WorldWideScience

Sample records for chemicals safety analysis

  1. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt [Risoe National Laboratory, Roskilde (Denmark). Systems Analysis Department

    2001-07-01

    The current paper gives an overview of the legislation and the methods used in safety and risk management in the chemical industry within Europe and in particular within the European Union. The paper is based on a report that has been written for the SOS-1 project under the Nordic nuclear safety research (NKS). Safety- and risk-related matters in the process industry, in particular, in chemical, within the EU are subject to consideration at three levels: (1) EU legislation, (2) European/intemational standardisation, and (3) socio-economic analysis. EC Directives define the 'essential requirements', e.g., protection of health and safety, that must be fulfilled when goods are placed on the market or some industry is put into operation. The European standards bodies (CEN, CENELEC and ETSI) have the task of establishing the corresponding technical specifications, meeting the essential requirements of the Directives, compliance with which will provide a presumption of conformity with the essential requirements. Such specifications are referred to as 'harmonised standards'. Compliance with harmonised standards remains voluntary, and manufacturers are free to choose any other technical solution that provides compliance with the essential requirements. This view is stated in the 'New Approach' to technical harmonisation and standardisation (details can be found on the web page: http://europe.eu.int/comm/enterprise/newapproach/standardization/index .html). Standardisation as well as the regulation of technical risks is increasingly being undertaken at European or international level. The European legislator limits its role to the affirmation of overall objectives, and leaves it to the economic players to draw up the technical procedures and standards to specify in detail the ways and means of attaining them. Many countries have introduced requirements that new legislation and/or administrative regulations be subject to socio-economic analysis

  2. Final Safety Analysis Document for Building 693 Chemical Waste Storage Building at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    This Safety Analysis Document (SAD) for the Lawrence Livermore National Laboratory (LLNL) Building 693, Chemical Waste Storage Building (desipated as Building 693 Container Storage Unit in the Laboratory's RCRA Part B permit application), provides the necessary information and analyses to conclude that Building 693 can be operated at low risk without unduly endangering the safety of the building operating personnel or adversely affecting the public or the environment. This Building 693 SAD consists of eight sections and supporting appendices. Section 1 presents a summary of the facility designs and operations and Section 2 summarizes the safety analysis method and results. Section 3 describes the site, the facility desip, operations and management structure. Sections 4 and 5 present the safety analysis and operational safety requirements (OSRs). Section 6 reviews Hazardous Waste Management's (HWM) Quality Assurance (QA) program. Section 7 lists the references and background material used in the preparation of this report Section 8 lists acronyms, abbreviations and symbols. Appendices contain supporting analyses, definitions, and descriptions that are referenced in the body of this report

  3. Chemical Safety – Introduction

    CERN Multimedia

    DG Unit

    2009-01-01

    A course of "Chemical Safety – Introduction" will be held in English on 29 May 2009, 9:30-12:00. There are some places left. If you are interested in participating, please register on the Training Catalogue. You will then receive an invitation by email.

  4. Hydrogen Safety Project chemical analysis support task: Window ``C`` volatile organic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, B.M.; Stromatt, R.W.; Ross, G.A.; Hoope, E.A.

    1992-01-01

    This data package contains the results obtained by Pacific Northwest Laboratory (PNL) staff in the characterization of samples for the 101-SY Hydrogen Safety Project. The samples were submitted for analysis by Westinghouse Hanford Company (WHC) under the Technical Project Plan (TPP) 17667 and the Quality Assurance Plan MCS-027. They came from a core taken during Window ``C`` after the May 1991 gas release event. The analytical procedures required for analysis were defined in the Test Instructions (TI) prepared by the PNL 101-SY Analytical Chemistry Laboratory (ACL) Project Management Office in accordance with the TPP and the QA Plan. The requested analysis for these samples was volatile organic analysis. The quality control (QC) requirements for each sample are defined in the Test Instructions for each sample. The QC requirements outlined in the procedures and requested in the WHC statement of work were followed.

  5. Hydrogen Safety Project chemical analysis support task: Window C'' volatile organic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, B.M.; Stromatt, R.W.; Ross, G.A.; Hoope, E.A.

    1992-01-01

    This data package contains the results obtained by Pacific Northwest Laboratory (PNL) staff in the characterization of samples for the 101-SY Hydrogen Safety Project. The samples were submitted for analysis by Westinghouse Hanford Company (WHC) under the Technical Project Plan (TPP) 17667 and the Quality Assurance Plan MCS-027. They came from a core taken during Window C'' after the May 1991 gas release event. The analytical procedures required for analysis were defined in the Test Instructions (TI) prepared by the PNL 101-SY Analytical Chemistry Laboratory (ACL) Project Management Office in accordance with the TPP and the QA Plan. The requested analysis for these samples was volatile organic analysis. The quality control (QC) requirements for each sample are defined in the Test Instructions for each sample. The QC requirements outlined in the procedures and requested in the WHC statement of work were followed.

  6. Guidance on health effects of toxic chemicals. Safety Analysis Report Update Program

    Energy Technology Data Exchange (ETDEWEB)

    Foust, C.B.; Griffin, G.D.; Munro, N.B.; Socolof, M.L.

    1994-02-01

    Martin Marietta Energy Systems, Inc. (MMES), and Martin Marietta Utility Services, Inc. (MMUS), are engaged in phased programs to update the safety documentation for the existing US Department of Energy (DOE)-owned facilities. The safety analysis of potential toxic hazards requires a methodology for evaluating human health effects of predicted toxic exposures. This report provides a consistent set of health effects and documents toxicity estimates corresponding to these health effects for some of the more important chemicals found within MMES and MMUS. The estimates are based on published toxicity information and apply to acute exposures for an ``average`` individual. The health effects (toxicological endpoints) used in this report are (1) the detection threshold; (2) the no-observed adverse effect level; (3) the onset of irritation/reversible effects; (4) the onset of irreversible effects; and (5) a lethal exposure, defined to be the 50% lethal level. An irreversible effect is defined as a significant effect on a person`s quality of life, e.g., serious injury. Predicted consequences are evaluated on the basis of concentration and exposure time.

  7. Chemical Hygiene and Safety Plan

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, K.

    1992-08-01

    The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

  8. Do provisions to advance chemical facility safety also advance chemical facility security? An analysis of possible synergies

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2012-01-01

    existing provisions that have been put into existence to advance safety objectives due to synergy effects could be expected advance security objectives as well. The paper provides a conceptual definition of safety and security and presents a framework of their essential components. Key differences...... are presented. A safety framework is examined with the intent to identify security elements potentially covered. Vice versa, a security framework is examined with the intent to identify safety elements potentially covered. It is concluded that synergies are largely absent at the preventive level. Synergies...

  9. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  10. New set of Chemical Safety rules

    CERN Multimedia

    HSE Unit

    2011-01-01

    A new set of four Safety Rules was issued on 28 March 2011: Safety Regulation SR-C ver. 2, Chemical Agents (en); General Safety Instruction GSI-C1, Prevention and Protection Measures (en); General Safety Instruction GSI-C2, Explosive Atmospheres (en); General Safety Instruction GSI-C3, Monitoring of Exposure to Hazardous Chemical Agents in Workplace Atmospheres (en). These documents form part of the CERN Safety Rules and are issued in application of the “Staff Rules and Regulations” and of document SAPOCO 42. These documents set out the minimum requirements for the protection of persons from risks to their occupational safety and health arising, or likely to arise, from the effects of hazardous chemical agents that are present in the workplace or used in any CERN activity. Simultaneously, the HSE Unit has published seven Safety Guidelines and six Safety Forms. These documents are available from the dedicated Web page “Chemical, Cryogenic and Biological Safety&...

  11. Chemical Safety Vulnerability Working Group Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This report marks the culmination of a 4-month review conducted to identify chemical safety vulnerabilities existing at DOE facilities. This review is an integral part of DOE's efforts to raise its commitment to chemical safety to the same level as that for nuclear safety.

  12. Experiments To Demonstrate Chemical Process Safety Principles.

    Science.gov (United States)

    Dorathy, Brian D.; Mooers, Jamisue A.; Warren, Matthew M.; Mich, Jennifer L.; Murhammer, David W.

    2001-01-01

    Points out the need to educate undergraduate chemical engineering students on chemical process safety and introduces the content of a chemical process safety course offered at the University of Iowa. Presents laboratory experiments demonstrating flammability limits, flash points, electrostatic, runaway reactions, explosions, and relief design.…

  13. New Safety rule for Chemical Agents

    CERN Multimedia

    Safety Commission

    2010-01-01

    The following Safety rule has been issued on 08-01-2010: Safety Regulation SR-C Chemical Agents This document applies to all persons under the Director General’s authority. It sets out the minimal requirements for the protection of persons from risks to their safety and health arising, or likely to arise, from the effects of hazardous chemical agents used in any CERN activity. All Safety rules are available on the web pages.

  14. Microprocessors in automatic chemical analysis

    International Nuclear Information System (INIS)

    Application of microprocessors to programming and computing of solutions chemical analysis by a sequential technique is examined. Safety, performances reliability are compared to other methods. An example is given on uranium titration by spectrophotometry

  15. Chemical safety of meat and meat products.

    Science.gov (United States)

    Andrée, Sabine; Jira, W; Schwind, K-H; Wagner, H; Schwägele, F

    2010-09-01

    Since the Second World War the consumer behaviour in developed countries changed drastically. Primarily there existed the demand for sufficient food after a period of starvation, afterwards the desire for higher quality was arising, whereas today most people ask for safe and healthy food with high quality. Therefore a united approach comprising consistent standards, sound science and robust controls is required to ensure consumers' health and to maintain consumers' confidence and satisfaction. Chemical analysis along the whole food chain downstream (tracking) from primary production to the consumer and upstream (tracing) from the consumer to primary production is an important prerequisite to ensure food safety and quality. In this frame the focus of the following paper is the "chemical safety of meat and meat products" taking into account inorganic as well as organic residues and contaminants, the use of nitrite in meat products, the incidence of veterinary drugs, as well as a Failure Mode and Effect Analysis (FMEA) system assessing (prioritizing) vulnerable food chain steps to decrease or eliminate vulnerability.

  16. Chemical analysis of estragole in fennel based teas and associated safety assessment using the Margin of Exposure (MOE) approach

    NARCIS (Netherlands)

    Berg, van den S.J.P.L.; Alhusainy, W.; Restani, P.; Rietjens, I.

    2014-01-01

    This study describes the analysis of estragole in dry fennel preparations and in infusions prepared from them and an associated safety assessment. A wide range of estragole levels of 0.15–13.3 mg/g dry fennel preparation was found. The estragole content in infusions was considerably lower ranging be

  17. K Basin safety analysis

    International Nuclear Information System (INIS)

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall

  18. K Basin safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Porten, D.R.; Crowe, R.D.

    1994-12-16

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  19. Safety Considerations in the Chemical Process Industries

    Science.gov (United States)

    Englund, Stanley M.

    There is an increased emphasis on chemical process safety as a result of highly publicized accidents. Public awareness of these accidents has provided a driving force for industry to improve its safety record. There has been an increasing amount of government regulation.

  20. Linking Safety Analysis to Safety Requirements

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark

    the same system model and that this model is formalized in a real-time, interval logic, based on a conventional dynamic systems model with a state over time. The three safety analysis techniques are interpreted in this model and it is shown how to derive safety requirements for components of a system.......Software for safety critical systems must deal with the hazards identified by safety analysistechniques: Fault trees, event trees,and cause consequence diagrams can be interpreted as safety requirements and used in the design activity. We propose that the safety analysis and the system design use...

  1. Safety analysis for `Fugen`

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The improvement of safety in nuclear power stations is an important proposition. Therefore also as to the safety evaluation, it is important to comprehensively and systematically execute it by referring to the operational experience and the new knowledge which is important for the safety throughout the period of use as well as before the construction and the start of operation of nuclear power stations. In this report, the results when the safety analysis for ``Fugen`` was carried out by referring to the newest technical knowledge are described. As the result, it was able to be confirmed that the safety of ``Fugen`` has been secured by the inherent safety and the facilities which were designed for securing the safety. The basic way of thinking on the safety analysis including the guidelines to be conformed to is mentioned. As to the abnormal transient change in operation and accidents, their definition, the events to be evaluated and the standards for judgement are reported. The matters which were taken in consideration at the time of the analysis are shown. The computation programs used for the analysis were REACT, HEATUP, LAYMON, FATRAC, SENHOR, LOTRAC, FLOOD and CONPOL. The analyses of the abnormal transient change in operation and accidents are reported on the causes, countermeasures, protective functions and results. (K.I.)

  2. Database for Safety-Oriented Tracking of Chemicals

    Science.gov (United States)

    Stump, Jacob; Carr, Sandra; Plumlee, Debrah; Slater, Andy; Samson, Thomas M.; Holowaty, Toby L.; Skeete, Darren; Haenz, Mary Alice; Hershman, Scot; Raviprakash, Pushpa

    2010-01-01

    SafetyChem is a computer program that maintains a relational database for tracking chemicals and associated hazards at Johnson Space Center (JSC) by use of a Web-based graphical user interface. The SafetyChem database is accessible to authorized users via a JSC intranet. All new chemicals pass through a safety office, where information on hazards, required personal protective equipment (PPE), fire-protection warnings, and target organ effects (TOEs) is extracted from material safety data sheets (MSDSs) and recorded in the database. The database facilitates real-time management of inventory with attention to such issues as stability, shelf life, reduction of waste through transfer of unused chemicals to laboratories that need them, quantification of chemical wastes, and identification of chemicals for which disposal is required. Upon searching the database for a chemical, the user receives information on physical properties of the chemical, hazard warnings, required PPE, a link to the MSDS, and references to the applicable International Standards Organization (ISO) 9000 standard work instructions and the applicable job hazard analysis. Also, to reduce the labor hours needed to comply with reporting requirements of the Occupational Safety and Health Administration, the data can be directly exported into the JSC hazardous- materials database.

  3. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  4. Chemical Security Analysis Center

    Data.gov (United States)

    Federal Laboratory Consortium — In 2006, by Presidential Directive, DHS established the Chemical Security Analysis Center (CSAC) to identify and assess chemical threats and vulnerabilities in the...

  5. Software safety hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.D. [Lawrence Livermore National Lab., CA (United States)

    1996-02-01

    Techniques for analyzing the safety and reliability of analog-based electronic protection systems that serve to mitigate hazards in process control systems have been developed over many years, and are reasonably well understood. An example is the protection system in a nuclear power plant. The extension of these techniques to systems which include digital computers is not well developed, and there is little consensus among software engineering experts and safety experts on how to analyze such systems. One possible technique is to extend hazard analysis to include digital computer-based systems. Software is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully cover the software. A method for performing software hazard analysis is proposed in this paper.

  6. Animal-Free Chemical Safety Assessment.

    Science.gov (United States)

    Loizou, George D

    2016-01-01

    The exponential growth of the Internet of Things and the global popularity and remarkable decline in cost of the mobile phone is driving the digital transformation of medical practice. The rapidly maturing digital, non-medical world of mobile (wireless) devices, cloud computing and social networking is coalescing with the emerging digital medical world of omics data, biosensors and advanced imaging which offers the increasingly realistic prospect of personalized medicine. Described as a potential "seismic" shift from the current "healthcare" model to a "wellness" paradigm that is predictive, preventative, personalized and participatory, this change is based on the development of increasingly sophisticated biosensors which can track and measure key biochemical variables in people. Additional key drivers in this shift are metabolomic and proteomic signatures, which are increasingly being reported as pre-symptomatic, diagnostic and prognostic of toxicity and disease. These advancements also have profound implications for toxicological evaluation and safety assessment of pharmaceuticals and environmental chemicals. An approach based primarily on human in vivo and high-throughput in vitro human cell-line data is a distinct possibility. This would transform current chemical safety assessment practice which operates in a human "data poor" to a human "data rich" environment. This could also lead to a seismic shift from the current animal-based to an animal-free chemical safety assessment paradigm. PMID:27493630

  7. Animal-Free Chemical Safety Assessment

    Science.gov (United States)

    Loizou, George D.

    2016-01-01

    The exponential growth of the Internet of Things and the global popularity and remarkable decline in cost of the mobile phone is driving the digital transformation of medical practice. The rapidly maturing digital, non-medical world of mobile (wireless) devices, cloud computing and social networking is coalescing with the emerging digital medical world of omics data, biosensors and advanced imaging which offers the increasingly realistic prospect of personalized medicine. Described as a potential “seismic” shift from the current “healthcare” model to a “wellness” paradigm that is predictive, preventative, personalized and participatory, this change is based on the development of increasingly sophisticated biosensors which can track and measure key biochemical variables in people. Additional key drivers in this shift are metabolomic and proteomic signatures, which are increasingly being reported as pre-symptomatic, diagnostic and prognostic of toxicity and disease. These advancements also have profound implications for toxicological evaluation and safety assessment of pharmaceuticals and environmental chemicals. An approach based primarily on human in vivo and high-throughput in vitro human cell-line data is a distinct possibility. This would transform current chemical safety assessment practice which operates in a human “data poor” to a human “data rich” environment. This could also lead to a seismic shift from the current animal-based to an animal-free chemical safety assessment paradigm. PMID:27493630

  8. Safety analysis and review system

    International Nuclear Information System (INIS)

    Westinghouse Savannah River Company (WSRC) has developed a comprehensive Safety Analysis and Review System that satisfies Department of Energy safety analysis report requirements. This system consists of interrelated criteria for hazard classification, risk assessment, selection of Safety Class Items (SCIs), and selection of Operational Safety Requirements (OSRs). The system provides input for design decisions at appropriate project milestones as required by the life cycle of a project. The criteria used for selection in hazard classification, risk assessment, Safety Class Items (SCI) identification, and Operational Safety Requirement (OSR) identification are the subject of this paper

  9. Preclosure Safety Analysis Guide

    International Nuclear Information System (INIS)

    A preclosure safety analysis (PSA) is a required element of the License Application (LA) for the high- level radioactive waste repository at Yucca Mountain. This guide provides analysts and other Yucca Mountain Repository Project (the Project) personnel with standardized methods for developing and documenting the PSA. The definition of the PSA is provided in 10 CFR 63.2, while more specific requirements for the PSA are provided in 10 CFR 63.112, as described in Sections 1.2 and 2. The PSA requirements described in 10 CFR Part 63 were developed as risk-informed performance-based regulations. These requirements must be met for the LA. The PSA addresses the safety of the Geologic Repository Operations Area (GROA) for the preclosure period (the time up to permanent closure) in accordance with the radiological performance objectives of 10 CFR 63.111. Performance objectives for the repository after permanent closure (described in 10 CFR 63.113) are not mentioned in the requirements for the PSA and they are not considered in this guide. The LA will be comprised of two phases: the LA for construction authorization (CA) and the LA amendment to receive and possess (R and P) high-level radioactive waste (HLW). PSA methods must support the safety analyses that will be based on the differing degrees of design detail in the two phases. The methods described herein combine elements of probabilistic risk assessment (PRA) and deterministic analyses that comprise a risk-informed performance-based safety analysis. This revision to the PSA guide was prepared for the following objectives: (1) To correct factual and typographical errors. (2) To provide additional material suggested from reviews by the Project, the U.S. Department of Energy (DOE), and U.S. Nuclear Regulatory Commission (NRC) Staffs. (3) To update material in accordance with approaches and/or strategies adopted by the Project. In addition, a principal objective for the planned revision was to ensure that the methods and

  10. Probabilistic safety assessment in the chemical and nuclear industries

    CERN Document Server

    Fullwood, Ralph R

    2000-01-01

    Probabilistic Safety Analysis (PSA) determines the probability and consequences of accidents, hence, the risk. This subject concerns policy makers, regulators, designers, educators and engineers working to achieve maximum safety with operational efficiency. Risk is analyzed using methods for achieving reliability in the space program. The first major application was to the nuclear power industry, followed by applications to the chemical industry. It has also been applied to space, aviation, defense, ground, and water transportation. This book is unique in its treatment of chemical and nuclear risk. Problems are included at the end of many chapters, and answers are in the back of the book. Computer files are provided (via the internet), containing reliability data, a calculator that determines failure rate and uncertainty based on field experience, pipe break calculator, event tree calculator, FTAP and associated programs for fault tree analysis, and a units conversion code. It contains 540 references and many...

