuir-blodgett monolayer films using x-ray reflectivity technique

    International Nuclear Information System (INIS)

    Damar Yoga Kusuma

    2015-01-01

    Monolayer deposition by Langmuir-Blodgett technique produces monolayer films that are uniform with controllable thickness down to nanometer scale. To evaluate the quality of the monolayer deposition, X-ray reflectivity technique are employed to monitor the monolayers density. Langmuir-Blodgett monolayer with good coverage and uniformity results in film density close to its macroscopic film counterpart whereas films with presence of air gaps shows lower density compared to its macroscopic film counterpart. (author)

  7. Study of molecular orientations in Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Lesieur, Pierre

    1986-01-01

    This research thesis reports the characterization of Langmuir-Blodgett films by electric paramagnetic resonance and by resonant Raman diffusion in polarized light. Films are made of mixed or alternated multi-layers of amphiphilic porphyrins and docosenoic acid. The author more particularly studied the orientation of porphyrinic macro-cycles with respect to the layer substrate [fr

  8. Effect of the dimetilsulfoxido in the response chemiluminescent and the consumption of oxygen of neutrophils activated human

    International Nuclear Information System (INIS)

    Garcia, J.

    2001-01-01

    Dimethylsulfoxide (DMSO), a hydroxyl radical scavenger, exerted a dose dependent inhibition on the luminol and lucigenin-enhanced chemiluminescent responses of human neutrophils activated with soluble and particulate stimulants. DMSO inhibition of the luminol chemiluminescense induced by calcium ionophore A23187 was probably due to OH scavenging, whereas inhibition of the lucigenin chemiluminescence suggested DMSO negatively affects the NADPH-dependent membrane oxidase of neutrophils. In agreement with this, DMSO moderately inhibited O2 consumption in PMN suspensions stimulated with chemotactic peptide and opsonized zymosan-induced luminol chemiluminescense was observed only when added before or in conjunction with stimulants, whereas A23187-induced chemiluminescense was inhibited by DMSO regardless of time of addition. Washing of DMSO-treated PMN resulted in increased luminol enhanced chemiluminescense in response to chemotactic peptide and opsonized zymosan. This is consistent with the idea that DMSO may be interfering with activation of the membrane subunits of the oxidase by translocation and docking of the cytoplasmic, regulatory subunits. These data imply that DMSO inhibits neutrophil chemiluminescense both by OH scavenging and interfering with oxidase activation. Key words:Dimethylsulfoxide, chemiluminescent, luminol, lucigenin,neutrophils [es

  9. Thermal and electrothermal sensitivity of polyglutamic acid with incorporated carbocyanine dyes in Langmuir-Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Popova, G. [Mendeleyev University of Chemical Technology of Russia, Miusskaya sq., 9, Moscow 125047 (Russian Federation)], E-mail: galina@muctr.edu.ru; Spitsyn, A; Vantsyan, M [Mendeleyev University of Chemical Technology of Russia, Miusskaya sq., 9, Moscow 125047 (Russian Federation); Matveeva, N [Lukin Institute Phys. Problems, Zelenograd (Russian Federation); Yudin, S; Palto, S [Crystallography Institute Rus., Leninsky prosp., 57, 117336 Moscow (Russian Federation)

    2008-03-31

    Light-and electrosensitive carbocyanine dyes were incorporated into polyglutamic acid via covalent and non-covalent bonding. The reversible colour change on heating the Langmuir-Blodgett films of polyaminoacid has been studied by absorption spectroscopy and electroconductivity techniques. Characteristic shifts of the absorption spectrum are explained by formation of aggregates and hydrogen bonds. It was shown that H-aggregates and dimers are formed in Langmuir-Blodgett films; each type of assemblies contributes to the absorption spectrum. At elevated temperatures the ratio between concentrations of monomers, dimers and H-aggregates varies due to a breakdown of a part of aggregates into monomers. The change in molecular polarizability was also noticed. Electroconductivity of Langmuir-Blodgett films is observed in longitudinal and transverse directions. Electrochromic effect is noticed under weak electric current by change from red to colourless with iodine doping.

  10. Nanoparticle Langmuir-Blodgett Arrays for Sensing of CO and NO2 Gases

    Science.gov (United States)

    Luby, Stefan; Jergel, Matej; Majkova, Eva; Siffalovic, Peter; Chitu, Livia; Rella, Roberto; Manera, Maria Grazia; Caricato, Anna-Paola; Luches, Armando; Martino, Maurizio

    Metal oxide sensors with active Fe2O3 and CoFe2O4 nanoparticle arrays were studied. Sensing nanoparticle films from 1, 2, 4 or 7 monolayers were deposited by Langmuir-Blodgett technique. Sensors are formed on the alumina substrates equipped with heating meander. Langmuir-Blodgett layers were heated or UV irradiated to remove the insulating surfactant. Sensing properties were studied towards CO or NO2 gases in concentrations between 0.5 and 100 ppm in mixture with the dry air. Best response values Igas/Iair were obtained with CoFe2O4 device being 3 for 100 ppm of CO and with Fe2O3 device being (38)-1 for 0.5 ppm of NO2.

  11. Elaboration of Langmuir-Blodgett films of oligothiophenes derivatives for solid state polymerisation

    International Nuclear Information System (INIS)

    Isz, Sandrine

    1995-01-01

    Molecular electronics requires the elaboration of highly organised conductive architectures, and this research thesis addresses the fabrication of oriented conductive molecular wires. Precursors can be oriented by using the Langmuir-Blodgett technique. Synthesized molecules are oligothiophenes. After a UV-visible study in solution, these molecules have been tested under the form of Langmuir-Blodgett films. Their behaviour at the air-water interface has been characterized by using various techniques (compression isothermal, Brewster angle microscope, transmission electronic microscope, atomic force microscope) to check that higher oligothiophenes are forming a molecular film. Crystal structure reveals an almost vertical orientation of molecules at the water surface. A solid state coupling between these organised molecules has been attempted by electrochemical, thermal, and chemical ways [fr

  12. Chemiluminescence emission from irradiated polytetrafluoroethylene (PTFE)

    International Nuclear Information System (INIS)

    Zhong Xiaoguang; Sun Jiazhen; Yoshii, Fumio; Sasaki, Takashi; Makuuchi, Keizo

    2000-01-01

    PTFE is well known for its chemical and high temperature resistance and also for its high-energy radiation sensitivity. The present work deals with the radiation-induced emission of chemiluminescence from PTFE film, which is generally thought as a measure of radiation induced oxidation reaction in irradiated polymer. The observation that the much stronger chemiluminescence emission from PTFE than that from other polymeric system indicate the unusual high degree of radiation induced oxidation in PTFE. On the other hand the temperature and atmosphere effect during radiation on emission of chemiluminescence were also reported. (author)

  13. Comment on 'Extrinsic versus intrinsic ferroelectric switching: experimental investigations using ultra-thin PVDF Langmuir-Blodgett films'

    International Nuclear Information System (INIS)

    Naber, R C G; Blom, P W M; Leeuw, D M de

    2006-01-01

    Previous work on ultra-thin P(VDF-TrFE) Langmuir-Blodgett films has indicated a transition from extrinsic to intrinsic ferroelectric switching. The lack of several key features of intrinsic switching in the experimental work reported by Kliem et al argues against intrinsic switching. In this Comment we discuss two published papers and new experimental results that support a lack of intrinsic switching and point to the conclusion that the thickness dependence of the Langmuir-Blodgett films is due to the influence of the electrode interfaces. (comment)

  14. Applications of chemiluminescence to bacterial analysis

    Science.gov (United States)

    Searle, N. D.

    1975-01-01

    Luminol chemiluminescence method for detecting bacteria was based on microbial activation of the oxidation of the luminol monoanion by hydrogen peroxide. Elimination of the prior lysing step, previously used in the chemiluminescence technique, was shown to improve considerably the reproducibility and accuracy of the method in addition to simplifying it. An inexpensive, portable photomultiplier detector was used to measure the maximum light intensity produced when the sample is added to the reagent. Studies of cooling tower water show that the luminol chemiluminescence technique can be used to monitor changes in viable cell population both under normal conditions and during chlorine treatment. Good correlation between chemiluminescence and plate counts was also obtained in the analysis of process water used in paper mills. This method showed good potential for monitoring the viable bacteria populations in activated sludge used in waste treatment plants to digest organic matter.

  15. Ionic channels in Langmuir-Blodgett films imaged by a scanning tunneling microscope.

    Science.gov (United States)

    Kolomytkin, O V; Golubok, A O; Davydov, D N; Timofeev, V A; Vinogradova, S A; Tipisev SYa

    1991-01-01

    The molecular structure of channels formed by gramicidin A in a lipid membrane was imaged by a scanning tunneling microscope operating in air. The mono- and bimolecular films of lipid with gramicidin A were deposited onto a highly oriented pyrolitic graphite substrate by the Langmuir-Blodgett technique. It has been shown that under high concentration gramicidin A molecules can form in lipid films a quasi-regular, densely packed structure. Single gramicidin A molecules were imaged for the first time as well. The cavity of 0.4 +/- 0.05 nm in halfwidth was found on the scanning tunneling microscopy image of the gramicidin A molecule. The results of direct observation obtained by means of scanning tunneling microscope are in good agreement with the known molecular model of gramicidin A. It was shown that gramicidin A molecules can exist in a lipid monolayer as individual molecules or combined into clusters. The results demonstrate that scanning tunneling microscope can be used for high spatial resolution study of ionic channel structure. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 PMID:1712239

  16. Langmuir-Blodgett nanotemplates for protein crystallography.

    Science.gov (United States)

    Pechkova, Eugenia; Nicolini, Claudio

    2017-12-01

    The new generation of synchrotrons and microfocused beamlines has enabled great progress in X-ray protein crystallography, resulting in new 3D atomic structures for proteins of high interest to the pharmaceutical industry and life sciences. It is, however, often still challenging to produce protein crystals of sufficient size and quality (order, intensity of diffraction, radiation stability). In this protocol, we provide instructions for performing the Langmuir-Blodgett (LB) nanotemplate method, a crystallization approach that can be used for any protein (including membrane proteins). We describe how to produce highly ordered 2D LB protein monolayers at the air-water interface and deposit them on glass slides. LB-film formation can be observed by surface-pressure measurements and Brewster angle microscopy (BAM), although its quality can be characterized by atomic force microscopy (AFM) and nanogravimetry. Such films are then used as a 2D template for triggering 3D protein crystal formation by hanging-drop vapor diffusion. The procedure for forming the 2D template takes a few minutes. Structural information about the protein reorganization in the LB film during the crystallization process on the nano level can be obtained using an in situ submicron GISAXS (grazing-incidence small-angle X-ray scattering) method. MicroGISAXS spectra, measured directly at the interface of the LB films and protein solution in real time, as described in this protocol, can be interpreted in terms of the buildup of layers, islands, or holes. In our experience, the obtained LB crystals take 1-10 d to prepare and they are more ordered and radiation stable as compared with those produced using other crystallization methods.

  17. Molecular structure of dipalmitoylphospatidylcholine Langmuir-Blodgett monolayers studied by atomic force microscopy.

    NARCIS (Netherlands)

    Zhai, X.; Kleijn, J.M.

    1997-01-01

    Monolayers of dipalmitoylphosphatidylcholine (DPPC) on the air-water interface have been transferred at various surface pressures onto quartz substrates using the Langmuir-Blodgett (LB) technique. The topography of these layers, on a molecular scale, has been examined by atomic force microscopy

  18. 40 CFR 1065.270 - Chemiluminescent detector.

    Science.gov (United States)

    2010-07-01

    ... Chemiluminescent detector. (a) Application. You may use a chemiluminescent detector (CLD) to measure NOX concentration in raw or diluted exhaust for batch or continuous sampling. We generally accept a CLD for NOX...) Component requirements. We recommend that you use a CLD that meets the specifications in Table 1 of § 1065...

  19. Capillary electrophoresis microchip coupled with on-line chemiluminescence detection

    International Nuclear Information System (INIS)

    Su Rongguo; Lin Jinming; Qu Feng; Chen Zhifeng; Gao Yunhua; Yamada, Masaaki

    2004-01-01

    In the present work, chemiluminescence detection was integrated with capillary electrophoresis microchip. The microchip was designed on the principle of flow-injection chemiluminescence system and capillary electrophoresis. It has three main channels, five reservoirs and a detection cell. As model samples, dopamine and catechol were separated and detected using a permanganate chemiluminescent system on the prepared microchip. The samples were electrokinetically injected into the double-T cross section, separated in the separation channel, and then oxidized by chemiluminescent reagent delivered by a home-made micropump to produce light in the detection cell. The electroosmotic flow could be smoothly coupled with the micropump flow. The detection limits for dopamine and catechol were 20.0 and 10.0 μM, respectively. Successful separation and detection of dopamine and catechol demonstrated the distinct advantages of integration of chemiluminescent detection on a microchip for rapid and sensitive analysis

  20. Biomimetic devices functionalized by membrane channel proteins

    Science.gov (United States)

    Schmidt, Jacob

    2004-03-01

    We are developing a new family of active materials which derive their functional properties from membrane proteins. These materials have two primary components: the proteins and the membranes themselves. I will discuss our recent work directed toward development of a generic platform for a "plug-and-play" philosophy of membrane protein engineering. By creating a stable biomimetic polymer membrane a single molecular monolayer thick, we will enable the exploitation of the function of any membrane protein, from pores and pumps to sensors and energy transducers. Our initial work has centered on the creation, study, and characterization of the biomimetic membranes. We are attempting to make large areas of membrane monolayers using Langmuir-Blodgett film formation as well as through arrays of microfabricated black lipid membrane-type septa. A number of techniques allow the insertion of protein into the membranes. As a benchmark, we have been employing a model system of voltage-gated pore proteins, which have electrically controllable porosities. I will report on the progress of this work, the characterization of the membranes, protein insertion processes, and the yield and functionality of the composite.

  1. The Applications of Gold Nanoparticle-Initialed Chemiluminescence in Biomedical Detection

    Science.gov (United States)

    Liu, Zezhong; Zhao, Furong; Gao, Shandian; Shao, Junjun; Chang, Huiyun

    2016-10-01

    Chemiluminescence technique as a novel detection method has gained much attention in recent years owning to the merits of high sensitivity, wider linear ranges, and low background signal. Similarly, nanotechnology especially for gold nanoparticles has emerged as detection tools due to their unique physical and chemical properties. Recently, it has become increasingly popular to couple gold nanoparticles with chemiluminescence technique in biological agents' detection. In this review, we describe the superiority of both chemiluminescence and gold nanoparticles and conclude the different applications of gold nanoparticle-initialed chemiluminescence in biomedical detection.

  2. Luminescent Langmuir-Blodgett film of a new amphiphilic Eu3+ β-diketonate

    International Nuclear Information System (INIS)

    Gomes, Luciano F.; Oliveira, Kleber T. de; Neri, Claudio R.; Sousa Filho, Paulo C. de; Bianco, Marcos J. dal; Ramos, Ana P.; Zaniquelli, Maria E.D.; Serra, Osvaldo A.

    2008-01-01

    This work reports on the synthesis and characterization of the ligand 3-hexadecylpentane-2,4-dione (Hhdacac) and its Eu 3+ complexes Eu(hdacac) 6 .2H 2 O, Eu(hdacac) 6 .phen and Eu(hdacac) 6 .tta, where phen and tta denote 1,10-phenanthroline and thenoyltrifluoroacetone, respectively. These new compounds present long carbon chains and their expected miscibility into non-polar ambients is confirmed by the emission spectra of Eu(hdacac) 6 .tta in hexane. Moreover, the amphiphilic properties of Eu(hdacac) 6 complexes allow the obtainment of thin luminescent films by the Langmuir-Blodgett technique. In both cases (solids and films), the typical antenna effect of β-diketonates is observed. The alluring characteristics of these compounds raise great interest in many fields of Materials Science, like photo- and electro-luminescent materials (mainly thin 'organic' films), metal catalysts or probes in non-polar solutions, and Langmuir-Blodgett films of several compositions. For the characterization of these products, nuclear magnetic resonance spectroscopy ( 1 H NMR), thermogravimetric analysis, elementary analyses (C, H), scanning electron microscopy (energy dispersive X-ray spectroscopy), absorption (UV-vis/FT-IR) and photoluminescence spectroscopies were used

  3. Properties of excited singular states of the anthraquinone dye in the Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Baratova, A.A.; Ibraev, N.Kh.

    2004-01-01

    The spectral luminescence properties of the anthraquinone dye solution and the Langmuir-Blodgett films have been investigated. The nature of the absorption centers is determined from the spectral characteristics. The conclusion about probable spatial configuration of the dye molecule in the dye molecule in monolayer on water surface is made. (author)

  4. Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay.

    Science.gov (United States)

    Lee, Joon Seok; Joung, Hyou-Arm; Kim, Min-Gon; Park, Chan Beum

    2012-04-24

    We report on chemiluminescence resonance energy transfer (CRET) between graphene nanosheets and chemiluminescent donors. In contrast to fluorescence resonance energy transfer, CRET occurs via nonradiative dipole-dipole transfer of energy from a chemiluminescent donor to a suitable acceptor molecule without an external excitation source. We designed a graphene-based CRET platform for homogeneous immunoassay of C-reactive protein (CRP), a key marker for human inflammation and cardiovascular diseases, using a luminol/hydrogen peroxide chemiluminescence (CL) reaction catalyzed by horseradish peroxidase. According to our results, anti-CRP antibody conjugated to graphene nanosheets enabled the capture of CRP at the concentration above 1.6 ng mL(-1). In the CRET platform, graphene played a key role as an energy acceptor, which was more efficient than graphene oxide, while luminol served as a donor to graphene, triggering the CRET phenomenon between luminol and graphene. The graphene-based CRET platform was successfully applied to the detection of CRP in human serum samples in the range observed during acute inflammatory stress.

  5. Chain length dependence of the helix orientation in Langmuir-Blodgett monolayers of alpha-helical diblock copolypeptides

    NARCIS (Netherlands)

    Nguyen, Le-Thu T.; Ardana, Aditya; Vorenkamp, Eltjo J.; ten Brinke, Gerrit; Schouten, Arend J.

    2010-01-01

    The effect of chain length on the helix orientation of alpha-helical diblock copolypeptides in Langmuir and Langmuir-Blodgett monolayers is reported for the first time. Amphiphilic diblock copolypeptides (PLGA-b-PMLGSLGs) of poly(alpha-L-glutamic acid) (PLGA) and

  6. Surface correlation behaviors of metal-organic Langmuir-Blodgett films on differently passivated Si(001) surfaces

    Science.gov (United States)

    Bal, J. K.; Kundu, Sarathi

    2013-03-01

    Langmuir-Blodgett films of standard amphiphilic molecules like nickel arachidate and cadmium arachidate are grown on wet chemically passivated hydrophilic (OH-Si), hydrophobic (H-Si), and hydrophilic plus hydrophobic (Br-Si) Si(001) surfaces. Top surface morphologies and height-difference correlation functions g(r) with in-plane separation (r) are obtained from the atomic force microscopy studies. Our studies show that deposited bilayer and trilayer films have self-affine correlation behavior irrespective of different passivations and different types of amphiphilic molecules, however, liquid like correlation coexists only for a small part of r, which is located near the cutoff length (1/κ) or little below the correlation length ξ obtained from the liquid like and self-affine fitting, respectively. Thus, length scale dependent surface correlation behavior is observed for both types of Langmuir-Blodgett films. Metal ion specific interactions (ionic, covalent, etc.,) in the headgroup and the nature of the terminated bond (polar, nonpolar, etc.,) of Si surface are mainly responsible for having different correlation parameters.

  7. Bio- and chemiluminescence imaging in analytical chemistry

    International Nuclear Information System (INIS)

    Roda, Aldo; Guardigli, Massimo; Pasini, Patrizia; Mirasoli, Mara; Michelini, Elisa; Musiani, Monica

    2005-01-01

    Bio- and chemiluminescence imaging techniques combine the high sensitivity of bio- and chemiluminescence detection with the ability of current light imaging devices to localize and quantify light emission down to the single-photon level. These techniques have been successfully exploited for the development of sensitive analytical methods relying on the evaluation of the spatial distribution of the light emitted from a target sample. In this paper, we report on recent applications of bio- and chemiluminescence imaging for in vitro and in vivo assays, including: quantitative assays performed in various analytical formats, such as microtiter plates, microarrays and miniaturized analytical devices, used in the pharmaceutical, clinical, diagnostic and environmental fields; luminescence imaging microscopy based on enzymatic, immunohistochemical and in situ hybridization reactions for the localization of metabolites, enzymes, antigens and gene sequences in cells and tissues; whole-body luminescence imaging in live animals for evaluating biological and pathological processes and for pharmacological studies

  8. Imaging and high-sensitivity quantification of chemiluminescent labeled DNA-blots

    International Nuclear Information System (INIS)

    Dorner, G.

    1997-01-01

    The present thesis has for objective the development of both, methods of DNA labeling by chemiluminescence (via the catalytic activity of the enzyme alkaline phosphatase - AP) and an appropriate imaging system. Offering a competitive alternative to the detection of classical radio-labels in molecular-biological experiments of the blotting type, this technique should permit the realization of quantitative studies of gene expression at ultra-high sensitivity necessary in particular for differential-screening experiments. To reach our aim. we separated the project into three different parts. In a first step an imager based on a liquid-nitrogen-cooled CCD coupled to a standard optics (50 mm/fl.2) has been installed and characterized. This system offers a sensitive area of up to 625 cm 2 , a spatial resolution of 0.3-1 mm (depending on the field of view) and a sensitivity sufficient to detect 10 fg/mm 2 labeled DNA. In a second part, the chemiluminescent light-generation process in solution has been investigated to optimize the parameters temperature. pH and concentration of the substrate as well as the enzyme. The substrate offering the highest light yield (CDP-Star in addition with the enhancer EMERALD II) allows quantification of AP down to 10 -15 M within a dynamic range of 10 4 in solution. Finally. preparation, immobilization and detection of AP-labeled DNA probes (via a biotin-streptavidin-biotin-AP bridge) on nylon membranes has been optimized. A linear relation between the light intensities and the amount of DNA was observed in a range of 10 fg/mm 2 - 100 pg/mm 2 . Hybridization of the probes to bacterial cloned target-DNA has been addressed after examination of the best hybridization conditions. Our protocol includes the treatment of a proteinase, which resulted in a significantly lower background on the filter. The results of our investigations suggest that the main conditions for a reliable differential-screening experiment are fulfilled when using

  9. Langmuir-Blodgett films of polyaniline for low density lipoprotein detection

    Energy Technology Data Exchange (ETDEWEB)

    Matharu, Zimple [Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, National Physical Laboratory (CSIR), Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Sumana, G. [Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, National Physical Laboratory (CSIR), Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Malhotra, B.D., E-mail: bansi.malhotra@gmail.co [Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, National Physical Laboratory (CSIR), Dr. K. S. Krishnan Marg, New Delhi-110012 (India)

    2010-11-30

    Langmuir-Blodgett (LB) films of polyaniline (PANI) were utilized for the fabrication of impedimetric immunosensor for detection of human plasma low density lipoprotein (LDL) by immobilizing anti-apolipoprotein B (AAB) via EDC-NHS coupling. The modified electrodes were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy. AAB/PANI-SA LB immunoelectrodes studied by EIS spectroscopy revealed detection of LDL in the wide range of 0.018 {mu}M (6 mg/dl) to 0.39 {mu}M (130 mg/dl), covering the physiological range in blood, with a sensitivity of 11.25 k{Omega} {mu}M{sup -1}.

  10. Langmuir-Blodgett films of polyaniline for low density lipoprotein detection

    International Nuclear Information System (INIS)

    Matharu, Zimple; Sumana, G.; Gupta, Vinay; Malhotra, B.D.

    2010-01-01

    Langmuir-Blodgett (LB) films of polyaniline (PANI) were utilized for the fabrication of impedimetric immunosensor for detection of human plasma low density lipoprotein (LDL) by immobilizing anti-apolipoprotein B (AAB) via EDC-NHS coupling. The modified electrodes were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy. AAB/PANI-SA LB immunoelectrodes studied by EIS spectroscopy revealed detection of LDL in the wide range of 0.018 μM (6 mg/dl) to 0.39 μM (130 mg/dl), covering the physiological range in blood, with a sensitivity of 11.25 kΩ μM -1 .

  11. Comment on 'extrinsic versus intrinsic ferroelectric switching : experimental investigations using ultra-thin PVDF Langmuir-Blodgett films'

    NARCIS (Netherlands)

    Naber, R.C.G.; Blom, P.W.M.; de Leeuw, DM

    2006-01-01

    Previous work on ultra-thin P(VDF-TrFE) Langmuir-Blodgett films has indicated a transition from extrinsic to intrinsic ferroelectric switching. The lack of several key features of intrinsic switching in the experimental work reported by Kliem et al argues against intrinsic switching. In this Comment

  12. Transport properties of field-effect transistor with Langmuir-Blodgett films of C60 dendrimer and estimation of impurity levels

    Science.gov (United States)

    Kawasaki, Naoko; Nagano, Takayuki; Kubozono, Yoshihiro; Sako, Yuuki; Morimoto, Yu; Takaguchi, Yutaka; Fujiwara, Akihiko; Chu, Chih-Chien; Imae, Toyoko

    2007-12-01

    Field-effect transistor (FET) device has been fabricated with Langmuir-Blodgett films of C60 dendrimer. The device showed n-channel normally off characteristics with the field-effect mobility of 2.7×10-3cm2V-1s-1 at 300K, whose value is twice as high as that (1.4×10-3cm2V-1s-1) for the FET with spin-coated films of C60 dendrimer. This originates from the formation of ordered π-conduction network of C60 moieties. From the temperature dependence of field-effect mobility, a structural phase transition has been observed at around 300K. Furthermore, the density of states for impurity levels was estimated in the Langmuir-Blodgett films.

  13. Aqueous nitrite ion determination by selective reduction and gas phase nitric oxide chemiluminescence

    Science.gov (United States)

    Dunham, A. J.; Barkley, R. M.; Sievers, R. E.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    An improved method of flow injection analysis for aqueous nitrite ion exploits the sensitivity and selectivity of the nitric oxide (NO) chemilluminescence detector. Trace analysis of nitrite ion in a small sample (5-160 microL) is accomplished by conversion of nitrite ion to NO by aqueous iodide in acid. The resulting NO is transported to the gas phase through a semipermeable membrane and subsequently detected by monitoring the photoemission of the reaction between NO and ozone (O3). Chemiluminescence detection is selective for measurement of NO, and, since the detection occurs in the gas-phase, neither sample coloration nor turbidity interfere. The detection limit for a 100-microL sample is 0.04 ppb of nitrite ion. The precision at the 10 ppb level is 2% relative standard deviation, and 60-180 samples can be analyzed per hour. Samples of human saliva and food extracts were analyzed; the results from a standard colorimetric measurement are compared with those from the new chemiluminescence method in order to further validate the latter method. A high degree of selectivity is obtained due to the three discriminating steps in the process: (1) the nitrite ion to NO conversion conditions are virtually specific for nitrite ion, (2) only volatile products of the conversion will be swept to the gas phase (avoiding turbidity or color in spectrophotometric methods), and (3) the NO chemiluminescence detector selectively detects the emission from the NO + O3 reaction. The method is free of interferences, offers detection limits of low parts per billion of nitrite ion, and allows the analysis of up to 180 microL-sized samples per hour, with little sample preparation and no chromatographic separation. Much smaller samples can be analyzed by this method than in previously reported batch analysis methods, which typically require 5 mL or more of sample and often need chromatographic separations as well.

  14. [Better performance of Western blotting: quick vs slow protein transfer, blotting membranes and the visualization methods].

    Science.gov (United States)

    Kong, Ling-Quan; Pu, Ying-Hui; Ma, Shi-Kun

    2008-01-01

    To study how the choices of the quick vs slow protein transfer, the blotting membranes and the visualization methods influence the performance of Western blotting. The cellular proteins were abstracted from human breast cell line MDA-MB-231 for analysis with Western blotting using quick (2 h) and slow (overnight) protein transfer, different blotting membranes (nitrocellulose, PVDF and nylon membranes) and different visualization methods (ECL and DAB). In Western blotting with slow and quick protein transfer, the prestained marker presented more distinct bands on nitrocellulose membrane than on the nylon and PVDF membranes, and the latter also showed clear bands on the back of the membrane to very likely cause confusion, which did not occur with nitrocellulose membrane. PVDF membrane allowed slightly clearer visualization of the proteins with DAB method as compared with nitrocellulose and nylon membranes, and on the latter two membranes, quick protein transfer was likely to result in somehow irregular bands in comparison with slow protein transfer. With slow protein transfer and chemiluminescence for visualization, all the 3 membranes showed clear background, while with quick protein transfer, nylon membrane gave rise to obvious background noise but the other two membranes did not. Different membranes should be selected for immunoblotting according to the actual needs of the experiment. Slow transfer of the proteins onto the membranes often has better effect than quick transfer, and enhanced chemiluminescence is superior to DAB for protein visualization and allows highly specific and sensitive analysis of the protein expressions.

  15. Physicochemical and structural characterization of a two-dimensional polymer performed by using the Langmuir-Blodgett technique

    International Nuclear Information System (INIS)

    Lefevre, Didier

    1995-01-01

    This research thesis addresses the physicochemical and structural characterization of two-dimensional polymer made of polymerizable macro-cycles pre-organised in-plane by using the Langmuir-Blodgett technique. Macro-cycles are porphyrins with four acetylenic functions which bind in both plane directions by formation of diacetylenic covalent bonds. These porphyrins are adsorbed under a single layer of dihexadecyl-phosphoric acid to build up a monomer amphiphilic film. The author reports the characterization of the Langmuir film by the study of compression isotherms and by Brewster angle microscopy. Other techniques are used (UV, visible and infrared spectroscopy, Raman spectroscopy) to highlight the polymerization in LB film. X photo-electronic spectroscopy and secondary ion mass spectroscopy are also used. The author reports the study of the orientation of macro-cycles before and after polymerization by using linear dichroism, electronic paramagnetic resonance and X ray diffraction. The in-plane LB film structure is studied by transmission X ray diffraction, atomic force microscopy in correlation with molecular simulation. The two-dimensional feature of the polymer formed at the water surface is highlighted. The membrane is visualized by electronic and optic microscopy, and characterized by EDXS and electronic diffraction [fr

  16. DNA imaging and quantification using chemi-luminescent probes

    International Nuclear Information System (INIS)

    Dorner, G.; Redjdal, N.; Laniece, P.; Siebert, R.; Tricoire, H.; Valentin, L.

    1999-01-01

    During this interdisciplinary study we have developed an ultra sensitive and reliable imaging system of DNA labelled by chemiluminescence. Based on a liquid nitrogen cooled CCD, the system achieves sensitivities down to 10 fg/mm 2 labelled DNA over a surface area of 25 x 25 cm 2 with a sub-millimeter resolution. Commercially available chemi-luminescent - and enhancer molecules are compared and their reaction conditions optimized for best signal-to-noise ratios. Double labelling was performed to verify quantification with radioactive probes. (authors)

  17. Photopatterning of heterostructured polymer Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Li Tiesheng; Mitsuishi, Masaya; Miyashita, Tokuji

    2008-01-01

    Heterostructured polymer Langmuir-Blodgett (LB) film prepared by using poly(N-dodecylacrylamide-co-t-butyl 4-vinylphenyl carbonate) (p(DDA-tBVPC53)) and poly(N-neopentyl methacrylamide-co-9-anthrylmethyl methacrylate) (p(nPMA-AMMA10)) polymer LB films which can act as photogenerator layers were investigated. Patterns with a resolution of 0.75 μm were obtained on heterostructured polymer LB films composed of 4 layers of p(nPMA-AMMA10) LB film (top layers) and 40 layers of p(DDA-tBVPC53) LB film (under layers) on a silicon wafer by deep UV irradiation followed by development with 1% tetramethylammonium hydroxide aqueous solution. The sensitivity of the heterostructured polymer LB films was improved without loss of the resolution compared with p(DDA-tBVPC53) LB film. The etch resistance of the heterostructured polymer LB films was sufficiently good to allow patterning of a copper film suitable for photomask fabrication

  18. Magnetic volcanos in gadolinium Langmuir-Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Tishin, A.M. E-mail: amt@mailaps.org; Snigirev, O.V.; Khomutov, G.B.; Gudoshnikov, S.A.; Bohr, J

    2001-09-01

    Magnetic, structural and electronic properties of Langmuir-Blodgett films with incorporated Gd{sup 3+} ions has been detected using a scanning DC SQUID microscope, scanning electron microscope and X-ray diffraction. The magnetic images of 28 and 50 layer thick films at 77 K have been obtained after in-plane and out-of-plane pre-magnetization in a field of 1.4 T at 300 K. Randomly placed 'magnetic volcanos' with a remanent magnetic moment of the order of 10{sup -13} A m{sup 2} was observed. A decay of the remanent magnetization with a characteristic time of about 120 h was observed. It is suggested that the magnetic order is relatively long ranged, and that topological defects (vortices) lead to the observed out-of-plane field lines, and are responsible for the magnetic volcanos. Finally, it is hypothesized that a similar topology of field lines is responsible for superconductivity as observed in ceramic high-T{sub C} superconductors.

  19. New depositing method of Langmuir-Blodgett film of fatty acid soap as a radioactive source

    Energy Technology Data Exchange (ETDEWEB)

    Iwahashi, Makio; Watanabe, Norifumi; Seimiya, Tsutomu; Naito, Fujio

    1985-02-01

    A stable radioactive source in vacuo was obtained by a new depositing method of Langmuir-Blodgett (L/B) film. In spite of the slight consumption of the substrate solution (only 2-2.5 ml) for preparing a 15 mm x 25 mm sized L/B film containing four molecular layers of /sup 109/Cd-eicosanoate, the deposition of the film was complete. (author).

  20. Chemiluminescence behavior based on oxidation reaction of rhodamine B with cerium(IV) in sulfuric acid medium

    International Nuclear Information System (INIS)

    Ma Yongjun; Jin Xiaoyong; Zhou Min; Zhang Ziyu; Teng Xiulan; Chen Hui

    2003-01-01

    The chemiluminescence (CL) of the rhodamine B (RhB)-cerium(IV) system was investigated by flow-injection. Rhodamine B was suggested to be a suitable chemiluminescent reagent in acidic conditions. When the concentration of rhodamine B was 100 mg l -1 and cerium sulfate was 1.6 mmol l -1 in sulfuric acid, the chemiluminescent intensity was found to be highest by using 0.3 mol l -1 sulfuric acid as a carrier solution. The particular chemiluminescent system could tolerate such distinct acidic environments that it was utilized for detecting many compounds that are stable in acidic solutions. Furthermore, by virtue of IR, UV-Vis and luminescence spectroscopic measurements, the chemiluminescent behavior of rhodamine B was studied and a possible mechanism for this chemiluminescent reaction was proposed. The emitter was affirmed to be a radical species due to one of the oxidation products of RhB; the chemiluminescent emissive wavelength was about 425 nm

  1. Chemiluminescence behavior based on oxidation reaction of rhodamine B with cerium(IV) in sulfuric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yongjun; Jin Xiaoyong; Zhou Min; Zhang Ziyu; Teng Xiulan; Chen Hui

    2003-08-18

    The chemiluminescence (CL) of the rhodamine B (RhB)-cerium(IV) system was investigated by flow-injection. Rhodamine B was suggested to be a suitable chemiluminescent reagent in acidic conditions. When the concentration of rhodamine B was 100 mg l{sup -1} and cerium sulfate was 1.6 mmol l{sup -1} in sulfuric acid, the chemiluminescent intensity was found to be highest by using 0.3 mol l{sup -1} sulfuric acid as a carrier solution. The particular chemiluminescent system could tolerate such distinct acidic environments that it was utilized for detecting many compounds that are stable in acidic solutions. Furthermore, by virtue of IR, UV-Vis and luminescence spectroscopic measurements, the chemiluminescent behavior of rhodamine B was studied and a possible mechanism for this chemiluminescent reaction was proposed. The emitter was affirmed to be a radical species due to one of the oxidation products of RhB; the chemiluminescent emissive wavelength was about 425 nm.

  2. Chemiluminescence immunoassay for prostate-specific antigen

    International Nuclear Information System (INIS)

    Zhang Xuefeng; Liu Yibing; Jia Juanjuan; Xu Wenge; Li Ziying; Chen Yongli; Han Shiquan

    2008-01-01

    The chemiluminescence immunoassay (CLIA) for serum total prostate-specific antigen (T-PSA) was developed. The reaction of luminol with hydrogen peroxide was introduced into this chemiluminescence system. The detection limit is established as 0.12 μg/L (n=10, mean of zero standard + 2SD) and the analytical recovery of PSA is 83.8%-118.7%. The intra-assay and inter-assay CVs vary from 4.4%-5.0% and 6.2%-11.7%, respectively. The experimental correlation coefficient of dilution is found to be 0.999. Compared with immunoradiometric assay (IRMA) kits, the correlative equation is y=1.07x+0.68, and correlation coefficient r=0.97. The standard range for the method is 1.5-80 μg/L, and it presents good linearity. (authors)

  3. Near-Infrared Intraoperative Chemiluminescence Imaging

    KAUST Repository

    Bü chel, Gabriel E.; Carney, Brandon; Shaffer, Travis M.; Tang, Jun; Austin, Christine; Arora, Manish; Zeglis, Brian M.; Grimm, Jan; Eppinger, Jö rg; Reiner, Thomas

    2016-01-01

    Intraoperative imaging technologies recently entered the operating room, and their implementation is revolutionizing how physicians plan, monitor, and perform surgical interventions. In this work, we present a novel surgical imaging reporter system: intraoperative chemiluminescence imaging (ICI). To this end, we have leveraged the ability of a chemiluminescent metal complex to generate near-infrared light upon exposure to an aqueous solution of Ce4+ in the presence of reducing tissue or blood components. An optical camera spatially resolves the resulting photon flux. We describe the construction and application of a prototype imaging setup, which achieves a detection limit as low as 6.9pmolcm-2 of the transition-metal-based ICI agent. As a proof of concept, we use ICI for the invivo detection of our transition metal tracer following both systemic and subdermal injections. The very high signal-to-noise ratios make ICI an interesting candidate for the development of new intraoperative imaging technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Near-Infrared Intraoperative Chemiluminescence Imaging

    KAUST Repository

    Büchel, Gabriel E.

    2016-08-03

    Intraoperative imaging technologies recently entered the operating room, and their implementation is revolutionizing how physicians plan, monitor, and perform surgical interventions. In this work, we present a novel surgical imaging reporter system: intraoperative chemiluminescence imaging (ICI). To this end, we have leveraged the ability of a chemiluminescent metal complex to generate near-infrared light upon exposure to an aqueous solution of Ce4+ in the presence of reducing tissue or blood components. An optical camera spatially resolves the resulting photon flux. We describe the construction and application of a prototype imaging setup, which achieves a detection limit as low as 6.9pmolcm-2 of the transition-metal-based ICI agent. As a proof of concept, we use ICI for the invivo detection of our transition metal tracer following both systemic and subdermal injections. The very high signal-to-noise ratios make ICI an interesting candidate for the development of new intraoperative imaging technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A Novel Technique for Generating and Observing Chemiluminescence in a Biological Setting

    KAUST Repository

    Bü chel, Gabriel E.; Carney, Brandon; Tang, Jun; Zeglis, Brian M.; Eppinger, Jö rg; Reiner, Thomas

    2017-01-01

    not yet explored for intraoperative imaging: chemiluminescent imaging. This method employs a ruthenium-based chemiluminescent reporter along with a custom-built nebulizing system to produce ex vivo or in vivo images with high signal-to-noise ratios

  6. A raft-associated species of phosphatidylethanolamine interacts with cholesterol comparably to sphingomyelin. A Langmuir-Blodgett monolayer study.

    Directory of Open Access Journals (Sweden)

    Michal Grzybek

    Full Text Available BACKGROUND: Specific interactions between sphingomyelin (SM and cholesterol (Ch are commonly believed to play a key role in the formation of rafts in the biological membranes. A weakness of this model is the implication that these microdomains are confined to the outer bilayer leaflet. The cytoplasmic leaflet, which contains the bulk of phosphatidylethanolamine (PE, phosphatidylserine (PS and phosphatidylinositol (PI, is thought also to harbour half of the membrane cholesterol. Moreover, SLPE (1-stearoyl-2-linoleoyl-sn-glycero-3-phosphatidyl-ethanolamine has recently been shown to be enriched in isolated detergent-resistant membranes (DRM, and this enrichment was independent of the method of isolation of DRM. METHODOLOGY/PRINCIPAL FINDINGS: Here we present quantitative evidence coming from Langmuir-Blodgett monolayer experiments that SLPE forms complex with Ch similar to that between SM and Ch. The energies of these interactions as calculated form the monolayer studies are highly negative. FRAP analysis showed that NBD-Ch recovery was similar in liposomes composed of DOPC/Ch SM or SLPE but not DPPE, providing further evidence that SLPE may form an l(o phase in the presence of high Ch concentration. Experiments on the solubility of DOPC liposomes containing DPPE/Ch (1ratio1, SM/Ch (1ratio1 or SLPE/Ch (1ratio1 showed the presence of Triton X-100 insoluble floating fraction (TIFF in the case of SM/Ch or SLPE/Ch but not in DPPE/Ch containing liposomes. Quantitative determination of particular lipid species in the TIFF fraction confirms the conclusion that SLPE (or similar PE species could be an important constituent of the inner leaflet raft. CONCLUSION: Such interactions suggest a possible existence of inner-leaflet nanoscale assemblies composed of cholesterol complexes with SLPE or similar unsaturated PE species.

  7. 3D-printed and CNC milled flow-cells for chemiluminescence detection.

    Science.gov (United States)

    Spilstead, Kara B; Learey, Jessica J; Doeven, Egan H; Barbante, Gregory J; Mohr, Stephan; Barnett, Neil W; Terry, Jessica M; Hall, Robynne M; Francis, Paul S

    2014-08-01

    Herein we explore modern fabrication techniques for the development of chemiluminescence detection flow-cells with features not attainable using the traditional coiled tubing approach. This includes the first 3D-printed chemiluminescence flow-cells, and a milled flow-cell designed to split the analyte stream into two separate detection zones within the same polymer chip. The flow-cells are compared to conventional detection systems using flow injection analysis (FIA) and high performance liquid chromatography (HPLC), with the fast chemiluminescence reactions of an acidic potassium permanganate reagent with morphine and a series of adrenergic phenolic amines. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Chemiluminescence. Principles and applications in biology and medicine

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A K

    1988-01-01

    Chemiluminescence, the emission of light caused by a chemical reaction, is a phenomenon used for many applications and of wide biological importance. It occurs in bacteria and insects (including glow-worms and fireflies), in many of the animals in the deep sea and even in human cells. The last 25 years have witnessed fast progress in the elucidation of the reactions and mechanisms underlying bioluminescence and light production by synthetic systems. Together with the development of highly sensitive light detectors, this has made available new biomedical methods and has given rise to new concepts concerning the biology and pathology of the cell. The book describes the occurrence, chemistry and measurement of chemiluminescence. It deals with the biological function and evolutionary significance, and looks at the many biomedical applications. The author describes the uses of chemiluminescence to measure enzymes, substrates and metabolites, to detect the changes of calcium concentration in living cells, to determine oxygen radicals or to replace the radioactive labels in immunoassays. Future applications in research and clinical laboratories are also discussed.

  9. A chemiluminescent method for determination of lipid peroxidation

    International Nuclear Information System (INIS)

    Liang Xiaofeng; Hu Tianxi; Fan Xiaobing

    2003-01-01

    We established a chemiluminescent system for determination of lipid peroxidation and screening anti-oxidants. The lipid containing unsaturated fatly acids was injected into a galls tube. Luminol solution and the deionized water were added into it too. The glass tube was put into a preincubation box to incubate it for 0.5 h at 37 degree C. AAPH solution was injected into the tube for immediate measurement in a biochemiluminometer at 38-39 degree C. The pulses /6s(CP6s) were determined with T-2 program. Chemiluminescent dynamic and lipid peroxidation changes were observed continuously. Once the CL intensity of lipid peroxidation got peak, the antioxidant which has different concentration was added immediately in situ. A certain CL intensity (CP6s) was chosen as evaluation index to compare the activity of antioxidants. A luminol chemiluminescent system for determination of lipid peroxidation has been made. It was found that Vit. C, teapolyphenol, and glutathione have effects on scavenging lipid free radicals. The new method is quick, sensitive, and simple for determination of lipid peroxidation and screening antioxidants

  10. Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir-Blodgett Thin Films

    Czech Academy of Sciences Publication Activity Database

    Stanković, N. K.; Bodik, M.; Šiffalovič, P.; Kotlár, M.; Mičušik, M.; Špitalsky, Z.; Danko, M.; Milivojević, D. D.; Kleinová, A.; Kubát, Pavel; Capáková, Z.; Humpolíček, P.; Lehocký, M.; Todorović Marković, B. M.; Marković, Z. M.

    2018-01-01

    Roč. 6, č. 3 (2018), s. 4154-4163 ISSN 2168-0485 R&D Projects: GA ČR(CZ) GA17-05095S Institutional support: RVO:61388955 Keywords : Hydrophobic carbon quantum dots * Langmuir-Blodgett thin films * Photodynamic therapy * Singlet oxygen Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.951, year: 2016

  11. An introduction to ultrathin organic films from Langmuir-Blodgett to self-assembly

    CERN Document Server

    Ulman, Abraham

    1991-01-01

    The development of oriented organic monomolecular layers by the Langmuir-Blodgett (LB) and self-assembly (SA) techniques has led researchers toward their goal of assembling individual molecules into highly ordered architectures. Thus the continually growing contribution of LB and SA systems to the chemistry and physics of thin organic films is widely recognized. Equally well-known is the difficulty in keeping up to date with the burgeoning multidisciplinary research in this area. Dr. Ulman provides a massive survey of the available literature. The book begins with a section on analytical tools

  12. Biological water quality monitoring using chemiluminescent and bioluminescent techniques

    Science.gov (United States)

    Thomas, R. R.

    1978-01-01

    Automated chemiluminescence and bioluminescence sensors were developed for the continuous monitoring of microbial levels in water supplies. The optimal chemical procedures were determined for the chemiluminescence system to achieve maximum sensitivity. By using hydrogen peroxide, reaction rate differentiation, ethylene diamine tetraacetic acid (EDTA), and carbon monoxide pretreatments, factors which cause interference were eliminated and specificity of the reaction for living and dead bacteria was greatly increased. By employing existing technology with some modifications, a sensitive and specific bioluminescent system was developed.

  13. Nepem-211 ion exchange conductive membrane immobilized tris(2,2´-bipyridyl) ruthenium(II) electrogenerated chemiluminescence flow sensor for high-performance liquid chromatography and its application.

    Science.gov (United States)

    Li, Yongbo; Zhang, Zhujun

    2013-01-01

    We developed a sensitive and robust electrogenerated chemiluminescence (ECL) flow sensor based on Ru(bpy)3(2+) immobilized with a Nepem-211 perfluorinated ion exchange conductance membrane, which has robustness and stability under a wide range of chemical and physical conditions, good electrical conductivity, isotropy and a high exchange capacity for immobilization of Ru(bpy)3(2+). The flow sensor has been used as a post-column detector in high-performance liquid chromatography for determination of erythromycin and clarithromycin in honey and pork, and tricyclic antidepressant drugs in human urine. Under optimal conditions, the linear ranges were 0.03-26 ng/μL and 0.01-1 ng/μL for macrolides and tricyclic antidepressant drugs, respectively. The detection limits were 0.02, 0.01, 0.01, 0.06 and 0.003 ng/μL for erythromycin, clarithromycin, doxepin, amitriptyline and clomipramine, respectively. There is no post-column reagent addition. In addition to the conservation expensive reagents, the experimental setup was simplified. The flow sensor was used for 2 years with high sensitivity and stability. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Chemiluminescence determination of ultramicro DNA with a flow-injection method

    International Nuclear Information System (INIS)

    Chen Hui; Zhou Min; Jin Xiaoyong; Song Yumin; Zhang Ziyu; Ma Yongjun

    2002-01-01

    A high sensitive flow-injection chemiluminescence method for determination of calf thymus DNA and herring sperm DNA has been developed. The method is based on the chemiluminescence reaction of Rhodamine B-cerium(IV)-thermally denatured DNAs in sulfuric acid media. The proposed procedure allows quantitation of DNAs in the range 2.6x10 -5 to 0.26 μg ml -1 for calf thymus DNA and 5.0x10 -8 to 5.0x10 -5 μg ml -1 for herring sperm DNA with correlation coefficients 0.9998 and 0.9996 (both n=11), respectively. The detection limits (3σ) are 6.5x10 -6 μg ml -1 for calf thymus DNA and 4.3x10 -8 μg ml -1 for herring sperm DNA. The possible mechanism of chemiluminescence in the system is discussed

  15. Radicals as EPR probes of magnetization of gadolinium stearate Langmuir-Blodgett film

    DEFF Research Database (Denmark)

    Koksharov, Y.A.; Bykov, I.V.; Malakho, A.P.

    2002-01-01

    In the present work we have applied the method of the EPR spin probes which allows performing simultaneously EPR and magnetization measurements to the investigation of magnetism of the Cid stearate Langmuir-Blodgett (LB) films. For this purpose we have prepared and studied by the EPR technique...... the Gd and Y stearate LB films. Placing the small BDPA crystal on the film surface we have found that for the Gd LB sample the effective g-value of the radical's resonance depends on the film orientation in respect to the external magnetic field direction. The relative shift of the EPR signal...

  16. Fabrication of phytic acid sensor based on mixed phytase-lipid Langmuir-Blodgett films.

    Science.gov (United States)

    Caseli, Luciano; Moraes, Marli L; Zucolotto, Valtencir; Ferreira, Marystela; Nobre, Thatyane M; Zaniquelli, Maria Elisabete D; Rodrigues Filho, Ubirajara P; Oliveira, Osvaldo N

    2006-09-26

    This paper reports the surface activity of phytase at the air-water interface, its interaction with lipid monolayers, and the construction of a new phytic acid biosensor on the basis of the Langmuir-Blodgett (LB) technique. Phytase was inserted in the subphase solution of dipalmitoylphosphatidylglycerol (DPPG) Langmuir monolayers, and its incorporation to the air-water interface was monitored with surface pressure measurements. Phytase was able to incorporate into DPPG monolayers even at high surface pressures, ca. 30 mN/m, under controlled ionic strength, pH, and temperature. Mixed Langmuir monolayers of phytase and DPPG were characterized by surface pressure-area and surface potential-area isotherms, and the presence of the enzyme provided an expansion in the monolayers (when compared to the pure lipid at the interface). The enzyme incorporation also led to significant changes in the equilibrium surface compressibility (in-plane elasticity), especially in liquid-expanded and liquid-condensed regions. The dynamic surface elasticity for phytase-containing interfaces was investigated using harmonic oscillation and axisymmetric drop shape analysis. The insertion of the enzyme at DPPG monolayers caused an increase in the dynamic surface elasticity at 30 mN m(-)(1), indicating a strong interaction between the enzyme and lipid molecules at a high-surface packing. Langmuir-Blodgett (LB) films containing 35 layers of mixed phytase-DPPG were characterized by ultraviolet-visible and fluorescence spectroscopy and crystal quartz microbalance nanogravimetry. The ability in detecting phytic acid was studied with voltammetric measurements.

  17. Gold nanorods-enhanced rhodamine B-permanganate chemiluminescence and its analytical application.

    Science.gov (United States)

    Hassanzadeh, Javad; Amjadi, Mohammad; Manzoori, Jamshid L; Sorouraddin, Mohammad Hossein

    2013-04-15

    A novel enhanced chemiluminescence system was developed by applying gold nanorods (Au NRs) as catalysts in rhodamine B-permanganate reaction. Au NRs with three different aspect ratios were synthesized by seed mediated growth method and characterized by UV-Vis spectra and transmission electron microscopy. It was demonstrated that Au NRs have much higher catalytic effect than spherical nanoparticles on rhodamine B-permanganate chemiluminescence reaction. Among various sizes of Au NRs, those with average aspect ratio of 3.0 were found to have the most remarkable catalytic activity. As an analytical application of the new chemiluminescence system, albumin as a model protein was quantified based on its interaction with NRs. Albumin binds to Au NRs active surfaces and inhibits their catalytic action and therefore decreases the intensity of chemiluminescence. This diminution effect is linearly related to the concentration of the human and bovine serum albumin over the ranges of 0.45-90 and 0.75-123 nmol L(-1), respectively with the corresponding limits of detection of 0.18 and 0.30 nmol L(-1). The method was successfully applied to the determination of albumin in human and bovine serum samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Chemiluminescence determination of ultramicro DNA with a flow-injection method

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hui; Zhou Min; Jin Xiaoyong; Song Yumin; Zhang Ziyu; Ma Yongjun

    2002-02-12

    A high sensitive flow-injection chemiluminescence method for determination of calf thymus DNA and herring sperm DNA has been developed. The method is based on the chemiluminescence reaction of Rhodamine B-cerium(IV)-thermally denatured DNAs in sulfuric acid media. The proposed procedure allows quantitation of DNAs in the range 2.6x10{sup -5} to 0.26 {mu}g ml{sup -1} for calf thymus DNA and 5.0x10{sup -8} to 5.0x10{sup -5} {mu}g ml{sup -1} for herring sperm DNA with correlation coefficients 0.9998 and 0.9996 (both n=11), respectively. The detection limits (3{sigma}) are 6.5x10{sup -6} {mu}g ml{sup -1} for calf thymus DNA and 4.3x10{sup -8} {mu}g ml{sup -1} for herring sperm DNA. The possible mechanism of chemiluminescence in the system is discussed.

  19. Purification non-aqueous solution of quantum dots CdSe- CdS-ZnS from excess organic substance-stabilizer by use PE- HD membrane

    Science.gov (United States)

    Kosolapova, K.; Al-Alwani, A.; Gorbachev, I.; Glukhovskoy, E.

    2015-11-01

    Recently, a new simple method for the purification of CdSe-CdS-ZnS quantum dots by using membrane filtration, the filtration process, successfully separated the oleic acid from quantum dots through membranes purification after synthesis; purification of quantum dots is a very significant part of post synthetical treatment that determines the properties of the material. We explore the possibilities of the Langmuir-Blodgett technique to make such layers, using quantum dots as a model system. The Langmuir monolayer of quantum dots were then investigated the surface pressure-area isotherm. From isotherm, we found the surface pressure monolayer changed with time.

  20. Determination of ethamsylate in pharmaceutical preparations based on an auto-oxidation chemiluminescence reaction.

    Science.gov (United States)

    Yang, Fengzhen; Zhang, Chao; Baeyens, Willy R G; Zhang, Xinrong

    2002-10-15

    Strong chemiluminescence emission has been observed by mixing alkaline hydrolytic products of ethamsylate with Tween 80 in acidic rhodamine 6G solution. This phenomenon has been utilized to design a flow-injection chemiluminescence method for the determination of ethamsylate in a pharmaceutical preparation. Under the optimum conditions, the proposed procedure has a linear range between 0.05 and 2.0 microg ml(-1), with a detection limit of 0.02 microg ml(-1) for ethamsylate. The method was applied to the determination of ethamsylate in pharmaceutical preparations. The possible mechanism of this chemiluminescence reaction was proposed. Copyright 2002 Elsevier Science B.V.

  1. Characteristic of peroxyoxalate-chemiluminescence intensity in the presence of Chlorpheniramine maleate and its analytical application

    International Nuclear Information System (INIS)

    Samadi-Maybodi, Abdolraouf; Akhoondi, Reza

    2011-01-01

    It has been shown that Chlorpheniramine maleate (CPM) increases chemiluminescence intensity of bis-(2,4,6-trichlorophenyl)oxalate (TCPO) with hydrogen peroxide in the presence of biphenylquinoxaline as a fluorophore. In this work, the effect of CPM on the intensity of chemiluminescence (CL) in the system of (TCPO-sodium salicylate-fluorophore-hydrogen peroxide) was investigated. The fall and rise rates constants were also studied. A pooled-intermediate model was used for determining the kinetics parameters of CL with and without CPM. Results indicated that addition of CMP to this system increases the fall rate constant and decreases the rise rate constant. Results also specified that there is a linear relationship between CPA concentration and chemiluminescence intensity in the range 0.66-21.5 μg/ml. Detection limit 0.18 μg/ml and the relative standard deviation (RSD) 2 O 2 - sodium salicylate- fluorescer) in the presence of chlorpheniramine maleate. → Results also introduced a reliable method for determination of chlorpheniramine using peroxyoxalte chemiluminescence system. → A pooled-intermediate model was used for determination the kinetics parameters of chemiluminescence with and without chlorpheniramine maleate. → Results also specified that there is a linear relationship between chlorpheniramine maleate concentration and chemiluminescence intensity.

  2. Moessbauer study of C18N/Fe Langmuir-Blodgett layers

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, Erno [Institute of Chemistry, Eoetvoes Lorand University (Hungary); Telegdi, Judit [Institute of Nanochemistry and Catalysis, Chemical Research Center, HAS (Hungary); Nemeth, Zoltan, E-mail: hentes@chem.elte.hu; Vertes, Attila [Institute of Chemistry, Eoetvoes Lorand University (Hungary); Nyikos, Lajos [Institute of Nanochemistry and Catalysis, Chemical Research Center, HAS (Hungary)

    2012-03-15

    Langmuir-Blodgett (LB) films of octadecanoyl hydroxamic acid (C18N) complexed with Fe{sup 3 + } ions have been prepared at various subphase pH values. The LB films consisting of different number of layers were investigated by {sup 57}Fe conversion electron Moessbauer spectroscopy (CEM) at room temperature. The CEM detector contained a piece of {alpha}-iron, enriched with {sup 57}Fe, using as an internal standard. The Moessbauer pattern of the C18N/Fe LB films is a doublet with parameters {delta} = 0.35 mm/s and {Delta} = 0.74 mm/s. A gradual increase of the relative occurrence of the doublet compared to the sextet of the internal standard was observed with the increasing number of layers, indicating the nearly uniform distribution of Fe among the LB layers.

  3. On bistable states retention in ferroelectric Langmuir-Blodgett films

    Science.gov (United States)

    Geivandov, A. R.; Palto, S. P.; Yudin, S. G.; Fridkin, V. M.; Blinov, L. M.; Ducharme, S.

    2003-08-01

    A new insight into the nature of ferroelectricity is emerging from the study of ultra-thin ferroelectric films prepared of poly(vinylidene fluoride with trifluoroethylene) copolymer using Langmuir-Blodgett (LB) technique. Unique properties of these films indicate the existence of two-dimensional ferroelectricity. The retention of two polarized states in ferroelectric polymer LB films is studied using nonlinear dielectric spectroscopy. The technique is based on phase sensitive measurements of nonlinear dielectric spectroscopy. The amplitude of the current response at the 2nd harmonic of the applied voltage is proportional to the magnitude of the remnant polarization, while its phase gives the sign. We have found that 10 - 20 mm thick LB films can show fast switching time and long retention of the two polarized states. Nevertheless, LB films show a pronounced asymmetry in switching to the opposite states. Possible mechanisms of such behavior are discussed.

  4. Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Rocha Junior, Carlos da; Caseli, Luciano

    2017-01-01

    In this present work, the surface activity of the enzyme asparaginase was investigated at the air-water interface, presenting surface activity in high ionic strengths. Asparaginase was incorporated in Langmuir monolayers of the phospholipid dipalmitoylphosphatidylcholine (DPPC), forming a mixed film, which was characterized with surface pressure-area isotherms, surface potential-area isotherms, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The adsorption of the enzyme at the air-water interface condensed the lipid monolayer and increased the film compressibility at high surface pressures. Amide bands in the PM-IRRAS spectra were identified, with the C−N and C =O dipole moments lying parallel to monolayer plane, revealing the structuring of the enzyme into α-helices and β-sheets. The floating monolayers were transferred to solid supports as Langmuir-Blodgett (LB) films and characterized with fluorescence spectroscopy and atomic force microscopy. Catalytic activities of the films were measured and compared to the homogenous medium. The enzyme accommodated in the LB films preserved more than 78% of the enzyme activity after 30 days, in contrast for the homogeneous medium, which preserved less than 13%. The method presented in this work not only allows for an enhanced catalytic activity, but also can help explain why certain film architectures exhibit better performance. - Highlights: • Biomembranes are mimicked with Langmuir monolayers. • Asparaginase is incorporated into the lipid monolayer. • Enzyme adsorption is confirmed with tensiometry and infrared spectroscopy. • Langmuir-Blodgett films of the enzyme present enzyme activity.

  5. Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Rocha Junior, Carlos da; Caseli, Luciano, E-mail: lcaseli@unifesp.br

    2017-04-01

    In this present work, the surface activity of the enzyme asparaginase was investigated at the air-water interface, presenting surface activity in high ionic strengths. Asparaginase was incorporated in Langmuir monolayers of the phospholipid dipalmitoylphosphatidylcholine (DPPC), forming a mixed film, which was characterized with surface pressure-area isotherms, surface potential-area isotherms, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The adsorption of the enzyme at the air-water interface condensed the lipid monolayer and increased the film compressibility at high surface pressures. Amide bands in the PM-IRRAS spectra were identified, with the C−N and C =O dipole moments lying parallel to monolayer plane, revealing the structuring of the enzyme into α-helices and β-sheets. The floating monolayers were transferred to solid supports as Langmuir-Blodgett (LB) films and characterized with fluorescence spectroscopy and atomic force microscopy. Catalytic activities of the films were measured and compared to the homogenous medium. The enzyme accommodated in the LB films preserved more than 78% of the enzyme activity after 30 days, in contrast for the homogeneous medium, which preserved less than 13%. The method presented in this work not only allows for an enhanced catalytic activity, but also can help explain why certain film architectures exhibit better performance. - Highlights: • Biomembranes are mimicked with Langmuir monolayers. • Asparaginase is incorporated into the lipid monolayer. • Enzyme adsorption is confirmed with tensiometry and infrared spectroscopy. • Langmuir-Blodgett films of the enzyme present enzyme activity.

  6. Structural studies on Langmuir-Blodgett ultra-thin films on tin (IV) stearate using X-ray diffraction technique

    International Nuclear Information System (INIS)

    Mohamad Deraman; Muhamad Mat Salleh; Mohd Ali Sulaiman; Mohd Ali Sufi

    1991-01-01

    X-ray diffraction measurements were carried out on Langmuir-Blodgett (LB) ultra-thin films of tin (IV) stearate for different numbers of layers. The structural information such as interplanar spacing, unit cells spacing, molecular length and orientation of molecular chains were obtained from the diffraction data. This information is discussed and compared with that previously published for LB ultra-thin films of manganese stearate and cadmium stearate

  7. Second harmonic generation in anisotropic Langmuir-Blodgett films of N-docosyl-4-nitroaniline

    DEFF Research Database (Denmark)

    Geisler, T.; Rosenkilde, S.; Ramanujam, P.S.

    1992-01-01

    Langmuir-Blodgett (LB) films of N-docosyl-4-nitroaniline have been made and their nonlinear optical properties studied by second harmonic generation (SHG) measurements. A significant enhancement of the intensity of the second harmonic of the 1.064-mu-m YAG was observed when a two layer Y-type film...... structure. Both of these observations are not common for Y-type LB films and the usual assumption of C(infinity nu) symmetry is therefore not valid. The results make us suggest that these LB films possess C(s) and C2-nu symmetry for mono- and multilayers, respectively. Theoretical expressions...

  8. A readout circuit dedicated for the detection of chemiluminescence using a silicon photomultiplier

    Science.gov (United States)

    Baszczyk, M.; Dorosz, P.; Mik, L.; Kucewicz, W.; Reczynski, W.; Sapor, M.

    2018-05-01

    A readout circuit dedicated for the detection of the chemiluminescence phenomenon using a silicon photomultiplier (SiPM) is presented. During chemiluminescence, light is generated as a result of chemical reaction. Chemiluminescence is used in many applications within medicine, chemistry, biology and biotechnology, and is one of the most important sensing techniques in biomedical science and clinical medicine. The front-end electronics consist of a preamplifier and a fast shaper—this produces pulses, the peaking time which is 3.6 ns for a single photon and the FWHM is 3.8 ns. The system has been optimised to measure chemiluminescence—it is sensitive at the level of single photons, it generates a low number of overlapping pulses and is accurate. Two methods of signal detection are analysed and compared: the counting of events and amplitude detection. The relationship between the chemiluminescence light intensity and the concentration of the chemical compound (luminol) is linear in the range of the tested concentrations and has strong linearity parameters and low prediction intervals.