  11. ILO activities in the area of chemical safety.

    Science.gov (United States)

    Obadia, Isaac

    2003-08-21

    The ILO has been active in the area of safety in the use of chemicals at work since the year of its creation in 1919, including the development of international treaties and other technical instruments, the provision of technical assistance to its member States, and the development of chemical safety information systems. The two key ILO standards in this area are the Conventions on safety in the use of chemicals at work (No. 170, 1990), and the Prevention of Major Industrial Accidents (No. 174, 1993). The ILO Programme on occupational safety, health and environment (Safe Work) is currently responsible for ILO chemical safety activities. In the past two decades, most of ILO work in this area has been carried out within the context of inter-agency collaboration frameworks linking the ILO, WHO, UNEP, FAO, UNIDO, UNITAR, and the OECD, including the International Programme on Chemical Safety (IPCS), the Inter-Organisation Programme for the Sound Management of Chemicals (IOMC), and the Intergovernmental Forum on Chemical Safety (IFCS). Apart from the regular development, updating and dissemination of chemical safety information data bases such as the IPCS International Chemical Cards, the elaboration of a Globally harmonized system for the classification and labelling of Chemicals (GHS) has been the most outstanding achievement of this international collaboration on chemical safety.

  12. ILO activities in the area of chemical safety.

    Science.gov (United States)

    Obadia, Isaac

    2003-08-21

    The ILO has been active in the area of safety in the use of chemicals at work since the year of its creation in 1919, including the development of international treaties and other technical instruments, the provision of technical assistance to its member States, and the development of chemical safety information systems. The two key ILO standards in this area are the Conventions on safety in the use of chemicals at work (No. 170, 1990), and the Prevention of Major Industrial Accidents (No. 174, 1993). The ILO Programme on occupational safety, health and environment (Safe Work) is currently responsible for ILO chemical safety activities. In the past two decades, most of ILO work in this area has been carried out within the context of inter-agency collaboration frameworks linking the ILO, WHO, UNEP, FAO, UNIDO, UNITAR, and the OECD, including the International Programme on Chemical Safety (IPCS), the Inter-Organisation Programme for the Sound Management of Chemicals (IOMC), and the Intergovernmental Forum on Chemical Safety (IFCS). Apart from the regular development, updating and dissemination of chemical safety information data bases such as the IPCS International Chemical Cards, the elaboration of a Globally harmonized system for the classification and labelling of Chemicals (GHS) has been the most outstanding achievement of this international collaboration on chemical safety. PMID:12909402

  13. Reliability analysis of PLC safety equipment

    International Nuclear Information System (INIS)

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system

  14. Reliability analysis of PLC safety equipment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.; Kim, J. Y. [Chungnam Nat. Univ., Daejeon (Korea, Republic of)

    2006-06-15

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system.

  15. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide

    International Nuclear Information System (INIS)

    The objective of this Safety Guide is to provide harmonized guidance to designers, operators, regulators and providers of technical support on deterministic safety analysis for nuclear power plants. It provides information on the utilization of the results of such analysis for safety and reliability improvements. The Safety Guide addresses conservative, best estimate and uncertainty evaluation approaches to deterministic safety analysis and is applicable to current and future designs. Contents: 1. Introduction; 2. Grouping of initiating events and associated transients relating to plant states; 3. Deterministic safety analysis and acceptance criteria; 4. Conservative deterministic safety analysis; 5. Best estimate plus uncertainty analysis; 6. Verification and validation of computer codes; 7. Relation of deterministic safety analysis to engineering aspects of safety and probabilistic safety analysis; 8. Application of deterministic safety analysis; 9. Source term evaluation for operational states and accident conditions; References.

  16. Chemical exchange program analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Waffelaert, Pascale

    2007-09-01

    As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This

  17. Safety criteria for nuclear chemical plants

    International Nuclear Information System (INIS)

    Safety measures have always been required to limit the hazards due to accidental release of radioactive substances from nuclear power plants and chemical plants. The risk associated with the discharge of radioactive substances during normal operation has also to be kept acceptably low. BNFL (British Nuclear Fuels Ltd.) are developing risk criteria as targets for safe plant design and operation. The numerical values derived are compared with these criteria to see if plants are 'acceptably safe'. However, the criteria are not mandatory and may be exceeded if this can be justified. The risk assessments are subject to independent review and audit. The Nuclear Installations Inspectorate also has to pass the plants as safe. The assessment principles it uses are stated. The development of risk criteria for a multiplant site (nuclear chemical plants tend to be sited with many others which are related functionally) is discussed. This covers individual members of the general public, societal risks, risks to the workforce and external hazards. (U.K.)

  18. Meeting on risk and monitoring analysis techniques for food safety - RLA/5/060/ARCAL Project (ARCAL CXXVIII): sampling plans and introduction to chemical risk assessment in food innocuousness

    International Nuclear Information System (INIS)

    Some of the Latinoamerican countries such us Bolivia, Colombia, Uruguay and Venezuela participant in the meeting gave an exposition about the risk analysis and monitoring techniques in food safety in their countyries. With the aim to study components of risk analysis, food innocuousness, evaluation and chemical dangers, toxicity, exposure, change of paradigms in the global food system, data sources, study in animals and in vitro, sensitivity analysis, risk assessment in health it carried out the meeting

  19. Safety analysis procedures for PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Joo; Kim, Hyoung Tae; Yoo, Kun Joong

    2004-03-01

    The methodology of safety analyses for CANDU reactors in Canada, a vendor country, uses a combination of best-estimate physical models and conservative input parameters so as to minimize the uncertainty of the plant behavior predictions. As using the conservative input parameters, the results of the safety analyses are assured the regulatory requirements such as the public dose, the integrity of fuel and fuel channel, the integrity of containment and reactor structures, etc. However, there is not the comprehensive and systematic procedures for safety analyses for CANDU reactors in Korea. In this regard, the development of the safety analyses procedures for CANDU reactors is being conducted not only to establish the safety analyses system, but also to enhance the quality assurance of the safety assessment. In the first phase of this study, the general procedures of the deterministic safety analyses are developed. The general safety procedures are covered the specification of the initial event, selection of the methodology and accident sequences, computer codes, safety analysis procedures, verification of errors and uncertainties, etc. Finally, These general procedures of the safety analyses are applied to the Large Break Loss Of Coolant Accident (LBLOCA) in Final Safety Analysis Report (FSAR) for Wolsong units 2, 3, 4.

  20. Using game theory to improve safety within chemical industrial parks

    CERN Document Server

    Reniers, Genserik

    2013-01-01

    Though the game-theoretic approach has been vastly studied and utilized in relation to economics of industrial organizations, it has hardly been used to tackle safety management in multi-plant chemical industrial settings. Using Game Theory for Improving Safety within Chemical Industrial Parks presents an in-depth discussion of game-theoretic modelling which may be applied to improve cross-company prevention and -safety management in a chemical industrial park.   By systematically analyzing game-theoretic models and approaches in relation to managing safety in chemical industrial parks, Using Game Theory for Improving Safety within Chemical Industrial Parks explores the ways game theory can predict the outcome of complex strategic investment decision making processes involving several adjacent chemical plants. A number of game-theoretic decision models are discussed to provide strategic tools for decision-making situations.   Offering clear and straightforward explanations of methodologies, Using Game Theor...

  1. Views on chemical safety information and influences on chemical disposal behaviour in the UK

    International Nuclear Information System (INIS)

    This study examined how groups representing four tiers in the chemical supply chain (manufacturers, vendors, workers and consumers) understood safety information, and the factors that influenced disposal behaviour. Data from seven, semi-structured, focus groups was analysed both qualitatively (textual analysis) and quantitatively (network analysis). Such combined analytical methods enabled us to achieve both detailed insights into perceptions and behaviour and an objective understanding of the prevailing opinions that occurred within and between the focus group discussions. We found issues around awareness, trust, access and disposal behaviours differed between groups within the supply chain. Participants from the lower tiers perceived chemical safety information to be largely inaccessible. Labels were the main source of information on chemical risks for the middle and bottom tiers of the supply chain. Almost all of the participants were aware of the St Andrew's Cross and skull and crossbones symbols but few were familiar with the Volatile Organic Compound logo or the fish and tree symbol. Both the network and thematic analysis demonstrated that whilst frequent references to health risks associated with chemicals were made environmental risks were usually only articulated after prompting. It is clear that the issues surrounding public understanding of chemical safety labels are highly complex and this is compounded by inconsistencies in the cognitive profiles of chemical users. Substantially different cognitive profiles are likely to contribute towards communication difficulties between different tiers of the supply chain. Further research is needed to examine the most effective ways of communicating chemical hazards information to the public. The findings demonstrate a need to improve and simplify disposal guidance to members of the public, to raise public awareness of the graphic symbols in the CHIP 3.1, 2005 regulations and to improve access to disposal guidance

  2. Views on chemical safety information and influences on chemical disposal behaviour in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Hinks, J. [Enviresearch Ltd., Nanotechnology Centre, Herschel Building, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Bush, J. [Institute for Health and Society, Newcastle University, William Leech Building, NE2 4HH (United Kingdom)], E-mail: Judith.bush@ncl.ac.uk; Andras, P. [School of Computing Science, Newcastle University, Claremont Tower, Newcastle University, NE1 7RU (United Kingdom); Garratt, J. [Institute for Health and Society, Newcastle University, William Leech Building, NE2 4HH (United Kingdom); Pigott, G. [NuFarm UK, Wyke, Bradford, West Yorkshire, BD12 9EJ (United Kingdom); Kennedy, A. [Enviresearch Ltd., Nanotechnology Centre, Herschel Building, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Pless-Mulloli, T. [Institute for Health and Society, Newcastle University, William Leech Building, NE2 4HH (United Kingdom)

    2009-02-01

    This study examined how groups representing four tiers in the chemical supply chain (manufacturers, vendors, workers and consumers) understood safety information, and the factors that influenced disposal behaviour. Data from seven, semi-structured, focus groups was analysed both qualitatively (textual analysis) and quantitatively (network analysis). Such combined analytical methods enabled us to achieve both detailed insights into perceptions and behaviour and an objective understanding of the prevailing opinions that occurred within and between the focus group discussions. We found issues around awareness, trust, access and disposal behaviours differed between groups within the supply chain. Participants from the lower tiers perceived chemical safety information to be largely inaccessible. Labels were the main source of information on chemical risks for the middle and bottom tiers of the supply chain. Almost all of the participants were aware of the St Andrew's Cross and skull and crossbones symbols but few were familiar with the Volatile Organic Compound logo or the fish and tree symbol. Both the network and thematic analysis demonstrated that whilst frequent references to health risks associated with chemicals were made environmental risks were usually only articulated after prompting. It is clear that the issues surrounding public understanding of chemical safety labels are highly complex and this is compounded by inconsistencies in the cognitive profiles of chemical users. Substantially different cognitive profiles are likely to contribute towards communication difficulties between different tiers of the supply chain. Further research is needed to examine the most effective ways of communicating chemical hazards information to the public. The findings demonstrate a need to improve and simplify disposal guidance to members of the public, to raise public awareness of the graphic symbols in the CHIP 3.1, 2005 regulations and to improve access to disposal

  3. Assessing food safety concepts on the dairy farm: the case of chemical hazards

    NARCIS (Netherlands)

    Valeeva, N.I.; Meuwissen, M.P.M.; Oude Lansink, A.G.J.M.; Bergevoet, R.H.M.; Huirne, R.B.M.

    2004-01-01

    Adaptive conjoint analysis was used to elicit farmers' and experts' preferences for attributes of improving food safety with respect to chemical hazards on the dairy farm. Groups of respondents were determined by cluster analysis based on similar farmers' and experts' perceptions of food safety impr

  4. Chemical Safety Vulnerability Working Group report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains the Executive summary; Introduction; Summary of vulnerabilities; Management systems weaknesses; Commendable practices; Summary of management response plan; Conclusions; and a Glossary of chemical terms.

  5. Chemical Safety Vulnerability Working Group report. Volume 1

    International Nuclear Information System (INIS)

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains the Executive summary; Introduction; Summary of vulnerabilities; Management systems weaknesses; Commendable practices; Summary of management response plan; Conclusions; and a Glossary of chemical terms

  6. Risk analysis and safety rationale

    International Nuclear Information System (INIS)

    Decision making with respect to safety is becoming more and more complex. The risk involved must be taken into account together with numerous other factors such as the benefits, the uncertainties and the public perception. Can the decision maker be aided by some kind of system, general rules of thumb, or broader perspective on similar decisions? This question has been addressed in a joint Nordic project relating to nuclear power. Modern techniques for risk assessment and management have been studied, and parallels drawn to such areas as offshore safety and management of toxic chemicals in the environment. The report summarises the finding of 5 major technical reports which have been published in the NORD-series. The topics includes developments, uncertainties and limitations in probabilistic safety assessments, negligible risks, risk-cost trade-offs, optimisation of nuclear safety and radiation protection, and the role of risks in the decision making process. (author) 84 refs

  7. Chemical Safety Vulnerability Working Group report. Volume 3

    International Nuclear Information System (INIS)

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports

  8. CANDU safety analysis system establishment

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Joo; Rhee, B. W.; Park, J. H.; Kim, H. T.; Choi, H. B.; Shim, J. I.; Yoon, C.; Yang, M. K

    2002-03-01

    To develop CANDU safety analysis system, methodology, and assessment technology, GAIs from CNSC and GSIs drived by IAEA are summarized. Furthermore, the following safety items are investigated in the present study. - It is intended to secure credibility of the void reactivity in the stage of nuclear design and analysis. The measurement data concerned with the void reactivity were reviewed and used to assess the physics code such as POWDERPUFS-V/RFSP, and the lattice code such as WIMS-AECL and MCNP-4B. - Reviewing the Final Safety Analysis Report for Wolsong-2/3/4 Units, the safety analysis methodology, classification for accident scenarios, safety analysis codes, their interface, etc. were examined. - The development of 3D CFD transient analysis model has been performed to predict local subcooling of the moderator in the vicinity of Calandria tubes in a CANDU-6 reactor in the case of Large LOCA transient. - The trip coverage analysis methodology based on CATHENA code is developed. The simulation of real plant transient showed good agreement. The trip coverage map was generated successfully for two typical depressurization and pressurization event. - The multi-dimensional analysis methodology for hydrogen distribution and hydrogen burning phenomena in PHWR containment is developed using GOTHIC code. The multi-dimensional analysis predicts the local hydrogen behaviour compared to the lumped parameter model.

  9. Chemical Safety and Scientific Ethics in a Sophomore Chemistry Seminar

    Science.gov (United States)

    Moody, Anne E.; Griffith Freeman, R.

    1999-09-01

    A description of a course on chemical safety and scientific ethics is presented. The goals of this course are to impress upon the students the importance of safety in their professional lives; to empower the students to take charge of their own personal safety when working with chemicals; to illustrate and emphasize the vital importance of honesty and integrity within the scientific enterprise; and to explore issues of honesty and integrity through case studies that allow ethical decisions to be critically examined. The recent approaches and activities used to accomplish these goals are detailed. These include readings from chemical safety textbooks, chemical safety reports from news sources, and group discussions springing from problems in scientific ethics.

  10. Radwaste Disposal Safety Analysis

    International Nuclear Information System (INIS)

    For the purpose of evaluating annual individual doses from a potential repository disposing of radioactive wastes from the operation of the prospective advanced nuclear fuel cycle facilities in Korea, the new safety assessment approaches are developed such as PID methods. The existing KAERI FEP list was reviewed. Based on these new reference and alternative scenarios are developed along with a new code based on the Goldsim. The code based on the compartment theory can be applied to assess both normal and what if scenarios. In addition detailed studies on THRC coupling is studied. The oriental biosphere study ends with great success over the completion of code V and V with JAEA. The further development of quality assurance, in the form of the CYPRUS+ enables handy use of it for information management

  11. Safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    A study about the safety analysis of nuclear power plant, giving emphasis to how and why to do is presented. The utilization of the safety analysis aiming to perform the licensing requirements is discussed, and an example of the Angra 2 and 3 safety analysis is shown. Some presented tendency of the safety analysis are presented and examples are shown.(E.G.)

  12. Computer aided safety analysis 1989

    International Nuclear Information System (INIS)

    The meeting was conducted in a workshop style, to encourage involvement of all participants during the discussions. Forty-five (45) experts from 19 countries, plus 22 experts from the GDR participated in the meeting. A list of participants can be found at the end of this volume. Forty-two (42) papers were presented and discussed during the meeting. Additionally an open discussion was held on the possible directions of the IAEA programme on Computer Aided Safety Analysis. A summary of the conclusions of these discussions is presented in the publication. The remainder of this proceedings volume comprises the transcript of selected technical papers (22) presented in the meeting. It is the intention of the IAEA that the publication of these proceedings will extend the benefits of the discussions held during the meeting to a larger audience throughout the world. The Technical Committee/Workshop on Computer Aided Safety Analysis was organized by the IAEA in cooperation with the National Board for Safety and Radiological Protection (SAAS) of the German Democratic Republic in Berlin. The purpose of the meeting was to provide an opportunity for discussions on experiences in the use of computer codes used for safety analysis of nuclear power plants. In particular it was intended to provide a forum for exchange of information among experts using computer codes for safety analysis under the Technical Cooperation Programme on Safety of WWER Type Reactors (RER/9/004) and other experts throughout the world. A separate abstract was prepared for each of the 22 selected papers. Refs, figs tabs and pictures

  13. Safety analysis and risk assessment handbook

    International Nuclear Information System (INIS)

    This Safety Analysis and Risk Assessment Handbook (SARAH) provides guidance to the safety analyst at the Rocky Flats Environmental Technology Site (RFETS) in the preparation of safety analyses and risk assessments. Although the older guidance (the Rocky Flats Risk Assessment Guide) continues to be used for updating the Final Safety Analysis Reports developed in the mid-1980s, this new guidance is used with all new authorization basis documents. With the mission change at RFETS came the need to establish new authorization basis documents for its facilities, whose functions had changed. The methodology and databases for performing the evaluations that support the new authorization basis documents had to be standardized, to avoid the use of different approaches and/or databases for similar accidents in different facilities. This handbook presents this new standardized approach. The handbook begins with a discussion of the requirements of the different types of authorization basis documents and how to choose the one appropriate for the facility to be evaluated. It then walks the analyst through the process of identifying all the potential hazards in the facility, classifying them, and choosing the ones that need to be analyzed further. It then discusses the methods for evaluating accident initiation and progression and covers the basic steps in a safety analysis, including consequence and frequency binning and risk ranking. The handbook lays out standardized approaches for determining the source terms of the various accidents (including airborne release fractions, leakpath factors, etc.), the atmospheric dispersion factors appropriate for Rocky Flats, and the methods for radiological and chemical consequence assessments. The radiological assessments use a radiological open-quotes templateclose quotes, a spreadsheet that incorporates the standard values of parameters, whereas the chemical assessments use the standard codes ARCHIE and ALOHA

  14. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  15. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    International Nuclear Information System (INIS)

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  16. Safety in the Chemical Laboratory: Flood Control.

    Science.gov (United States)

    Pollard, Bruce D.

    1983-01-01

    Describes events leading to a flood in the Wehr Chemistry Laboratory at Marquette University, discussing steps taken to minimize damage upon discovery. Analyzes the problem of flooding in the chemical laboratory and outlines seven steps of flood control: prevention; minimization; early detection; stopping the flood; evaluation; clean-up; and…

  17. Radiometric chemical analysis

    International Nuclear Information System (INIS)

    The radiometric method of analysis is noted for its sensitivity and its simplicity in both apparatus and procedure. A few inexpensive radioactive reagents permit the analysis of a wide variety of chemical elements and compounds. Any particular procedure is generally applicable over a very wide range of concentrations. It is potentially an analytical method of great industrial significance. Specific examples of analyses are cited to illustrate the potentialities of ordinary equipment. Apparatus specifically designed for radiometric chemistry may shorten the time required, and increase the precision and accuracy for routine analyses. A sensitive and convenient apparatus for the routine performance of radiometric chemical analysis is a special type of centrifuge which has been used in obtaining the data presented in this paper. The radioactivity of the solution is measured while the centrifuge is spinning. This device has been used as the basis for an automatic analyser for phosphate ion, programmed to follow a sequence of unknown sampling, reagent mixing, centrifugation, counting data presentation, and phosphate replenishment. This analyser can repeatedly measure phosphate-concentration in the range of 5 to 50 ppm with an accuracy of ±5%. (author)

  18. Chemical safety of food and drinking water

    International Nuclear Information System (INIS)

    Food and drinking water are major sources of human exposure to a large number of chemicals added intentionally for technological reasons or present unintentionally due to contamination. On the other hand, there is a public demand for an essentially risk-free supply of food and drinking water. The concern over the presence of chemicals in the human diet received further emphasis through the development of toxicological and analytical methodology with increased sensitivity over the years. In order to minimize the potential health hazards to the consumers, standards have been established which indicate levels of consumption that are - according to scientific evidence - considered safe and which, consequently, permit control measures to be taken. In this context, public perception of a particular risk, may not always be in line with what might be considered a 'real' risk. Thus, while in the public opinion risk associated with smoking or over-nutrition might be accepted or underestimated, certain food chemical related risks may not be accepted and are sometimes perceived as alarmingly high

  19. Chemical Safety Vulnerability Working Group report. Volume 2

    International Nuclear Information System (INIS)

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site

  20. Chemical Safety Vulnerability Working Group report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site.

  1. Systems engineered health and safety criteria for safety analysis reports

    International Nuclear Information System (INIS)

    The world of safety analysis is filled with ambiguous words: codes and standards, consequences and risks, hazard and accident, and health and safety. These words have been subject to disparate interpretations by safety analysis report (SAR) writers, readers, and users. open-quotes Principal health and safety criteriaclose quotes has been one of the most frequently misused phrases; rarely is it used consistently or effectively. This paper offers an easily understood definition for open-quotes principal health and safety criteriaclose quotes and uses systems engineering to convert an otherwise mysterious topic into the primary means of producing an integrated SAR. This paper is based on SARs being written for environmental restoration and waste management activities for the U.S. Department of Energy (DOE). Requirements for these SARs are prescribed in DOE Order 5480-23, open-quotes Nuclear Safety Analysis Reports.close quotes

  2. Relationship of green chemistry and chemical environment safety management

    Institute of Scientific and Technical Information of China (English)

    NieJL; ShenYW

    2002-01-01

    Green chemistry and chemical environmental safety management are the two important techniques and management means to implement sustainable development policy.They are also the two basic tools to carry out headstream depollution and environmental protection.This paper reviewed the principle of green chemistry and main contents of chemical environment safety management from the point of management toxicity,pointed out the same aim of these two techniques and management measures,and described the foreground of those two sustainable development environmental methods in China.

  3. Savannah River Site management response plan for chemical safety vulnerability field assessment. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kahal, E.J.; Murphy, S.L.; Salaymeh, S.R.

    1994-09-01

    As part of the U.S. Department of Energy`s (DOE) initiative to identify potential chemical safety vulnerabilities in the DOE complex, the Chemical Safety Vulnerability Core Working Group issued a field verification assessment report. While the report concluded that Savannah River Site (SRS) is moving in a positive direction, the report also identified five chemical safety vulnerabilities with broad programmatic impact that are not easily nor quickly remedied. The May 1994 SRS Management Response Plan addressed the five SRS vulnerabilities identified in the field assessment report. The SRS response plan listed observations supporting the vulnerabilities and any actions taken or planned toward resolution. Many of the observations were resolved by simple explanations, such as the existence of implementation plans for Safety Analysis Report updates. Recognizing that correcting individual observations does not suffice in remedying the vulnerabilities, a task team was assembled to address the broader programmatic issues and to recommend corrective actions.

  4. Reload safety analysis automation tools

    International Nuclear Information System (INIS)

    Performing core physics calculations for the sake of reload safety analysis is a very demanding and time consuming process. This process generally begins with the preparation of libraries for the core physics code using a lattice code. The next step involves creating a very large set of calculations with the core physics code. Lastly, the results of the calculations must be interpreted, correctly applying uncertainties and checking whether applicable limits are satisfied. Such a procedure requires three specialized experts. One must understand the lattice code in order to correctly calculate and interpret its results. The next expert must have a good understanding of the physics code in order to create libraries from the lattice code results and to correctly define all the calculations involved. The third expert must have a deep knowledge of the power plant and the reload safety analysis procedure in order to verify, that all the necessary calculations were performed. Such a procedure involves many steps and is very time consuming. At ÚJV Řež, a.s., we have developed a set of tools which can be used to automate and simplify the whole process of performing reload safety analysis. Our application QUADRIGA automates lattice code calculations for library preparation. It removes user interaction with the lattice code and reduces his task to defining fuel pin types, enrichments, assembly maps and operational parameters all through a very nice and user-friendly GUI. The second part in reload safety analysis calculations is done by CycleKit, a code which is linked with our core physics code ANDREA. Through CycleKit large sets of calculations with complicated interdependencies can be performed using simple and convenient notation. CycleKit automates the interaction with ANDREA, organizes all the calculations, collects the results, performs limit verification and displays the output in clickable html format. Using this set of tools for reload safety analysis simplifies

  5. Functional Hazard Analysis for Railway Safety

    OpenAIRE

    RAFRAFI,M; El-Koursi, Em

    2007-01-01

    The apportionment of railway safety targets is a key issue to develop a common safety management in the European railway system. In this paper, we develop a generic approach based on the Functional Hazard Analysis (FHA), to analyse the safety of railway systems for a unified European network and to comply with the Common Safety Targets (CSTs) required by the European railway safety directive. We suggest to combine the FHA technique with the functional railway architecture, developed by the AE...

  6. Technical safety appraisal of the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    On June 27, 1989, Secretary of Energy, Admiral James D. Watkins, US Navy (Retired), announced a 10-point initiative to strengthen environment, safety, and health (ES ampersand H) programs and waste management operations in the Department of Energy (DOE). One of the initiatives involved conducting independent Tiger Team Assessments (TTA) at DOE operating facilities. A TTA of the Idaho National Engineering Laboratory (INEL) was performed during June and July 1991. Technical Safety Appraisals (TSA) were conducted in conjunction with the TTA as its Safety and Health portion. However, because of operational constraints the the Idaho Chemical Processing Plant (ICPP), operated for the DOE by Westinghouse Idaho Nuclear Company, Inc. (WINCO), was not included in the Safety and Health Subteam assessment at that time. This TSA, conducted April 12 - May 8, 1992, was performed by the DOE Office of Performance Assessment to complete the normal scope of the Safety and Health portion of the Tiger Team Assessment of the Idaho National Engineering Laboratory. The purpose of TSAs is to evaluate and strengthen DOE operations by verifying contractor compliance with DOE Orders, to assure that lessons learned from commercial operations are incorporated into facility operations, and to stimulate and encourage pursuit of excellence; thus, the appraisal addresses more issues than would be addressed in a strictly compliance-oriented appraisal. A total of 139 Performance Objectives have been addressed by this appraisal in 19 subject areas. These 19 areas are: organization and administration, quality verification, operations, maintenance, training and certification, auxiliary systems, emergency preparedness, technical support, packaging and transportation, nuclear criticality safety, safety/security interface, experimental activities, site/facility safety review, radiological protection, worker safety and health compliance, personnel protection, fire protection, medical services and natural

  7. Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education

    Science.gov (United States)

    Klein, James A.; Davis, Richard A.

    2011-01-01

    This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…

  8. Solid waste burial grounds interim safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  9. Solid waste burial grounds interim safety analysis

    International Nuclear Information System (INIS)

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment

  10. Safety, health and environmental committee (JKSHE): Establishing chemical hazard management

    International Nuclear Information System (INIS)

    Most of the laboratories in Malaysian Nuclear Agency are using chemicals in their research activities. However, it is known that using of chemicals without proper knowledge especially on the material characteristics as well as safe handling procedure may cause great harm to the workers. Therefore, Safety, Health and Environmental Committee (JKSHE) sees the need to establish a good chemical hazard management to ensure that a safe and healthy workplace and environment is provided. One of the elements in chemical hazard management is to carry out Chemical Hazard Risk Assessment (CHRA). The assessment was done so that decision can be made on suitable control measures upon use of such chemicals, such as induction and training courses to be given to the workers and health surveillance activities that may be needed to protect the workers. For this, JKSHE has recommended to conduct CHRA for one of the laboratories at Secondary Standard Dosimetry Laboratory (SSDL) namely Film Dosimeter Processing Room (dark room) as the initial effort towards a better chemical hazard management. This paper presents the case study where CHRA was conducted to identify the chemical hazards at the selected laboratory, the adequacy of existing control measures and finally the recommendation for more effective control measures. (author)

  11. CHEMICAL PLANT SAFETY AND LOSS PREVENTION (Papers Presented at the International Symposium on Safety Control and Risk Management, SCRM)

    OpenAIRE

    Smith, Robert A.; Michigan, Midland

    1989-01-01

    Increased emphasis on safety and loss prevention over the last 50 years has engrained safety as one of the core values of The Dow Chemical Company. The safety emphasis starts at the very top, with the Environment, Health and Safety Committee of the Board

  12. Process Control Systems in the Chemical Industry: Safety vs. Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  13. Preliminary safety analysis methodology for the SMART

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoo Hwan; Chung, Y. J.; Kim, H. C.; Sim, S. K.; Lee, W. J.; Chung, B. D.; Song, J. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This technical report was prepared for a preliminary safety analysis methodology of the 330MWt SMART (System-integrated Modular Advanced ReacTor) which has been developed by Korea Atomic Energy Research Institute (KAERI) and funded by the Ministry of Science and Technology (MOST) since July 1996. This preliminary safety analysis methodology has been used to identify an envelope for the safety of the SMART conceptual design. As the SMART design evolves, further validated final safety analysis methodology will be developed. Current licensing safety analysis methodology of the Westinghouse and KSNPP PWRs operating and under development in Korea as well as the Russian licensing safety analysis methodology for the integral reactors have been reviewed and compared to develop the preliminary SMART safety analysis methodology. SMART design characteristics and safety systems have been reviewed against licensing practices of the PWRs operating or KNGR (Korean Next Generation Reactor) under construction in Korea. Detailed safety analysis methodology has been developed for the potential SMART limiting events of main steam line break, main feedwater pipe break, loss of reactor coolant flow, CEA withdrawal, primary to secondary pipe break and the small break loss of coolant accident. SMART preliminary safety analysis methodology will be further developed and validated in parallel with the safety analysis codes as the SMART design further evolves. Validated safety analysis methodology will be submitted to MOST as a Topical Report for a review of the SMART licensing safety analysis methodology. Thus, it is recommended for the nuclear regulatory authority to establish regulatory guides and criteria for the integral reactor. 22 refs., 18 figs., 16 tabs. (Author)

  14. Regulation of chemical safety at fuel cycle facilities by the United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    When the U.S. Nuclear Regulatory Commission (NRC) was established in 1975, its regulations were based on radiation dose limits. Chemical hazards rarely influenced NRC regulations. After the Three Mile Island reactor accident in 1979, the NRC staff was directed to address emergency planning at non-reactor facilities. Several fuel cycle facilities were ordered to submit emergency plans consistent with reactor emergency plans because no other guidance was available. NRC published a notice that it was writing regulations to codify the requirements in the Orders and upgrade the emergency plans to address all hazards, including chemical hazards. The legal authority of NRC to regulate chemical safety was questioned. In 1986, an overfilled uranium hexafluoride cylinder ruptured and killed a worker. The NRC staff was directed to address emergency planning for hazardous chemicals in its regulations. The final rule included a requirement for fuel cycle facilities to certify compliance with legislation requiring local authorities to establish emergency plans for hazardous chemicals. As with emergency planning, NRC's authority to regulate chemical safety during routine operations was limited. NRC established memoranda of understanding (MOUs) with other regulatory agencies to encourage exchange of information between the agencies regarding occupational hazards. In 2000, NRC published new, performance-based, regulations for fuel cycle facilities. The new regulations required an integrated safety analysis (ISA) which used quantitative standards to assess chemical exposures. Some unique chemical exposure cases were addressed while implementing the new regulations. In addition, some gaps remain in the regulation of hazardous chemicals at fuel cycle facilities. The status of ongoing efforts to improve regulation of chemical safety at fuel cycle facilities is discussed. (authors)

  15. Chemical detection, identification, and analysis system

    International Nuclear Information System (INIS)

    The chemical detection, identification, and analysis system (CDIAS) has three major goals. The first is to display safety information regarding chemical environment before personnel entry. The second is to archive personnel exposure to the environment. Third, the system assists users in identifying the stage of a chemical process in progress and suggests safety precautions associated with that process. In addition to these major goals, the system must be sufficiently compact to provide transportability, and it must be extremely simple to use in order to keep user interaction at a minimum. The system created to meet these goals includes several pieces of hardware and the integration of four software packages. The hardware consists of a low-oxygen, carbon monoxide, explosives, and hydrogen sulfide detector; an ion mobility spectrometer for airborne vapor detection; and a COMPAQ 386/20 portable computer. The software modules are a graphics kernel, an expert system shell, a data-base management system, and an interface management system. A supervisory module developed using the interface management system coordinates the interaction of the other software components. The system determines the safety of the environment using conventional data acquisition and analysis techniques. The low-oxygen, carbon monoxide, hydrogen sulfide, explosives, and vapor detectors are monitored for hazardous levels, and warnings are issued accordingly

  16. Automation for System Safety Analysis

    Science.gov (United States)

    Malin, Jane T.; Fleming, Land; Throop, David; Thronesbery, Carroll; Flores, Joshua; Bennett, Ted; Wennberg, Paul

    2009-01-01

    This presentation describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.

  17. NKS/SOS-1 seminar on safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, K. [Risoe National Lab., Roskilde (Denmark); Anderson, K. [Karinta-Konsult (Sweden); Pulkkinen, U. [VTT Automation (Finland)

    2001-05-01

    The report describes presentations and discussions at a seminar held at Risoe on March 22-23, 2000. The title of the seminar was NKS/SOS-1 - Safety Analysis. It dealt with issues of relevance for the safety analysis for the entire nuclear safety field (notably reactors and nuclear waste repositories). Such issues were: objectives of safety analysis, risk criteria, decision analysis, expert judgement and risk communication. In addition, one talk dealt with criteria for chemical industries in Europe. The seminar clearly showed that the concept of risk is multidimensional, which makes clarity and transparency essential elements in risk communication, and that there are issues of common concern between different applications, such as how to deal with different kinds of uncertainty and expert judgement. (au)

  18. NKS/SOS-1 seminar on safety analysis

    International Nuclear Information System (INIS)

    The report describes presentations and discussions at a seminar held at Risoe on March 22-23, 2000. The title of the seminar was NKS/SOS-1 - Safety Analysis. It dealt with issues of relevance for the safety analysis for the entire nuclear safety field (notably reactors and nuclear waste repositories). Such issues were: objectives of safety analysis, risk criteria, decision analysis, expert judgement and risk communication. In addition, one talk dealt with criteria for chemical industries in Europe. The seminar clearly showed that the concept of risk is multidimensional, which makes clarity and transparency essential elements in risk communication, and that there are issues of common concern between different applications, such as how to deal with different kinds of uncertainty and expert judgement. (au)

  19. Chemical Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Uses state-of-the-art instrumentation for qualitative and quantitative analysis of organic and inorganic compounds, and biomolecules from gas, liquid, and...

  20. Task D: Hydrogen safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R.; Sievert, B.G. [Univ. of Miami, Coral Gables, FL (United States); Swain, M.N. [Analytical Technologies, Inc., Miami, FL (United States)

    1996-10-01

    This report covers two topics. The first is a review of codes, standards, regulations, recommendations, certifications, and pamphlets which address safety of gaseous fuels. The second is an experimental investigation of hydrogen flame impingement. Four areas of concern in the conversion of natural gas safety publications to hydrogen safety publications are delineated. Two suggested design criteria for hydrogen vehicle fuel systems are proposed. It is concluded from the experimental work that light weight, low cost, firewalls to resist hydrogen flame impingement are feasible.