  9. Study of magnetic materials in Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Coronel, Philippe

    1990-01-01

    As one of the key issue in molecular electronics is the fabrication of organised systems with specific properties born by molecules, one of these properties being the possibility of information storage, this research thesis reports an exploratory study based on the development of a magnetic complex in a two-dimensional organisation in order to obtain a molecular magnetic memory. For this purpose, the chosen property for the complex was the molecular bi-stability which is a characteristic of magnetic materials which display a spin transition phenomenon. Two types of complex families have been studied: [(Phenanthroline)_2Fe'' (NCS)_2] and [Fe''' (8-quinolyl-salicyl-aldimine)_2](X''). The fabrication of a two-dimensional organised system is performed by using the Langmuir-Blodgett technique. With this technique, three synthesis ways are considered: an in-situ synthesis, a semi-amphiphilic way, and an amphiphilic way. Within this research, the author tried to see whether the existence of 3D (powder) spin transition phenomenon was transposable in 2D (case of a LB film) [fr

  10. Laser-saturated fluorescence of nitric oxide and chemiluminescence measurements in premixed ethanol flames

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Carla S.T.; Barreta, Luiz G.; Sbampato, Maria E.; dos Santos, Alberto M. [Aerothermodynamic and Hypersonic Division, Institute of Advanced Studies - General Command of Aerospatial Technology, Rodovia dos Tamoios, km 5.5, 12228-001 Sao Jose dos Campos - SP (Brazil)

    2010-11-15

    In this study, nitric oxide laser-saturated fluorescence (LSF) measurements were acquired from premixed ethanol flames at atmospheric pressure in a burner. NO-LSF experimental profiles for fuel-rich premixed ethanol flames ({phi} = 1.34 and {phi} = 1.66) were determined through the excitation/detection scheme of the Q{sub 2}(26.5) rotational line in the A{sup 2}{sigma}{sup +} - X{sup 2}{pi} (0,0) vibronic band and {gamma}(0,1) emission band. A calibration procedure by NO doping into the flame was applied to establish the NO concentration profiles in these flames. Chemiluminescent emission measurements in the (0, 0) vibronic emission bands of the OH{sup *} (A{sup 2}{sigma}{sup +} - X{sup 2}{pi}) and CH{sup *}(A{sup 2}{delta} - X{sup 2}{pi}) radicals were also obtained with high spatial and spectral resolution for fuel-rich premixed ethanol flames to correlate them with NO concentrations. Experimental chemiluminescence profiles and the ratios of the integrated areas under emission spectra (A{sub CH*}/A{sub CH*}(max.) and A{sub CH*}/A{sub OH*}) were determined. The relationships between chemiluminescence and NO concentrations were established along the premixed ethanol flames. There was a strong connection between CH{sup *} radical chemiluminescence and NO formation and the prompt-NO was identified as the governing mechanism for NO production. The results suggest the optimum ratio of the chemiluminescence of two radicals (A{sub CH*}/A{sub OH*}) for NO diagnostic purposes. (author)

  11. Novel luminescent Langmuir-Blodgett films of europium complex embedded in titania matrix

    International Nuclear Information System (INIS)

    Zhang Li; Liu, H.-G.; Kang, S.-Z.; Mu, Y.-D.; Qian, D.-J.; Lee, Yong-Ill; Feng Xusheng

    2005-01-01

    A stable Eu(DBM) 3 (DB-bpy)/AA/TiO 2 monolayer was formed on the surface of a composite subphase by spreading an Eu(DBM) 3 (DB-bpy)/AA/TBT chloroform solution. DBM, DB-bpy, AA and TBT refer to dibenzoylmethanate, 4,4'-Di-tert-butyl-2,2'-bipyridine, arachidic acid and tetrabutyloxyltitanium, respectively. Eu(DBM) 3 (DB-bpy)/AA/TiO 2 Langmuir-Blodgett films were deposited on solid substrates and were characterized by low-angle X-ray diffractometry, UV-visible (UV refers to ultra-violet) spectroscopy, photoluminescent spectroscopy and electron probe microanalysis. The results show that a luminescent composite film with layered structure was fabricated, which shows characteristic emission of Eu(III)

  12. Application of multi-step excitation schemes for detection of actinides and lanthanides in solutions by luminescence/chemiluminescence laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Izosimov, I. [Joint Institute for Nuclear Research, Joliot Curie 6, Dubna 141980 (Russian Federation)

    2016-07-01

    The use of laser radiation with tunable wavelength allows the selective excitation of actinide/lanthanide species with subsequent registration of luminescence/chemiluminescence for their detection. This work is devoted to applications of the time-resolved laser-induced luminescence spectroscopy and time-resolved laser-induced chemiluminescence spectroscopy for the detection of lanthanides and actinides. Results of the experiments on U, Eu, and Sm detection by TRLIF (Time Resolved Laser Induced Fluorescence) method in blood plasma and urine are presented. Data on luminol chemiluminescence in solutions containing Sm(III), U(IV), and Pu(IV) are analyzed. It is shown that appropriate selectivity of lanthanide/actinide detection can be reached when chemiluminescence is initiated by transitions within 4f- or 5f-electron shell of lanthanide/actinide ions corresponding to the visible spectral range. In this case chemiluminescence of chemiluminogen (luminol) arises when the ion of f element is excited by multi-quantum absorption of visible light. The multi-photon scheme of chemiluminescence excitation makes chemiluminescence not only a highly sensitive but also a highly selective tool for the detection of lanthanide/actinide species in solutions. (author)

  13. Langmuir-Blodgett films prepared from pre-formed cholestanic liquid-crystalline polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tundo, P.; Hodge, P.; Valli, L.; Davis, F. (Venice Univ. (Italy). Dip. di Scienze Ambientali Lecce Univ. (Italy). Dip. di Scienza dei Materiali Manchester Univ. (United Kingdom). Dep. of Chemistry)

    1992-01-01

    A series of alternating copolymers of maleic anhydride and a-olefins functionalized through different alkyl chains with cholestanic groups were synthetised and derivatives prepared by reactions of the anhydride residues with methanol, water, dimethylamine and morpholine, respectively. The same starting functionalized a-olefins were used to prepare other suitable compounds in order to correlate the features of the liquid-crystalline behaviour of the mesogenic cholestanic group with the stability of the forthcoming polymeric or not polymeric Langmuir-Blodgett (LB) films. For some copolymers surface pressure against area per molecule isotherms are reported. In some multilayer (LB) films, the spacings between the layers were determined by the detection of BRAGG peaks by X-ray diffraction. The (LB) films of these polymers are closed packed, owing to either the polymeric skeleton or liquid-crystalline interaction.

  14. Structural studies of Langmuir-Blodgett films containing rare-earth metal cations

    DEFF Research Database (Denmark)

    Khomutov, G.B.; Antipina, M.N.; Bykov, I.V.

    2002-01-01

    Comparative structural study of gadolinium stearate Langmuir-Blodgett (LB) films formed by monolayer deposition from either aqueous gadolinium acetate or gadolinium chloride solutions have been carried out. Structure of the films was characterized by X-ray diffraction, Fourier transform infrared...... spectroscopy, high-energy electron diffraction, atomic force microscopy and scanning electron microscopy. It was found that when subphase pH had a value at which all monolayer stearic acid molecules were ionized and bound with Gd3+ cations (pH > 5), the LB films deposited from gadolinium acetate and gadolinium....... The data obtained indicate that the control of multivalent metal cations complexes formation in the subphase and at the monolayer surface can be an instrument for optimization, the conditions to form metal-containing LB film with regulated structure and properties....

  15. Structure and distribution of the Bacillus thuringiensis Cry4Ba toxin in lipid membranes

    International Nuclear Information System (INIS)

    Puntheeranurak, Theeraporn; Stroh, Cordula; Zhu Rong; Angsuthanasombat, Chanan; Hinterdorfer, Peter

    2005-01-01

    Bacillus thuringiensis Cry δ-endotoxins cause death of susceptible insect larvae by forming lytic pores in the midgut epithelial cell membranes. The 65 kDa trypsin activated Cry4Ba toxin was previously shown to be capable of permeabilizing liposomes and forming ionic channels in receptor-free planar lipid bilayers. Here, magnetic ACmode (MACmode) atomic force microscopy (AFM) was used to characterize the lateral distribution and the native molecular structure of the Cry4Ba toxin in the membrane. Liposome fusion and the Langmuir-Blodgett technique were employed for supported lipid bilayer preparations. The toxin preferentially inserted in a self-assembled structure, rather than as a single monomeric molecule. In addition, the spontaneous insertion into receptor-free lipid bilayers lead to formation of characteristic pore-like structures with four-fold symmetry, suggesting that tetramers are the preferred oligomerization state of this toxin

  16. Inorganic insertion compounds under the form of Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Zylberajch, Claire

    1989-01-01

    As the study of organic or mineral compounds under the form of thin layers showed that they are displaying very original properties with respect to massive compounds, this research thesis reports a work which aimed at obtaining mineral conductive materials under the form of extremely thin layers, notably metallic sulfides of mercury and cadmium. Synthesis is performed in soft conditions within an organic matrix produced by using the Langmuir-Blodgett technique with successive diffusions of mineral reactants. Salt formation is monitored by infrared spectroscopy. Physical properties of these compounds have been studied by various techniques (UV, visible, and IR spectroscopy, linear dichroism, X ray diffraction, X ray photoelectron spectrometry, conduction, and so on). Structural and electronic properties of these extremely thin films confirm that metallic sulfides adopt a lamellar geometry with molecular thickness. Conductivity and photo-conductivity are interpreted by means of a conventional band diagram [fr

  17. Self-organized dendritic patterns in the polymer Langmuir-Blodgett film

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Jun, E-mail: jun_m@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku Sendai, 980-8577 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi 332-0012 (Japan); Suzuki, Toshio; Mikayama, Takeshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku Sendai, 980-8577 (Japan); Aoki, Atsushi [Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology Gokiso, Shouwa-ku, Nagoya 466-8555 (Japan); Miyashita, Tokuji [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku Sendai, 980-8577 (Japan)

    2011-01-03

    We report the formation of a self-organized dendritic pattern of nanometer thickness in polymer Langmuir-Blodgett (LB) films. Poly(N-dodecylacrylamide) (pDDA)/chloroform solution was spread on a water surface to form a stable polymer monolayer. A pDDA monolayer was deposited onto a hydrophilic silicon substrate by upward deposition from a water subphase, and a second layer was then deposited by downward deposition. The substrate with the two layers was withdrawn from a clean water surface at a high speed to form the dendritic pattern, which was imaged by atomic force microscopy. The height of the pattern, 3.5 nm, corresponds to the height of a bilayer pDDA LB film, suggesting that the pattern forms when the deposited outermost layer overturns by meniscus oscillation. A similar dendritic structure of narrower width and lower height was fabricated on a hydrophobic silicon substrate.

  18. Molecular recognition applied to gas detection: the contribution of Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Clemendot, Sylvain

    1992-01-01

    In the first part of this research thesis, the author presents the Langmuir-Blodgett technique and outlines how it can face the challenge of molecular electronics. Then, he proposes an overview of the state-of-the-art of chemical sensors based on LB films, and an assessment of the state of the art of conductive LB films based on TCNQ (tetracyanoquinodimethane) and on tetrathiafulvalene for which the author proposes a modelling. He describes how phosphine sensors with varying conductivity based on TCNQ-based conductive LB films have been developed and reports the study of electric performance of these sensors. He describes and compares mechanisms of interaction of phosphine with conductive LB films for films based on TCNQ and those based on tetrathiafulvalene [fr

  19. Screening test for rapid food safety evaluation by menadione-catalysed chemiluminescent assay.

    Science.gov (United States)

    Yamashoji, Shiro; Yoshikawa, Naoko; Kirihara, Masayuki; Tsuneyoshi, Toshihiro

    2013-06-15

    The chemiluminescent assay of menadione-catalysed H2O2 production by living mammalian cells was proposed to be useful for rapid food safety evaluation. The tested foods were extracted with water, ethanol and dimethylsulfoxide, and each extract was incubated with NIH3T3, Neuro-2a and HepG2 cells for 4h. Menadione-catalysed H2O2 production by living mammalian cells exposed to each extract was determined by the chemiluminescent assay requiring only 10 min, and the viability of the cells was estimated as percentage based on H2O2 production by intact cells. In this study the cytotoxicity of food was rated in order of inhibitory effect on H2O2 production by intact cells. The well known natural toxins such as Fusarium mycotoxin, tomato toxin tomatine, potato toxin solanine and marine toxins terodotoxin and brevetoxin could be detected by the above chemiluminescent assay. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. A competitive chemiluminescence enzyme immunoassay for rapid and sensitive determination of enrofloxacin

    Science.gov (United States)

    Yu, Fei; Wu, Yongjun; Yu, Songcheng; Zhang, Huili; Zhang, Hongquan; Qu, Lingbo; Harrington, Peter de B.

    With alkaline phosphatase (ALP)-adamantane (AMPPD) system as the chemiluminescence (CL) detection system, a highly sensitive, specific and simple competitive chemiluminescence enzyme immunoassay (CLEIA) was developed for the measurement of enrofloxacin (ENR). The physicochemical parameters, such as the chemiluminescent assay mediums, the dilution buffer of ENR-McAb, the volume of dilution buffer, the monoclonal antibody concentration, the incubation time, and other relevant variables of the immunoassay have been optimized. Under the optimal conditions, the detection linear range of 350-1000 pg/mL and the detection limit of 0.24 ng/mL were provided by the proposed method. The relative standard deviations were less than 15% for both intra and inter-assay precision. This method has been successfully applied to determine ENR in spiked samples with the recovery of 103%-96%. It showed that CLEIA was a good potential method in the analysis of residues of veterinary drugs after treatment of related diseases.

  1. Enhanced chemiluminescence for trazodone trace analysis based on acidic permanganate oxidation in concurrent presence of rhodamine 6G.

    Science.gov (United States)

    Fujimori, Keiichi; Sakata, Yuta; Moriuchi-Kawakami, Takayo; Shibutani, Yasuhiko

    2017-11-01

    A new sensitized chemiluminescence method by acidic permanganate oxidation was developed for the sensitive determination of trazodone. A fluorescent dye as used rhodamine 6G to increase a chemiluminescence intensity. Under optimum conditions, the liner range of the calibration curve was obtained for 1-5000 nmol/L. The limit of detection was calculated from 3σ of a blank was 0.23 nmol/L. The coexistent ions and substances had no interference with the chemiluminescence measurement. The chemiluminescence spectra were measured to elucidate a possible mechanism for the system. The present method was satisfactorily used in the determination of the drugs in pharmaceutical samples and animal serums. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Synthesis of organosilicon derivatives of [1]benzothieno[3,2-b][1]-benzothiophene for efficient monolayer Langmuir-Blodgett organic field effect transistors.

    Science.gov (United States)

    Borshchev, O V; Sizov, A S; Agina, E V; Bessonov, A A; Ponomarenko, S A

    2017-01-16

    For the first time, the synthesis of organosilicon derivatives of dialkyl[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) capable of forming a semiconducting monolayer at the water-air interface is reported. Self-assembled monolayer organic field-effect transistors prepared from these materials using the Langmuir-Blodgett technique showed high hole mobilities and excellent air stability.

  3. Investigation of RuBPS-Ce(IV) chemiluminescence reaction and its application in determination of two diuretics

    Energy Technology Data Exchange (ETDEWEB)

    Xi Juan [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Ji Xinghu [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Zhang Shaohong [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Xiang Fan Vocational and Technical College, Xiangfan 441021 (China); Ai Xinping [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); He Zhike [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)]. E-mail: zhkhe@whu.edu.cn

    2005-06-13

    The chemiluminescence mechanism of tris-(4,7-diphenyl-1,10-phenanthrolinedisulfonic acid)ruthenium(II) (RuBPS)-Ce(IV) system and the effects of two diuretics, hydrochlorothiazide and furosemide, on its chemiluminescence intensity were investigated in detail. It was found that each of the two diuretics could enhance the chemiluminescence emission intensity of RuBPS-Ce(IV) system, based on which, they were sensitively detected by chemiluminescence analysis, respectively. Under the optimum experimental conditions, the linear range and detection limit of hydrochlorothiazide were 2.5 x 10{sup -3} to 6.0 x 10{sup -1} {mu}g ml{sup -1} and 1.0 x 10{sup -3} {mu}g ml{sup -1}, respectively; those of furosemide were 1.0 x 10{sup -2} to 4.0 {mu}g ml{sup -1} and 8.8 x 10{sup -3} {mu}g ml{sup -1}, respectively. The proposed method has been applied to analyze the pharmaceuticals with satisfied results.

  4. Detection of gamma irradiated pepper and papain by chemiluminescence

    International Nuclear Information System (INIS)

    Sattar, Abdus; Delincee, H.; Diehl, J.F.

    1987-01-01

    Chemiluminescence (CL) measurements of black pepper and of papain using luminol and lucigenin reactions were studied. Effects of grinding, irradiation (5-20 kGy) and particle size (750-140 μm) on CL of pepper, and of irradiation (10-30 kGy) on CL of papain, were investigated. All the tested treatments affected the luminescence response in both the luminol and lucigenin reactions; however, the pattern of changes in each case, was inconsistent. Optimum pepper size for maximum luminescence was 560 μm, and optimum irradiation doses were > 15 kGy for pepper and > 20 kGy for papain. Chemiluminescence may possibly be used as an indicator or irradiation treatment for pepper and papain at a dose of 10 kGy or higher, but further research is needed to establish the reliability of this method. (author)

  5. Analysis of chemiluminescence measurements by grey-scale ICCD and colour digital cameras

    International Nuclear Information System (INIS)

    Migliorini, F; Maffi, S; De Iuliis, S; Zizak, G

    2014-01-01

    Spectral, grey-scale and colour chemiluminescence measurements of C 2 * and CH* radicals' emission are carried out on the flame front of a methane–air premixed flame at different equivalence ratios. To this purpose, properly spatially resolved optical equipment has been implemented in order to reduce the background emission from other burned gas regions. The grey-scale (ICCD + interference filters) and RGB colour (commercial digital camera) approaches have been compared in order to find a correspondence between the C 2 * and the green component, as well as the CH* and the blue component of the emission intensities. The C 2 */CH* chemiluminescence ratio has been investigated at different equivalence ratios and a good correlation has been obtained, showing the possibility of sensing the equivalence ratio in practical systems. The grey-scale and colour chemiluminescence analysis has then been applied to a meso-scale not premixed swirl combustor fuelled with a methane–air mixture and operating at 0.3 MPa. 2D results are presented and discussed in this work. (paper)

  6. Comparison of the performance of the borax buffer-based HRP-enhanced reagent and the 'Lumi-Phos 530' chemiluminescence systems in the detection of biotinylated DNA.

    Science.gov (United States)

    Cercek, B; Roby, K; Siaw, M

    1995-01-01

    A comparison of two chemiluminescence methods, the borax buffer-based HRP-enhanced reagent and Lumi-Phos 530, applied to the detection of a biotinylated 30-mer DNA slot blotted onto a nylon membrane, is presented. A streptavidin-HRP and streptavidin-ALP mediated detection system was used. The HRP-enhanced system is up to 15-fold greater with respect to the signal/background ratios than the Lumi-Phos 530 system at 0.5 microgram biotinylated DNA with at least a two-fold improvement in detection sensitivity for 0.5 ng biotinylated DNA.

  7. Preparation of porous monolayer film by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. [Institute of Near-Field Optics and Nano Technology, School of Physics and Optoelectronic Technology, Dalian University of Technology, Street No. 2 Linggong Road, Dalian 116024 (China); Li, Y.L.; Zhao, H.L.; Liang, H. [Institute of Photo-Biophysics, School of Physics and Electronic, Henan University, Jinming, Kaifeng 475004, Henan (China); Liu, B., E-mail: boliu@henu.edu.cn [Institute of Photo-Biophysics, School of Physics and Electronic, Henan University, Jinming, Kaifeng 475004, Henan (China); Pan, S., E-mail: span@dlut.edu.cn [Institute of Near-Field Optics and Nano Technology, School of Physics and Optoelectronic Technology, Dalian University of Technology, Street No. 2 Linggong Road, Dalian 116024 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Porous film has been prepared by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution. Black-Right-Pointing-Pointer The mechanism relies on the electrostatic screening effect of the cations in salt solution. Black-Right-Pointing-Pointer The factors influencing the size and area of the pores were investigated. - Abstract: Porous materials have drawn attention from scientists in many fields such as life sciences, catalysis and photonics since they can be used to induce some materials growth as expected. Especially, porous Langmuir-Blodgett (LB) film is an ideal material with controlled thickness and flat surface. In this paper, stearic acid (SA), which has been extensively explored in LB film technique, is chosen as the template material with known parameters to prepare the LB film, and then the porous SA monolayer film is obtained by means of etching in salt solution. The main etching mechanism is suggested that the cations in the solution block the electrostatic interaction between the polar carboxyl group of SA and the electronegative mica surface. The influencing factors (such as concentration of salt solution, valence of cation and surface pressure) of the porous SA film are systematically studied in this work. The novel method proposed in this paper makes it convenient to prepare porous monolayer film for designed material growth or cell culture.

  8. Transition from two-dimensional to three-dimensional melting in Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Mukhopadhyay, M.K.; Sanyal, M.K.; Datta, A.; Mukherjee, M.; Geue, Th.; Grenzer, J.; Pietsch, U.

    2004-01-01

    Results of energy-dispersive x-ray reflectivity and grazing incidence diffraction studies of Langmuir-Blodgett films exhibited evolution of conventional three-dimensional melting from continuous melting, characteristic of two-dimensional systems, as a function of deposited monolayers. Continuous expansion followed by a sharp phase transition of the in-plane lattice was observed before the melting point and found to be independent of number of deposited layers. Evolution of conventional melting with an increase in the number of monolayers could be quantified by measuring stiffness against tilting of the vertical stack of molecules, which are kept together by an internal field. The internal field as defined in this model reduces as the in-plane lattice expands and the sample temperature approaches melting point. The sharpness of the melting transition, which has been approximated by a Langevin function, increases with the number of deposited monolayers

  9. New method for monitoring nitric oxide in vivo using microdialysis sampling and chemiluminescence reaction

    Science.gov (United States)

    Yao, Dachun; Evmiridis, Nick P.; Zhou, Yikai; Xu, Shunqing; Zhou, Huarong

    2001-09-01

    A new method employing a combination of micro dialysis sampling and chemiluminescence reaction was developed to monitor nitric oxide (NO) in vivo. A special probe was designed with an interference-free membrane to achieve a very high selectivity for NO. High sensitivity was achieved by optimizing the working system and improving the NO sampling time. This system was used in vivo to monitor blood and brain tissue in rats and rabbits. We have established that this system is sensitive enough to detect variations in NO production in difference physiological state. The system can detect NO in the linear range of 5nM-1(mu) M, with a detection limit of 1nM, and real NO concentrations in our experimental animals were found to be in the range of 1-5 nM or even less. Finally, the effects of body temperature, NO donors, Viagra, NO activators, NO cofactors, NO interference were investigated carefully in different physiological situations.

  10. Kinetics and selectivity of permanganate chemiluminescence: a study of hydroxyl and amino disubstituted benzene positional isomers.

    Science.gov (United States)

    Slezak, Teo; Smith, Zoe M; Adcock, Jacqui L; Hindson, Christopher M; Barnett, Neil W; Nesterenko, Pavel N; Francis, Paul S

    2011-11-30

    Examination of the chemiluminescence reactions of dihydroxybenzenes, aminophenols and phenylenediamines with acidic potassium permanganate has provided a new understanding of the relationships between analyte structure, reaction conditions, kinetics of the light-producing pathway and emission intensity, with broad implications for this widely utilised chemiluminescence detection system. Using a permanganate reagent prepared in a polyphosphate solution and adjusted to pH 2.5, large differences in the rate of reaction with different positional isomers were observed, with the meta-substituted forms reacting far slower and therefore exhibiting much lower chemiluminescence intensities in flow analysis systems. The preliminary partial reduction of permanganate to form significant concentrations of Mn(III) increased the rate of reaction with all analytes tested, resulting in comparable or (in the case of aminophenol and phenylenediamine) even greater emission intensities for the meta-isomers, demonstrating the opportunity to tune the selectivity of the reagent towards certain classes of compound or even specific positional isomers of the same compound. Using more acidic permanganate reagents, in which polyphosphates are not required, the discrepancy between the chemiluminescence intensities was still observed, but was less prominent due to the generally faster rates of reaction. The enhancement of these chemiluminescence reactions by on-line addition of formic acid or formaldehyde can in part also be attributed to the generation of significant pools of the key Mn(III) precursor to the emitting species. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Langmuir-Blodgett film based on MEH-PPV for cholesterol biosensor

    International Nuclear Information System (INIS)

    Matharu, Zimple; Arya, Sunil K.; Singh, S.P.; Gupta, Vinay; Malhotra, B.D.

    2009-01-01

    Cholesterol oxidase (ChOx) has been immobilized onto conducting poly[2-methoxy,5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV)/stearic acid (SA) Langmuir-Blodgett film transferred onto octadecanethiol (ODT) modified gold plate. The ChOx/MEH-PPV/SA LB film bioelectrode exhibits has been characterized by FT-IR, contact angle, and atomic force microscopy. The response of the ChOx/MEH-PPV/SA LB film bioelectrode carried out using differential pulse voltammetry (DPV) studies reveal linearity from 1.29 to 12.91 mM of cholesterol concentration and response time as 30 s. This ChOx/MEH-PPV/SA bioelectrode exhibits values of correlation coefficient as 0.9939, standard deviation as 0.0029 μA and limit of detection as 1.66 mM. UV-visible spectrophotometer studies reveal that 5.2 x 10 -3 U of ChOx are actively working per cm 2 area of ChOx/MEH-PPV/SA LB film bioelectrode and this bioelectrode is thermally stable upto 55 deg. C with reusability of about 60 times

  12. Langmuir-Blodgett film based on MEH-PPV for cholesterol biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Matharu, Zimple [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arya, Sunil K.; Singh, S.P. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Malhotra, B.D. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)], E-mail: bansi.malhotra@gmail.com

    2009-02-23

    Cholesterol oxidase (ChOx) has been immobilized onto conducting poly[2-methoxy,5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV)/stearic acid (SA) Langmuir-Blodgett film transferred onto octadecanethiol (ODT) modified gold plate. The ChOx/MEH-PPV/SA LB film bioelectrode exhibits has been characterized by FT-IR, contact angle, and atomic force microscopy. The response of the ChOx/MEH-PPV/SA LB film bioelectrode carried out using differential pulse voltammetry (DPV) studies reveal linearity from 1.29 to 12.91 mM of cholesterol concentration and response time as 30 s. This ChOx/MEH-PPV/SA bioelectrode exhibits values of correlation coefficient as 0.9939, standard deviation as 0.0029 {mu}A and limit of detection as 1.66 mM. UV-visible spectrophotometer studies reveal that 5.2 x 10{sup -3} U of ChOx are actively working per cm{sup 2} area of ChOx/MEH-PPV/SA LB film bioelectrode and this bioelectrode is thermally stable upto 55 deg. C with reusability of about 60 times.

  13. Conductive Langmuir-Blodgett films. Doping with iodine or self-doping?

    International Nuclear Information System (INIS)

    Bourgoin, Jean-Philippe

    1991-01-01

    In this research thesis dealing with molecular architecture, the author reports the testing of two strategies aiming at reducing the importance of defects in conductive Langmuir-Blodgett films, and at enabling the production of conductive mono-molecular layer. According to the first strategy, conductive films are obtained after doping based on the use of iodine vapours of an insulating precursor film of molecules derived from BEDT-TTF. The so-produced films display a high conductivity and can be used as sensitive elements in gas sensors, but remain macroscopically insulating, probably because molecular reorganisation, as shown by a study based on different techniques (IR and UV linear dichroism, Raman spectroscopy, X ray diffraction), generates too many defects. The second strategy, self-doping, is based on a mixing of two derivatives of the same electro-active nucleus (the TCNQ, tetracyanoquinodimethane), an amphiphilic one and a semi-amphiphilic one. This strategy opens new perspectives in molecular engineering as it is a general way to produce conductive LB films from TCNQ [fr

  14. Free radical scavenging activity of coenzyme Q measured by a chemiluminescent assay

    International Nuclear Information System (INIS)

    Battino, Maurizio; Ferri, Elida; Girotti, Stefano; Lenaz, Giorgio

    1991-01-01

    Involvement of coenzyme Q (CoQ) in anti-oxydant activities, in addition to its major redox role, has frequently been suggested in recent years. In order to elucidate if CoQ could really be engaged in scavenging free radicals produced endogenously in a biological system, an experimental system was developed in which beef heart mitochondria in the presence of a saturating NADH concentration and of rotenone produce free radicals. The presence of oxygen-reactive forms was easily detected by a luminol-dependent chemiluminescence process. The chemi-luminescence assay showed that short-chain CoQ homologues can act as pro-oxidants, enhancing free radical effects, while exogenous coenzyme Q 10 could scavenge free radicals, especially at very low concentration. In this system, exogenous CoQ 10 was more effective than α-tocopherol at the same concentration in scavenging free radicals. The molecular mechanism that leads to this activity is still unclear, but these results are of biochemical importance because they indicate that CoQ may act as an anti=oxidant in situations mimicking physiopathological conditions. This direct chemiluminescent method is promising for studies of biochemical processes which involve active oxygen species. (author). 24 refs.; 4 figs

  15. Observation of chemiluminescence induced by hydrodynamic cavitation in microchannels.

    Science.gov (United States)

    Podbevsek, D; Colombet, D; Ledoux, G; Ayela, F

    2018-05-01

    We have performed hydrodynamic cavitation experiments with an aqueous luminol solution as the working fluid. Light emission, together with the high frequency noise which characterizes cavitation, was emitted by the two-phase flow, whereas no light emission from luminol was recorded in the single phase liquid flow. Light emission occurs downstream transparent microdiaphragms. The maximum level of the recorded signal was around 180 photons per second with flow rates of 380 µl/s, that corresponds to a real order of magnitude of the chemiluminescence of 75,000 photons per second. The yield of emitted photons increases linearly with the pressure drop, which is proportional to the square of the total flow rate. Chemiluminescence of luminol is a direct and a quantitative demonstration of the presence of OH hydroxyl radicals created by hydrodynamic cavitation. The presented method could be a key to optimize channel geometry for processes where radical production is essential. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Projection model for flame chemiluminescence tomography based on lens imaging

    Science.gov (United States)

    Wan, Minggang; Zhuang, Jihui

    2018-04-01

    For flame chemiluminescence tomography (FCT) based on lens imaging, the projection model is essential because it formulates the mathematical relation between the flame projections captured by cameras and the chemiluminescence field, and, through this relation, the field is reconstructed. This work proposed the blurry-spot (BS) model, which takes more universal assumptions and has higher accuracy than the widely applied line-of-sight model. By combining the geometrical camera model and the thin-lens equation, the BS model takes into account perspective effect of the camera lens; by combining ray-tracing technique and Monte Carlo simulation, it also considers inhomogeneous distribution of captured radiance on the image plane. Performance of these two models in FCT was numerically compared, and results showed that using the BS model could lead to better reconstruction quality in wider application ranges.

  17. Numerical and Experimental Investigation of Computed Tomography of Chemiluminescence for Hydrogen-Air Premixed Laminar Flames

    Directory of Open Access Journals (Sweden)

    Liang Lv

    2016-01-01

    Full Text Available Computed tomography of chemiluminescence (CTC is a promising technique for combustion diagnostics, providing instantaneous 3D information of flame structures, especially in harsh circumstance. This work focuses on assessing the feasibility of CTC and investigating structures of hydrogen-air premixed laminar flames using CTC. A numerical phantom study was performed to assess the accuracy of the reconstruction algorithm. A well-designed burner was used to generate stable hydrogen-air premixed laminar flames. The OH⁎ chemiluminescence intensity field reconstructed from 37 views using CTC was compared to the OH⁎ chemiluminescence distributions recorded directly by a single ICCD camera from the side view. The flame structures in different flow velocities and equivalence ratios were analyzed using the reconstructions. The results show that the CTC technique can effectively indicate real distributions of the flame chemiluminescence. The height of the flame becomes larger with increasing flow velocities, whereas it decreases with increasing equivalence ratios (no larger than 1. The increasing flow velocities gradually lift the flame reaction zones. A critical cone angle of 4.76 degrees is obtained to avoid blow-off. These results set up a foundation for next studies and the methods can be further developed to reconstruct 3D structures of flames.

  18. A rapid and simple chemiluminescence method for screening levels of inosine and hypoxanthine in non-traumatic chest pain patients.

    Science.gov (United States)

    Farthing, Don E; Sica, Domenic; Hindle, Michael; Edinboro, Les; Xi, Lei; Gehr, Todd W B; Gehr, Lynne; Farthing, Christine A; Larus, Terri L; Fakhry, Itaf; Karnes, H Thomas

    2011-01-01

    A rapid and simple chemiluminescence method was developed for detection of inosine and hypoxanthine in human plasma. The method utilized a microplate luminometer with direct injectors to automatically dispense reagents during sample analysis. Enzymatic conversions of inosine to hypoxanthine, followed by hypoxanthine to xanthine to uric acid, generated superoxide anion radicals as a useful metabolic by-product. The free radicals react with Pholasin(®) , a sensitive photoprotein used for chemiluminescence detection, to produce measurable blue-green light. The use of Pholasin(®) and a chemiluminescence signal enhancer, Adjuvant-K™, eliminated the need for plasma clean-up steps prior to analysis. The method used 20 μL of heparinized plasma, with complete analysis of total hypoxanthine levels (inosine is metabolized to hypoxanthine using purine nucleoside phosphorylase) in approximately 3.7 min. The rapid chemiluminescence method demonstrated the capability of differentiating total hypoxanthine levels between healthy individuals, and patients presenting with non-traumatic chest pain and potential acute cardiac ischemia. The results support the potential use of chemiluminescence methodology as a diagnostic tool to rapidly screen for elevated levels of inosine and hypoxanthine in human plasma, potential biomarkers of acute cardiac ischemia. Copyright © 2009 John Wiley & Sons, Ltd.

  19. Extrinsic versus intrinsic ferroelectric switching: experimental investigations using ultra-thin PVDF Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Kliem, H; Tadros-Morgane, R

    2005-01-01

    Mechanisms of extrinsic and intrinsic switching phenomena in ferroelectrics are explained and existing models are summarized. Then, criteria for an experimental distinction between both models are elaborated. Samples with thicknesses ranging from 2.7 to 63.8 nm prepared by a Langmuir-Blodgett technique were investigated with respect to these criteria. Measurements of their polarization switching behaviour, their polarization hysteresis loops, and their coercive fields were carried out. It is found that the coercive fields increase with decreasing sample thickness. Also, the switching time increases with decreasing sample thickness and it increases with decreasing field strength. The switching process turns out to be thermally activated. We find that neither intrinsic nor extrinsic models are sufficient to describe the experimental situation

  20. Chemiluminescence in cryogenic matrices

    Science.gov (United States)

    Lotnik, S. V.; Kazakov, Valeri P.

    1989-04-01

    The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.

  1. Large-sized and highly radioactive 3H and 109Cd Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Shibata, S.; Kawakami, H.; Kato, S.

    1994-02-01

    A device for the deposition of a radioactive Langmuir-Blodgett (LB) film was developed with the use of: (1) a modified horizontal lifting method, (2) an extremely shallow trough, and (3) a surface pressure-generating system without piston oil. It made a precious radioactive subphase solution repeatedly usable while keeping its radioactivity concentration as high as possible. Any large-size thin films can be prepared by just changing the trough size. Two monomolecular-layers of Y-type films of cadmium [ 3 H] icosanoate and 109 Cd icosanoate were built up as 3 H and 109 Cd β-sources for electron spectroscopy with intensities of 1.5 GBq (40 mCi) and 7.4 MBq (200 μCi), respectively, and a size of 65x200 mm 2 . Excellent uniformity of the distribution of deposited radioactivity was confirmed by autoradiography and photometry. (author)

  2. A kinetic study of the enhancement of solution chemiluminescence of glyoxylic acid oxidation by manganese species.

    Science.gov (United States)

    Otamonga, Jean-Paul; Abdel-Mageed, Amal; Agater, Irena B; Jewsbury, Roger A

    2015-08-01

    In order to study the mechanism of the enhancement of solution chemiluminescence, the kinetics of the decay of the oxidant and the chemiluminescence emission were followed for oxidations by permanganate, manganese dioxide sol and Mn(3+) (aq) of glyoxylic acid, using stopped-flow spectrophotometry. Results are reported for the glyoxylic acid oxidized under pseudo first-order conditions and in an acidic medium at 25 °C. For permanganate under these conditions, the decay is sigmoidal, consistent with autocatalysis, and for manganese dioxide sol and Mn(3+) it is pseudo first order. The effects of the presence of aqueous formaldehyde and Mn(2+) were observed and a fit to a simple mechanism is discussed. It is concluded that chemiluminescent enhancement in these systems is best explained by reaction kinetics. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Large Area Fabrication of Semiconducting Phosphorene by Langmuir-Blodgett Assembly

    Science.gov (United States)

    Kaur, Harneet; Yadav, Sandeep; Srivastava, Avanish. K.; Singh, Nidhi; Schneider, Jörg J.; Sinha, Om. P.; Agrawal, Ved V.; Srivastava, Ritu

    2016-01-01

    Phosphorene is a recently new member of the family of two dimensional (2D) inorganic materials. Besides its synthesis it is of utmost importance to deposit this material as thin film in a way that represents a general applicability for 2D materials. Although a considerable number of solvent based methodologies have been developed for exfoliating black phosphorus, so far there are no reports on controlled organization of these exfoliated nanosheets on substrates. Here, for the first time to the best of our knowledge, a mixture of N-methyl-2-pyrrolidone and deoxygenated water is employed as a subphase in Langmuir-Blodgett trough for assembling the nanosheets followed by their deposition on substrates and studied its field-effect transistor characteristics. Electron microscopy reveals the presence of densely aligned, crystalline, ultra-thin sheets of pristine phosphorene having lateral dimensions larger than hundred of microns. Furthermore, these assembled nanosheets retain their electronic properties and show a high current modulation of 104 at room temperature in field-effect transistor devices. The proposed technique provides semiconducting phosphorene thin films that are amenable for large area applications. PMID:27671093

  4. Optical fiber chemiluminescence sensor for iron (II) ion based on immobilized luminol

    International Nuclear Information System (INIS)

    Alipao, Arthur A.; Sevilla, Fortunato III.

    1999-01-01

    A chemiluminescence (CL) sensor for iron (II) was developed based on the catalytic action of the analyte on the CL reaction between luminol and oxygen. The reagents were immobilized on a cellulose membrane and set on a reaction cell which was coupled by means of an optical fiber to a spectrofluorometer. The concentration of iron(II) was quantified by measuring the intensity of the light generated from the CL reaction. The response of the sensor system was rapid and highly reproducible. Good sensitivity was displayed by the sensor system over the five orders of magnitude of iron(II) ion concentration. The calibration curve consisted of two portions: (1) a linear range at lower concentrations (7.5 x 10 -7 M to 1.0 x 10 -4 M) exhibiting a positive slope arising from a catalytic action, and (2) a linear range at higher concentrations (5.0 x 10 -2 M to 2.5 x 10 -4 M) wherein the slope is negative due to an inhibitory action of iron(II) on the CL reaction. The sensor system was highly selective for iron(II) ions. (Author)

  5. Enhancing and inhibiting effects of aromatic compounds on luminol-dimethylsulfoxide-OH(-) chemiluminescence and determination of intermediates in oxidative hair dyes by HPLC with chemiluminescence detection.

    Science.gov (United States)

    Zhou, Jian; Xu, Hong; Wan, Guo-Hui; Duan, Chun-Feng; Cui, Hua

    2004-10-08

    The effect of 36 aromatic compounds on the luminol-dimethylsulfoxide-OH(-) chemiluminescence (CL) was systematically studied. It was found that dihydroxybenzenes, and ortho- and para-substituted aminophenols and phenylenediamines inhibited the CL and phenols with three or more than three hydroxyls except phloroglucin tended to enhance the CL. The CL inhibition and enhancement was proposed to be dependent on whether superoxide anion radical (O(2)(-)) was competitively consumed by compounds in the CL system. Trihydroxybenzenes were capable of generating superoxide anion radical, leading to the CL enhancement, whereas dihydroxybenzenes were superoxide anion radical scavenger, causing the CL inhibition. Based on the inhibited CL, a novel method for the simultaneous determination of p-phenylenediamine, o-phenylenediamine, p-aminophenol, o-aminophenol, resorcinol and hydroquinone by high-performance liquid chromatography coupled with chemiluminescence detection was developed. The method has been successfully applied to determine intermediates in oxidative hair dyes and wastewater of shampooing after hair dyed.

  6. Plant cell plasma membrane structure and properties under clinostatting

    Science.gov (United States)

    Polulakh, Yu. A.; Zhadko, S. I.; Klimchuk, D. A.; Baraboy, V. A.; Alpatov, A. N.; Sytnik, K. M.

    Structural-functional organization of plasma membrane of pea roots seedling was investigated by methods of chemiluminescence, fluorescence probes, chromatography and freeze-fracture studies under normal conditions and clinostatting. Phase character of lipid peroxidation intensity was fixed. The initial phase of this process is characterized by lipid peroxidation decreasing with its next induction. The primary changes depending on free-radical mechanisms of lipid peroxidation were excellently revealed by chemiluminescence. Plasmalemma microviscosity increased on the average of 15-20 % under microgravity at the initial stages of its phenomenon. There were major changes of phosphatidilcholine and phosphatidilethanolamine contents. The total quantity of phospholipids remained rather stable. Changes of phosphatide acid concentration point to degradation and phospholipids biosynthesis. There were increases of unsaturated fatty acids mainly at the expense of linoleic and linolenic acids and also a decrease of saturated fatty acid content at the expense of palmitic and stearic acids. Unsaturation index of fatty acids increased as well. On the whole fatty acid composition was variable in comparison with phospholipids. Probably it is one of mechanisms of maintaining of microviscosity within definite limits. Considerable structural changes in organization of plasmalemma protein-lipid complex were not revealed by the freeze-fracture studies.

  7. Reaction of uranium (IV) with xenon difluoride by chemiluminescence, spectrophotometric, and spectrofluorimetric methods

    Energy Technology Data Exchange (ETDEWEB)

    Mamykin, A.V.; Kazakov, V.P.

    1988-07-01

    A study is made of the kinetics of the chemiluminescent reaction of oxidation of uranium (IV) by xenon difluoride in 1M HClO/sub 4/ U/sup 4 +/ + XeF/sub 2/ ..-->.. UO/sub 2//sup 2 +/ = h/eta/. The optical density D and the intensity of the photoluminescence of the solution I/sub PL/ were measured in parallel with recording of the luminescence intensity I/sub CL/. I/sub CL/ attains a maximum value some time after the beginning of the reaction, after which it decays exponentially. On the kinetic curves of the time dependence of D and I/sub PL/ an induction period is observed, the extent of which depends on concentrations of reagents and temperature of the solution. The maximum of I/sub CL/ coincides with the end of the induction period if the measurements are carried out under identical conditions. The rate of the reaction after the induction period is described by a first order equation in U/sup (IV)/. The rate constants of the reaction, obtained by chemiluminescence, spectrophotometric, and spectrofluorimetric methods, have close values 2.0 +- 0.4, 1.8 +- 0.3, and 2.1 +- 0.3 sec/sup /minus/1/ x 10/sup 2/, respectively. On the basis of the results obtained, we conclude that the stages of formation of UO/sub 2//sup 2 +/ and of chemiluminescence coincide, i.e., formation of the excited state (UD/sub 2//sup 2 +/) and of chemiluminescence coincide, i.e., formation of the excited state (UD/sub 2//sup 2 +/)* takes place during the reaction. It is proposed and experimentally verified that the reaction passes through an intermediate stage of formation of uranyl ion UO/sub 2//sup +/.

  8. DNA imaging and quantification using chemi-luminescent probes; Imagerie et quantification d`ADN par chimiluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Dorner, G; Redjdal, N; Laniece, P; Siebert, R; Tricoire, H; Valentin, L [Groupe I.P.B., Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-11-01

    During this interdisciplinary study we have developed an ultra sensitive and reliable imaging system of DNA labelled by chemiluminescence. Based on a liquid nitrogen cooled CCD, the system achieves sensitivities down to 10 fg/mm{sup 2} labelled DNA over a surface area of 25 x 25 cm{sup 2} with a sub-millimeter resolution. Commercially available chemi-luminescent - and enhancer molecules are compared and their reaction conditions optimized for best signal-to-noise ratios. Double labelling was performed to verify quantification with radioactive probes. (authors) 1 fig.

  9. Chemiluminescence evidence supporting the selective role of ligands in the permanganate oxidation of micropollutants.

    Science.gov (United States)

    Roderick, Mark S; Adcock, Jacqui L; Terry, Jessica M; Smith, Zoe M; Parry, Samuel; Linton, Stuart M; Thornton, Megan T; Barrow, Colin J; Francis, Paul S

    2013-10-10

    The selective increase in the oxidation rate of certain organic compounds with permanganate in the presence of environmental "ligands" and reduced species has been ascribed to the different reactivity of the target compounds toward Mn(III), which bears striking similarities to recent independent investigations into the use of permanganate as a chemiluminescence reagent. In spite of the importance of Mn(III) in the light-producing pathway, the dependence of the oxidation mechanism for any given compound on this intermediate could not be determined solely through the emission intensity. However, target compounds susceptible to single-electron oxidation by Mn(III) (such as bisphenol A and triclosan) can be easily distinguished by the dramatic increase in chemiluminescence intensity when a permanganate reagent containing high, stable concentrations of Mn(III) is used. The differences are accentuated under the low pH conditions that favor the chemiluminescence emission due to the greater reactivity of Mn(III) and the greater influence of complexing agents. This study supports the previously postulated selective role of ligands and reducing agents in permanganate oxidations and demonstrates a new approach to explore the chemistry of environmental manganese redox processes.

  10. Structure and frictional properties of Langmuir-Blodgett films of Cu nanoparticles modified by dialkyldithiophosphate

    International Nuclear Information System (INIS)

    Xu Jun; Dai Shuxi; Cheng Gang; Jiang Xiaohong; Tao Xiaojun; Zhang Pingyu; Du Zuliang

    2006-01-01

    Langmuir-Blodgett (LB) films of dialkyldithiophosphate (DDP) modified Cu nanoparticles were prepared. The structure, microfrictional behaviors and adhesion of the LB films were investigated by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic/friction force microscopy (AFM/FFM). Our results showed that the modified Cu nanoparticles have a typical core-shell structure and fine film-forming ability. The images of AFM/FFM showed that LB films of modified Cu nanoparticles were composed of many nanoparticles arranged closely and orderly and the nanoparticles had favorable behaviors of lower friction. The friction loop of the films indicated that the friction force was affected prominently by the surface slope of the Cu nanoparticles and the microfrictional behaviors showed obvious 'ratchet effect'. The adhesion experiment showed that the modified Cu nanoparticle had a very small adhesive force

  11. A fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle as a label for the ultrasensitive detection of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tao Liang [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Song Chaojun; Sun Yuanjie [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China); Li Xiaohua; Li Yunyun [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Jin Boquan [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China); Zhang Zhujun, E-mail: zhangzj@snnu.edu.cn [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Yang Kun, E-mail: yangkunkun@fmmu.edu.cn [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer Difunctional amino mesoporous silica nanoparticles (FCMSN) were synthesized. Black-Right-Pointing-Pointer The fluorescence and chemiluminescence properties of the FCMSN were studied. Black-Right-Pointing-Pointer The NaIO{sub 4} oxidation method was used for modification of the FCMSN. Black-Right-Pointing-Pointer Liver cancer 7721 cell was detected. Black-Right-Pointing-Pointer The specificity affected by FCMSN's amino groups was studied. - Abstract: A new kind of ultrabright fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle (FCMSN) is reported. A luminescent dye, Rhodamine 6G or tris(2,2 Prime -bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy), is doped inside nanochannels of a silica matrix. The hydrophobic groups in the silica matrix avoid the leakage of dye from open channels. The amines groups on the surface of the FCMSN improve the modification performance of the nanoparticle. Because the nanochannels are isolated by a network skeleton of silica, fluorescence quenching based on the inner filter effect of the fluorescent dyes immobilized in nanochannels is weakened effectively. The Quantum Yield of obtained 90 nm silica particles was about 61%. Compared with the fluorescent core-shell nanoparticle, the chemiluminescence reagents can freely enter the nanoparticles to react with fluorescent dyes to create chemiluminescence. The results show that the FCMSN are both fluorescent labels and chemiluminescent labels. In biological applications, the NaIO{sub 4} oxidation method was proven to be superior to the glutaraldehyde method. The amount of amino could affect the specificity of the FCMSN. The fluorescence microscopy imaging demonstrated that the FCMSN is viable for biological applications.

  12. Chemiluminescence enzyme immunoassay based on magnetic nanoparticles for detection of hepatocellular carcinoma marker glypican-3

    Directory of Open Access Journals (Sweden)

    Qian-Yun Zhang

    2011-08-01

    Full Text Available Glypican-3 (GPC3 is reported as a great promising tumor marker for hepatocellular carcinoma (HCC diagnosis. Highly sensitive and accurate analysis of serum GPC3 (sGPC3, in combination with or instead of traditional HCC marker alpha-fetoprotein (AFP, is essential for early diagnosis of HCC. Biomaterial-functionalized magnetic particles have been utilized as solid supports with good biological compatibility for sensitive immunoassay. Here, the magnetic nanoparticles (MnPs and magnetic microparticles (MmPs with carboxyl groups were further modified with streptavidin, and applied for the development of chemiluminescence enzyme immunoassay (CLEIA. After comparing between MnPs- and MmPs-based CLEIA, MnPs-based CLEIA was proved to be a better method with less assay time, greater sensitivity, better linearity and longer chemiluminescence platform. MnPs-based CLEIA was applied for detection of sGPC3 in normal liver, hepatocirrhosis, secondary liver cancer and HCC serum samples. The results indicated that sGPC3 was effective in diagnosis of HCC with high performance. Keywords: Magnetic nanoparticle, Magnetic microparticle, Chemiluminescence enzyme immunoassay, Glypican-3, Hepatocellular carcinoma

  13. Advances in the use of acidic potassium permanganate as a chemiluminescence reagent: A review

    International Nuclear Information System (INIS)

    Adcock, Jacqui L.; Barnett, Neil W.; Barrow, Colin J.; Francis, Paul S.

    2014-01-01

    Graphical abstract: -- Highlights: •Analytical applications of acidic potassium permanganate chemiluminescence. •Discussion of emitting species and light-producing reaction pathways. •Influence of enhancers such as polyphosphates, formaldehyde and sulfite. •Clinical, forensic, food science, agricultural and environmental applications. -- Abstract: We review the analytical applications of acidic potassium permanganate chemiluminescence published since our previous comprehensive review in mid-2007 to early 2013. This includes a critical evaluation of evidence for the emitting species, the influence of additives such as polyphosphates, formaldehyde, sulfite, thiosulfate, lanthanide complexes and nanoparticles, the development of a generalized reaction mechanism, and the use of this chemistry in pharmaceutical, clinical, forensic, food science, agricultural and environmental applications

  14. Advances in the use of acidic potassium permanganate as a chemiluminescence reagent: A review

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, Jacqui L.; Barnett, Neil W.; Barrow, Colin J.; Francis, Paul S., E-mail: psf@deakin.edu.au

    2014-01-07

    Graphical abstract: -- Highlights: •Analytical applications of acidic potassium permanganate chemiluminescence. •Discussion of emitting species and light-producing reaction pathways. •Influence of enhancers such as polyphosphates, formaldehyde and sulfite. •Clinical, forensic, food science, agricultural and environmental applications. -- Abstract: We review the analytical applications of acidic potassium permanganate chemiluminescence published since our previous comprehensive review in mid-2007 to early 2013. This includes a critical evaluation of evidence for the emitting species, the influence of additives such as polyphosphates, formaldehyde, sulfite, thiosulfate, lanthanide complexes and nanoparticles, the development of a generalized reaction mechanism, and the use of this chemistry in pharmaceutical, clinical, forensic, food science, agricultural and environmental applications.

  15. Chemiluminescence immunoassay for chloramphenicol

    International Nuclear Information System (INIS)

    Lin Si; Xu Wenge; Liu Yibing

    2007-06-01

    A simple, solid-phase chemiluminescence immunoassay (CLIA) for the measurement of Chloramphenicol(CAP) in foodstuffs is described. A rabbit anti-CAP IgG is passively adsorbed onto the walls of polypropylene plates. The labeled conjugant is horseradish peroxidase(HRP) conjugate of CAP. Luminol solution is used as the substrate of HRP. The light yield is inversely proportional to the concentration of CAP. The method has a similar sensitivity (0.05 ng/mL), specificity, precision, and accuracy to a conventional enzyme immunoassay (EIA). The intra-assay and inter-assay CVs of ten samples were <8 and <20%, respectively, and the analytical recovery of the method was 87% 100%. The experimental correlation coefficient of dilution was found to be 0.999 using milk supernatant as buffer. The assay range for the method was 0.1-10 ng/mL, and it displayed good linearity. (authors)

  16. FEATURES OF CHEMILUMINESCENT ACTIVITY OF NEUTROPHILIC GRANULOCYTES IN PATIENTS WITH CHRONIC GASTRITIS, CHRONIC ATROPHIC GASTRITIS AND GASTRIC CANCER

    Directory of Open Access Journals (Sweden)

    O. V. Smirnova

    2017-01-01

    Full Text Available Chronic gastritis is the most common disease of gastro-intestinal tract. Precancerous potential is among most important epidemiological features of chronic gastritis. Immune system plays a distinct role in transformation from precancerous state to malignancy. In this context, the aim of our work was a study of spontaneous and induced chemiluminescence activity of neutrophilic granulocytes in patients with chronic superficial gastritis, chronic atrophic gastritis and gastric cancer. The work presents results of comprehensive laboratory examination of patients with chronic gastritis (CG (a total of 85 persons. 25 patients with chronic atrophic gastritis (CAG, and 50 patients with gastric cancer (GC at the age of 19 to 70 years were enrolled. Control group included 115 healthy donors without gastrointestinal complaints at the age of 19 to 67 years. The study was performed with venous blood samples taken from cubital vein into Vacutainer tubes with sodium heparin (5 U/mL prior to starting any pathogenic treatment. Evaluation of spontaneous and induced chemiluminescence was performed for 90 minutes at a 36-channel “CL 3606” chemiluminescence analyzer (Russia. In our study, patients with gastric cancer showed clear unidirectional changes in chemiluminescent activity of neutrophilic granulocytes (NG. When measuring spontaneous and induced NG chemiluminescence, we diagnosed a decreased phagocytic activity characterized by prolonged time-to-peak and area under the curve for spontaneous and induced CL, thus presuming longer activation time required in cases of reduced phagocytic function. The NG activity in patients with chronic gastritis is not impaired, but, similar changes of time-to-peak and area under were detected. Chemiluminescent activity of NG is increased in the group of CAG patients, and, considering similar changes in activation time and area under the curve, NG also produce greater amount of reactive oxygen species. Thus, for all H

  17. Chemiluminescence measurements as an identification method for gamma-irradiated foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    Boegl, W; Heide, L

    1985-01-01

    Samples of 19 different spices, milk powder, whole onions and frozen chicken were exposed to a Co-60 source with radiation doses up to 10/sup 4/ Gy. The subsequent reaction of the irradiated foodstuffs in a luminol solution resulted in light emission (chemiluminescence). This effect can be used as an indicator of radiation treatment.

  18. Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames

    International Nuclear Information System (INIS)

    Worth, Nicholas A; Dawson, James R

    2013-01-01

    The tomographic reconstruction of OH* chemiluminescence was performed on two interacting turbulent premixed bluff-body stabilized flames under steady flow conditions and acoustic excitation. These measurements elucidate the complex three-dimensional (3D) vortex–flame interactions which have previously not been accessible. The experiment was performed using a single camera and intensifier, with multiple views acquired by repositioning the camera, permitting calculation of the mean and phase-averaged volumetric OH* distributions. The reconstructed flame structure and phase-averaged dynamics are compared with OH planar laser-induced fluorescence and flame surface density measurements for the first time. The volumetric data revealed that the large-scale vortex–flame structures formed along the shear layers of each flame collide when the two flames meet, resulting in complex 3D flame structures in between the two flames. With a fairly simple experimental setup, it is shown that the tomographic reconstruction of OH* chemiluminescence in forced flames is a powerful tool that can yield important physical insights into large-scale 3D flame dynamics that are important in combustion instability. (paper)

  19. Studies in the reaction dynamics of beam-gas chemiluminescent reactions

    International Nuclear Information System (INIS)

    Prisant, M.G.

    1984-01-01

    This thesis develops techniques for the analysis and interpretation of data obtained from beam-gas chemiluminescence experiments. These techniques are applied to experimental studies of atom transfer reactions of the type A + BC → AB + C. A procedure is developed for determining the product rotational alignment in the center-of-mass frame from polarization measurements of chemiluminescent atom-diatom exchange reactions under beam-gas conditions. Knowledge of a vector property of a reaction, such as product alignment, provides information on the disposition of angular momentum by a chemical reaction. Fluorescence polarization and hence product alignment are measured for two prototype reactions. The reaction of metastable calcium atoms with hydrogen-chloride gas yields highly aligned calcium-chloride product which exhibits little variation of alignment with vibrational state. The reaction of ground-state calcium with fluorine gas yields moderately aligned product which shows strong variation of alignment with vibration. A multi-surface direct-interaction model is developed to interpret product alignment and population data. The predictions of this model for the reaction of calcium with fluorine show reasonable agreement with experiment

  20. Chemiluminescence of curcumin and quenching effect of dimethyl sulfoxide on its peroxyoxalate system

    Energy Technology Data Exchange (ETDEWEB)

    Yari, Abdollah, E-mail: a.yari@ymail.co [Lorestan University, Department of Chemistry, Flakalaflak Street, 68178-17133 Khorramabad (Iran, Islamic Republic of); Saidikhah, Marzieh [Lorestan University, Department of Chemistry, Flakalaflak Street, 68178-17133 Khorramabad (Iran, Islamic Republic of)

    2010-04-15

    The chemiluminescence behavior of the reaction between bis(2,4,6-trichlorophenyl)oxalate (TCPO) and hydrogen peroxide, in the presence of curcumin as fluorophore, has been investigated. Experimental factors such as TCPO, sodium salicylate (SS), hydrogen peroxide and curcumin concentration were optimized. The chemiluminescence signal showed a linear decay while dimethyl sulfoxide (DMSO) was added to the peroxyoxalate (PO-CL) system. The reaction resulted in a Stern-Volmer plot with a K{sub q} value of 7.3x10{sup 4}. The evaluated lower and upper detection limits of measurable concentrations of DMSO are 3.50x10{sup -5} and 1.53x10{sup -4} M, respectively. The PO-CL parameters were estimated by computer fitting of the experimental CL intensity to proper models.

  1. Reagentless chemiluminescence-based fiber optic sensors for regenerative life support in space

    Science.gov (United States)

    Atwater, James E.; Akse, James R.; DeHart, Jeffrey; Wheeler, Richard R., Jr.

    1995-04-01

    The initial feasibility demonstration of a reagentless chemiluminescence based fiber optic sensor technology for use in advanced regenerative life support applications in space and planetary outposts is described. The primary constraints for extraterrestrial deployment of any technology are compatibility with microgravity and hypogravity environments; minimal size, weight, and power consumption; and minimal use of expendables due to the great expense and difficulty inherent to resupply logistics. In the current research, we report the integration of solid state flow through modules for the production of aqueous phase reagents into an integrated system for the detection of important analytes by chemiluminescence, with fiber optic light transmission. By minimizing the need for resupply expendables, the use of solid phase modules makes complex chemical detection schemes practical. For the proof of concept, hydrogen peroxide and glucose were chosen as analytes. The reaction is catalyzed by glucose oxidase, an immobilized enzyme. The aqueous phase chemistry required for sensor operation is implemented using solid phase modules which adjust the pH of the influent stream, catalyze the oxidation of analyte, and provide the controlled addition of the luminophore to the flowing aqueous stream. Precise control of the pH has proven essential for the long-term sustained release of the luminophore. Electrocatalysis is achieved using a controlled potential across gold mesh and gold foil electrodes which undergo periodic polarity reversals. The development and initial characterization of performance of the reagentless fiber optic chemiluminescence sensors are presented in this paper.

  2. Plasma-treated Langmuir-Blodgett reduced graphene oxide thin film for applications in biophotovoltaics

    Science.gov (United States)

    Ibrahim, Siti Aisyah; Jaafar, Muhammad Musoddiq; Ng, Fong-Lee; Phang, Siew-Moi; Kumar, G. Ghana; Majid, Wan Haliza Abd; Periasamy, Vengadesh

    2018-01-01

    The surface optimization and structural characteristics of Langmuir-Blodgett (LB) reduced graphene oxide thin (rGO) film treated by argon plasma treatment were studied. In this work, six times deposition of rGO was deposited on a clean glass substrate using the LB method. Plasma technique involving a variation of plasma power, i.e., 20, 60, 100 and 140 W was exposed to the LB-rGO thin films under argon ambience. The plasma treatment generally improves the wettability or hydrophilicity of the film surface compared to without treatment. Maximum wettability was observed at a plasma power of 20 W, while also increasing the adhesion of the rGO film with the glass substrate. The multilayer films fabricated were characterized by means of spectroscopic, structural and electrical studies. The treatment of rGO with argon plasma was found to have improved its biocompatibility, and thus its performance as an electrode for biophotovoltaic devices has been shown to be enhanced considerably.

  3. Electrochemical properties of carbon nanotubes-hydrogenase conjugates Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Liu, Ai-Rong; Wakayama, Tatsuki; Nakamura, Chikashi; Miyake, Jun; Zorin, Nikolay A.; Qian, Dong-Jin

    2007-01-01

    We report the preparation of Langmuir-Blodgett (LB) films composed of oxidized carbon nanotubes (CNTs) and hydrogenase (H 2 ase) conjugates and their electrochemical properties. Both single-walled (SWNTs) and multi-walled CNTs (MWNTs) were used to form mixed monolayers with H 2 ase on the Tris-HCl subphase surfaces. By using the LB method, the CNTs-H 2 ase monolayers were transferred onto CaF 2 and indium tin oxide (ITO) electrode surfaces. The LB film modified electrodes showed a couple of waves centered at around -500 mV (versus Ag/AgCl), which corresponding to the redox reaction of [4Fe-4S] 2+/1+ clusters in the H 2 ase. The current intensity was enhanced after co-assembly with CNTs. Because of the different diameters of CNTs, this current intensity was proportional to the scan rate (υ) for the electrodes modified with the LB films of pure H 2 ase and SWNTs-H 2 ase, but to the root of scan rate (υ 1/2 ) for those modified with the MWNTs-H 2 ase LB film. The products of diffusion coefficient and concentration (D 1/2 C) increased in the order of pure H 2 ase, SWNTs-H 2 ase, and MWNTs-H 2 ase LB films

  4. Highly sensitive multianalyte immunochromatographic test strip for rapid chemiluminescent detection of ractopamine and salbutamol

    International Nuclear Information System (INIS)

    Gao, Hongfei; Han, Jing; Yang, Shijia; Wang, Zhenxing; Wang, Lin; Fu, Zhifeng

    2014-01-01

    Graphical abstract: A multianalyte immunochromatographic test strip was developed for the rapid detection of two β 2 -agonists. Due to the application of chemiluminescent detection, this quantitative method shows much higher sensitivity. - Highlights: • An immunochromatographic test strip was developed for detection of multiple β 2 -agonists. • The whole assay process can be completed within 20 min. • The proposed method shows much higher sensitivity due to the application of CL detection. • It is a portable analytical tool suitable for field analysis and rapid screening. - Abstract: A novel immunochromatographic assay (ICA) was proposed for rapid and multiple assay of β 2 -agonists, by utilizing ractopamine (RAC) and salbutamol (SAL) as the models. Owing to the introduction of chemiluminescent (CL) approach, the proposed protocol shows much higher sensitivity. In this work, the described ICA was based on a competitive format, and horseradish peroxidase-tagged antibodies were used as highly sensitive CL probes. Quantitative analysis of β 2 -agonists was achieved by recording the CL signals of the probes captured on the two test zones of the nitrocellulose membrane. Under the optimum conditions, RAC and SAL could be detected within the linear ranges of 0.50–40 and 0.10–50 ng mL −1 , with the detection limits of 0.20 and 0.040 ng mL −1 (S/N = 3), respectively. The whole process for multianalyte immunoassay of RAC and SAL can be completed within 20 min. Furthermore, the test strip was validated with spiked swine urine samples and the results showed that this method was reliable in measuring β 2 -agonists in swine urine. This CL-based multianalyte test strip shows a series of advantages such as high sensitivity, ideal selectivity, simple manipulation, high assay efficiency and low cost. Thus, it opens up new pathway for rapid screening and field analysis, and shows a promising prospect in food safety

  5. Highly sensitive multianalyte immunochromatographic test strip for rapid chemiluminescent detection of ractopamine and salbutamol

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hongfei; Han, Jing; Yang, Shijia; Wang, Zhenxing; Wang, Lin; Fu, Zhifeng, E-mail: fuzf@swu.edu.cn

    2014-08-11

    Graphical abstract: A multianalyte immunochromatographic test strip was developed for the rapid detection of two β{sub 2}-agonists. Due to the application of chemiluminescent detection, this quantitative method shows much higher sensitivity. - Highlights: • An immunochromatographic test strip was developed for detection of multiple β{sub 2}-agonists. • The whole assay process can be completed within 20 min. • The proposed method shows much higher sensitivity due to the application of CL detection. • It is a portable analytical tool suitable for field analysis and rapid screening. - Abstract: A novel immunochromatographic assay (ICA) was proposed for rapid and multiple assay of β{sub 2}-agonists, by utilizing ractopamine (RAC) and salbutamol (SAL) as the models. Owing to the introduction of chemiluminescent (CL) approach, the proposed protocol shows much higher sensitivity. In this work, the described ICA was based on a competitive format, and horseradish peroxidase-tagged antibodies were used as highly sensitive CL probes. Quantitative analysis of β{sub 2}-agonists was achieved by recording the CL signals of the probes captured on the two test zones of the nitrocellulose membrane. Under the optimum conditions, RAC and SAL could be detected within the linear ranges of 0.50–40 and 0.10–50 ng mL{sup −1}, with the detection limits of 0.20 and 0.040 ng mL{sup −1} (S/N = 3), respectively. The whole process for multianalyte immunoassay of RAC and SAL can be completed within 20 min. Furthermore, the test strip was validated with spiked swine urine samples and the results showed that this method was reliable in measuring β{sub 2}-agonists in swine urine. This CL-based multianalyte test strip shows a series of advantages such as high sensitivity, ideal selectivity, simple manipulation, high assay efficiency and low cost. Thus, it opens up new pathway for rapid screening and field analysis, and shows a promising prospect in food safety.

  6. Incorporation in Langmuir-Blodgett films of an amphiphilic derivative of fullerene C{sub 60} and oligo-para-phenylenevinylene

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Venicio, V. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior, CU, C.P. 04510, D.F. (Mexico); Gutierrez-Nava, M. [CIATEQ, A.C., Centro de Tecnologia Avanzada, Circuito de la Industria Poniente Lote: 11, Mza. 3, No. 11, Colonia Parque Industrial Ex Hacienda Dona Rosa, Lerma C.P. 52004, Estado de Mexico (Mexico); Amelines-Sarria, O. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior, CU, C.P. 04510, D.F. (Mexico); Alvarez-Zauco, E. [Facultad de Ciencias, UNAM, Circuito Exterior, C.U., C.P. 04510, D.F. (Mexico); Basiuk, V.A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior, CU, C.P. 04510, D.F. (Mexico); Carreon-Castro, M.P., E-mail: pilar@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior, CU, C.P. 04510, D.F. (Mexico)

    2012-12-30

    Langmuir (L) and Langmuir-Blodgett (LB) films of fullerene C{sub 60}-oligo-para-phenylenevinylene (OPV) derivative with six C{sub 12}H{sub 25} aliphatic chains were characterized. For the Langmuir films, isotherms of surface pressure versus molecular area, compression/expansion cycles (hysteresis curves) and Brewster angle microscopic images were obtained. We performed molecular mechanics and density functional theory calculations to determine the molecular and electronic structure of our compound at a water-air interface. We found agreement between experimental and theoretical values for the molecular surface area. LB films of up to ten layers were obtained on glass substrates, and were characterized by ultraviolet-visible spectroscopy. We observed that the absorbance at a wavelength of 326 nm grows almost linearly as a function of the number of layers. Films on glass-indium tin oxide were characterized by atomic force microscopy. We also observed a uniform deposition over the whole area of the scanned substrate. We demonstrated that the fullerene C{sub 60}-OPV derivative is able to form both L and LB films preventing fullerene aggregation with its aliphatic chains. We suggest that, due to its electron-acceptor properties, the C{sub 60}-OPV derivative could be used for organic-photovoltaic and organic-electronic applications. - Highlights: Black-Right-Pointing-Pointer We performed isotherm and hysteresis studies of fullerene derivative compound. Black-Right-Pointing-Pointer We found that the theoretical and experimental molecular areas agree. Black-Right-Pointing-Pointer We deposited Langmuir-Blodgett (LB) films on glass-indium tin oxide. Black-Right-Pointing-Pointer LB films were characterized using UV-visible spectroscopy. Black-Right-Pointing-Pointer We observed the morphology of the LB films through atomic force microscopy.