  1. Guidance for preparation of safety analysis reports

    International Nuclear Information System (INIS)

    Department of Energy (DOE) Order 5480.5, ''Safety of Nuclear Facilities,'' requires the preparation of appropriate safety analyses for each DOE operation and subsequent significant modifications including decommissioning, and independent review of each safety analysis. The purpose of this guide is to assist in the preparation and review of safety documentation for Oak Ridge Operations (ORO) nonreactor facilities and operations. This guide provides a narrative outline of the minimum information needed to prepare safety documentation for ORO moderate or high hazard facilities. Safety documentation is required for new, existing, and modified facilities. The basic purpose of the safety documentation process is to provide assurance that there is no significant increase in risk, as defined in DOE safety policy statements, to people or the environment from operation of ORO facilities

  2. Chemical substructure analysis in toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Beauchamp, R.O. Jr. [Center for Information on Toxicology and Environment, Raleigh, NC (United States)

    1990-12-31

    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  3. The 'PROCESO' index: a new methodology for the evaluation of operational safety in the chemical industry

    International Nuclear Information System (INIS)

    The acknowledgement of industrial installations as complex systems in the early 1980s outstands as a milestone in the path to operational safety. Process plants are social-technical complex systems of a dynamic nature, whose properties depend not only on their components, but also on the inter-relations among them. A comprehensive assessment of operational safety requires a systemic approach, i.e. an integrated framework that includes all the relevant factors influencing safety. Risk analysis methodologies and safety management systems head the list of methods that point in this direction, but they normally require important plant resources. As a consequence, their use is frequently restricted to especially dangerous processes often driven by compliance with legal requirements. In this work a new safety index for the chemical industry, termed the 'Proceso' Index (standing for the Spanish terms for PROCedure for the Evaluation of Operational Safety), has been developed. PROCESO is based on the principles of systems theory, has a tree-like structure and considers 25 areas to guide the review of plant safety. The method uses indicators whose respective weight values have been obtained via an expert judgement technique. This paper describes the steps followed to develop this new Operational Safety Index, explains its structure and illustrates its application to process plants

  4. Emerging frontier technologies for food safety analysis and risk assessment

    Institute of Scientific and Technical Information of China (English)

    DONG Yi-yang; LIU Jia-hui; WANG Sai; CHEN Qi-long; GUO Tian-yang; ZHANG Li-ya; JIN Yong; SU Hai-jia; TAN Tian-wei

    2015-01-01

    Access to security and safe food is a basic human necessity and essential for a sustainable world. To perform hi-end food safety analysis and risk assessment with state of the art technologies is of utmost importance thereof. With applications as exempliifed by microlfuidic immunoassay, aptasensor, direct analysis in real time, high resolution mass spectrometry, benchmark dose and chemical speciifc adjustment factor, this review presents frontier food safety analysis and risk assess-ment technologies, from which both food quality and public health wil beneift undoubtedly in a foreseeable future.

  5. Hot Cell Facility (HCF) Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  6. Hot Cell Facility (HCF) Safety Analysis Report

    International Nuclear Information System (INIS)

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR

  7. Development of safety analysis technology for LMR

    International Nuclear Information System (INIS)

    The analysis methodologies as well as the analysis computer code system for the transient, HCDA, and containment performance analyses, which are required for KALIMER safety analyses, have been developed. The SSC-K code has been developed based on SSC-L which is an analysis code for loop type LMR, by improving models necessary for the KALIMER system analysis, and additional models have been added to the code. In addition, HCDA analysis model has been developed and the containment performance analysis code has been also improved. The preliminary basis for the safety analysis has been established, and the preliminary safety analyses for the key design features have been performed. In addition, a state-of-art analysis for LMR PSA and overseas safety and licensing requirements have been reviewed. The design database for the systematic management of the design documents as well as design processes has been established as well

  8. Development of safety analysis technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Kim, K. D. [and others

    2000-05-01

    The analysis methodologies as well as the analysis computer code system for the transient, HCDA, and containment performance analyses, which are required for KALIMER safety analyses, have been developed. The SSC-K code has been developed based on SSC-L which is an analysis code for loop type LMR, by improving models necessary for the KALIMER system analysis, and additional models have been added to the code. In addition, HCDA analysis model has been developed and the containment performance analysis code has been also improved. The preliminary basis for the safety analysis has been established, and the preliminary safety analyses for the key design features have been performed. In addition, a state-of-art analysis for LMR PSA and overseas safety and licensing requirements have been reviewed. The design database for the systematic management of the design documents as well as design processes has been established as well.

  9. Microfabricated Chemical Sensors for Safety and Emission Control Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Knight, D.; Liu, C. C.; Wu, Q. H.

    1998-01-01

    Chemical sensor technology is being developed for leak detection, emission monitoring, and fire safety applications. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication (MicroElectroMechanical Systems (MEMS)-based) technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Using these technologies, sensors to measure hydrogen, hydrocarbons, nitrogen oxides, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  10. Updated safety analysis of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Neill, E-mail: neill.taylor@iter.org [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Baker, Dennis; Ciattaglia, Sergio; Cortes, Pierre; Elbez-Uzan, Joelle; Iseli, Markus; Reyes, Susana; Rodriguez-Rodrigo, Lina; Rosanvallon, Sandrine; Topilski, Leonid [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2011-10-15

    An updated version of the ITER Preliminary Safety Report has been produced and submitted to the licensing authorities. It is revised and expanded in response to requests from the authorities after their review of an earlier version in 2008, to reflect enhancements in ITER safety provisions through design changes, to incorporate new and improved safety analyses and to take into account other ITER design evolution. The updated analyses show that changes to the Tokamak cooling water system design have enhanced confinement and reduced potential radiological releases as well as removing decay heat with very high reliability. New and updated accident scenario analyses, together with fire and explosion risk analyses, have shown that design provisions are sufficient to minimize the likelihood of accidents and reduce potential consequences to a very low level. Taken together, the improvements provided a stronger demonstration of the very good safety performance of the ITER design.

  11. A sequential-move game for enhancing safety and security cooperation within chemical clusters

    International Nuclear Information System (INIS)

    The present paper provides a game theoretic analysis of strategic cooperation on safety and security among chemical companies within a chemical industrial cluster. We suggest a two-stage sequential move game between adjacent chemical plants and the so-called Multi-Plant Council (MPC). The MPC is considered in the game as a leader player who makes the first move, and the individual chemical companies are the followers. The MPC's objective is to achieve full cooperation among players through establishing a subsidy system at minimum expense. The rest of the players rationally react to the subsidies proposed by the MPC and play Nash equilibrium. We show that such a case of conflict between safety and security, and social cooperation, belongs to the 'coordination with assurance' class of games, and we explore the role of cluster governance (fulfilled by the MPC) in achieving a full cooperative outcome in domino effects prevention negotiations. The paper proposes an algorithm that can be used by the MPC to develop the subsidy system. Furthermore, a stepwise plan to improve cross-company safety and security management in a chemical industrial cluster is suggested and an illustrative example is provided.

  12. A sequential-move game for enhancing safety and security cooperation within chemical clusters.

    Science.gov (United States)

    Pavlova, Yulia; Reniers, Genserik

    2011-02-15

    The present paper provides a game theoretic analysis of strategic cooperation on safety and security among chemical companies within a chemical industrial cluster. We suggest a two-stage sequential move game between adjacent chemical plants and the so-called Multi-Plant Council (MPC). The MPC is considered in the game as a leader player who makes the first move, and the individual chemical companies are the followers. The MPC's objective is to achieve full cooperation among players through establishing a subsidy system at minimum expense. The rest of the players rationally react to the subsidies proposed by the MPC and play Nash equilibrium. We show that such a case of conflict between safety and security, and social cooperation, belongs to the 'coordination with assurance' class of games, and we explore the role of cluster governance (fulfilled by the MPC) in achieving a full cooperative outcome in domino effects prevention negotiations. The paper proposes an algorithm that can be used by the MPC to develop the subsidy system. Furthermore, a stepwise plan to improve cross-company safety and security management in a chemical industrial cluster is suggested and an illustrative example is provided. PMID:21146296

  13. Safety analysis SFR 1. Long-term safety

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the

  14. Autoclave nuclear criticality safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    D`Aquila, D.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

    1991-12-31

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  15. HANFORD SAFETY ANALYSIS & RISK ASSESSMENT HANDBOOK (SARAH)

    Energy Technology Data Exchange (ETDEWEB)

    EVANS, C B

    2004-12-21

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S&M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard.

  16. Economic analysis of safety risks in construction

    OpenAIRE

    Teresa Bourbon; Fernando Santos; Alfredo Soeiro

    2007-01-01

    The objective of this study revolves around the analysis of the safety risks involved with one construction project, and the respective economic effects of risk prevention and safety management. As a result of the co-ordination of systems, and harmonising of work between the Project Leader, Safety Co-ordinator and Contractor, an adequate strategy was developed for the safety of the project Escola de Ciências da Saúde da Universidade do Minho. The risk evaluation is carried out in simulated fo...

  17. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Process safety management of highly hazardous chemicals... Health and Environmental Controls § 1926.64 Process safety management of highly hazardous chemicals... elements of process safety management in this standard. (3) Employers shall provide to employees and...

  18. Development of Safety Analysis Technology for LMR

    International Nuclear Information System (INIS)

    In the safety analysis code system development area, the development of an analysis code for a flow blockage could be brought to completion throughout an integrated validation of MATRA-LMR-FB. The safety analysis code of SSC-K has been evolved by building detailed reactivity models and a core 3 dimensional T/H model into it, and developing its window version. A basic analysis module for SFR features also have been developed incorporating a numerical method, best estimated correlations, and a code structure module. For the analysis of the HCDA initiating phase, a sodium boiling model to be linked to SSC-K and a fuel transient performance/cladding failure model have been developed with a state-of-the-art study on the molten fuel movement models. Besides, scoping analysis models for the post-accident heat removal phase have been developed as well. In safety analysis area, the safety criteria for the KALIMER-600 have been set up, and an internal flow channel blockage and local faults have been analyzed for the assembly safety evaluation, while key safety concepts of the KALIMER-600 has been investigated getting through the analyses of ATWS as well as design basis accidents like TOP and LOF, from which the inherent safety due to a core reactivity feedback has been assessed. The HCDA analysis for the initiating phase and an estimation of the core energy release, subsequently, have been followed with setup of the safety criteria as well as T/H analysis for the core catcher. The thermal-hydraulic behaviors, and released radioactivity sources and dose rates in the containment have been analyzed for its performance evaluation in this area. The display of a data base for research products on the KALIMER Website and the detailed process planning with its status analysis, have become feasible from achievements in the area of the integrated technology development and establishment

  19. Release mitigation spray safety systems for chemical demilitarization applications.

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  20. Software safety analysis practice in installation phase

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. W.; Chen, M. H.; Shyu, S. S., E-mail: hwhwang@iner.gov.t [Institute of Nuclear Energy Research, No. 1000 Wenhua Road, Chiaan Village, Longtan Township, 32546 Taoyuan County, Taiwan (China)

    2010-10-15

    This work performed a software safety analysis in the installation phase of the Lung men nuclear power plant in Taiwan, under the cooperation of Institute of Nuclear Energy Research and Tpc. The US Nuclear Regulatory Commission requests licensee to perform software safety analysis and software verification and validation in each phase of software development life cycle with Branch Technical Position 7-14. In this work, 37 safety grade digital instrumentation and control systems were analyzed by failure mode and effects analysis, which is suggested by IEEE standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The failure mode and effects analysis showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (Author)

  1. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Russian Edition)

    International Nuclear Information System (INIS)

    The objective of this Safety Guide is to provide harmonized guidance to designers, operators, regulators and providers of technical support on deterministic safety analysis for nuclear power plants. It provides information on the utilization of the results of such analysis for safety and reliability improvements. The Safety Guide addresses conservative, best estimate and uncertainty evaluation approaches to deterministic safety analysis and is applicable to current and future designs. Contents: 1. Introduction; 2. Grouping of initiating events and associated transients relating to plant states; 3. Deterministic safety analysis and acceptance criteria; 4. Conservative deterministic safety analysis; 5. Best estimate plus uncertainty analysis; 6. Verification and validation of computer codes; 7. Relation of deterministic safety analysis to engineering aspects of safety and probabilistic safety analysis; 8. Application of deterministic safety analysis; 9. Source term evaluation for operational states and accident conditions; References

  2. Safety Analysis of an Evolving Software Architecture

    OpenAIRE

    de Lemos, Rogério

    2000-01-01

    The safety analysis of an evolving software system has to consider the impact that changes might have on the software components, and to provide confidence that the risk is acceptable. If the impact of a change is not thoroughly analysed, accidents can occur as a result of faulty interactions between components, for example. However, the process of safety analysis can be enhanced if appropriate abstractions are provided for modelling and analysing software components and their interactions. I...

  3. Safety analysis SFR 1. Long-term safety

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the

  4. Safety analysis SFR 1. Long-term safety

    International Nuclear Information System (INIS)

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the regulatory

  5. Safety Issues of HG and PB as IFE Target Materials: Radiological Versus Chemical Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, S; Latkowski, J F; Cadwallader, L C; Moir, R W; Rio, G. D; Sanz, J

    2002-11-11

    We have performed a safety assessment of mercury and lead as possible hohlraum materials for Inertial Fusion Energy (IFE) targets, including for the first time a comparative analysis of the radiological and toxicological consequences of an accidental release. In order to calculate accident doses to the public, we have distinguished between accidents at the target fabrication facility and accidents at other areas of the power plant. Regarding the chemical toxicity assessment, we have used the USDOE regulations to determine the maximum allowable release in order to protect the public from adverse health effects. Opposite to common belief, it has been found that the chemical safety requirements for these materials appear to be more stringent than the concentrations that would result in an acceptable radiological dose.

  6. Safety analysis of autonomous excavator functionality

    Energy Technology Data Exchange (ETDEWEB)

    Seward, D.; Pace, C.; Morrey, R.; Sommerville, I

    2000-10-01

    This paper presents an account of carrying out a hazard analysis to define the safety requirements for an autonomous robotic excavator. The work is also relevant to the growing generic class of heavy automated mobile machinery. An overview of the excavator design is provided and the concept of a safety manager is introduced. The safety manager is an autonomous module responsible for all aspects of system operational safety, and is central to the control system's architecture. Each stage of the hazard analysis is described, i.e. system model creation, hazard definition and hazard analysis. Analysis at an early stage of the design process, and on a system that interfaces directly to an unstructured environment, exposes certain issues relevant to the application of current hazard analysis methods. The approach taken in the analysis is described. Finally, it is explained how the results of the hazard analysis have influenced system design, in particular, safety manager specifications. Conclusions are then drawn about the applicability of hazard analysis of requirements in general, and suggestions are made as to how the approach can be taken further.

  7. IMPLEMENTATION OF A SAFETY PROGRAM FOR THE WORK ACCIDENTS’ CONTROL. A CASE STUDY IN THE CHEMICAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Edison Cesar de Faria Nogueira

    2015-03-01

    Full Text Available This article presents a case study related to the implementation of a Work Safety Program in a chemical industry, based on the Process Safety Program, PSP, of a huge energy company. The research was applied, exploratory, qualitative and with and data collection method through documentary and bibliographical research. There will be presented the main practices adopted in order to make the Safety Program a reality inside a chemical industry, its results and contributions for its better development. This paper proposes the implementation of a Safety Program must be preceded by a diagnosis of occupational safety and health management system and with constant critical analysis in order to make the necessary adjustments.

  8. Probabilistic safety analysis using microcomputer

    International Nuclear Information System (INIS)

    The main steps of execution of a Probabilistic Safety Assessment (PSA) are presented in this report, as the study of the system description, construction of event trees and fault trees, and the calculation of overall unavailability of the systems. It is also presented the use of microcomputer in performing some tasks, highlightning the main characteristics of a software to perform adequately the job. A sample case of fault tree construction and calculation is presented, using the PSAPACK software, distributed by the IAEA (International Atomic Energy Agency) for training purpose. (author)

  9. Safety evaluation of chemical mixtures and combinations of chemical and non-chemical stressors

    NARCIS (Netherlands)

    Jonker, D.; Freidig, A.P.; Groten, J.P.; Hollander, A.E.M.de; Stierum, R.H.; Woutersen, R.A.; Feron, V.J.

    2004-01-01

    Recent developments in hazard identification and risk assessment of chemical mixtures are reviewed. Empirical, descriptive approaches to study and characterize the toxicity of mixtures have dominated during the past two decades, but an increasing number of mechanistic approaches have made their entr

  10. From Safety Analysis to Formal Specification

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark; Ravn, Anders P.; Stavridou, Victoria

    1998-01-01

    Software for safety critical systems must deal with the hazards identified bysafety analysis. This paper investigates, how the results of onesafety analysis technique, fault trees, are interpreted as software safetyrequirements to be used in the program design process. We propose thatfault tree...... analysis and program development use the samesystem model. This model is formalized in areal-time, interval logic, based on a conventional dynamic systems modelwith state evolving over time. Fault trees are interpreted astemporal formulas, and it is shown how such formulas can be usedfor deriving safety...

  11. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Science.gov (United States)

    2010-01-01

    ... this safety program; namely, process safety information, integrated safety analysis, and management... safety function, affected processes, cause of the failure, whether the failure was in the context of the... conclusion of each failure investigation of an item relied on for safety or management measure. (b)...

  12. System safety analysis of an autonomous mobile robot

    International Nuclear Information System (INIS)

    Analysis of the safety of operating and maintaining the Stored Waste Autonomous Mobile Inspector (SWAMI) II in a hazardous environment at the Fernald Environmental Management Project (FEMP) was completed. The SWAMI II is a version of a commercial robot, the HelpMate trademark robot produced by the Transitions Research Corporation, which is being updated to incorporate the systems required for inspecting mixed toxic chemical and radioactive waste drums at the FEMP. It also has modified obstacle detection and collision avoidance subsystems. The robot will autonomously travel down the aisles in storage warehouses to record images of containers and collect other data which are transmitted to an inspector at a remote computer terminal. A previous study showed the SWAMI II has economic feasibility. The SWAMI II will more accurately locate radioactive contamination than human inspectors. This thesis includes a System Safety Hazard Analysis and a quantitative Fault Tree Analysis (FTA). The objectives of the analyses are to prevent potentially serious events and to derive a comprehensive set of safety requirements from which the safety of the SWAMI II and other autonomous mobile robots can be evaluated. The Computer-Aided Fault Tree Analysis (CAFTA copyright) software is utilized for the FTA. The FTA shows that more than 99% of the safety risk occurs during maintenance, and that when the derived safety requirements are implemented the rate of serious events is reduced to below one event per million operating hours. Training and procedures in SWAMI II operation and maintenance provide an added safety margin. This study will promote the safe use of the SWAMI II and other autonomous mobile robots in the emerging technology of mobile robotic inspection

  13. Chemical Analysis of Single Cells

    Science.gov (United States)

    Borland, Laura M.; Kottegoda, Sumith; Phillips, K. Scott; Allbritton, Nancy L.

    2008-07-01

    Chemical analysis of single cells requires methods for quickly and quantitatively detecting a diverse array of analytes from extremely small volumes (femtoliters to nanoliters) with very high sensitivity and selectivity. Microelectrophoretic separations, using both traditional capillary electrophoresis and emerging microfluidic methods, are well suited for handling the unique size of single cells and limited numbers of intracellular molecules. Numerous analytes, ranging from small molecules such as amino acids and neurotransmitters to large proteins and subcellular organelles, have been quantified in single cells using microelectrophoretic separation techniques. Microseparation techniques, coupled to varying detection schemes including absorbance and fluorescence detection, electrochemical detection, and mass spectrometry, have allowed researchers to examine a number of processes inside single cells. This review also touches on a promising direction in single cell cytometry: the development of microfluidics for integrated cellular manipulation, chemical processing, and separation of cellular contents.

  14. Waste Isolation Pilot Plant Safety Analysis Report

    International Nuclear Information System (INIS)

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions'' (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.'' This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment

  15. Waste Isolation Pilot Plant Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  16. K West integrated water treatment system subproject safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  17. K West integrated water treatment system subproject safety analysis document

    International Nuclear Information System (INIS)

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System

  18. An Analysis of Cultivation of Safety Consciousness in Teaching Engineering Chemical Experiment%浅谈工科化学实验教学中安全意识的培养

    Institute of Scientific and Technical Information of China (English)

    石振武

    2012-01-01

    根据工科化学实验教学的特点,在实验教学过程中采用实验前安全意识的教育、实验中安全制度的检查以及实验后安全防范的复查等措施,以此着重培养工科本科生的安全意识。在保证化学实验教学顺利进行和提高化学实验教学质量的同时,也有助于工科本科生综合素质的全面提高。%According to the characteristics of the experimental teaching of engineering chemistry,the education of safety consciousness before the experiment,inspection of safety regulation in conduction of experiment and safety measures after the completion of experiment were adopted to cultivate the engineering undergraduate safety consciousness.When the smooth conduction of chemical experiment teaching is ensured and the quality of chemistry experiment teaching improved,the engineering undergraduate all-round comprehensive quality can be improved.

  19. Reliability analysis of software based safety functions

    International Nuclear Information System (INIS)

    The methods applicable in the reliability analysis of software based safety functions are described in the report. Although the safety functions also include other components, the main emphasis in the report is on the reliability analysis of software. The check list type qualitative reliability analysis methods, such as failure mode and effects analysis (FMEA), are described, as well as the software fault tree analysis. The safety analysis based on the Petri nets is discussed. The most essential concepts and models of quantitative software reliability analysis are described. The most common software metrics and their combined use with software reliability models are discussed. The application of software reliability models in PSA is evaluated; it is observed that the recent software reliability models do not produce the estimates needed in PSA directly. As a result from the study some recommendations and conclusions are drawn. The need of formal methods in the analysis and development of software based systems, the applicability of qualitative reliability engineering methods in connection to PSA and the need to make more precise the requirements for software based systems and their analyses in the regulatory guides should be mentioned. (orig.). (46 refs., 13 figs., 1 tab.)

  20. 14 CFR 33.75 - Safety analysis.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.75 Safety analysis. (a) (1) The applicant must analyze the engine, including the control system, to assess the...

  1. Safety analysis review terms of reference

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, T.

    1981-03-01

    This document has been prepared to suggest procedures and items for consideration in the review of safety analysis prepared on DOE fossil energy conversion and technology development projects. It is not intended to reflect official DOE policy. It does, however, provide a basis for consistency in conducting reviews, especially with regard to interpreting levels of risk. Since many of the persons assigned to review panels are not expected to be safety analysts but specialists in related fields such as industrial hygiene and environmental science, this document is intended to provide general terms of reference to facilitate review procedures.

  2. Deterministic and probabilistic approach to safety analysis

    International Nuclear Information System (INIS)

    The examples discussed in this paper show that reliability analysis methods fairly well can be applied in order to interpret deterministic safety criteria in quantitative terms. For further improved extension of applied reliability analysis it has turned out that the influence of operational and control systems and of component protection devices should be considered with the aid of reliability analysis methods in detail. Of course, an extension of probabilistic analysis must be accompanied by further development of the methods and a broadening of the data base. (orig.)

  3. Evaluation model for safety capacity of chemical industrial park based on acceptable regional risk

    Institute of Scientific and Technical Information of China (English)

    Guohua Chen; Shukun Wang; Xiaoqun Tan

    2015-01-01

    The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity of chemical industrial park, and then by combining with the safety storage capacity, a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized in the regional risk control of the park effectively.

  4. Application of gene expression data to safety evaluation of chemicals

    Institute of Scientific and Technical Information of China (English)

    ManaS

    2002-01-01

    Novel cyclopedic analytical systems of DNA microassay and GeneChip enable us to analyze several thousands of genes at a time.We performed GeneChip analysis on livers from rats administered various chemicals,namely,phenobarbital,clofibrate,3-methylocolanthrene,dexamethasone,butylated hydroxyanisole,acetaminophen and cycloheximide,all of which are known to induce hypertrophy or cell death of hepatocytes.The results indicated a number of up-regulated and down-regulated genes related to each treatment.Although the obtained data is quite useful,interpretation and statistical analysis of the data should be done taking into consideration the time point of sampling and several other factors,in particular,phenotype.On the other hand,we can not disregard the possibility that gene expression change which is not related to the toxic phenotype at a glance could play a key role in inducing a novel mechanism of toxicity,and this is one useful aspect of cyclopedic analysis of gene expression profiles.

  5. System analysis for plant operation and safety

    International Nuclear Information System (INIS)

    In parallel with the established reactor support program utilizing design basis system analysis for licensing applications, NUSCO has a broad program underway utilizing best estimate system analysis in support of safe operation of its nuclear units. The latter analysis application requires the use of codes such as RETRAN, which have proven prediction capabilities under a wide range of physical conditions. The program utilizing best estimate system analysis, to varying degrees, in support of plant operation and safety includes the following areas of application: 1) Operator training. Specific application of system analysis in this support area include: best estimate analysis of FSAR transients, best estimate verification of plant specific simulators, and lessons learned through PRA best estimate analysis. 2) Operator guidance. Specific applications in this support area include: development, verification, and safety evaluations of emergency operator guidelines, and analysis of ambiguous scenarios to determine available fail-safe decisions and reversible actions. 3) Operator performance verification. Specific applications in this support area include: verification analysis of operational transients, and verifications of adequacy of system performance/operator actions. 4) Deterministic analyses for PRA support. 5) Verification and support of startup procedures

  6. Interactive Chemical Safety for Sustainablity Toxicity Forecaster Dashboard

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA researchers have been using advances in computational toxicology to address lack of data on the thousands of chemicals. EPA released chemical data on 1,800...

  7. Analysis of high burnup fuel safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development.

  8. Alcator C-MOD final safety analysis

    International Nuclear Information System (INIS)

    This document is designed to address the safety issues involved with the Alcator C-Mod project. This report will begin with a brief description of the experimental objectives which will be followed by information concerning the site. The Alcator C-Mod experiment is a pulsed fusion experiment in which a plasma formed from small amounts of hydrogen or deuterium gas is confined in a magnetic field for short periods (∼1 s). No radioactive fuels or fissile materials are used in the device, so that no criticality hazard exists and no credible nuclear accident can occur. During deuterium operation, the production of a small number of neutrons from a short pulse could result in a small amount of short- and intermediate-lived radioactive isotopes being produced inside the experimental cell. This report will demonstrate that this does not pose an additional hazard to the general population. The health and safety hazards resulting from Alcator C-Mod occur to the workers on the experiment, each of which is described in its own chapter with the steps taken to minimize the risk to employees. These hazards include fire, chemicals and cryogenics, air quality, electrical, electromagnetic radiation, ionizing radiation, and mechanical and natural phenomena. None of these hazards is unique to the facility, and methods of protection from them are well defined and are discussed in the chapter which describes each hazard. The quality assurance program, critical to ensuring the safety aspects of the program, will also be described

  9. Computational methods for nuclear criticality safety analysis

    International Nuclear Information System (INIS)

    Nuclear criticality safety analyses require the utilization of methods which have been tested and verified against benchmarks results. In this work, criticality calculations based on the KENO-IV and MCNP codes are studied aiming the qualification of these methods at the IPEN-CNEN/SP and COPESP. The utilization of variance reduction techniques is important to reduce the computer execution time, and several of them are analysed. As practical example of the above methods, a criticality safety analysis for the storage tubes for irradiated fuel elements from the IEA-R1 research has been carried out. This analysis showed that the MCNP code is more adequate for problems with complex geometries, and the KENO-IV code shows conservative results when it is not used the generalized geometry option. (author)

  10. Safety of GM crops: compositional analysis.

    Science.gov (United States)

    Brune, Philip D; Culler, Angela Hendrickson; Ridley, William P; Walker, Kate

    2013-09-01

    The compositional analysis of genetically modified (GM) crops has continued to be an important part of the overall evaluation in the safety assessment program for these materials. The variety and complexity of genetically engineered traits and modes of action that will be used in GM crops in the near future, as well as our expanded knowledge of compositional variability and factors that can affect composition, raise questions about compositional analysis and how it should be applied to evaluate the safety of traits. The International Life Sciences Institute (ILSI), a nonprofit foundation whose mission is to provide science that improves public health and well-being by fostering collaboration among experts from academia, government, and industry, convened a workshop in September 2012 to examine these and related questions, and a series of papers has been assembled to describe the outcomes of that meeting.

  11. COLD-SAT feasibility study safety analysis

    Science.gov (United States)

    Mchenry, Steven T.; Yost, James M.

    1991-01-01

    The Cryogenic On-orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite presents some unique safety issues. The feasibility study conducted at NASA-Lewis desired a systems safety program that would be involved from the initial design in order to eliminate and/or control the inherent hazards. Because of this, a hazards analysis method was needed that: (1) identified issues that needed to be addressed for a feasibility assessment; and (2) identified all potential hazards that would need to be controlled and/or eliminated during the detailed design phases. The developed analysis method is presented as well as the results generated for the COLD-SAT system.

  12. Light-water reactor safety analysis codes

    International Nuclear Information System (INIS)

    A brief review of the evolution of light-water reactor safety analysis codes is presented. Included is a summary comparison of the technical capabilities of major system codes. Three recent codes are described in more detail to serve as examples of currently used techniques. Example comparisons between calculated results using these codes and experimental data are given. Finally, a brief evaluation of current code capability and future development trends is presented

  13. Safety analysis report 306-W Building

    Energy Technology Data Exchange (ETDEWEB)

    Hays, D.D.; Lanning, D.D.; Anthis, R.M.; Nelson, R.G.

    1979-01-01

    The west portion of the 306 building (306-W), which is operated by PNL, contains a diversified metalworking facility, the BNW specialty shop that machines U, Th, and other weakly radioactive materials, a ceramics laboratory, SNM storage area, and support laboratories, This report presents a safety analysis of the work performed and of the equipment in 306-W. the analyses cover criticality and radiological accidents as well as industrial accidents that could contribute to a criticality or radiological accident. (DLC)

  14. Comparative analysis of safety related site characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan (ed.)

    2010-12-15

    This document presents a comparative analysis of site characteristics related to long-term safety for the two candidate sites for a final repository for spent nuclear fuel in Forsmark (municipality of Oesthammar) and in Laxemar (municipality of Oskarshamn) from the point of view of site selection. The analyses are based on the updated site descriptions of Forsmark /SKB 2008a/ and Laxemar /SKB 2009a/, together with associated updated repository layouts and designs /SKB 2008b and SKB 2009b/. The basis for the comparison is thus two equally and thoroughly assessed sites. However, the analyses presented here are focussed on differences between the sites rather than evaluating them in absolute terms. The document serves as a basis for the site selection, from the perspective of long-term safety, in SKB's application for a final repository. A full evaluation of safety is made for a repository at the selected site in the safety assessment SR-Site /SKB 2011/, referred to as SR-Site main report in the following

  15. Comparative analysis of safety related site characteristics

    International Nuclear Information System (INIS)

    This document presents a comparative analysis of site characteristics related to long-term safety for the two candidate sites for a final repository for spent nuclear fuel in Forsmark (municipality of Oesthammar) and in Laxemar (municipality of Oskarshamn) from the point of view of site selection. The analyses are based on the updated site descriptions of Forsmark /SKB 2008a/ and Laxemar /SKB 2009a/, together with associated updated repository layouts and designs /SKB 2008b and SKB 2009b/. The basis for the comparison is thus two equally and thoroughly assessed sites. However, the analyses presented here are focussed on differences between the sites rather than evaluating them in absolute terms. The document serves as a basis for the site selection, from the perspective of long-term safety, in SKB's application for a final repository. A full evaluation of safety is made for a repository at the selected site in the safety assessment SR-Site /SKB 2011/, referred to as SR-Site main report in the following

  16. Safety Management Analysis In Construction Industry

    OpenAIRE

    T. Subramani; R. Lordsonmillar

    2014-01-01

    The Indian society and economy have suffered human and financial losses as a result of the poor safety record in the construction industry. The purpose of this study is to examine safety management in the construction industry. The study will collects data from general contractors, who are involved in major types of construction. Collected data include information regarding organizational safety policy, safety training, safety meetings, safety equipment, safety inspections, sa...

  17. Safety analysis of nuclear fuel transport

    International Nuclear Information System (INIS)

    The thermal and structural analysis methods have been improved their efficiency for safety assessments of nuclear fuel transport casks. The pressure-based coupled method recently incorporated in the FLUENT code has been confirmed that it can greatly reduce the calculation time of long term temperature transient analyses for the cask fireproof tests. The parallel computing technique has been investigated for impact load analyses and it is found that by using 32-cores parallel system, the computing time reduces to around 1/10. The pressure-based coupled method and the parallel computing technique will be applied to future expected cross-check analyses and contribute to enhance the quality of the safety evaluation by increasing the number of examination cases. (author)

  18. Coupled seismic analysis of nuclear safety systems

    International Nuclear Information System (INIS)

    Seismic responses of structural systems obtained on the basis of coupled analysis (selected equipment modelled along with the civil structures) results in lower responses and economical designs when compared with uncoupled analysis. For Nuclear Safety Related Structures, from considerations of limiting problem size for analysis and also to reduce modelling efforts, it is necessary to select which equipment needs to be modelled with its supports so as to adequately obtain the response of the structural system with interaction of such equipment. Coupled analysis of a primary structure and secondary system is necessary when the effects of interaction between them are significant. This paper attempts to study the structural response of Reactor Building structures of PHWR as well as PFBR to arrive at specific conclusions with respect to effect of coupling of secondary systems. The paper presents an approach followed to evolve a rational basis for inclusion or non-inclusion of such equipment in the coupled model of the primary system. (author)

  19. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains a discussion of the chemical safety improvements planned or already underway at DOE sites to correct facility or site-specific vulnerabilities. The main part of the report is a discussion of each of the programmatic deficiencies; a description of the tasks to be accomplished; the specific actions to be taken; and the organizational responsibilities for implementation.

  20. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 1

    International Nuclear Information System (INIS)

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains a discussion of the chemical safety improvements planned or already underway at DOE sites to correct facility or site-specific vulnerabilities. The main part of the report is a discussion of each of the programmatic deficiencies; a description of the tasks to be accomplished; the specific actions to be taken; and the organizational responsibilities for implementation

  1. Safety Management Analysis In Construction Industry

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available The Indian society and economy have suffered human and financial losses as a result of the poor safety record in the construction industry. The purpose of this study is to examine safety management in the construction industry. The study will collects data from general contractors, who are involved in major types of construction. Collected data include information regarding organizational safety policy, safety training, safety meetings, safety equipment, safety inspections, safety incentives and penalties, workers’ attitude towards safety, labor turnover rates and compliance with safety legislation. The study will also reveal several factors of poor safety management. Thus the paper will conclude by providing a set of recommendations and strategies to contractors for improving their safety performance.

  2. Safety strategy and safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    The safety strategy for nuclear power plants is characterized by the fact that the high level of safety was attained not as a result of experience, but on the basis of preventive accident analyses and the finding derived from such analyses. Although, in these accident analyses, the deterministic approach is predominant, it is supplemented by reliability analyses. The accidents analyzed in nuclear licensing procedures cover a wide spectrum from minor incidents to the design basis accidents which determine the design of the safety devices. The initial and boundary conditions, which are essentail for accident analyses, and the determination of the loads occurring in various states during regular operation and in accidents flow into the design of the individual systems and components. The inevitable residual risk and its origins are discussed. (orig.)

  3. ESSAA: Embedded system safety analysis assistant

    Science.gov (United States)

    Wallace, Peter; Holzer, Joseph; Guarro, Sergio; Hyatt, Larry

    1987-01-01

    The Embedded System Safety Analysis Assistant (ESSAA) is a knowledge-based tool that can assist in identifying disaster scenarios. Imbedded software issues hazardous control commands to the surrounding hardware. ESSAA is intended to work from outputs to inputs, as a complement to simulation and verification methods. Rather than treating the software in isolation, it examines the context in which the software is to be deployed. Given a specified disasterous outcome, ESSAA works from a qualitative, abstract model of the complete system to infer sets of environmental conditions and/or failures that could cause a disasterous outcome. The scenarios can then be examined in depth for plausibility using existing techniques.

  4. Rankine bottoming cycle safety analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, G.A.

    1980-02-01

    Vector Engineering Inc. conducted a safety and hazards analysis of three Rankine Bottoming Cycle Systems in public utility applications: a Thermo Electron system using Fluorinal-85 (a mixture of 85 mole % trifluoroethanol and 15 mole % water) as the working fluid; a Sundstrand system using toluene as the working fluid; and a Mechanical Technology system using steam and Freon-II as the working fluids. The properties of the working fluids considered are flammability, toxicity, and degradation, and the risks to both plant workers and the community at large are analyzed.

  5. Occupational safety and health guidelines for chemical hazards. Supplement IV-OHG

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document is the fourth in a seris of supplements to the 1981 Publication NIOSH/OSHA Occupational Health Guidelines for Chemical Hazards. The 62 guidelines presented here in the fourth supplement include 11 revisions of previously issued guidelines and 51 new guidelines. The 62 occupational safety and health guidelines presented here are being published to disseminate technical information about chemical hazards to workers, employers, and occupational safety and health professionals. Each guideline includes (1) data on the chemical name and synonyms, cemnical and physical properties, exposure limits, and signs and symptoms of exposure, personal protective equipment, and control procedures.