  7. A turn-on chemiluminescence biosensor for selective and sensitive detection of adenosine based on HKUST-1 and QDs-luminol-aptamer conjugates.

    Science.gov (United States)

    Lin, Yanna; Dai, Yuxue; Sun, Yuanling; Ding, Chaofan; Sun, Weiyan; Zhu, Xiaodong; Liu, Hao; Luo, Chuannan

    2018-05-15

    In this work, HKUST-1 and QDs-luminol-aptamer conjugates were prepared. The QDs-luminol-aptamer conjugates can be adsorbed by graphene oxide through π-π conjugation. When the adenosine was added, the QDs-luminol-aptamer conjugates were released from magnetic graphene oxide (MGO), the chemiluminescent switch was turned on. It was reported that HKUST-1 can catalyze the chemiluminescence reaction of luminol-H 2 O 2 system in an alkaline medium, and improve the chemiluminescence resonance energy transfer (CRET) between chemiluminescence and QDs indirectly. Thus, the adenosine can be detected sensitively. Based on this phenomenon, the excellent platform for detection of adenosine was established. Under the optimized conditions, the linear detection range for adenosine was 1.0 × 10 -12 -2.2 × 10 -10 mol/L with a detection limit of 2.1 × 10 -13 mol/L. The proposed method was successfully used for adenosine detection in biological samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Significance of isolated reactive treponemal chemiluminescence immunoassay results.

    Science.gov (United States)

    Hunter, Michael G; Robertson, Peter W; Post, Jeffrey J

    2013-05-01

    Isolated reactive serum treponemal chemiluminescence immunoassay (CIA) specimens cause clinical uncertainty. Sera were screened by CIA, and reactive samples underwent reflex testing with rapid plasma reagin (RPR), Treponema pallidum particle agglutination (TPPA), and fluorescent treponemal antibody absorption (FTA Abs) assays. Samples reactive only on the CIA were deemed "isolated" reactive CIA samples. We undertook detailed review of a subset of subjects with isolated reactive CIA specimens. Of 28 261 specimens, 1171 (4.1%) were reactive on CIA, of which 133 (11.3%) had isolated CIA reactivity. Most subjects (66 of 82 [80.5%]) with isolated reactive CIA specimens were from high-prevalence populations. We found evidence of CIA, TPPA, and FTA Abs seroreversion. The median chemiluminescent signal-to-cutoff ratio was similar for isolated reactive CIA sera and sera that were reactive on either FTA Abs or TPPA assays (2.19 vs 2.32; P = .15) but lower than for sera reactive on both FTA Abs and TPPA assays (12.37; P < .001) or for sera reactive on RPR assays (25.53; P < .001). A total of 11 of 20 patients (55%) with an isolated reactive CIA specimen who underwent medical record review had previous or subsequent evidence of syphilis infection. Isolated reactive CIA specimens may represent true T. pallidum infection and may be found after seroreversion of traditional treponemal assays.

  9. Differentiating between intra- and extracellular chemiluminescence in diluted whole-blood samples

    Czech Academy of Sciences Publication Activity Database

    Rájecký, Michal; Lojek, Antonín; Číž, Milan

    2012-01-01

    Roč. 34, č. 2 (2012), s. 136-142 ISSN 1751-5521 R&D Projects: GA MŠk(CZ) OC10044 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chemiluminescence * isoluminol * whole blood Subject RIV: BO - Biophysics Impact factor: 1.293, year: 2012

  10. Synthesis of amphiphilic macrocyclic molecules from family of aza-porphyrins and study in Langmuir-Blodgett films; Synthese de molecules macrocycliques amphiphiles de la famille des azaporphyrines et etude en films de Langmuir-Blodgett

    Energy Technology Data Exchange (ETDEWEB)

    Palacin, Serge

    1988-03-04

    The cellular automata, also called formal neurons, directly inspired by the knowledge concerning the nervous system, are able to mimic some basic processes of brain, as shape recognition, connecting memory, information sorting... This work aims to build a molecular structure able to fit the working rules of a bidimensional cellular automata. So, amphiphilic molecules belonging to the aza-porphyrin family are synthesized and organized into a planar paving by the Langmuir-Blodgett technique. The regular structure of the outcoming ultra-thin films is studied by linear dichroism and anisotropic electron spin resonance. The physico-chemical behaviour of the amphiphilic molecules is studied and brings about an explanation of the redox phenomena which are observed on the monomolecular film on the water surface. So are we able to outline the future chemical addressing ways of the bidimensional cellular automata. In the end of this dissertation, different ways likely to insure covalent bindings between the active sites and allow the transfer of information within the cellular network are discussed. (author) [French] Les reseaux d'automates, aussi appeles neurones formels, directement inspires par les connaissances nouvelles concernant le fonctionnement du systeme nerveux, sont a l'heure actuelle capables de reproduire certaines operations fondamentales du cerveau, telles que la reconnaissance de forme, la memoire associative, le tri d'information... Le travail a pour but de realiser une structure moleculaire susceptible d'obeir aux regles de fonctionnement d'un automate cellulaire bi-dimensionnel. Dans ce but, des molecules amphiphiles de la famille des azaporphyrines sont synthetisees et organisees en un pavage plan par la methode de Langmuir-Blodgett. La structure reguliere des films ultraminces obtenus est determinee par dichroisme lineaire et resonance paramagnetique electronique anisotrope. Les caracteristiques physico-chimiques des molecules amphiphiles sont etudiees

  11. Phenylboronic acid immunoaffinity reactor coupled with flow injection chemiluminescence for determination of {alpha}-fetoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yafeng [Jiangsu Provincial Key Lab of Biomaterials and Biodevices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096 (China); Zhuang Yafeng [Department of Chemistry, Changzhou Institute of Technology, Changzhou 213022 (China); Liu Songqin [Jiangsu Provincial Key Lab of Biomaterials and Biodevices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096 (China)], E-mail: liusq@seu.edu.cn; He Lin [Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204 (United States)

    2008-12-23

    A reusable and sensitive immunoassay based on phenylboronic acid immunoaffinity reactor in combination with flow injection chemiluminescence (CL) for determination of glycoprotein was described. The reactor was fabricated by immobilizing 3-aminophenylboronic acid (APBA) on glass microbeads with {gamma}-glycidoxypropyltrimethoxysilane (GPMS) as linkage. The {alpha}-fetoprotein (AFP) could be easily immobilized on the APBA coated beads through sugar-boronic interaction. After an off-line incubation, the mixture of the analyte AFP with horseradish peroxidase-labeled AFP antibody (HRP-anti-AFP) was injected into the reactor. This led the trapping of free HRP-anti-AFP by the surface coated AFP on glass beads. The trapped HRP-anti-AFP was detected by chemiluminescence due to its sensitizing effect on the reaction of luminol and hydrogen peroxide. Under optimal conditions, the chemiluminescent signal was proportional to AFP concentration in the range of 10-100 ng mL{sup -1}. The whole assay process including regeneration of the reactor could be completed within 31 min. The proposed system showed acceptable detection and fabrication reproducibility, and the results obtained with the present method were in acceptable agreement with those from parallel single-analyte test of practical clinical sera. The described method enabled a low-cost, time saving and was potential to detect the serum AFP level in clinical diagnosis.

  12. Simultaneous determination of isoniazid and p-aminosalicylic acid by capillary electrophoresis using chemiluminescence detection.

    Science.gov (United States)

    Zhang, Xinfeng; Xuan, Yuelan; Sun, Aimin; Lv, Yi; Hou, Xiandeng

    2009-01-01

    It was found that isoniazid (ISO) or p-aminosalicylic acid (PAS) could enhance the chemiluminescence (CL) emission from Cu (II)-luminol-hydrogen peroxide system, and the increased chemiluminescence signals were proportional to their concentrations, respectively. Based on this phenomenon, a chemiluminescence method coupled to capillary electrophoresis (CE) was established for simultaneous determination of ISO and PAS. The CE conditions including running buffer and running voltage were investigated in detail. The effects of the pH of H(2)O(2) solution and the concentrations of luminol, H(2)O(2) and Cu (II) on the CL signal were also investigated carefully. Under the optimized conditions, the analysis could be accomplished within 10 min, with the limits of detection of 0.3 microg mL(-1) for ISO and 1.1 microg mL(-1) for PAS, corresponding to 7.2 and 26.4 pg per injection (24 nL), respectively. Finally, the method was validated by determining the two analytes in pharmaceutical preparation and spiked human serum samples. The results of pharmaceutical tablet analysis were in good agreement with the labeled amounts. The recoveries for ISO and PAS in human serum were in the range of 92-104% and 90-113%, respectively. Copyright 2008 John Wiley & Sons, Ltd.

  13. Highly luminescent S,N co-doped carbon quantum dots-sensitized chemiluminescence on luminol-H2 O2 system for the determination of ranitidine.

    Science.gov (United States)

    Chen, Jianqiu; Shu, Juan; Chen, Jiao; Cao, Zhiran; Xiao, An; Yan, Zhengyu

    2017-05-01

    S,N co-doped carbon quantum dots (N,S-CQDs) with super high quantum yield (79%) were prepared by the hydrothermal method and characterized by transmission electron microscopy, photoluminescence, UV-Vis spectroscopy and Fourier transformed infrared spectroscopy. N,S-CQDs can enhance the chemiluminescence intensity of a luminol-H 2 O 2 system. The possible mechanism of the luminol-H 2 O 2 -(N,S-CQDs) was illustrated by using chemiluminescence, photoluminescence and ultraviolet analysis. Ranitidine can quench the chemiluminescence intensity of a luminol-H 2 O 2 -N,S-CQDs system. So, a novel flow-injection chemiluminescence method was designed to determine ranitidine within a linear range of 0.5-50 μg ml -1 and a detection limit of 0.12 μg ml -1 . The method shows promising application prospects. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Off-line phase-averaged particle image velocimetry and OH chemiluminescence measurements using acoustic time series

    International Nuclear Information System (INIS)

    Fischer, A; Bake, F; Heinze, J; Willert, C; Diers, O; Röhle, I

    2009-01-01

    In order to analyze unsteady flow phenomena in combustion facilities two phase-sorting methods have been developed and investigated for the retrieval of phase-resolved data from (randomly) sampled 'single-shot' data such as PIV recordings or chemiluminescence imagery in a post-processing step. This is made possible by simultaneously recorded continuous time traces of reference data (e.g., pressure signal). Using this off-line method synchronous phase-locked PIV and OH chemiluminescence visualizations could be recovered from data obtained in two different combustion facilities. This paper also presents some of the theoretical background necessary for the application of two different phase-sorting algorithms

  15. Circular patterns of calcium oxalate monohydrate induced by defective Langmuir-Blodgett film on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    He Jieyu [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Ouyang Jianming [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China)], E-mail: toyjm@jnu.edu.cn

    2009-01-01

    The defective Langmuir-Blodgett (LB) film of dipalmitoylphosphatidylcholine (DPPC) on quartz injured by potassium oxalate (K{sub 2}C{sub 2}O{sub 4}) was used as a model system to induce growth of calcium oxalate crystals. Atomic force microscopy (AFM) indicated that circular defective domains with a diameter of 1-200 {mu}m existed in the LB film. Scanning electron microscopy (SEM) showed circular patterns of aggregated calcium oxalate monohydrate (COM) crystallites were induced by these defective domains. It was ascribed to that the interaction between the negatively-charged oxalate ions and the phosphatidyl groups in DPPC headgroups makes the phospholipid molecules rearranged and exist in an out-of-order state in the LB film, especially at the boundaries of liquid-condensed (LC)/liquid-expanded (LE) phases, which provide much more nucleating sites for COM crystals.

  16. Chemiluminescence of creatinine/H2O2/Co(2+) and its application for selective creatinine detection.

    Science.gov (United States)

    Hanif, Saima; John, Peter; Gao, Wenyue; Saqib, Muhammad; Qi, Liming; Xu, Guobao

    2016-01-15

    Creatinine is an important biomarker in clinical diagnosis and biomonitoring programs as well as urinary metabolomic/metabonomics research. Current methods are either nonselective, time consuming or require heavy and expensive instruments. In this study, chemiluminescence of creatinine with hydrogen peroxide has been reported for the first time, and its chemiluminescence is remarkably enhanced in the presence of cobalt ions. By utilizing these phenomena, we have developed a sensitive and selective chemiluminescence method for creatinine determination by coupling with flow injection analysis. The calibration curve is linear in the range of 1×10(-7)-3×10(-5)mol/L with a limit of detection (S/N=3) of 7.2×10(-8)mol/L, which is adequate for detecting creatinine in the clinically accepted range. The relative standard deviation for seven measurements of 3×10(-5)mol/L creatinine is 1.2%. The chemiluminescence method was then utilized to detect creatinine in human urine samples after simple dilution with water. It takes less than 1min each measurement and the recoveries for spiked urine samples were 100-103%. The interference study demonstrates that some common species in urine, such as amino acids, ascorbic acid and creatine, have negligible effects on creatinine detection. The present method does not use expensive instruments, enzymes and separation technique. This method has the advantages of sensitivity, selectivity, simplicity, rapidity, and low cost. It holds great promise for basic or comprehensive metabolic panel, drug screening, anti-dopping, and urinary metabolomic/metabonomics research. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Enhanced anodic Ru(bpy)32+ electrogenerated chemiluminescence by polyphenols

    International Nuclear Information System (INIS)

    Lei Rong; Xu Xiao; Xu Da; Zhu Gang; Li Na; Liu Huwei; Li Kean

    2008-01-01

    Anodic Ru(bpy) 3 2+ electrogenerated chemiluminescence (ECL) can be enhanced by polyphenols in alkaline solution. Spin trapping-electron spin resonance (ESR) experiments verified that reactive oxygen species (ROS) were generated during the electrolysis of Ru(bpy) 3 2+ in alkaline solution, and oxidation of quercetin enhanced Ru(bpy) 3 2+ ECL at anodic potential by producing additional ROS. This ECL enhancement can be used to analyze real sample and evaluate antioxidant activity of polyphenols

  18. Structural characterization and plasmonic properties of two-dimensional arrays of hydrophobic large gold nanoparticles fabricated by Langmuir-Blodgett technique

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Takuya; Tachikiri, Yuki; Sako, Takayuki [Department of Materials Physics and Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Takahashi, Yukina, E-mail: yukina@mail.cstm.kyushu-u.ac.jp [Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Yamada, Sunao, E-mail: yamada@mail.cstm.kyushu-u.ac.jp [Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2017-05-15

    Highlights: • Hydrophobic gold nanoparticles (AuNPs) by our method were large and stable enough. • Two-dimensional (2D) arrays of the AuNPs were obtained by Langmuir-Blodgett method with polyethylene glycol. • The plasmon resonant wavelength of the 2D arrays can be controlled by the diameter. - Abstract: We have succeeded in fabricating two-dimensional (2D) arrays of larger gold nanoparticles (AuNPs) (diameters 17, 28, and 48 nm) by Langmuir-Blodgett (LB) method. Although the particle size of AuNPs is one of the most important factors in order to control the optical properties of 2D arrays, there have been reported only the size of less than ∼20 nm. This is a first report on the bottom-up fabrication of 2D arrays consisting of hydrophobic AuNP with the diameter of ∼50 nm, of which the size is expected to obtain maximum near-field effects. Octadecylthiolate-capped AuNPs (ODT-AuNPs) which were prepared by our method could be re-dispersed in chloroform even after drying completely, realizing the spreading of the colloidal chloroform solution onto the water surface. Accordingly, densely-packed 2D LB films of ODT-AuNPs could be fabricated on an indium-tin-oxide substrate, when water as the subphase and polyethylene glycol (PEG) as an amphiphilic agent were used. PEG played an important role to form densely-packed film uniformly due to increasing affinity between hydrophobic AuNP and water. Absorption spectra of the films revealed that the resonance wavelengths of plasmon oscillation through interparticle plasmon coupling were clearly correlated with the particle sizes rather than deposition densities.

  19. Negative interference by rheumatoid factor in alpha-fetoprotein chemiluminescent microparticle immunoassay.

    Science.gov (United States)

    Wang, Hui; Bi, Xiaohui; Xu, Lei; Li, Yirong

    2017-01-01

    Background Rheumatoid factor causes positive interference in multiple immunoassays. Recently, negative interference has also been found in immunoassays in the presence of rheumatoid factor. The chemiluminescent microparticle immunoassay is widely used to determine serum alpha-fetoprotein. However, it is not clear whether the presence of rheumatoid factor in the serum causes interference in the chemiluminescent microparticle immunoassay of alpha-fetoprotein. Methods Serum alpha-fetoprotein was determined using the ARCHITECT alpha-fetoprotein assay. The estimation of alpha-fetoprotein recovery was carried out in samples prepared by diluting high-concentration alpha-fetoprotein serum with rheumatoid factor-positive or rheumatoid factor-negative serum. Paramagnetic microparticles coated with hepatitis B surface antigen-anti-HBs complexes were used to remove rheumatoid factor from the serum. Results The average recovery of alpha-fetoprotein was 88.4% and 93.8% in the rheumatoid factor-positive and rheumatoid factor-negative serum samples, respectively. The recovery of alpha-fetoprotein was significantly lower in the rheumatoid factor-positive serum samples than in the rheumatoid factor-negative serum samples. In two of five rheumatoid factor-positive samples, a large difference was found (9.8%) between the average alpha-fetoprotein recoveries in the serially diluted and initial recoveries. Fourteen rheumatoid factor-positive serum samples were pretreated with hepatitis B surface antigen-anti-HBs complex-coated paramagnetic microparticles. The alpha-fetoprotein concentrations measured in the pretreated samples increased significantly. Conclusions It was concluded that the alpha-fetoprotein chemiluminescent microparticle immunoassay is susceptible to interference by rheumatoid factor, leading to significantly lower results. Eliminating the incidence of negative interference from rheumatoid factor should be an important goal for immunoassay providers. In the meantime

  20. The chemiluminescence of luminol in aqueous solutions, a pulse radiolytic study

    International Nuclear Information System (INIS)

    Lind, J.

    1980-01-01

    The mechanism of chemiluminescence was studied when the luminol radical and superoxide were generated simultaneously. Hydroperoxide was formed at the first reaction step with a pKa value between 11 and 12. The dissociated form was found to undergo a monomolecular reaction leading to light generation and having a rate constant > 2 x 10 5 s -1 . The protonated form had the rate constant of approx. 2000 s -1 and formed a product which absorbed around 390 nm without light emission. The reaction of the two-electron oxidation product of luminol, 5-aminophthalazine-1, 4 dione (azaquinone), with hydrogenperoxide was stoichiometrically equivalent to the recombination of superoxide with the luminol radical. The pulseradiolytic generation of the chlorinedioxide radical ClO 2 in aqueous solution of sodium chlorite is described, and the oxidation of luminol by ClO 2 in two steps is reported: 1. Radical adducts are formed. 2. The reaction of ClO 2 x radical with the adduct to form azaquinone. The chemiluminescent reaction between the azaquinone and hydrogenperoxide consists of a second order reaction between HO 2 and the azaquinone to form a hydroperoxide followed by a monomolecular rearrangement of the dissociated form of the latter. Its acidbase equilibrium has a pKa of 10.6. A nitrogencentered structure is ascribed to the hydroperoxide formed by cross-recombination of the luminolradical and superoxide while the reaction between HO 2 and azaquinone yields a carboncentered hydroperoxide. The existence of two different emitters is evidenced by the following observations. 1. A slight difference in chemiluminescence spectra. 2. The formation of an endproduct with pKa approx. 10.2 in the luminolradical superoxide system. 3. The formation of an endproduct which acts as an efficient radial scavenger in the luminol radical superoxide system. (G.B.)

  1. Chemiluminescence from the reaction of Ba 3D with nitric oxide

    International Nuclear Information System (INIS)

    Johnson, S.A.; Solarz, R.W.; Dubrin, J.W.; Brotzmann, R.

    1977-01-01

    The reaction of laser excited Ba*( 3 D) states with nitric oxide is presented. BaO product is not detected, although the channel is thermodynamically open, and instead chemiluminescence is observed. Experiments which suggest that radiative recombination, Ba + NO → BaNO* → BaNO, is the observed reaction channel will also be presented

  2. Radiation effects on chemiluminescence of resting and immunologically activated alveolar macrophages

    International Nuclear Information System (INIS)

    Benichou, G.; Dormont, D.; Herodin, F.; Pasquier, C.; Hopital Saint Antoine, 75 - Paris

    1986-01-01

    In resting cells, for low radiation doses, a transient activation of chemiluminescence was observed, maximal at 3 Gy. At 10 Gy, CL returned to the control value; greater doses (above 30 Gy) induced a progressive diminution of the response which was abolished at 100 Gy. Activated alveolar macrophages showed a 30% decrease of the chemiluminescence at 10 Gy. The respiratory burst induced by opsonized zymosan was abolished at 30 Gy. IgG anti-MHC(IgGαB 1 ) activated specifically the GP S2 alveolar macrophages by alloantibody bipolar bridging; by contrast IgG which are directed against non-specific allogeneic determinants (IgG α B 3 ) or specific F(ab') 2 (F(ab') 2 αB 1 ) are unable to stimulate the cells. For all the tested doses, irradiation had no effect on this activation mechanism. The results with the three doses tested (3 Gy, 10 Gy, 30 Gy) are comparable to those using the positive control cells. The same results are obtained with the class II antigens and their specific IgG. (UK)

  3. A Novel Technique for Generating and Observing Chemiluminescence in a Biological Setting

    KAUST Repository

    Büchel, Gabriel E.

    2017-03-10

    Intraoperative imaging techniques have the potential to make surgical interventions safer and more effective; for these reasons, such techniques are quickly moving into the operating room. Here, we present a new approach that utilizes a technique not yet explored for intraoperative imaging: chemiluminescent imaging. This method employs a ruthenium-based chemiluminescent reporter along with a custom-built nebulizing system to produce ex vivo or in vivo images with high signal-to-noise ratios. The ruthenium-based reporter produces light following exposure to an aqueous oxidizing solution and re-reduction within the surrounding tissue. This method has allowed us to detect reporter concentrations as low as 6.9 pmol/cm(2). In this work, we present a visual guide to our proof-of-concept in vivo studies involving subdermal and intravenous injections in mice. The results suggest that this technology is a promising candidate for further preclinical research and might ultimately become a useful tool in the operating room.

  4. Electrogenerated chemiluminescence of luminol using low-cost electrodes

    International Nuclear Information System (INIS)

    Salgado, Guillermo; Navarrete, Jose; Bustos, Carlos; Sanchez, Cristian; Ugarte, Ricardo

    2006-01-01

    The purpose of the study was to observe eletrogenerated chemiluminescence (ECL) of luminol using different materials as electrodes such as wires, nails, coins, razor blades, etc. Based on the experimental observations and the mechanisms proposed in the literature, students should be capable of analyzing their results in order to understand the phenomena studied. Students could then elaborate a mechanism of action consistent with the experimental results which could rationalize the formation of intermediates in the reaction and the dependence of ECL on solution pH in addition to other points of interest. (author)

  5. Molecularly imprinted polymer based on chemiluminescence imaging for the chiral recognition of dansyl-phenylalanine.

    Science.gov (United States)

    Wang, Li; Zhang, Zhujun; Huang, Lianggao

    2008-03-01

    A new molecularly imprinted polymer (MIP)-chemiluminescence (CL) imaging detection approach towards chiral recognition of dansyl-phenylalanine (Phe) is presented. The polymer microspheres were synthesized using precipitation polymerization with dansyl-L-Phe as template. Polymer microspheres were immobilized in microtiter plates (96 wells) using poly(vinyl alcohol) (PVA) as glue. The analyte was selectively adsorbed on the MIP microspheres. After washing, the bound fraction was quantified based on peroxyoxalate chemiluminescence (PO-CL) analysis. In the presence of dansyl-Phe, bis(2,4,6-trichlorophenyl)oxalate (TCPO) reacted with hydrogen peroxide (H2O2) to emit chemiluminescence. The signal was detected and quantified with a highly sensitive cooled charge-coupled device (CCD). Influencing factors were investigated and optimized in detail. Control experiments using capillary electrophoresis showed that there was no significant difference between the proposed method and the control method at a confidence level of 95%. The method can perform 96 independent measurements simultaneously in 30 min and the limits of detection (LODs) for dansyl-L-Phe and dansyl-D-Phe were 0.025 micromol L(-1) and 0.075 micromol L(-1) (3sigma), respectively. The relative standard deviation (RSD) for 11 parallel measurements of dansyl-L-Phe (0.78 micromol L(-1)) was 8%. The results show that MIP-based CL imaging can become a useful analytical technology for quick chiral recognition.

  6. Direct current-induced electrogenerated chemiluminescence of hydrated and chelated Tb(III) at aluminum cathodes

    International Nuclear Information System (INIS)

    Hakansson, M.; Jiang, Q.; Spehar, A.-M.; Suomi, J.; Kotiranta, M.; Kulmala, S.

    2005-01-01

    Cathodic DC polarization of oxide-covered aluminum produces electrogenerated chemiluminescence from hydrated and chelated Tb(III) ions in aqueous electrolyte solutions. At the moment of cathodic voltage onset, a strong cathodic flash is observed, which is attributed to a tunnel emission of hot electrons into the aqueous electrolyte solution and the successive chemical reactions with the luminophores. However, within a few milliseconds the insulating oxide film is damaged and finally dissolved due to (i) indiffusion of protons or alkali metal ions into the thin oxide film, (ii) subsequent hydrogen evolution at the aluminum/oxide interface and (iii) alkalization of the electrode surface induced by hydrogen evolution reaction. When the alkalization of the electrode surface has proceeded sufficiently, chemiluminescence is generated with increasing intensity. Aluminum metal, short-lived Al(II), Al(I) or atomic hydrogen and its conjugated base form, hydrated electron, can act as highly reducing species in addition to the less energetic heterogeneously transferred electrons from the aluminum electrode. Tb(III) added as a hydrated ion in the solution probably luminesces in the form of Tb(OH) 3 or Tb(OH) 4 - by direct redox reactions of the central ion whereas multidentate aromatic ligand chelated Tb(III) probably luminesces by ligand sensitized chemiluminescence mechanism in which ligand is first excited by one-electron redox reactions, which is followed by intramolecular energy transfer to the central ion which finally emits light

  7. Soot and chemiluminescence in diesel combustion of bio-derived, oxygenated and reference fuels

    NARCIS (Netherlands)

    Klein-Douwel, R.J.H.; Donkerbroek, A.J.; Vliet, A.P. van; Boot, M.D.; Somers, L.M.T.; Baert, R.S.G.; Dam, N.J.; Meulen, J.J. ter

    2009-01-01

    High-speed imaging, spectroscopy and thermodynamical characterization are applied to an optically accessible, heavy-duty diesel engine in order to compare sooting and chemiluminescence behaviour of bio-derived, oxygenated fuels and various reference fuels. The fuels concerned include the bio-derived

  8. High-performance liquid chromatographic assay of parabens in wash-off cosmetic products and foods using chemiluminescence detection

    International Nuclear Information System (INIS)

    Zhang Qunlin; Lian Mei; Liu Lijuan; Cui Hua

    2005-01-01

    A new method for the simultaneous determination of parabens including methylparaben, ethylparaben, propylparaben, and butylparaben by high-performance liquid chromatography (HPLC) coupled with chemiluminescence detection was developed. The procedure was based on the chemiluminescent enhancement by parabens of the cerium(IV)-rhodamine 6G system in the strong sulfuric acid medium. The good separation of parabens was carried out with an isocratic elution using a mixture of methanol and water (60:40, v/v) within 8.5 min. Under the optimized conditions, a linear working range extends three orders of magnitude with the relative standard deviations of intra- and inter-day precision below 4.5%, and the detection limits were 1.9 x 10 -9 , 2.7 x 10 -9 , 3.9 x 10 -9 , and 5.3 x 10 -9 g ml -1 for methylparaben, ethylparaben, propylparaben, and butylparaben, respectively. The chemiluminescence reaction was well compatible with the mobile phase of high-performance liquid chromatography. The proposed method has been successfully applied to the assay of parabens in wash-off cosmetic products and foods with the minimal sample preparation

  9. The composite phthalocyanine-based Langmuir-Blodgett films: structural peculiarities and NO-sensitive properties

    Energy Technology Data Exchange (ETDEWEB)

    Emelianov, I.L.; Khatko, V.V. [Nat. Acad. of Sci., Minsk (Belarus). Phys. Tech. Inst.

    1999-10-08

    Surface pressure versus area per molecule isotherms of the Langmuir monolayers of copper tetra-tert-butyl phthalocyanine (abbreviated as CuTTBPc), arachidic acid (abbreviated as AA), and their mixtures were measured depending upon the film component ratio and ionic content of the subphase. Substantial deviations of the mixed monolayer behaviour from an ideal one, which is characteristic of fully immiscible compounds forming separate surface domains on the liquid subphase, were observed if the molar fraction of AA in mixed monolayers exceeded 50%. This abnormality in the monolayer behaviour correlated with the drastic changes in the kinetics responses to NO gas of the sensors based on the mixed Langmuir-Blodgett (LB) films. The comparison and analysis of the results obtained suggest that the gas-sensitive properties of the two-component LB films are determined by two features of their structure, namely, hole-like defects existing in the AA matrix and interlayer cavities. The corresponding structure model of the mixed films is proposed. The results obtained may be useful for understanding the gas-sensitive mechanism of the composite phthalocyanine-based LB films. (orig.)

  10. Metallic Langmuir and Langmuir-Blodgett films based on TTF derivatives and fatty acid

    International Nuclear Information System (INIS)

    Ohnuki, H.; Ishizaki, Y.; Suzuki, M.; Desbat, B.; Delhaes, P.; Giffard, M.; Imakubo, T.; Mabon, G.; Izumi, M.

    2002-01-01

    Recent progress in the metallic conducting Langmuir-Blodgett (LB) films built from TTF derivative and fatty acids is reported. A simple LB method of transferring the mixed Langmuir (L) film of BEDO-TTF (BO) and stearic acid (SA) onto substrates provided metallic conducting LB films. A homogeneous L film formation on the water surface observed by Brewster angle microscope (BAM) is an essential factor for the well-ordered LB films. In the L film, the carboxylate group of fatty acid forms anion layer bringing about a spontaneous formation of mixed valence state (MVS) of BO layer. Similar spontaneous formation was also found in the molecular combination of nonoxygen-substituted donor of EDT-TTF and octadecanesulfonic acid (OS). This type of reaction would be useful for obtaining conducting LB films. For the LB films of BEDO-TTF and stearic acid, we found a negative transverse magnetoresistance at low temperature that was interpreted in the weak localization of a two-dimensional (2D) electronic system based on the well-defined conducting layer

  11. Immobilization of alcohol dehydrogenase in phospholipid Langmuir-Blodgett films to detect ethanol.

    Science.gov (United States)

    Caseli, Luciano; Perinotto, Angelo C; Viitala, Tapani; Zucolotto, Valtencir; Oliveira, Osvaldo N

    2009-03-03

    Enzyme immobilization in nanostructured films may be useful for a number of biomimetic systems, particularly if suitable matrixes are identified. Here we show that alcohol dehydrogenase (ADH) has high affinity toward a negatively charged phospholipid, dimyristoylphosphatidic acid (DMPA), which forms a Langmuir monolayer at an air-water interface. Incorporation of ADH into the DMPA monolayer was monitored with surface pressure measurements and polarization-modulation infrared reflection absorption spectroscopy, with the alpha-helices from ADH being mainly oriented parallel to the water surface. ADH remained at the interface even at high surface pressures, thus allowing deposition of Langmuir-Blodgett (LB) films from the DMPA-ADH film. Indeed, interaction with DMPA enhances the transfer of ADH, where the mass transferred onto a solid support increased from 134 ng for ADH on a Gibbs monolayer to 178 ng for an LB film with DMPA. With fluorescence spectroscopy it was possible to confirm that the ADH structure was preserved even after one month of the LB deposition. ADH-containing films deposited onto gold-interdigitated electrodes were employed in a sensor array capable of detecting ethanol at concentrations down to 10 ppb (in volume), using impedance spectroscopy as the method of detection.

  12. Langmuir-Blodgett and X-ray diffraction studies of isolated photosystem II reaction centers in monolayers and multilayers: physical dimensions of the complex.

    Science.gov (United States)

    Uphaus, R A; Fang, J Y; Picorel, R; Chumanov, G; Wang, J Y; Cotton, T M; Seibert, M

    1997-04-01

    The photosystem II (PSII) reaction center (RC) is a hydrophobic intrinsic protein complex that drives the water-oxidation process of photosynthesis. Unlike the bacterial RC complex, an X-ray crystal structure of the PSII RC is not available. In order to determine the physical dimensions of the isolated PSII RC complex, we applied Langmuir techniques to determine the cross-sectional area of an isolated RC in a condensed monolayer film. Low-angle X-ray diffraction results obtained by examining Langmuir-Blodgett multilayer films of alternating PSII RC/Cd stearate monolayers were used to determine the length (or height; z-direction, perpendicular to the plane of the original membrane) of the complex. The values obtained for a PSII RC monomer were 26 nm2 and 4.8 nm, respectively, and the structural integrity of the RC in the multilayer film was confirmed by several approaches. Assuming a cylindrical-type RC structure, the above dimensions lead to a predicted volume of about 125 nm3. This value is very close to the expected volume of 118 nm3, calculated from the known molecular weight and partial specific volume of the PSII RC proteins. This same type of comparison was also made with the Rhodobacter sphaeroides RC based on published data, and we conclude that the PSII RC is much shorter in length and has a more regular solid geometric structure than the bacterial RC. Furthermore, the above dimensions of the PSII RC and those of PSII core (RC plus proximal antenna) proteins protruding outside the plane of the PSII membrane into the lumenal space as imaged by scanning tunneling microscopy (Seibert, Aust. J. Pl. Physiol. 22, 161-166, 1995) fit easily into the known dimensions of the PSII core complex visualized by others as electron-density projection maps. From this we conclude that the in situ PSII core complex is a dimeric structure containing two copies of the PSII RC.

  13. Conversion of Langmuir-Blodgett monolayers and bilayers of poly(amic acid) through polyimide to graphene

    Science.gov (United States)

    Jo, Hye Jin; Lyu, Ji Hong; Ruoff, Rodney S.; Lim, Hyunseob; In Yoon, Seong; Jeong, Hu Young; Shin, Tae Joo; Bielawski, Christopher W.; Shin, Hyeon Suk

    2017-03-01

    Various solid carbon sources, particularly poly(methyl methacrylate), have been used as precursors to graphene. The corresponding growth process generally involves the decomposition of the solids to hydrocarbon gases followed by their adsorption on metallic substrates (e.g., Cu). We report a different approach that uses a thermally-resistant polyimide (PI) as a carbon precursor. Langmuir-Blodgett films of poly(amic acid) (PAA) were transferred to copper foils and then converted to graphene via a PI intermediate. The Cu foil substrate was also discovered to facilitate the orientation of aromatic moieties upon carbonization process of the PI. As approximately 50% of the initial quantity of the PAA was found to remain at 1000 °C, thermally-stable polymers may reduce the quantity of starting material required to prepare high quality films of graphene. Graphene grown using this method featured a relatively large domain size and an absence of adventitious adlayers.

  14. Detection of γ-irradiation of foods. Use of H2O2-stimulated and photostimulated chemiluminescence. Pt. 1

    International Nuclear Information System (INIS)

    Lewin, G.; Popov, I.N.; Schreiber, G.A.; Helle, N.

    1993-01-01

    Beside methods for unequivocal identification of irradiation treatment of food screening methods which do not always give a final answer are needed for an effective control. In this paper preliminary results are presented which were obtained by measurement of the H 2 O 2 -stimulated and photostimulated chemiluminescence of apples treated by ionising radiation. Appels were chosen as a model for fresh fruit and vegetables. It seems that the H 2 O 2 -stimulated chemiluminescence can be used to screen fruit and vegetables to detect irradiation treatment. (orig.) [de

  15. Study on Enhancement Principle and Stabilization for the Luminol-H2O2-HRP Chemiluminescence System.

    Directory of Open Access Journals (Sweden)

    Lihua Yang

    Full Text Available A luminol-H2O2-HRP chemiluminescence system with high relative luminescent intensity (RLU and long stabilization time was investigated. First, the comparative study on the enhancement effect of ten compounds as enhancers to the luminol-H2O2-HRP chemiluminescence system was carried out, and the results showed that 4-(imidazol-1-ylphenol (4-IMP, 4-iodophenol (4-IOP, 4-bromophenol (4-BOP and 4-hydroxy-4'-iodobiphenyl (HIOP had the best performance. Based on the experiment, the four enhancers were dissolved in acetone, acetonitrile, methanol, and dimethylformamide (DMF with various concentrations, the results indicated that 4-IMP, 4-IOP, 4-BOP and HIOP dissolved in DMF with the concentrations of 0.2%, 3.2%, 1.6% and 3.2% could get the highest RLU values. Subsequently, the influences of pH, ionic strength, HRP, 4-IMP, 4-IOP, 4-BOP, HIOP, H2O2 and luminol on the stabilization of the luminol-H2O2-HRP chemiluminescence system were studied, and we found that pH value, ionic strength, 4-IMP, 4-IOP, 4-BOP, HIOP, H2O2 and luminol have little influence on luminescent stabilization, while HRP has a great influence. In different ranges of HRP concentration, different enhancers should be selected. When the concentration is within the range of 0~6 ng/mL, 4-IMP should be selected. When the concentration of HRP ranges from 6 to 25 ng/mL, 4-IOP was the best choice. And when the concentration is within the range of 25~80 ng/mL, HIOP should be selected as the enhancer. Finally, the three well-performing chemiluminescent enhanced solutions (CESs have been further optimized according to the three enhancers (4-IMP, 4-IOP and HIOP in their utilized HRP concentration ranges.

  16. Insights into the ninhydrin chemiluminescent reaction and its potential for micromolar determination of human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, M. Rodriguez [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria, 8 33006 Oviedo (Spain); Laino, R. Badia [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria, 8 33006 Oviedo (Spain); Diaz-Garcia, M.E. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria, 8 33006 Oviedo (Spain)]. E-mail: medg@uniovi.es

    2006-06-15

    The N-terminal region of human serum albumin (HSA) has an inherent affinity for Co(II) ions. On this basis a new continuous flow method for detection of HSA has been developed taking advantage of the strong quenching effect of the albumin in the ninhydrin-H{sub 2}O{sub 2}-Co(II) chemiluminescent system. The analytical potential of the system is compared with other conventional chemiluminescent reagents. The method gives linear responses from the detection limit (0.30 {mu}M HSA) up to 6.8 {mu}M. The repeatability of the method is good (RSD=7%), it is cheap and rapid to apply and does not require the use of insoluble or expensive reagents nor sophisticated equipment.

  17. Multilayer models of photosynthetic membranes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brocklehurst, J R; Flanagan, M T

    1982-01-01

    The primary aim of this project has been to build an artificial membrane in which is incorporated, in a functional state, the protein bacteriorhodopsin responsible for generating an electrical potential difference across the membrane of the photosynthetic bacterium, halobacterium halobium, and to investigate the use of this artificial system as the basis of a solar cell. the bacteriorhodopsin has been incorporated into Langmuir-Blodgett multilayers. If ths supporting filter is then illuminated, a potential difference is generated between the two compartments. The lipid in the filter appears to act as a charge carrier for protons, the charge species that forms the electrochemical gradient generated by the bacteriorhodopsin when this molecule absorbs light. The internal resistances of such solar cells were determined and found to be so high that the cells could not be seriously considered as competitors with classical semiconductor cells. Multilayerswere deposited onto filters in which ion carriers that make the filters permeable to sodium ions had been dissolved in the paraffin. The photovoltage obtained indicated that protons transferred from one side of the filter to the other by the action of the bacteriorhodopsin were bing exchanged for sodium ions. A secondary aim of the project has been to examine the possibility of depositing mixed multilayers of a dye and a long chain quinone onto a semiconductor surface. A sensitizing multilayer has been prepared and the mobility of long chain quinones within the layers is high enough to warrant further research. However, it was found that, with the dyes and quinones used, quenched complexes were formed which would not act as sensitizers.

  18. MIL-53(Fe) MOF-mediated catalytic chemiluminescence for sensitive detection of glucose.

    Science.gov (United States)

    Yi, Xueling; Dong, Wenfei; Zhang, Xiaodan; Xie, Jianxin; Huang, Yuming

    2016-12-01

    Various analytical applications of metal-organic frameworks (MOFs) have been rapidly developed in the past few years. However, the employment of MOFs as catalysts in chemiluminescence (CL) analysis is rare. Here, for the first time, we found that MIL-53(Fe) MOFs could significantly enhance the CL of luminol in the presence of H 2 O 2 in an alkaline medium. The CL intensity in the luminol-H 2 O 2 -MIL-53(Fe) system was about 20 times higher than that in the luminol-H 2 O 2 system. Moreover, the XRD pattern of MIL-53(Fe) after CL reaction was almost the same as that of the original MIL-53(Fe), confirming the catalytic role of MIL-53(Fe) in the luminol-H 2 O 2 -MIL-53(Fe) system. The possible mechanism behind the enhancing phenomenon was discussed based on the results from the CL spectra, FL probe experiments, and active oxygen species measurements. By coupling with the glucose oxidase-based catalytic oxidation reaction, a sensitive and selective CL method was developed for the detection of glucose. There is a linear relationship between the logarithm of CL intensity and the logarithm of glucose concentration in the range from 0.1 to 10 μM, and a detection limit of 0.05 μM (S/N = 3) is obtained. The proposed method has been applied to the determination of glucose in human serum samples with satisfactory results. Graphical abstract MIL-53(Fe) MOFs are found to greatly enhance the chemiluminescence emission of the luminol-H 2 O 2 system, and this finding resulted in a new chemiluminescence method for biosensing of glucose when coupled with the glucose oxidase.

  19. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    Science.gov (United States)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01

  20. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [Iowa State Univ., Ames, IA (United States)

    2008-12-18

    The purpose of this research was to expand the chemiluminescence microscopy applications in live bacterial/mammalian cell imaging and to improve the detection sensitivity for ATP leaking or release events. We first demonstrated that chemiluminescence (CL) imaging can be used to interrogate single bacterial cells. While using a luminometer allows detecting ATP from cell lysate extracted from at least 10 bacterial cells, all previous cell CL detection never reached this sensitivity of single bacteria level. We approached this goal with a different strategy from before: instead of breaking bacterial cell membrane and trying to capture the transiently diluted ATP with the firefly luciferase CL assay, we introduced the firefly luciferase enzyme into bacteria using the modern genetic techniques and placed the CL reaction substrate D-luciferin outside the cells. By damaging the cell membrane with various antibacterial drugs including antibiotics such as Penicillins and bacteriophages, the D-luciferin molecules diffused inside the cell and initiated the reaction that produces CL light. As firefly luciferases are large protein molecules which are retained within the cells before the total rupture and intracellular ATP concentration is high at the millmolar level, the CL reaction of firefly luciferase, ATP and D-luciferin can be kept for a relatively long time within the cells acting as a reaction container to generate enough photons for detection by the extremely sensitive intensified charge coupled device (ICCD) camera. The result was inspiring as various single bacterium lysis and leakage events were monitored with 10-s temporal resolution movies. We also found a new way of enhancing diffusion D-luciferin into cells by dehydrating the bacteria. Then we started with this novel single bacterial CL imaging technique, and applied it for quantifying gene expression levels from individual bacterial cells. Previous published result in single cell gene expression quantification

  1. Luminol Chemiluminescence Catalyzed by Silver Nanoparticles for the Sensitive Determination of Penicillamine

    Directory of Open Access Journals (Sweden)

    Fakhr Eldin O. Suliman

    2018-01-01

    Full Text Available A sequential injection method for the determination of penicillamine (PA was developed based on quenching the chemiluminescence generated by oxidation of luminol by hydrogen peroxide in presence of silver nanoparticles (AgNPs. The chemiluminescence (CL of the reaction was found to greatly enhance in presence of AgNPs due to the increased catalyst surface area. The method was sensitive and found suitable for analysis of penicillamine in pharmaceutical preparations. Linear calibration curve is obtained in the range 0.2-1.0 mg mL-1 with a relative standard deviation less than 2%. A recovery percent of 102.3 ±0.2 was obtained with the tablets matrix indicating reasonable selectivity of the method for PA in tablets. The mechanism of quenching of the CL reaction was investigated by UV-Visible spectroscopy and transmission electron microscopy as well as by theoretical calculations using DFT-B3LYP method. The covalent attachment of PA to the AgNPs triggers aggregation of the particles thereby diminishing the surface significantly. The method was applied for the assay of PA in pharmaceutical preparations.

  2. Estimation of tritium activity in bioassay samples having chemiluminescence

    International Nuclear Information System (INIS)

    Dwivedi, R.K.; Manu, Kumar; Kumar, Vinay; Soni, Ashish; Kaushik, A.K.; Tiwari, S.K.; Gupta, Ashok

    2008-01-01

    Tritium is recognized as major internal dose contributor in PHWR type of reactors. Estimation of internal dose due to tritium is carried out by analyzing urine samples in liquid scintillation analyzer (LSA). Presence of residual biochemical species in urine samples of some individuals under medical administration shows significant amount of chemiluminescence. If appropriate care is not taken the results obtained by liquid scintillation counter may be mistaken as genuine uptake of tritium. The distillation method described in this paper is used at RAPS-3 and 4 to assess correct tritium uptake. (author)

  3. Calixarene Langmuir-Blodgett Thin Films For Volatile Organic Compounds

    International Nuclear Information System (INIS)

    Capan, R.

    2010-01-01

    Volatile Organic Compounds (VOC's) such as benzene, toluene, chloroform are chemicals that evaporate easily at room temperature and create many health effects on young children, elderly and a person with heightened sensitivity to chemicals. Concentrations of many VOC's are consistently higher indoors (up to ten times higher) than outdoors because many household products (for example paints, varnishes, many cleaning, disinfecting, cosmetic, degreasing, hobby products etc.) contains VOC's. Some effects of VOC's for human beings can be followed as the eye, nose, and throat irritations; headaches, loss of coordination, nausea; damage to liver, kidneys, and central nervous system. These are big incentives for the development of portable, user-friendly VOC's sensors and for the investigation of the sensing properties of new materials to be prepared as a thin film sensing element. Langmuir-Blodgett (LB) ultra-thin film technique allows us to produce monolayer or multilayer organic thin films that can be used as chemical sensing elements.In this work, materials known as the calix[n]arene are investigated for the production of sensing material against several VOC's such as the chloroform, benzene, ethylbenzene and toluene by using LB thin film techniques. UV-visible, Quartz Crystal Microbalance (QCM) system and Surface Plasmon Resonance (SPR) measurement techniques are used to check the quality of the deposition process onto a solid substrate. Surface morphology and sensing properties of the final sensing layers are then studied by Atomic Force Microscopy (AFM) and SPR techniques. Our results indicated that selected calixarene materials are sensitive enough and quite suitable to fabricate a highly ordered, reproducible and uniform LB film that can be used as a very thin sensing layer against VOC's.

  4. Performance evaluation of a novel chemiluminescence assay for detection of anti-GBM antibodies: an international multicenter study.

    Science.gov (United States)

    Mahler, Michael; Radice, Antonella; Sinico, Renato A; Damoiseaux, Jan; Seaman, Andrea; Buckmelter, Kristen; Vizjak, Alenka; Buchner, Carol; Binder, Walter L; Fritzler, Marvin J; Cui, Zhao

    2012-01-01

    Autoantibodies to the non-collagen region (NC1) of the alpha-3 subunit of collagen IV represent a serological hallmark in the diagnosis of Goodpasture's syndrome (GPS). The objective of our study was to carefully analyze the performance characteristics of a novel anti-glomerular basement membrane (GBM) chemiluminescence immunoassay (CIA). Sera from patients with GPS (n = 90) were collected from four clinical centers. Samples from different disease groups (n = 397) and healthy individuals (n = 400) were used as controls. All samples were tested for anti-GBM antibodies by a rapid, random access CIA (QUANTA Flash™ GBM). Most of the samples were also tested using other methods including different commercial anti-GBM IgG assays and research assays for anti-GBM IgA and IgM. The sensitivity and specificity of the novel CIA was 95.6% [95% confidence interval (CI) 89.0-98.8%] and 99.6% (95% CI 98.9-99.9%), respectively. Receiver operating characteristic analysis showed good discrimination between GPS patients and controls. The area under the curve was 0.98 (CI 0.96-1.0). The three anti-GBM antibody-positive samples from the control group were from two healthy individuals and one human immunodeficiency virus (HIV)-infected patient. All three individuals had low levels of anti-GBM antibodies [20, 24 and 25 chemiluminescent unit (CU), cutoff 20 CU]. When the results of the new CIA were compared to other methods, good agreement was observed: 95.8% (kappa = 0.92) versus EliA™ GBM, 97.4% (kappa = 0.95) versus both BINDAZYME™ Anti-GBM and QUANTA Lite® GBM. Anti-GBM IgA was detectable in low concentrations in patients with GPS and was associated with anti-GBM IgG but was less useful in discriminating GPS patients and controls. No discrimination was found for anti-GBM IgM. The novel QUANTA Flash™ GBM CIA demonstrated good sensitivity and specificity and had good agreement with other methods. Our data confirm that ∼5% of patients with GPS do not have detectable levels of

  5. Evaluation of Antibacterial Enrofloxacin in Eggs by Matrix Solid Phase Dispersion-Flow Injection Chemiluminescence

    Directory of Open Access Journals (Sweden)

    Xiaocui Duan

    2014-01-01

    Full Text Available The study based on the chemiluminescence (CL reaction of potassium ferricyanide and luminol in sodium hydroxide medium, enrofloxacin (ENRO could dramatically enhance CL intensities and incorporated with matrix solid-phase dispersion (MSPD technique (Florisil used as dispersant, dichloromethane eluted the target compounds. A simple flow injection chemiluminescence (FL-CL method with MSPD technique for determination of ENRO in eggs was described. Under optimal conditions, the CL intensities were linearly related to ENRO concentration ranging from 4.0×10-8 g.L−1 to 5.0×10-5 g.L−1, with a correlation coefficient of 0.9989 and detection limit of 5.0×10-9 g.L−1. The relative standard deviation was 3.6% at an ENRO concentration of 2.0×10-6 g.L−1. Our testing technique can help ensure food safety, and thus, protect public health.

  6. Atomic force microscopy on domains in biological model membranes

    NARCIS (Netherlands)

    Rinia, H.A.

    2001-01-01

    This thesis describes the preparation and imaging of supported lipid bilayers, which can be regarded as biological modelmembranes, in the light of the formation of domains. The bilayers were prepared with either the Langmuir-Blodgett method, or with vesicle fusion. They were imaged with Atomic Force

  7. Streptavidin-functionalized capillary immune microreactor for highly efficient chemiluminescent immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhanjun [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); College of Chemistry and Engineering, Yangzhou University, 88 South University Avenue, Yangzhou 225002 (China); Zong Chen [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Ju Huangxian, E-mail: hxju@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Yan Feng, E-mail: yanfeng2007@sohu.com [Jiangsu Institute of Cancer Prevention and Cure, Nanjing 210009 (China)

    2011-11-07

    Highlights: {yields} A novel capillary immune microreactor was proposed for highly efficient flow-through chemiluminescent immunoassay. {yields} The microreactor was prepared by functionalizing capillary inner wall with streptavidin for capture of biotinylated antibody. {yields} The proposed immunoassay method showed wide dynamic range, good reproducibility, stability and practicality. {yields} The microreactor was low-cost and disposable, and possessed several advantages over the conventional immunoreactors. - Abstract: A streptavidin functionalized capillary immune microreactor was designed for highly efficient flow-through chemiluminescent (CL) immunoassay. The functionalized capillary could be used as both a support for highly efficient immobilization of antibody and a flow cell for flow-through immunoassay. The functionalized inner wall and the capture process were characterized using scanning electron microscopy. Compared to conventional packed tube or thin-layer cell immunoreactor, the proposed microreactor showed remarkable properties such as lower cost, simpler fabrication, better practicality and wider dynamic range for fast CL immunoassay with good reproducibility and stability. Using {alpha}-fetoprotein as model analyte, the highly efficient CL flow-through immunoassay system showed a linear range of 3 orders of magnitude from 0.5 to 200 ng mL{sup -1} and a low detection limit of 0.1 ng mL{sup -1}. The capillary immune microreactor could make up the shortcoming of conventional CL immunoreactors and provided a promising alternative for highly efficient flow-injection immunoassay.

  8. Irradiation monitoring of spices by chemiluminescence method

    International Nuclear Information System (INIS)

    Bhatti, K.A.; Khan, H.M.; Sattar, A.; Ahmad, A.

    2001-01-01

    Some spices (cumin, coriander, black pepper and red pepper), commonly used due to their specific aroma and nutritional value were studied using chemiluminescence (CL) method to test whether the food has been irradiated or not. The spices were ground to different mesh sizes and subjected to gamma ray doses of 2.5, 5.0, 7.5 and 10 Kgy. The effect of radiation doses and particle size on the CL response of irradiated and un-irradiated samples was checked using luminol and lucigenin sensitizers. The storage experiment was also performed for all spices with both the sensitizers in order to pick the suitable sensitizer for CL study. During this study Co-60 gamma ray source and Bio-orbit 1250 luminometer were used after precise calibration

  9. Solid-state chemiluminescence assay for ultrasensitive detection of antimony using on-vial immobilization of CdSe quantum dots combined with liquid–liquid–liquid microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Costas-Mora, Isabel; Romero, Vanesa; Lavilla, Isela; Bendicho, Carlos, E-mail: bendicho@uvigo.es

    2013-07-25

    Graphical abstract: -- Highlights: •Solid-state chemiluminescence based on CdSe QDs was developed. •QDs immobilization in a vial was achieved in a simple and fast way. •Antimony detection was achieved by inhibition of the CdSe QDs/H{sub 2}O{sub 2} CL reaction. •LLLME allowed improving the selectivity and sensitivity of the CL assay. •The capping ligand played a critical role in the selectivity of the CL system. -- Abstract: On-vial immobilized CdSe quantum dots (QDs) are applied for the first time as chemiluminescent probes for the detection of trace metal ions. Among 17 metal ions tested, inhibition of the chemiluminescence when CdSe QDs are oxidized by H{sub 2}O{sub 2} was observed for Sb, Se and Cu. Liquid–liquid–liquid microextraction was implemented in order to improve the selectivity and sensitivity of the chemiluminescent assay. Factors influencing both the CdSe QDs/H{sub 2}O{sub 2} chemiluminescent system and microextraction process were optimized for ultrasensitive detection of Sb(III) and total Sb. In order to investigate the mechanism by which Sb ions inhibit the chemiluminescence of the CdSe QDs/H{sub 2}O{sub 2} system, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV–vis absorption and fluorescence measurements were performed. The selection of the appropriate CdSe QDs capping ligand was found to be a critical issue. Immobilization of QDs caused the chemiluminescence signal to be enhanced by a factor of 100 as compared to experiments carried out with QDs dispersed in the bulk aqueous phase. Under optimized conditions, the detection limit was 6 ng L{sup −1} Sb and the repeatability expressed as relative standard deviation (N = 7) was about 1.3%. An enrichment factor of 95 was achieved within only 3 min of microextraction. Several water samples including drinking, spring, and river waters were analyzed. The proposed method was validated against CRM NWTM-27.2 fortified lake water, and a recovery study was

  10. Microspot-based ELISA in microfluidics: chemiluminescence and colorimetry detection using integrated thin-film hydrogenated amorphous silicon photodiodes.

    Science.gov (United States)

    Novo, Pedro; Prazeres, Duarte Miguel França; Chu, Virginia; Conde, João Pedro

    2011-12-07

    Microfluidic technology has the potential to decrease the time of analysis and the quantity of sample and reactants required in immunoassays, together with the potential of achieving high sensitivity, multiplexing, and portability. A lab-on-a-chip system was developed and optimized using optical and fluorescence microscopy. Primary antibodies are adsorbed onto the walls of a PDMS-based microchannel via microspotting. This probe antibody is then recognised using secondary FITC or HRP labelled antibodies responsible for providing fluorescence or chemiluminescent and colorimetric signals, respectively. The system incorporated a micron-sized thin-film hydrogenated amorphous silicon photodiode microfabricated on a glass substrate. The primary antibody spots in the PDMS-based microfluidic were precisely aligned with the photodiodes for the direct detection of the antibody-antigen molecular recognition reactions using chemiluminescence and colorimetry. The immunoassay takes ~30 min from assay to the integrated detection. The conditions for probe antibody microspotting and for the flow-through ELISA analysis in the microfluidic format with integrated detection were defined using antibody solutions with concentrations in the nM-μM range. Sequential colorimetric or chemiluminescence detection of specific antibody-antigen molecular recognition was quantitatively detected using the photodiode. Primary antibody surface densities down to 0.182 pmol cm(-2) were detected. Multiplex detection using different microspotted primary antibodies was demonstrated.

  11. Application of direct-injection detector integrated with the multi-pumping flow system to chemiluminescence determination of the total polyphenol index.

    Science.gov (United States)

    Nalewajko-Sieliwoniuk, Edyta; Iwanowicz, Magdalena; Kalinowski, Sławomir; Kojło, Anatol

    2016-03-10

    In this work, we present a novel chemiluminescence (CL) method based on direct-injection detector (DID) integrated with the multi-pumping flow system (MPFS) to chemiluminescence determination of the total polyphenol index. In this flow system, the sample and the reagents are injected directly into the cone-shaped detection cell placed in front of the photomultiplier window. Such construction of the detection chamber allows for fast measurement of the CL signal in stopped-flow conditions immediately after mixing the reagents. The proposed DID-CL-MPFS method is based on the chemiluminescence of nanocolloidal manganese(IV)-hexametaphosphate-ethanol system. The application of ethanol as a sensitizer, eliminated the use of carcinogenic formaldehyde. Under the optimized experimental conditions, the chemiluminescence intensities are proportional to the concentration of gallic acid in the range from 5 to 350 ng mL(-1). The DID-CL-MPFS method offers a number of advantages, including low limit of detection (0.80 ng mL(-1)), high precision (RSD = 3.3%) and high sample throughput (144 samples h(-1)) as well as low consumption of reagents, energy and low waste generation. The proposed method has been successfully applied to determine the total polyphenol index (expressed as gallic acid equivalent) in a variety of plant-derived food samples (wine, tea, coffee, fruit and vegetable juices, herbs, spices). Copyright © 2016 Elsevier B.V. All rights reserved.

  12. l-Tyrosine Contained in Dietary Supplement by Chemiluminescence Reaction of an Iron-Phthalocyanine Complex

    Directory of Open Access Journals (Sweden)

    Takao Ohtomo

    2012-01-01

    Full Text Available The chemiluminescence (CL signal immediately appeared when a hydrogen peroxide solution was injected into an iron-phthalocyanine tetrasulfonic acid (Fe-PTS aqueous solution. Moreover, the CL intensity of Fe-PTS decreased by adding L-tyrosine. Based on these results, the determination of trace amounts of L-tyrosine was developed using the quenching-chemiluminescence. The calibration curve of L-tyrosine was obtained in the concentration range of 2.0×10−7 M to 2.0×10−5 M. Moreover, the relative standard deviation (RSD was 1.63 % (=5 for 2.0×10−6 M L-tyrosine, and its detection limits (3σ were 1.81×10−7 M. The spike and recovery experiments for L-tyrosine were performed using a soft drink. Furthermore, the determination of L-tyrosine was applied to supplements containing various kinds of amino acids. Each satisfactory relative recovery was obtained at 98 to 102%.

  13. Selective Detection of Neurotransmitters by Fluorescence and Chemiluminescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ziqiang Wang; Edward S. Yeung

    2001-08-06

    In recent years, luminescence imaging has been widely employed in neurochemical analysis. It has a number of advantages for the study of neuronal and other biological cells: (1) a particular molecular species or cellular constituent can be selectively visualized in the presence of a large excess of other species in a heterogeneous environment; (2) low concentration detection limits can be achieved because of the inherent sensitivity associated with fluorescence and chemiluminescence; (3) low excitation intensities can be used so that long-term observation can be realized while the viability of the specimen is preserved; and (4) excellent spatial resolution can be obtained with the light microscope so subcellular compartments can be identified. With good sensitivity, temporal and spatial resolution, the flux of ions and molecules and the distribution and dynamics of intracellular species can be measured in real time with specific luminescence probes, substrates, or with native fluorescence. A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with CCD imaging is down to {micro}M levels of glutamate with reasonable response time. They also found that chemiluminescence associated with the ATP-dependent reaction between luciferase and luciferin can be used to image ATP at levels down to 10 nM in the millisecond time scale. Similar imaging experiments should be feasible in a broad spectrum of biological systems.

  14. The synthesis and chemiluminescence of a stable 1,2-dioxetane : an organic chemistry laboratory experiment

    NARCIS (Netherlands)

    Meijer, E.W.; Wynberg, H.

    1982-01-01

    An expt. for the synthesis of adamantylideneadamantane-1,2-dioxetane illustrating the concepts of the singlet O reaction and chemiluminescence, is described. All intermediates and products can be identified by undergraduate students using routine spectroscopic anal. [on SciFinder (R)

  15. Langmuir-Blodgett assembly of visible light responsive TiO{sub 2} nanotube arrays/graphene oxide heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying; Gao, Hongyan; Wei, Danming; Dong, Xinju; Cao, Yan, E-mail: yan.cao@wku.edu

    2017-01-15

    Highlights: • First to report a heterostructure of TNA with GO prepared by LB assembly. • Much better photocurrent (32 μAcm{sup −2}) of TNA-GO, contrasting to TNA (12 μAcm{sup −2}). • Schottky junction formed between TNA and GO enhanced the photocurrent. • GO on TNA improved the hydrophilicity of TNA-GO. - Abstract: The hybrid nanocomposites of titanium dioxide (TiO{sub 2}) with graphene oxide (GO) have recently garnered much attention as electronic devices, energy conversion devices, photocatalysts and other applications. In this study, Langmuir-Blodgett (LB) assembly method was firstly reported to prepare a TiO{sub 2} nanotube arrays (TNA)-GO heterostructure. The as-prepared TNA-GO sample was characterized by X-ray diffraction, Raman spectra, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The promising characteristics of this TNA-GO material, the inexpensive, nontoxic and highly visible-light responsiveness, may raise the potential uses in many, various photocatalytic applications.

  16. Luminol-dependent chemiluminescence in antibody-sensitized neutrophils stimulated with protein A-bearing staphylococci.

    Science.gov (United States)

    Nishihara, S; Seki, K; Ikigai, H; Masuda, S

    1988-01-01

    When mouse polymorphonuclear leukocytes (PMNs) sensitized with rabbit antibody to mouse Ehrlich ascites tumor cells were stimulated by Staphylococcus aureus Cowan I cells, a conspicuous luminol-dependent chemiluminescence was observed in the absence of opsonin. The profile of the chemiluminescence (CL) response evoked by staphylococcal cells from antibody-sensitized PMNs had two peaks. An initial peak, observed within 1 min after stimulation, was sharp and high and a second peak, observed about 5 min after stimulation, was low and extended. The CL response of antibody-sensitized PMNs stimulated by S. aureus Cowan I cells was dose-dependently blocked by preincubation with soluble SpA. Cells of a mutant derived from S. aureus Cowan I strain with trace amounts of cell-bound SpA failed to stimulate the antibody-sensitized PMNs to generate the CL response. The antibody-sensitized PMNs were found to phagocytize SpA-bearing S. aureus cells even in the absence of opsonic serum. These results suggest that the observation presented here might provide a useful tool for the investigation of CL response of PMNs.

  17. Extensibility effect of poly(3-hexylthiophene) on the glucose sensing performance of mixed poly(3-hexylthiophene)/octadecylamine/glucose oxidase Langmuir-Blodgett films.

    Science.gov (United States)

    Wang, Ke-Hsuan; Hsu, Wen-Ping; Chen, Liang-Huei; Lin, Wei-Don; Lee, Yuh-Lang

    2017-07-01

    Poly(3-hexylthiophene) (P3HT) is utilized as a material to enhance the glucose sensing performance of glucose oxidase (GOx) Langmuir-Blodgett (LB) films. To enhance the extensibility and homogeneity of the P3HT in the LB films, octadecylamine (ODA) is introduced. The characteristics of the mixed P3HT/ODA Langmuir monolayers are investigated first and then, utilized as template layers to adsorb GOx from the subphase, preparing P3HT/ODA/GOx Langmuir-Blodgett films for glucose sensing. The results show that P3HT molecules tend to aggregate at the air/liquid interface and, furthermore, the P3HT monolayer has a weak ability to adsorb GOx from the subphase. By using mixed P3HT/ODA monolayer, the presence of ODA not only inhibits the aggregation of P3HT, but also increases the adsorption ability of the monolayer to GOx. The extensibility of P3HT and the homogeneity of the P3HT/ODA monolayers are closely related to the concentration of P3HT/ODA stock solutions. On the glucose sensing experiments, the performance of the P3HT/ODA/GOx LB film is greatly improved due to the presence of P3HT and, furthermore, the sensibility increases with increasing extensibility of P3HT molecules. The best sensitivity achieved for the P3HT/ODA/GOx film is 5.4μAmM -1 cm -2 which is over two times the value obtained by the ODA/GOx film (2.3μAmM -1 cm -2 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Inhibition of chemiluminescence by carvedilol in the cell-free system, whole human blood and blood cells

    Czech Academy of Sciences Publication Activity Database

    Nosál, R.; Jančinová, V.; Číž, Milan; Drábiková, K.; Lojek, Antonín; Fábryová, V.

    2005-01-01

    Roč. 65, č. 1 (2005), s. 55-64 ISSN 0036-5513 Institutional research plan: CEZ:AV0Z50040507 Keywords : blood platelets * carvedilol * chemiluminescence Subject RIV: BO - Biophysics Impact factor: 0.946, year: 2005

  19. Flow injection chemiluminescence determination of lercanidipine based on N-chlorosuccinimide-eosin Y post-chemiluminescence reaction.

    Science.gov (United States)

    Wang, Guowei; Zhao, Fang; Gao, Ying

    2014-12-01

    A novel post-chemiluminescence (PCL) reaction was discovered when lercanidipine was injected into the CL reaction mixture of N-chlorosuccinimide with alkaline eosin Y in the presence of cetyltrimethylammonium bromide (CTAB), where eosin Y was used as the CL reagent and CTAB as the surfactant. Based on this observation, a simple and highly sensitive PCL method combined with a flow injection (FI) technique was developed for the assay of lercanidipine. Under optimum conditions, the CL signal was linearly related to the concentration of lercanidipine in the range 7.0 × 10(-10) to 3.0 × 10(-6)  g/mL with a detection limit of 2.3 × 10(-10) g/mL (3σ). The relative standard deviation (RSD) was 2.1% for 1.0 × 10(-8) g/mL lercanidipine (n = 13). The proposed method had been applied to the estimation of lercanidipine in tablets and human serum samples with satisfactory results. The possible CL mechanism is also discussed briefly. Copyright © 2014 John Wiley & Sons, Ltd.