  6. 242-A evaporator safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  7. 242-A evaporator safety analysis report

    International Nuclear Information System (INIS)

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR

  8. Multilevel analysis in road safety research.

    Science.gov (United States)

    Dupont, Emmanuelle; Papadimitriou, Eleonora; Martensen, Heike; Yannis, George

    2013-11-01

    Hierarchical structures in road safety data are receiving increasing attention in the literature and multilevel (ML) models are proposed for appropriately handling the resulting dependences among the observations. However, so far no empirical synthesis exists of the actual added value of ML modelling techniques as compared to other modelling approaches. This paper summarizes the statistical and conceptual background and motivations for multilevel analyses in road safety research. It then provides a review of several ML analyses applied to aggregate and disaggregate (accident) data. In each case, the relevance of ML modelling techniques is assessed by examining whether ML model formulations (i) allow improving the fit of the model to the data, (ii) allow identifying and explaining random variation at specific levels of the hierarchy considered, and (iii) yield different (more correct) conclusions than single-level model formulations with respect to the significance of the parameter estimates. The evidence reviewed offers different conclusions depending on whether the analysis concerns aggregate data or disaggregate data. In the first case, the application of ML analysis techniques appears straightforward and relevant. The studies based on disaggregate accident data, on the other hand, offer mixed findings: computational problems can be encountered, and ML applications are not systematically necessary. The general recommendation concerning disaggregate accident data is to proceed to a preliminary investigation of the necessity of ML analyses and of the additional information to be expected from their application. PMID:23769622

  9. Development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Suk K.; Song, J. H.; Chung, Y. J. and others

    1999-03-01

    Inherent safety features and safety system characteristics of the SMART integral reactor are investigated in this study. Performance and safety of the SMART conceptual design have been evaluated and confirmed through the performance and safety analyses using safety analysis system codes as well as a preliminary performance and safety analysis methodology. SMART design base events and their acceptance criteria are identified to develop a preliminary PIRT for the SMART integral reactor. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect tests was developed for the thermal hydraulic model development and the system code validation. Safety characteristics as well as the safety issues of the integral reactor has been identified during the study, which will be used to resolve the safety issues and guide the regulatory criteria for the integral reactor. The results of the performance and safety analyses performed during the study were used to feedback for the SMART conceptual design. The performance and safety analysis code systems as well as the preliminary safety analysis methodology developed in this study will be validated as the SMART design evolves. The performance and safety analysis technology developed during the study will be utilized for the SMART basic design development. (author)

  10. Quantitative Safety and Security Analysis from a Communication Perspective

    OpenAIRE

    Boris Malinowsky; Hans-Peter Schwefel; Oliver Jung

    2015-01-01

    This paper introduces and exemplifies a trade-off analysis of safety and security properties in distributed systems. The aim is to support analysis for real-time communication and authentication building blocks in a wireless communication scenario. By embedding an authentication scheme into a real-time communication protocol for safety-critical scenarios, we can rely on the protocol’s individual safety and security properties. The resulting communication protocol satisfies selected safety and...

  11. Assessing the food safety concepts within the dairy production chain: an application of conjoint analysis

    NARCIS (Netherlands)

    Valeeva, N.I.; Meuwissen, M.P.M.; Huirne, R.B.M.

    2003-01-01

    Conjoint analysis was performed in the Dutch dairy chain to obtain the relative contribution to increased food safety of more than 100 attributes. Results from the conjoint analysis show among others that 'chemical hazards procedures and instructions for compound feed production' and 'quality assura

  12. Economic consideration of nuclear safety and cost benefit analysis in nuclear safety regulation

    International Nuclear Information System (INIS)

    For the optimization of nuclear safety regulation, understanding of economic aspects of it becomes increasingly important together with the technical approach used so far to secure nuclear safety. Relevant economic theories on private and public goods were reviewed to re-illuminate nuclear safety from the economic perspective. The characteristics of nuclear safety as a public good was reviewed and discussed in comparison with the car safety as a private safety good. It was shown that the change of social welfare resulted from the policy change induced can be calculated by the summation of compensating variation(CV) of individuals. It was shown that the value of nuclear safety could be determined in monetary term by this approach. The theoretical background and history of cost benefit analysis of nuclear safety regulation were presented and topics for future study were suggested

  13. 77 FR 66638 - The Standard on Process Safety Management of Highly Hazardous Chemicals; Extension of the Office...

    Science.gov (United States)

    2012-11-06

    ... Occupational Safety and Health Administration The Standard on Process Safety Management of Highly Hazardous... the Standard on Process Safety Management of Highly Hazardous Chemicals. DATES: Comments must be... elements of the standard; completing a compilation of written process safety information; performing...

  14. Safety Analysis of Soybean Processing for Advanced Life Support

    Science.gov (United States)

    Hentges, Dawn L.

    1999-01-01

    Soybeans (cv. Hoyt) is one of the crops planned for food production within the Advanced Life Support System Integration Testbed (ALSSIT), a proposed habitat simulation for long duration lunar/Mars missions. Soybeans may be processed into a variety of food products, including soymilk, tofu, and tempeh. Due to the closed environmental system and importance of crew health maintenance, food safety is a primary concern on long duration space missions. Identification of the food safety hazards and critical control points associated with the closed ALSSIT system is essential for the development of safe food processing techniques and equipment. A Hazard Analysis Critical Control Point (HACCP) model was developed to reflect proposed production and processing protocols for ALSSIT soybeans. Soybean processing was placed in the type III risk category. During the processing of ALSSIT-grown soybeans, critical control points were identified to control microbiological hazards, particularly mycotoxins, and chemical hazards from antinutrients. Critical limits were suggested at each CCP. Food safety recommendations regarding the hazards and risks associated with growing, harvesting, and processing soybeans; biomass management; and use of multifunctional equipment were made in consideration of the limitations and restraints of the closed ALSSIT.

  15. Practicing chemical process safety: a look at the layers of protection

    International Nuclear Information System (INIS)

    This presentation will review a few public perceptions of safety in chemical plants and refineries, and will compare these plant workplace risks to some of the more traditional occupations. The central theme of this paper is to provide a 'within-the-fence' view of many of the process safety practices that world class plants perform to pro-actively protect people, property, profits as well as the environment. It behooves each chemical plant and refinery to have their story on an image-rich presentation to stress stewardship and process safety. Such a program can assure the company's employees and help convince the community that many layers of safety protection within our plants are effective, and protect all from harm

  16. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 2

    International Nuclear Information System (INIS)

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. To address the facility-specific and site-specific vulnerabilities, responsible DOE and site-contractor line organizations have developed initial site response plans. These plans, presented as Volume 2 of this Management Response Plan, describe the actions needed to mitigate or eliminate the facility- and site-specific vulnerabilities identified by the CSV Working Group field verification teams. Initial site response plans are described for: Brookhaven National Lab., Hanford Site, Idaho National Engineering Lab., Lawrence Livermore National Lab., Los Alamos National Lab., Oak Ridge Reservation, Rocky Flats Plant, Sandia National Laboratories, and Savannah River Site

  17. Safety analysis of surface haulage accidents

    Energy Technology Data Exchange (ETDEWEB)

    Randolph, R.F.; Boldt, C.M.K.

    1996-12-31

    Research on improving haulage truck safety, started by the U.S. Bureau of Mines, is being continued by its successors. This paper reports the orientation of the renewed research efforts, beginning with an update on accident data analysis, the role of multiple causes in these accidents, and the search for practical methods for addressing the most important causes. Fatal haulage accidents most often involve loss of control or collisions caused by a variety of factors. Lost-time injuries most often involve sprains or strains to the back or multiple body areas, which can often be attributed to rough roads and the shocks of loading and unloading. Research to reduce these accidents includes improved warning systems, shock isolation for drivers, encouraging seatbelt usage, and general improvements to system and task design.

  18. LOFT blowdown experiment safety analysis methodology

    International Nuclear Information System (INIS)

    An unprecedented blowdown experiment safety analysis (ESA) has been performed for the first two scheduled nuclear experiments in the Loss-of-Fluid Test (LOFT) facility. The ESA methodology is a unique approach needed to estimate conservatively the maximum consequences that will occur during an experiment. Through use of this information an acceptable risk in terms of adequate protection of the facility, personnel, and general public can be balanced with the requirements of the experiment program objectives. As an example, one of the LOFT program objectives is to evaluate the performance and effectiveness of emergency core cooling systems (ECCS) while relying on the same ECCSs (and backup ECCSs) to effectively perform as plant protection systems (PPS). The purpose of this paper is to present the LOFT blowdown ESA methodology

  19. Regulation and safety implementation of nanotechnology for chemical enterprises in the Central Europe Space

    Science.gov (United States)

    Falk, A.; Hartl, S.; Sinner, F.

    2013-04-01

    As result of the gradually increasing nanotechnology sector there is the necessity of a contemporary analysis of the present regulations used for nanomaterials, to outline the current situation of the nanotechnology sector, to promote international cooperation and research's coordination to overcome disciplinary boundaries, to fill the gap between more and less experienced regions and to turn investments in R&D in industrial innovations. The general objective of the Central Europe project NANOFORCE, which is developed by national and regional chemistry associations and R&D Centres of the Central Europe area, is to foster the innovative nanotechnology-sector networks across Central Europe regions by bringing together public and private organizations to carry out collaborative and interdisciplinary researches on nanomaterials (in the frame of REACH Regulation) and to turn the most promising laboratory results into innovative industrial applications. To build up a legal advisory board for chemical enterprises starting in nanotechnology, a state of the art report on existing safety procedures and nanotech related regulations was produced to give an overview on currently available regulations used by chemical industries and manufacturing companies within the European region to secure their products. The main emphasis was placed on REACH regulation to search for relevant sections concentrating on nanomaterials which are applicable for nanotechnology. In addition, all relevant directives and amendments of REACH were screened with regard to identify gaps where action is still needed and give possible recommendations for the European Commission. Beyond literature research a questionnaire for producers, users, researchers and financiers was developed with the goal to collect information about the nanotechnology sector in the CE region concerning development, financial status, and international cooperation within joint ventures, safety and nanotoxicology.

  20. Regulation and safety implementation of nanotechnology for chemical enterprises in the Central Europe Space

    International Nuclear Information System (INIS)

    As result of the gradually increasing nanotechnology sector there is the necessity of a contemporary analysis of the present regulations used for nanomaterials, to outline the current situation of the nanotechnology sector, to promote international cooperation and research's coordination to overcome disciplinary boundaries, to fill the gap between more and less experienced regions and to turn investments in R and D in industrial innovations. The general objective of the Central Europe project NANOFORCE, which is developed by national and regional chemistry associations and R and D Centres of the Central Europe area, is to foster the innovative nanotechnology-sector networks across Central Europe regions by bringing together public and private organizations to carry out collaborative and interdisciplinary researches on nanomaterials (in the frame of REACH Regulation) and to turn the most promising laboratory results into innovative industrial applications. To build up a legal advisory board for chemical enterprises starting in nanotechnology, a state of the art report on existing safety procedures and nanotech related regulations was produced to give an overview on currently available regulations used by chemical industries and manufacturing companies within the European region to secure their products. The main emphasis was placed on REACH regulation to search for relevant sections concentrating on nanomaterials which are applicable for nanotechnology. In addition, all relevant directives and amendments of REACH were screened with regard to identify gaps where action is still needed and give possible recommendations for the European Commission. Beyond literature research a questionnaire for producers, users, researchers and financiers was developed with the goal to collect information about the nanotechnology sector in the CE region concerning development, financial status, and international cooperation within joint ventures, safety and nanotoxicology.

  1. Optical MEMS for chemical analysis and biomedicine

    CERN Document Server

    Jiang, Hongrui

    2016-01-01

    This book describes the current state of optical MEMS in chemical and biomedical analysis and brings together current trends and highlights topics representing the most exciting progress in recent years in the field.

  2. Information Services at the Nuclear Safety Analysis Center.

    Science.gov (United States)

    Simard, Ronald

    This paper describes the operations of the Nuclear Safety Analysis Center. Established soon after an accident at the Three Mile Island nuclear power plant near Harrisburg, Pennsylvania, its efforts were initially directed towards a detailed analysis of the accident. Continuing functions include: (1) the analysis of generic nuclear safety issues,…

  3. Safety Analysis for a Radioisotope Stirling Generator

    International Nuclear Information System (INIS)

    The Idaho National Laboratory (INL) is conducting safety analyses of various lowpower Radioisotope Stirling Generator (RSG) design concepts for the U. S. Department of Energy. These systems are electrical power generators converting thermal energy from plutonium (238Pu) decay to electrical energy via a Stirling cycle generator. The design and function are similar to the RTG (Radioisotope Thermoelectric Generator) used in space missions since the early 1960's, with a more efficient Stirling cycle generator replacing the proven thermoelectric converter. This paper discusses the methods the INL is employing in the safety analysis effort, along with the software tools, lessons learned, and results. The overall goal of our safety analyses is to determine the probability of an accidental plutonium release over the life of the generator. Historical accident rates for various transportation modes were investigated using event tree methods. Source terms were developed for these accidents including primarily impact, fire, and creep rupture. A negative result was defined as rupture of the tantalum alloy containment vessel surrounding the encapsulated plutonia pellet. Damage due to identified impact accidents was evaluated using non-linear finite element software tools. Material models, gathered from a wide variety of sources, included strain-rate and temperature dependencies on yield strength, strain hardening, and rupture. Both individual component and overall system simulation results will be validated by impact testing to be conducted by Los Alamos National Laboratory. Results from deterministic impact, fire, and creep rupture analyses were integrated into the probabilistic (Monte Carlo) risk assessment by correlation functions relating accident parameters to component damage. This approach presented challenges, which are addressed. Other significant issues include limitations of reliable material data at high temperatures and strain rates and development of a technique to

  4. Safety Evaluation Report of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-09-01

    This Safety Evaluation Report (SER) documents the Department of Energy’s (DOE's) review of Revision 9 of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis, DOE/WIPP-95-2065 (WIPP CH DSA), and provides the DOE Approval Authority with the basis for approving the document. It concludes that the safety basis documented in the WIPP CH DSA is comprehensive, correct, and commensurate with hazards associated with CH waste disposal operations. The WIPP CH DSA and associated technical safety requirements (TSRs) were developed in accordance with 10 CFR 830, Nuclear Safety Management, and DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports.

  5. Intelligent Chemical Sensor Systems for In-space Safety Applications

    Science.gov (United States)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  6. Criticality safety analysis for mockup facility

    International Nuclear Information System (INIS)

    Benchmark calculations for SCALE4.4 CSAS6 module have been performed for 31 UO2 fuel, 15MOX fuel and 10 metal material criticality experiments and then calculation biases of the SCALE 4.4 CSAS6 module have been revealed to be 0.00982, 0.00579 and 0.02347, respectively. When CSAS6 is applied to the criticality safety analysis for the mockup facility in which several kinds of nuclear material components are included, the calculation bias of CSAS6 is conservatively taken to be 0.02347. With the aid of this benchmarked code system, criticality safety analyses for the mockup facility at normal and hypothetical accidental conditions have been carried out. It appears that the maximum Keff is 0.28356 well below than the critical limit, Keff=0.95 at normal condition. In a hypothetical accidental condition, the maximum Keff is found to be 0.73527 much lower than the subcritical limit. For another hypothetical accidental condition the nuclear material leaks out of container and spread or lump in the floor, it was assumed that the nuclear material is shaped into a slab and water exists in the empty space of the nuclear material. Keff has been calculated as function of slab thickness and the volume ratio of water to nuclear material. The result shows that the Keff increases as the water volume ratio increases. It is also revealed that the Keff reaches to the maximum value when water if filled in the empty space of nuclear material. The maximum Keff value is 0.93960 lower than the subcritical limit

  7. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    International Nuclear Information System (INIS)

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs

  8. The Safety "Use Case": Co-Developing Chemical Information Management and Laboratory Safety Skills

    Science.gov (United States)

    Stuart, Ralph B.; McEwen, Leah R.

    2016-01-01

    The 2015 edition of the American Chemical Society's "Guidelines and Evaluation Procedures for Bachelor's Degree Programs" identifies six skill sets that undergraduate chemistry programs should instill in their students. In our roles as support staff for chemistry departments at two different institutions (one a Primarily Undergraduate…

  9. Biosensors for functional food safety and analysis.

    Science.gov (United States)

    Lavecchia, Teresa; Tibuzzi, Arianna; Giardi, Maria Teresa

    2010-01-01

    The importance of safety and functionality analysis of foodstuffs and raw materials is supported by national legislations and European Union (EU) directives concerning not only the amount of residues of pollutants and pathogens but also the activity and content of food additives and the health claims stated on their labels. In addition, consumers' awareness of the impact of functional foods' on their well-being and their desire for daily healthcare without the intake pharmaceuticals has immensely in recent years. Within this picture, the availability of fast, reliable, low cost control systems to measure the content and the quality of food additives and nutrients with health claims becomes mandatory, to be used by producers, consumers and the governmental bodies in charge of the legal supervision of such matters. This review aims at describing the most important methods and tools used for food analysis, starting with the classical methods (e.g., gas-chromatography GC, high performance liquid chromatography HPLC) and moving to the use of biosensors-novel biological material-based equipments. Four types of bio-sensors, among others, the novel photosynthetic proteins-based devices which are more promising and common in food analysis applications, are reviewed. A particular highlight on biosensors for the emerging market of functional foods is given and the most widely applied functional components are reviewed with a comprehensive analysis of papers published in the last three years; this report discusses recent trends for sensitive, fast, repeatable and cheap measurements, focused on the detection of vitamins, folate (folic acid), zinc (Zn), iron (Fe), calcium (Ca), fatty acids (in particular Omega 3), phytosterols and phytochemicals. A final market overview emphasizes some practical aspects ofbiosensor applications.

  10. Task Group report to the Assistant Secretary for Environment, Safety and Health on oversight of chemical safety at the Department of Energy. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    This report presents the results of a preliminary review of chemical safety within the Department of Energy (DOE). The review was conducted by Chemical Safety Oversight Review (CSOR) Teams composed of Office of Environment, Safety and Health (EH) staff members and contractors. The primary objective of the CSOR was to assess, the safety status of DOE chemical operations and identify any significant deficiencies associated with such operations. Significant was defined as any situation posing unacceptable risk, that is, imminent danger or threat to workers, co-located workers, the general public, or the environment, that requires prompt action by EH or the line organizations. A secondary objective of the CSOR was to gather and analyze technical and programmatic information related to chemical safety to be used in conjunction with the longer-range EH Workplace Chemical Accident Risk Review (WCARR) Program. The WCARR Program is part of the ongoing EH oversight of nonnuclear safety at all DOE facilities. `` The program objective is to analyze DOE and industry chemical safety programs and performance and determine the need for additional or improved safety guidance for DOE. During the period June 6, 1992, through July 31, 1992, EH conducted CSORs at five DOE sites. The sites visited were Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 Plant (Y-12), Oak Ridge National Laboratory (ORNL), and Lawrence Livermore National Laboratory (LLNL).

  11. Chemical and Plant-Based Insect Repellents: Efficacy, Safety, and Toxicity.

    Science.gov (United States)

    Diaz, James H

    2016-03-01

    Most emerging infectious diseases today are arthropod-borne and cannot be prevented by vaccinations. Because insect repellents offer important topical barriers of personal protection from arthropod-borne infectious diseases, the main objectives of this article were to describe the growing threats to public health from emerging arthropod-borne infectious diseases, to define the differences between insect repellents and insecticides, and to compare the efficacies and toxicities of chemical and plant-derived insect repellents. Internet search engines were queried with key words to identify scientific articles on the efficacy, safety, and toxicity of chemical and plant-derived topical insect repellants and insecticides to meet these objectives. Data sources reviewed included case reports; case series; observational, longitudinal, and surveillance studies; and entomological and toxicological studies. Descriptive analysis of the data sources identified the most effective application of insect repellents as a combination of topical chemical repellents, either N-diethyl-3-methylbenzamide (formerly N, N-diethyl-m-toluamide, or DEET) or picaridin, and permethrin-impregnated or other pyrethroid-impregnated clothing over topically treated skin. The insecticide-treated clothing would provide contact-level insecticidal effects and provide better, longer lasting protection against malaria-transmitting mosquitoes and ticks than topical DEET or picaridin alone. In special cases, where environmental exposures to disease-transmitting ticks, biting midges, sandflies, or blackflies are anticipated, topical insect repellents containing IR3535, picaridin, or oil of lemon eucalyptus (p-menthane-3, 8-diol or PMD) would offer better topical protection than topical DEET alone. PMID:26827259

  12. Risk Analysis of Safety-Critical Control Systems

    OpenAIRE

    Karol Rastocny

    2008-01-01

    This paper deals with problems associated with risks analysis of a safety-critical control system. In the paper there are introduced recommendations enabling practical enforceability of risk analysis by the assurance of sufficient objectivity level. In the initial phases of the system lifecycle risk analysis serves for a tolerable hazard rate definition for individual safety relevant functions. In the end of the control system development process the risk analysis (an analysis of failures con...

  13. Analysis on safety production in coal mines Henan Province

    Institute of Scientific and Technical Information of China (English)

    KONG Liu-an; ZHANG Wen-yong

    2006-01-01

    Based on the rigorous situation of safety production in coal mines, the paper analyzed the statistical data of recent accidents indexes in Henan's coal mines. Using investigation and comparison analysis methods, a specified analysis on mining conditions, technical facility level, safety input and vocational quality of workers in Henan's coal mines was conducted. The result indicates that there have been existing such main safety production problems as weak safety management, low-level facilities, inadequate safety input and poor vocational quality and so on. Finally it proposes such reference solutions as to establish and perfect coal mining supervision and management system, to increase safety investment into techniques and facilities and to strengthen workers' safety education and introduction of more high-level professional talents.

  14. Safety Analysis versus Type Inference with Partial Types

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff; Palsberg, Jens

    1992-01-01

    Safety analysis is an algorithm for determining if a term in an untyped lambda calculus with constants is safe, i.e., if it does not cause an error during evaluation. This ambition is also shared by algorithms for type inference. Safety analysis and type inference are based on rather different...... perspectives, however. Safety analysis is global in that it can only analyze a complete program. In contrast, type inference is local in that it can analyze pieces of a program in isolation. In this paper we prove that safety analysis is sound, relative to both a strict and a lazy operational semantics. We...... also prove that safety analysis accepts strictly more safe lambda terms than does type inference for simple types. The latter result demonstrates that global program analysis can be more precise than local ones....

  15. 40 CFR 761.253 - Chemical analysis.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chemical analysis. 761.253 Section 761.253 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... analysis. (a) Extract PCBs from the standard wipe sample collection medium and clean-up the extracted...

  16. TA-55 Final Safety Analysis Report Comparison Document and DOE Safety Evaluation Report Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Alan Bond

    2001-04-01

    This document provides an overview of changes to the currently approved TA-55 Final Safety Analysis Report (FSAR) that are included in the upgraded FSAR. The DOE Safety Evaluation Report (SER) requirements that are incorporated into the upgraded FSAR are briefly discussed to provide the starting point in the FSAR with respect to the SER requirements.

  17. Safety- and risk analysis activities in other areas than the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Kozine, I.; Duijm, N.J.; Lauridsen, K. [Risoe National Lab. (Denmark)

    2000-12-01

    The report gives an overview of the legislation within the European Union in the field of major industrial hazards and gives examples of decision criteria applied in a number of European countries when judging the acceptability of an activity. Furthermore, the report mentions a few methods used in the analysis of the safety of chemical installations. (au)

  18. Special characteristics of the safety analysis of HWRs

    International Nuclear Information System (INIS)

    Two lectures are presented in this report. The CANDU-PHW reactor is used as a model for discussion. The first lecture describes the distinctive features of the CANDU reactor, and how they impact on reactor safety. In the second lecture the Canadian safety philosophy, the safety design objective, and other selected topics on reactor safety analysis are discussed. The material in this report was selected with a view to assisting those not familiar with the CANDU heavy water reactor design in evaluating the distinctive safety aspects of these reactors. (orig./RW)

  19. 14 CFR 35.15 - Safety analysis.

    Science.gov (United States)

    2010-01-01

    ... propeller system to assess the likely consequences of all failures that can reasonably be expected to occur... a safety system to prevent a failure progressing to hazardous propeller effects, the possibility of a safety system failure in combination with a basic propeller failure must be included in...

  20. Analysis on Impact Factors of Workplace Safety Investment in Chemical Industry Enterprises%化工企业工作环境安全投资的影响因素分析

    Institute of Scientific and Technical Information of China (English)

    王幼莉; 王江辉

    2011-01-01

    以边际效益理论为基础对企业安全投资过程进行了分析,通过对安全程度水平变化的边际效益和边际成本比较分析,找到最优的安全投入决策点.认为合理地进行工作环境安全投资是提高化工企业安全生产水平和创造经济效益的重要手段.在此基础上具体分析了化工企业对工作环境的安全认识、化工企业员工的安全意识及安全行为的规范和政府规制等因素对化工企业安伞投资效益的影响.%Based on marginal utility theory, enterprises workplace safety investment process was analyzed, and through comparing with marginal benefit and marginal investment of change degree of safety level, the optimal investment point was found. It was believed that the reasonable workplace safety investment would promote safety level and would also be an important method to create economic benefit. Effect of enterprises moral and social accountability, employee's safety consciousness and government safety laws and regulations on safety investment benefits was discussed.

  1. Materials Safety Data Sheets: the basis for control of toxic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Ketchen, E.E.; Porter, W.E.

    1979-09-01

    The Material Safety Data Sheets contained in this volume are the basis for the Toxic Chemical Control Program developed by the Industrial Hygiene Department, Health Division, ORNL. The three volumes are the update and expansion of ORNL/TM-5721 and ORNL/TM-5722 Material Safety Data Sheets: The Basis for Control of Toxic Chemicals, Volume I and Volume II. As such, they are a valuable adjunct to the data cards issued with specific chemicals. The chemicals are identified by name, stores catalog number where appropriate, and sequence numbers from the NIOSH Registry of Toxic Effects of Chemical Substances, 1977 Edition, if available. The data sheets were developed and compiled to aid in apprising the employees of hazards peculiar to the handling and/or use of specific toxic chemicals. Space limitation necessitate the use of descriptive medical terms and toxicological abbreviations. A glossary and an abbreviation list were developed to define some of those sometimes unfamiliar terms and abbreviations. The page numbers are keyed to the catalog number in the chemical stores at ORNL.

  2. STARS software tool for analysis of reliability and safety

    International Nuclear Information System (INIS)

    This paper reports on the STARS (Software Tool for the Analysis of Reliability and Safety) project aims at developing an integrated set of Computer Aided Reliability Analysis tools for the various tasks involved in systems safety and reliability analysis including hazard identification, qualitative analysis, logic model construction and evaluation. The expert system technology offers the most promising perspective for developing a Computer Aided Reliability Analysis tool. Combined with graphics and analysis capabilities, it can provide a natural engineering oriented environment for computer assisted reliability and safety modelling and analysis. For hazard identification and fault tree construction, a frame/rule based expert system is used, in which the deductive (goal driven) reasoning and the heuristic, applied during manual fault tree construction, is modelled. Expert system can explain their reasoning so that the analyst can become aware of the why and the how results are being obtained. Hence, the learning aspect involved in manual reliability and safety analysis can be maintained and improved

  3. Cost Benefit Analysis of Consumer Product Safety Standards

    Science.gov (United States)

    Smith, Betty F.; Dardis, Rachel

    1977-01-01

    This paper investigates the role of cost-benefit analysis in evaluating consumer product safety standards and applys such analysis to an evaluation of flammability standards for children's sleepwear. (Editor)

  4. Moon manned missions radiation safety analysis

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.; de Anlelis, G.; Badavi, F. F.

    , from very simple shelters to more complex bases, are considered in full detail (e.g., shape, thickness, materials, etc) with considerations of various shielding strategies. In this first analysis all the shape considered are cylindrical or composed of combination of cylinders. Moreover, a radiation safety analysis of more future possible habitats like lava tubes has been also performed.

  5. Chemical analysis of high purity graphite

    International Nuclear Information System (INIS)

    The Sub-Committee on Chemical Analysis of Graphite was organized in April 1989, under the Committee on Chemical Analysis of Nuclear Fuels and Reactor Materials, JAERI. The Sub-Committee carried out collaborative analyses among eleven participating laboratories for the certification of the Certified Reference Materials (CRMs), JAERI-G5 and G6, after developing and evaluating analytical methods during the period of September 1989 to March 1992. The certified values were given for ash, boron and silicon in the CRM based on the collaborative analysis. The values for ten elements (Al, Ca, Cr, Fe, Mg, Mo, Ni, Sr, Ti, V) were not certified, but given for information. Preparation, homogeneity testing and chemical analyses for certification of reference materials were described in this paper. (author) 52 refs

  6. Spectroscopic chemical analysis methods and apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2013-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  7. Compositional Safety Analysis using Barrier Certificates

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Pappas, George J.; Wisniewski, Rafael

    2012-01-01

    This paper proposes a compositional method for verifying the safety of a dynamical system, given as an interconnection of subsystems. The safety verification is conducted by the use of the barrier certificate method; hence, the contribution of this paper is to show how to obtain compositional...... conditions for safety verification. We show how to formulate the verification problem, as a composition of coupled subproblems, each given for one subsystem. Furthermore, we show how to find the compositional barrier certificates via linear and sum of squares programming problems. The proposed method makes...

  8. Gap Analysis Approach for Construction Safety Program Improvement

    Directory of Open Access Journals (Sweden)

    Thanet Aksorn

    2007-06-01

    Full Text Available To improve construction site safety, emphasis has been placed on the implementation of safety programs. In order to successfully gain from safety programs, factors that affect their improvement need to be studied. Sixteen critical success factors of safety programs were identified from safety literature, and these were validated by safety experts. This study was undertaken by surveying 70 respondents from medium- and large-scale construction projects. It explored the importance and the actual status of critical success factors (CSFs. Gap analysis was used to examine the differences between the importance of these CSFs and their actual status. This study found that the most critical problems characterized by the largest gaps were management support, appropriate supervision, sufficient resource allocation, teamwork, and effective enforcement. Raising these priority factors to satisfactory levels would lead to successful safety programs, thereby minimizing accidents.

  9. Service activities of chemical analysis division

    International Nuclear Information System (INIS)

    Progress of the Division during the year of 1988 was described on the service activities for various R and D projects carrying out in the Institute, for the fuel fabrication and conversion plant, and for the post-irradiation examination facility. Relevant analytical methodologies developed for the chemical analysis of an irradiated fuel, safeguards chemical analysis, and pool water monitoring were included such as chromatographic separation of lanthanides, polarographic determination of dissolved oxygen in water, and automation on potentiometric titration of uranium. Some of the laboratory manuals revised were also included in this progress report. (Author)

  10. NPP Temelin safety analysis reports and PSA status

    International Nuclear Information System (INIS)

    To enhance the safety level of Temelin NPP, recommendations of the international reviews were implemented into the design as well as into organization of the plant construction and preparation for operation. The safety assessment of these design changes has been integrated and reflected in the Safety Analysis Reports, which follow the internationally accepted guidelines. All safety analyses within Safety Analysis Reports were repeated carefully considering technical improvements and replacements to complement preliminary safety documentation. These analyses were performed by advanced western computer codes to the depth and in the structure required by western standards. The Temelin NPP followed a systematic approach in the functional design of the Reactor Protection System and related safety analyses. Modifications of reactor protection system increase defense in depth and facilitate demonstrating that LOCA and radiological limits are met for non-LOCA events. The rigorous safety analysis methodology provides assurance that LOCA and radiological limits are met. Established and accepted safety analysis methodology and accepted criteria were applied to Temelin NPP meeting US NRC and Czech Republic requirements. IAEA guidelines and recommendations

  11. Probabilistic safety analysis and interpretation thereof

    International Nuclear Information System (INIS)

    Increasing use of the instrumentation of PSA is being made in Germany for quantitative technical safety assessment, for example with regard to incidents which must be reported and forwarding of information, especially in the case of modification of nuclear plants. The Commission for Nuclear Reactor Safety recommends regular execution of PSA on a cycle period of ten years. According to the PSA guidance instructions, probabilistic analyses serve for assessing the degree of safety of the entire plant, expressed as the expectation value for the frequency of endangering conditions. The authors describe the method, action sequence and evaluation of the probabilistic safety analyses. The limits of probabilistic safety analyses arise in the practical implementation. Normally the guidance instructions for PSA are confined to the safety systems, so that in practice they are at best suitable for operational optimisation only to a limited extent. The present restriction of the analyses has a similar effect on power output operation of the plant. This seriously degrades the utilitarian value of these analyses for the plant operators. In order to further develop PSA as a supervisory and operational optimisation instrument, both authors consider it to be appropriate to bring together the specific know-how of analysts, manufacturers, plant operators and experts. (orig.)

  12. Probabilistic safety analysis : a new nuclear power plants licensing method

    International Nuclear Information System (INIS)

    After a brief retrospect of the application of Probabilistic Safety Analysis in the nuclear field, the basic differences between the deterministic licensing method, currently in use, and the probabilistic method are explained. Next, the two main proposals (by the AIF and the ACRS) concerning the establishment of the so-called quantitative safety goals (or simply 'safety goals') are separately presented and afterwards compared in their most fundamental aspects. Finally, some recent applications and future possibilities are discussed. (Author)

  13. Safety analysis report for the Waste Storage Facility. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  14. SNF fuel retrieval sub project safety analysis document

    International Nuclear Information System (INIS)

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed

  15. SNF fuel retrieval sub project safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    BERGMANN, D.W.

    1999-02-24

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

  16. 道化学火灾、爆炸危险指数法在1,3丁二烯聚合安全性评价中的应用%Application of dow chemical fires and explosive index analysis method in safety evaluation of 1,3 butadiene polymerization process

    Institute of Scientific and Technical Information of China (English)

    王丽敏; 翟润培; 孙友平; 吕彩霞

    2012-01-01

    道化学火灾、爆炸危险指数法是在化工领域中广泛应用的一种评价方法,根据该法制定的指数选取规则,可对工艺单元火灾爆炸危险性进行量化和分级.以某化工厂3000t/a三聚体生产项目为背景,从工艺过程、危险物质、安全设施设计等方面,对1,3丁二烯聚合过程火灾、爆炸危险性进行分析;定量评价工艺装置及所含物料潜在危险性,得出主装置区、储罐区固有危险等级,分析不同状态下安全补偿系数对降低危险等级的影响,提出相应安全对策措施.%Dow chemical fires and explosive index analysis method is a widely used evaluation method in the field of chemical industry. According to the index selection rules, the fire explosion risk of the technics cell could be quantitated and classified. In this paper,taking the project of 3000t/a trimer production in a chemical factory as the background, the fire explosion hazard in the polymerization process of 1,3 butadiene was analyzed on the process, dangerous substances, safety facilities design and other aspects. According to the quantitative evaluation of the potentially danger for process units and materials, the intrinsic danger levels of main plant area and tank farm were obtained and some safety countermeasures were put forward by analyzing the effect of security compensation factor on danger level in different condition.

  17. R&D Challenges for SFR Design and Safety Analysis: Opportunities for International Cooperation

    International Nuclear Information System (INIS)

    The paper summarizes the R&D in the safety domain in support of sodium cooled fast reactor (SFR) design and safety analysis. Examples are provided, in particular in the fields of reactivity and decay heat removal control, severe accident analysis, in-service inspection and repair, and chemical risks. It is highlighted that these activities are relevant for international cooperation, especially benchmarks and sharing of experimental facilities. Different frameworks are available for cooperation, such as the Generation IV International Forum, the IAEA (in particular through its coordinated research projects), the European Commission Framework Programme and also bilateral cooperation. (author)

  18. Review of design criteria and safety analysis of safety class electric building for fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1998-02-01

    Steady state fuel test loop will be equipped in HANARO to obtain the development and betterment of advanced fuel and materials through the irradiation tests. HANARO fuel test loop was designed for CANDU and PWR fuel testing. Safety related system of Fuel Test Loop such as emergency cooling water system, component cooling water system, safety ventilation system, high energy line break mitigation system and remote control room was required 1E class electric supply to meet the safety operation in accordance with related code. Therefore, FTL electric building was designed to construction and install the related equipment based on seismic category I. The objective of this study is to review the design criteria and analysis the safety function of safety class electric building for fuel test loop, and this results will become guidance for the irradiation testing in future. (author). 10 refs., 6 tabs., 30 figs.

  19. Challenges on innovations of newly-developed safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanhua [Shanghai Jiao Tong Univ. (China). School of Nuclear Science and Engineering; Zhang, Hao [State Nuclear Power Software Development Center, Beijing (China). Beijing Future Science and Technology City

    2016-05-15

    With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.

  20. Safety analysis of the UTSI-CFFF superconducting magnet

    International Nuclear Information System (INIS)

    In designing a large superconducting magnet such as the UTSI-CFFF dipole, great attention must be devoted to the safety of the magnet and personnel. The conductor for the UTSI-CFFF magnet incorporates much copper stabilizer, which both insures its cryostability, and contributes to the magnet safety. The quench analysis and the cryostat fault condition analysis are presented. Two analyses of exposed turns follow; the first shows that gas cooling protects uncovered turns; the second, that the cryostat pressure relief system protects them. Finally the failure mode and safety analysis is presented

  1. Challenges on innovations of newly-developed safety analysis codes

    International Nuclear Information System (INIS)

    With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.