  20. A theoretical model for the pyroelectric response in Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Capan, R.; Basaran, I.; Richardson, T.H.; Lacey, D.

    2002-01-01

    Understanding the structure of pyroelectric materials is important to elucidate the nature of the temperature-dependent microscopic and macroscopic electric polarisation. Pyroelectric materials must have a non-centrosymmetric structure. Previously, researchers [C.A. Jones, PhD thesis, University of Durham, (1987); J. Mater. Chem. 1 (1991) 819; Langmuir 11 (1995) 4623] have reported the pyroelectric effect of non-centrosymmetric ultrathin LB films prepared using the alternate layer Langmuir-Blodgett (LB) deposition technique. They have proposed three main mechanisms to explain the origin of the pyroelectric activity, namely, tilting, proton transfer, and ionic processes. Linear and cyclic polysiloxane materials with aliphatic and aromatic side groups have been studied in this work. These materials have been alternately deposited with eicosylamine to form the active pyroelectric material in metal-LB film-metal (MIM) devices, whose pyroelectric coefficients have been measured using a quasi-static measurement technique [W.H. Majid, Abd., PhD thesis, Univ. of Sheffield (1994); Mater. Sci. Eng., C, Biomim. Mater., Sens. Syst. 3 (1995) 197; Thin Solid Films 327-329 (1998) 369]. The relation between pyroelectric mechanism(s) and microscopic and macroscopic pyroelectric response for polysiloxane/eicosylamine alternate layer LB films will be explained in this work. Results indicate that the physical mechanism by which the pyroelectric activity arises in the LB films is critically dependent upon their structural quality, the ions within the multilayer arrangement and the molecular dipole moments of the molecules

  1. Combustion stratification study of partially premixed combustion using Fourier transform analysis of OH* chemiluminescence images

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-11-06

    A relatively high level of stratification (qualitatively: lack of homogeneity) is one of the main advantages of partially premixed combustion over the homogeneous charge compression ignition concept. Stratification can smooth the heat release rate and improve the controllability of combustion. In order to compare stratification levels of different partially premixed combustion strategies or other combustion concepts, an objective and meaningful definition of “stratification level” is required. Such a definition is currently lacking; qualitative/quantitative definitions in the literature cannot properly distinguish various levels of stratification. The main purpose of this study is to objectively define combustion stratification (not to be confused with fuel stratification) based on high-speed OH* chemiluminescence imaging, which is assumed to provide spatial information regarding heat release. Stratification essentially being equivalent to spatial structure, we base our definition on two-dimensional Fourier transforms of photographs of OH* chemiluminescence. A light-duty optical diesel engine has been used to perform the OH* bandpass imaging on. Four experimental points are evaluated, with injection timings in the homogeneous regime as well as in the stratified partially premixed combustion regime. Two-dimensional Fourier transforms translate these chemiluminescence images into a range of spatial frequencies. The frequency information is used to define combustion stratification, using a novel normalization procedure. The results indicate that this new definition, based on Fourier analysis of OH* bandpass images, overcomes the drawbacks of previous definitions used in the literature and is a promising method to compare the level of combustion stratification between different experiments.

  2. Studies on morphology of Langmuir-Blodgett films of stearic acid deposited with different orientation of substrates with respect to compression

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Keerti; Manjuladevi, V.; Gupta, R. K., E-mail: raj@pilani.bits-pilani.ac.in [Department of physics, Birla Institute of Technology & Science, Pilani-333031, Rajasthan (India)

    2016-05-06

    The Langmuir monolayer at an air-water interface shows remarkably different surface pressure – area isotherm, when measured with the surface normal of a Wilhemly plate parallel or perpendicular to the direction of compression of the monolayer. Such difference arises due to difference in stress exerted by the monolayer on the plate in different direction. In this article, we report the effect of changing the direction of substrate normal with respect to the compression of the monolayer during Langmuir-Blodgett (LB) film deposition on the morphology of the films. The morphology of the LB film of stearic acid was studied using an atomic force microscope (AFM). The morphology of the LB films was found to be different due to difference in the stress in different directions.

  3. Label-free genotyping of cytochrome P450 2D6*10 using ligation-mediated strand displacement amplification with DNAzyme-based chemiluminescence detection.

    Science.gov (United States)

    Wang, Hong-Qi; Wu, Zhan; Zhang, Yan; Tang, Li-Juan; Yu, Ru-Qin; Jiang, Jian-Hui

    2012-01-13

    Genotyping of cytochrome P450 monooxygenase 2D6*10 (CYP2D6*10) plays an important role in pharmacogenomics, especially in clinical drug therapy of Asian populations. This work reported a novel label-free technique for genotyping of CYP2D6*10 based on ligation-mediated strand displacement amplification (SDA) with DNAzyme-based chemiluminescence detection. Discrimination of single-base mismatch is firstly accomplished using DNA ligase to generate a ligation product. The ligated product then initiates a SDA reaction to produce aptamer sequences against hemin, which can be probed by chemiluminescence detection. The proposed strategy is used for the assay of CYP2D6*10 target and the genomic DNA. The results reveal that the proposed technique displays chemiluminescence responses in linear correlation to the concentrations of DNA target within the range from 1 pM to 1 nM. A detection limit of 0.1 pM and a signal-to-background ratio of 57 are achieved. Besides such high sensitivity, the proposed CYP2D6*10 genotyping strategy also offers superb selectivity, great robustness, low cost and simplified operations due to its label-free, homogeneous, and chemiluminescence-based detection format. These advantages suggest this technique may hold considerable potential for clinical CYP2D6*10 genotyping and association studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A simple and sensitive immunoassay for the determination of human chorionic gonadotropin by graphene-based chemiluminescence resonance energy transfer.

    Science.gov (United States)

    Lei, Jiuqian; Jing, Tao; Zhou, Tingting; Zhou, Yusun; Wu, Wei; Mei, Surong; Zhou, Yikai

    2014-04-15

    In this study, we report a strategy of chemiluminescence resonance energy transfer (CRET) using graphene as an efficient long-range energy acceptor. Magnetic nanoparticles were also used in CRET for simple magnetic separation and immobilization of horseradish peroxidase (HRP)-labeled anti-HCG antibody. In the design of CRET system, the sandwich-type immunocomplex was formed between human chorionic gonadotropin (HCG, antigen) and two different antibodies bridged the magnetic nanoparticles and graphene (acceptors), which led to the occurrence of CRET from chemiluminescence light source to graphene. After optimizing the experimental conditions, the quenching of chemiluminescence signal depended linearly on the concentration of HCG in the range of 0.1 mIU mL(-1)-10 mIU mL(-1) and the detection limit was 0.06 mIU mL(-1). The proposed method was successfully applied for the determination of HCG levels in saliva and serum samples, and the results were in good agreement with the plate ELISA with colorimetric detection. It could also be developed for detection of other antigen-antibody immune complexes by using the corresponding antigens and respective antibodies. © 2013 Published by Elsevier B.V.

  5. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    Science.gov (United States)

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  6. Determination of cyanide using a chemiluminescence system composed of permanganate, rhodamine B, and gold nanoparticles

    International Nuclear Information System (INIS)

    Amjadi, Mohammad; Hassanzadeh, Javad; Manzoori, Jamshid L.

    2014-01-01

    We describe a new chemiluminescence (CL) system based on the oxidation of rhodamine B (RhoB) with alkaline potassium permanganate in the presence of gold nanoparticles (Au-NPs) and anionic detergent sodium dodecyl sulfate. Free RhoB is weakly chemiluminescent when oxidized with permanganate at alkaline pH values. However, a remarkably strong enhancement of CL is observed in the presence of Au-NPs, probably due to a strong interaction between RhoB and the NPs. The possible mechanism was studied via recording the CL emission. It is also found that the intensity of CL gradually decreases in the presence of cyanide due to its interaction with the Au-NPs. The relation between the decreased CL intensity and cyanide concentration was exploited to develop a method for the determination of cyanide in the 0.01–0.5 μM concentration range, with a detection limit of 2.8 nM. The method was used to determine cyanide in spiked water, urine, and serum. (author)

  7. Determination of thiram in natural waters using flow-injection with cerium(IV)-quinine chemiluminescence system.

    Science.gov (United States)

    Waseem, Amir; Yaqoob, Mohammad; Nabi, Abdul

    2010-01-01

    A simple and rapid flow-injection chemiluminescence method has been developed for the determination of dithiocarbamate fungicide thiram based on the chemiluminescence reaction of thiram with ceric sulfate and quinine in aqueous sulfuric acid. The present method allowed the determination of thiram in the concentration range of 7.5-2500 ng/mL and the detection limit (signal-to-noise ratio = 3) was 7.5 ng/mL with sample throughput of 120/h. The relative standard deviation was 2.5% for 10 replicate analyses of 500 ng/mL thiram. The effects of foreign species including various anions and cations present in water at environmentally relevant concentrations and some pesticides were also investigated. The proposed method was applied to determine thiram in spiked natural waters using octadecyl bonded phase silica (C(18)) cartridges for solid-phase extraction. The recoveries were in the range 99 +/- 1 to 104 +/- 1%. Copyright (c) 2009 John Wiley & Sons, Ltd.

  8. A magnetic particles-based chemiluminescence enzyme immunoassay for rapid detection of ovalbumin.

    Science.gov (United States)

    Feng, Xiao-Li; Ren, Hong-Lin; Li, Yan-Song; Hu, Pan; Zhou, Yu; Liu, Zeng-Shan; Yan, Dong-Ming; Hui, Qi; Liu, Dong; Lin, Chao; Liu, Nan-Nan; Liu, Yan-Yan; Lu, Shi-Ying

    2014-08-15

    Egg allergy is an important public health and safety concern, so quantification and administration of food or vaccines containing ovalbumin (OVA) are urgently needed. This study aimed to establish a rapid and sensitive magnetic particles-chemiluminescence enzyme immunoassay (MPs-CLEIA) for the determination of OVA. The proposed method was developed on the basis of a double antibodies sandwich immunoreaction and luminol-H2O2 chemiluminescence system. The MPs served as both the solid phase and separator, the anti-OVA MPs-coated polyclonal antibodies (pAbs) were used as capturing antibody, and the horseradish peroxidase (HRP)-labeled monoclonal antibody (mAb) was taken as detecting antibody. The parameters of the method were evaluated and optimized. The established MPs-CLEIA method had a linear range from 0.31 to 100ng/ml with a detection limit of 0.24ng/ml. The assays showed low reactivities and less than 5% of intraassay and interassay coefficients of variation (CVs), and the average recoveries were between 92 and 97%. Furthermore, the developed method was applied in real samples analysis successfully, and the correlation coefficient with the commercially available OVA kit was 0.9976. Moreover, it was more rapid and sensitive compared with the other methods for testing OVA. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Effect of metal ions on the formation and properties of monolayers and nanosized Langmuir-Blodgett films based on diphilic aminomethylated calix[4]resorcinarenes

    International Nuclear Information System (INIS)

    Neveshkin, A.A.; Rusanova, T.Yu.; Rumyantseva, S.S.; Serdobintsev, A.A.; Podkosov, K.V.; Shtykov, S.N.; Klimov, B.N.; Gorin, D.A.; Ryzhkina, I.S.

    2008-01-01

    The behavior of the monolayers of three diphilic aminomethylated calix[4]resorcinarene (CRA) derivatives on the surface of a pure aqueous subphase and subphase containing copper(II), nickel(II), europium(III), terbium(III), and lanthanum(III) ions was investigated. The monolayer transfer to the quartz and single-crystal silicon substrates was accomplished by the Langmuir-Blodgett (LB) technique. The films were studied by ellipsometry and mass-spectrometry. Metal ions were found to exert effect on the limit area per one CRA molecule in the monolayer, on the surface collapse pressure and transfer coefficient of monolayer, and on the thickness and refractive index of the CRA-based LB films [ru

  10. Ester oxidation on an aluminum surface using chemiluminescence

    Science.gov (United States)

    Jones, William R., Jr.; Meador, Michael A.; Morales, Wilfredo

    1986-01-01

    The oxidation characteristics of a pure ester (trimethyolpropane triheptanoate) were studied by using a chemiluminescence technique. Tests were run in a thin film microoxidation apparatus with an aluminum alloy catalyst. Conditions included a pure oxygen atmosphere and a temperature range of 176 to 206 C. Results indicated that oxidation of the ester (containing .001 M diphenylanthracene as an intensifier) was accompanied by emission of light. The maximum intensity of light emission was a function of the amount of ester, the concentration of intensifier, and the test temperature. The induction period, or the time to reach one-half of maximum intensity was inversely proportional to test temperature. Decreases in light emission at the later stages of a test were caused by depletion of the intensifier.

  11. Cathodic electrogenerated chemiluminescence of aromatic Tb(III) chelates at polystyrene-graphite composite electrodes

    International Nuclear Information System (INIS)

    Salminen, Kalle; Grönroos, Päivi; Tuomi, Sami; Kulmala, Sakari

    2017-01-01

    Tb(III) chelates exhibit intense hot electron-induced electrogenerated chemiluminescence during cathodic polarization of metal/polystyrene-graphite (M/PG) electrodes in fully aqueous solutions. The M/PG working electrode provides a sensitive means for the determination of aromatic Tb(III) chelates at nanomolar concentration levels with a linear log-log calibration curve spanning more than five orders of magnitude. The charge transport and other properties of these novel electrodes were studied by electrochemiluminescence measurements and cyclic voltammetry. The present composite electrodes can by utilized both under pulse polarization and DC polarization unlike oxide-coated metal electrodes which do not tolerate cathodic DC polarization. The present cost-effective electrodes could be utilized e.g. in immunoassays where polystyrene is extensively used as a solid phase for various bioaffinity assays by using electrochemiluminescent Tb(III) chelates or e.g. Ru(bpy) 3 2+ as labels. - Highlights: • Generation of hydrated electrons at Polystyrene-graphite electrodes. • The insulating polystyrene layer on the outer electrode surface seems necessary. • Hydrated electrons are able to produce chemiluminescence. • Strongest signal and lowest std. dev. achieved at same graphite weight fraction.

  12. Quantum dots as chemiluminescence enhancers tested by sequential injection technique: Comparison of flow and flow-batch conditions

    Czech Academy of Sciences Publication Activity Database

    Sklenářová, H.; Voráčová, Ivona; Chocholouš, P.; Polášek, M.

    2017-01-01

    Roč. 184, APR (2017), s. 235-241 ISSN 0022-2313 Institutional support: RVO:68081715 Keywords : quantum dots * chemiluminescence * sequentialinjectionanalysis Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.686, year: 2016

  13. Sensitive chemiluminescence immunoassay for staphylococcal enterotoxin C1 based on the use of dye-encapsulated mesoporous silica nanoparticles

    International Nuclear Information System (INIS)

    Tao, Liang; Zhang, Chunmei; Sun, Yuanjie; Jin, Boquan; Yang, Kun; Li, Xiaohua; Zhang, Zhujun; Zhang, Jinpeng; Yan, Kuocheng

    2016-01-01

    A chemiluminescent immunoassay for the staphylococcal enterotoxin C1 (SEC1) based on the use of dye-encapsulated mesoporous silica nanoparticles (m-SiNPs) as a label is described. The dyes are retained in the m-SiNPs via strong hydrophobic interactions. The assay comprises the following steps: (a) Microplates coated with antibody against SEC1 are filled with sample upon which the SEC antigen will be bound to the surface; (b) following a washing step, secondary antibody linked to m-SiNPs (that were covalently labeled with rhodamine 6G and fluorescein) were added to form the sandwich complex; (c) after another washing step, bis(2,4,6-trichlorophenyl) oxalate, H_2O_2 and imidazole are added to generate chemiluminescence whose intensity is proportional to the number of m-SiNPs and thus to the number of antigen (SEC) molecules. It is found that the use of functionalized m-SiNPs strongly amplifies the signal. Enterotoxin SEC1 can be detected by this method in the 0.025 to 2 ng⋅mL"-"1 concentration range, the detection limit is 19 pg⋅mL"-"1 (at 3σ), and the relative standard deviation (for 11 parallel measurements at a 1 ng⋅mL"-"1 level) is 4.6 %. The use of an automated chemiluminescence analyzer further improves detection. (author)

  14. Phagocytic and chemiluminescent responses of mouse peritoneal macrophages to living and killed Salmonella typhimurium and other bacteria

    International Nuclear Information System (INIS)

    Tomita, T.; Blumenstock, E.; Kanegasaki, S.

    1981-01-01

    In the presence of luminol, resident as well as thioglycolate-induced and immunized macrophages emitted chemiluminescence more efficiently when the cells were exposed to living Salmonella typhimurium than when they were exposed to the same bacterium killed by ultraviolet light or heat. This phenomenon was observed whether or not the bacterium was opsonized. The different response to living and killed bacteria was also found with Escherichia coli, Pseudomonas aeruginosa, Proteus morganii, and Enterobacter aerogenes, but not with Shigella sonnei, Klebsiella pneumoniae, and Propionibacterium acnes. The results suggest that macrophages respond better to living, motile bacteria than to nonmotile or killed bacteria. The experimental results obtained with motility mutants of S. typhimurium, E. coli, and P. aeruginosa confirm that macrophages exposed to the motile bacteria emit chemiluminescence more efficiently and ingest the motile bacteria at a much faster rate than the nonmotile bacteria

  15. Characterisation of the membrane affinity of an isoniazide peptide conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipid Langmuir monolayer model.

    Science.gov (United States)

    Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva

    2010-10-07

    Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.

  16. Heteroepitaxial growth of SiC films by carbonization of polyimide Langmuir-Blodgett films on Si

    Directory of Open Access Journals (Sweden)

    Goloudina S.I.

    2017-01-01

    Full Text Available High quality single crystal SiC films were prepared by carbonization of polyimide Langmuir-Blodgett films on Si substrate. The films formed after annealing of the polyimide films at 1000°C, 1100°C, 1200°C were studied by Fourier transform-infrared (FTIR spectroscopy, X-ray diffraction (XRD, Raman spectroscopy, transmission electon microscopy (TEM, transmission electron diffraction (TED, and scanning electron microscopy (SEM. XRD study and HRTEM cross-section revealed that the crystalline SiC film begins to grow on Si (111 substrate at 1000°C. According to the HRTEM cross-section image five planes in 3C-SiC (111 film are aligned with four Si(111 planes at the SiC/Si interface. It was shown the SiC films (35 nm grown on Si(111 at 1200°C have mainly cubic 3C-SiC structure with a little presence of hexagonal polytypes. Only 3C-SiC films (30 nm were formed on Si (100 substrate at the same temperature. It was shown the SiC films (30-35 nm are able to cover the voids in Si substrate with size up to 10 μm.

  17. ATR-IR spectroscopy for the detection of induced-phase transition in Langmuir-Blodgett monolayer film

    International Nuclear Information System (INIS)

    Widayati, Suci

    1996-01-01

    The rate at which a solid substrate is transferred through the Air/Water interface in the Langmuir-Blodgett process of preparing monomolecular films influences the final structure of the transferred film. This phenomenon has been observed from the attenuated total reflectance infra-red (ATR-IR) spectra of fatty acid monolayer transferred onto germanium substrate. This transfer-induced effect is most evidence when the monolayer is transferred from an expanded region of the surface-pressure-molecular area isotherm, but has limited influence on the hydrocarbon chain conformation of film molecules transferred in the condensed phases at high surface pressure. Such a conformational ordering may due to a kinetically limited phase transition taking place in the meniscus formed between the solid substrate and aqueous sub phase. In addition, these results suggest that the structure of the amphiphilic molecules may modulate the extent and nature of the dipping-speed-induced structural changes taking place in the monomolecular L-B film. In order to use monomolecular L-B films to accurately characterize the structure, orientation and phase properties of monolayers at the Air/Water interface, the L-B transfer must be performed at transfer speeds that minimize this structural phase transition

  18. Fe3O4 and metal-organic framework MIL-101(Fe) composites catalyze luminol chemiluminescence for sensitively sensing hydrogen peroxide and glucose.

    Science.gov (United States)

    Qian Tang, Xue; Dan Zhang, Yi; Wei Jiang, Zhong; Mei Wang, Dong; Zhi Huang, Cheng; Fang Li, Yuan

    2018-03-01

    In this work, Fe 3 O 4 and metal-organic framework MIL-101(Fe) composites (Fe 3 O 4 /MIL-101(Fe)) was demonstrated to possess excellent catalytic property to directly catalyze luminol chemiluminescence without extra oxidants. We utilized Fe 3 O 4 /MIL-101(Fe) to develop a ultra-sensitive quantitative analytical method for H 2 O 2 and glucose. The possible mechanism of the chemiluminescence reaction had been investigated. Under optimal conditions, the relative chemiluminescence intensity was linearly proportional to the logarithm of H 2 O 2 concentration in the range of 5-150nM with a limit of detection of 3.7nM (signal-to-noise ratio = 3), and glucose could be linearly detected in the range from 5 to 100nM and the detection limit was 4.9nM (signal-to-noise ratio = 3). Furthermore, the present approach was successfully applied to quantitative determination of H 2 O 2 in medical disinfectant and glucose in human serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Fluorescence and chemiluminescence behavior of distyrylbenzene bearing two arms of dipicolylaminomethyl groups: Interactions with zinc ion and ATP

    Science.gov (United States)

    Motoyoshiya, Jiro; Wada, Jun-ya; Itoh, Keiko; Wakabayashi, Kazuaki; Maruyama, Takayuki; Ono, Kazuki; Fukasawa, Kota; Fujimoto, Tetsuya; Akaiwa, Yuji; Nonaka, Eiji

    2018-04-01

    The absorption and fluorescence spectral study of the distyrylbenzene bearing two arms of the dipicolylaminomethyl groups, the effective ligands for Zn2+, was studied in the presence of Zn2+ and ATP. Upon complexation of the distyrylbenzene with zinc ions in acetonitrile, enhancement of the fluorescence intensity was observed due to inhibition of intramolecular PET (photo-induced electron transfer) quenching, but no effect was found in aqueous media because the equilibrium laid to the free form of the ligands. In contrast, the addition of ATP disodium salt was effective to enhance the fluorescence intensity of the combination of the distyrylbenzne and Zn2+ in aqueous media. This assembly was applied to the peroxyoxalate chemiluminescence system and a significant increase in the intensity was observed, which provides a potential detection for ATP by chemiluminescence.

  20. Application of UV-Vis spectrophotometric and chemiluminescent methods for the evaluation of the antioxidant action of curcumin

    Czech Academy of Sciences Publication Activity Database

    Stanchev, Stancho; Pencheva, I.; Konstantinov, S.; Obreshkova, D.; Hadjimitova, V.

    2012-01-01

    Roč. 77, č. 8 (2012), s. 1063-1069 ISSN 0352-5139 Institutional research plan: CEZ:AV0Z40550506 Keywords : curcumin * antioxidant * UV-Vis spectrophotometry * DNA complexation * chemiluminescence Subject RIV: CC - Organic Chemistry Impact factor: 0.912, year: 2012

  1. Highly sensitive determination of diclofenac based on resin beads and a novel polyclonal antibody by using flow injection chemiluminescence competitive immunoassay

    Science.gov (United States)

    Shi, Jing; Xu, Mingxia; Tang, Qinghui; Zhao, Kang; Deng, Anping; Li, Jianguo

    2018-02-01

    A novel flow injection chemiluminescence immunoassay for simple, sensitive and low-cost detection of diclofenac was established based on specific binding of antigen and antibody. Carboxylic resin beads used as solid phase carrier materials provided good biocompatibility and large surface-to-volume ratio for modifying more coating antigen. There was a competitive process between the diclofenac in solution and the immobilized coating antigen to react with the limited binding sites of the polyclonal antibody to form the immunocomplex. The second antibody labelled with horseradish peroxidase was introduced into the immunosensor and trapped by captured polyclonal antibody against diclofenac, which could effectively amplify chemiluminescence signals of luminol-PIP-H2O2. Under optimal conditions, the diclofenac could be detected quantitatively. The chemiluminescence intensity decreased linearly with the logarithm of the diclofenac concentration in the range of 0.1-100 ng mL- 1 with a detection limit of 0.05 ng mL- 1 at a signal-to-noise ratio of 3. The immunosensor exhibited high sensitivity, specificity and acceptable stability. This easy-operated and cost-effective analytical method could be valuable for the diclofenac determination in real water samples.

  2. An ultrasensitive chemiluminescence immunoassay of chloramphenicol based on gold nanoparticles and magnetic beads.

    Science.gov (United States)

    Tao, Xiaoqi; Jiang, Haiyang; Yu, Xuezhi; Zhu, Jinghui; Wang, Xia; Wang, Zhanhui; Niu, Lanlan; Wu, Xiaoping; Shen, Jianzhong

    2013-05-01

    A competitive, direct, chemiluminescent immunoassay based on a magnetic beads (MBs) separation and gold nanoparticles (AuNPs) labelling technique to detect chloramphenicol (CAP) has been developed. Horseradish peroxidase (HRP)-labelled anti-CAP monoclonal antibody conjugated with AuNPs and antigen-immobilized MBs were prepared. After optimization parameters of immunocomplex MBs, the IC50 values of chemiluminescence magnetic nanoparticles immunoassay (CL-MBs-nano-immunoassay) were 0.017 µg L(-1) for extract method I and 0.17 µg L(-1) for extract method II. The immunoassay with two extract methods was applied to detect CAP in milk. Comparison of these two extract methods showed that extract method I was advantageous in better sensitivity, in which the sensitivity was 10 times compared to that of extract method II, while extract method II was superior in simple operation, suitable for high throughout screen. The recoveries were 86.7-98.0% (extract method I) and 80.0-103.0% (extract method II), and the coefficients of variation (CVs) were all recovery with both extract methods and high correlation with traditional ELISA kit in milk system confirmed that the immunomagnetic assay based on AuNPs exhibited promising potential in rapid field screening for trace CAP analysis. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Chemiluminescence ELISA for the detection of oxidative DNA base damage using anti-8-hydroxy-2'-deoxyguanosine antibody. Application to the detection of irradiated foods

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Funayama, Tomoo; Sakashita, Tetsuya; Satoh, Katsuya; Narumi, Issay; Kobayashi, Yashihiko; Gunawardane, Chaminda R.; Alam, Md. Khorshed; Dzomir, A. Zainuri Mohd.; Pitipanaarachchi, Ramya C.; Hamada, Nobuyuki; Wada, Seiichi

    2007-01-01

    Since ionizing radiation is used for sterilizing or lowering the microbial content of foods as a means of reducing food losses and securing food safety, the development of versatile detection methods of irradiated foods is necessary for appropriate management. In an effort to distinguish between irradiated and non-irradiated food, a method based on the detection of oxidative DNA base damage using the chemiluminescence enzyme-linked immunosorbent assay (ELISA) with anti-8-hydroxy-2'-deoxyguanosine antibody was developed. In the course of optimizing the reaction conditions for the ELISA, a 30-mer synthetic oligonucleotide containing 8-hydroxyguanine (8-oxoG) was used. Under the optimized conditions, the correlation between chemiluminescence intensity and 8-oxoG content in oligonucleotides was obtained. It was shown that this chemiluminescence ELISA method could be applied to chicken, beef and pork that were irradiated with over 3 kGy. Twenty milligrams of a loaf of meat was sufficient to distinguish between irradiated and non-irradiated meat by this method. (author)

  4. The importance of chain length for the polyphosphate enhancement of acidic potassium permanganate chemiluminescence.

    Science.gov (United States)

    Holland, Brendan J; Adcock, Jacqui L; Nesterenko, Pavel N; Peristyy, Anton; Stevenson, Paul G; Barnett, Neil W; Conlan, Xavier A; Francis, Paul S

    2014-09-09

    Sodium polyphosphate is commonly used to enhance chemiluminescence reactions with acidic potassium permanganate through a dual enhancement mechanism, but commercially available polyphosphates vary greatly in composition. We have examined the influence of polyphosphate composition and concentration on both the dual enhancement mechanism of chemiluminescence intensity and the stability of the reagent under analytically useful conditions. The average chain length (n) provides a convenient characterisation, but materials with similar values can exhibit markedly different distributions of phosphate oligomers. There is a minimum polyphosphate chain length (∼6) required for a large enhancement of the emission intensity, but no further advantage was obtained using polyphosphate materials with much longer average chain lengths. Providing there is a sufficient average chain length, the optimum concentration of polyphosphate is dependent on the analyte and in some cases, may be lower than the quantities previously used in routine detection. However, the concentration of polyphosphate should not be lowered in permanganate reagents that have been partially reduced to form high concentrations of the key manganese(III) co-reactant, as this intermediate needs to be stabilised to prevent formation of insoluble manganese(IV). Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Measurements of essential oil extract and antioxidant in Syrian Myrtus communis L. leaves using photo chemiluminescence assay

    International Nuclear Information System (INIS)

    Zayzafoon, G.; Odeh, A.; Mahzia, Y.

    2012-01-01

    The essential oil extracts and antioxidant measurements of Syrian Myrtus communis L. leaves as hydrophilic and hydrophobic existence species have been carried out. The plant leaves as a source of antioxidants was tested by the influence of its aqueous and essential oil extracts on the yield of photo chemiluminescence, PCL solution applying very sensitive and reliable method. By means of a photo chemiluminescence assay, it was possible to assess the total antioxidants capacity of hydrophilic and hydrophobic species existence in Syrian Myrtus communis L. leaves. It has been found that, the integral antioxidant capacity measurements value of Syrian Myrtus communis L. leaves was found in Kurdaha site which has a value of 465.67 1.18 nmol TE/g DM (total Trolox equivalent /gram of Dry material) . The following three mainly chemical species were found in the essential oil extracts: -Pinene, Cineole and Limonene. (author)

  6. Application of Box–Behnken design in the optimization of new peroxyoxalate–H2O2 chemiluminescence system using furan derivatives as blue activators

    International Nuclear Information System (INIS)

    Chaichi, M.J.; Azizi, S.N.; Alijanpour, O.; Heidarpour, M.; Qandalee, M.

    2013-01-01

    The non-commercially synthesized and purified furan derivatives are of great interest as fluorescent emitters for peroxyoxalate chemiluminescence (PO-CL). The reaction of oxalic ester such as bis-(2,4,6-trichloro-phenyl) oxalate (TCPO) with H 2 O 2 can lead to the excitation of an appropriate activator via the formation of a 1,2-dioxetanedione intermediate. In this study, two furan derivatives were used as activators which produce a blue light in the chemiluminescence systems. In the following, the Box–Behnken design matrix and response surface methodology (RSM) have been applied to design the experiments to study the relationship between the chemiluminescence intensities and the three most important operating variables such as sodium salicylate (5×10 −4 –5×10 −3 M), furan (10 −5 –10 −3 M) and hydrogen peroxide (10 −3 –10 −1 M) concentrations, and also to evaluate the interactive effects of these variables on the CL emission of TCPO system. Totally 15 experiments were conducted in the present study towards the construction of a quadratic model. Independent variables of sodium salicylate, hydrogen peroxide and furan concentration have the significance value of p=0.05, in both the systems, which explicitly shows the importance of these variables in the CL emission of TCPO. Values of Prob>F less than 0.0001 indicated that the model terms are significant for the CL emission of TCPO. Moreover, the regression equation coefficients were calculated and the data fitted to a second-order polynomial equation for CL emission of TCPO. -- Highlights: ► Furan derivatives are used as activators for peroxyoxalate chemiluminescence. ► The activators produce a blue light in the chemiluminescence system. ► The Box–Behnken design matrix and response surface methodology (RSM) is used. ► The most important variables are sodium salicylate, furan and hydrogen peroxide. ► The data are fitted to a second-order polynomial equation for CL emission of TCPO

  7. Fe3O4/γ-Fe2O3 nanoparticle multilayers deposited by the Langmuir-Blodgett technique for gas sensors application.

    Science.gov (United States)

    Capone, S; Manera, M G; Taurino, A; Siciliano, P; Rella, R; Luby, S; Benkovicova, M; Siffalovic, P; Majkova, E

    2014-02-04

    Fe3O4/γ-Fe2O3 nanoparticles (NPs) based thin films were used as active layers in solid state resistive chemical sensors. NPs were synthesized by high temperature solution phase reaction. Sensing NP monolayers (ML) were deposited by Langmuir-Blodgett (LB) techniques onto chemoresistive transduction platforms. The sensing ML were UV treated to remove NP insulating capping. Sensors surface was characterized by scanning electron microscopy (SEM). Systematic gas sensing tests in controlled atmosphere were carried out toward NO2, CO, and acetone at different concentrations and working temperatures of the sensing layers. The best sensing performance results were obtained for sensors with higher NPs coverage (10 ML), mainly for NO2 gas showing interesting selectivity toward nitrogen oxides. Electrical properties and conduction mechanisms are discussed.

  8. Closed-Form Solutions of the Thomas-Fermi in Heavy Atoms and the Langmuir-Blodgett in Current Flow ODEs in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Efstathios E. Theotokoglou

    2015-01-01

    Full Text Available Two kinds of second-order nonlinear, ordinary differential equations (ODEs appearing in mathematical physics are analyzed in this paper. The first one concerns the Thomas-Fermi (TF equation, while the second concerns the Langmuir-Blodgett (LB equation in current flow. According to a mathematical methodology recently developed, the exact analytic solutions of both TF and LB ODEs are proposed. Both of these are nonlinear of the second order and by a series of admissible functional transformations are reduced to Abel’s equations of the second kind of the normal form. The closed form solutions of the TF and LB equations in the phase and physical plane are given. Finally a new interesting result has been obtained related to the derivative of the TF function at the limit.

  9. Langmuir-Blodgett (LB) yöntemi ile elde edilen çeşitli CdS ve Pb ince filmlerinin fiziksel özelliklerinin elektrik kuvvet mikroskobu (EKM) ile incelenmesi

    OpenAIRE

    ARSLAN, Melike

    2011-01-01

    Bu tez çalışmasında, Langmuir-Blodgett (LB) yöntemi ile elde edilen farklı pH derecelerine sahip Kadmiyum Sülfür (CdS) ve Kurşun (Pb) ince filminin topografik ve elektriksel özellikleri incelenmiştir. LB ince filmlerinin topografik özellikleri ve elektriksel özellikleri NT-MDT marka Taramalı Uç Mikroskobu (TUM) ile incelenmiştir. Yüzey morfolojik özel...

  10. Comparative study of ß-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.)

    DEFF Research Database (Denmark)

    Jiménez, Natalia Ivonne Vera; Pietretti, D.; Wiegertjes, G. F.

    2013-01-01

    kidney cells of carp. However, whereas the NBT assay was shown to detect the production of only superoxide anions, the real-time luminol-enhanced assay could detect the production of both superoxide anions and hydrogen peroxide. Only the chemiluminescence assay could reliably record the production of ROS......-point measurement based on the intracellular reduction of nitroblue tetrazolium (NBT) and a real-time luminol-enhanced assay based on the detection of native chemiluminescence. Both assays allowed for detection of dose-dependent changes in magnitude of the respiratory burst response induced by β-glucans in head...... on a real-time scale at frequent and continual time intervals for time course experiments, providing more detailed information on the respiratory burst response. The real-time chemiluminescence assay was used to measure respiratory burst activity in macrophage and neutrophilic granulocyte-enriched head...

  11. Evaluation of a new serological test for syphilis based on chemiluminescence assay in a tertiary care hospital.

    Science.gov (United States)

    Tiwari, Aseem K; Pandey, Prashant K; Dara, Ravi C; Rawat, Ganesh S; Raina, Vimarsh; Bhargava, Richa

    2015-01-01

    Syphilis is a transfusion transmissible infections and it is mandatory to do serological test for syphilis (STS) on all donor blood samples. STS is usually based on detection of antibodies against the cardiolipin-lecithin antigen or against the Treponema-specific antigen. STS with good sensitivity and specificity helps enhance blood safety and consolidation of STS along with other transfusion transmittable infections such as human immunodeficiency virus, hepatitis-C virus, and hepatitis-B virus helps in reducing the errors and enhances efficiency. This study was designed to evaluate the performance of newly introduced VITROS(®) syphilis Treponema pallidum agglutination (TPA) assay based on enhanced chemiluminescence principle for its analytical performance for use as a STS on donor blood samples at a tertiary care health center in National Capital Region, India. A total of 108 random blood units collected from the donors (both voluntary and replacement donors) and 28 known syphilis sero-reactive samples stored at -20°C, were used to evaluate the performance of VITROS(®) syphilis TPA assay based on enhanced chemiluminescence assay on VITROS(®) ECiQ immunodiagnostics system along with its analytical performance in terms of its sensitivity, precision, cross-reactivity and interference studies. VITROS(®) syphilis TPA showed 100% sensitivity and specificity with precision (20 days study) of endogenous interfering substances like free hemoglobin or fats. Performance of the VITROS(®) syphilis TPA assay meets the requirements for its use as STS in blood bank, thus allowing consolidation with other transfusion transmittable infections screening assay on chemiluminescence platform, which is highly valuable for optimizing workflow and efficiency.

  12. The application of automatic chemiluminescence machine in rapid immune detection

    International Nuclear Information System (INIS)

    Lin Aizhen; Li Xuanwei; Chen Binhong; Li Zhenqian; Chen Zhaoxuan

    2004-01-01

    Objective: To provide high-quality, rapid and dependable result for clinical practice, and give satisfactory service to patients of different economical status by supplementation with other labeling immune examination. With an innovative attitude, we carried out efficient technical reform on ACS180 automatic chemiluminescence machine, making it possible for patients to complete the whole process including examination, check-out, diagnosis and getting drugs. The reported will be issued within an hour, thus a rapid immune detection service was established in out-patients department. Methods: 1. ACS-180 automatic chemiluminescence machine is used based on the principle of chemiluminescence immune methods. 2. The reagents are provided by Ciba-Comig Company of USA, composed of anti acridinium ester antibody of liquid phase and particulate antigen of solid phase wrapped in magnetic powder. 3. Calibration and quality control: high and low concentration are set for each calibration fluid with attached standard curve. Product for quality controlling includes three concentration of low, moderate and high. Results: 1. rapid machine detection for sample: serum is replaced with plasma coagulated by heparin, and comparison among series of methods using serum or plasma suggest no significant difference exists. 2. The problem about fasting detection: chemiluminescence machine measure optical density directly, with the results hardly being influenced by turbidity. But attention should be paid to the treatment of lipid turbid samples. 3. Other innovations: (1) direct placement of sample tube on machine: a cushion is placed on sample plate to transfer sample to machine directly after centrifugation, saving time and reducing the accident in sample transference. (2) for HCG quantification in blood and urine, 'gold criteria' is used firstly in screening to determine approximately the dilution range, with an advantage of saving time and reagent as well as accuracy. (3) we design a

  13. Dendrimer-based biosensor for chemiluminescent detection of DNA hybridization

    International Nuclear Information System (INIS)

    Liu, P.; Hun, X.; Qing, H.

    2011-01-01

    We report on a highly sensitive chemiluminescent (CL) biosensor for the sequence-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticles that were covered with a dendrimer. The modified probe is composed of gold nanoparticles, a dendrimer, the CL reagent, and the DNA. The capture probe DNA was immobilized on magnetic beads covered with gold. It first hybridizes with the target DNA and then with one terminal end of the signal DNA on the barcoded DNA probe. CL was generated by adding H 2 O 2 and Co(II) ions as the catalyst. The immobilization of dendrimer onto the gold nanoparticles can significantly enhance sensitivity and gives a detection limit of 6 fmol L -1 of target DNA. (author)

  14. Simultaneous determination of chromium(III) and chromium(VI) in aqueous solutions by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jøns, O; Nielsen, B

    1992-01-01

    A method for the simultaneous determination of chromium(iii) and chromium(vi) in a flow system based on chemiluminescence was developed. A Dionex cation-exchange guard column was used to separate chromium(iii) from chromium(vi), and chromium(vi) was reduced by potassium sulfite, whereupon both...

  15. The fabrication of magnetic particle-based chemiluminescence immunoassay for human epididymis protein-4 detection in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Xiaoling Fu

    2018-03-01

    Full Text Available The magnetic particles have a significant influence on the immunoassay detection and cancer therapy. Herein, the chemiluminescence immunoassay combined with the magnetic particles (MPCLIA was presented for the clinical determination and analysis of human epididymis protein 4 (HE4 in the human serum. Under the optimized experiment conditions, the secure MPCLIA method can detect HE4 in the broader range of 0–1000 pmol/L, with a lower detection limit of 1.35 pmol/L. The satisfactory recovery rate of the method in the serum ranged from 83.62% to 105.10%, which was well within the requirement of clinical analysis. Moreover, the results showed the good correlation with enzyme-linked immunosorbent assay (ELISA, with the correlation coefficient of 0.9589. This proposed method has been successfully applied to the clinical determination of HE4 in the human serum. Keywords: Chemiluminescence immunoassay, Magnetic particles, Human epididymis protein 4

  16. Chemiluminescence response of whole blood and separated blood cells in cases of experimentally induced pancreatitis and MDTQ-DA-Trasylol-ascorbic acid therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, T.; Schuster, R.; Lauschke, G.; Trausch, M. (Medical Academy of Dresden (Germany). Department of Surgery); Albrecht, S. (Medical Academy of Dresden (Germany). Institute of Clinical Chemistry); Kopprasch, S.; Kuehne, H. (Medical Academy of Dresden (Germany). Institute of Pathological Biochemistry)

    1991-12-24

    The formation of reactive O{sub 2} species in the pancreas of pigs after induction of necrotizing or oedematous pancreatitis was studied by means of luminol- and lucigenin-sensitized chemiluminescence. The effect of 2,2-dimethyl-4-methanesulphonic acid-1,2-dihydroquinoline in combination with Trasylol and ascorbic acid was studied in vivo. This combined therapy leads to a reduction in the chemiluminescence response by 50-70% with prevention of pancreatogenic shock and multiple organ failure by improvement of the gluthathione status. A combination of radical traps, kallikrein inhibitors and natural antioxidative sub-stances is an efficient alternative therapy in cases of acute pancrea-titis. (author). 10 refs.; 5 figs.

  17. Relation between anchorings of liquid crystals and conformation changes in aligning agents by the Langmuir-Blodgett film technique investigation

    International Nuclear Information System (INIS)

    Zhu, Y.; Lu, Z.; Wei, Y.

    1995-01-01

    The anchoring direction of liquid crystals on a solid substrate surface depends upon many parameters characterizing the liquid-crystal--substrate interface, a variation of which may change this anchoring direction leading to the so-called anchoring transition. Here, based on the Langmuir-Blodgett film technique, we present two model systems to study the relation between anchoring directions and the conformation changes in aligning agents. A double-armed crown ether liquid crystal and a side chain polymer liquid crystal at an air-water interface both show phase transitions, accompanied by conformation changes. However, when the monolayers in different phases were transferred onto solid substrates to orient liquid crystals, we found that for the crown ether material the conformation change can alter the anchoring of liquid crystals between homeotropic and homogeneous alignments, while for the polymer liquid crystal, despite the conformation changes, the liquid crystals can only be aligned homeotropically. The involved mechanisms were briefly discussed in terms of the Landau-type phenomenological theory

  18. Determination of phenolic compounds using high-performance liquid chromatography with Ce4+-Tween 20 chemiluminescence detection

    International Nuclear Information System (INIS)

    Cui Hua; Zhou Jian; Xu Feng; Lai Chunze; Wan Guohui

    2004-01-01

    A novel method for the simultaneous determination of phenolic compounds such as salicylic acid, resorcinol, phloroglucinol, p-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, and m-nitrophenol by high-performance liquid chromatography (HPLC) coupled with chemiluminescence (CL) detection was developed. The procedure was based on the chemiluminescent enhancement by phenolic compounds of the cerium(IV)-Tween 20 system in a sulfuric acid medium. The separation was carried out with an isocratic elution or with a gradient elution using a mixture of methanol and 1.5% acetic acid. For six phenolic compounds, the detection limits (3σ) were in the range 1.40-5.02 ng/ml and the relative standard deviations (n=11) for the determination of 0.1 μg/ml compounds were in the range 1.9-2.9%. The CL reaction was well compatible with the mobile phase of HPLC, no baseline drift often occurred in HPLC-CL detection was observed with a gradient elution. The method has been successfully applied to the determination of salicylic acid and resorcinol in Dermatitis Clear Tincture and p-hydroxybenzoic acid in apple juices

  19. Energy transfer and electron transfer in dimers and polymers of porphyrin and phthalocyanines: from the liquid phase to Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Lipskier, Jean-Francois

    1991-01-01

    The understanding of phenomena of photo-induced transfer of energy and of electron between chromophores belonging to a same supra-molecular entity is necessary for the design and fabrication of molecule devices performing the conversion of a light signal into electric signal or chemical potential. As porphyrin oligomers and phthalocyanine oligomers are examples of interest for the systematic study of parameters governing these processes, the first part of this research thesis addresses the study of dimers and trimers bound by covalent bridges. The second part addresses the study of physical-chemical properties of complexes bound by the Van der Waals interaction as well as by the Coulomb attraction. An extension to Langmuir-Blodgett films is proposed, and the properties of complexes organised in thin films according to this methodology are compared with those of their homologues in solution [fr

  20. Highly sensitive trivalent copper chelate–luminol chemiluminescence system for capillary electrophoresis chiral separation and determination of ofloxacin enantiomers in urine samples

    Directory of Open Access Journals (Sweden)

    Hao-Yue Xie

    2014-12-01

    Full Text Available A simple, fast and sensitive capillary electrophoresis (CE strategy combined with chemiluminescence (CL detection for analysis of ofloxacin (OF enantiomers was established in the present work. Sulfonated β-cyclodextrin (β-CD was used as the chiral additive being added into the running buffer of luminol–diperiodatocuprate (III (K5[Cu(HIO62], DPC chemiluminescence system. Under the optimum conditions, the proposed method was successfully applied to separation and analysis of OF enantiomers with the detection limits (S/N=3 of 8.0 nM and 7.0 nM for levofloxacin and dextrofloxacin, respectively. The linear ranges were both 0.010–100 μM. The method was utilized for analyzing OF in urine; the results obtained were satisfactory and recoveries were 89.5–110.8%, which demonstrated the reliability of this method. This approach can also be further extended to analyze different commercial OF medicines. Keywords: Ofloxacin, Chiral analysis, Sulfonated-β-CD, Capillary electrophoresis, Chemiluminescence

    1. СHANGES IN PARAMETERS OF LUMINOL-DEPENDENT AND LUCIGENIN-DEPENDENT CHEMILUMINESCENCE OF PERIPHERAL BLOOD NEUTROPHILS IN PATIENTS WITH BLADDER CANCER IN THE DISEASE DYNAMICS

      Directory of Open Access Journals (Sweden)

      L. M. Kurtasova

      2015-01-01

      Full Text Available The study deals with parameters of luminol-dependent and lucigenin-dependent chemiluminescence (CL of peripheral blood neutrophils from patients with bladder cancer (BC prior to surgical treatment. We examined sixty patients (45 to 55 years old with advanced bladder cancer (TNM prior to the operation, and forty-six patients at 10 days after surgical treatment. A control group consisted of 56 healthy donors. Luminol-dependent and lucigenin-dependent chemiluminescence of blood neutrophils was assessed according to De Sole et al. (1983. Chemiluminescence assays of peripheral blood neutrophils from the patients with bladder cancer revealed changes in production of reactive oxygen species (ROS, both for initial stage of oxidation reaction, and total level of active oxygen radicals. We have found disturbed values of primary-to-secondary ROS ratio in the cells. In the patients with bladder cancer, some changes in oxidative metabolism of the blood neutrophils have been registered. These alterations may play an important role in promotion of potential effector cell functions, thus, probably, affecting the whole-scale development of a cytopathic effect exerted by neutrophilic granulocytes. 

    2. Study of immunoglobulin G thin layers obtained by the Langmuir-Blodgett method: application to immunosensors.

      Science.gov (United States)

      Barraud, A; Perrot, H; Billard, V; Martelet, C; Therasse, J

      1993-01-01

      Nowadays, immunosensors play a leading part in the field of bioanalytical chemistry research. As with any biosensor, they need appropriate transducers and a suitable technique to immobilize the active biocomponents. In this study, two transduction modes were chosen: mass effects (quartz microbalance measurements) and geometric and dielectric effects (capacitance measurements). The Langmuir-Blodgett (LB) method appears to be quite suitable for generating biospecific surfaces. This work has focused on the detection of staphylococcal enterotoxin B, the corresponding antibody being immobilized at the surface of fatty acids by a variant of the LB method. The composition of the film and the nature of antibody-fatty acid interactions were studied by means of the two transducers mentioned above. FTIR (Fourier transform infra-red) spectroscopy and protein diagnostic assay. Influence of several parameters (pH, ionic strength, transfer pressure, antibody concentration in the subphase) was investigated. The immobilization rate reached its maximum when experimental conditions allowed optimal electrostatic interactions. In this case, the quartz crystal microbalance response, in air, reached 55 Hz per monolayer of immobilized immunoglobulin G and the equivalent capacitance variation, measured in liquid media, was around 300 pF cm-2. Activity of the biospecific LB films, when binding enterotoxin, was checked by the classical ELISA (enzyme immuno-linked assay) technique.

    3. Architecture effects of glucose oxidase/Au nanoparticle composite Langmuir-Blodgett films on glucose sensing performance

      Science.gov (United States)

      Wang, Ke-Hsuan; Wu, Jau-Yann; Chen, Liang-Huei; Lee, Yuh-Lang

      2016-03-01

      The Langmuir-Blodgett (LB) deposition technique is employed to prepare nano-composite films consisting of glucose oxidase (GOx) and gold nanoparticles (AuNPs) for glucose sensing applications. The GOx and AuNPs are co-adsorbed from an aqueous solution onto an air/liquid interface in the presence of an octadecylamine (ODA) template monolayer, forming a mixed (GOx-AuNP) monolayer. Alternatively, a composite film with a cascade architecture (AuNP/GOx) is also prepared by sequentially depositing monolayers of AuNPs and GOx. The architecture effects of the composite LB films on the glucose sensing are studied. The results show that the presence of AuNPs in the co-adsorption system does not affect the adsorption amount and preferred conformation (α-helix) of GOx. Furthermore, the incorporation of AuNPs in both composite films can significantly improve the sensing performance. However, the enhancement effects of the AuNPs in the two architectures are distinct. The major effect of the AuNPs is on the facilitation of charge-transfer in the (GOx-AuNP) film, but on the increase of catalytic activity in the (AuNP/GOx) one. Therefore, the sensing performance can be greatly improved by utilizing a film combining both architectures (AuNP/GOx-AuNP).

    4. Photo-switching of a non-ionic azobenzene amphiphile in Langmuir and Langmuir-Blodgett films.

      Science.gov (United States)

      Piosik, Emilia; Kotkowiak, Michał; Korbecka, Izabela; Galewski, Zbigniew; Martyński, Tomasz

      2017-08-30

      The concept of programmable and reconfigurable soft matter has emerged in science in the last few decades and can be realized by photoisomerization of azobenzene derivatives. This possibility results in great application potential of these compounds in optical storage devices, molecular junctions of electronic devices, command layers of liquid crystal displays or holographic gratings. In this paper, we present the results of a study on the organization and isomerization of the non-ionic and amphiphilic methyl 4-[(E)-2-[4-(nonyloxy)phenyl]diazen-1-yl]benzoate (LCA) in a 2D layer architecture of Langmuir and Langmuir-Blodgett (LB) films supported by spectroscopic studies on LCA chloroform solutions. Our investigation has shown a significantly different molecular organization of LCA depending on the ratio of trans and cis isomers in the monolayers. Taking advantage of a relatively low packing density and aggregation strength in the cis-LCA monolayer, we demonstrated the reversible isomerization in the LB film initially formed of LCA molecules in the cis form, while in the trans-LCA monolayer this effect was not observed. Our approach allows the formation of a switchable monolayer made of the amphiphilic LCA showing liquid crystalline properties without introducing an ionic group into the molecule structure, mixing with another compound or changing the subphase pH to provide free space for the molecules' isomerization.

    5. Egg-Citing! Isolation of Protoporphyrin IX from Brown Eggshells and Its Detection by Optical Spectroscopy and Chemiluminescence

      Science.gov (United States)

      Dean, Michelle L.; Miller, Tyson A.; Bruckner, Christian

      2011-01-01

      A simple and cost-effective laboratory experiment is described that extracts protoporphyrin IX from brown eggshells. The porphyrin is characterized by UV-vis and fluorescence spectroscopy. A chemiluminescence reaction (peroxyoxalate ester fragmentation) is performed that emits light in the UV region. When the porphyrin extract is added as a fluor…

    6. Flow-based determination of methionine in pharmaceutical formulations exploiting TGA-capped CdTe quantum dots for enhancing the luminol-KIO{sub 4} chemiluminescence

      Energy Technology Data Exchange (ETDEWEB)

      Zhou, Min, E-mail: mzhou8367@sina.com [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang, Ailian [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Jiuquan Enviromental Protection Bureau, Jiuquan 735000 (China); Li, Cong; Luo, Xiaowei; Ma, Yongjun [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

      2017-03-15

      A novel flow-injection chemiluminescence method (FI-CL) was established for the determination of methionine in this paper, based on its strong enhancement on CL intensity of the luminol-KIO{sub 4} system catalyzed by thioglycolic acid-capped CdTe quantum dots in alkaline media. Under the optimized conditions, the relative CL intensity was in proportion to methionine concentration in the range from 1.0×10{sup −8} to 1.0×10{sup −5} g mL{sup −1} with a detection limit of 6.6×10{sup −9} g mL{sup −1} (3σ). The relative standard deviation (RSD) of the CL intensity for 1.0×10{sup −6} g mL{sup −1} standard methionine solution was 0.97% (n=11). The proposed method was successfully applied to determine methionine in commercial pharmaceutical formulations with recoveries between 98.0% and 101.9%. The possible CL mechanism was discussed as well. - Graphical abstract: Methionine in commercial pharmaceutical formulations was determined by flow-injection chemiluminescence and the possible chemiluminescence mechanism was discussed as well.

    7. Application of Box–Behnken design in the optimization of new peroxyoxalate–H{sub 2}O{sub 2} chemiluminescence system using furan derivatives as blue activators

      Energy Technology Data Exchange (ETDEWEB)

      Chaichi, M.J., E-mail: jchaichi@yahoo.com [Faculty of Chemistry, Mazandaran University, Babolsar (Iran, Islamic Republic of); Azizi, S.N.; Alijanpour, O.; Heidarpour, M. [Faculty of Chemistry, Mazandaran University, Babolsar (Iran, Islamic Republic of); Qandalee, M. [Department of Biology, Garmsar Branch, Islamic Azad University, Garmsar (Iran, Islamic Republic of)

      2013-06-15

      The non-commercially synthesized and purified furan derivatives are of great interest as fluorescent emitters for peroxyoxalate chemiluminescence (PO-CL). The reaction of oxalic ester such as bis-(2,4,6-trichloro-phenyl) oxalate (TCPO) with H{sub 2}O{sub 2} can lead to the excitation of an appropriate activator via the formation of a 1,2-dioxetanedione intermediate. In this study, two furan derivatives were used as activators which produce a blue light in the chemiluminescence systems. In the following, the Box–Behnken design matrix and response surface methodology (RSM) have been applied to design the experiments to study the relationship between the chemiluminescence intensities and the three most important operating variables such as sodium salicylate (5×10{sup −4}–5×10{sup −3} M), furan (10{sup −5}–10{sup −3} M) and hydrogen peroxide (10{sup −3}–10{sup −1} M) concentrations, and also to evaluate the interactive effects of these variables on the CL emission of TCPO system. Totally 15 experiments were conducted in the present study towards the construction of a quadratic model. Independent variables of sodium salicylate, hydrogen peroxide and furan concentration have the significance value of p=0.05, in both the systems, which explicitly shows the importance of these variables in the CL emission of TCPO. Values of Prob>F less than 0.0001 indicated that the model terms are significant for the CL emission of TCPO. Moreover, the regression equation coefficients were calculated and the data fitted to a second-order polynomial equation for CL emission of TCPO. -- Highlights: ► Furan derivatives are used as activators for peroxyoxalate chemiluminescence. ► The activators produce a blue light in the chemiluminescence system. ► The Box–Behnken design matrix and response surface methodology (RSM) is used. ► The most important variables are sodium salicylate, furan and hydrogen peroxide. ► The data are fitted to a second-order polynomial

    8. Chemiluminescent determination of vanadium(IV) using a cinchomeronic hydrazide-H2O2 system and flow injection analysis

      International Nuclear Information System (INIS)

      Pradana Perez, J.A.; Alegria, J.S. Durand; Hernando, P. Fernandez; Sierra, A. Narros

      2005-01-01

      This paper proposes a new chemiluminescent flow injection analysis (FIA) method for the determination of vanadium(IV) ions in aqueous media. The method is based on the chemiluminescent reaction that occurs between cinchomeronic hydrazide (CH) and hydrogen peroxide in a strongly alkaline medium, in which vanadium(IV) acts as a catalyst. The chemical and physical variables involved in the flow injection system are optimised using a modified simplex method. Vanadium ions can be detected in the 0.08 and 1.00 μg mL -1 range; the detection limit for a signal-to-noise ratio of 3 is 0.08 μg mL -1 . Great variations in the quantum yield were observed when cobalt(II), chromium(III), copper(II) and/or nickel(II) were present in the reaction medium. The proposed method is selective and simple, and can be successfully used to analyse water samples without the need for separation or preconcentration processes

    9. Flow-injection chemiluminescence assay for ultra-trace determination of DNA using rhodamine B-Ce(IV)-DNA ternary system in sulfuric acid media

      International Nuclear Information System (INIS)

      Ma Yongjun; Zhou Min; Jin Xiaoyong; Zhang Ziyu; Teng Xiulan; Chen Hui

      2004-01-01

      A novel flow-injection chemiluminescence method for the determination of DNA at ultra-trace level has been established. In 0.8 M sulfuric acid media, the chemiluminescence of the rhodamine B-cerium (IV) or Ce(IV) system is enhanced by DNA, activated previously by imidazole-HCl buffer solution (pH 7.0). The enhanced intensity of chemiluminescence is in proportion to log DNA concentration 1.0x10 -8 to 0.1 μg ml -1 for herring sperm DNA and 2.0x10 -6 to 0.2 μg ml -1 for calf thymus DNA with 3σ detection limits of 8.3x10 -9 μg ml -1 for herring sperm DNA and 3.5x10 -7 μg ml -1 for calf thymus DNA, respectively. The relative standard deviation for 1.0x10 -4 μg ml -1 herring sperm DNA was 0.99% and 2.0x10 -3 μg ml -1 for calf thymus DNA was 1.1% (n=11). Using the optimized system, DNA contents in six synthetic samples has been determined with recoveries of 99.5-109.0%. The possible mechanism has also been studied in this paper

    10. Flow-injection chemiluminescence assay for ultra-trace determination of DNA using rhodamine B-Ce(IV)-DNA ternary system in sulfuric acid media

      Energy Technology Data Exchange (ETDEWEB)

      Ma Yongjun; Zhou Min; Jin Xiaoyong; Zhang Ziyu; Teng Xiulan; Chen Hui

      2004-01-09

      A novel flow-injection chemiluminescence method for the determination of DNA at ultra-trace level has been established. In 0.8 M sulfuric acid media, the chemiluminescence of the rhodamine B-cerium (IV) or Ce(IV) system is enhanced by DNA, activated previously by imidazole-HCl buffer solution (pH 7.0). The enhanced intensity of chemiluminescence is in proportion to log DNA concentration 1.0x10{sup -8} to 0.1 {mu}g ml{sup -1} for herring sperm DNA and 2.0x10{sup -6} to 0.2 {mu}g ml{sup -1} for calf thymus DNA with 3{sigma} detection limits of 8.3x10{sup -9} {mu}g ml{sup -1} for herring sperm DNA and 3.5x10{sup -7} {mu}g ml{sup -1} for calf thymus DNA, respectively. The relative standard deviation for 1.0x10{sup -4} {mu}g ml{sup -1} herring sperm DNA was 0.99% and 2.0x10{sup -3} {mu}g ml{sup -1} for calf thymus DNA was 1.1% (n=11). Using the optimized system, DNA contents in six synthetic samples has been determined with recoveries of 99.5-109.0%. The possible mechanism has also been studied in this paper.

    11. Use of atomic force microscopy for imaging the initial stage of the nucleation of calcium phosphate in Langmuir-blodgett films of stearic acid

      International Nuclear Information System (INIS)

      Zhang Yuanjian; He Ping; Xu Xiudong; Li Jinghong

      2004-01-01

      The nucleation of calcium phosphate on the substrate of steatic acid Langmuir-blodgett film at the initial stage was investigated by atomic force microscopy. Nano-dots, nano-wires and nano-islands were observed in sequence for the first time, reflecting the nucleation of calcium phosphate and the molecular arrangement of carboxylic layer. The nucleation rates perpendicular and parallel to the carboxylic terminal group were estimated from the height and diameter of the calcium phosphate crystals, respectively. And this stage was distinct from the late explosive grown stage, in which the change of the morphology was not obvious. The approaches based on this discovery would lead to the development of new strategies in the controlled synthesis of inorganic nano-phases and the assembly of organized composite and ceramic materials

    12. Evaluation of a new serological test for syphilis based on chemiluminescence assay in a tertiary care hospital

      Directory of Open Access Journals (Sweden)

      Aseem K Tiwari

      2015-01-01

      Full Text Available Context: Syphilis is a transfusion transmissible infections and it is mandatory to do serological test for syphilis (STS on all donor blood samples. STS is usually based on detection of antibodies against the cardiolipin-lecithin antigen or against the Treponema-specific antigen. STS with good sensitivity and specificity helps enhance blood safety and consolidation of STS along with other transfusion transmittable infections such as human immunodeficiency virus, hepatitis-C virus, and hepatitis-B virus helps in reducing the errors and enhances efficiency. Aims: This study was designed to evaluate the performance of newly introduced VITROS ® syphilis Treponema pallidum agglutination (TPA assay based on enhanced chemiluminescence principle for its analytical performance for use as a STS on donor blood samples at a tertiary care health center in National Capital Region, India. Materials and Methods: A total of 108 random blood units collected from the donors (both voluntary and replacement donors and 28 known syphilis sero-reactive samples stored at −20°C, were used to evaluate the performance of VITROS ® syphilis TPA assay based on enhanced chemiluminescence assay on VITROS ® ECiQ immunodiagnostics system along with its analytical performance in terms of its sensitivity, precision, cross-reactivity and interference studies. Results: VITROS ® syphilis TPA showed 100% sensitivity and specificity with precision (20 days study of <10% co-efficient of variation. There was no cross-reactivity with other viral and auto-immune antibodies. No interference was observed from endogenous interfering substances like free hemoglobin or fats. Conclusions: Performance of the VITROS ® syphilis TPA assay meets the requirements for its use as STS in blood bank, thus allowing consolidation with other transfusion transmittable infections screening assay on chemiluminescence platform, which is highly valuable for optimizing workflow and efficiency.

    13. Immbolization of uricase enzyme in Langmuir and Langmuir-Blodgett films of fatty acids: possible use as a uric acid sensor.

      Science.gov (United States)

      Zanon, Nathaly C M; Oliveira, Osvaldo N; Caseli, Luciano

      2012-05-01

      Preserving the enzyme structure in solid films is key for producing various bioelectronic devices, including biosensors, which has normally been performed with nanostructured films that allow for control of molecular architectures. In this paper, we investigate the adsorption of uricase onto Langmuir monolayers of stearic acid (SA), and their transfer to solid supports as Langmuir-Blodgett (LB) films. Structuring of the enzyme in β-sheets was preserved in the form of 1-layer LB film, which was corroborated with a higher catalytic activity than for other uricase-containing LB film architectures where the β-sheets structuring was not preserved. The optimized architecture was also used to detect uric acid within a range covering typical concentrations in the human blood. The approach presented here not only allows for an optimized catalytic activity toward uric acid but also permits one to explain why some film architectures exhibit a superior performance. Copyright © 2011 Elsevier Inc. All rights reserved.

    14. Diameter control of vertically aligned carbon nanotubes using CoFe2O4 nanoparticle Langmuir-Blodgett films

      Science.gov (United States)

      Tamiya, Shuhei; Sato, Taiga; Kushida, Masahito

      2018-03-01

      Vertically aligned carbon nanotubes (VA-CNTs) are suggested for utilization as a new catalyst support of polymer electrolyte fuel cells (PEFCs). The independent control of the diameter and number density of VA-CNTs is essential for application in PEFCs. As the catalyst for VA-CNT growth, we fabricated CoFe2O4 nanoparticle (NP) films using the Langmuir-Blodgett (LB) technique. Using the LB technique, we were able to separately control the diameter and number density of VA-CNTs. The number density of VA-CNTs was changed by mixing with the filler moleculer, palmitic acid (C16). The VA-CNT diameter was changed by the adjusting the CoFe2O4 NP diameter. However, the heat-induced aggregation of CoFe2O4 NPs occurred in thermal chemical vapor deposition to synthesize VA-CNTs. Therefore, we examined how to minimize the effect of heat-induced aggregation of CoFe2O4 NPs. As a result, selection of the appropriate number density and diameter of CoFe2O4 NPs was found to be important for the control of VA-CNT diameter.

    15. Polyaniline Langmuir-Blodgett film modified glassy carbon electrode as a voltammetric sensor for determination of Ag+ ions

      International Nuclear Information System (INIS)

      Liu Qiongyan; Wang Fei; Qiao Yonghui; Zhang Shusheng; Ye Baoxian

      2010-01-01

      A highly sensitive electrochemical sensor made of a glassy carbon electrode (GCE) coated with a Langmuir-Blodgett film (LB) containing polyaniline (PAn) doped with p-toluenesulfonic acid (PTSA) (LB/PAn-PTSA/GCE) has been used for the detection of trace concentrations of Ag + . UV-vis absorption spectra indicated that the PAn was doped by PTSA. The surface morphology of the PAn LB film was characterized by atomic force microscopy (AFM). The electrochemical properties of this LB/PAn-PTSA/GCE were studied using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The LB/PAn-PTSA/GCE was used as a voltammetric sensor for determination of trace Ag + at pH 5.0 using linear scanning stripping voltammetry. Under the optimal experimental conditions, the stripping current was proportional to the Ag + concentration over the range from 6.0 x 10 -10 mol L -1 to 1.0 x 10 -6 mol L -1 , with a detection limit of 4.0 x 10 -10 mol L -1 . The high sensitivity, selectivity, and stability of this LB/PAn-PTSA/GCE also demonstrated its practical utility for simple, rapid and economical determination of Ag + in water samples.

    16. Ultrasensitive chemiluminescence of tetracyclines in the presence of MCLA

      Energy Technology Data Exchange (ETDEWEB)

      Zeng, Wangsheng; Zhu, Chenyao [School of Public Health, Nanchang University, Nanchang 330006 (China); Liu, Hongcheng [Institute of Quality Standard and Testing Technology, Yunnan Academy of Agriculture Science, 650223 Kunming (China); Liu, Jing; Cai, Hongping [School of Public Health, Nanchang University, Nanchang 330006 (China); Cheng, Xianglei, E-mail: chengxlsd@163.com [School of Public Health, Nanchang University, Nanchang 330006 (China); Wei, Lijun, E-mail: weilj7681@163.com [School of Public Health, Nanchang University, Nanchang 330006 (China)

      2017-06-15

      In this article, five tetracyclines (TCs) showed ultrasensitive chemiluminescence (CL) based on the novel CL system of methoxylated Cypridina luciferin analogues (MCLA) and Ce(IV). It was found that the CL intensity of MCLA-Ce(IV) system was enhanced 30 times by adding 10 pmol chlortetracycline. Mechanisms of MCLA-Ce(IV)-TCs were investigated by CL spectra, radical scavengers and UV spectra. The results indicated that singlet oxygen, resulting from the reaction between Ce(IV) and TCs, was involved in the enhancement of CL phenomenon. This CL system coupling with flow injection analysis was developed for the determination of five common TCs. Linear ranged from 100 fmol to 20 pmol (r>0.999) with limit of detection of 20 to 50 fmol (S/N=3). The sensitivity of the present method is comparable to that of UPLC-MS/MS detection for TCs.

    17. Effects of optical diagnostic techniques on the accuracy of laminar flame speeds measured from Bunsen flames: OH* chemiluminescence, OH-PLIF and acetone/kerosene-PLIF

      Science.gov (United States)

      Wu, Yi; Modica, Vincent; Yu, Xilong; Li, Fei; Grisch, Frédéric

      2018-01-01

      The effects of optical diagnostic techniques on the accuracy of laminar flame speed measured from Bunsen flames were investigated. Laminar flame speed measurements were conducted for different fuel/air mixtures including CH4/air, acetone/air and kerosene (Jet A-1)/air in applying different optical diagnostic techniques, i.e. OH* chemiluminescence, OH-PLIF and acetone/kerosene-PLIF. It is found that the OH* chemiluminescence imaging technique cannot directly derive the location of the outer edge of the fresh gases and it is necessary to correct the position of the OH* peak to guarantee the accuracy of the measurements. OH-PLIF and acetone/kerosene-PLIF respectively are able to measure the disappearance of the fresh gas contour and the appearance of the reaction zone. It shows that the aromatic-PLIF technique gives similar laminar flame speed values when compared with those obtained from corrected OH* chemiluminescence images. However, discrepancies were observed between the OH-PLIF and the aromatic-PLIF techniques, in that OH-PLIF slightly underestimates laminar flame speeds by up to 5%. The difference between the flame contours obtained from different optical techniques are further analysed and illustrated with 1D flame structure simulation using detailed kinetic mechanisms.

    18. Effects of Non-Equilibrium Plasmas on Low-Pressure, Premixed Flames. Part 1: CH* Chemiluminescence, Temperature, and OH

      Science.gov (United States)

      2018-01-16

      Adamovich, Jeffrey A. Sutton1 Department of Mechanical and Aerospace Engineering , Ohio State University Abstract In this paper, we... chemistry . Qualitative imaging of CH* chemiluminescence indicates that during plasma discharge, the luminous flame zone is shifted upstream towards...Sutton Department of Mechanical and Aerospace Engineering , Ohio State University 1. Introduction In recent years, considerable interest has

    19. Chemiluminescence of graphene quantum dots and its application to the determination of uric acid

      International Nuclear Information System (INIS)

      Amjadi, Mohammad; Manzoori, Jamshid L.; Hallaj, Tooba

      2014-01-01

      We report on the chemiluminescence (CL) of graphene quantum dots (GQDs) induced by direct chemical oxidation. GQDs were prepared by a simple carbonization method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and Raman spectroscopy. It was found that Ce(IV) could oxidize GQDs to produce a relatively intense CL emission. The mechanism of CL generation was investigated based on the fluorescence and CL emission spectra. It was attributed to the radiative recombination of oxidant-injected holes and thermally excited electrons in the GQDs. In order to show the analytical application potential of GQDs-Ce(IV) CL system, it was applied to the determination of uric acid. Under the optimized conditions, the proposed CL system exhibited excellent analytical performance for determination of uric acid in the range of 1.0×10 −6 M–5.0×10 −4 M with a limit of detection of 5.0×10 −7 M. The method was applied to the determination of uric acid in human plasma and urine samples, with satisfactory results. - Highlights: • Chemiluminescence of graphene quantum dots by direct oxidation was studied. • Intense CL is produced by reaction of graphene quantum dots with Ce(IV). • The new CL system was applied to determination of uric acid in plasma and urine

    20. Chemiluminescence of graphene quantum dots and its application to the determination of uric acid

      Energy Technology Data Exchange (ETDEWEB)

      Amjadi, Mohammad, E-mail: amjadi@tabrizu.ac.ir; Manzoori, Jamshid L.; Hallaj, Tooba

      2014-09-15

      We report on the chemiluminescence (CL) of graphene quantum dots (GQDs) induced by direct chemical oxidation. GQDs were prepared by a simple carbonization method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and Raman spectroscopy. It was found that Ce(IV) could oxidize GQDs to produce a relatively intense CL emission. The mechanism of CL generation was investigated based on the fluorescence and CL emission spectra. It was attributed to the radiative recombination of oxidant-injected holes and thermally excited electrons in the GQDs. In order to show the analytical application potential of GQDs-Ce(IV) CL system, it was applied to the determination of uric acid. Under the optimized conditions, the proposed CL system exhibited excellent analytical performance for determination of uric acid in the range of 1.0×10{sup −6} M–5.0×10{sup −4} M with a limit of detection of 5.0×10{sup −7} M. The method was applied to the determination of uric acid in human plasma and urine samples, with satisfactory results. - Highlights: • Chemiluminescence of graphene quantum dots by direct oxidation was studied. • Intense CL is produced by reaction of graphene quantum dots with Ce(IV). • The new CL system was applied to determination of uric acid in plasma and urine.

    1. Microplate-reader method for the rapid analysis of copper in natural waters with chemiluminescence detection

      Directory of Open Access Journals (Sweden)

      Axel eDurand

      2013-01-01

      Full Text Available We have developed a method for the determination of copper in natural waters at nanomolar levels. The use of a microplate-reader minimises sample processing time (~ 25 sec per sample, reagent consumption (~ 120 μL per sample and sample volume (~ 700 μL. Copper is detected by chemiluminescence. This technique is based on the formation of a complex between copper and 1,10-phenanthroline and the subsequent emission of light during the oxidation of the complex by hydrogen peroxide. Samples are acidified to pH 1.7 and then introduced directly into a 24-well plate. Reagents are added during data acquisition via two reagent injectors. When trace metal clean protocols are employed, the reproducibility is generally less then 7% on blanks and the detection limit is 0.7 nM for seawater and 0.4 nM for freshwater. More than 100 samples per hour can be analyzed with this technique, which is simple, robust, and amenable to at-sea analysis. Seawater samples from Storm Bay in Tasmania illustrate the utility of the method for environmental science. Indeed other trace metals for which optical detection methods exist (e.g. chemiluminescence, fluorescence and absorbance could be adapted to the microplate-reader.

    2. Enhanced Silver Nanoparticle Chemiluminescence Method for the Determination of Gemifloxacin Mesylate using Sequential Injection Analysis

      International Nuclear Information System (INIS)

      Alarfaj, N.A.; Aly, F.A.; Tamimi, A.A.

      2013-01-01

      A sequential injection analysis (SIA) with chemiluminescence detection has been proposed for the determination of the antibiotic gemifloxacin mesylate (GFX). The developed method is based on the enhancement effect of silver nanoparticles (Ag NPs) on the chemiluminescence (CL) signal of luminol-potassium ferricyanide reaction in alkaline medium. The introduction of gemifloxacin in this system produced a significant decrease in the CL intensity in presence of (Ag NPs). The optimum conditions for CL emission were investigated. Linear relationship between the decrease in CL intensity and concentration was obtained in the range 0.01-1000 ng mL-1, (r = 0.9997) with detection limit of 2.0 pg mL-1 and quantification limit of 0.01 pg mL-1. The relative standard deviation was 1.3 %. The proposed method was employed for the determination of gemifloxacin in bulk drug, in its pharmaceutical dosage forms and biological fluids such as human serum and urine. The interference of some common additive compounds such as glucose, lactose, starch, talc and magnesium stearate was investigated, and no interference was found from these excipients. The obtained SIA results were statistically compared with those obtained from a reported method and did not show any significant difference at confidence level 95%. (author)

    3. Sonochemical fabrication of 8-hydroxyquinoline aluminum (Alq3) nanoflowers with high electrogenerated chemiluminescence.

      Science.gov (United States)

      Mao, Chang-Jie; Wang, Dan-Chen; Pan, Hong-Cheng; Zhu, Jun-Jie

      2011-03-01

      Well-defined Alq(3) nanoflowers were fabricated via a facile and fast sonochemical route. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and shape of the as-prepared product. The results showed that the resulting Alq(3) was composed of nanobelts with thickness about 50 nm, average widths of 200 nm, and length up to 10 μm. The Alq(3) nanoflowers exhibited good electrogenerated chemiluminescence behavior. Copyright © 2010 Elsevier B.V. All rights reserved.

    4. Flow-injection system for automated dissolution testing of isoniazid tablets with chemiluminescence detection.

      Science.gov (United States)

      Li, B; Zhang, Z; Liu, W

      2001-05-30

      A simple and sensitive flow-injection chemiluminescence (CL) system for automated dissolution testing is described and evaluated for monitoring of dissolution profiles of isoniazid tablets. The undissolved suspended particles in the dissolved solution were eliminated via on-line filter. The novel CL system of KIO(4)-isoniazid was also investigated. The sampling frequency of the system was 120 h(-1). The dissolution profiles of isoniazid fast-release tablets from three sources were determined, which demonstrates the stability, great sensitivity, large dynamic measuring range and robustness of the system.

    5. Third-order nonlinearities and structural features in Langmuir-Blodgett films of 1-benzyl-9-hydrofullerene-60

      International Nuclear Information System (INIS)

      Shihong Ma; Liying Liu; Xingze Lu

      1995-01-01

      Third-order nonlinear susceptibilities χ xxxx (3) (-3ω; ω, ω, ω) have been deduced by measuring third-harmonic generation in Langmuir-Blodgett (LB) films of 1-benzyl-9-hydrofullerene-60 (C 60 -Be). The structural features of the condensed layer at the air-water interface and LB films of the C 60 -Be were investigated by small angle x-ray diffraction (SAXD) and optical measurements. The third-order nonlinear susceptibilities (χ (3) ) were obtained by measuring the THG intensities in LB films of C 60 -Be and comparing with that of CS 2 used as the reference. The value of χ xxxx (3) (2.1 x 10 -11 esu) was deduced at a 65 nm thick films. The χ (3) is attributed to a three-photon near resonance at the energy level of 29410 cm -1 . A new-type of two-chain amphiphilic molecule 1,10-bistearyl-4,6,13, 15-tetra-18-nitrogencrown-6 (NC) was used as insert material to construct mixed C 60 -Be/NC LB films. Our π-A, UV-visible absorption and SAXD measurements showed that the structural improvement in the mixed C 60 -Be/NC LB films was realized by insertion of the C 60 -Be molecules between the two hydrophobic chains of the NC molecules

    6. Role of membrane fouling substances on the rejection of N-nitrosamines by reverse osmosis.

      Science.gov (United States)

      Fujioka, Takahiro; Kodamatani, Hitoshi; Aizawa, Hidenobu; Gray, Stephen; Ishida, Kenneth P; Nghiem, Long D

      2017-07-01

      The impact of fouling substances on the rejection of four N-nitrosamines by a reverse osmosis (RO) membrane was evaluated by characterizing individual organic fractions in a secondary wastewater effluent and deploying a novel high-performance liquid chromatography-photochemical reaction-chemiluminescence (HPLC-PR-CL) analytical technique. The HPLC-PR-CL analytical technique allowed for a systematic examination of the correlation between the fouling level and the permeation of N-nitrosamines in the secondary wastewater effluent and synthetic wastewaters through an RO membrane. Membrane fouling caused by the secondary wastewater effluent led to a notable decrease in the permeation of N-nitrosodimethylamine (NDMA) while a smaller but nevertheless discernible decrease in the permeation of N-nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPYR) and N-nitrosomorpholine (NMOR) was also observed. Fluorescence spectrometry analysis revealed that major foulants in the secondary wastewater effluent were humic and fulvic acid-like substances. Analysis using the size exclusion chromatography technique also identified polysaccharides and proteins as additional fouling substances. Thus, further examination was conducted using solutions containing model foulants (i.e., sodium alginate, bovine serum albumin, humic acid and two fulvic acids). Similar to the secondary wastewater effluent, membrane fouling with fulvic acid solutions resulted in a decrease in N-nitrosamine permeation. In contrast, membrane fouling with the other model foulants resulted in a negligible impact on N-nitrosamine permeation. Overall, these results suggest that the impact of fouling on the permeation of N-nitrosamines by RO is governed by specific small organic fractions (e.g. fulvic acid-like organics) in the secondary wastewater effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.

    7. Automated determination of asulam by enhanced chemiluminescence using luminol/peroxidase system.

      Science.gov (United States)

      Sánchez, Francisco García; Díaz, Aurora Navas; Bracho, Visitación; Aguilar, Alfonso; Algarra, Manuel

      2009-01-01

      A flow injection system with chemiluminescence detection for the determination of asulam, enhancer of the system luminol-H(2)O(2)-horseradish peroxidase, is proposed. The method shows a moderate selectivity against other pesticides usually present in formulations of herbicides and in water. The procedure was applied to the determination of asulam in tap water samples and a recovery study was carried out in order to validate the method. The obtained results show acceptable recovery values (between 88.3 and 93.9%). The detection limit for asulam was 0.12 ng/mL. The precision of the method expressed as relative standard deviation was 1.55% (n = 8), at the 19 ng/mL level.

    8. Determination of neurotransmitters and their metabolites using one- and two-dimensional liquid chromatography with acidic potassium permanganate chemiluminescence detection.

      Science.gov (United States)

      Holland, Brendan J; Conlan, Xavier A; Stevenson, Paul G; Tye, Susannah; Reker, Ashlie; Barnett, Neil W; Adcock, Jacqui L; Francis, Paul S

      2014-09-01

      High-performance liquid chromatography with chemiluminescence detection based on the reaction with acidic potassium permanganate and formaldehyde was explored for the determination of neurotransmitters and their metabolites. The neurotransmitters norepinephrine and dopamine were quantified in the left and right hemispheres of rat hippocampus, nucleus accumbens and prefrontal cortex, and the metabolites vanillylmandelic acid, 3,4-dihydrophenylacetic acid, 5-hydroxyindole-3-acetic acid and homovanillic acid were identified in human urine. Under optimised chemiluminescence reagent conditions, the limits of detection for these analytes ranged from 2.5 × 10(-8) to 2.5 × 10(-7) M. For the determination of neurotransmitter metabolites in urine, a two-dimensional high-performance liquid chromatography (2D-HPLC) separation operated in heart-cutting mode was developed to overcome the peak capacity limitations of the one-dimensional separation. This approach provided the greater separation power of 2D-HPLC with analysis times comparable to conventional one-dimensional separations.

    9. Flame structure of methane/oxygen shear coaxial jet with velocity ratio using high-speed imaging and OH*, CH* chemiluminescence

      Science.gov (United States)

      Shim, Myungbo; Noh, Kwanyoung; Yoon, Woongsup

      2018-06-01

      In this study, the effects of gaseous methane/oxygen injection velocity ratio on the shear coaxial jet flame structure are analyzed using high-speed imaging along with OH* and CH* chemiluminescence. The images show that, as the velocity ratio is increased, the visual flame length increases and wrinkles of the flame front are developed further downstream. The region near the equivalence ratio 1 condition in the flame could be identified by the maximum OH* position, and this region is located further downstream as the velocity ratio is increased. The dominant CH* chemiluminescence is found in the near-injector region. As the velocity ratio is decreased, the signal intensity is higher at the same downstream distance in each flame. From the results, as the velocity ratio is decreased, there is increased entrainment of the external jet, the mixing of the two jets is enhanced, the region near the stoichiometric mixture condition is located further upstream, and consequently, the flame length decreases.

    10. Enhancement effect of CdTe quantum dots-IgG bioconjugates on chemiluminescence of luminol-H2O2 system

      International Nuclear Information System (INIS)

      Kanwal, Shamsa; Traore, Zoumana; Zhao Chunfang; Su Xingguang

      2010-01-01

      In this paper we developed an entirely new and highly sensitive luminol-H 2 O 2 flow injection chemiluminescence system using the enhancement effect of CdTe quantum dots-IgG bioconjugates. Immunoglobulin G (IgG) as a kind of bio-molecule was conjugated to different sized CdTe semiconductor quantum dots (QDs). Using PL spectra and CL intensity profiles, it was found that chemiluminescence resonance energy transfer (CRET) was possibly occurring between CdTe-IgG bioconjugate and luminol. Under optimum conditions, increase of IgG concentration in CdTe-IgG bioconjugate resulted enhancing effect on CL intensity of luminol-H 2 O 2 system. Moreover quenching effects on CL intensity by addition of different proteases can construct turn off biosensor for these proteases with low detection limits and wide linear range. Furthermore, the effects of various organic and inorganic species on CdTe-IgG bioconjugates enhanced luminol-H 2 O 2 CL system were also studied in this paper.

    11. Large Area 2D and 3D Colloidal Photonic Crystals Fabricated by a Roll-to-Roll Langmuir-Blodgett Method.

      Science.gov (United States)

      Parchine, Mikhail; McGrath, Joe; Bardosova, Maria; Pemble, Martyn E

      2016-06-14

      We present our results on the fabrication of large area colloidal photonic crystals on flexible poly(ethylene terephthalate) (PET) film using a roll-to-roll Langmuir-Blodgett technique. Two-dimensional (2D) and three-dimensional (3D) colloidal photonic crystals from silica nanospheres (250 and 550 nm diameter) with a total area of up to 340 cm(2) have been fabricated in a continuous manner compatible with high volume manufacturing. In addition, the antireflective properties and structural integrity of the films have been enhanced via the use of a second roll-to-roll process, employing a slot-die coating of an optical adhesive over the photonic crystal films. Scanning electron microscopy images, atomic force microscopy images, and UV-vis optical transmission and reflection spectra of the fabricated photonic crystals are analyzed. This analysis confirms the high quality of the 2D and 3D photonic crystals fabricated by the roll-to-roll LB technique. Potential device applications of the large area 2D and 3D colloidal photonic crystals on flexible PET film are briefly reviewed.

    12. A spectroscopic study of water-soluble pyronin B and pyronin Y in Langmuir-Blodgett films mixed with stearic acid

      International Nuclear Information System (INIS)

      Meral, Kadem; Erbil, H. Yıldırım; Onganer, Yavuz

      2011-01-01

      Mono and multilayer of water-soluble pyronin B (PyB) and pyronin Y (PyY) mixed with stearic acid (SA) have been incorporated in Langmuir-Blodgett (LB) films. The surface pressure-area (π-A) isotherm studies pointed out that pure PyB and PyY are incapable of forming stable films at air-water interface and collapsed readily at low surface pressures. However, mixture of PyB or PyY with SA easily formed stable films at the air-water interface and they were easily transferred onto solid substrates. The average area per molecule of mixed films of PyB and PyY at the air-water interface was observed to decrease with increasing concentrations of PyB and PyY. The spectroscopic characteristics of PyB and PyY in chloroform, in SA containing chloroform and in LB films have also been investigated by using absorption and steady-state and time-resolved fluorescence spectroscopy techniques. The morphology of the LB film surfaces has been characterized by using atomic force microscopy (AFM).

    13. A spectroscopic study of water-soluble pyronin B and pyronin Y in Langmuir-Blodgett films mixed with stearic acid

      Energy Technology Data Exchange (ETDEWEB)

      Meral, Kadem [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey); Erbil, H. Y Latin-Small-Letter-Dotless-I ld Latin-Small-Letter-Dotless-I r Latin-Small-Letter-Dotless-I m [Department of Chemical Engineering, Gebze Institute of Technology, Cay Latin-Small-Letter-Dotless-I rova, Gebze 41400, Kocaeli (Turkey); Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey)

      2011-12-01

      Mono and multilayer of water-soluble pyronin B (PyB) and pyronin Y (PyY) mixed with stearic acid (SA) have been incorporated in Langmuir-Blodgett (LB) films. The surface pressure-area ({pi}-A) isotherm studies pointed out that pure PyB and PyY are incapable of forming stable films at air-water interface and collapsed readily at low surface pressures. However, mixture of PyB or PyY with SA easily formed stable films at the air-water interface and they were easily transferred onto solid substrates. The average area per molecule of mixed films of PyB and PyY at the air-water interface was observed to decrease with increasing concentrations of PyB and PyY. The spectroscopic characteristics of PyB and PyY in chloroform, in SA containing chloroform and in LB films have also been investigated by using absorption and steady-state and time-resolved fluorescence spectroscopy techniques. The morphology of the LB film surfaces has been characterized by using atomic force microscopy (AFM).

    14. Enhanced sensitivity of Cypridina luciferin analog (CLA) chemiluminescence for the detection of O2- with non ionic detergents

      NARCIS (Netherlands)

      Osman, A.M.; Laane, C.; Hilhorst, R.

      2000-01-01

      Superoxide anion-triggered chemiluminescence of Cypridina luciferin analogue (CLA), 2-methyl-6-phenyl-3,7-dohydroimidazo[1,2-]pyrazin-3-one, is enhanced by non-ionic detergents such as Tween 20, Triton X-100 and Tween 80. At the concentration of 0.6øv/v) the largest increase (2.7-fold) of CLA light

    15. Oxygen Sensing by the Hybrid Langmuir-Blodgett Films of Iridium(III Complexes and Synthetic Saponite on the Basis of Energy Transfer

      Directory of Open Access Journals (Sweden)

      Hisako Sato

      2017-09-01

      Full Text Available An ultra-thin hybrid film of amphiphilic iridium(III complexes and synthetic saponite was manipulated by means of the modified Langmuir-Blodgett method. In the film deposited onto a quartz substrate, the external mixed molecular layer of amphiphilic iridium(III complexes was reinforced by the inner layer of exfoliated synthetic saponite. As components of the molecular layer, two iridium(III complexes were used: [Ir(dfppy2(dc9bpy]+ (dfppyH = 2-(4′,6′-difluorophenyl pyridine; dc9bpy = 4,4′-dinonyl-2,2′-bipyridine (denoted as DFPPY and [Ir(piq2(dc9bpy]+ (piqH = 1-phenyisoquinoline denoted as PIQ. The emission spectra from the films changed from blue to red maxima with the decrease of a ratio of DFPPY/PIQ due to the energy transfer from excited DFPPY to PIQ. The intensity of red decreased with the increase of oxygen pressure through the quenching of excited iridium(III complexes, promising a possibility as an oxygen-sensing film.

    16. Determination of hydrogen peroxide in water by chemiluminescence detection, (1). Flow injection type hydrogen peroxide detection system

      International Nuclear Information System (INIS)

      Yamashiro, Naoya; Uchida, Shunsuke; Satoh, Yoshiyuki; Morishima, Yusuke; Yokoyama, Hiroaki; Satoh, Tomonori; Sugama, Junichi; Yamada, Rie

      2004-01-01

      A flow injection type hydrogen peroxide detection system with a sub-ppb detection limit has been developed to determine hydrogen peroxide concentration in water sampled from a high temperature, high pressure hydrogen peroxide water loop. The hydrogen peroxide detector is based on luminol chemiluminescence spectroscopy. A small amount of sample water (20 μl) is mixed with a reagent mixture, an aqueous solution of luminol and Co 2+ catalyst, in a mixing cell which is installed just upstream from the detection cell. The optimum values for pH and the concentrations of luminol and Co 2+ ion have been determined to ensure a lower detectable limit and a higher reproducibility. The photocurrent detected by the detection system is expressed by a linear function of the hydrogen peroxide concentration in the region of lower concentration ([H 2 O 2 ] 2 O 2 ] in the region of higher concentration ([H 2 O 2 ] > 10 ppb). The luminous intensity of luminol chemiluminescence is the highest when pH of the reagent mixture is 11.0. Optimization of the major parameters gives the lowest detectable limit of 0.3 ppb. (author)

    17. Detection of pyrrolizidine alkaloids using flow analysis with both acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence

      International Nuclear Information System (INIS)

      Gorman, Bree A.; Barnett, Neil W.; Bos, Richard

      2005-01-01

      For the first time, analytically useful chemiluminescence was elicited from the reactions of the pyrrolizidine alkaloids. Heliotrine, retronecine, supinine, monocrotaline and echinatine N-oxide yielded chemiluminescence upon reaction with tris(2,2'-bipyridyl)ruthenium(II) whilst lasiocarpine, its N-oxide and supinine elicited light upon reaction with acidic potassium permanganate. Detection limits for heliotrine were 1.25 x 10 -7 M and 9 x 10 -9 M for tris(2,2'-bipyridyl)ruthenium(III) perchlorate with flow injection analysis (FIA) and the silica-immobilised reagent (4-[4-(dichloromethylsilanyl)-butyl]-4'-methyl-2,2'-bipyridine)bis (2,2'-bipyridyl)ruthenium(II) with sequential injection analysis (SIA), respectively. Lasiocarpine was detectable at 1.4 x 10 -7 M using acidic potassium permanganate with FIA. Additionally, the silica-immobilised reagent was optimised with respect to the oxidant (ammonium ceric nitrate) concentration and the aspiration times which afforded a detection limit for codeine of 5 x 10 -10 M using SIA

    18. Integrated luminometer for the determination of trace metals in seawater using fluorescence, phosphorescence and chemiluminescence detection

      OpenAIRE

      Worsfold, P. J.; Achterberg, E. P.; Bowie, A. R.; Cannizzaro, V.; Charles, S.; Costa, J. M.; Dubois, F.; Pereiro, R.; San Vicente, B.; Sanz-Medel, A.; Vandeloise, R.; Donckt, E. Vander; Wollast, P.; Yunus, S.

      2002-01-01

      The paper describes an integrated luminometer able to perform fluorescence (FL), room temperature phosphorescence (RTP) and chemiluminescence (CL) measurements on seawater samples. The technical details of the instrumentation are presented together with flow injection (FI) manifolds for the determination of cadmium and zinc (by FL), lead (RTP) and cobalt (CL). The analytical figures of merit are given for each mainfold and results are presented for the determination of the four trace metals i...

    19. Effect of Human and Bovine Serum Albumin on kinetic Chemiluminescence of Mn (III-Tetrakis (4-Sulfonatophenyl Porphyrin-Luminol-Hydrogen Peroxide System

      Directory of Open Access Journals (Sweden)

      Sayed Yahya Kazemi

      2012-01-01

      Full Text Available The present work deals with an attempt to study the effect of human and bovine serum albumin on kinetic parameters of chemiluminescence of luminol-hydrogen peroxide system catalyzed by manganese tetrasulfonatophenyl porphyrin (MnTSPP. The investigated parameters involved pseudo-first-order rise and fall rate constant for the chemiluminescence burst, maximum level intensity, time to reach maximum intensity, total light yield, and values of the intensity at maximum CL which were evaluated by nonlinear least square program KINFIT. Because of interaction of metalloporphyrin with proteins, the CL parameters are drastically affected. The systems resulted in Stern-Volmer plots with values of 3.17×105 and 3.7×105M−1 in the quencher concentration range of 1.5×10−6 to 1.5×10−5 M for human serum albumin (HSA and bovine serum albumin (BSA, respectively.

    20. Radiation-Induced Graft Polymerization of Vinyl Monomers with Anion Groups onto MWNT Supports and Their Application as Electrogenerated Chemiluminescence (ECL Biosensors

      Directory of Open Access Journals (Sweden)

      Ji-Hye Park

      2014-01-01

      Full Text Available Vinyl polymer-grafted multiwalled carbon nanotube (MWNT supports with anion groups were prepared for use as biosensor supports by radiation-induced graft polymerization (RIGP of the vinyl monomers acryloyl diphosphoric acid (ADPA, acrylic acid (AA, sodium styrenesulfonate (NaSS, and methacrylic acid (MA onto the surface of MWNTs. The electrogenerated chemiluminescence sensors based on a glass carbon electrode (ECL-GCE and a screen printed electrode (ECL-SPE were fabricated by immobilization of Ru(bpy3 2+ complex after coating of vinyl polymer-grafted MWNT inks on the surface of the GCE and SPE without any polymer binders in order to obtain high electrogenerated chemiluminescence intensity. For detection of alcohol concentration, alcohol dehydrogenase (ADH was immobilized onto an ECL-GCE sensor prepared by poly(NaSS-g-MWNT supports. The prepared biosensor based on ADH is suitable for the detection of ethanol concentration in commercial drinks.

    1. Development and validation of a direct sandwich chemiluminescence immunoassay for measuring DNA adducts of benzo[a]pyrene and other polycyclic aromatic hydrocarbons

      DEFF Research Database (Denmark)

      Georgiadis, Panagiotis; Kovács, Katalin; Kaila, Stella

      2012-01-01

      We have developed and validated a sandwich chemiluminescence immunoassay (SCIA) which measures polycyclic aromatic hydrocarbon (PAH)-DNA adducts combining high throughput and adequate sensitivity, appropriate for evaluation of adduct levels in human population studies. Fragmented DNA is incubated...

    2. The determination of psilocin and psilocybin in hallucinogenic mushrooms by HPLC utilizing a dual reagent acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection system.

      Science.gov (United States)

      Anastos, Nicole; Lewis, Simon W; Barnett, Neil W; Sims, D Noel

      2006-01-01

      This paper describes a procedure for the determination of psilocin and psilocybin in mushroom extracts using high-performance liquid chromatography with postcolumn chemiluminescence detection. A number of extraction methods for psilocin and psilocybin in hallucinogenic mushrooms were investigated, with a simple methanolic extraction being found to be most effective. Psilocin and psilocybin were extracted from a variety of hallucinogenic mushrooms using methanol. The analytes were separated on a C12 column using a (95:5% v/v) methanol:10 mM ammonium formate, pH 3.5 mobile phase with a run time of 5 min. Detection was realized through a dual reagent chemiluminescence detection system of acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II). The chemiluminescence detection system gave improved detectability when compared with UV absorption at 269 nm, with detection limits of 1.2 x 10(-8) and 3.5 x 10(-9) mol/L being obtained for psilocin and psilocybin, respectively. The procedure was applied to the determination of psilocin and psilocybin in three Australian species of hallucinogenic mushroom.

    3. Chemiluminescence behavior of the carbon dots and the reduced state carbon dots

      Energy Technology Data Exchange (ETDEWEB)

      Teng, Ping [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Xie, Jianxin [College of Resources and Environment, Yuxi Normal University, Yuxi, Yunnan 653100 (China); Long, Yijuan; Huang, Xiaoxiao; Zhu, Rui; Wang, Xiliang; Liang, Liping [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Huang, Yuming, E-mail: ymhuang@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zheng, Huzhi, E-mail: zhenghz@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

      2014-02-15

      Potassium permanganate (KMnO{sub 4}) can react with two different carbon nanoparticles, i.e., carbon dots (CDs) and reduced state carbon dots (r-CDs), in a strong acid medium to generate chemiluminescence (CL). Furthermore, the different CL intensities and CL behaviors due to the different surface groups on these two kinds of carbon nanoparticles were confirmed. CL spectra, fluorescence spectra, UV–vis absorption spectra, and electron paramagnanetic resonance spectra were applied to investigate the CL mechanism. The main reaction pathways were proposed as follows: for the CL reaction between CDs and KMnO{sub 4}, the excited states of CDs (CDs{sup ⁎}) and Mn(II) (Mn(II){sup ⁎}) emerged as KMnO{sub 4} could inject holes into CDs, then, the CDs{sup ⁎} and Mn(II){sup ⁎} acted as luminophors to yield CL; in the r-CDs-KMnO{sub 4} system, r-CDs were oxidized by KMnO{sub 4} directly, and CDs{sup ⁎} and Mn(II){sup ⁎} were produced, at the same time, CL occurred. What is more interesting is that the CL intensity of the r-CD system is stronger than that of the CD system, which confirms that functional groups have strong effect on the CL behavior. It inspired us that new carbon nanoparticles with excellent luminous performance can be designed by tuning their surface groups. -- Highlights: • Carbon dots (CDs) and reduced state carbon dots (r-CDs) can react with potassium permanganate (KMnO{sub 4}) in a strong acid to generate chemiluminescence (CL). • With different surface groups, the CL intensity of r-CDs-KMnO{sub 4} system is different from that of CDs-KMnO{sub 4} system. • The CL mechanisms of the two systems were investigated.

    4. Nanoscale Synaptic Membrane Mimetic Allows Unbiased High Throughput Screen That Targets Binding Sites for Alzheimer's-Associated Aβ Oligomers.

      Directory of Open Access Journals (Sweden)

      Kyle C Wilcox

      Full Text Available Despite their value as sources of therapeutic drug targets, membrane proteomes are largely inaccessible to high-throughput screening (HTS tools designed for soluble proteins. An important example comprises the membrane proteins that bind amyloid β oligomers (AβOs. AβOs are neurotoxic ligands thought to instigate the synapse damage that leads to Alzheimer's dementia. At present, the identities of initial AβO binding sites are highly uncertain, largely because of extensive protein-protein interactions that occur following attachment of AβOs to surface membranes. Here, we show that AβO binding sites can be obtained in a state suitable for unbiased HTS by encapsulating the solubilized synaptic membrane proteome into nanoscale lipid bilayers (Nanodiscs. This method gives a soluble membrane protein library (SMPL--a collection of individualized synaptic proteins in a soluble state. Proteins within SMPL Nanodiscs showed enzymatic and ligand binding activity consistent with conformational integrity. AβOs were found to bind SMPL Nanodiscs with high affinity and specificity, with binding dependent on intact synaptic membrane proteins, and selective for the higher molecular weight oligomers known to accumulate at synapses. Combining SMPL Nanodiscs with a mix-incubate-read chemiluminescence assay provided a solution-based HTS platform to discover antagonists of AβO binding. Screening a library of 2700 drug-like compounds and natural products yielded one compound that potently reduced AβO binding to SMPL Nanodiscs, synaptosomes, and synapses in nerve cell cultures. Although not a therapeutic candidate, this small molecule inhibitor of synaptic AβO binding will provide a useful experimental antagonist for future mechanistic studies of AβOs in Alzheimer's model systems. Overall, results provide proof of concept for using SMPLs in high throughput screening for AβO binding antagonists, and illustrate in general how a SMPL Nanodisc system can

    5. Nanoscale Synaptic Membrane Mimetic Allows Unbiased High Throughput Screen That Targets Binding Sites for Alzheimer's-Associated Aβ Oligomers.

      Science.gov (United States)

      Wilcox, Kyle C; Marunde, Matthew R; Das, Aditi; Velasco, Pauline T; Kuhns, Benjamin D; Marty, Michael T; Jiang, Haoming; Luan, Chi-Hao; Sligar, Stephen G; Klein, William L

      2015-01-01

      Despite their value as sources of therapeutic drug targets, membrane proteomes are largely inaccessible to high-throughput screening (HTS) tools designed for soluble proteins. An important example comprises the membrane proteins that bind amyloid β oligomers (AβOs). AβOs are neurotoxic ligands thought to instigate the synapse damage that leads to Alzheimer's dementia. At present, the identities of initial AβO binding sites are highly uncertain, largely because of extensive protein-protein interactions that occur following attachment of AβOs to surface membranes. Here, we show that AβO binding sites can be obtained in a state suitable for unbiased HTS by encapsulating the solubilized synaptic membrane proteome into nanoscale lipid bilayers (Nanodiscs). This method gives a soluble membrane protein library (SMPL)--a collection of individualized synaptic proteins in a soluble state. Proteins within SMPL Nanodiscs showed enzymatic and ligand binding activity consistent with conformational integrity. AβOs were found to bind SMPL Nanodiscs with high affinity and specificity, with binding dependent on intact synaptic membrane proteins, and selective for the higher molecular weight oligomers known to accumulate at synapses. Combining SMPL Nanodiscs with a mix-incubate-read chemiluminescence assay provided a solution-based HTS platform to discover antagonists of AβO binding. Screening a library of 2700 drug-like compounds and natural products yielded one compound that potently reduced AβO binding to SMPL Nanodiscs, synaptosomes, and synapses in nerve cell cultures. Although not a therapeutic candidate, this small molecule inhibitor of synaptic AβO binding will provide a useful experimental antagonist for future mechanistic studies of AβOs in Alzheimer's model systems. Overall, results provide proof of concept for using SMPLs in high throughput screening for AβO binding antagonists, and illustrate in general how a SMPL Nanodisc system can facilitate drug discovery

    6. Neutrophil Leukocyte: Combustive Microbicidal Action and Chemiluminescence

      Directory of Open Access Journals (Sweden)

      Robert C. Allen

      2015-01-01

      Full Text Available Neutrophil leukocytes protect against a varied and complex array of microbes by providing microbicidal action that is simple, potent, and focused. Neutrophils provide such action via redox reactions that change the frontier orbitals of oxygen (O2 facilitating combustion. The spin conservation rules define the symmetry barrier that prevents direct reaction of diradical O2 with nonradical molecules, explaining why combustion is not spontaneous. In burning, the spin barrier is overcome when energy causes homolytic bond cleavage producing radicals capable of reacting with diradical O2 to yield oxygenated radical products that further participate in reactive propagation. Neutrophil mediated combustion is by a different pathway. Changing the spin quantum state of O2 removes the symmetry restriction to reaction. Electronically excited singlet molecular oxygen (O2*1 is a potent electrophilic reactant with a finite lifetime that restricts its radius of reactivity and focuses combustive action on the target microbe. The resulting exergonic dioxygenation reactions produce electronically excited carbonyls that relax by light emission, that is, chemiluminescence. This overview of neutrophil combustive microbicidal action takes the perspectives of spin conservation and bosonic-fermionic frontier orbital considerations. The necessary principles of particle physics and quantum mechanics are developed and integrated into a fundamental explanation of neutrophil microbicidal metabolism.

    7. Evaluation of silicon-chemiluminescence monitoring as a novel method for atomic fluorine determination and end point detection in plasma etch systems

      NARCIS (Netherlands)

      Zijlstra, P.A.; Beenakker, C.I.M.

      1981-01-01

      Optical methods for the detection of atomic fluorine in plasma etch systems are discussed and an experimental comparison is made between detection by optical emission and by a novel method based on the chemiluminescence from solid silicon in the presence of atomic fluorine. Although both methods

    8. Determination of ethanol using permanganate-CdS quantum dot chemiluminescence system.

      Science.gov (United States)

      Abolhasani, Jafar; Hassanzadeh, Javad

      2015-08-01

      A novel and highly sensitive chemiluminescence (CL) method for the determination of ethanol was developed based on the CdS quantum dots (QDs)-permanganate system. It was found that KMnO4 could directly oxidize CdS QDs in acidic media resulting in relatively high CL emission. A possible mechanism was proposed for this reaction based on UV/Vis absorption, fluorescence and the generated CL emission spectra. However, it was observed that ethanol had a remarkable inhibition effect on this system. This effect was exploited in the determination of ethanol within the concentration range 12-300 µg/L, with detection at 4.3 µg/L. In order to evaluate the capability of presented method, it was satisfactorily utilized in the determination of alcohol in real samples. Copyright © 2014 John Wiley & Sons, Ltd.

    9. Fiber-Optic Chemiluminescent Biosensors for Monitoring Aqueous Alcohols and Other Water Quality Parameters

      Science.gov (United States)

      Verostko, Charles E. (Inventor); Atwater, James E. (Inventor); Akse, James R. (Inventor); DeHart, Jeffrey L. (Inventor); Wheeler, Richard R. (Inventor)

      1998-01-01

      A "reagentless" chemiluminescent biosensor and method for the determination of hydrogen peroxide, ethanol and D-glucose in water is disclosed. An aqueous stream is basified by passing it through a solid phase base bed. Luminol is then dissolved in the basified effluent at a controlled rate. Oxidation of the luminol is catalyzed by the target chemical to produce emitted light. The intensity of the emitted light is detected as a measure of the target chemical concentration in the aqueous stream. The emitted light can be transmitted by a fiber optic bundle to a remote location from the aqueous stream for a remote reading of the target chemical concentration.

    10. Detection of pyrrolizidine alkaloids using flow analysis with both acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence

      Energy Technology Data Exchange (ETDEWEB)

      Gorman, Bree A. [School of Biological and Chemical Sciences, Deakin University, Geelong, Vic. 3217 (Australia); Barnett, Neil W. [School of Biological and Chemical Sciences, Deakin University, Geelong, Vic. 3217 (Australia)]. E-mail: barnie@deakin.edu.au; Bos, Richard [School of Biological and Chemical Sciences, Deakin University, Geelong, Vic. 3217 (Australia)

      2005-06-13

      For the first time, analytically useful chemiluminescence was elicited from the reactions of the pyrrolizidine alkaloids. Heliotrine, retronecine, supinine, monocrotaline and echinatine N-oxide yielded chemiluminescence upon reaction with tris(2,2'-bipyridyl)ruthenium(II) whilst lasiocarpine, its N-oxide and supinine elicited light upon reaction with acidic potassium permanganate. Detection limits for heliotrine were 1.25 x 10{sup -7} M and 9 x 10{sup -9} M for tris(2,2'-bipyridyl)ruthenium(III) perchlorate with flow injection analysis (FIA) and the silica-immobilised reagent (4-[4-(dichloromethylsilanyl)-butyl]-4'-methyl-2,2'-bipyridine)bis (2,2'-bipyridyl)ruthenium(II) with sequential injection analysis (SIA), respectively. Lasiocarpine was detectable at 1.4 x 10{sup -7} M using acidic potassium permanganate with FIA. Additionally, the silica-immobilised reagent was optimised with respect to the oxidant (ammonium ceric nitrate) concentration and the aspiration times which afforded a detection limit for codeine of 5 x 10{sup -10} M using SIA.

    11. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

      Energy Technology Data Exchange (ETDEWEB)

      Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.; Yueh, Fang-Yu; Singh, Jagdish P.

      2011-09-07

      Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using the leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.

    12. Eco-friendly synthesis of gelatin-capped bimetallic Au-Ag nanoparticles for chemiluminescence detection of anticancer raloxifene hydrochloride.

      Science.gov (United States)

      Alarfaj, Nawal A; El-Tohamy, Maha F

      2016-09-01

      This study described the utility of green analytical chemistry in the synthesis of gelatin-capped silver, gold and bimetallic gold-silver nanoparticles (NPs). The preparation of nanoparticles was based on the reaction of silver nitrate or chlorauric acid with a 1.0 wt% aqueous gelatin solution at 50°C. The gelatin-capped silver, gold and bimetallic NPs were characterized using transmission electron microscopy, UV-vis, X-ray diffraction and Fourier transform infrared spectroscopy, and were used to enhance a sensitive sequential injection chemiluminescence luminol-potassium ferricyanide system for determination of the anticancer drug raloxifene hydrochloride. The developed method is eco-friendly and sensitive for chemiluminescence detection of the selected drug in its bulk powder, pharmaceutical injections and biosamples. After optimizing the conditions, a linear relationship in the range of 1.0 × 10(-9) to 1.0 × 10(-1)  mol/L was obtained with a limit of detection of 5.0 × 10(-10)  mol/L and a limit of quantification of 1.0 × 10(-9)  mol/L. Statistical treatment and method validation were performed based on ICH guidelines. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

    13. Suitability of thermoluminescence, chemiluminescence, ESR and viscosity measurements as detection method for the irradiation of medicinal herbs

      International Nuclear Information System (INIS)

      Schuettler, C.; Gebhardt, G.; Stock, A.; Helle, N.; Boegl, K.W.

      1993-01-01

      Chemiluminescence, electron spin resonance, thermoluminescence and viscosity measurements have been investigated for their suitability as detection method for the irradiation of the medicinal herbs anise seeds (anisi fructus), valerian roots (valerianae radix), redberry leaves (uvae ursi folium), birch leaves (betulae folium), greek hay seeds (foenugraeci semen), cayenne pepper (capsici fructus acer), black-aldertee bark (frangulae cortex), fennel fruits (feoniculi fructus), rose hip shells (cynosbati fructus), coltsfoot (farfarae folium), acorus roots (calami rhizoma), chamomile flowers (matricariae flos), caraway (carvi fructus), lavender flowers (lavandulae flos), linseed (lini semen), lime tree flowers (tiliae flos), St. Mary's thistle fruit (cardui mariae herba), lemon balm (melissae folium), java tea (orthosiphonis folium), peppermint (menthae piperitae folium), sage leaves (salviae folium), scouring rush (equiseti herba), senna leaves (sennae folium), plantain herbs (plantaginis lanceolata herba), thyme herbs (thymi herba), juniper berries (juniperi fructus), hawthorne herbs (crataegi folium), wheat starch (amylum tritici) and wormwood (absinthii herba). Depending on the herbs, the methods used were more or less suitable. Chemiluminescence measurements showed the smallest differences between untreated and irradiated samples whereas thermoluminescence measurements on isolated minerals from the vegetable drugs gave better results. In some herbs radiation-specific radicals could be identified by ESR spectroscopy. Viscosity measurement is suitable for some herbs as fast and inexpensive method for screening. (orig.) [de

    14. Nanoscale Synaptic Membrane Mimetic Allows Unbiased High Throughput Screen That Targets Binding Sites for Alzheimer’s-Associated Aβ Oligomers

      Science.gov (United States)

      Wilcox, Kyle C.; Marunde, Matthew R.; Das, Aditi; Velasco, Pauline T.; Kuhns, Benjamin D.; Marty, Michael T.; Jiang, Haoming; Luan, Chi-Hao; Sligar, Stephen G.; Klein, William L.

      2015-01-01

      Despite their value as sources of therapeutic drug targets, membrane proteomes are largely inaccessible to high-throughput screening (HTS) tools designed for soluble proteins. An important example comprises the membrane proteins that bind amyloid β oligomers (AβOs). AβOs are neurotoxic ligands thought to instigate the synapse damage that leads to Alzheimer’s dementia. At present, the identities of initial AβO binding sites are highly uncertain, largely because of extensive protein-protein interactions that occur following attachment of AβOs to surface membranes. Here, we show that AβO binding sites can be obtained in a state suitable for unbiased HTS by encapsulating the solubilized synaptic membrane proteome into nanoscale lipid bilayers (Nanodiscs). This method gives a soluble membrane protein library (SMPL)—a collection of individualized synaptic proteins in a soluble state. Proteins within SMPL Nanodiscs showed enzymatic and ligand binding activity consistent with conformational integrity. AβOs were found to bind SMPL Nanodiscs with high affinity and specificity, with binding dependent on intact synaptic membrane proteins, and selective for the higher molecular weight oligomers known to accumulate at synapses. Combining SMPL Nanodiscs with a mix-incubate-read chemiluminescence assay provided a solution-based HTS platform to discover antagonists of AβO binding. Screening a library of 2700 drug-like compounds and natural products yielded one compound that potently reduced AβO binding to SMPL Nanodiscs, synaptosomes, and synapses in nerve cell cultures. Although not a therapeutic candidate, this small molecule inhibitor of synaptic AβO binding will provide a useful experimental antagonist for future mechanistic studies of AβOs in Alzheimer’s model systems. Overall, results provide proof of concept for using SMPLs in high throughput screening for AβO binding antagonists, and illustrate in general how a SMPL Nanodisc system can facilitate drug

    15. Can irradiation of spices be detected by chemiluminescence?

      International Nuclear Information System (INIS)

      Delincee, H.

      1987-01-01

      Chemiluminescence (CL) has been reported as a reliable identification measure for radiation processed spices. Luminescence intensities, however, vary considerably from one spice to another. Even for one spice from various producers, different results have been obtained. One of the main drawbacks of CL is its poor reproducibility. Attempts to reduce the variability have so far been unsuccessful. Since the CL response is frequently a non-monotone function of dose, the applied radiation dose cannot be estimated unequivocally. Attempts to establish an internal standard were not successful. A further hindrance for dose estimation is the fading of luminescence with storage time. In the case of juniper berries 50-78% of the irradiated samples could be identified correctly, depending on selection criteria. With marjoram, however, only one out of five samples could be identified. Variations in the radiation conditions did not change CL. However, an increase in CL was also noted in some experiments with fumigated spices. The CL measurement as a single tool for identifying radiation processed spices seems at the moment not to fulfil the requirements of reliable detection. A combination of methods may eventually allow identification of irradiated spices. (orig./MG) [de

    16. Can irradiation of spices be detected by chemiluminescence

      Energy Technology Data Exchange (ETDEWEB)

      Delincee, H

      1987-01-01

      Chemiluminescence (CL) has been reported as a reliable identification measure for radiation processed spices. Luminescence intensities, however, vary considerably from one spice to another. Even for one spice from various producers, different results have been obtained. One of the main drawbacks of CL is its poor reproducibility. Attempts to reduce the variability have so far been unsuccessful. Since the CL response is frequently a non-monotone function of dose, the applied radiation dose cannot be estimated unequivocally. Attempts to establish an internal standard were not successful. A further hindrance for dose estimation is the fading of luminescence with storage time. In the case of juniper berries 50-78% of the irradiated samples could be identified correctly, depending on selection criteria. With marjoram, however, only one out of five samples could be identified. Variations in the radiation conditions did not change CL. However, an increase in CL was also noted in some experiments with fumigated spices. The CL measurement as a single tool for identifying radiation processed spices seems at the moment not to fulfil the requirements of reliable detection. A combination of methods may eventually allow identification of irradiated spices.

    17. Rational design for enhancing inflammation-responsive in vivo chemiluminescence via nanophotonic energy relay to near-infrared AIE-active conjugated polymer.

      Science.gov (United States)

      Seo, Young Hun; Singh, Ajay; Cho, Hong-Jun; Kim, Youngsun; Heo, Jeongyun; Lim, Chang-Keun; Park, Soo Young; Jang, Woo-Dong; Kim, Sehoon

      2016-04-01

      H2O2-specific peroxalate chemiluminescence is recognized as a potential signal for sensitive in vivo imaging of inflammation but the effect of underlying peroxalate-emitter energetics on its efficiency has rarely been understood. Here we report a simple nanophotonic way of boosting near-infrared chemiluminescence with no need of complicated structural design and synthesis of an energetically favored emitter. The signal enhancement was attained from the construction of a nanoparticle imaging probe (∼26 nm in size) by dense nanointegration of multiple molecules possessing unique photonic features, i.e., i) a peroxalate as a chemical fuel generating electronic excitation energy in response to inflammatory H2O2, ii) a low-bandgap conjugated polymer as a bright near-infrared emitter showing aggregation-induced emission (AIE), and iii) an energy gap-bridging photonic molecule that relays the chemically generated excitation energy to the emitter for its efficient excitation. From static and kinetic spectroscopic studies, a green-emissive BODIPY dye has proven to be an efficient relay molecule to bridge the energy gap between the AIE polymer and the chemically generated excited intermediate of H2O2-reacted peroxalates. The energy-relayed nanointegration of AIE polymer and peroxalate in water showed a 50-times boosted sensing signal compared to their dissolved mixture in THF. Besides the high H2O2 detectability down to 10(-9) M, the boosted chemiluminescence presented a fairly high tissue penetration depth (>12 mm) in an ex vivo condition, which enabled deep imaging of inflammatory H2O2 in a hair-covered mouse model of peritonitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

    18. Sequential Injection Determination of D-Glucose by Chemiluminescence Using an Open Tubular Immobilised Enzyme Reactor

      DEFF Research Database (Denmark)

      Liu, Xuezhu; Hansen, Elo Harald

      1996-01-01

      A sequential injection analysis system is described that incorporates a nylon tubular reactor containing immobilised glucose oxidase, allowing determination of D-glucose by means of subsequent luminol chemiluminescence detection of the hydrogen peroxide generated in the enzymatic reaction....... The operating parameters were optimised by fractional factorial screening and response surface modelling. The linear range of D-glucose determination was 30-600 mu M, With a detection limit of 15 mu M using a photodiode detector. The sampling frequency was 54 h(-1). Lower LOD (0.5 mu M D-glucose) could...

    19. Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir-Blodgett deposition of micro-/nano-sized particles and surface silanization.

      Science.gov (United States)

      Tsai, Ping-Szu; Yang, Yu-Min; Lee, Yuh-Lang

      2007-11-21

      The present study demonstrates the creation of a stable, superhydrophobic surface by coupling of successive Langmuir-Blodgett (LB) depositions of micro- and nano-sized (1.5 µm/50 nm, 1.0 µm/50 nm, and 0.5 µm/50 nm) silica particles on a glass substrate with the formation of a self-assembled monolayer of dodecyltrichlorosilane on the surface of the particulate film. Particulate films, in which one layer of 50 nm particles was deposited over one to five sublayers of larger micro-sized particles, with hierarchical surface roughness and superhydrophobicity, were successfully fabricated. Furthermore, the present 'two-scale' (micro- and nano-sized particles) approach is superior to the previous 'one-scale' (micro-sized particles) approach in that both higher advancing contact angle and lower contact angle hysteresis can be realized. Experimental results revealed that the superhydrophobicity exhibited by as-fabricated particulate films with different sublayer particle diameters increases in the order of 0.5 µm>1.0 µm>1.5 µm. However, no clear trend between sublayer number and surface superhydrophobicity could be discerned. An explanation of superhydrophobicity based on the surface roughness introduced by two-scale particles is also proposed.

    20. A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer.

      Science.gov (United States)

      Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan

      2015-03-15

      Based on silanized magnetic graphene oxide-molecularly imprinted polymer (Si-MG-MIP), a sensitive and selective chemiluminescence sensor for dopamine measurement was developed. Si-MG-MIP, in which silanes was introduced to improve the mass transfer, graphene oxide was employed to improve absorption capacity, Fe3O4 nanoparticles were applied for separation easily and molecularly imprinted polymer was used to improve selectivity, demonstrated the advantages of the sensor. All the composites were confirmed by SEM, TEM, XRD and FTIR. Under the optimal conditions of chemiluminescence, dopamine could be assayed in the range of 8.0-200.0 ng/mL with a correlation coefficient of linear regression of 0.9970. The detection limit was 1.5 ng/mL (3δ) and the precision for 11 replicate detections of 80.0 ng/mL dopamine was 3.4% (RSD). When the sensor was applied in determining dopamine in actual samples, recovery ranged from 94% to 110%, which revealed that the results were satisfactory. Copyright © 2014 Elsevier B.V. All rights reserved.

    1. A novel chemiluminescence system with diperiodatonickelate (IV) for the determination of adrenaline

      Science.gov (United States)

      Yang, Chunyan; Chen, Fubin; Chang, Ziqiang; Sun, Yonghua; Zhang, Zhujun

      2014-03-01

      A novel chemiluminescence (CL) system with diperiodatonickelate (IV) (DPN) was developed for the determination of adrenaline for the first time. The possible CL emission mechanism was briefly discussed by comparing the fluorescence emission spectra with CL spectra. Under the optimum conditions, the relative CL intensity was linear over the concentration of AD ranging from 1.0 × 10-7 to 1.0 × 10-5 g mL-1 with a detection limit of 4.0 × 10-8 g mL-1 (3σ). And the relative standard deviation was 3.7% for 2.0 × 10-6 g mL-1 AD (n = 11). The developed method has been successfully applied to the determination of AD in pharmaceutical preparations.

    2. Structural and surface morphological studies of long chain fatty acid thin films deposited by Langmuir-Blodgett technique

      Energy Technology Data Exchange (ETDEWEB)

      Das, Nayan Mani, E-mail: nayanmanidas3@gmail.com [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India); Roy, Dhrubojyoti [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India); Gupta, Mukul [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India); Gupta, P.S. [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India)

      2012-12-15

      In the present work we aim to study the structural and surface morphological characteristics of divalent cation (cadmium ion, Cd{sup 2+}) induced thin mono- to multilayer films of fatty acids such as arachidic acid and stearic acid prepared by the Langmuir-Blodgett (LB) technique. These ultra thin films of various numbers of layers were studied by X-ray diffraction (XRD), X-ray reflectivity (XRR) and Atomic Force Microscopy (AFM). In this specific Y-type deposition, it was found that as the individual layer thickness increases, the corresponding layer by layer interfacial electron density of the thin films decreases. Since the fatty acid chain tries to maintain its minimum value of cross-sectional area, tilting occurs with respect to its nearest neighbor. The tilt angle calculated for 9 layers of cadmium arachidate (CdA{sub 2}) and cadmium stearate (CdSt{sub 2}) are 18 Degree-Sign and 19.5 Degree-Sign , respectively. An asymmetric air gap of thickness {approx}3 A was also seen between the tail parts of 2 molecular chains. The RMS roughness and average height factors calculated through AFM studies show non-uniform surface morphology of both CdA{sub 2} and CdSt{sub 2}, although the calculated topographic variations were found to have more irregularity in case of CdSt{sub 2} than in case of CdA{sub 2}.

    3. Encapsulation of Hemin in Metal-Organic Frameworks for Catalyzing the Chemiluminescence Reaction of the H2O2-Luminol System and Detecting Glucose in the Neutral Condition.

      Science.gov (United States)

      Luo, Fenqiang; Lin, Yaolin; Zheng, Liyan; Lin, Xiaomei; Chi, Yuwu

      2015-06-03

      Novel metal-organic frameworks (MOFs) based solid catalysts have been synthesized by encapsulating Hemin into the HKUST-1 MOF materials. These have been first applied in the chemiluminescence field with outstanding performance. The functionalized MOFs not only maintain an excellent catalytic activity inheriting from Hemin but also can be cyclically utilized as solid mimic peroxidases in the neutral condition. The synthesized Hemin@HKUST-1 composites have been used to develop practical sensors for H2O2 and glucose with wide response ranges and low detection limits. It was envisioned that catalyst-functionalized MOFs for chemiluminescence sensing would have promising applications in green, selective, and sensitive detection of target analytes in the future.

    4. Fabrication of hydrogenase-cationic electrolyte biohybrids at interfaces and their electrochemical properties in Langmuir-Blodgett films

      International Nuclear Information System (INIS)

      Liu An; Zorin, Nikolay A.; Nakamura, Chikashi; Miyake, Jun; Qian Dongjin

      2010-01-01

      Hydrogenase (H 2 ase)-cationic electrolyte biohybrids were assembled at the air-water interface via intermolecular electrostatic interaction. The H 2 ase used was purified from the phototropic bacterium of Thiocapsa roseopersicina. Two kinds of cationic electrolyte compounds (CECs) were used, the difference of which was whether they contained viologen substituent or not. Surface pressure-area isotherms indicated that these CECs were co-existed with the H 2 ase in the monolayers, which were then transferred to substrate surfaces to form H 2 ase-CECs hybrid films by the Langmuir-Blodgett (LB) method. Uniform film was formed when polyelectrolyte was used as the subphase. Cyclic voltammograms (CVs) of the LB films showed a couple of redox waves in the potential range of -0.4 to -0.65 V vs. Ag/AgCl, which was ascribed to one electron process of either [4Fe-4S] clusters of H 2 ase or viologens of the CECs. A direct electron transfer between the H 2 ase and electrode surface was achieved in the LB films. Stronger current intensity was recorded when the CV measurements were done in H 2 saturated electrolyte solution than that in Ar. It was confirmed that the H 2 ase biocatalytic activity remained in the LB films. Thus, we suggest that the present H 2 ase-CECs biohybrids could act as potential materials for the studies of interconversion reaction of H 2 and protons.

    5. Flow injection chemiluminescence determination of loxoprofen and naproxen with the acidic permanganate-sulfite system

      Directory of Open Access Journals (Sweden)

      Li-Juan Wang

      2011-02-01

      Full Text Available A novel flow injection chemiluminescence (CL method for the determination of loxoprofen and naproxen was proposed based on the CL system of KMnO4, and Na2SO3 in acid media. The CL intensity of KMnO4-Na2SO3 was greatly enhaneed in the presence of loxoprofen and naproxen. The mechanism of the CL reaction was studied by the kinetic proecss and UV-vis absorption and the conditions were optimized. Under optimized conditions, the CL intensity was linear with loxoprofen and naproxen concentration in the range of 7.0 × 10−8 – 1.0 × 10−5 g/mL and 2.0 × 10−7 – 4.0 × 10−6 g/mL with the detection limit of 2.0 × 10−8 g/mL and 3.0 × 10−8 g/mL (S/N = 3, respectively. Thc relative standard deviations were 2.39% and 1.37% for 5.0 × 10−7 g/mL naproxen and 5.0 × 10−7 g/mL loxoprofen (n = 10, respectively. The proposed method was satisfactorily applied to thc determination of loxoprofen and naproxen in pharmaceutical preparations. Keywords: chemiluminescence, KMnO4, loxoprofen, naproxen

    6. Development of nanobody-based flow injection chemiluminescence immunoassay for sensitive detection of human prealbumin.

      Science.gov (United States)

      Ma, Lei; Sun, Yanyan; Kang, Xuejun; Wan, Yakun

      2014-11-15

      Nanobodies, derived from camelid heavy-chain antibodies, have novel and impactful applications in clinical diagnostics. Our objective is to develop a nanobody-based chemiluminescence immunoassay for sensitive detection of human prealbumin (PA). In this context, a phage display nanobody library is constructed via immunizing dromedary camel with human prealbumin. Three nanobodies have been identified by five successive bio-panning steps. Based on their high expression level and good affinity, two out of three are chosen for further study. Magnetic beads (MBs) were functionalized with PEI by acylamide bond formed between the carboxyl group on the surface of the MB. Then, an anti-PA nanobody (Nb1) can be effectively immobilized onto the surface of the functionalized MB using glutaradehyde as the link. The modified MBs with Nb1 can specifically capture the target PA and reacted with silica nanoparticles with co-immobilized HRP and anti-PA nanobody (Nb2). The concentration of PA was detected by flow injection chemiluminescence. When using MB/PEI as the carrier of anti-PA Nb1, the CL signal significantly increased to 4-fold compared with the signal using MB without PEI modification. The CL signal was further amplified to 5-fold when Si/Nb2 was used as the signal probe. Under optimized conditions, the present immunoassay exhibited a wide quantitative range from 0.05 to 1000 μg L(-1) with a detection limit of 0.01 μg L(-1). The sensitivity of the proposed immunoassay offers great promises in providing a sensitive, specific, time saving, and potential method for detecting PA in clinical settings. Copyright © 2014 Elsevier B.V. All rights reserved.

    7. High-sensitivity chemiluminescence immunoassays for detection of growth hormone doping in sports.

      Science.gov (United States)

      Bidlingmaier, Martin; Suhr, Jennifer; Ernst, Andrea; Wu, Zida; Keller, Alexandra; Strasburger, Christian J; Bergmann, Andreas

      2009-03-01

      Recombinant human growth hormone (rhGH) is abused in sports, but adequate routine doping tests are lacking. Analysis of serum hGH isoform composition has been shown to be effective in detecting rhGH doping. We developed and validated selective immunoassays for isoform analysis with potential utility for screening and confirmation in doping tests. Monoclonal antibodies with preference for pituitary hGH (phGH) or rhGH were used to establish 2 pairs of sandwich-type chemiluminescence assays with differential recognition of rhGH (recA and recB) and phGH (pitA and pitB). We analyzed specimens from volunteers before and after administration of rhGH and calculated ratios between the respective rec- and pit-assay results. Functional sensitivities were <0.05 microg/L, with intra- and interassay imprecision < or =8.4% and < or =13.7%, respectively. In 2 independent cohorts of healthy subjects, rec/pit ratios (median range) were 0.84 (0.09-1.32)/0.81 (0.27-1.21) (recA/pitA) and 0.68 (0.08-1.20)/0.80 (0.25-1.36) (recB/pitB), with no sex difference. In 20 recreational athletes, ratios (median SD) increased after a single injection of rhGH, reaching 350% (73%) (recA/pitA) and 400% (93%) (recB/pitB) of baseline ratios. At a moderate dose (0.033 mg/kg), mean recA/pitA and recB/pitB ratios remained significantly increased for 18 h (men) and 26 h (women). After high-dose rhGH (0.083 mg/kg), mean rec/pit ratios remained increased for 32 h (recA/pitA) and 34 h (recB/pitB) in men and were still increased after 36 h in women. Using sensitive chemiluminescence assays with preferential recognition of phGH or rhGH, detection of a single injection of rhGH was possible for up to 36 h.

    8. In situ and real-time atomic force microscopy studies of the stability of oligothiophene langmuir-blodgett monolayers in liquid

      KAUST Repository

      Yin, Naining

      2014-03-20

      Oligothiophene thin films have been considered as promising material for molecular electronics due to their desirable electronic properties and high structural stability under ambient conditions. To ensure performance in devices the functional structures, such as individual ordered domains, must be stable under practical and operational conditions or environments including exposure to various media. This work investigates the structure of oligothiophene Langmuir-Blodgett (LB) films upon exposure to liquid media such as water, ethanol (EtOH), and mixed tetrahydrofuran (THF)/EtOH solutions. The LB films form islands ranging from 500 nm up to 1 μm consisting of densely packed oligothiophene molecules. These islands are surrounded by bare substrate and loosely packed adsorbates. In situ and time-dependent AFM images were acquired to reveal the structural evolution, from which degradation pathways and kinetics are extracted. Degradation of these LB films initiates and propagates from intraisland defect sites, such as cracks and pin holes, whereas the edges of islands remain intact on the surface. The observations appear to be in contrast to the known degradation mechanism among self-assembled monolayers, such as alkanethiols on gold, which initiates and progresses at domain boundaries. Rationale for the observed degradation processes will also be discussed. © 2014 American Chemical Society.

    9. Abbott prism: a multichannel heterogeneous chemiluminescence immunoassay analyzer.

      Science.gov (United States)

      Khalil, O S; Zurek, T F; Tryba, J; Hanna, C F; Hollar, R; Pepe, C; Genger, K; Brentz, C; Murphy, B; Abunimeh, N

      1991-09-01

      We describe a multichannel heterogeneous immunoassay analyzer in which a sample is split between disposable reaction trays in a group of linear tracks. The system's pipettor uses noninvasive sensing of the sample volume and disposable pipet tips. Each assay track has (a) a conveyor belt for moving reaction trays to predetermined functional stations, (b) temperature-controlled tunnels, (c) noncontact transfer of the reaction mixture between incubation and detection wells, and (d) single-photon counting to detect a chemiluminescence (CL) signal from the captured immunochemical product. A novel disposable reaction tray, with separate reaction and detection wells and self-contained fluid removal, is used in conjunction with the transfer device on the track to produce a carryover-free system. The linear immunoassay track has nine predetermined positions for performing individual assay steps. Assay step sequence and timing is selected by changing the location of the assay modules between these predetermined positions. The assay methodology, a combination of microparticle capture and direct detection of a CL signal on a porous matrix, offers excellent sensitivity, specificity, and ease of automation. Immunoassay configurations have been tested for hepatitis B surface antigen and for antibodies to hepatitis B core antigen, hepatitis C virus, human immunodeficiency virus I and II, and human T-cell leukemia virus I and II.

    10. Modulation and interactions of charged biomimetic membranes with bivalent ions

      Science.gov (United States)

      Kazadi Badiambile, Adolphe

      biomolecules in a dynamic environment and the lack of appropriate physical and biochemical tools. In contrast, biomimetic membrane models that rely on the amphiphilic properties of phospholipids are powerful tools that enable the study of these molecules in vitro. By having control over the different experimental parameters such as temperature and pH, reliable and repeatable experimental conditions can be created. One of the key questions I investigated in this thesis is related to the clustering mechanism of PtdIns(4, 5)P2 into pools or aggregates that enable independent cellular control of this species by geometric separation. The lateral aggregation of PtdIns(4, 5)P2 and its underlying physical causes is still a matter of debate. In the first part of this thesis I introduce the general information on lipid membranes with a special focus on the PtdIns family and their associated signaling events. In addition, I explain the Langmuir-Blodgett film balance (LB) system as tool to study lipid membranes and lipid interactions. In the second chapter, I describe my work on the lateral compressibility of PtdIns(4, 5)P2, PtdIns and DOPG monolayers and its modulation by bivalent ions using Langmuir monolayers. In addition, a theoretical framework of compressibility that depends on a surface potential induced by a planar layer of charged molecules and ions in the bulk was provided. In the third part, I present my work on the excess Gibbs free energy of the lipid systems PtdIns(4, 5)P2 --POPC, PtdIns(4, 5)P2, and POPC as they are modulated by bivalent ions. In the fourth part, I report on my foray in engineering a light-based system that relies on different dye properties to simulate calcium induced calcium release (CICR) that occurs in many cell types. In the final chapter, I provide a general conclusion and present directions for future research that would build on my findings.

    11. Recent advances in chemiluminescence detection coupled with capillary electrophoresis and microchip capillary electrophoresis.

      Science.gov (United States)

      Liu, Yuxuan; Huang, Xiangyi; Ren, Jicun

      2016-01-01

      CE is an ideal analytical method for extremely volume-limited biological microenvironments. However, the small injection volume makes it a challenge to achieve highly sensitive detection. Chemiluminescence (CL) detection is characterized by providing low background with excellent sensitivity because of requiring no light source. The coupling of CL with CE and MCE has become a powerful analytical method. So far, this method has been widely applied to chemical analysis, bioassay, drug analysis, and environment analysis. In this review, we first introduce some developments for CE-CL and MCE-CL systems, and then put the emphasis on the applications in the last 10 years. Finally, we discuss the future prospects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

    12. Chemiluminescence determination of tetracyclines using Fenton system in the presence europium(III) ions

      International Nuclear Information System (INIS)

      Kaczmarek, Malgorzata; Lis, Stefan

      2009-01-01

      A new simple chemiluminescent method for the determination of chlortetracycline (Chlor-TC), oxytetracycline (Oxy-TC) and doxycycline (Doxy-TC) is described. This method is based on the europium(III) emission as a result of the energy transfer process from the excited product of the tetracyclines oxidation to the uncomplexed Eu(III). Under the optimum conditions, calibration graphs were obtained for 4 x 10 -7 to 2 x 10 -5 mol L -1 of Chlor-TC; 2 x 10 -7 to 2 x 10 -5 mol L -1 of Oxy-TC and 1 x 10 -7 to 3 x 10 -5 mol L -1 of Doxy-TC. The method was successfully applied to the determination of these drugs in pharmaceutical and veterinary formulation and honey.

    13. Carbon Nanotubes and Algal Polysaccharides To Enhance the Enzymatic Properties of Urease in Lipid Langmuir-Blodgett Films.

      Science.gov (United States)

      Rodrigues, Raul T; Morais, Paulo V; Nordi, Cristina S F; Schöning, Michael J; Siqueira, José R; Caseli, Luciano

      2018-03-06

      Algal polysaccharides (extracellular polysaccharides) and carbon nanotubes (CNTs) were adsorbed on dioctadecyldimethylammonium bromide Langmuir monolayers to serve as a matrix for the incorporation of urease. The physicochemical properties of the supramolecular system as a monolayer at the air-water interface were investigated by surface pressure-area isotherms, surface potential-area isotherms, interfacial shear rheology, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to hydrophilic solid supports, quartz, mica, or capacitive electrolyte-insulator-semiconductor (EIS) devices, through the Langmuir-Blodgett (LB) technique, forming mixed films, which were investigated by quartz crystal microbalance, fluorescence spectroscopy, and field emission gun scanning electron microscopy. The enzyme activity was studied with UV-vis spectroscopy, and the feasibility of the thin film as a urea sensor was essayed in an EIS sensor device. The presence of CNT in the enzyme-lipid LB film not only tuned the catalytic activity of urease but also helped to conserve its enzyme activity. Viability as a urease sensor was demonstrated with capacitance-voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results are related to the synergism between the compounds on the active layer, leading to a surface morphology that allowed fast analyte diffusion owing to an adequate molecular accommodation, which also preserved the urease activity. This work demonstrates the feasibility of employing LB films composed of lipids, CNT, algal polysaccharides, and enzymes as EIS devices for biosensing applications.

    14. A preliminary study of ester oxidation on an aluminum surface using chemiluminescence

      Science.gov (United States)

      Jones, William R., Jr.; Meador, Michael A.; Morales, Wilfredo

      1987-01-01

      The oxidation characteristics of a pure ester (trimethyolpropane triheptanoate) were studied by using a chemiluminescence technique. Tests were run in a thin-film micro-oxidation apparatus with an aluminum alloy catalyst. Conditions included a pure oxygen atmosphere and a temperature range of 176 to 206 C. Results indicated that oxidation of the ester (containing 10 to the minus 3rd power M diphenylanthracene as an intensifier) was accompanied by emission of light. The maximum intensity of light emission (I sub max) was a function of the amount of ester, the concentration of intensifier, and the test temperature. The induction period or the time to reach one-half of maximum intensity (t sub 1/2) was an inverse function of test temperature. Decreases in light emission at the later stages of a test were caused by depletion of the intensifier.

    15. Western blotting using chemiluminescent substrates.

      Science.gov (United States)

      Alegria-Schaffer, Alice

      2014-01-01

      Western blotting is a powerful and commonly used tool to identify and quantify a specific protein in a complex mixture (Towbin et al., 1979). The technique enables indirect detection of protein samples immobilized on a nitrocellulose or polyvinylidene fluoride (PVDF) membrane. Copyright © 2014 Elsevier Inc. All rights reserved.

    16. Characterization of Diesel and Gasoline Compression Ignition Combustion in a Rapid Compression-Expansion Machine using OH* Chemiluminescence Imaging

      Science.gov (United States)

      Krishnan, Sundar Rajan; Srinivasan, Kalyan Kumar; Stegmeir, Matthew

      2015-11-01

      Direct-injection compression ignition combustion of diesel and gasoline were studied in a rapid compression-expansion machine (RCEM) using high-speed OH* chemiluminescence imaging. The RCEM (bore = 84 mm, stroke = 110-250 mm) was used to simulate engine-like operating conditions at the start of fuel injection. The fuels were supplied by a high-pressure fuel cart with an air-over-fuel pressure amplification system capable of providing fuel injection pressures up to 2000 bar. A production diesel fuel injector was modified to provide a single fuel spray for both diesel and gasoline operation. Time-resolved combustion pressure in the RCEM was measured using a Kistler piezoelectric pressure transducer mounted on the cylinder head and the instantaneous piston displacement was measured using an inductive linear displacement sensor (0.05 mm resolution). Time-resolved, line-of-sight OH* chemiluminescence images were obtained using a Phantom V611 CMOS camera (20.9 kHz @ 512 x 512 pixel resolution, ~ 48 μs time resolution) coupled with a short wave pass filter (cut-off ~ 348 nm). The instantaneous OH* distributions, which indicate high temperature flame regions within the combustion chamber, were used to discern the characteristic differences between diesel and gasoline compression ignition combustion. The authors gratefully acknowledge facilities support for the present work from the Energy Institute at Mississippi State University.

    17. On the effect of subphase pH and counterions on transfer ratios and dynamic contact angles during deposition of multiple Langmuir-Blodgett monolayers

      International Nuclear Information System (INIS)

      Diaz, M. Elena; Cerro, Ramon L.

      2005-01-01

      The effects of pH and counterions on the type of deposition of Langmuir-Blodgett (LB) arachidic acid films onto hydrophobic glass slides is revisited. Unusually large differences in contact angles and transfer ratios (TR) were observed for subphase containing 10 -4 M of zinc sulfate and 2.10 -4 M of cadmium chloride, respectively, for a wide range of pH. Variations in TR occur at the same pH for different subphase cations and at different pH for the same divalent cations. These large variations in dynamic contact angles and TR as a function of pH point to the crucial role of electrical double layer forces in LB deposition phenomena. Transitions from Y- to X-type deposition are reported for pH larger or smaller than the pK A of the fatty acid-subphase salt system. Experimental results are compared with data reported in literature showing Z- to Y-transitions at pH close to the pK A of docosanoic acid monolayers

    18. Identification of gamma-irradiated foodstuffs by chemiluminescence measurements in Taiwan

      Science.gov (United States)

      Ma, Ming-Shia Chang; Chen, Li-Hsiang; Tsai, Zei-Tsan; Fu, Ying-Kai

      In order to establish chemiluminescence (CL) measurements as an identification method for γ-irradiated foodstuffs in Taiwan, ten agricultural products including wheat flour, rice, ginger, potatoes, garlic, onions, red beans, mung beans, soy beans, xanthoxylon seeds and Japanese star anises have been tested to compare CL intensities between untreated samples and samples subject to a 10 kGy γ-irradiation dose. Amongst them, wheat flour is the most eligible product to be identified by CL measurements. The CL intensities of un-irradiated and irradiated flour have shown large differences associated with a significant dose-effect relationship. Effects of three different protein contents of flour, unsieved and sieved (100-200 mesh), the reproducibility and the storage experiment on CL intensities at various doses were investigated in this study. In addition, the white bulb part of onions has shown some CL in irradiated samples. The CL data obtained from the other eight agricultural products have shown large fluctuations and cannot be used to differentiate between irradiated and un-irradiated samples.

    19. Identification of gamma-irradiated foodstuffs by chemiluminescence measurements in Taiwan

      International Nuclear Information System (INIS)

      Mingshia Chang Ma; Lihsiang Chen; Zeitsan Tsai; Yingkai Fu

      1992-01-01

      In order to establish chemiluminescence (CL) measurements as an identification method for γ-irradiated foodstuffs in Taiwan, ten agricultural products including wheat flour, rice, ginger, potatoes, garlic, onions, red beans, mung beans, soy beans, xanthoxylon seeds and Japanese star anises have been tested to compare CL intensities between untreated samples and samples subject to a 10 kGy γ-irradiation dose. Amongst them, wheat flour is the most eligible product to be identified by CL measurements. The CL intensities of un-irradiated and irradiated flour have shown large differences associated with a significant dose-effect relationship. Effects of three different protein contents of flour, unsieved and sieved (100-200 mesh), the reproducibility and the storage experiment on CL intensities at various doses were investigated in this study. In addition, the white bulb part of onions has shown some CL in irradiated samples. The CL data obtained from the other eight agricultural products have shown large fluctuations and cannot be used to differentiate between irradiated and un-irradiated samples. (Author)

    20. Optimization and development of a high-performance liquid chromatography-based one-site immunometric assay with chemiluminescence detection

      International Nuclear Information System (INIS)

      Oates, Matthew R.; Clarke, William; Zimlich, Alden; Hage, David S.

      2002-01-01

      Various practical and theoretical considerations were examined in the creation and optimization of a high-performance liquid chromatography (HPLC)-based one-site immunometric assay. This method used an HPLC analyte analog column and post-column chemiluminescence detection. The specific analyte chosen as the model for this study was L-thyroxine (also known as T 4 ). In this technique, a sample containing thyroxine was first combined with an excess of anti-T 4 antibody Fab fragments that had earlier been conjugated with chemiluminescent acridinium ester labels. After incubation, the mixture was injected onto a column that contained immobilized T 4 . The amount of thyroxine in the original sample was then determined by measuring the labeled Fab fragments that appeared in the non-retained fraction, or the decrease in excess Fab fragments that were bound to and later eluted from the column. Items considered in creating this assay included the preparation of acridinium ester-labeled Fab fragments, the detection of these fragments with a post-column reactor, and the creation of a suitable immobilized analog column for capturing excess labeled Fab fragments. The final method could measure T 4 in standards at clinically-relevant concentrations and provided a response within 1.5 min of sample injection, following a 20-45 min incubation with the labeled Fab fragments. Possible applications of this method include its use in clinical chemistry and the screening of proteomic or combinatorial libraries

    1. Chemiluminescence determination of tetracyclines using Fenton system in the presence europium(III) ions

      Energy Technology Data Exchange (ETDEWEB)

      Kaczmarek, Malgorzata [Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60 - 780 Poznan (Poland); Lis, Stefan [Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60 - 780 Poznan (Poland)

      2009-04-20

      A new simple chemiluminescent method for the determination of chlortetracycline (Chlor-TC), oxytetracycline (Oxy-TC) and doxycycline (Doxy-TC) is described. This method is based on the europium(III) emission as a result of the energy transfer process from the excited product of the tetracyclines oxidation to the uncomplexed Eu(III). Under the optimum conditions, calibration graphs were obtained for 4 x 10{sup -7} to 2 x 10{sup -5} mol L{sup -1} of Chlor-TC; 2 x 10{sup -7} to 2 x 10{sup -5} mol L{sup -1} of Oxy-TC and 1 x 10{sup -7} to 3 x 10{sup -5} mol L{sup -1} of Doxy-TC. The method was successfully applied to the determination of these drugs in pharmaceutical and veterinary formulation and honey.

    2. Molecular imprinting-chemiluminescence determination of trimethoprim using trimethoprim-imprinted polymer as recognition material.

      Science.gov (United States)

      He, Yunhua; Lu, Jiuru; Liu, Mei; Du, Jianxiu

      2005-07-01

      A new molecular imprinting-chemiluminescence method for the determination of trimethoprim was developed, in which trimethoprim-imprinted polymer was used as the molecular recognition material and the CL reaction of trimethoprim with potassium permanganate in acidic medium was used as the detection system. The CL intensity responds linearly to the concentration of trimethoprim within the 5.0 x 10(-8)-5.0 x 10(-6) g mL(-1) range (r= 0.9983) with a detection limit of 2 x 10(-8) g mL(-1). The relative standard deviation for the determination of 1.0 x 10(-7) g mL(-1) trimethoprim solutions is 4.8% (n= 9). The method has been applied to the determination of trimethoprim in pharmaceutical preparations and body fluids, and satisfactory results were obtained.

    3. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline

      Science.gov (United States)

      He, Yi; Peng, Rufang

      2014-11-01

      In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl4 with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (˜25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng.

    4. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline

      International Nuclear Information System (INIS)

      He, Yi; Peng, Rufang

      2014-01-01

      In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl 4 with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (∼25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng. (paper)

    5. Sequential injection chemiluminescence immunoassay for nonionic surfactants by using magnetic microbeads

      International Nuclear Information System (INIS)

      Zhang Ruiq; Nakajima, Hizuru; Soh, Nobuaki; Nakano, Koji; Masadome, Takashi; Nagata, Kazumi; Sakamoto, Kazuhira; Imato, Toshihiko

      2007-01-01

      A rapid and sensitive immunoassay based on a sequential injection analysis (SIA) using magnetic microbeads for the determination of alkylphenol polyethoxylates (APnEOs) is described. An SIA system was constructed from a syringe pump, a switching valve, a flow-through type immunoreaction cell equipped with a photon counting unit and a neodymium magnet. Magnetic beads, to which an anti-APnEOs monoclonal antibody was immobilized, were used as a solid support in an immunoassay. The introduction, trapping and release of the magnetic beads in and from the immunoreaction cell were controlled by means of a neodymium magnet and adjusting the flow of a carrier solution. The immunoassay was based on an indirect competitive immunoreaction of an anti-APnEOs monoclonal antibody immobilized on the magnetic beads with a sample APnEOs and a horseradish peroxidase (HRP)-labeled APnEOs in the same sample solution, and was based on the subsequent chemiluminscence reaction of HRP on the magnetic microbeads with a luminol solution containing hydrogen peroxide and p-iodophenol. The anti-APnEOs antibody was immobilized on the magnetic microbeads by coupling the antibody with the magnetic beads after activation of a carboxylate moiety on the surface of the magnetic beads that had been coated with a polylactic acid film. The antibody immobilized magnetic beads were introduced in the immunoreaction cell and trapped in it by the neodymium magnet, which was equipped beneath the immunoreaction cell. An APnEOs sample solution containing the HRP-labeled APnEOs at a constant concentration, and a luminol solution containing hydrogen peroxide and p-iodophenol were sequentially introduced into the immunoreaction cell, according to an SIA programmed sequence. Chemiluminescence emission was monitored by means of a photon counting unit located at the upper side of the immunoreaction cell by collecting the emitted light with a lens. A typical sigmoidal calibration curve was obtained, when the logarithm

    6. Permeability of human placenta and fetal membranes to thyrotropin-stimulating hormone in vitro.

      Science.gov (United States)

      Bajoria, R; Fisk, N M

      1998-05-01

      We determined the placental transfer of TSH in an in vitro model of dually perfused isolated lobule in 28 human term placentas by adding varying concentrations (5-60 microIU mL(-1)) of TSH as a single bolus dose to the closed maternal circulation. Transmembrane transfer of TSH was also studied by adding 45 microIU mL(-1) to the maternal or fetal compartment of a dual chamber of fetal membranes in culture. Passage of freely diffusible markers creatinine and antipyrine were also studied in this model. TSH concentration was measured by third generation chemiluminescence assay with a sensitivity of 10 mIU mL(-1). In the perfusion experiments, at physiologic concentrations the slow decline of TSH in the maternal circulation was associated with a small linear increase in fetal levels to 0.11 +/- 0.04% of initial dose at 2 h. The placental transfer rate was 0.08 microIU min(-1). Increasing maternal concentrations of TSH were associated with proportional increases in transfer rate (y = 0.002x; R2 = 0.99) and placental uptake (y = 0.01x; R2 = 0.97). The placental permeability of TSH was 2.4 x 10(-4) mL min(-1) g(-1) and was proportional to its coefficients of diffusion in water and molecular size. The transmembrane transfer and permeability of TSH was comparable to those of the placenta. We conclude that TSH crosses the human term placenta and fetal membranes sparingly.

    7. Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction.

      Science.gov (United States)

      Shi, Chao; Ge, Yujie; Gu, Hongxi; Ma, Cuiping

      2011-08-15

      Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome. Copyright © 2011 Elsevier B.V. All rights reserved.

    8. Electrogenerated chemiluminescence quenching of Ru(bpy){sub 3} {sup 2+} (bpy=2,2 Prime -bipyridine) in the presence of acetaminophen, salicylic acid and their metabolites

      Energy Technology Data Exchange (ETDEWEB)

      Haslag, Catherine S. [Department of Chemistry, Missouri State University, Springfield, Missouri 65897 (United States); Richter, Mark M., E-mail: MarkRichter@missouristate.edu [Department of Chemistry, Missouri State University, Springfield, Missouri 65897 (United States)

      2012-03-15

      Quenching of Ru(bpy) {sub 3}{sup 2+} (bpy=2,2 Prime -bipyridine) coreactant electrogenerated chemiluminescence (ECL) has been observed in the presence of acetaminophen, salicylic acid and related complexes. However, no quenching is observed with the acetylsalicylic acid. In most instances, quenching is observed with 100-fold excess of quencher (compared to ECL luminophore) with complete quenching observed between 10,000 and 100,000 fold excess. Fluorescence and UV-vis experiments coupled with bulk electrolysis support the formation of benzoquinone products upon electrochemical oxidation. The mechanism of quenching may involve the interaction of the electrochemically generated benzoquinone species with (i) the {sup Low-Asterisk }Ru(bpy){sub 3}{sup 2+} excited state or (ii) highly energetic coreactant radicals. - Highlights: Black-Right-Pointing-Triangle Efficient quenching of the electrogenerated chemiluminescence is observed. Black-Right-Pointing-Triangle Acetaminophen, salicylic acid and related compounds can be detected. Black-Right-Pointing-Triangle The mechanism of quenching involves benzoquinones formed upon electrolysis.

    9. Film fabrication of Fe or Fe3O4 nanoparticles mixed with palmitic acid for vertically aligned carbon nanotube growth using Langmuir-Blodgett technique

      Science.gov (United States)

      Nakamura, Kentaro; Kuriyama, Naoki; Takagiwa, Shota; Sato, Taiga; Kushida, Masahito

      2016-03-01

      Vertically aligned carbon nanotubes (VA-CNTs) were studied as a new catalyst support for polymer electrolyte fuel cells (PEFCs). Controlling the number density and the diameter of VA-CNTs may be necessary to optimize PEFC performance. As the catalyst for CNT growth, we fabricated Fe or Fe3O4 nanoparticle (NP) films by the Langmuir-Blodgett (LB) technique. The catalyst Fe or Fe3O4 NPs were widely separated by mixing with filler molecules [palmitic acid (C16)]. The number density of VA-CNTs was controlled by varying the ratio of catalyst NPs to C16 filler molecules. The VA-CNTs were synthesized from the catalyst NP-C16 LB films by thermal chemical vapor deposition (CVD) using acetylene gas as the carbon source. The developing solvents used in the LB technique and the hydrogen reduction conditions of CVD were optimized to improve the VA-CNT growth rate. We demonstrate that the proposed method can independently control both the density and the diameter of VA-CNTs.

    10. The effect of supportive E. coli mastitis treatment on PMN chemiluminescence and subpopulations of T lymphocytes.

      Science.gov (United States)

      Markiewicz, H; Krumrych, W; Gehrke, M

      2013-01-01

      The aim of this field study was to assess the impact of a single i.m. injection of lysozyme dimer and flunixin meglumine in combination with intramammary and systemic antibiotic on chemiluminescence of PMN (polymorphonuclear leucocytes) and subpopulations of lymphocyte T in blood of cows with E. coli mastitis. Examinations were performed on 30 dairy cows affected with naturally occurring acute form of E. coli mastitis. Cows were randomly divided into three groups according to the method of treatment. The first group was treated with approved intramammary antibiotic product, the same antibiotic in i.m. injection and one injection of flunixin meglumine on the first day of therapy. Next group was treated with the same antibiotic and additionally one injection of lysozyme dimer on the first day of therapy. The third one was treated only with an antibiotic and served as a control group. Blood samples were taken before treatment and on days 3 and 7. In samples haematology indices were determined, spontaneous and opsonised zymosan stimulated CL and PMA measurements were performed and the subpopulations of T lymphocyte (CD2(+), CD4(+), CD8(+)) were assayed in whole blood. There was no effect of the applied supportive treatment on the value of morphological blood indices. A significant influence of the time of sample collection on the level of CL and dynamics of lymphocytes T subpopulation was demonstrated. A single injection of flunixin meglumine or lysozyme dimer on the day of the beginning of treatment of E. coli mastitis, does not affect the level of neutrophil chemiluminescence and the percentage of T lymphocytes in the blood of mastitic cows in the analysed period of time.

    11. Optimization of condition for conjugation of enrofloxacin to enzymes in chemiluminescence enzyme immunoassay

      Science.gov (United States)

      Yu, Songcheng; Yu, Fei; Zhang, Hongquan; Qu, Lingbo; Wu, Yongjun

      2014-06-01

      In this study, in order to find out a proper method for conjugation of enrofloxacin to label enzymes, two methods were compared and carbodiimide condensation was proved to be better. The results showed that the binding ratio of enrofloxacin and alkaline phosphatase (ALP) was 8:1 and that of enrofloxacin and horseradish peroxidase (HRP) was 5:1. This indicated that conjugate synthesized by carbodiimide condensation was fit for chemiluminescence enzyme immunoassay (CLEIA). Furthermore, data revealed that dialysis time was an important parameter for conjugation and 6 days was best. Buffer to dilute conjugate had little effect on CLEIA. The storage condition for conjugates was also studied and it was shown that the conjugate was stable at 4 °C with no additive up to 30 days. These data were valuable for establishing CLEIA to quantify enrofloxacin.

    12. Flow injection gas chromatography with sulfur chemiluminescence detection for the analysis of total sulfur in complex hydrocarbon matrixes.

      Science.gov (United States)

      Hua, Yujuan; Hawryluk, Myron; Gras, Ronda; Shearer, Randall; Luong, Jim

      2018-01-01

      A fast and reliable analytical technique for the determination of total sulfur levels in complex hydrocarbon matrices is introduced. The method employed flow injection technique using a gas chromatograph as a sample introduction device and a gas phase dual-plasma sulfur chemiluminescence detector for sulfur quantification. Using the technique described, total sulfur measurement in challenging hydrocarbon matrices can be achieved in less than 10 s with sample-to-sample time ideal for fast analysis or trace sulfur analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

    13. Conductivity of Langmuir-Blodgett films of a disk-shaped liquid-crystalline molecule-DNA complex studied by current-sensing atomic force microscopy

      Science.gov (United States)

      Nayak, Alpana; Suresh, K. A.

      2008-08-01

      We have studied the electrical conductivity in monolayer films of an ionic disk-shaped liquid-crystal molecule, pyridinium tethered with hexaalkoxytriphenylene (PyTp), and its complex with DNA by current-sensing atomic force microscopy (CS-AFM). The pure PyTp and PyTp-DNA complex monolayer films were first formed at the air-water interface and then transferred onto conducting substrates by the Langmuir-Blodgett (LB) technique to study the nanoscale electron transport through these films. The conductive tip of CS-AFM, the LB film, and the metal substrate form a nanoscopic metal-LB film-metal (M-LB-M) junction. We have measured the current-voltage (I-V) characteristics for the M-LB-M junction using CS-AFM and have analyzed the data quantitatively. We find that the I-V curves fit well to the Fowler-Nordheim (FN) model, suggesting electron tunneling to be a possible mechanism for electron transport in our system. Further, analysis of the I-V curves based on the FN model yields the barrier heights of PyTp-DNA complex and pure PyTp films. Electron transport studies of films of ionic disk-shaped liquid-crystal molecules and their complex with DNA are important from the point of view of their applications in organic electronics.

    14. Strong enhancement of the chemiluminescence of the Cu(II)-H2O2 system on addition of carbon nitride quantum dots, and its application to the detection of H2O2 and glucose.

      Science.gov (United States)

      Hallaj, Tooba; Amjadi, Mohammad; Song, Zhenlun; Bagheri, Robabeh

      2017-12-19

      The authors report that carbon nitride quantum dots (CN QDs) exert a strong enhancing effect on the Cu(II)/H 2 O 2 chemiluminescent system. Chemiluminescence (CL) intensity is enhanced by CN QDs by a factor of ~75, while other carbon nanomaterials have a much weaker effect. The possible mechanism of the effect was evaluated by recording fluorescence and CL spectra and by examining the effect of various radical scavengers. Emitting species was found to be excited-state CN QDs that produce green CL peaking at 515 nm. The new CL system was applied to the sensitive detection of H 2 O 2 and glucose (via glucose oxidase-catalyzed formation of H 2 O 2 ) with detection limits (3σ) of 10 nM for H 2 O 2 and 100 nM for glucose. The probe was employed for glucose determination in human plasma samples with satisfactory results. Graphical abstract The effect of carbon nitride quantum dots (CN QDs) on Cu(II)-H 2 O 2 chemiluminescence reaction was studied and the new CL system was applied for sensitive detection of glucose based on the glucose oxidase (GOx)-catalyzed formation of H 2 O 2 .

    15. Measurements in international units of antibody to hepatitis B surface antigen(anti-HBs) after immunization with a yeast-derived, subtype adr hepatitis B vaccine are considerably different between chemiluminescent immunoassay (CLIA) and chemiluminescent enzyme immunoassay (CLEIA).

      Science.gov (United States)

      Ogata, Norio

      2006-04-01

      The worldwide consensus of the minimum protective anti-HBs level against HBV infection is 10 mIU/mL on assays standardized by the World Health Organization (WHO) reference preparations. To investigate whether this value could be applied to recipients of yeast-derived recombinant HB vaccine containing the major surface protein of subtype adr (Bimmugen, Astellas Pharmaceutical, Tokyo), we compared anti-HBs measurements between chemiluminescent immunoassay (CLIA) (Architect Ausab, Abbott Japan, Tokyo) and chemiluminescent enzyme immunoassay (CLEIA) (Lumipulse Forte, Fujirebio, Tokyo) in given serum samples obtained from the vaccinees. The vaccine and the two assay methods are currently in a wide use in Japan. The study included 300 medical students who completed a standard vaccination course (0, 1 and 6 months). Serum samples obtained 1 month or 13 months after completing the vaccination were simultaneously tested for anti-HBs by CLIA and CLEIA. In 147 samples with quantifiable values on both CLIA and CLEIA (10 to 1000 mIU/mL) the geometric mean titer on CLEIA (225.0 mIU/mL) was significantly higher than that on CLIA (94.5 mIU/mL) (p < 0.0001). Of 26 subjects with CLIA measurements below 10 mIU/mL, 15 samples (57.7%) showed CLEIA measurements more than 10 mIU/mL. Thus, in the subtype adr-vaccinees CLEIA demonstrated considerably high serum anti-HBs measurements compared to CLIA and discordance in determining critical anti-HBs level of 10 mIU/mL was observed in more than half the samples. This suggests that the minimum HBV-protective anti HBs titer of 10 mIU/mL is difficult to be introduced to Japan where subtype adr-HB vaccines or -HBV infection are prevalent, unless characteristics of assay methods are carefully evaluated.

    16. Electro chemiluminescence Biosensor Based on Thioglycolic Acid-Capped Cd Se QDs for Sensing Glucose

      International Nuclear Information System (INIS)

      Jung, E. Y.; Ye, J. H.; Choi, S. H.; Jung, S. H.

      2016-01-01

      In order to detect low level glucose concentration, an electro chemiluminescence (ECL) biosensor based on TGA-capped Cd Se quantum dots (QDs) was fabricated by the immobilization of Cd Se QDs after modifying the surface of a glassy carbon electrode (GCE) with 4-amino thiophenol diazonium salts by the electrochemical method. For the detection of glucose concentration, glucose oxidase (GOD) was immobilized onto the fabricated Cd Se QDs-modified electrode. The fabricated ECL biosensor based on TGA-capped Cd Se QDs was characterized using a scanning electron microscope (SEM), UV-vis spectrophotometry, transmission electron microscopy (TEM), a fluorescence spectrometer (PL), and cyclic voltammetry (CV). The fabricated ECL biosensor based on TGA-capped Cd Se QDs is suitable for the detection of glucose concentrations in real human blood samples.

    17. Comparative study of β-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.).

      Science.gov (United States)

      Vera-Jimenez, N I; Pietretti, D; Wiegertjes, G F; Nielsen, M E

      2013-05-01

      The respiratory burst is an important feature of the immune system. The increase in cellular oxygen uptake that marks the initiation of the respiratory burst is followed by the production of reactive oxygen species (ROS) such as superoxide anion and hydrogen peroxide which plays a role in the clearance of pathogens and tissue regeneration processes. Therefore, the respiratory burst and associated ROS constitute important indicators of fish health status. This paper compares two methods for quantitation of ROS produced during the respiratory burst in common carp: the widely used, single-point measurement based on the intracellular reduction of nitroblue tetrazolium (NBT) and a real-time luminol-enhanced assay based on the detection of native chemiluminescence. Both assays allowed for detection of dose-dependent changes in magnitude of the respiratory burst response induced by β-glucans in head kidney cells of carp. However, whereas the NBT assay was shown to detect the production of only superoxide anions, the real-time luminol-enhanced assay could detect the production of both superoxide anions and hydrogen peroxide. Only the chemiluminescence assay could reliably record the production of ROS on a real-time scale at frequent and continual time intervals for time course experiments, providing more detailed information on the respiratory burst response. The real-time chemiluminescence assay was used to measure respiratory burst activity in macrophage and neutrophilic granulocyte-enriched head kidney cell fractions and total head kidney cell suspensions and proved to be a fast, reliable, automated multiwell microplate assay to quantitate fish health status modulated by β-glucans. Copyright © 2013 Elsevier Ltd. All rights reserved.

    18. A novel chemiluminescence method for determination of bisphenol Abased on the carbon dot-enhanced HCO3−–H2O2 system

      International Nuclear Information System (INIS)

      Amjadi, Mohammad; Manzoori, Jamshid L.; Hallaj, Tooba

      2015-01-01

      A simple and sensitive chemiluminescence (CL) method on the basis of carbon dot (C-dot) enhanced HCO 3 − –H 2 O 2 system, is designed for the determination of bisphenol A (BPA). The very weak CL of the HCO 3 − –H 2 O 2 system is enhanced by a factor of ∼100 in the presence of C-dots. Possible mechanisms that lead to the effect were elucidated by recording fluorescence and CL spectra and studying the effect of some radical scavengers. This enhancement is inhibited by BPA in the concentration range from 1.0 to 100 µg L −1 . This is exploited for its trace determination with a detection limit (3 s) of 0.3 µg L −1 . The established method was applied to the determination of BPA in baby bottle and water samples with satisfactory results. - Highlights: • The effect of carbon dots on HCO 3 − –H 2 O 2 chemiluminescence reaction is studied. • Carbon dots greatly enhance the CL signal of this reaction (∼100 fold). • The new CL system was applied to determination of bisphenol A in real samples

    19. Characterization of the response chemiluminescence of neutrophils human beings to the hemolysin Escherichia coli alpha

      International Nuclear Information System (INIS)

      Garcia, J.

      2000-01-01

      Escherichia coli alpha hemolysin (AH) evoked a luminol-amplified chemiluminescence (CL) response from human polymorphonuclear leukocytes (PMN). Analysis of kinetic parameters of the PMN CL response to AH established similarities with that of PMN to the calcium ionophore A23187. PMN CL responses to both AH and A23187 were equally decreased by preincubating PMN with A63612, a hidroxamic acid derivative and lipooxigenase inhibitor, showing that the CL response to both hemolysin and ionophore share a common mechanism, probably activation of leukotriene synthesis, due to calcium entry into the cells brought about by AH and A23187. In addition, the CL response of PMN to AH was lowered by the hydroxyl radical scavenger dimethyl sulfoxide, further suggesting arachidonate metabolism is involved in CL response. (Author) [es

    20. Flow Injection Photosensitized Chemiluminescence of Luminol with Cu(II-Rose Bengal: Mechanistic Approach and Vitamin A and C Determination

      Directory of Open Access Journals (Sweden)

      Muhammad Asgher

      2014-01-01

      Full Text Available Rose Bengal photosensitized flow injection chemiluminescence method is reported using luminol-Cu(II for the determination of vitamins A and C in pharmaceutical formulations. The reaction is based on the enhancement effect of analyte in the production of anion radicals of Rose Bengal (RB•− which rapidly interact with dissolved oxygen and generate superoxide anions radicals (O2•− and hydrogen peroxide (H2O2. Highly reactive hydroxyl radicals (•OH were produced via dismutation of H2O2 by catalyst (Cu2+. The generated superoxide anions radicals and hydroxyl radicals thus oxidize luminol in alkaline medium to generate strong chemiluminescence. The limit of detection (3s of the blank, n=6 of vitamins A and C and RB was found to be 0.008, 0.005, and 0.05 μg mL−1, respectively. The sample throughput of 70 h−1 for vitamins A and C and 30 h−1 for RB was found. Calibration curve was linear in the range of 0.05–15, 0.01–20, and 0.1–50 μg mL−1 for vitamins A and C and RB, respectively, with relative standard deviations (RSDs; n=3 in the range 1.6–3.6%. The method was successfully applied to pharmaceutical formulations and the results obtained were in good agreement with the labeled values.

    1. Application of a Newly Developed High-Sensitivity HBsAg Chemiluminescent Enzyme Immunoassay for Hepatitis B Patients with HBsAg Seroclearance

      OpenAIRE

      Shinkai, Noboru; Matsuura, Kentaro; Sugauchi, Fuminaka; Watanabe, Tsunamasa; Murakami, Shuko; Iio, Etsuko; Ogawa, Shintaro; Nojiri, Shunsuke; Joh, Takashi; Tanaka, Yasuhito

      2013-01-01

      We modified and automated a highly sensitive chemiluminescent enzyme immunoassay (CLEIA) for surface antigen (HBsAg) detection using a combination of monoclonal antibodies, each for a specific epitope of HBsAg, and by improving an earlier conjugation technique. Of 471 hepatitis B virus (HBV) carriers seen in our hospital between 2009 and 2012, 26 were HBsAg seronegative as determined by the Abbott Architect assay. The Lumipulse HBsAg-HQ assay was used to recheck those 26 patients who demonstr...

    2. Chemiluminescence immunoassay based on dual signal amplification strategy of Au/mesoporous silica and multienzyme functionalized mesoporous silica

      Energy Technology Data Exchange (ETDEWEB)

      Lin Jiehua, E-mail: linjiehua@qust.edu.cn [Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhao Yue; Wei Zhijing; Wang Wei [Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

      2011-11-15

      Highlights: > The increased amount of monoclonal antibody in Au/SiO{sub 2} led to a wider linear range. > Due to the increased HRP tags in HRP-Ab{sub 2}/SiO{sub 2}, signal amplification achieved. > A simple dual amplification immunoassay achieved with flow injection analysis. - Abstract: A chemiluminescent dual signal amplification strategy for the determination of {alpha}-fetoprotein (AFP) was proposed based on a sandwich immunoassay format. Monoclonal antibody of AFP immobilized on the gold nanoparticles doped mesoporous SiO{sub 2} (Au/SiO{sub 2}) were prepared and used as a primary antibody. Horseradish peroxidase (HRP) and HRP-labeled secondary antibody (Ab{sub 2}) co-immobilized into the mesoporous SiO{sub 2} nanoparticles (HRP-Ab{sub 2}/SiO{sub 2}) were used as the labeled immunological probe. Due to the high ratio surface areas and pore volumes of the mesoporous SiO{sub 2}, not only the amount of AFP monoclonal antibody but also the amount of the modified HRP and Ab{sub 2} in HRP-Ab{sub 2}/SiO{sub 2} were largely increased. Thus the chemiluminescent signal was amplified by using the system of luminol and H{sub 2}O{sub 2} under the catalysis of HRP. Under the optimal conditions, two linear ranges for AFP were obtained from 0.01 to 0.5 ng mL{sup -1} and 0.5 to 100 ng mL{sup -1} with a detection limit of 0.005 ng mL{sup -1} (3{sigma}). The fabricated signal amplification strategy showed an excellent promise for sensitive detection of AFP and other tumor markers.

    3. Atomic force microscopy and Langmuir-Blodgett monolayer technique to assess contact lens deposits and human meibum extracts.

      Science.gov (United States)

      Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon

      2015-01-01

      The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Meibum study: Meibum was collected from all participants and studied via Langmuir-Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

    4. Usage of liquid scintillation counting for detecting the chemiluminescence of cells and its application in medicine

      International Nuclear Information System (INIS)

      Li Tianxing; Liang Qizhong; Zou Xiaowei; Yang Zhaohen; Huang Yong; Li Huaqiang

      1995-01-01

      The liquid scintillator counting-chemiluminescence (LSC-CL) of mono-photon radiance is a sensitive, handy and high-autoanalytic technique. Through measuring basic CL, dependent CL and maximum phagocytic CL of polymorphonuclear (PMN), we studied best factor levels of the method with orthogonal design [L 9 (3 4 )]. The results showed the peak forms changed markedly (inter-group P -4 M). PMN-CL in blood was measured during acute attack of the old patients with chronic bronchitis and the children with pneumonia bronchial. It was suggested that PMN phagocytosis decreased. So the dynamic analysis of maximum phagocytic CL would help us with the deep going clinical researches of the mechanisms of anti-inflammation and injuring by the oxygen free radicals

    5. Hypericin from St. John’s Wort (hypericum perforatum) as a novel natural fluorophore for chemiluminescence reaction of bis (2,4,6-trichlorophenyl) oxalate–H2O2–imidazole and quenching effect of some natural lipophilic hydrogen peroxide scavengers

      International Nuclear Information System (INIS)

      Kazemi, Sayed Yahya; Abedirad, Seyed Mohammad; Zali, Seyed Hassan; Amiri, Mohadeseh

      2012-01-01

      Hypericin (HYP) molecule is a natural photoactive pigment, which plays a role as an effective photoreceptor in some plants of the Hypericum species (the most common of which is Saint John’s Wort) and some insect species. The present work deals with the first attempt to the study of peroxyoxalate chemiluminescence (POCL) system in the presense of HYP as a natural fluorophore. Reaction of bis (2,4,6-trichlorophenyl) oxalate(TCPO)–H 2 O 2 –imidazole can transfer energy to a HYP via formation of dioxetane through the chemically initiated electron exchange luminescence (CIEEL) mechanism and can emits a very intense red light. The effects of HYP, hydrogen peroxide, TCPO and imidazole concentrations on kinetic chemiluminescence parameters were also studied. These parameters including rise and fall rate constant for the chemiluminescence burst, theoretical and experimental maximum intensity, theoretical and experimental time to reach maximum intensity and total light yield emission were evaluated by using a pooled intermediate model for a non-linear least-squares curve fitting program, KINFIT. Moreover, quenching effect of two lipophilic natural antioxidant, Quercetin and β-carotene on it system was also investigated. The measurable concentration range of 7×10 −6 M to 7.5×10 −5 M of antioxidants were evaluated from the proper Stern–Volmer plots with satisfactory RSD% and corresponding detection limits of 2.2×10 −6 and 3.7×10 −6 for β-carotene and quercetin respectively. - Highlights: ► Red fluorophores may therefore chemiluminescence more intensely than other commonly chemiluminophores and emits light in longer wavelengths. ► Hypericin from St. John’s wort (hypericum perforatum) as natural red fluorophore for peroxyoxalate chemiluminescence was introduced. ► Quenching effect of two antioxidant, quercetin and β-carotene on it system was also investigated. ► The non linear least-squares curve fitting program KINFIT was applied to study of CL

    6. Development of luminol-N-hydroxyphthalimide chemiluminescence system for highly selective and sensitive detection of superoxide dismutase, uric acid and Co2.

      Science.gov (United States)

      Saqib, Muhammad; Qi, Liming; Hui, Pan; Nsabimana, Anaclet; Halawa, Mohamed Ibrahim; Zhang, Wei; Xu, Guobao

      2018-01-15

      N-hydroxyphthalimide (NHPI), a well known reagent in organic synthesis and biochemical applications, has been developed as a stable and efficient chemiluminescence coreactant for the first time. It reacts with luminol much faster than N-hydroxysuccinimide, eliminating the need of a prereaction coil used in N-hydroxysuccinimide system. Without using prereaction coil, the chemiluminescence peak intensities of luminol-NHPI system are about 102 and 26 times greater than that of luminol-N-hydroxysuccinimide system and classical luminol-hydrogen peroxide system, respectively. The luminol-NHPI system achieves the highly sensitive detection of luminol (LOD = 70pM) and NHPI (LOD = 910nM). Based on their excellent quenching efficiencies, superoxide dismutase and uric acid are sensitively detected with LODs of 3ng/mL and 10pM, respectively. Co 2+ is also detected a LOD of 30pM by its remarkable enhancing effect. Noteworthily, our method is at least 4 orders of magnitude more sensitive than previously reported uric acid detection methods, and can detect uric acid in human urine and Co 2+ in tap and lake water real samples with excellent recoveries in the range of 96.35-102.70%. This luminol-NHPI system can be an important candidate for biochemical, clinical and environmental analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

    7. Supramolecular architectures of iron phthalocyanine Langmuir-Blodgett films: The role played by the solution solvents

      Science.gov (United States)

      Rubira, Rafael Jesus Gonçalves; Aoki, Pedro Henrique Benites; Constantino, Carlos José Leopoldo; Alessio, Priscila

      2017-09-01

      The developing of organic-based devices has been widely explored using ultrathin films as the transducer element, whose supramolecular architecture plays a central role in the device performance. Here, Langmuir and Langmuir-Blodgett (LB) ultrathin films were fabricated from iron phthalocyanine (FePc) solutions in chloroform (CHCl3), dichloromethane (CH2Cl2), dimethylformamide (DMF), and tetrahydrofuran (THF) to determine the influence of different solvents on the supramolecular architecture of the ultrathin films. The UV-vis absorption spectroscopy shows a strong dependence of the FePc aggregation on these solvents. As a consequence, the surface pressure vs. mean molecular area (π-A) isotherms and Brewster angle microscopy (BAM) reveal a more homogeneous (surface morphology) Langmuir film at the air/water interface for FePc in DMF. The same morphological pattern observed for the Langmuir films is preserved upon LB deposition onto solid substrates. The Raman and FTIR analyses indicate the DMF-FePc interaction relies on coordination bonds between N atom (from DMF) and Fe atom (from FePc). Besides, the FePc molecular organization was also found to be affected by the DMF-FePc chemical interaction. It is interesting to note that, if the DMF-FePc leads to less aggregated FePc either in solution or ultrathin films (Langmuir and LB), with time (one week) the opposite trend is found. Taking into account the N-Fe interaction, the performance of the FePc ultrathin films with distinct supramolecular architectures composing sensing units was explored as proof-of-principle in the detection of trace amounts of atrazine herbicide in water using impedance spectroscopy. Further statistical and computational analysis reveal not only the role played by FePc supramolecular architecture but also the sensitivity of the system to detect atrazine solutions down to 10-10 mol/L, which is sufficient to monitor the quality of drinking water even according to the most stringent international

    8. Determination of vitamin C in drugs using of an optimized novel TCPO–Amplex red–gold/silver alloy nanoparticles–H2O2 chemiluminescence method by the Box–Behnken design

      International Nuclear Information System (INIS)

      Chaichi, M.J.; Alijanpour, S.O.

      2013-01-01

      Response surface methodology (RSM), based on a Box–Behnken design (BBD) was used to optimize three of the most important operating variables (concentrations of TCPO, Amplex red and pH effect) at peroxyoxalate-chemiluminescence (PO-CL) system. For the first time Amplex red (AR) was introduced as a new fluorescent emitter for predicting the reaction mechanism of PO-CL by means of the fluorescence property of its oxidation product. In optimum conditions, it was found that Au/Ag alloy nanoparticles (NPs) could enhance the CL intensity and the method sensitivity toward the evaluation of trace amount of vitamin C. Based on the antioxidant property of vitamin C noticeably the CL signal of the bis-(2,4,6-trichlorophenyl)oxalate–AR–NPs–hydrogen peroxide–sodium salicylate system was quenched in a low basic medium. A simple, rapid and sensitive CL method for the determination of vitamin C has been developed. The results showed a linear relationship between vitamin C concentration and PO-CL intensity in the range of 0.082–82.7 μg/mL. Detection limit of 0.012 μg/mL and the relative standard deviation (RSD)<4% was obtained. - Highlights: ► The Box-Behnken design was used to optimize peroxyoxalate-chemiluminescence system. ► Amplex red is as new fluorescent emitters for peroxyoxalate chemiluminescence. ► It is introduce a method for determination of vitamin C. ► Detection limit of vitamin C was obtained about 0.012 μg/mL.

    9. [The criterion prognostic significance of examinations of chemiluminescence of oral fluid under impact of chemical pollutants of manufacture of rubber and rubber technical production].

      Science.gov (United States)

      Galiullina, E F; Valiev, A v; Kamilov, R F; Shakirov, D F; Buliakov, P T

      2013-12-01

      The article presents the results of studies concerning the effect of unfavorable factors of chemical nature on fluid of oral cavity among workers of the Ufa plant of elastomer materials, articles and structures. It is established that in persons contacting with chemical pollutants of manufacture of rubber and rubber technical production the indicators of chemiluminescence of saliva fluid are significantly expressed and depend on professional standing.

    10. Novel assay of antibacterial components in manuka honey using lucigenin-chemiluminescence-HPLC

      International Nuclear Information System (INIS)

      Karasawa, Koji; Haraya, Shiomi; Okubo, Sachie; Arakawa, Hidetoshi

      2017-01-01

      Five components (hydrogen peroxide, methylglyoxal, dihydroxyacetone, fructose and glucose) of New Zealand manuka honey (Leptospermum scoparium) were analyzed using lucigenin chemiluminescence high-performance liquid chromatography (lucigenin-CL-HPLC). We focused on active oxygen species produced from the components in order to easily detect these five components contained in manuka honey. H_2O_2 and O_2"− generated from these components were identified by lucigenin-CL and electron spin resonance (ESR), and the bactericidal effect of ROS was confirmed using E. coli. The previously reported assays for Manuka honey components have low specificities and require complicated preprocessing methods. As our results, the detection and identification of these components were possible within 30 min in lucigenin-CL-HPLC system, without any special treatment. It is considered that lucigenin-CL-HPLC is useful for the quality control and the analysis of various honey. - Highlights: • Antibacterial components in manuka honey by HPLC with lucigenin-CL. • Five antibacterial compounds measured via generation of reactive oxygen species. • Simple, sensitive and useful for quality control and analysis of antibacterial honey.

    11. Electrochemistry and electrogenerated chemiluminescence of films of silicon nanoparticles in aqueous solution

      International Nuclear Information System (INIS)

      Bae, Yoonjung; Lee, Doh C; Rhogojina, Elena V; Jurbergs, David C; Korgel, Brian A; Bard, Allen J

      2006-01-01

      Films of octadecyl-capped Si nanoparticles (NPs) (diameter, 3.4 ± 0.7 nm) prepared by drop-coating on indium tin oxide (ITO) showed electrogenerated chemiluminescence (ECL) for both cathodic and anodic potential sweeps in KOH solutions containing peroxydisulfate. The redox potentials of the Si NPs can be estimated as approximately -0.9 and +0.95 V (versus Ag|AgCl) based on the anodic potential for the onset of ECL minus the ECL peak energy. The ECL exhibits a relatively broad spectrum (FWHM = 160 nm) with a peak wavelength of ∼670 nm (1.85 eV), similar to the photoluminescence spectra. In electrochemical studies in KOH solution in the absence of peroxydisulfate, an anodic current peak appears at about -1 V (versus Ag|AgCl) following a scan to negative potentials. A similar peak has been observed during the etching of a bulk single crystal Si electrode in alkaline aqueous solution. Unpassivated surface sites of Si NPs seem to be etched at potentials negative of the anodic oxidation peak

    12. Prospective validation of an automated chemiluminescence-based assay of renin and aldosterone for the work-up of arterial hypertension.

      Science.gov (United States)

      Rossi, Gian Paolo; Ceolotto, Giulio; Rossitto, Giacomo; Seccia, Teresa Maria; Maiolino, Giuseppe; Berton, Chiara; Basso, Daniela; Plebani, Mario

      2016-09-01

      The availability of simple and accurate assays of plasma active renin (DRC) and aldosterone concentration (PAC) can improve the detection of secondary forms of arterial hypertension. Thus, we investigated the performance of an automated chemiluminescent assay for DRC and PAC in referred hypertensive patients. We prospectively recruited 260 consecutive hypertensive patients referred to an ESH Center for Hypertension. After exclusion of six protocol violations, 254 patients were analyzed: 67.3% had primary hypertension, 17.3% an aldosterone producing adenoma (APA), 11.4% idiopathic hyperaldosteronism (IHA), 2.4% renovascular hypertension (RVH), 0.8% familial hyperaldosteronism type 1 (FH-1), 0.4% apparent mineralocorticoid excess (AME), 0.4% a renin-producing tumor, and 3.9% were adrenalectomized APA patients. Bland-Altman plots and Deming regression were used to analyze results. The diagnostic accuracy (area under the curve, AUC of the ROC) of the DRC-based aldosterone-renin ratio (ARRCL) was compared with that of the PRA-based ARR (ARRRIA) using as reference the conclusive diagnosis of APA. At Bland-Altman plot, the DRC and PAC assay showed no bias as compared to the PRA and PAC assay. A tight relation was found between the DRC and the PRA values (concordance correlation coefficient=0.92, pAPA identification the AUC of the ARRCL was higher than that of the ARRRIA [0.974 (95% CI 0.940-0.991) vs. 0.894 (95% CI 0.841-0.933), p=0.02]. This rapid automated chemiluminescent DRC/PAC assay performed better than validated PRA/PAC radioimmunoassays for the identification of APA in referred hypertensive patients.

    13. An ultrasensitive chemiluminescence immunoassay for fumonisin B1 detection in cereals based on gold-coated magnetic nanoparticles.

      Science.gov (United States)

      Jie, Mingsha; Yu, Songcheng; Yu, Fei; Liu, Lie; He, Leiliang; Li, Yanqiang; Zhang, Hongquan; Qu, Lingbo; Harrington, Peter de B; Wu, Yongjun

      2018-07-01

      In the present study, a novel highly sensitive magnetic enzyme chemiluminescence immunoassay (MECLIA) was developed to detect fumonisin B 1 (FB 1 ) in cereal samples. The gold-coated magnetic nanoparticles (Fe 3 O 4 @Au, GoldMag) were used as solid phase carrier to develop a competitive CLIA for detecting FB 1 , in which FB 1 in samples would compete with FB 1 -ovalbumin coated on the surface of Fe 3 O 4 @Au nanoparticles for binding with FB 1 antibodies. Successively, horseradish peroxidase labeled goat anti-rabbit IgG (HRP-IgG) was conjugated with FB 1 antibodies on the microplate. In substrate solution containing luminol and H 2 O 2 , HRP-IgG catalyzed luminol oxidation by H 2 O 2 , generating a high chemiluminescence signal. The FB 1 immune GoldMag particles were characterized by Fourier transform infrared spectroscopy, scanning electron microscope and zeta potential analysis, etc. RESULTS: The concentrations and the reaction times of these immunoreagents were optimized to improve the performances of this method. The established method could detect as low as 0.027 ng mL -1 FB 1 from 0.05 ng mL -1 to 25 ng mL -1 , demonstrating little cross-reaction (less than 2.4%) with other structurally related compounds. The average intrassay relative SD (RSD) (n = 6) was 3.4% and the average interassay RSD (n = 6) was 5.4%. This method was successfully applied for the determination of FB 1 in corn and wheat and gave recoveries of between 98-110% and 91-105%, respectively. The results of the present study suggest that the MECLIA approach has potential application for high-throughput fumonisin screening in cereals. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

    14. Comparison of ultraviolet absorbance and NO-chemiluminescence for ozone measurement in wildfire plumes at the Mount Bachelor Observatory

      Science.gov (United States)

      Gao, Honglian; Jaffe, Daniel A.

      2017-10-01

      The goal of this paper is to evaluate the accuracy of the commonly used ozone (O3) instrument (the ultraviolet (UV) photometer) against a Federal Reference Method (Nitric Oxide -chemiluminescence) for ozone measurement in wildfire smoke plumes. We carried out simultaneous ozone measurement with two UV O3 photometers and one nitric oxide-chemiluminescence (NO-CL) ozone detectors during wildfire season (Aug. 1-Sept. 30) in 2015 at the Mount Bachelor Observatory (MBO, 2763 m above mean sea level, Oregon, USA). The UV O3 shows good agreement and excellent correlation to NO-CL O3, with linear regression slopes close to unity and R2 of 0.92 for 1-h average data and R2 of 0.93 for O3 daily maximum 8-h average (MDA8). During this two-month period we identified 35 wildfire events. Ozone enhancements in those wildfire plumes measured by NO-CL O3 and UV O3 monitors also show good agreement and excellent linear correlation, with a slope and R2 of 1.03 and 0.86 for O3 enhancements (ΔO3) and 1.00 and 0.98 for carbon monoxide (CO)-normalized ozone enhancement ratios (ΔO3/ΔCO), respectively. Overall, the UV O3 was found to have a positive bias of 4.7 ± 2.8 ppbv compared to the NO-CL O3. The O3 bias between NO-CL O3 and UV O3 is independent of wildfire plume tracers such as CO, particulate matter (PM1), aerosol scattering, and ultrafine particles. The results demonstrate that the UV O3 absorbance method is reliable, even in highly concentrated wildfire plumes.

    15. The effect of purification of single-walled carbon nanotube bundles on the alcohol sensitivity of nanocomposite Langmuir-Blodgett films for SAW sensing applications

      International Nuclear Information System (INIS)

      Penza, M; Tagliente, M A; Aversa, P; Re, M; Cassano, G

      2007-01-01

      HiPco (high-pressure CO dissociation process) single-walled carbon nanotube (SWCNT) bundles containing Fe particles were purified in a two-step purification process by thermal annealing in oxygen and post-treatment in HCl. Nanocomposite films of pristine and purified SWCNTs embedded in an organic matrix of cadmium arachidate (CdA) were prepared by a Langmuir-Blodgett (LB) molecular engineering technique with a fixed weight filler content of 75 wt% onto a surface acoustic wave (SAW) transducer operating as an oscillator at a frequency of 433 MHz. The raw and purified samples were characterized at various stages of the purification process using thermogravimetric analysis (TGA), high-resolution transmission electron microscopy (HR-TEM), along with energy-dispersive x-ray spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM) and x-ray diffraction (XRD). Functional characterizations of the SWCNT-nanocomposite-based SAW sensors were investigated towards methanol, isopropanol and ethanol, and demonstrated high sensitivity, reversibility, fast response and ppm level detection at room temperature. Results indicate that the sensitivity of the SAW sensors based on a nanocomposite film of oxygen-annealed SWCNTs is enhanced to the alcohols tested at room temperature. Purification of the SWCNTs in the nanocomposite film affects the SAW sensitivity to alcohol by modulating the sensing properties. The sensing mechanisms are analysed and discussed

    16. The effect of purification of single-walled carbon nanotube bundles on the alcohol sensitivity of nanocomposite Langmuir-Blodgett films for SAW sensing applications

      Energy Technology Data Exchange (ETDEWEB)

      Penza, M; Tagliente, M A; Aversa, P; Re, M; Cassano, G [ENEA, Department of Physical Technologies and New Materials, SS 7, Appia, km 714-72100 Brindisi (Italy)

      2007-05-09

      HiPco (high-pressure CO dissociation process) single-walled carbon nanotube (SWCNT) bundles containing Fe particles were purified in a two-step purification process by thermal annealing in oxygen and post-treatment in HCl. Nanocomposite films of pristine and purified SWCNTs embedded in an organic matrix of cadmium arachidate (CdA) were prepared by a Langmuir-Blodgett (LB) molecular engineering technique with a fixed weight filler content of 75 wt% onto a surface acoustic wave (SAW) transducer operating as an oscillator at a frequency of 433 MHz. The raw and purified samples were characterized at various stages of the purification process using thermogravimetric analysis (TGA), high-resolution transmission electron microscopy (HR-TEM), along with energy-dispersive x-ray spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM) and x-ray diffraction (XRD). Functional characterizations of the SWCNT-nanocomposite-based SAW sensors were investigated towards methanol, isopropanol and ethanol, and demonstrated high sensitivity, reversibility, fast response and ppm level detection at room temperature. Results indicate that the sensitivity of the SAW sensors based on a nanocomposite film of oxygen-annealed SWCNTs is enhanced to the alcohols tested at room temperature. Purification of the SWCNTs in the nanocomposite film affects the SAW sensitivity to alcohol by modulating the sensing properties. The sensing mechanisms are analysed and discussed.

    17. Development of a method for the characterization of the oxidation stability of domestic heating oil and domestic heating oil with alternative components using chemiluminescence; Entwicklung einer Analysemethode zur Charakterisierung der Oxidationsstabilitaet von Heizoel EL und Heizoel EL A mittels Chemilumineszenz

      Energy Technology Data Exchange (ETDEWEB)

      Koch, Winfried; Lukito, Jayadi; Schloss, Heide vom [Oel-Waerme-Institut gGmbH (OWI), Aachen-Herzogenrath (Germany)

      2013-04-15

      The project's aim was to develop a process that serves to determine the oxidation stability of heating oil - FAME-/ heating oil - vegetable oil-blends clearly. Due to a directed energy input by means of the process of chemiluminescence, statements about the storage stability and the thermal stability of blends can be made. During the process the ageing of blend components and of the heating oil are taken into consideration. As a result, ageing processes and products of pure heating oil as well as biogenic components can be determined. It was shown that the process is applicable to blends up to an admixture of at least 20 % (V/V) of biogenic components, whereby blends with higher admixture shares can be analyzed as well. According to DIN SPEC 51603 - 6 'Heating Oil Alternative' the admixture of FAME is limited to 20 %(V/V) and the admixture of vegetable oil to 5 % (V/V) because of the distillation range. On the basis of these investigations it could be shown how oxidation products influence the signal process of the chemiluminescence radiation and how they can be correlated by a measurable physical value. Moreover, a new evaluation criterion has been developed. By means of this criterion a good reproducibility - regarding the determination of the oxidation stability according to the chemiluminescence methodology for non-aged fuels - can be achieved. The fuel characteristic decrease in the stability of the tested fuels can be represented only partially by the chemiluminescence process, as the measured values are subject to fluctuations. (orig.)

    18. Chemiluminescence measurement of cinnamon-, curry-, red pepper- and milk powder as a method to identify ionizing radiation treatment. Die Messung der Chemilumineszenz von Zimt-, Curry-, Paprika- und Milchpulver als Nachweis einer Behandlung mit ionisierenden Strahlen

      Energy Technology Data Exchange (ETDEWEB)

      Boegl, W; Heide, L

      1983-11-01

      The findings may be summarized as follows: significant differences in the dose response relationship of the different foodstuffs were found; the chemiluminescence intensity of different foodstuffs irradiated at equal dose levels may vary considerably; in some cases there might be evidence of radiation treatment even 2 months afterwards; after heating, the irradiated foodstuffs showed reduced chemiluminescence intensity. In some cases it is, however, possible to identify previous irradiation of a foodstuff; if irradiated foodstuffs are treated with water vapor, the radicals will react with the water so as to preclude the identification of previous irradiation; UV-irradiation will result in a drastic increase in luminescence intensity, at least in some cases and air oxidation may also increase the luminescence intensity, especially in fatty foodstuffs.

    19. Extra-weak chemiluminescence produced by autoxidation of kampo extract preparations stored in heat-stressed conditions.

      Science.gov (United States)

      Sato, H; Hirayama, H; Yamamoto, T; Ishizawa, F; Mizugaki, M

      1998-06-01

      The purpose of this study was to evaluate the usefulness of extra-weak chemiluminescence (CL) measurement as a rapid method to estimate the stability of Kampo extract preparations. It was found that the Kampo drugs that emit little CL were stable, while those with higher CL were comparatively unstable with regard to the various stability markers, including change of coloration (browning), contents of specific ingredients, high molecular compounds, amino acids and sugars under various conditions of heat storage. Excellent correlation existed between the CL of Kampo drugs and the coloration (delta E* (ab)) and the other above-mentioned evaluation markers. From this investigation, it was deduced that the CL of Kampo drugs originates in the early stage of the Maillard reaction and reflects the stability of the preparations, and that CL is useful for estimating the stability of Kampo drugs.

    20. Applications of capillary electrophoresis with chemiluminescence detection in clinical, environmental and food analysis. A review

      International Nuclear Information System (INIS)

      Lara, Francisco J.; Airado-Rodríguez, Diego; Moreno-González, David; Huertas-Pérez, José F.; García-Campaña, Ana M.

      2016-01-01

      This paper reviews the latest developments and analytical applications of chemiluminescence detection coupled to capillary electrophoresis (CE-CL). Different sections considering the most common CL systems have been included, such as the tris(2,2′-bipyridine)ruthenium(II) system, the luminol and acridinium derivative reactions, the peroxyoxalate CL or direct oxidations. Improvements in instrumental designs, new strategies for improving both resolution and sensitivity, and applications in different fields such as clinical, pharmaceutical, environmental and food analysis have been included. This review covers the literature from 2010 to 2015. - Highlights: • An up-to-date critical review about the evolution of CE-CL is presented. • Tris(2,2′-bipyridine)ruthenium(II) and luminol as the most used CL systems. • Instrumental designs and strategies for improving resolution and sensitivity. • Applications in clinical, pharmaceutical, environmental and food analysis.

    1. The influence of some anticancer preparations on photo induced lipid preoxidation

      International Nuclear Information System (INIS)

      Sargsyan, N.A.

      2004-01-01

      In nowadays it is very important in medicine to investigate mechanisms of actions of different pharmacological preparations including anticancer ones. As it is known during cancer there is the disruption of balance between free radical oxidative processes and amount of antioxidants. That is why it was investigated the possibility of cooperation of some anticancer preparations with membrane structures and the influence of these preparations on photo induced free radical oxidative process. For investigations of the influence of some anticancer preparations - sarkolizin and cyclophosphane - on the intensivity of chemiluminescence as a biological target it were taken homogenates of brains of cows in tris-HCL buffer solution (1:10, pH=7.4). Irradiation was done with UV-light for 1 minute. Also it was used the model-system of oleinic acid for investigation of action studied preparations on lipid peroxidation. All experiments were done at 40 degree C. It was found out that anticancer preparations suppressed lipid peroxidation and that it is expressed by decreasing of level of photo chemiluminescence. By the way it was discovered that maximal inhibition of photo chemiluminescence was at the moment of adding preparation to the biological target. And then level of photo chemiluminescence increased till some point, which was lower than normal one. Also it was found that the inhibition degree for these preparations was different. For example, sarkolizin decreased the level of photo chemiluminescence on 58%, and cyclophosphane - on 52%. Because chemiluminescence of oleinic acid very well imitates the chemiluminescence of different lipid structures, so it was used as a model-system for testing investigated preparations. And in this experiment also it was found that sarkolizin and cyclophosphane decreased the level of induced chemiluminescence. And this action depended on the concentration of preparations. In conclusion it can be said that sarkolizin and cyclophosphane inhibited

    2. Cellulase and alcohol dehydrogenase immobilized in Langmuir and Langmuir-Blodgett films and their molecular-level effects upon contact with cellulose and ethanol.

      Science.gov (United States)

      Rodrigues, Dilmer; Camilo, Fernanda Ferraz; Caseli, Luciano

      2014-02-25

      The key challenges for producing devices based on nanostructured films with control over the molecular architecture are to preserve the catalytic activity of the immobilized biomolecules and to provide a reliable method for determining the intermolecular interactions and the accommodation of molecules at very small scales. In this work, the enzymes cellulase and alcohol dehydrogenase (ADH) were coimmobilized with dipalmitoylphosphatidylcholine (DPPC) as Langmuir-Blodgett (LB) films, and their biological activities were assayed by accommodating the structure formed in contact with cellulose. For this purpose, the polysaccharide was dissolved in an ionic liquid, 1-buthyl-3-methylimidazolium chloride (BMImCl), and dropped on the top of the hybrid cellulase-ADH-DPPC LB film. The interactions between cellulose and ethanol, which are the catalytic substrates of the enzymes as well as important elements in the production of second-generation fuels, were then investigated using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Investigation of the secondary structures of the enzymes was performed using PM-IRRAS, through which the presence of ethanol and cellulose was observed to highly affect the structures of ADH and cellulase, respectively. The detection of products formed from the catalyzed reactions as well as the changes of secondary structure of the enzymes immobilization could be carried out, which opens the possibility to produce a means for producing second-generation ethanol using nanoscale arrangements.

    3. Thin Films of Novel Linear-Dendritic Diblock Copolymers

      Science.gov (United States)

      Iyer, Jyotsna; Hammond, Paula

      1998-03-01

      A series of diblock copolymers with one linear block and one dendrimeric block have been synthesized with the objective of forming ultrathin film nanoporous membranes. Polyethyleneoxide serves as the linear hydrophilic portion of the diblock copolymer. The hyperbranched dendrimeric block consists of polyamidoamine with functional end groups. Thin films of these materials made by spin casting and the Langmuir-Blodgett techniques are being studied. The effect of the polyethylene oxide block size and the number and chemical nature of the dendrimer end group on the nature and stability of the films formed willbe discussed.

    4. Membranes, methods of making membranes, and methods of separating gases using membranes

      Science.gov (United States)

      Ho, W. S. Winston

      2012-10-02

      Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

    5. Determination of vitamin C in drugs using of an optimized novel TCPO-Amplex red-gold/silver alloy nanoparticles-H{sub 2}O{sub 2} chemiluminescence method by the Box-Behnken design

      Energy Technology Data Exchange (ETDEWEB)

      Chaichi, M.J., E-mail: jchaichi@yahoo.com [Faculty of Chemistry, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Alijanpour, S.O. [Faculty of Chemistry, University of Mazandaran, Babolsar (Iran, Islamic Republic of)

      2013-02-15

      Response surface methodology (RSM), based on a Box-Behnken design (BBD) was used to optimize three of the most important operating variables (concentrations of TCPO, Amplex red and pH effect) at peroxyoxalate-chemiluminescence (PO-CL) system. For the first time Amplex red (AR) was introduced as a new fluorescent emitter for predicting the reaction mechanism of PO-CL by means of the fluorescence property of its oxidation product. In optimum conditions, it was found that Au/Ag alloy nanoparticles (NPs) could enhance the CL intensity and the method sensitivity toward the evaluation of trace amount of vitamin C. Based on the antioxidant property of vitamin C noticeably the CL signal of the bis-(2,4,6-trichlorophenyl)oxalate-AR-NPs-hydrogen peroxide-sodium salicylate system was quenched in a low basic medium. A simple, rapid and sensitive CL method for the determination of vitamin C has been developed. The results showed a linear relationship between vitamin C concentration and PO-CL intensity in the range of 0.082-82.7 {mu}g/mL. Detection limit of 0.012 {mu}g/mL and the relative standard deviation (RSD)<4% was obtained. - Highlights: Black-Right-Pointing-Pointer The Box-Behnken design was used to optimize peroxyoxalate-chemiluminescence system. Black-Right-Pointing-Pointer Amplex red is as new fluorescent emitters for peroxyoxalate chemiluminescence. Black-Right-Pointing-Pointer It is introduce a method for determination of vitamin C. Black-Right-Pointing-Pointer Detection limit of vitamin C was obtained about 0.012 {mu}g/mL.

    6. Novel and versatile solid-state chemiluminescence sensor based on TiO2-Ru(bpy)32+ nanoparticles for pharmaceutical drugs detection

      Science.gov (United States)

      Al-Hetlani, Entesar; Amin, Mohamed O.; Madkour, Metwally

      2018-02-01

      This work describes a novel and versatile solid-state chemiluminescence sensor for analyte detection using TiO2-Ru(bpy)32+-Ce(IV). Herein, we report the synthesis, characterization, optimization and application of a new type of hybrid nanoparticles (NPs). Mesoporous TiO2-Ru(bpy)32+ NPs were prepared using a modified sol-gel method by incorporating Ru(bpy)32+ into the initial reaction mixture at various concentrations. The resultant bright orange precipitate was characterized via transmission electron microscopy, N2 sorpometry, inductively coupled plasma-optical emission spectrometer (ICP-OES), Raman and UV-Vis spectroscopy techniques. The concentration of Ru(bpy)32+ complex in the NPs was quantified using ICP-OES, and its chemiluminescence (CL) response was measured and compared with the same concentration in the liquid phase using oxalate as model analyte. The results showed that this type of hybrid material exhibited a higher CL signal compared with the liquid phase due to the enlarged surface area of the hybrid NPs ( 149.6 m2/g). The amount of TiO2-Ru(bpy)32+ NPs and the effect of the analyte flow rate were also investigated to optimize the CL signal. The optimized system was further used to detect oxalate and two pharmaceutical drugs, namely, imipramine and promazine. The linear range for both drugs was 1-100 pm with limits of detection (LOD) of 0.1 and 0.5 pm, respectively. This approach is considered to be simple, low cost and facile and can be applied to a wide range of analytes.

    7. Novel and versatile solid-state chemiluminescence sensor based on TiO2-Ru(bpy32+ nanoparticles for pharmaceutical drugs detection

      Directory of Open Access Journals (Sweden)

      Al-Hetlani Entesar

      2018-02-01

      Full Text Available This work describes a novel and versatile solid-state chemiluminescence sensor for analyte detection using TiO2-Ru(bpy32+-Ce(IV. Herein, we report the synthesis, characterization, optimization and application of a new type of hybrid nanoparticles (NPs. Mesoporous TiO2-Ru(bpy32+ NPs were prepared using a modified sol-gel method by incorporating Ru(bpy32+ into the initial reaction mixture at various concentrations. The resultant bright orange precipitate was characterized via transmission electron microscopy, N2 sorpometry, inductively coupled plasma-optical emission spectrometer (ICP-OES, Raman and UV-Vis spectroscopy techniques. The concentration of Ru(bpy32+ complex in the NPs was quantified using ICP-OES, and its chemiluminescence (CL response was measured and compared with the same concentration in the liquid phase using oxalate as model analyte. The results showed that this type of hybrid material exhibited a higher CL signal compared with the liquid phase due to the enlarged surface area of the hybrid NPs (~149.6 m2/g. The amount of TiO2-Ru(bpy32+ NPs and the effect of the analyte flow rate were also investigated to optimize the CL signal. The optimized system was further used to detect oxalate and two pharmaceutical drugs, namely, imipramine and promazine. The linear range for both drugs was 1–100 pm with limits of detection (LOD of 0.1 and 0.5 pm, respectively. This approach is considered to be simple, low cost and facile and can be applied to a wide range of analytes.

    8. Potassium permanganate-glutaraldehyde chemiluminescence system catalyzed by gold nanoprisms toward selective determination of fluoride.

      Science.gov (United States)

      Abolhasani, Jafar; Hassanzadeh, Javad; Ghorbani-Kalhor, Ebrahim

      2016-02-01

      Gold and silver nanoparticles (NPs) are shown to exert a positive effect on the chemiluminescence (CL) reaction of permanganate aldehydes. Interestingly, between various shapes examined, Au nanoprisms have the highest beneficial effect. This effect is even more notable in the presence of sodium dodecyl sulfate (SDS) surfactant. UV-vis spectra and transmission electron microscopy were used to characterize the NP shapes and sizes. Furthermore, it was observed that iron(III) ions can slightly increase CL emission of this system. This intensification is very effective in the presence of fluoride ions (F(-)). These observations form the basis of the method for the high sensitive determination of F(-) in the 6-1200 nmol L(-1) concentration range, with a detection limit of 2.1 nmol L(-1). The proposed method has good precision and was satisfactorily used in the selective determination of low concentrations of fluoride ion in real samples. Copyright © 2015 John Wiley & Sons, Ltd.

    9. Application of chemiluminescence to the study of alpha, beta and gamma radiolysis of water

      International Nuclear Information System (INIS)

      Broudic, V.; Muzeau, B.; Jegou, C.; Bonnal, M.; Gavazzi, A.; Marques, C.

      2004-01-01

      In the frame of the French research program on the long-term behavior of spent nuclear fuel, experiments are conducted in ATALANTE to develop and validate models of spent fuel evolution in contact with an aqueous phase. One of the mechanisms that may govern intermediate or long-term alteration of the spent fuel matrix in a repository is the oxidizing dissolution by radiolysis products of water. Leaching experiments in de-aerated media requires the analysis of hydrogen peroxide, as a major product of water radiolysis, down to 10 -8 mol.L -1 . This work presents the results obtained using the chemiluminescence reaction of iso-luminol with H 2 O 2 , catalyzed by micro-peroxidase. Depending on the samples used, different types of radiolytic processes were studied: α radiolysis of water when leaching UO 2 pellets doped with alpha emitters, or γ radiolysis of water when leaching the same samples or spent fuel in a gamma field. Influences of operating conditions on the analytical results are discussed. (authors)

    10. Dual-peak electrogenerated chemiluminescence of carbon dots for iron ions detection.

      Science.gov (United States)

      Zhang, Pengjia; Xue, Zhenjie; Luo, Dan; Yu, Wei; Guo, Zhihui; Wang, Tie

      2014-06-17

      Carbon dots (CDs) have rigorously been investigated on their unique fluorescent properties but rarely their electrogenerated chemiluminescence (ECL) behavior. We are here to report a dual-peak ECL system of CDs, one at -2.84 V (ECL-1) and the other at -1.71 V (ECL-2) during the cyclic sweep between -3.0 and 3.0 V at scan rate of 0.2 V s(-1) in 0.1 M tetrabutyl ammonium bromide (TBAB) ethanol solution, which is more efficiency to distinguish metallic ions than single-peak ECL. The electron transfer reaction between individual electrochemically reduced nanocrystal species and coreactants led to ECL-1, in which the electron injected to the conduction band of CDs in the cathodic process. Ion annihilation reactions induced direct formation of exciplexes that produced another ECL signal, ECL-2. ECL-1 showed higher sensitivity to the surrounding environment than ECL-2 and thus was used for ECL detection of metallic ions. Herein, we can serve as an internal standard method to detect iron ions. A linear relationship of the intensity ratio R of ECL-1 and ECL-2 to iron ions was observed in the concentration extending from 5 × 10(-6) to 8 × 10(-5) M with a detection limit of 7 × 10(-7) M.

    11. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

      NARCIS (Netherlands)

      Erşahin, M.E.

      2015-01-01

      Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

    12. Automated 3D-Printed Unibody Immunoarray for Chemiluminescence Detection of Cancer Biomarker Proteins

      Science.gov (United States)

      Tang, C. K.; Vaze, A.; Rusling, J. F.

      2017-01-01

      A low cost three-dimensional (3D) printed clear plastic microfluidic device was fabricated for fast, low cost automated protein detection. The unibody device features three reagent reservoirs, an efficient 3D network for passive mixing, and an optically transparent detection chamber housing a glass capture antibody array for measuring chemiluminescence output with a CCD camera. Sandwich type assays were built onto the glass arrays using a multi-labeled detection antibody-polyHRP (HRP = horseradish peroxidase). Total assay time was ~30 min in a complete automated assay employing a programmable syringe pump so that the protocol required minimal operator intervention. The device was used for multiplexed detection of prostate cancer biomarker proteins prostate specific antigen (PSA) and platelet factor 4 (PF-4). Detection limits of 0.5 pg mL−1 were achieved for these proteins in diluted serum with log dynamic ranges of four orders of magnitude. Good accuracy vs ELISA was validated by analyzing human serum samples. This prototype device holds good promise for further development as a point-of-care cancer diagnostics tool. PMID:28067370

    13. A sensitive chemiluminescent immunoassay to detect Chromotrope FB (Chr FB) in foods.

      Science.gov (United States)

      Xu, Kun; Long, Hao; Xing, Rongge; Yin, Yongmei; Eremin, Sergei A; Meng, Meng; Xi, Rimo

      2017-03-01

      Chromotrope FB (Chr FB) is a synthetic azo dye permitted for use in foods and medicines. An acceptable daily intake (ADI) of Chr FB was 0-0.5mg/kg in China. In this study, we synthesized a Chr FB hapten with an amino group to prepare its artificial immunogen. Polyclonal antibodies obtained from New Zealand rabbits were applied to develop an indirect competitive chemiluminescent immunoassay (icCLIA) to detect Chr FB in foods. A horseradish peroxidase (HRP)-luminol-H 2 O 2 system was used to yield CL signal with p-iodophenol as an enhancement reagent. The method showed good specificity towards Chr FB and could detect as low as 0.02ngmL -1 Chr FB in buffer, 0.07ngg -1 in yoghurt candy, 0.07ngg -1 in vitamin drink and 0.13ngg -1 in bread. Compared with HPLC method, the proposed method is more sensitive by two orders of magnitude. The accuracy and precision of this method are acceptable and comparable with HPLC method. Therefore, the proposed method could be used for rapid screening of Chr FB in the mentioned foodstuffs. Copyright © 2016. Published by Elsevier B.V.

    14. Novel assay of antibacterial components in manuka honey using lucigenin-chemiluminescence-HPLC

      Energy Technology Data Exchange (ETDEWEB)

      Karasawa, Koji, E-mail: koji180@pharm.showa-u.ac.jp; Haraya, Shiomi; Okubo, Sachie; Arakawa, Hidetoshi

      2017-02-15

      Five components (hydrogen peroxide, methylglyoxal, dihydroxyacetone, fructose and glucose) of New Zealand manuka honey (Leptospermum scoparium) were analyzed using lucigenin chemiluminescence high-performance liquid chromatography (lucigenin-CL-HPLC). We focused on active oxygen species produced from the components in order to easily detect these five components contained in manuka honey. H{sub 2}O{sub 2} and O{sub 2}{sup −} generated from these components were identified by lucigenin-CL and electron spin resonance (ESR), and the bactericidal effect of ROS was confirmed using E. coli. The previously reported assays for Manuka honey components have low specificities and require complicated preprocessing methods. As our results, the detection and identification of these components were possible within 30 min in lucigenin-CL-HPLC system, without any special treatment. It is considered that lucigenin-CL-HPLC is useful for the quality control and the analysis of various honey. - Highlights: • Antibacterial components in manuka honey by HPLC with lucigenin-CL. • Five antibacterial compounds measured via generation of reactive oxygen species. • Simple, sensitive and useful for quality control and analysis of antibacterial honey.

    15. A signal-on electrogenerated chemiluminescent biosensor for lead ion based on DNAzyme

      International Nuclear Information System (INIS)

      Ma Fen; Sun Bo; Qi Honglan; Zhang Hongge; Gao Qiang; Zhang Chengxiao

      2011-01-01

      A highly reproducible and sensitive signal-on electrogenerated chemiluminescence (ECL) biosensor based on the DNAzyme for the determination of lead ion was developed. The ECL biosensor was fabricated by covalently coupling 5'-amino-DNAzyme-tagged with ruthenium bis (2,2'-bipyridine) (2,2'-bipyridine-4,4'-dicarboxylic acid)-ethylenediamine (Ru1-17E') onto the surface of graphite electrode modified with 4-aminobenzoic acid, and then a DNA substrate with a ribonucleotide adenosine hybridized with Ru1-17E' on the electrode. Upon binding of Pb 2+ to the Ru1-17E' to form a complex which catalyzed the cleavage of the DNA substrate, the double-stranded DNA was dissociated and thus led to a high ECL signal. The signal linearly increases with the concentration of Pb 2+ in the range from 5.0 to 80 pM with a detection limit of 1.4 pM and a relative standard derivation of 2.3%. This work demonstrates that using DNAzyme tagged with ruthenium complex as an ECL probe and covalently coupling method for the fabrication of the ECL biosensor with high sensitivity, good stability and significant regeneration ability is promising approach.

    16. Effect of the luminol signal enhancer on the chemiluminescence intensity and kinetics

      International Nuclear Information System (INIS)

      Liang Yanli; Yu Fei; Yu Songcheng; Wu Yongjun; Zhang Hongquan; Qu Lingbo

      2012-01-01

      The novel p-phenol derivatives, 4-(1-imidazolyl)-phenol, 4-hydroxybiphenyl, 4-hydroxy-4′-iodobiphenyl were employed as highly potent signal enhancers of luminol-hydrogen peroxide (H 2 O 2 )-horseradish peroxidase (HRP) chemiluminescence (CL) system. The CL reaction conditions were optimized, and the enhancement characteristics of these enhancers were compared with each other. The employment of these molecules greatly affected important assay parameters. Practically, the use of a novel enhancer, even a slightly change of the structure (or concentration) of 4-substituted phenol derivative, could affect assay properties quite dramatically. Furthermore, the use of different enhancers in the luminol–H 2 O 2 –HRP system can affect not only the intensity of the CL signal, which is well known, but also its kinetics. The experiment data indicated that the stronger intensity was combined with a more rapid decrease of the CL signal. - Highlights: ► 4-IMP, 4-BIP and HIOP take on different signal enhancement and light kinetics. ► The employment of 4-BIP resulted in a significant improvement of the detection limit. ► The magnitude of the signal enhancement was about 2.5-fold in the same system.

    17. Control of indium tin oxide anode work function modified using Langmuir-Blodgett monolayer for high-efficiency organic photovoltaics

      Directory of Open Access Journals (Sweden)

      Yuya Yokokura

      2017-08-01

      Full Text Available The use of Langmuir-Blodgett (LB monolayers to modify the indium tin oxide (ITO work function and thus improve the performance of zinc phthalocyanine (ZnPc/fullerene (C60-based and boron subphthalocyanine chloride (SubPc/C60-based small molecule organic photovoltaic devices (OPVs was examined. In general, LB precursor compounds contain one or more long alkyl chain substituents that can act as spacers to prevent electrical contact with adjoining electrode surfaces. As one example of such a compound, arachidic acid (CH3(CH218COOH was inserted in the forms of one-layer, three-layer or five-layer LB films between the anode ITO layer and the p-type layer in ZnPc-C60-based OPVs to investigate the effects of the long alkyl chain group when it acts as an electrically insulating spacer. The short-circuit current density (Jsc values of the OPVs with the three- and five-layer inserts (1.78 mA·cm−2 and 0.61 mA·cm−2, respectively were reduced dramatically, whereas the Jsc value for the OPV with the single-layer insertion (2.88 mA·cm−2 was comparable to that of the OPV without any insert (3.14 mA·cm-2. The ITO work function was shifted positively by LB deposition of a surfactant compound, C9F19C2H4-O-C2H4-COOH (PFECA, which contained a fluorinated head group. This positive effect was maintained even after formation of an upper p-type organic layer. The Jsc and open-circuit voltage (Voc of the SubPc-C60-based OPV with the LB-modified ITO layers were effectively enhanced. As a result, a 42% increase in device efficiency was achieved.

    18. Fabrication and characterization of NiO based metal-insulator-metal diode using Langmuir-Blodgett method for high frequency rectification

      Science.gov (United States)

      Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

      2018-04-01

      Thin film metal-insulator-metal (MIM) diodes have attracted significant attention for use in infrared energy harvesting and detection applications. As demonstrated over the past decades, MIM or metal-insulator-insulator-metal (MIIM) diodes can operate at the THz frequencies range by quantum tunneling of electrons. The aim of this work is to synthesize required ultra-thin insulating layers and fabricate MIM diodes using the Langmuir-Blodgett (LB) technique. The nickel stearate (NiSt) LB precursor film was deposited on glass, silicon (Si), ITO glass and gold coated silicon substrates. The photodesorption (UV exposure) and the thermodesorption (annealing at 100 °C and 350 °C) methods were used to remove organic components from the NiSt LB film and to achieve a uniform homogenous nickel oxide (NiO) film. These ultrathin NiO films were characterized by EDS, AFM, FTIR and cyclic voltammetry methods, respectively. The MIM diode was fabricated by depositing nickel (Ni) on the NiO film, all on a gold (Au) plated silicon (Si) substrate. The current (I)-voltage (V) characteristics of the fabricated diode were studied to understand the conduction mechanism assumed to be tunneling of electron through the ultra-thin insulating layer. The sensitivity of the diode was measured to be as high as 35 V-1. The diode resistance was ˜100 ohms (at a bias voltage of 0.60 V), and the rectification ratio was about 22 (for a signal voltage of ±200 mV). At the bias point, the diode response demonstrated significant non-linearity and high asymmetry, which are very desirable characteristics for applications in infrared detection and harvesting.

    19. Fabrication and characterization of NiO based metal−insulator−metal diode using Langmuir-Blodgett method for high frequency rectification

      Directory of Open Access Journals (Sweden)

      Ibrahim Azad

      2018-04-01

      Full Text Available Thin film metal–insulator–metal (MIM diodes have attracted significant attention for use in infrared energy harvesting and detection applications. As demonstrated over the past decades, MIM or metal-insulator-insulator-metal (MIIM diodes can operate at the THz frequencies range by quantum tunneling of electrons. The aim of this work is to synthesize required ultra-thin insulating layers and fabricate MIM diodes using the Langmuir-Blodgett (LB technique. The nickel stearate (NiSt LB precursor film was deposited on glass, silicon (Si, ITO glass and gold coated silicon substrates. The photodesorption (UV exposure and the thermodesorption (annealing at 100 °C and 350 °C methods were used to remove organic components from the NiSt LB film and to achieve a uniform homogenous nickel oxide (NiO film. These ultrathin NiO films were characterized by EDS, AFM, FTIR and cyclic voltammetry methods, respectively. The MIM diode was fabricated by depositing nickel (Ni on the NiO film, all on a gold (Au plated silicon (Si substrate. The current (I-voltage (V characteristics of the fabricated diode were studied to understand the conduction mechanism assumed to be tunneling of electron through the ultra-thin insulating layer. The sensitivity of the diode was measured to be as high as 35 V-1. The diode resistance was ∼100 ohms (at a bias voltage of 0.60 V, and the rectification ratio was about 22 (for a signal voltage of ±200 mV. At the bias point, the diode response demonstrated significant non-linearity and high asymmetry, which are very desirable characteristics for applications in infrared detection and harvesting.

    20. Smart membranes for monitoring membrane based desalination processes

      KAUST Repository

      Laleg-Kirati, Taous-Meriem

      2017-10-12

      Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and/or impedance sensors) mounted on the porous surface. In another example, a membrane distillation (MD) process includes the membrane. Processing circuitry can be configured to monitor outputs of the plurality of sensors. The monitored outputs can be used to determine membrane degradation, membrane fouling, or to provide an indication of membrane replacement or cleaning. The sensors can also provide temperatures or temperature differentials across the porous surface, which can be used to improve modeling or control the MD process.

    1. Recent advances on polymeric membranes for membrane reactors

      KAUST Repository

      Buonomenna, M. G.; Choi, Seung Hak

      2012-01-01

      . The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane

    2. Recent advances on polymeric membranes for membrane reactors

      KAUST Repository

      Buonomenna, M. G.

      2012-06-24

      Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

    3. TR and fluorescence study of organic nanostructures

      International Nuclear Information System (INIS)

      Zheludeva, S.; Novikova, N.; Myagkov, I.; Yurieva, E.

      2000-01-01

      The development of several x-ray scattering techniques based on total external fluorescence study and x-ray standing wave method is presented and used for characterization of organic nano-structures on the base of Langmuir-Blodgett films of fatty acid salts and phospholipids. Spectral selectivity of data obtained permits to detect alien interfacial layers and ions in organic structures, to get information about inter-diffusion at the interfaces, about ion permeation through organic bilayers - models of bio-membranes. The perspectives of investigation of protein - lipid bilayers on liquid surface by above mentioned techniques at SR source are discussed. Such study may allow to explore conformation structure and biological functions of membrane proteins and channel forming molecules in their native environment. The facilities of X-ray spectrometer designed and constructed for this purpose are presented. (author)

    4. Permanganate-bromide-silver nanoparticles as a new chemiluminescence system and its application to captopril determination.

      Science.gov (United States)

      Amjadi, Mohammad; Manzoori, Jamshid L; Hassanzadeh, Javad; Sorouraddin, Mohammad H

      2013-10-15

      A novel chemiluminescence (CL) system based on the oxidation of bromide by permanganate in sulfuric acid medium is introduced. The enhancing effect of silver nanoparticles (NPs), synthesized by chemical reduction method, on this reaction was studied. It was demonstrated that spherical silver nanoparticles with average size of 18 nm had a most remarkable catalytic effect on this reaction. CL emission wavelengths and UV-vis spectra were used to characterize the system and propose a possible mechanism. Furthermore, it was found that captopril inhibits the action of NPs and decreases the intensity of CL. Based on this phenomenon, a new CL method was developed for the determination of captopril in the 3.0 × 10(-10) to 1.0 × 10(-7) mol L(-1) concentration range with a detection limit (3s) of 0.12 nmol L(-1). The method was successfully applied to the determination of captopril in pharmaceutical formulations, human urine and serum samples. Copyright © 2013 Elsevier B.V. All rights reserved.

    5. In situ-synthesized cadmium sulfide nanowire photosensor with a parylene passivation layer for chemiluminescent immunoassays.

      Science.gov (United States)

      Im, Ju-Hee; Kim, Hong-Rae; An, Byoung-Gi; Chang, Young Wook; Kang, Min-Jung; Lee, Tae-Geol; Son, Jin Gyeng; Park, Jae-Gwan; Pyun, Jae-Chul

      2017-06-15

      The direct in situ synthesis of cadmium sulfide (CdS) nanowires (NWs) was presented by direct synthesis of CdS NWs on the gold surface of an interdigitated electrode (IDE). In this work, we investigated the effect of a strong oxidant on the surfaces of the CdS NWs using X-ray photoelectron spectroscopy, transmission electron microscopy, and time-of-flight secondary ion mass spectrometry. We also fabricated a parylene-C film as a surface passivation layer for in situ-synthesized CdS NW photosensors and investigated the influence of the parylene-C passivation layer on the photoresponse during the coating of parylene-C under vacuum using a quartz crystal microbalance and a photoanalyzer. Finally, we used the in situ-synthesized CdS NW photosensor with the parylene-C passivation layer to detect the chemiluminescence of horseradish peroxidase and luminol and applied it to medical detection of carcinoembryonic antigen. Copyright © 2017 Elsevier B.V. All rights reserved.

    6. Assay of picogram level isocarbophos residue on tangerines and oranges with luminol-albumin chemiluminescence system.

      Science.gov (United States)

      Chen, Donghua; Song, Zhenghua; Lv, Hairu

      2012-12-15

      A sensitive flow injection-chemiluminescence (FI-CL) method for the determination of isocarbophos (ICP) residue on tangerines and oranges was proposed. It was found that the CL intensity from luminol-albumin CL reaction could be obviously quenched in the presence of ICP and the decrease in CL intensity was proportional to the logarithm of ICP concentrations ranging from 1.0 to 1000 pmol L(-1), giving the limit of detection of 0.3 pmol L(-1) (3σ). The proposed procedure was successfully applied to the determination of ICP residue on tangerines and oranges with recoveries varying from 92.0 to 111.0% and RSDs less than 5.0%. The possible CL mechanism of luminol-albumin-ICP reaction was discussed, and ICP to albumin's binding constant (K(D)=1.00 × 10(6) L mol(-1)) and the number of binding sites (n=1.00) were given by the homemade FI-CL model. Copyright © 2012 Elsevier Ltd. All rights reserved.

    7. Synthesis, Photophysics, Electrochemistry and Electrogenerated Chemiluminescence of a Homologous Set of BODIPY-Appended Bipyridine Derivatives.

      Science.gov (United States)

      Rosenthal, Joel; Nepomnyashchii, Alexander B; Kozhukh, Julia; Bard, Allen J; Lippard, Stephen J

      2011-09-15

      Two new 2,2'-bipyridine (bpy) based ligands with ancillary BODIPY chromophores attached at the 4 and 4'-positions were prepared and characterized, which vary in the substitution pattern about the BODIPY periphery by either excluding (BB1) or including (BB2) a β-alkyl substituent. Both absorb strongly throughout the visible region and are strongly emissive. The basic photophysics and electrochemical properties of BB1 and BB2 are comparable to those of the BODIPY monomers on which they are based. The solid-state structures and electronic structure calculations both indicate that there is negligible electronic communication between the BODIPY moieties and the intervening bpy spacers. Electrogenerated chemiluminescence spectra of the two Bpy-BODIPY derivatives are similar to their recorded fluorescence profiles and are strongly influenced by substituents on the BODIPY chromophores. These 2,2'-bipyridine derivatives represent a new set of ligands that should find utility in applications including light-harvesting, photocatalysis, and molecular electronics.

    8. Flow injection chemiluminescent determination of N-nitrosodimethylamine using photogenerated tris(2,2'-bipyridyl) ruthenium (III)

      International Nuclear Information System (INIS)

      Perez-Ruiz, Tomas; Martinez-Lozano, Carmen; Tomas, Virginia; Martin, Jesus

      2005-01-01

      A flow injection configuration was developed and evaluated for the chemiluminescent determination of N-nitrosodimethylamine. The method is based on the on-line cleavage of the N-NO bond of the nitrosamine by irradiation with ultraviolet light. The dimethylamine generated was subsequently reacted with tris(2,2'-bipyridyl) ruthenium (III), which was generated through the on-line photo-oxidation of tris(2,2'-bipyridyl) ruthenium (II) with peroxydisulfate. After selecting the best operating parameters, the emitted light showed a linear relationship with the concentration of N-nitrosodimethylamine between 1.5 and 148 ng ml -1 , with a detection limit of 0.29 ng ml -1 . The repeatability was 1.6% expressed as relative standard deviation (n = 10) and the reproducibility, studied on five consecutive days, was 3.2%. The sample throughput was 50 injections per hour. The method was applied to studying the recoveries of N-nitrosodimethylamine in water and different cured meat products

    9. Low level chemiluminescence measurement of the binding of 8-methoxypsoralen to proteins and lymphocytic surfaces

      International Nuclear Information System (INIS)

      Lange, B.

      1980-01-01

      Photochemotherapy with 8-methoxypsoralen (8-MOP) and longwave ultraviolet light is beneficial in such different disorders like psoriasis, lichen planus, and mykosis fungoides. In contrast to a widely accepted hypothesis 8-MOP does not solely bind to nucleic acid, but also to certain proteins. The mechanism of this binding as well as the precise binding area are unknown. Therefore the UV-provoked reactions of 8-MOP with a lipid mixture, a glucosaminoglycan solution, a protein solution, and lymphocyte suspensions, respectively were investigated using low level chemiluminescence (LLCL). It was found an 8-MOP concentration-dependent decrease of LLCL intensity in the lymphocyte suspensions (10 3 to 10 4 cells/μl). This effect is result of the diminution of the photoactive 8-MOP content of the solution. 8-MOP binds quickly and in the course of a free radical reaction to lymphocytic surfaces and coincidentally loses its potency to start LLCL-detectable free radical chain responses. (author)

    10. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): Pore blocking model and membrane cleaning.

      Science.gov (United States)

      Zheng, Yi; Zhang, Wenxiang; Tang, Bing; Ding, Jie; Zheng, Yi; Zhang, Zhien

      2018-02-01

      Biofilm membrane bioreactor (BF-MBR) is considered as an important wastewater treatment technology that incorporates advantages of both biofilm and MBR process, as well as can alleviate membrane fouling, with respect to the conventional activated sludge MBR. But, to be efficient, it necessitates the establishment of proper methods for the assessment of membrane fouling. Four Hermia membrane blocking models were adopted to quantify and evaluate the membrane fouling of BF-MBR. The experiments were conducted with various operational conditions, including membrane types, agitation speeds and transmembrane pressure (TMP). Good agreement between cake formation model and experimental data was found, confirming the validity of the Hermia models for assessing the membrane fouling of BF-MBR and that cake layer deposits on membrane. Moreover, the influences of membrane types, agitation speeds and transmembrane pressure on the Hermia pore blocking coefficient of cake layer were investigated. In addition, the permeability recovery after membrane cleaning at various operational conditions was studied. This work confirms that, unlike conventional activated sludge MBR, BF-MBR possesses a low degree of membrane fouling and a higher membrane permeability recovery after cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

    11. Membrane dynamics

      DEFF Research Database (Denmark)

      Bendix, Pól Martin

      2015-01-01

      Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

    12. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

      Science.gov (United States)

      Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

      2015-08-01

      Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

    13. A new luminol chemiluminescence sensor for glucose based on pH-dependent graphene oxide.

      Science.gov (United States)

      Hao, Minjia; Liu, Na; Ma, Zhanfang

      2013-08-07

      In this study, graphene oxide (GO) was found to catalyze the luminol-O2 reaction, which yielded a novel chemiluminescence (CL). Remarkably, the CL emission could be tuned by modulating the pH of the GO dispersion. Transmission electron microscopy, CL spectra, electron spin resonance spectra studies were carried out to investigate the CL mechanism. The results indicate that the CL emission was attributed to the intrinsic catalytic effect of GO acting as the radical generation proliferators and electron transfer accelerators. Based on the GO catalyzed luminol-O2 system, we successfully developed a new CL sensor to detect glucose. Under the optimized conditions, glucose could be assayed in the range of 0.05 mM to 5 mM with a detection limit of 0.044 mM. For the detection of clinical serum samples, it is well consistent with the data determined by commercially available method in hospital, indicating that the new CL method provides a possible application for the detection of glucose in clinical diagnostics.

    14. Clinical significance of quantitative analysis of thyroid peroxidase antibody (TPOAb) with chemiluminescence enzyme immunoassay

      International Nuclear Information System (INIS)

      Zhu Cuiying; Wang Qing; Huang Gang

      2004-01-01

      Objective: The only method of laboratory diagnosis for autoimmune thyroid diseases used to be serum TGA and TMA detections. Morerecently, quantitative analysis of TPOAb has been introduced. To assess the relative sensitivity of these tests , positive rates detected with the respective tests were compared. Methods: Serum TGA, TMA (with RIA) and TPOAb (with chemiluminescence enzyme immunoassay) were simultaneously detected in 998 cases of thyroid diseases (hyperthyroidism 307, Hashimoto's disease 193, simple goiter 498). For complementary sake, fine needle aspiration cytology was obtained in a number of cases including all the patients with Hashimoto's disease. Results: Positive detection rate of TPOAb in three groups of patients (hyperthyroidism, Hashimoto's, simple goiter) was 81.76%, 96.89 % and 42.97% respectively. With TMA, the positive rate was only 54.72%, 65.80%, 22.09% respectively. About one third more cases would be detected with the newer method. Conclusion: For the laboratory detection of auto immune thyroid diseases, quantitative analysis of TPOAb is much wore sensitive than the conventional TMA detection. (authors)

    15. Zinc oxide nanoparticle-enhanced ultrasensitive chemiluminescence immunoassay for the carcinoma embryonic antigen

      International Nuclear Information System (INIS)

      Pal, Souvik; Bhand, Sunil

      2015-01-01

      An ultrasensitive enzyme-linked immunosorbent assay (ELISA) is reported for the determination of carcinoma embryonic antigen (CEA) in human serum. It was realized using a microplate reader using a 384-well plate. Monoclonal antibody (Ab) against CEA (1° Ab) acting as the capture probe was immobilized on zinc oxide nanoparticles (ZnO-NPs) in the form of self-assembled monolayers (SAMs). CEA captured by 1° Ab was quantified using a sandwich ELISA wherein a polyclonal second antibody against CEA (2° Ab) was used for detection and quantified using an HRP-labeled secondary antibody (3° Ab). The ZnO-NPs-CEA capture probe was deposited on the bottom of the wells in order to enhance capture of CEA. A 3-fold enhancement in the chemiluminescence (CL) signal of luminol is found (compared to a conventional ELISA). CEA can be quantified by this method in concentrations as low as 1 pg · mL −1 . The upper limit of detection is 20 ng · mL −1 . The use of ZnO-NPs also imparts improved thermal stability. When stored at 4 °C in phosphate-buffered saline of pH 7.4, the probe displays stability of up to 30 days. (author)

    16. Plasma treatment of paper for protein immobilization on paper-based chemiluminescence immunodevice.

      Science.gov (United States)

      Zhao, Mei; Li, Huifang; Liu, Wei; Guo, Yumei; Chu, Weiru

      2016-05-15

      A novel protein immobilization method based on plasma treatment of paper on the low-cost paper-based immunodevice was established in this work. By using a benchtop plasma cleaner, the paper microzone was treated by oxygen plasma treatment for 4 min and then the antibody can be directly immobilized on the paper surface. Aldehyde group was produced after the plasma treatment, which can be verified from the fourier transform infrared spectroscopy (FT-IR) spectra and x-ray photoelectron spectroscopy (XPS) spectra. By linked to aldehyde group, the antibody can be immobilized on the paper surface without any other pretreatment. A paper-based immunodevice was introduced here through this antibody immobilization method. With sandwich chemiluminescence (CL) immunoassay method, the paper-based immunodevice was successfully performed for carcinoembryonic antigen (CEA) detection in human serum with a linear range of 0.1-80.0 ng/mL. The detection limit was 0.03 ng/mL, which was 30 times lower than the clinical CEA level. Comparing to the other protein immobilization methods on paper-based device, this strategy was faster and simpler and had potential applications in point-of-care testing, public health and environmental monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

    17. Smart membranes for monitoring membrane based desalination processes

      KAUST Repository

      Laleg-Kirati, Taous-Meriem; Karam, Ayman M.

      2017-01-01

      Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and

    18. Novel Materials for Molecular Electronics and their Characterization

      Directory of Open Access Journals (Sweden)

      Martin Weis

      2006-01-01

      Full Text Available Defect-free diacetylene (DA Langmuir-Blodgett films polymerized on a air/water interface have various¨applications in biosensors, membrane physics or low-dimensional physics. Polymerization of DA monolayers is in general way characterized by optical spectroscopy. In this study for evaluation of photopolymerization process for the first time the Maxwell displacement current (MDC measuring technique was used. In experiment MDC flows through the metalelectrode/air gap/Langmuir monolayer/water surface structure. The effect of polymerization as well as the phase transition of polymerized DA was observed. Moreover PDA domain creation and homogenization was registered.

    19. Biomimetic membranes and methods of making biomimetic membranes

      Science.gov (United States)

      Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

      2016-11-08

      The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

    20. Gel layer formation on membranes in Membrane Bioreactors

      NARCIS (Netherlands)

      Van den Brink, P.F.H.

      2014-01-01

      The widespread application of membrane bioreactors (MBRs) for municipal wastewater treatment is hampered by membrane fouling. Fouling increases energy demand, reduces process performance and creates the need for more frequent (chemical) membrane cleaning or replacement. Membrane fouling in MBRs is

    1. Nanodisc-solubilized membrane protein library reflects the membrane proteome.

      Science.gov (United States)

      Marty, Michael T; Wilcox, Kyle C; Klein, William L; Sligar, Stephen G

      2013-05-01

      The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membrane proteins and have been used to study a wide variety of purified membrane proteins. This report details the incorporation of an unbiased population of membrane proteins from Escherichia coli membranes into Nanodiscs. This solubilized membrane protein library (SMPL) forms a soluble in vitro model of the membrane proteome. Since Nanodiscs contain isolated proteins or small complexes, the SMPL is an ideal platform for interactomics studies and pull-down assays of membrane proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the protein population before and after formation of the Nanodisc library indicates that a large percentage of the proteins are incorporated into the library. Proteomic identification of several prominent bands demonstrates the successful incorporation of outer and inner membrane proteins into the Nanodisc library.

    2. The fabrication of magnetic particle-based chemiluminescence immunoassay for human epididymis protein-4 detection in ovarian cancer.

      Science.gov (United States)

      Fu, Xiaoling; Liu, Yangyang; Qiu, Ruiyun; Foda, Mohamed F; Zhang, Yong; Wang, Tao; Li, Jinshan

      2018-03-01

      The magnetic particles have a significant influence on the immunoassay detection and cancer therapy. Herein, the chemiluminescence immunoassay combined with the magnetic particles (MPCLIA) was presented for the clinical determination and analysis of human epididymis protein 4 (HE4) in the human serum. Under the optimized experiment conditions, the secure MPCLIA method can detect HE4 in the broader range of 0-1000 pmol/L, with a lower detection limit of 1.35 pmol/L. The satisfactory recovery rate of the method in the serum ranged from 83.62% to 105.10%, which was well within the requirement of clinical analysis. Moreover, the results showed the good correlation with enzyme-linked immunosorbent assay (ELISA), with the correlation coefficient of 0.9589. This proposed method has been successfully applied to the clinical determination of HE4 in the human serum.

    3. Flux Enhancement in Membrane Distillation Using Nanofiber Membranes

      Directory of Open Access Journals (Sweden)

      T. Jiříček

      2016-01-01

      Full Text Available Membrane distillation (MD is an emerging separation technology, whose largest application potential lies in the desalination of highly concentrated solutions, which are out of the scope of reverse osmosis. Despite many attractive features, this technology is still awaiting large industrial application. The main reason is the lack of commercially available membranes with fluxes comparable to reverse osmosis. MD is a thermal separation process driven by a partial vapour pressure difference. Flux, distillate purity, and thermal efficiency are always in conflict, all three being strictly connected with pore size, membrane hydrophobicity, and thickness. The world has not seen the ideal membrane yet, but nanofibers may offer a solution to these contradictory requirements. Membranes of electrospun PVDF were tested under various conditions on a direct contact (DCMD unit, in order to determine the optimum conditions for maximum flux. In addition, their performance was compared to commonly available PTFE, PE, and PES membranes. It was confirmed that thinner membranes have higher fluxes and a lower distillate purity and also higher energy losses via conduction across the membrane. As both mass and heat transfer are connected, it is best to develop new membranes with a target application in mind, for the specific membrane module and operational conditions.

    4. Fabrication of electrospun nanofibrous membranes for membrane distillation application

      KAUST Repository

      Francis, Lijo

      2013-02-01

      Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

    5. [Establishment of chemiluminescent enzyme immunoassay for detecting antibodies against foot-and-mouth disease virus serotype O in swine].

      Science.gov (United States)

      Cui, Chen; Huang, Ligang; Li, Jing; Zou, Xingqi; Zhu, Yuanyuan; Xie, Lei; Zhao, Qizu; Yang, Limin; Liu, Wenjun

      2016-11-25

      Recombinant structural protein VP1 of foot-and-mouth disease virus serotype O was expressed in Escherichia coli and then purified using Nickel affinity chromatography. A chemiluminescent enzyme immunoassay (CLEIA) method was established using the purified recombinant protein as coating antigen to detect antibody of foot-and-mouth disease virus serotype O in swine. The specificity of VP1-CLEIA method is 100%. The coefficients of variation in the plate and between plates are 1.10%-6.70% and 0.66%-4.80%, respectively. Comparing with the commercial indirect ELISA kit or liquid phase block ELISA kit, the calculated coincidence rate is 93.50% or 94.00%. The high specificity and stability suggested this detection method can be used to monitor the antibody level of foot-and-mouth disease virus serotype O in swine.

    6. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.

      Science.gov (United States)

      Ho, J; Smith, S; Roh, H K

      2014-01-01

      A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.

    7. Membrane order in the plasma membrane and endocytic recycling compartment.

      Science.gov (United States)

      Iaea, David B; Maxfield, Frederick R

      2017-01-01

      The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.

    8. Thermoluminescence and chemiluminescence measurement as routine screening method for identification of irradiated spices. Studies to establish limiting values for differentiation of irradiated and non-irradiated samples. Thermolumineszenz- und Chemilumineszenzmessungen als Routine-Methoden zur Identifizierung strahlenbehandelter Gewuerze. Untersuchungen zur Festlegung von Grenzwerten fuer die Unterscheidung bestrahlter von unbestrahlten Proben

      Energy Technology Data Exchange (ETDEWEB)

      Heide, L; Albrich, S; Mentele, E; Boegl, W

      1987-04-01

      The reported experiments with non-irradiated and ..gamma..-irradiated spices of different origin were conducted to determine the variation in chemiluminescence and thermoluminescence intensity for each individual spice. 29 spices from 7 to 10 different manufacturers have been examined, taking into account the influence of storage time. In order to evaluate the methods, the results are represented in diagrams and tables enabling light emission limits to be given for differentiation between irradiated and non-irradiated samples. The final section of this report contains a conclusive evaluation of the present state of chemiluminescence and thermoluminescence analysis for the detection of irradiated spices.

    9. Improvement on simultaneous determination of chromium species in aqueous solution by ion chromatography and chemiluminescence detection

      DEFF Research Database (Denmark)

      Gammelgaard, Bente; Liao, Y.P.; Jons, O.

      1997-01-01

      A sensitive method for the simultaneous determination of chromium(III) and chromium(VI) was chromatography and chemiluminescence detection. Two Dionex ion-exchange guard columns in series, CG5 and AG7, were used to separate chromium(III) from chromium(VI). Chromium(VI) was reduced by potassium......, the stabilities of reductant and luminol solutions were studied. The linear range of the calibration curve for chromium(III) and chromium(VI) was 1-400 mu g l(-1). The detection limit was 0.12 mu g l(-1) for chromium(III) and 0.09 mu g l(-1) for chromium(VI), respectively. The precision at the 20 mu g l(-1) level...... was 1.4% for chromium(III) and 2.5% for chromium(VI), respectively. The accuracy of the chromium(III) determination was determined by analysis of the NIST standard reference material 1643c, Trace elements in water with the result 19.1 +/- 1.0 mu g Cr(III) l(-1) (certified value 19.0 +/- 0.6 mu g Cr...

    10. Incorporation of amphiphilic ruthenium(II) ammine complexes into Langmuir-Blodgett thin films with switchable quadratic nonlinear optical behavior.

      Science.gov (United States)

      Boubekeur-Lecaque, Leïla; Coe, Benjamin J; Harris, James A; Helliwell, Madeleine; Asselberghs, Inge; Clays, Koen; Foerier, Stijn; Verbiest, Thierry

      2011-12-19

      Nine nonlinear optical (NLO) chromophores with pyridinium electron acceptors have been synthesized by complexing new proligands with {Ru(II)(NH(3))(5)}(2+) electron-donor centers. The presence of long alkyl/fluoroalkyl chain substituents imparts amphiphilic properties, and these cationic complexes have been characterized as their PF(6)(-) salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Each complex shows three reversible/quasireversible redox processes; a Ru(III/II) oxidation and two ligand-based reductions. The energies of the intense visible d → π* metal-to-ligand charge-transfer (MLCT) absorptions correlate to some extent with the ligand reduction potentials. (1)H NMR spectroscopy also provides insights into the relative electron-withdrawing strengths of the new ligands. Single crystal X-ray structures have been determined for two of the proligand salts and one complex salt, [Ru(II)(NH(3))(5)(4-C(16)H(33)PhQ(+))]Cl(3)·3.25H(2)O (PhQ(+) = N-phenyl-4,4'-bipyridinium), showing centrosymmetric packing structures in each case. The PF(6)(-) analogue of the latter complex has been used to deposit reproducibly high-quality, multilayered Langmuir-Blodgett (LB) thin films. These films show a strong second harmonic generation (SHG) response from a 1064 nm laser; their MLCT absorbance increases linearly with the number of layers (N) and I(2ω)/I(ω)(2) (I(2ω) = intensity at 532 nm; I(ω) = intensity at 1064 nm) scales quadratically with N, consistent with homogeneous deposition. LB films on indium tin oxide (ITO)-coated glass show electrochemically induced switching of the SHG response, with a decrease in activity of about 50% on Ru(II) → Ru(III) oxidation. This effect is reversible, but reproducible over only a few cycles before the signal from the Ru(II) species diminishes. This work extrapolates our original solution studies (Coe, B. J. et al. Angew. Chem., Int. Ed.1999, 38, 366) to the first demonstration of

    11. Giant plasma membrane vesicles: models for understanding membrane organization.

      Science.gov (United States)

      Levental, Kandice R; Levental, Ilya

      2015-01-01

      The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

    12. Structure and physical properties of bio membranes and model membranes

      International Nuclear Information System (INIS)

      Tibor Hianik

      2006-01-01

      Bio membranes belong to the most important structures of the cell and the cell organelles. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equilibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the bio membranes is also due to their unique physical properties. From physical point of view the bio membranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid s crystal of smectic type. The bio membranes are characterized by anisotropy of structural and physical properties. The complex structure of bio membranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of bio membranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes, supported bilayer lipid membranes and liposomes are most known. This work is focused on the introduction into the physical word of the bio membranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the bio membranes and their models are stepwise presented. The most focus is on the properties of lipid monolayers, bilayer lipid membranes, supported bilayer lipid membranes and liposomes that were most detailed studied. This lecture has tutorial character that may be useful for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be useful also for specialists working in the field of bio membranes and model

    13. Analysis of organic acids and phenols of interest in the wine industry using Langmuir-Blodgett films based on functionalized nanoparticles.

      Science.gov (United States)

      Medina-Plaza, C; García-Cabezón, C; García-Hernández, C; Bramorski, C; Blanco-Val, Y; Martín-Pedrosa, F; Kawai, T; de Saja, J A; Rodríguez-Méndez, M L

      2015-01-01

      A chemically modified electrode consisting of Langmuir-Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (SDODAuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The SDODAuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10(-6) mol L(-1) were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio and homogeneity provided by the LB technique used for the immobilization. Moreover, the LB technique also provided an accurate method to immobilize the gold nanoparticles giving rise to stable and reproducible sensors showing repeatability lower than 2% and reproducibility lower than 4% for all the compounds analyzed. Copyright © 2014. Published by Elsevier B.V.

    14. Flow-injection chemiluminescent determination of estrogen benzoate using the tris(1,10-phenanthroline) ruthenium(II)-permanganate system.

      Science.gov (United States)

      Ma, Yan; Cao, Wei; Qiao, Shuang; Liu, Wenwen; Yang, Jinghe

      2011-01-01

      Chemiluminescence (CL) detection for the determination of estrogen benzoate, using the reaction of tris(1,10-phenanthroline)ruthenium(II)-Na(2)SO(3)-permanganate, is described. This method is based on the CL reaction of estrogen benzoate (EB) with acidic potassium permanganate and tris(1,10-phenanthroline)ruthenium(II). The CL intensity is greatly enhanced when Na(2)SO(3) is added. After optimization of the different experimental parameters, a calibration graph for estrogen benzoate is linear in the range 0.05-10 µg/mL. The 3 s limit of detection is 0.024 µg/mL and the relative standard deviation was 1.3% for 1.0 µg/mL estrogen benzoate (n = 11). This proposed method was successfully applied to commercial injection samples and emulsion cosmetics. The mechanism of CL reaction was also studied. Copyright © 2011 John Wiley & Sons, Ltd.

    15. Determination of itopride hydrochloride by high-performance liquid chromatography with Ru(bpy)3(2+) electrogenerated chemiluminescence detection.

      Science.gov (United States)

      Sun, Yonghua; Zhang, Zhujun; Xi, Zhijun; Shi, Zuolong; Tian, Wei

      2009-08-26

      In this work, a stable electrogenerated chemiluminescence (ECL) detector was developed. The detector was prepared by packing cation-exchanged resin particles in a glass tube, followed by inserting Pt wires (working electrode) in this tube and sealing. The leakage of Ru(bpy)(3)(2+) can be compensated by adding a small amount of Ru(bpy)(3)(2+) into solution phase. Coupled with high-performance liquid chromatography separation, the detector has been used for determination of itopride hydrochloride in human serum. Under the optimal conditions, the ECL intensity has a linear relationship with the concentration of itopride hydrochloride in the range of 1.0 x 10(-8) g mL(-1) to 1.0 x 10(-6) g mL(-1) and the detection limit was 3 x 10(-9) g mL(-1) (S/N=3). The as-prepared ECL detector displayed good sensitivity and stability.

    16. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

      Directory of Open Access Journals (Sweden)

      T. Jiříček

      2017-01-01

      Full Text Available Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.

    17. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

      Directory of Open Access Journals (Sweden)

      Mourad Laqbaqbi

      2017-03-01

      Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

    18. Chemiluminescence generation and detection in a capillary-driven microfluidic chip

      Science.gov (United States)

      Ramon, Charlotte; Temiz, Yuksel; Delamarche, Emmanuel

      2017-02-01

      The use of microfluidic technology represents a strong opportunity for providing sensitive, low-cost and rapid diagnosis at the point-of-care and such a technology might therefore support better, faster and more efficient diagnosis and treatment of patients at home and in healthcare settings both in developed and developing countries. In this work, we consider luminescence-based assays as an alternative to well-established fluorescence-based systems because luminescence does not require a light source or expensive optical components and is therefore a promising detection method for point-of-care applications. Here, we show a proof-of-concept of chemiluminescence (CL) generation and detection in a capillary-driven microfluidic chip for potential immunoassay applications. We employed a commercial acridan-based reaction, which is catalyzed by horseradish peroxidase (HRP). We investigated CL generation under flow conditions using a simplified immunoassay model where HRP is used instead of the complete sandwich immunocomplex. First, CL signals were generated in a capillary microfluidic chip by immobilizing HRP on a polydimethylsiloxane (PDMS) sealing layer using stencil deposition and flowing CL substrate through the hydrophilic channels. CL signals were detected using a compact (only 5×5×2.5 cm3) and custom-designed scanner, which was assembled for less than $30 and comprised a 128×1 photodiode array, a mini stepper motor, an Arduino microcontroller, and a 3D-printed housing. In addition, microfluidic chips having specific 30-μm-deep structures were fabricated and used to immobilize ensembles of 4.50 μm beads functionalized with HRP so as to generate high CL signals from capillary-driven chips.

    19. Simplex optimization of the variables influencing the determination of pefloxacin by time-resolved chemiluminescence

      Science.gov (United States)

      Murillo Pulgarín, José A.; Alañón Molina, Aurelia; Jiménez García, Elisa

      2018-03-01

      A new chemiluminescence (CL) detection system combined with flow injection analysis (FIA) for the determination of Pefloxacin is proposed. The determination is based on an energy transfer from Pefloxacin to terbium (III). The metal ion enhances the weak CL signal produced by the KMnO4/H2SO3/Pefloxacin system. A modified simplex method was used to optimize chemical and instrumental variables. The influence of the interaction of the permanganate, Tb (III), sodium sulphite and sulphuric acid concentrations, flow rate and injected sample volume was thoroughly investigated by using a modified simplex optimization procedure. The results revealed a strong direct relationship between flow rate and CL intensity throughout the studied range that was confirmed by a gamma test. The response factor for the CL emission intensity was used to assess performance in order to identify the optimum conditions for maximization of the response. Under such conditions, the CL response was proportional to the Pefloxacin concentration over a wide range. The detection limit as calculated according to Clayton's criterion 13.7 μg L- 1. The analyte was successfully determined in milk samples with an average recovery of 100.6 ± 9.8%.

    20. A fast and precise chemiluminescence ozone detector for eddy flux and airborne application

      Directory of Open Access Journals (Sweden)

      A. Zahn

      2012-02-01

      Full Text Available A commercially available dry chemiluminescence (CI instrument for fast and precise measurement of ozone (O3 is specified. The sensitivity is ~9000 counts s−1 per ppbv of ozone. Its precision is entirely determined by the number of photons reaching the detector (being a photomultiplier, i.e. is quantum-noise limited. The relative precision (ΔO3/O3 in % thus follows Poisson statistics and scales with the square root of the measurement frequency f and with the inverse O3 mixing ratio: ΔO3/O3f0.5 · O3−0.5. At typical O3 mixing ratios between 10 and 100 ppbv (and 1 bar, the precision is 0.3–1.0% at f = 10 Hz. The maximum measurement frequency is 50 Hz. The mechanical and electronic set-up as well as the instrument performance is described. Recommendations on the adequate inlet tube configuration (inlet tube length, sampling flow and on the way of calibration at stationary ground-based platforms and onboard aircraft are given.

    1. Determination of aminoglycoside antibiotics using an on-chip microfluidic device with chemiluminescence detection

      International Nuclear Information System (INIS)

      Sierra-Rodero, M.; Fernandez-Romero, J.M.; Gomez-Hens, A.

      2012-01-01

      We describe an on-chip microflow injection (μFI) approach for the determination of aminoglycoside antibiotics using chemiluminescence (CL) detection. The method is based on the inhibition of the Cu(II)-catalyzed CL reaction of luminol and hydrogen peroxide by the aminoglycosides due to the formation of a complex between the antibiotic and Cu(II). The main features of the method include small sample volumes and a fast response. Syringe pumps were used to insert the sample and the reagents into the microfluidic device. CL was collected using a fiber optic bundle connected to a luminescence detector. All instrumental, hydrodynamic and chemical variables involved in the system were optimized using neomycin as the aminoglycoside model. Inhibition is proportional to the concentration of the antibiotics. The dynamic ranges of the calibration graphs obtained for neomycin, streptomycin and amikacin are 0.3-3.3, 0.9-13.7, and 0.8-8.5 μmol L -1 , and the detection limits are 0.09, 0.28 and 0.24 μmol L -1 , respectively. The precision of the methods, expressed as relative standard deviation, is in the range from 0.8 to 5.0 %. The method was successfully applied to the determination of neomycin in water samples, with recoveries ranging from 80 to 120 %. (author)

    2. Flow and fouling in membrane filters: Effects of membrane morphology

      Science.gov (United States)

      Sanaei, Pejman; Cummings, Linda J.

      2015-11-01

      Membrane filters are widely-used in microfiltration applications. Many types of filter membranes are produced commercially, for different filtration applications, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The answer to this problem might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size & shape, etc.); (ii) fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.

    3. The Use of Flow-Injection Analysis with Chemiluminescence Detection of Aqueous Ferrous Iron in Waters Containing High Concentrations of Organic Compounds

      Directory of Open Access Journals (Sweden)

      Carrick M. Eggleston

      2009-06-01

      Full Text Available An evaluation of flow-injection analysis with chemiluminescence detection (FIA-CL to quantify Fe2+(aq in freshwaters was performed. Iron-coordinating and/or iron-reducing compounds, dissolved organic matter (DOM, and samples from two natural water systems were used to amend standard solutions of Fe2+(aq. Slopes of the response curves from ferrous iron standards (1 – 100 nM were compared to the response curves of iron standards containing the amendments. Results suggest that FIA-CL is not suitable for systems containing ascorbate, hydroxylamine, cysteine or DOM. Little or no change in sensitivity occurred in solutions of oxalate and glycine or in natural waters with little organic matter.

    4. Fundamentals of membrane bioreactors materials, systems and membrane fouling

      CERN Document Server

      Ladewig, Bradley

      2017-01-01

      This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

    5. Adaptive silicone-membrane lenses: planar vs. shaped membrane

      CSIR Research Space (South Africa)

      Schneider, F

      2009-08-01

      Full Text Available Engineering, Georges-Koehler-Allee 102, Freiburg 79110, Germany florian.schneider@imtek.uni-freiburg.de ABSTRACT We compare the performance and optical quality of two types of adaptive fluidic silicone-membrane lenses. The membranes feature either a...-membrane lenses: planar vs. shaped membrane Florian Schneider1,2, Philipp Waibel2 and Ulrike Wallrabe2 1 CSIR, Materials Science and Manufacturing, PO Box 395, Pretoria 0001, South Africa 2 University of Freiburg – IMTEK, Department of Microsystems...

    6. Degradation of Polypropylene Membranes Applied in Membrane Distillation Crystallizer

      Directory of Open Access Journals (Sweden)

      Marek Gryta

      2016-03-01

      Full Text Available The studies on the resistance to degradation of capillary polypropylene membranes assembled in a membrane crystallizer were performed. The supersaturation state of salt was achieved by evaporation of water from the NaCl saturated solutions using membrane distillation process. A high feed temperature (363 K was used in order to enhance the degradation effects and to shorten the test times. Salt crystallization was carried out by the application of batch or fluidized bed crystallizer. A significant membrane scaling was observed regardless of the method of realized crystallization. The SEM-EDS, DSC, and FTIR methods were used for investigations of polypropylene degradation. The salt crystallization onto the membrane surface accelerated polypropylene degradation. Due to a polymer degradation, the presence of carbonyl groups on the membranes’ surface was identified. Besides the changes in the chemical structure a significant mechanical damage of the membranes, mainly caused by the internal scaling, was also found. As a result, the membranes were severely damaged after 150 h of process operation. A high level of salt rejection was maintained despite damage to the external membrane surface.

    7. Membrane fusion

      DEFF Research Database (Denmark)

      Bendix, Pól Martin

      2015-01-01

      At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

    8. Introducing Membrane Charge and Membrane Potential to T Cell Signaling

      Directory of Open Access Journals (Sweden)

      Yuanqing Ma

      2017-11-01

      Full Text Available While membrane models now include the heterogeneous distribution of lipids, the impact of membrane charges on regulating the association of proteins with the plasma membrane is often overlooked. Charged lipids are asymmetrically distributed between the two leaflets of the plasma membrane, resulting in the inner leaflet being negatively charged and a surface potential that attracts and binds positively charged ions, proteins, and peptide motifs. These interactions not only create a transmembrane potential but they can also facilitate the formation of charged membrane domains. Here, we reference fields outside of immunology in which consequences of membrane charge are better characterized to highlight important mechanisms. We then focus on T cell receptor (TCR signaling, reviewing the evidence that membrane charges and membrane-associated calcium regulate phosphorylation of the TCR–CD3 complex and discuss how the immunological synapse exhibits distinct patterns of membrane charge distribution. We propose that charged lipids, ions in solution, and transient protein interactions form a dynamic equilibrium during T cell activation.

    9. Polyazole hollow fiber membranes for direct contact membrane distillation

      KAUST Repository

      Maab, Husnul; Alsaadi, Ahmad Salem; Francis, Lijo; Livazovic, Sara; Ghaffour, NorEddine; Amy, Gary L.; Nunes, Suzana Pereira

      2013-01-01

      Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

    10. Polyazole hollow fiber membranes for direct contact membrane distillation

      KAUST Repository

      Maab, Husnul

      2013-08-07

      Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

    11. Membrane fusion by VAMP3 and plasma membrane t-SNAREs

      International Nuclear Information System (INIS)

      Hu Chuan; Hardee, Deborah; Minnear, Fred

      2007-01-01

      Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of α-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins

    12. A novel flow injection chemiluminescence method for automated and miniaturized determination of phenols in smoked food samples.

      Science.gov (United States)

      Vakh, Christina; Evdokimova, Ekaterina; Pochivalov, Aleksei; Moskvin, Leonid; Bulatov, Andrey

      2017-12-15

      An easily performed fully automated and miniaturized flow injection chemiluminescence (CL) method for determination of phenols in smoked food samples has been proposed. This method includes the ultrasound assisted solid-liquid extraction coupled with gas-diffusion separation of phenols from smoked food sample and analytes absorption into a NaOH solution in a specially designed gas-diffusion cell. The flow system was designed to focus on automation and miniaturization with minimal sample and reagent consumption by inexpensive instrumentation. The luminol - N-bromosuccinimide system in an alkaline medium was used for the CL determination of phenols. The limit of detection of the proposed procedure was 3·10 -8 ·molL -1 (0.01mgkg -1 ) in terms of phenol. The presented method demonstrated to be a good tool for easy, rapid and cost-effective point-of-need screening phenols in smoked food samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

    13. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

      Science.gov (United States)

      Quon, Evan; Beh, Christopher T.

      2015-01-01

      Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions. PMID:26949334

    14. Liver plasma membranes: an effective method to analyze membrane proteome.

      Science.gov (United States)

      Cao, Rui; Liang, Songping

      2012-01-01

      Plasma membrane proteins are critical for the maintenance of biological systems and represent important targets for the treatment of disease. The hydrophobicity and low abundance of plasma membrane proteins make them difficult to analyze. The protocols given here are the efficient isolation/digestion procedures for liver plasma membrane proteomic analysis. Both protocol for the isolation of plasma membranes and protocol for the in-gel digestion of gel-embedded plasma membrane proteins are presented. The later method allows the use of a high detergent concentration to achieve efficient solubilization of hydrophobic plasma membrane proteins while avoiding interference with the subsequent LC-MS/MS analysis.

    15. Membrane Biophysics

      CERN Document Server

      Ashrafuzzaman, Mohammad

      2013-01-01

      Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

    16. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

      OpenAIRE

      Jiříček, T.; Komárek, M.; Lederer, T.

      2017-01-01

      Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest ...

    17. Nanodisc-solubilized membrane protein library reflects the membrane proteome

      OpenAIRE

      Marty, Michael T.; Wilcox, Kyle C.; Klein, William L.; Sligar, Stephen G.

      2013-01-01

      The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membr...

    18. Impact of sludge flocs on membrane fouling in membrane bioreactors

      DEFF Research Database (Denmark)

      Christensen, Morten Lykkegaard; Niessen, Wolfgang; Jørgensen, Mads Koustrup

      Membrane bioreactors (MBR) are widely used for wastewater treatment, but membrane fouling reduces membrane performance and thereby increases the cost for membranes and fouling control. Large variation in filtration properties measured as flux decline was observed for the different types of sludges....... Further, the flux could partly be reestablished after the relaxation period depending on the sludge composition. The results underline that sludge properties are important for membrane fouling and that control of floc properties, as determined by the composition of the microbial communities...... and the physico-chemical properties, is an efficient method to reduce membrane fouling in the MBR. High concentration of suspended extracellular substances (EPS) and small particles (up to 10 µm) resulted in pronounced fouling propensity. The membrane fouling resistance was reduced at high concentration...

    19. Electrogenerated chemiluminescence of tris(2,2' bipyridine)ruthenium(II) using common biological buffers as co-reactant, pH buffer and supporting electrolyte.

      Science.gov (United States)

      Kebede, Noah; Francis, Paul S; Barbante, Gregory J; Hogan, Conor F

      2015-11-07

      A series of aliphatic tertiary amines (HEPES, POPSO, EPPS and BIS-TRIS) commonly used to buffer the pH in biological experiments, were examined as alternative, non-toxic co-reactants for the electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) ([Ru(bpy)3](2+)). These were found to be very attractive as "multi-tasking" reagents, serving not only as co-reactants, but also fulfiling the roles of pH buffer and supporting electrolyte within an aqueous environment; thus significantly simplifying the overall ECL analysis. Sub-nanomolar detection limits were obtained for [Ru(bpy)3](2+) in the presence of BIS-TRIS, making this species an valuable option for co-reactant ECL-based bioanalytical applications.

    20. Quenching the chemiluminescence of acridinium ester by graphene oxide for label-free and homogeneous DNA detection.

      Science.gov (United States)

      He, Yi; Huang, Guangming; Cui, Hua

      2013-11-13

      It was found that graphene oxide (GO) could effectively quench the chemiluminescence (CL) emission from a acridinium ester (AE)-hydrogen peroxide system. By taking advantage of this quenching effect, as a proof of concept, a label-free and homogeneous DNA assay was developed for the detection of Mycobacterium tuberculosis DNA. In the absence of target DNA, both probe DNA and AE were absorbed on the surface of GO, producing a weak CL emission owing to the CL quenching effect of GO. However, in the presence of target DNA, a double-stranded structure of DNA was generated, leading to the release of the oligonucleotide from the GO surface. AE favors binding with double-stranded DNA, which will be released from the GO surface; thus, the quenching effect of GO will be no longer effective and a strong CL signal can be observed. This assay can detect M. tuberculosis DNA with a detection limit of 0.65 nM. This sensitivity is lower than that of previously reported electrochemical detection.

    1. Determination of volatile nitrosamines in grilled lamb and vegetables using comprehensive gas chromatography - nitrogen chemiluminescence detection.

      Science.gov (United States)

      Kocak, D; Ozel, M Z; Gogus, F; Hamilton, J F; Lewis, A C

      2012-12-15

      The grilling of meat may generate dangerous levels of mutagenic and carcinogenic nitrosamines (NAs). Meat and vegetable samples underwent a two-step solid-phase extraction before analysis by comprehensive gas chromatography with a nitrogen chemiluminescence detection system (GCxGC-NCD). The GCxGC-NCD method showed high selectivity, sensitivity and equimolarity in its response to six specific NAs. NA contamination of charcoal-grilled lamb at various stages of cooking and with various fat contents and also charcoal-grilled vegetables were investigated. The grilling of lamb on unready charcoal resulted in the formation of considerable quantities of NAs. Grilling lamb on properly prepared, ready charcoal resulted in an increase in total concentrations of six NAs from 0 to 4.51 μg kg(-1) over a period of 16 min. Increasing the fat content of the grilled lamb from 5% to 20% caused a modest increase in total concentrations of the six investigated NAs from 4.51 to 5.30 μg kg(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.

    2. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

      Science.gov (United States)

      Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

      2017-09-01

      G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

    3. A charged aerosol detector/chemiluminescent nitrogen detector/liquid chromatography/mass spectrometry system for regular and fragment compound analysis in drug discovery.

      Science.gov (United States)

      Jiang, Yutao; Hascall, Daniel; Li, Delia; Pease, Joseph H

      2015-09-11

      In this paper, we introduce a high throughput LCMS/UV/CAD/CLND system that improves upon previously reported systems by increasing both the quantitation accuracy and the range of compounds amenable to testing, in particular, low molecular weight "fragment" compounds. This system consists of a charged aerosol detector (CAD) and chemiluminescent nitrogen detector (CLND) added to a LCMS/UV system. Our results show that the addition of CAD and CLND to LCMS/UV is more reliable for concentration determination for a wider range of compounds than either detector alone. Our setup also allows for the parallel analysis of each sample by all four detectors and so does not significantly increase run time per sample. Copyright © 2015 Elsevier B.V. All rights reserved.

    4. Electrochemiluminescence and chemiluminescence of a carboxylic acid derivative of ruthenium(II) tris-(2,2'-bipyridine) chelate synthesized for labeling purposes

      International Nuclear Information System (INIS)

      Jiang Qinghong; Sun Shiguo; Hakansson, Markus; Langel, Kaarina; Ylinen, Tiina; Suomi, Johanna; Kulmala, Sakari

      2006-01-01

      Synthesis, purification and characterization of [4-ethoxycarbonyl-4'-carboxy-2,2'-bipyridine]bis(2,2'-bipyridine) ruthenium(II) hexafluorophosphate is described. This complex is shown to be electrochemiluminescent in aqueous solution during cathodic pulse polarization of thin insulating film-coated electrodes. Electrochemiluminescence (ECL) lifetime of the complex was observed to be ca. 40 μs at oxide-coated n-silicon electrodes; thus time-resolved detection is also possible. The ECL emission maximum of this carboxylate derivative is somewhat red-shifted when compared with an unmodified Ru(bpy) 3 2+ . Because the present complex can be easily covalently coupled with antibodies and oligonucleotides it is usable as an electrochemiluminescent label in various bioaffinity assays. The present chelates also produce strong chemiluminescence during dissolution of metallic magnesium in aqueous solution

    5. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling

      Directory of Open Access Journals (Sweden)

      Huaqiang Chu

      2013-09-01

      Full Text Available The application of low pressure membranes (microfiltration/ultrafiltration has undergone accelerated development for drinking water production. However, the major obstacle encountered in its popularization is membrane fouling caused by natural organic matter (NOM. This paper firstly summarizes the two factors causing the organic membrane fouling, including molecular weight (MW and hydrophilicity/hydrophobicity of NOM, and then presents a brief introduction of the methods which can prevent membrane fouling such as pretreatment of the feed water (e.g., coagulation, adsorption, and pre-oxidation and membrane hydrophilic modification (e.g., plasma modification, irradiation grafting modification, surface coating modification, blend modification, etc.. Perspectives of further research are also discussed.

    6. Recent developments on ion-exchange membranes and electro-membrane processes.

      Science.gov (United States)

      Nagarale, R K; Gohil, G S; Shahi, Vinod K

      2006-02-28

      Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.

    7. Clustering on Membranes

      DEFF Research Database (Denmark)

      Johannes, Ludger; Pezeshkian, Weria; Ipsen, John H

      2018-01-01

      Clustering of extracellular ligands and proteins on the plasma membrane is required to perform specific cellular functions, such as signaling and endocytosis. Attractive forces that originate in perturbations of the membrane's physical properties contribute to this clustering, in addition to direct...... protein-protein interactions. However, these membrane-mediated forces have not all been equally considered, despite their importance. In this review, we describe how line tension, lipid depletion, and membrane curvature contribute to membrane-mediated clustering. Additional attractive forces that arise...... from protein-induced perturbation of a membrane's fluctuations are also described. This review aims to provide a survey of the current understanding of membrane-mediated clustering and how this supports precise biological functions....

    8. Quantitative Monitoring of Cefradine in Human Urine Using a Luminol/Sulfobutylether-β-Cyclodextrin Chemiluminescence System

      Science.gov (United States)

      Shen, M. X.; Tan, X. J.; Song, Zh. H.

      2018-05-01

      In this paper, a sensitive, rapid, and simple flow-injection chemiluminescence (FI-CL) technique is described for determining cefradine in human urine and capsule samples at the picogram level. The results show that cefradine within 0.1-100.0 nmol/L quantitatively quenches the CL intensity of the luminol/sulfo butylether-β-cyclodextrin (SBE-β-CD) system, with a relative correlation coefficient r of 0.9931. Subsequently, the possible mechanism for the quenching phenomenon is discussed in detail using the FI-CL and molecular docking methods. The proposed CL method, with a detection limit of 0.03 nmol/L (3σ) and relative standard deviations administration, the cefradine reaches a maximum value of 1.37 ± 0.02 mg/mL at 2.0 h in urine, and the total excretion is 4.41 ± 0.03 mg/mL within 8.0 h. The absorption rate constant ka, the elimination rate constant ke, and the half-life t1/2 are 0.670 ± 0.008 h-1, 0.744 ± 0.005 h-1, and 0.93 ± 0.05 h, respectively.

    9. Evaluation of enhanced chemiluminescence enzymeimmunoassay(CLEIA) in the determination of thyrotropin(TSH) using amerlite system

      International Nuclear Information System (INIS)

      Lee, Chae H.; Kim, Hwan k.; Kim, Jin Gyu

      1989-01-01

      The determination of thyrotropin(TSH) is useful in diagnosis of thyroid diseases. And the widely-used method for the determination of thyrotropin is radioimmunoassay so far because of its sensitivity. But its radiohazard and relatively short half-life of isotopes necessitates alternative methods. So many novel non-isotopic immunoassays are developed and now replacing RIA in routine laboratory measurements. We evaluated the enhanced chemiluminescence enzymeimmunoassay (Amerlite, Amersham International plc., U.K.) for the determination of serum TSH. We got good precision result with control sera. Within-assay and between-assay precision revealed less than 10%(C.V.) respectively. And comparision with CLEIA to RIA showed good correlation (y=0.648x + 0.170, r=0.978, y=value of CLEIA, x=values of RIA, n=35). We also got good correlation between singletons and duplicates result from 35 patients sera (y=0.967x + 0.0281, r=0.997, y=values of singletons, x=values of duplicates). We concluded that CLEIA is vary reliable and economic method for the determination of human TSH substitutive for RIA because of its precision and unnecessary duplicate measurements. (Author)

    10. Analysis of proton exchange membrane fuel cell performance with alternate membranes

      Energy Technology Data Exchange (ETDEWEB)

      Wakizoe, Masanobu; Velev, O A; Srinivasan, S [Texas A and M Univ., College Station, TX (United States). Texas Engineering Experiment Station

      1995-02-01

      Renewed interest in proton exchange membrane fuel cell technology for space and terrestrial (particularly electric vehicles) was stimulated by the demonstration, in the mid 1980s, of high energy efficiencies and high power densities. One of the most vital components of the PEMFC is the proton conducting membrane. In this paper, an analysis is made of the performances of PEMFCs with Dupont`s Nafion, Dow`s experimental, and Asahi Chemical`s Aciplex-S membranes. Attempts were also made to draw correlations between the PEMFC performances with the three types of membranes and their physico-chemical characteristics. Practically identical levels of performances (energy efficiency, power density, and lifetime) were achieved in PEMFCs with the Dow and the Aciplex-S membranes and these performances were better than in the PEMFCs with the Nafion-115 membrane. The electrode kinetic parameters for oxygen reduction are better for the PEMFCs with the Aciplex-S and Nafion membranes than with the Dow membranes. The PEMFCs with the Aciplex-S and Dow membranes have nearly the same internal resistances which are considerably lower than for the PEMFC with the Nafion membrane. The desired membrane characteristics to obtain high levels of performance are low equivalent weight and high water content. (Author)

    11. Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges

      Directory of Open Access Journals (Sweden)

      Maria Grazia De Giorgi

      2017-03-01

      Full Text Available Reduction of nitric oxides (NOx in aircraft engines and in gas turbines by lean combustion is of great interest in the design of novel combustion systems. However, the stabilization of the flame under lean conditions is a main issue. In this context, the present work investigates the effects of sinusoidal dielectric barrier discharge (DBD on a lean inverse diffusive methane/air flame in a Bunsen-type burner under different actuation conditions. The flame appearance was investigated with fixed methane loading (mass flux, but with varying inner airflow rate. High-speed flame imaging was done by using an intensified (charge-coupled device CCD camera equipped with different optical filters in order to selectively record signals from the chemiluminescent species OH*, CH*, or CO2* to evaluate the flame behavior in presence of plasma actuation. The electrical power consumption was less than 33 W. It was evident that the plasma flame enhancement was significantly influenced by the plasma discharges, particularly at high inner airflow rates. The flame structure changes drastically when the dissipated plasma power increases. The flame area decreases due to the enhancement of mixing and chemical reactions that lead to a more anchored flame on the quartz exit with a reduction of the flame length.

    12. Electrospun superhydrophobic membranes with unique structures for membrane distillation.

      Science.gov (United States)

      Liao, Yuan; Loh, Chun-Heng; Wang, Rong; Fane, Anthony G

      2014-09-24

      With modest temperature demand, low operating pressure, and high solute rejection, membrane distillation (MD) is an attractive option for desalination, waste treatment, and food and pharmaceutical processing. However, large-scale practical applications of MD are still hindered by the absence of effective membranes with high hydrophobicity, high porosity, and adequate mechanical strength, which are important properties for MD permeation fluxes, stable long-term performance, and effective packing in modules without damage. This study describes novel design strategies for highly robust superhydrophobic dual-layer membranes for MD via electrospinning. One of the newly developed membranes comprises a durable and ultrathin 3-dimensional (3D) superhydrophobic skin and porous nanofibrous support whereas another was fabricated by electrospinning 3D superhydrophobic layers on a nonwoven support. These membranes exhibit superhydrophobicity toward distilled water, salty water, oil-in-water emulsion, and beverages, which enables them to be used not only for desalination but also for other processes. The superhydrophobic dual-layer membrane #3S-N with nanofibrous support has a competitive permeation flux of 24.6 ± 1.2 kg m(-2) h(-1) in MD (feed and permeate temperate were set as 333 and 293 K, respectively) due to the higher porosity of the nanofibrous scaffold. Meanwhile, the membranes with the nonwoven support exhibit greater mechanical strength due to this support combined with better long-term performance because of the thicker 3D superhydrophobic layers. The morphology, pore size, porosity, mechanical properties, and liquid enter pressure of water of these superhydrophobic composite membranes with two different structures are reported and compared with commercial polyvinylidene fluoride membranes.

    13. Cholesterol-Induced Buckling in Physisorbed Polymer-Tethered Lipid Monolayers

      Directory of Open Access Journals (Sweden)

      Christoph A. Naumann

      2013-04-01

      Full Text Available The influence of cholesterol concentration on the formation of buckling structures is studied in a physisorbed polymer-tethered lipid monolayer system using epifluorescence microscopy (EPI and atomic force microscopy (AFM. The monolayer system, built using the Langmuir-Blodgett (LB technique, consists of 3 mol % poly(ethylene glycol (PEG lipopolymers and various concentrations of the phospholipid, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC, and cholesterol (CHOL. In the absence of CHOL, AFM micrographs show only occasional buckling structures, which is caused by the presence of the lipopolymers in the monolayer. In contrast, a gradual increase of CHOL concentration in the range of 0–40 mol % leads to fascinating film stress relaxation phenomena in the form of enhanced membrane buckling. Buckling structures are moderately deficient in CHOL, but do not cause any notable phospholipid-lipopolymer phase separation. Our experiments demonstrate that membrane buckling in physisorbed polymer-tethered membranes can be controlled through CHOL-mediated adjustment of membrane elastic properties. They further show that CHOL may have a notable impact on molecular confinement in the presence of crowding agents, such as lipopolymers. Our results are significant, because they offer an intriguing prospective on the role of CHOL on the material properties in complex membrane architecture.

    14. Microporous silica membranes

      DEFF Research Database (Denmark)

      Boffa, Vittorio; Yue, Yuanzheng

      2012-01-01

      Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

    15. Composite Membrane with Underwater-Oleophobic Surface for Anti-Oil-Fouling Membrane Distillation.

      Science.gov (United States)

      Wang, Zhangxin; Hou, Deyin; Lin, Shihong

      2016-04-05

      In this study, we fabricated a composite membrane for membrane distillation (MD) by modifying a commercial hydrophobic polyvinylidene fluoride (PVDF) membrane with a nanocomposite coating comprising silica nanoparticles, chitosan hydrogel and fluoro-polymer. The composite membrane exhibits asymmetric wettability, with the modified surface being in-air hydrophilic and underwater oleophobic, and the unmodified surface remaining hydrophobic. By comparing the performance of the composite membrane and the pristine PVDF membrane in direct contact MD experiments using a saline emulsion with 1000 ppm crude oil (in water), we showed that the fabricated composite membrane was significantly more resistant to oil fouling compared to the pristine hydrophobic PVDF membrane. Force spectroscopy was conducted for the interaction between an oil droplet and the membrane surface using a force tensiometer. The difference between the composite membrane and the pristine PVDF membrane in their interaction with an oil droplet served to explain the difference in the fouling propensities between these two membranes observed in MD experiments. The results from this study suggest that underwater oleophobic coating can effectively mitigate oil fouling in MD operations, and that the fabricated composite membrane with asymmetric wettability can enable MD to desalinate hypersaline wastewater with high concentrations of hydrophobic contaminants.

    16. Synthesis, electrochemistry, and electrogenerated chemiluminescence of two BODIPY-appended bipyridine homologues.

      Science.gov (United States)

      Qi, Honglan; Teesdale, Justin J; Pupillo, Rachel C; Rosenthal, Joel; Bard, Allen J

      2013-09-11

      Two new 2,2'-bipyridine (bpy) derivatives containing ancillary BODIPY chromophores attached at the 5- and 5'-positions (BB3) or 6- and 6'-positions (BB4) were prepared and characterized. In this work, the basic photophysics, electrochemistry, and electrogenerated chemiluminescence (ECL) of BB3 and BB4 are compared with those previously reported for a related bpy-BODIPY derivative (BB2) (J. Phys. Chem. C 2011, 115, 17993-18001). Cyclic voltammetry revealed that BB3 and BB4 display reversible 2e(-) oxidation and reduction waves, which consist of two closely spaced (50-70 mV) 1e(-) events. This redox behavior is consistent with the frontier molecular orbitals calculated for BB3 and BB4 and indicates that the 2,2'-bipyridine spacer of each bpy-BODIPY homologue does not facilitate efficient electronic communication between the tethered indacene units. In the presence of a coreactant such as tri-n-propylamine (TPA) or benzoyl peroxide (BPO), BB3 and BB4 exhibit strong ECL and produce spectra that are very similar to their corresponding photoluminescence profiles. The ECL signal obtained under annihilation conditions, however, is significantly different and is characterized by two distinct bands. One of these bands is centered at ∼570 nm and is attributed to emission via an S- or T-route. The second band occurs at longer wavelengths and is centered around ∼740 nm. The shape and concentration dependence of this long-wavelength ECL signal is not indicative of emission from an excimer or aggregate, but rather it suggests that a new emissive species is formed from the bpy-BODIPY luminophores during the annihilation process.

    17. Synthesis, Electrochemistry and Electrogenerated Chemiluminesce of two BODIPY-Appended Bipyridine Homologues

      Science.gov (United States)

      Qi, Honglan; Teesdale, Justin J.; Pupillo, Rachel C.

      2014-01-01

      Two new 2,2’-bipyridine (bpy) derivatives containing ancillary BODIPY chromophores attached at the 5- and 5’-positions (BB3) or 6- and 6’-positions (BB4) were prepared and characterized. In this work, the basic photophysics, electrochemistry and electrogenerated chemiluminescence (ECL) of BB3 and BB4 are compared with those previously reported for a related bpy-BODIPY derivative (BB2) (J. Phys. Chem. C 2011, 115, 17993–18001). Cyclic voltammetry revealed that BB3 and BB4 display reversible 2e− oxidation and reduction waves, which consist of two closely spaced (50 – 70 mV) 1e− events. This redox behavior is consistent with the frontier molecular orbitals calculated for BB3 and BB4 and indicates that the 2,2’-bipyridine spacer of each bpy- BODIPY homologue does not facilitate efficient electronic communication between the tethered indacene units. In the presence of a coreactant such as tri-n-propylamine (TPA) or benzoyl peroxide (BPO), BB3 and BB4 exhibit strong ECL and produce spectra that are very similar to their corresponding photoluminescence profiles. The ECL signal obtained under annihilation conditions, however, is significantly different and is characterized by two distinct bands. One of these bands is centered at ~570 nm and is attributed to emission via an S- or T-route. The second band, occurs at longer wavelengths and is centered around ~740 nm. The shape and concentration dependence of this long-wavelength ECL signal is not indicative of emission from an excimer or aggregate, but rather is suggests that a new emissive species is formed from the bpy-BODIPY luminophores during the annihilation process. PMID:23980850

    18. Comparison and analysis of membrane fouling between flocculent sludge membrane bioreactor and granular sludge membrane bioreactor.

      Directory of Open Access Journals (Sweden)

      Wang Jing-Feng

      Full Text Available The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs, two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.

    19. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

      OpenAIRE

      Evan Quon; Christopher T. Beh

      2016-01-01

      Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer...

    20. Autophagosomal membranes assemble at ER-plasma membrane contact sites.

      Science.gov (United States)

      Nascimbeni, Anna Chiara; Codogno, Patrice; Morel, Etienne

      2017-01-01

      The biogenesis of autophagosome, the double membrane bound organelle related to macro-autophagy, is a complex event requiring numerous key-proteins and membrane remodeling events. Our recent findings identify the extended synaptotagmins, crucial tethers of Endoplasmic Reticulum-plasma membrane contact sites, as key-regulators of this molecular sequence.

    1. Metal–Organic Framework-Functionalized Alumina Membranes for Vacuum Membrane Distillation

      Directory of Open Access Journals (Sweden)

      Jian Zuo

      2016-12-01

      Full Text Available Nature-mimetic hydrophobic membranes with high wetting resistance have been designed for seawater desalination via vacuum membrane distillation (VMD in this study. This is achieved through molecular engineering of metal–organic framework (MOF-functionalized alumina surfaces. A two-step synthetic strategy was invented to design the hydrophobic membranes: (1 to intergrow MOF crystals on the alumina tube substrate and (2 to introduce perfluoro molecules onto the MOF functionalized membrane surface. With the first step, the surface morphology, especially the hierarchical roughness, can be controlled by tuning the MOF crystal structure. After the second step, the perfluoro molecules function as an ultrathin layer of hydrophobic floss, which lowers the surface energy. Therefore, the resultant membranes do not only possess the intrinsic advantages of alumina supports such as high stability and high water permeability, but also have a hydrophobic surface formed by MOF functionalization. The membrane prepared under an optimum condition achieved a good VMD flux of 32.3 L/m2-h at 60 °C. This study may open up a totally new approach for design of next-generation high performance membrane distillation membranes for seawater desalination.

    2. Application of a Chemiluminescence Detector for the Measurement of Total Oxides of Nitrogen and Ammonia in the Atmosphere

      Science.gov (United States)

      Hodgeson, J. A.; Bell, J. P.; Rehme, K. A.; Krost, K. J.; Stevens, R. K.

      1971-01-01

      By means of the thermal conversion of nitrogen dioxide to the nitric oxide, the chemiluminescent nitric oxide monitor, based on the nitric oxide plus ozone reaction, may be used for monitoring nitrogen dioxide plus nitric oxide (NO(x)). Under conditions previously described, ammonia is also converted to nitric oxide and therefore interferes. A metal surface, gold wool or stainless steel, operated at two different temperatures has been used to convert only nitrogen dioxide or nitrogen dioxide plus ammonia. Quantitative conversion of nitrogen dioxide to nitric oxide has been obtained at temperatures as low as 200 C. Conversion of ammonia is effected at temperatures of 300 C or higher. By the addition of a converter the basic nitric oxide monitor may be used for measuring NO(x) or NO(x) plus ammonia. As an alternate mode, for a fixed high temperature, a specific scrubber is described for removing NH3 without affecting NO2 concentrations.

    3. Focus on Membrane Differentiation and Membrane Domains in the Prokaryotic Cell

      NARCIS (Netherlands)

      Boekema, Egbert J.; Scheffers, Dirk-Jan; van Bezouwen, Laura S.; Bolhuis, Henk; Folea, I. Mihaela

      2013-01-01

      A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different

    4. Protein-centric N-glycoproteomics analysis of membrane and plasma membrane proteins.

      Science.gov (United States)

      Sun, Bingyun; Hood, Leroy

      2014-06-06

      The advent of proteomics technology has transformed our understanding of biological membranes. The challenges for studying membrane proteins have inspired the development of many analytical and bioanalytical tools, and the techniques of glycoproteomics have emerged as an effective means to enrich and characterize membrane and plasma-membrane proteomes. This Review summarizes the development of various glycoproteomics techniques to overcome the hurdles formed by the unique structures and behaviors of membrane proteins with a focus on N-glycoproteomics. Example contributions of N-glycoproteomics to the understanding of membrane biology are provided, and the areas that require future technical breakthroughs are discussed.

    5. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

      Energy Technology Data Exchange (ETDEWEB)

      Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

      2015-12-31

      Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

    6. Nafion/Silicon Oxide Composite Membrane for High Temperature Proton Exchange Membrane Fuel Cell

      Institute of Scientific and Technical Information of China (English)

      2007-01-01

      Nafion/Silicon oxide composite membranes were produced via in situ sol-gel reaction of tetraethylorthosilicate (TEOS) in Nafion membranes. The physicochemical properties of the membranes were studied by FT-IR, TG-DSC and tensile strength. The results show that the silicon oxide is compatible with the Nafion membrane and the thermo stability of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. Furthermore, the tensile strength of Nafion/Silicon oxide composite membrane is similar to that of the Nafion membrane. The proton conductivity of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. When the Nafion/Silicon oxide composite membrane was employed as an electrolyte in H2/O2 PEMFC, a higher current density value (1 000 mA/cm2 at 0.38 V) than that of the Nafion 1135 membrane (100 mA/cm2 at 0.04 V) was obtained at 110 ℃.

    7. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins.

      Science.gov (United States)

      Suetsugu, Shiro; Kurisu, Shusaku; Takenawa, Tadaomi

      2014-10-01

      All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes. Copyright © 2014 the

    8. Eggshell membrane-templated porous gold membranes using nanoparticles as building blocks

      International Nuclear Information System (INIS)

      Ashraf, S.; Khalid, Z. M.; Hussain, I.

      2013-01-01

      Highly porous gold membrane-like structures are formed using eggshell membrane, as such and heat denatured, as a template and gold nanoparticles as building blocks. Gold nanoparticles were produced in-situ on the eggshell membranes without using additional reducing agents. The morphology and loading of gold nanoparticles can easily be controlled by adjusting the pH and thus the redox potential of eggshell membranes. Lower pH favored the formation of irregularly-shaped but dense gold macro/ nanocrystals whereas higher pH(8-9) favored the formation of fairly uniform but less dense gold nanoparticles onto the eggshell membranes. Heat treatment of eggshell membrane-gold nanoparticle composites formed at pH 8-9 led to the formation of highly porous membrane like gold while mimicking the original structure of eggshell membrane. All these materials have been thoroughly characterized using field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and inductively coupled plasma - atomic emission spectroscopy (ISP-AES). These highly porous membrane-like gold materials may have potential applications in catalysis, biosensors, electrode materials, optically selective coatings, heat dissipation and biofiltration. (author)

    9. Membrane processes

      Science.gov (United States)

      Staszak, Katarzyna

      2017-11-01

      The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

    10. Polymeric and Lipid Membranes-From Spheres to Flat Membranes and vice versa.

      Science.gov (United States)

      Saveleva, Mariia S; Lengert, Ekaterina V; Gorin, Dmitry A; Parakhonskiy, Bogdan V; Skirtach, Andre G

      2017-08-15

      Membranes are important components in a number of systems, where separation and control of the flow of molecules is desirable. Controllable membranes represent an even more coveted and desirable entity and their development is considered to be the next step of development. Typically, membranes are considered on flat surfaces, but spherical capsules possess a perfect "infinite" or fully suspended membranes. Similarities and transitions between spherical and flat membranes are discussed, while applications of membranes are also emphasized.

    11. Chelating polymeric membranes

      KAUST Repository

      Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

      2015-01-01

      microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

    12. Structures and shear response of lipid monolayers. Progress report, August 1, 1993--January 31, 1996

      International Nuclear Information System (INIS)

      Dutta, P.; Ketterson, J.B.

      1995-08-01

      Of the many systems now classified as open-quotes soft condensed matterclose quotes, lipids are some of the best known and most studied. Lipids occur most commonly in membranes, but the artificially created lipid systems known as Langmuir films (on water) and Langmuir-Blodgett films (on solid substrates) are in some ways better-defined and more easily controlled systems with which to address many of the same questions. Studies of these systems have a long and distinguished history, but in the past decade there has been an explosion of activity in this area, driven by the availability of a or more powerful experimental probes but also in part by the hope of producing new structured molecular materials and devices. Today the focus of device-oriented research is shifting to self-assembled (chemisorbed) films, because it is recognized that these films are somewhat more stable under application conditions. This trend has resulted in a generally more appropriate view of Langmuir and Langmuir Blodgett films as model systems with which to study the properties of organized molecular assemblies. These films are part of a larger class that includes membranes, lamellar paraffins and liquid crystals as well as self-assembled films, but with certain experimental and conceptual advantages (such as the ease with which the density may be varied, and the tethering to a flat plane). This report describes the continued studies of the phase diagrams of Langmuir monolayers, and efforts to understand the variables that affect the structures formed. It also describes studies of the structure of a transferred monolayer, and how this evolves as further layers are added. Finally, the authors describe their studies of the mechanical response of Langmuir-Blodgett films using a small-strain torsion balance at the center of a circular trough

    13. Photoresponsive nanostructured membranes

      KAUST Repository

      Madhavan, Poornima

      2016-07-26

      The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

    14. Recent advances on membranes and membrane reactors for hydrogen production

      NARCIS (Netherlands)

      Gallucci, F.; Fernandez Gesalaga, E.; Corengia, P.; Sint Annaland, van M.

      2013-01-01

      Membranes and membrane reactors for pure hydrogen production are widely investigated not only because of the important application areas of hydrogen, but especially because mechanically and chemically stable membranes with high perm-selectivity towards hydrogen are available and are continuously

    15. Serum dosage of CPK-MB in dogs with ST deviation by chemiluminescence

      Directory of Open Access Journals (Sweden)

      André L.F. Santos

      2014-12-01

      Full Text Available Abstract: Although frequently in humans, hypoxic and ischemic heart diseases are poorly documented in dogs, with only few reports of acute myocardial infarction (AMI in this species. Some electrocardiographic findings might suggest myocardium hypoxia/ischemia, like ST segment elevation or depression, but there are no studies showing whether deviations in ST segment are associated to myocardial injury and serum increase of creatine phosphokinase (CPK-MB. In order to investigate possible myocardial cells injury in poor perfusion conditions, 38 dogs were studied, 20 with normal electrocardiogram and 18 with ST segment elevation or depression, recorded in lead II, at a paper speed of 50 mm/sec and N sensibility (1mV=1cm. Serum measurement of creatine phosphokinase isoenzyme MB (CPK-MB in normal dogs (group 1 determined control values (in ng/mL, which were compared to those obtained from dogs with deviation (group 2, which allowed confirmation or not of myocardial injury. CPK-MB mean values obtained from dogs in groups 1 and 2 were 0.540ng/ml (SD±0.890ng/mL and 0.440ng/mL (SD±1.106, respectively. At a significance level of 5%, the relation of CPK-MB with age, mass and total creatine phosphokinase (CPK-T was not significant in groups 1 and 2. CPK-MB showed no difference, at 5% level, between groups 1 and 2. In conclusion, it is possible to use the human chemiluminescent immunometric assay kit in canine species and that hypoxia/ischemia revealed by ST segment deviation does not mean significant myocardium injury.

    16. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

      KAUST Repository

      Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

      2014-01-01

      Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

    17. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

      KAUST Repository

      Francis, Lijo

      2014-08-11

      Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

    18. Improving Nanofiber Membrane Characteristics and Membrane Distillation Performance of Heat-Pressed Membranes via Annealing Post-Treatment

      Directory of Open Access Journals (Sweden)

      Minwei Yao

      2017-01-01

      Full Text Available Electrospun membranes are gaining interest for use in membrane distillation (MD due to their high porosity and interconnected pore structure; however, they are still susceptible to wetting during MD operation because of their relatively low liquid entry pressure (LEP. In this study, post-treatment had been applied to improve the LEP, as well as its permeation and salt rejection efficiency. The post-treatment included two continuous procedures: heat-pressing and annealing. In this study, annealing was applied on the membranes that had been heat-pressed. It was found that annealing improved the MD performance as the average flux reached 35 L/m2·h or LMH (>10% improvement of the ones without annealing while still maintaining 99.99% salt rejection. Further tests on LEP, contact angle, and pore size distribution explain the improvement due to annealing well. Fourier transform infrared spectroscopy and X-ray diffraction analyses of the membranes showed that there was an increase in the crystallinity of the polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP membrane; also, peaks indicating the α phase of polyvinylidene fluoride (PVDF became noticeable after annealing, indicating some β and amorphous states of polymer were converted into the α phase. The changes were favorable for membrane distillation as the non-polar α phase of PVDF reduces the dipolar attraction force between the membrane and water molecules, and the increase in crystallinity would result in higher thermal stability. The present results indicate the positive effect of the heat-press followed by an annealing post-treatment on the membrane characteristics and MD performance.

    19. A novel luminol chemiluminescent method catalyzed by silver/gold alloy nanoparticles for determination of anticancer drug flutamide.

      Science.gov (United States)

      Chaichi, Mohammad Javad; Azizi, Seyed Naser; Heidarpour, Maryam

      2013-12-01

      It was found that silver/gold alloy nanoparticles enhance the chemiluminescence (CL) of the luminol-H2O2 system in alkaline solution. The studies of UV-Vis spectra, CL spectra, effects of concentrations luminol, hydrogen peroxide and silver/gold alloy nanoparticles solutions were carried out to explore the CL enhancement mechanism. Flutamide was found to quench the CL signals of the luminol-H2O2 reaction catalyzed by silver/gold alloy nanoparticles, which made it applicable for the determination of flutamide. Under the optimum conditions, the CL intensity is proportional to the concentration of the flutamide in solution over the range 5.0 × 10(-7) to 1.0 × 10(-4)mol L(-1). Detection limit was obtained 1.2 × 10(-8)mol L(-1)and the relative standard deviation (RSD) γ5%. This work is introduced as a new method for the determination of flutamide in commercial tablets. Box-Behnken experimental design is applied to investigate and validate the CL measurement parameters. Copyright © 2013 Elsevier B.V. All rights reserved.

    20. Effect of gold nanoparticle as a novel nanocatalyst on luminol-hydrazine chemiluminescence system and its analytical application

      International Nuclear Information System (INIS)

      Safavi, A.; Absalan, G.; Bamdad, F.

      2008-01-01

      In this work the catalytic role of unsupported gold nanoparticles on the luminol-hydrazine reaction is investigated. Gold nanoparticles catalyze the reaction of hydrazine and dissolved oxygen to generate hydrogen peroxide and also catalyze the oxidation of luminol by the produced hydrogen peroxide. The result is an intense chemiluminescence (CL) due to the excited 3-aminophthalate anion. In the absence of gold nanoparticles no detectable CL was observed by the reaction of luminol and hydrazine unless an external oxidant is present in the system. The size effect of gold nanoparticles on the CL intensity was investigated. The most intensive CL signals were obtained with 15-nm gold nanoparticles. UV-vis spectra and transmission electron microscopy studies were used to investigate the CL mechanism. The luminol and hydroxide ion concentration, gold nanoparticles size and flow rate were optimized. The proposed method was successfully applied to the determination of hydrazine in boiler feed water samples. Between 0.1 and 30 μM of hydrazine could be determined with a detection limit of 30 nM

    1. Membrane paradigm

      International Nuclear Information System (INIS)

      Price, R.H.; Thorne, K.S.

      1986-01-01

      The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

    2. Ion-conducting membranes

      Science.gov (United States)

      Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

      2017-12-26

      An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

    3. Influence of membrane properties on fouling in submerged membrane bioreactors

      NARCIS (Netherlands)

      van der Marel, P.; Zwijnenburg, A.; Kemperman, Antonius J.B.; Wessling, Matthias; Temmink, Hardy; van der Meer, Walterus Gijsbertus Joseph

      2010-01-01

      Polymeric flat-sheet membranes with different properties were used in filtration experiments with activated sludge from a pilot-scale MBR to investigate the influence of membrane pore size, surface porosity, pore morphology, and hydrophobicity on membrane fouling. An improved flux-step method was

    4. Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation

      KAUST Repository

      Zuo, Jian; Bonyadi, Sina; Chung, Neal Tai-Shung

      2015-01-01

      The potential of utilizing polyethylene (PE) membranes in membrane distillation (MD) for sea water desalination has been explored in this study. The advantages of using PE membranes are (1) their intrinsic hydrophobicity with low surface energy of 28-33×10N/m, (2) good chemical stability and low thermal conductivity and (3) their commercial availability that may expedite the MD commercialization process. Several commercial PE membranes with different physicochemical properties are employed to study the capability and feasibility of PE membrane application in an MD process. The effect of membrane pore size, porosity, thickness and wetting resistance on MD performance and energy efficiency have been investigated. The PE membranes demonstrate impressive separation performance with permeation fluxes reaching 123.0L/mh for a 3.5wt% sodium chloride (NaCl) feed solution at 80°C. This superior performance surpasses most of the prior commercial and lab-made flat sheet and hollow fiber membranes. A long term MD testing of 100h is also performed to evaluate the durability of PE membranes, and a relatively stable performance is observed during the entire experiment. This long term stability signifies the suitability of PE membranes for MD applications.

    5. Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation

      KAUST Repository

      Zuo, Jian

      2015-09-26

      The potential of utilizing polyethylene (PE) membranes in membrane distillation (MD) for sea water desalination has been explored in this study. The advantages of using PE membranes are (1) their intrinsic hydrophobicity with low surface energy of 28-33×10N/m, (2) good chemical stability and low thermal conductivity and (3) their commercial availability that may expedite the MD commercialization process. Several commercial PE membranes with different physicochemical properties are employed to study the capability and feasibility of PE membrane application in an MD process. The effect of membrane pore size, porosity, thickness and wetting resistance on MD performance and energy efficiency have been investigated. The PE membranes demonstrate impressive separation performance with permeation fluxes reaching 123.0L/mh for a 3.5wt% sodium chloride (NaCl) feed solution at 80°C. This superior performance surpasses most of the prior commercial and lab-made flat sheet and hollow fiber membranes. A long term MD testing of 100h is also performed to evaluate the durability of PE membranes, and a relatively stable performance is observed during the entire experiment. This long term stability signifies the suitability of PE membranes for MD applications.

    6. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

      Science.gov (United States)

      Laible, Philip D; Hanson, Deborah K

      2013-06-04

      The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

    7. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

      KAUST Repository

      Wang, Xianbin; Chen, Wei; Wang, Zhihong; Zhang, Xixiang; Yue, Weisheng; Lai, Zhiping

      2015-01-01

      Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

    8. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

      KAUST Repository

      Wang, Xianbin

      2015-01-22

      Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

    9. Separation membrane development

      Energy Technology Data Exchange (ETDEWEB)

      Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

      1998-08-01

      A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

    10. Structure and properties of cell membranes. Volume 3: Methodology and properties of membranes

      International Nuclear Information System (INIS)

      Benga, G.

      1985-01-01

      This book covers the topics: Quantum chemical approach to study the mechanisms of proton translocation across membranes through protein molecules; monomolecular films as biomembrane models; planar lipid bilayers in relation to biomembranes; relation of liposomes to cell membranes; reconstitution of membrane transport systems; structure-function relationships in cell membranes as revealed by X-ray techniques; structure-function relationships in cell membranes as revealed by spin labeling ESR; structure and dynamics of cell membranes as revealed by NMR techniques; the effect of dietary lipids on the composition and properties of biological membranes and index

    11. A forced-flow membrane reactor for transfructosylation using ceramic membrane.

      Science.gov (United States)

      Nishizawa, K; Nakajima, M; Nabetani, H

      2000-04-05

      A forced-flow membrane reactor system for transfructosylation was investigated using several ceramic membranes having different pore sizes. beta-Fructofuranosidase from Aspergillus niger ATCC 20611 was immobilized chemically to the inner surface of a ceramic membrane activated by a silane-coupling reagent. Sucrose solution was forced through the ceramic membrane by crossflow filtration while transfructosylation took place. The saccharide composition of the product, which was a mixture of fructooligosaccharides (FOS), was a function of the permeate flux, which was easily controlled by pressure. Using 0.2 micrometer pore size of symmetric ceramic membrane, the volumetric productivity obtained was 3.87 kg m(-3) s(-1), which was 560 times higher than that in a reported batch system, with a short residence time of 11 s. The half-life of the immobilized enzyme in the membrane was estimated to be 35 days by a long-term operation. Copyright 2000 John Wiley & Sons, Inc.

    12. Solid-phase receptor-based assay for the detection of cyclic imines by chemiluminescence, fluorescence, or colorimetry.

      Science.gov (United States)

      Rodríguez, Laura P; Vilariño, Natalia; Molgó, Jordi; Aráoz, Rómulo; Antelo, Alvaro; Vieytes, Mercedes R; Botana, Luis M

      2011-08-01

      The spirolides and gymnodimines are marine phycotoxins included in the group of cyclic imines. The toxicity of these compounds to humans is still unknown, although their toxicity by intraperitoneal injection in rodents is very high. A receptor-based method was developed using the competition of the 13-desmethyl spirolide C with biotin-labeled α-bungarotoxin for binding to nicotinic acetylcholine receptors and the immobilization of the α-bungarotoxin-receptor complex on streptavidin-coated surfaces. The quantification of the immobilized receptor can be achieved using a specific antibody. Finally, after the addition of a secondary antibody labeled with horseradish peroxidase, three alternative substrates of this enzyme generate a chemiluminescent, fluorescent, or colorimetric signal. The assay performs well in shellfish extracts and the detection range is 5-150 nM of 13-desmethyl spirolide C in shellfish extracts, which is at least 5 times more sensitive than the existing fluorescence polarization assay. This assay can also detect gymnodimine, although with 10 times lower sensitivity than the spirolide. The detection of cyclic imines with microplate assays would be useful for screening purposes in order to reduce the number of samples to be processed by bioassays or analytical methods.

    13. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi.

      Science.gov (United States)

      Malinsky, Jan; Opekarová, Miroslava; Grossmann, Guido; Tanner, Widmar

      2013-01-01

      The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.

    14. Lignin and silicate based hydrogels for biosensor applications

      Science.gov (United States)

      Burrs, S. L.; Jairam, S.; Vanegas, D. C.; Tong, Z.; McLamore, E. S.

      2013-05-01

      Advances in biocompatible materials and electrocatalytic nanomaterials have extended and enhanced the field of biosensors. Immobilization of biorecognition elements on nanomaterial platforms is an efficient technique for developing high fidelity biosensors. Single layer (i.e., Langmuir-Blodgett) protein films are efficient, but disadvantages of this approach include high cost, mass transfer limitations, and Vromer competition for surface binding sites. There is a need for simple, user friendly protein-nanomaterial sensing membranes that can be developed in laboratories or classrooms (i.e., outside of the clean room). In this research, we develop high fidelity nanomaterial platforms for developing electrochemical biosensors using sustainable biomaterials and user-friendly deposition techniques. Catalytic nanomaterial platforms are developed using a combination of self assembled monolayer chemistry and electrodeposition. High performance biomaterials (e.g., nanolignin) are recovered from paper pulp waste and combined with proteins and nanomaterials to form active sensor membranes. These methods are being used to develop electrochemical biosensors for studying physiological transport in biomedical, agricultural, and environmental applications.

    15. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes

      Energy Technology Data Exchange (ETDEWEB)

      Kusumastuti, Ella, E-mail: ella.kusuma@gmail.com; Siniwi, Widasari Trisna, E-mail: wsiniwi@gmail.com; Mahatmanti, F. Widhi; Jumaeri [Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Semarang D6 Building 2" n" d floor, Sekaran Unnes Campus, Gunungpati, Semarang (Indonesia); Atmaja, Lukman; Widiastuti, Nurul [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Tenth November Institute of Technology Keputih ITS Campus, Sukolilo, Surabaya (Indonesia)

      2016-04-19

      Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10{sup −7} cm{sup 2}/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm{sup −3}. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm{sup −-1}.

    16. Functionalization of a Hydrophilic Commercial Membrane Using Inorganic-Organic Polymers Coatings for Membrane Distillation

      Directory of Open Access Journals (Sweden)

      Lies Eykens

      2017-06-01

      Full Text Available Membrane distillation is a thermal separation technique using a microporous hydrophobic membrane. One of the concerns with respect to the industrialization of the technique is the development of novel membranes. In this paper, a commercially available hydrophilic polyethersulfone membrane with a suitable structure for membrane distillation was modified using available hydrophobic coatings using ORMOCER® technology to obtain a hydrophobic membrane that can be applied in membrane distillation. The surface modification was performed using a selection of different components, concentrations, and application methods. The resulting membranes can have two hydrophobic surfaces or a hydrophobic and hydrophilic surface depending on the application method. An extensive characterization procedure confirmed the suitability of the coating technique and the obtained membranes for membrane distillation. The surface contact angle of water could be increased from 27° up to 110°, and fluxes comparable to membranes commonly used for membrane distillation were achieved under similar process conditions. A 100 h test demonstrated the stability of the coating and the importance of using sufficiently stable base membranes.

    17. Construction of highly ordered lamellar nanostructures through Langmuir-Blodgett deposition of molecularly thin titania nanosheets tens of micrometers wide and their excellent dielectric properties.

      Science.gov (United States)

      Akatsuka, Kosho; Haga, Masa-aki; Ebina, Yasuo; Osada, Minoru; Fukuda, Katsutoshi; Sasaki, Takayoshi

      2009-05-26

      Exfoliated unilamellar titania nanosheets of Ti(0.87)O(2) with a lateral size of 10-30 microm were deposited layer-by-layer onto various substrates by Langmuir-Blodgett procedure to produce a highly ordered lamellar nanofilms. The nanosheets dispersed in an aqueous suspension containing quaternary ammonium ions as a supporting electrolyte floated spontaneously at the air/liquid interface, and they were successfully transferred onto the substrate after surface compression. Neat tiling of the nanosheets could be realized at an optimized surface pressure. The film thus obtained was exposed to UV light to turn the substrate surface hydrophilic, which was helpful for stable repetition of monolayer deposition. Layer-by-layer growth was confirmed by UV-visible absorption spectra, which showed progressive enhancement of an absorption band due to the nanosheet. Cross-sectional transmission electron microscopy images visualized the ultrathin film homogeneously deposited on the substrate surface and a lamellar fringe of the layer-by-layer assembled nanosheets was clearly resolved at a higher magnification. X-ray diffraction data on the films showed sharp basal reflections up to the seventh order, and Williamson-Hall analysis of the pattern indicated that the film was coherent across the total thickness with respect to X-ray and that the lattice strain was extremely small. In addition, the first basal reflection was accompanied by small satellite peaks, which are accounted for by the Laue interference function. All these features clearly indicate the formation of a highly ordered lamellar nanostructure of the titania nanosheets comparable to artificial lattice films produced via modern vapor-phase deposition processes. The obtained films showed superior dielectric and insulating properties as a reflection of the highly organized film nanoarchitecture.

    18. A High Sensitivity Micro Format Chemiluminescence Enzyme Inhibition Assay for Determination of Hg(II

      Directory of Open Access Journals (Sweden)

      Kanchanmala Deshpande

      2010-06-01

      Full Text Available A highly sensitive and specific enzyme inhibition assay based on alcohol oxidase (AlOx and horseradish peroxidase (HRP for determination of mercury Hg(II in water samples has been presented. This article describes the optimization and miniaturization of an enzymatic assay using a chemiluminescence reaction. The analytical performance and detection limit for determination of Hg(II was optimized in 96 well plates and further extended to 384 well plates with a 10-fold reduction in assay volume. Inhibition of the enzyme activity by dissolved Hg(II was found to be linear in the range 5–500 pg.mL−1 with 3% CVin inter-batch assay. Due to miniaturization of assay in 384 well plates, Hg(II was measurable as low as 1 pg.mL−1 within15 min. About 10-fold more specificity of the developed assay for Hg(II analysis was confirmed by challenging with interfering divalent metal ions such as cadmium Cd(II and lead Pb(II. Using the proposed assay we could successfully demonstrate that in a composite mixture of Hg(II, Cd(II and Pb(II, inhibition by each metal ion is significantly enhanced in the presence of the others. Applicability of the proposed assay for the determination of the Hg(II in spiked drinking and sea water resulted in recoveries ranging from 100–110.52%.

    19. Measurement of hydroxyl radical production in ultrasonic aqueous solutions by a novel chemiluminescence method.

      Science.gov (United States)

      Hu, Yufei; Zhang, Zhujun; Yang, Chunyan

      2008-07-01

      Measurement methods for ultrasonic fields are important for reasons of safety. The investigation of an ultrasonic field can be performed by detecting the yield of hydroxyl radicals resulting from ultrasonic cavitations. In this paper, a novel method is introduced for detecting hydroxyl radicals by a chemiluminescence (CL) reaction of luminol-hydrogen peroxide (H2O2)-K5[Cu(HIO6)2](DPC). The yield of hydroxyl radicals is calculated directly by the relative CL intensity according to the corresponding concentration of H2O2. This proposed CL method makes it possible to perform an in-line and real-time assay of hydroxyl radicals in an ultrasonic aqueous solution. With flow injection (FI) technology, this novel CL reaction is sensitive enough to detect ultra trace amounts of H2O2 with a limit of detection (3sigma) of 4.1 x 10(-11) mol L(-1). The influences of ultrasonic output power and ultrasonic treatment time on the yield of hydroxyl radicals by an ultrasound generator were also studied. The results indicate that the amount of hydroxyl radicals increases with the increase of ultrasonic output power (< or = 15 W mL(-1)). There is a linear relationship between the time of ultrasonic treatment and the yield of H2O2. The ultrasonic field of an ultrasonic cleaning baths has been measured by calculating the yield of hydroxyl radicals.

    20. Dual-signal amplification strategy for ultrasensitive chemiluminescence detection of PDGF-BB in capillary electrophoresis.

      Science.gov (United States)

      Cao, Jun-Tao; Wang, Hui; Ren, Shu-Wei; Chen, Yong-Hong; Liu, Yan-Ming

      2015-12-01

      Many efforts have been made toward the achievement of high sensitivity in capillary electrophoresis coupled with chemiluminescence detection (CE-CL). This work describes a novel dual-signal amplification strategy for highly specific and ultrasensitive CL detection of human platelet-derived growth factor-BB (PDGF-BB) using both aptamer and horseradish peroxidase (HRP) modified gold nanoparticles (HRP-AuNPs-aptamer) as nanoprobes in CE. Both AuNPs and HRP in the nanoprobes could amplify the CL signals in the luminol-H2 O2 CL system, owing to the excellent catalytic behavior of AuNPs and HRP in the CL system. Meanwhile, the high affinity of aptamer modified on the AuNPs allows detection with high specificity. As proof-of-concept, the proposed method was employed to quantify the concentration of PDGF-BB from 0.50 to 250 fm with a detection limit of 0.21 fm. The applicability of the assay was further demonstrated in the analysis of PDGF-BB in human serum samples with acceptable accuracy and reliability. The result of this study exhibits distinct advantages, such as high sensitivity, good specificity, simplicity, and very small sample consumption. The good performances of the proposed strategy provide a powerful avenue for ultrasensitive detection of rare proteins in biological sample, showing great promise in biochemical analysis. Copyright © 2015 John Wiley & Sons, Ltd.

    1. Straightforward single-calibrant quantification of seized designer drugs by liquid chromatography-chemiluminescence nitrogen detection.

      Science.gov (United States)

      Rasanen, Ilpo; Kyber, Marianne; Szilvay, Ilmari; Rintatalo, Janne; Ojanperä, Ilkka

      2014-04-01

      Sixty-one different psychoactive substances were quantified by liquid chromatography-chemiluminescence nitrogen detection (LC-CLND) in 177 samples, using a single secondary standard (caffeine), in a trial concerning the quantitative purity assessment of drug-related material seized by the police in 2011-2012 and customs in 2011-2013 in Finland. The substances found were predominantly substituted phenethylamines, cathinones, tryptamines and synthetic cannabinoids, which were identified by appropriate methods prior to submitting the samples for quantification by LC-CLND. The equimolarity and expanded uncertainty of measurement by LC-CLND were on average 95% and 13%, respectively, based on 16 different substances. The median (mean) purity of stimulant/hallucinogenic drug samples seized at the border was 92.9% (87.6%) and in the street 82.0% (64.5%). The corresponding figures for powdery synthetic cannabinoid samples seized at the border and in the street were 99.0% (96.8%) and 90.0% (92.2%), respectively. There was generally only one active drug to be quantified in each sample. Seized herbal samples contained 0.15-9.2% of between one and three components. LC-CLND was found to be suitable for quantification of the nitrogen-containing drugs encountered in the study, showing sufficient N-equimolarity for both stimulant/hallucinogenic drugs and synthetic cannabinoids. The technique possesses great potential as a standard technique in forensic laboratories. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

    2. A sensitive chemiluminescence enzyme immunoassay based on molecularly imprinted polymers solid-phase extraction of parathion.

      Science.gov (United States)

      Chen, Ge; Jin, Maojun; Du, Pengfei; Zhang, Chan; Cui, Xueyan; Zhang, Yudan; She, Yongxin; Shao, Hua; Jin, Fen; Wang, Shanshan; Zheng, Lufei; Wang, Jing

      2017-08-01

      The chemiluminescence enzyme immunoassay (CLEIA) method responds differently to various sample matrices because of the matrix effect. In this work, the CLEIA method was coupled with molecularly imprinted polymers (MIPs) synthesized by precipitation polymerization to study the matrix effect. The sample recoveries ranged from 72.62% to 121.89%, with a relative standard deviation (RSD) of 3.74-18.14%.The ratio of the sample matrix-matched standard curve slope rate to the solvent standard curve slope was 1.21, 1.12, 1.17, and 0.85 for apple, rice, orange and cabbage in samples pretreated with the mixture of PSA and C 18 . However, the ratio of sample (apple, rice, orange, and cabbage) matrix-matched standard-MIPs curve slope rate to the solvent standard curve was 1.05, 0.92, 1.09, and 1.05 in samples pretreated with MIPs, respectively. The results demonstrated that the matrices of the samples greatly interfered with the detection of parathion residues by CLEIA. The MIPs bound specifically to the parathion in the samples and eliminated the matrix interference effect. Therefore, the CLEIA method have successfully applied MIPs in sample pretreatment to eliminate matrix interference effects and provided a new sensitive assay for agro-products. Copyright © 2017 Elsevier Inc. All rights reserved.

    3. Quantitative Monitoring of Cefradine in Human Urine Using a Luminol/Sulfobutylether-β-Cyclodextrin Chemiluminescence System

      Science.gov (United States)

      Shen, M. X.; Tan, X. J.; Song, Zh. H.

      2018-05-01

      In this paper, a sensitive, rapid, and simple flow-injection chemiluminescence (FI-CL) technique is described for determining cefradine in human urine and capsule samples at the picogram level. The results show that cefradine within 0.1-100.0 nmol/L quantitatively quenches the CL intensity of the luminol/sulfo butylether-β-cyclodextrin (SBE-β-CD) system, with a relative correlation coefficient r of 0.9931. Subsequently, the possible mechanism for the quenching phenomenon is discussed in detail using the FI-CL and molecular docking methods. The proposed CL method, with a detection limit of 0.03 nmol/L (3σ) and relative standard deviations 3.0% (N = 7), is then implemented to monitor the excretion of cefradine in human urine. After orally administration, the cefradine reaches a maximum value of 1.37 ± 0.02 mg/mL at 2.0 h in urine, and the total excretion is 4.41 ± 0.03 mg/mL within 8.0 h. The absorption rate constant ka, the elimination rate constant ke, and the half-life t1/2 are 0.670 ± 0.008 h-1, 0.744 ± 0.005 h-1, and 0.93 ± 0.05 h, respectively.

    4. Photoresponsive nanostructured membranes

      KAUST Repository

      Madhavan, Poornima; Sutisna, Burhannudin; Sougrat, Rachid; Nunes, Suzana Pereira

      2016-01-01

      The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane's water flux and solute retention. © 2016 The Royal Society of Chemistry.

    5. Characteristics of membrane fouling in submerged membrane bioreactor under sub-critical flux operation.

      Science.gov (United States)

      Su, Y C; Huang, C P; Pan, Jill R; Lee, H C

      2008-01-01

      Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.

    6. Comparison of enzyme-linked immunosorbent assay and rapid chemiluminescent analyser in the detection of myeloperoxidase and proteinase 3 autoantibodies.

      Science.gov (United States)

      Pucar, Phillippa A; Hawkins, Carolyn A; Randall, Katrina L; Li, Candice; McNaughton, Euan; Cook, Matthew C

      2017-06-01

      Antibodies to myeloperoxidase (MPO) and proteinase 3 (PR3) are vital in the diagnosis and management of ANCA-associated vasculitis. A chemiluminescent immunoassay (CLIA; Quanta Flash) provides MPO and PR3 antibody results in 30 minutes, which is much faster than enzyme-linked immunosorbent assay (ELISA). We compared the performance of ELISA (Orgentec) and CLIA (Quanta Flash) for MPO and PR3 antibody quantitation on 303 samples, comprising 196 consecutive samples received in a single diagnostic laboratory over a 3 month period, and 107 samples collected from 42 known vasculitis patients over a 40 month period. We observed a correlation between both methods using spearman correlation coefficients (MPO, r s  = 0.63, p assays) and disease relapse (correlation for both MPO and PR3 antibody quantitation r s  = 0.84, p = 0.03 and r s  = 0.78, p ELISA for measurement of MPO and PR3 antibodies. Copyright © 2017. Published by Elsevier B.V.

    7. Emulsification using microporous membranes

      Directory of Open Access Journals (Sweden)

      Goran T. Vladisavljević

      2011-10-01

      Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

    8. Proton exchange membranes prepared by grafting of styrene/divinylbenzene into crosslinked PTFE membranes

      International Nuclear Information System (INIS)

      Li Jingye; Ichizuri, Shogo; Asano, Saneto; Mutou, Fumihiro; Ikeda, Shigetoshi; Iida, Minoru; Miura, Takaharu; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

      2005-01-01

      Thin PTFE membranes were prepared by coating the PTFE dispersion onto the aluminum films. Thus the thin crosslinked PTFE (RX-PTFE) membranes were obtained by means of electron beam irradiation above the melting temperature of PTFE under oxygen-free atmosphere. The RX-PTFE membranes were pre-irradiated and grafted by styrene with or without divinylbenzene (DVB) in liquid phase. The existence of DVB accelerated the initial grafting rate. The styrene grafted RX-PTFE membranes are white colored, on the other hand, the styrene/DVB grafted RX-PTFE membranes are colorless. The proton exchange membranes (PEMs) were obtained by sulfonating the grafted membranes using chlorosulfonic acid. The ion exchange capacity (IEC) values of the PEMs ranging from 1.5 to 2.8 meq/g were obtained. The PEMs made from the styrene/DVB grafted membranes showed higher chemical stability than those of the styrene grafted membranes under oxidative circumstance

    9. Chorioamniotic membrane separation and preterm premature rupture of membranes complicating in utero myelomeningocele repair.

      Science.gov (United States)

      Soni, Shelly; Moldenhauer, Julie S; Spinner, Susan S; Rendon, Norma; Khalek, Nahla; Martinez-Poyer, Juan; Johnson, Mark P; Adzick, N Scott

      2016-05-01

      Since the results of the Management of Myelomeningocele Study were published, maternal-fetal surgery for the in utero treatment of spina bifida has become accepted as a standard of care alternative. Despite promise with fetal management of myelomeningocele repair, there are significant complications to consider. Chorioamniotic membrane separation and preterm premature rupture of membranes are known complications of invasive fetal procedures. Despite their relative frequency associated with fetal procedures, few data exist regarding risk factors that may be attributed to their occurrence or the natural history of pregnancies that are affected with chorionic membrane separation or preterm premature rupture of membranes related to the procedure. The objective of this study was to review chorioamniotic membrane separation and preterm premature rupture of membranes in a cohort of patients undergoing fetal management of myelomeningocele repair including identification of risk factors and outcomes. This was a retrospective review of patients undergoing fetal management of myelomeningocele repair and subsequent delivery from January 2011 through December 2013 at 1 institution. Patients were identified through the institutional fetal management of myelomeningocele repair database and chart review was performed. Perioperative factors and outcomes among patients with chorioamniotic membrane separation and preterm premature rupture of membranes were compared to those without. Risk factors associated with the development of chorioamniotic membrane separation and preterm premature rupture of membranes were determined. A total of 88 patients underwent fetal management of myelomeningocele repair and subsequently delivered during the study period. In all, 21 patients (23.9%) were diagnosed with chorioamniotic membrane separation by ultrasound and preterm premature rupture of membranes occurred in 27 (30.7%). Among the chorioamniotic membrane separation patients, 10 (47.6%) were

    10. Pilot demonstration of energy-efficient membrane bioreactor (MBR) using reciprocating submerged membrane.

      Science.gov (United States)

      Ho, Jaeho; Smith, Shaleena; Patamasank, Jaren; Tontcheva, Petia; Kim, Gyu Dong; Roh, Hyung Keun

      2015-03-01

      Membrane bioreactor (MBR) is becoming popular for advanced wastewater treatment and water reuse. Air scouring to "shake" the membrane fibers is most suitable and applicable to maintain filtration without severe and rapidfouling. However, membrane fouling mitigating technologies are energy intensive. The goal of this research is to develop an alternative energy-saving MBR system to reduce energy consumption; a revolutionary system that will directly compete with air scouring technologies currently in the membrane water reuse market. The innovative MBR system, called reciprocation MBR (rMBR), prevents membrane fouling without the use of air scouring blowers. The mechanism featured is a mechanical reciprocating membrane frame that uses inertia to prevent fouling. Direct strong agitation of the fiber is also beneficial for the constant removal of solids built up on the membrane surface. The rMBR pilot consumes less energy than conventional coarse air scouring MBR systems. Specific energy consumption for membrane reciprocation for the pilot rMBR system was 0.072 kWh/m3 permeate produced at 40 LMH, which is 75% less than the conventional air scouring in an MBR system (0.29 kWh/m3). Reciprocation of the hollow-fiber membrane can overcome the hydrodynamic limitations of air scouring or cross-flow membrane systems with less energy consumption and/or higher energy efficiency.

    11. Actin filaments growing against an elastic membrane: Effect of membrane tension

      Science.gov (United States)

      Sadhu, Raj Kumar; Chatterjee, Sakuntala

      2018-03-01

      We study the force generation by a set of parallel actin filaments growing against an elastic membrane. The elastic membrane tries to stay flat and any deformation from this flat state, either caused by thermal fluctuations or due to protrusive polymerization force exerted by the filaments, costs energy. We study two lattice models to describe the membrane dynamics. In one case, the energy cost is assumed to be proportional to the absolute magnitude of the height gradient (gradient model) and in the other case it is proportional to the square of the height gradient (Gaussian model). For the gradient model we find that the membrane velocity is a nonmonotonic function of the elastic constant μ and reaches a peak at μ =μ* . For μ membrane energy keeps increasing with time. For the Gaussian model, the system always reaches a steady state and the membrane velocity decreases monotonically with the elastic constant ν for all nonzero values of ν . Multiple filaments give rise to protrusions at different regions of the membrane and the elasticity of the membrane induces an effective attraction between the two protrusions in the Gaussian model which causes the protrusions to merge and a single wide protrusion is present in the system. In both the models, the relative time scale between the membrane and filament dynamics plays an important role in deciding whether the shape of elasticity-velocity curve is concave or convex. Our numerical simulations agree reasonably well with our analytical calculations.

    12. Idiopathic epiretinal membrane

      NARCIS (Netherlands)

      Bu, Shao-Chong; Kuijer, Roelof; Li, Xiao-Rong; Hooymans, Johanna M M; Los, Leonoor I

      2014-01-01

      Background: Idiopathic epiretinal membrane (iERM) is a fibrocellular membrane that proliferates on the inner surface of the retina at the macular area. Membrane contraction is an important sight-threatening event and is due to fibrotic remodeling. Methods: Analysis of the current literature

    13. Solid-state membrane module

      Science.gov (United States)

      Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

      2011-06-07

      Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

    14. The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation.

      Science.gov (United States)

      Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar; Chen, George Q; Kentish, Sandra E

      2017-09-14

      Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique.

    15. Model cell membranes

      DEFF Research Database (Denmark)

      Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

      2014-01-01

      The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

    16. How the antimicrobial peptides destroy bacteria cell membrane: Translocations vs. membrane buckling

      Science.gov (United States)

      Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Fang, Weihai

      2012-02-01

      In this study, coarse grained Dissipative Particle Dynamics simulation with implementation of electrostatic interactions is developed in constant pressure and surface tension ensemble to elucidate how the antimicrobial peptide molecules affect bilayer cell membrane structure and kill bacteria. We find that peptides with different chemical-physical properties exhibit different membrane obstructing mechanisms. Peptide molecules can destroy vital functions of the affected bacteria by translocating across their membranes via worm-holes, or by associating with membrane lipids to form hydrophilic cores trapped inside the hydrophobic domain of the membranes. In the latter scenario, the affected membranes are strongly corrugated (buckled) in accord with very recent experimental observations [G. E. Fantner et al., Nat. Nanotech., 5 (2010), pp. 280-285].

    17. Catalytic nanoporous membranes

      Science.gov (United States)

      Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

      2013-08-27

      A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

    18. Sweeping Gas Membrane Desalination Using Commercial Hydrophobic Hollow Fiber Membranes; TOPICAL

      International Nuclear Information System (INIS)

      EVANS, LINDSEY; MILLER, JAMES E.

      2002-01-01

      Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods of purifying freshwater, and desalting seawater are required to contend with this destabilizing trend. Membrane distillation (MD) is an emerging technology for separations that are traditionally accomplished via conventional distillation or reverse osmosis. As applied to desalination, MD involves the transport of water vapor from a saline solution through the pores of a hydrophobic membrane. In sweeping gas MD, a flowing gas stream is used to flush the water vapor from the permeate side of the membrane, thereby maintaining the vapor pressure gradient necessary for mass transfer. Since liquid does not penetrate the hydrophobic membrane, dissolved ions are completely rejected by the membrane. MD has a number of potential advantages over conventional desalination including low temperature and pressure operation, reduced membrane strength requirements, compact size, and 100% rejection of non-volatiles. The present work evaluated the suitability of commercially available technology for sweeping gas membrane desalination. Evaluations were conducted with Celgard Liqui-Cel(reg s ign) Extra-Flow 2.5X8 membrane contactors with X-30 and X-40 hydrophobic hollow fiber membranes. Our results show that sweeping gas membrane desalination systems are capable of producing low total dissolved solids (TDS) water, typically 10 ppm or less, from seawater, using low grade heat. However, there are several barriers that currently prevent sweeping gas MD from being a viable desalination technology. The primary problem is that large air flows are required to achieve significant water yields, and the costs associated with transporting this air are prohibitive. To

    19. Polymalic Acid Tritryptophan Copolymer Interacts with Lipid Membrane Resulting in Membrane Solubilization

      Directory of Open Access Journals (Sweden)

      Hui Ding

      2017-01-01

      Full Text Available Anionic polymers with membrane permeation functionalities are highly desirable for secure cytoplasmic drug delivery. We have developed tritryptophan containing copolymer (P/WWW of polymalic acid (PMLA that permeates membranes by a mechanism different from previously described PMLA copolymers of trileucine (P/LLL and leucine ethyl ester (P/LOEt that use the “barrel stave” and “carpet” mechanism, respectively. The novel mechanism leads to solubilization of membranes by forming copolymer “belts” around planar membrane “packages.” The formation of such packages is supported by results obtained from studies including size-exclusion chromatography, confocal microscopy, and fluorescence energy transfer. According to this “belt” mechanism, it is hypothesized that P/WWW first attaches to the membrane surface. Subsequently the hydrophobic tryptophan side chains translocate into the periphery and insert into the lipid bilayer thereby cutting the membrane into packages. The reaction is driven by the high affinity between the tryptophan residues and lipid side chains resulting in a stable configuration. The formation of the membrane packages requires physical agitation suggesting that the success of the translocation depends on the fluidity of the membrane. It is emphasized that the “belt” mechanism could specifically function in the recognition of abnormal cells with high membrane fluidity and in response to hyperthermia.

    20. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes

      Directory of Open Access Journals (Sweden)

      M. G. Mostafa

      2017-09-01

      Full Text Available Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE membranes with a hydrophilic polyurethane surface layer (PU-PTFE are used for the first time for direct contact MD (DCMD on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5–6 L/m2/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.