  2. Galileo and Ulysses missions safety analysis and launch readiness status

    International Nuclear Information System (INIS)

    The Galileo spacecraft will explore the Jupiter system and Ulysses will fly by Jupiter en route to a polar orbit of the sun. Both spacecraft are powered by general purpose heat source radioisotope thermoelectric generators (RTGs). As a result of the Challenger accident and subsequent mission reprogramming, the Galileo and Ulysses missions' safety analysis had to be repeated. In addition to presenting an overview of the safety analysis status for the missions, this paper presents a brief review of the missions' objectives and design approaches, RTG design characteristics and development history, and a description of the safety analysis process. (author)

  3. A formal safety analysis for PLC software-based safety critical system using Z

    International Nuclear Information System (INIS)

    This paper describes a formal safety analysis technique which is demonstrated by performing empirical formal safety analysis with the case study of beamline hutch door Interlock system that is developed by using PLC (Programmable Logic Controller) systems at the Pohang Accelerator Laboratory. In order to perform formal safety analysis, we have built the Z formal specifications representation from user requirement written in ambiguous natural language and target PLC ladder logic, respectively. We have also studied the effective method to express typical PLC timer component by using specific Z formal notation which is supported by temporal history. We present a formal proof technique specifying and verifying that the hazardous states are not introduced into ladder logic in the PLC-based safety critical system. And also, we have found that some errors or mismatches in user requirement and final implemented PLC ladder logic while analyzing the process of the consistency and completeness of Z translated formal specifications. In the case of relatively small systems like Beamline hutch door interlock system, a formal safety analysis including explicit proof is highly recommended so that the safety of PLC-based critical system may be enhanced and guaranteed. It also provides a helpful benefits enough to comprehend user requirement expressed by ambiguous natural language

  4. Testing Chemical Safety: What Is Needed to Ensure the Widespread Application of Non-animal Approaches?

    Directory of Open Access Journals (Sweden)

    Natalie Burden

    2015-05-01

    Full Text Available Scientists face growing pressure to move away from using traditional animal toxicity tests to determine whether manufactured chemicals are safe. Numerous ethical, scientific, business, and legislative incentives will help to drive this shift. However, a number of hurdles must be overcome in the coming years before non-animal methods are adopted into widespread practice, particularly from regulatory, scientific, and global perspectives. Several initiatives are nevertheless underway that promise to increase the confidence in newer alternative methods, which will support the move towards a future in which less data from animal tests is required in the assessment of chemical safety.

  5. Testing Chemical Safety: What Is Needed to Ensure the Widespread Application of Non-animal Approaches?

    Science.gov (United States)

    Burden, Natalie; Sewell, Fiona; Chapman, Kathryn

    2015-05-01

    Scientists face growing pressure to move away from using traditional animal toxicity tests to determine whether manufactured chemicals are safe. Numerous ethical, scientific, business, and legislative incentives will help to drive this shift. However, a number of hurdles must be overcome in the coming years before non-animal methods are adopted into widespread practice, particularly from regulatory, scientific, and global perspectives. Several initiatives are nevertheless underway that promise to increase the confidence in newer alternative methods, which will support the move towards a future in which less data from animal tests is required in the assessment of chemical safety. PMID:26018957

  6. Computational Analysis of Safety Injection Tank Performance

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Oan; Nietiadia, Yohanes Setiawan; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Addad, Yacine; Yoon, Ho Joon [Khalifa University of Science Technology and Research, Abu Dhabi (United Arab Emirates)

    2015-10-15

    The APR 1400 is a large pressurized water reactor (PWR). Just like many other water reactors, it has an emergency core cooling system (ECCS). One of the most important components in the ECCS is the safety injection tank (SIT). Inside the SIT, a fluidic device is installed, which passively controls the mass flow of the safety injection and eliminates the need for low pressure safety injection pumps. As more passive safety mechanisms are being pursued, it has become more important to understand flow structure and the loss mechanism within the fluidic device. Current computational fluid dynamics (CFD) calculations have had limited success in predicting the fluid flow accurately. This study proposes to find a more exact result using CFD and more realistic modeling. The SIT of APR1400 was analyzed using MARS and CFD. CFD calculation was executed first to obtain the form loss factor. Using the two form loss factors from the vendor and calculation, calculation using MARS was performed to compare with experiment. The accumulator model in MARS was quite accurate in predicting the water level. The pipe model showed some difference with the experimental data in the water level.

  7. An analysis of the traffic safety phenomenon.

    NARCIS (Netherlands)

    Asmussen, E. & Kranenburg, A.

    1982-01-01

    The lack of traffic safety is a combination of the critical coincidence of circumstances in the traffic of incidents (near-accidents) and accidents with unwanted (permanent) consequences, such as fatalities, injured and disabled persons and material damage. This definition covers the whole of the cr

  8. Safety analysis and evaluation methodology for fusion systems

    International Nuclear Information System (INIS)

    A synthesized methodology of safety analysis and evaluation for general fusion systems is proposed. In the course of the methodology development, its main frame has been constructed in order to take account of all safety-related items and to ensure a logical consistency. The safety-related items are divided broadly into two groups. One of them is the public protection from radiological hazard, which is introduced as a safety requirement from an external viewpoint for the fusion system. The other items are the matter from an internal viewpoint and are related to the fusion system behavior in itself. These items are composed of the understanding of a fusion system, the safety ensuring principle and the function based safety analysis. All of these items have been mapped on the frame, considering the mutual relations, among them, consistently. To complete the methodology development, the safety evaluation for the actual design of a fusion system has been performed in conformity to this methodology. Thus, it has been demonstrated that the methodology proposed here is appropriate to the safety analysis and evaluation for the fusion system. (author). 9 refs, 4 figs, 2 tabs

  9. Quantitative Safety and Security Analysis from a Communication Perspective

    Directory of Open Access Journals (Sweden)

    Boris Malinowsky

    2015-12-01

    Full Text Available This paper introduces and exemplifies a trade-off analysis of safety and security properties in distributed systems. The aim is to support analysis for real-time communication and authentication building blocks in a wireless communication scenario. By embedding an authentication scheme into a real-time communication protocol for safety-critical scenarios, we can rely on the protocol’s individual safety and security properties. The resulting communication protocol satisfies selected safety and security properties for deployment in safety-critical use-case scenarios with security requirements. We look at handover situations in a IEEE 802.11 wireless setup between mobile nodes and access points. The trade-offs involve application-layer data goodput, probability of completed handovers, and effect on usable protocol slots, to quantify the impact of security from a lower-layer communication perspective on the communication protocols. The results are obtained using the network simulator ns-3.

  10. Development and improvement of safety analysis code for geological disposal

    International Nuclear Information System (INIS)

    In order to confirm the long-term safety concerning geological disposal, probabilistic safety assessment code and other analysis codes, which can evaluate possibility of each event and influence on engineered barrier and natural barrier by the event, were introduced. We confirmed basic functions of those codes and studied the relation between those functions and FEP/PID which should be taken into consideration in safety assessment. We are planning to develop 'Nuclide Migration Assessment System' for the purpose of realizing improvement in efficiency of assessment work, human error prevention for analysis, and quality assurance of the analysis environment and analysis work for safety assessment by using it. As the first step, we defined the system requirements and decided the system composition and functions which should be mounted in them based on those requirements. (author)

  11. Automation of Safety Analysis with SysML Models Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project was a small proof-of-concept case study, generating SysML model information as a side effect of safety analysis. A prototype FMEA Assistant was...

  12. Safety analysis methodologies for radioactive waste repositories in shallow ground

    International Nuclear Information System (INIS)

    The report is part of the IAEA Safety Series and is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of shallow ground radioactive waste repositories. It discusses approaches that are applicable for safety analysis of a shallow ground repository. The methodologies, analysis techniques and models described are pertinent to the task of predicting the long-term performance of a shallow ground disposal system. They may be used during the processes of selection, confirmation and licensing of new sites and disposal systems or to evaluate the long-term consequences in the post-sealing phase of existing operating or inactive sites. The analysis may point out need for remedial action, or provide information to be used in deciding on the duration of surveillance. Safety analysis both general in nature and specific to a certain repository, site or design concept, are discussed, with emphasis on deterministic and probabilistic studies

  13. West Valley Reprocessing Plant. Safety analysis report, supplement 21

    International Nuclear Information System (INIS)

    Supplement No. 21 contains responses to USNRC questions on quality assurance contained in USNRC letter to NFS dated January 22, 1976, revised pages for the safety analysis report, and Appendix IX ''Quality Assurance Manual--West Valley Construction Projects.''

  14. Chemical abundance analysis of 19 barium stars

    CERN Document Server

    Yang, G C; Spite, M; Chen, Y Q; Zhao, G; Zhang, B; Liu, G Q; Liu, Y J; Liu, N; Deng, L C; Spite, F; Hill, V; Zhang, C X

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures, surface gravities, metallicity and microturbulent velocity) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their light elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn and Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-ca...

  15. Chemical conditions in present and future ecosystems in Forsmark - implications for selected radionuclides in the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Troejbom, Mats (Mats Troejbom Konsult AB (Sweden)); Grolander, Sara (Facilia AB (Sweden))

    2010-12-15

    This report is a background report for the biosphere analysis of the SR-Site Safety Assessment. This work aims to describe the future development of the chemical conditions at Forsmark, based on the present chemical conditions at landscape level taking landscape development and climate cases into consideration. The results presented contribute to the overall understanding of the present and future chemistry in the Forsmark area, and specifically, to the understanding of the behaviour of some selected radionuclides in the surface system. The future development of the chemistry at the site is qualitatively discussed with focus on the interglacial within the next 10,000 years. The effects on the chemical environment of future climate cases as Global Warming and cold permafrost climates are also briefly discussed. The work is presented in two independent parts describing background radionuclide activities in the Forsmark area and the distribution and behaviour of a large number of stable elements in the landscape. In a concluding section, implications of the future chemical environment of a selection of radionuclides important in the Safety Assessment are discussed based on the knowledge of stable elements. The broad range of elements studied show that there are general and expected patterns for the distribution and behaviour in the landscape of different groups of elements. Mass balances reveal major sources and sinks, pool estimations show where elements are accumulated in the landscape and estimations of time-scales give indications of the potential future development. This general knowledge is transferred to radionuclides not measured in order to estimate their behaviour and distribution in the landscape. It could be concluded that the future development of the chemical environment in the Forsmark area might affect element specific parameters used in de radionuclide model in different directions depending on element. The alternative climate cases, Global Warming

  16. Recent Progresses in Nanobiosensing for Food Safety Analysis.

    Science.gov (United States)

    Yang, Tao; Huang, Huifen; Zhu, Fang; Lin, Qinlu; Zhang, Lin; Liu, Junwen

    2016-01-01

    With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014-present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly. PMID:27447636

  17. Construction safety and waste management an economic analysis

    CERN Document Server

    Li, Rita Yi Man

    2015-01-01

    This monograph presents an analysis of construction safety problems and on-site safety measures from an economist’s point of view. The book includes examples from both emerging countries, e.g. China and India, and developed countries, e.g. Australia and Hong Kong. Moreover, the author covers an analysis on construction safety knowledge sharing by means of updatable mobile technology such as apps in Androids and iOS platform mobile devices. The target audience comprises primarily researchers and experts in the field but the book may also be beneficial for graduate students.

  18. Recent Progresses in Nanobiosensing for Food Safety Analysis

    Science.gov (United States)

    Yang, Tao; Huang, Huifen; Zhu, Fang; Lin, Qinlu; Zhang, Lin; Liu, Junwen

    2016-01-01

    With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014–present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly. PMID:27447636

  19. Computational methods for criticality safety analysis within the scale system

    International Nuclear Information System (INIS)

    The criticality safety analysis capabilities within the SCALE system are centered around the Monte Carlo codes KENO IV and KENO V.a, which are both included in SCALE as functional modules. The XSDRNPM-S module is also an important tool within SCALE for obtaining multiplication factors for one-dimensional system models. This paper reviews the features and modeling capabilities of these codes along with their implementation within the Criticality Safety Analysis Sequences (CSAS) of SCALE. The CSAS modules provide automated cross-section processing and user-friendly input that allow criticality safety analyses to be done in an efficient and accurate manner. 14 refs., 2 figs., 3 tabs

  20. Novel approaches to improving the chemical safety of the meat chain towards toxicants.

    Science.gov (United States)

    Engel, E; Ratel, J; Bouhlel, J; Planche, C; Meurillon, M

    2015-11-01

    In addition to microbiological issues, meat chemical safety is a growing concern for the public authorities, chain stakeholders and consumers. Meat may be contaminated by various chemical toxicants originating from the environment, treatments of agricultural production or food processing. Generally found at trace levels in meat, these toxicants may harm human health during chronic exposure. This paper overviews the key issues to be considered to ensure better control of their occurrence in meat and assessment of the related health risk. We first describe potential contaminants of meat products. Strategies to move towards a more efficient and systematic control of meat chemical safety are then presented in a second part, with a focus on emerging approaches based on toxicogenomics. The third part presents mitigation strategies to limit the impact of process-induced toxicants in meat. Finally, the last part introduces methodological advances to refine chemical risk assessment related to the occurrence of toxicants in meat by quantifying the influence of digestion on the fraction of food contaminants that may be assimilated by the human body.

  1. Unavailability analysis of redundant safety systems

    International Nuclear Information System (INIS)

    Analytical equations have been obtained for the unavailabilities of redundant standby safety systems with components tested periodically. Test and repair contributions, hardware failures, human testing and repair errors as well as failures due to true demands have been taken into account. Equations have been derived for m-out-of-n systems (1 less than or equal to m less than or equal to n less than or equal to 4) with uniformly staggered, consecutive and random testing schemes. The equations have been used in a computer code, ICARUS, and applied to practical safety systems. The results are useful for optimizing the redundancy and testing and they illustrate the importance of human/testing errors and falures associated with true demands

  2. Entrainment analysis and monitoring major safety systems

    International Nuclear Information System (INIS)

    The authors are convinced that taking account of internal and external experience and a plant-specific living PSA frequently reduces the notifiable incidents occurring as design errors due to inadequate checks on safety margins. On the basis of the considerations formulated in this article, Leibstadt nuclear power station has decided to overhaul the earlier PSA and work towards and implement a living PSA. The project has been given the green light and should be completed in two years. 5 figs., 4 refs

  3. Components, Safety Interfaces, and Compositional Analysis

    OpenAIRE

    Elmqvist, Jonas

    2007-01-01

    Component-based software development has emerged as a promising approach for developing complex software systems by composing smaller independently developed components into larger component assemblies. This approach offers means to increase software reuse, achieve higher flexibility and shorter time-to-market by the use of off-the-shelf components (COTS). However, the use of COTS in safety-critical system is highly unexplored. This thesis addresses the problems appearing in component-based d...

  4. Using Qualitative Hazard Analysis to Guide Quantitative Safety Analysis

    Science.gov (United States)

    Shortle, J. F.; Allocco, M.

    2005-01-01

    Quantitative methods can be beneficial in many types of safety investigations. However, there are many difficulties in using quantitative m ethods. Far example, there may be little relevant data available. This paper proposes a framework for using quantitative hazard analysis to prioritize hazard scenarios most suitable for quantitative mziysis. The framework first categorizes hazard scenarios by severity and likelihood. We then propose another metric "modeling difficulty" that desc ribes the complexity in modeling a given hazard scenario quantitatively. The combined metrics of severity, likelihood, and modeling difficu lty help to prioritize hazard scenarios for which quantitative analys is should be applied. We have applied this methodology to proposed concepts of operations for reduced wake separation for airplane operatio ns at closely spaced parallel runways.

  5. Statistical sampling and chemical analysis of complex weapon components

    International Nuclear Information System (INIS)

    One of the waste streams generated by nuclear weapon dismantlement programs will be component ''hardware'', including complex electronic assemblies such as: radars, arming/fusing/firing systems, power sources, and use-control and safety systems. Sandia National Laboratories (SNL) has been the design and development laboratory for many of these components and will be responsible for their ultimate disposition. This disposition, whether it be reuse, material recycle, or disposal, will require some level of material characterization and analysis. Previous efforts at developing a process for segregation and characterization of hazardous materials in weapon components have been documented. This paper describes the results of recent activities undertaken in support of the Weapon Hardware Inventory Reduction Effort (WHIRE) at Sandia National Laboratories. These activities have been directed principally towards: The development of a statistically sound sampling plan for chemical analysis of weapon component materials; the development of a non-destructive analytical screening method for determining the Toxicity Characteristic of excess weapon hardware

  6. Ensuring Adequate Health and Safety Information for Decision Makers during Large-Scale Chemical Releases

    Science.gov (United States)

    Petropoulos, Z.; Clavin, C.; Zuckerman, B.

    2015-12-01

    The 2014 4-Methylcyclohexanemethanol (MCHM) spill in the Elk River of West Virginia highlighted existing gaps in emergency planning for, and response to, large-scale chemical releases in the United States. The Emergency Planning and Community Right-to-Know Act requires that facilities with hazardous substances provide Material Safety Data Sheets (MSDSs), which contain health and safety information on the hazardous substances. The MSDS produced by Eastman Chemical Company, the manufacturer of MCHM, listed "no data available" for various human toxicity subcategories, such as reproductive toxicity and carcinogenicity. As a result of incomplete toxicity data, the public and media received conflicting messages on the safety of the contaminated water from government officials, industry, and the public health community. Two days after the governor lifted the ban on water use, the health department partially retracted the ban by warning pregnant women to continue avoiding the contaminated water, which the Centers for Disease Control and Prevention deemed safe three weeks later. The response in West Virginia represents a failure in risk communication and calls to question if government officials have sufficient information to support evidence-based decisions during future incidents. Research capabilities, like the National Science Foundation RAPID funding, can provide a solution to some of the data gaps, such as information on environmental fate in the case of the MCHM spill. In order to inform policy discussions on this issue, a methodology for assessing the outcomes of RAPID and similar National Institutes of Health grants in the context of emergency response is employed to examine the efficacy of research-based capabilities in enhancing public health decision making capacity. The results of this assessment highlight potential roles rapid scientific research can fill in ensuring adequate health and safety data is readily available for decision makers during large

  7. 14 CFR 417.309 - Flight safety system analysis.

    Science.gov (United States)

    2010-01-01

    ... 12-dB margin, each link analysis must account for the following nominal system performance and... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety system analysis. 417.309... analysis. (a) General. (1) Each flight termination system and command control system, including each...

  8. Exploring the limits of safety analysis in complex technological systems

    CERN Document Server

    Sornette, D; Kroeger, W

    2012-01-01

    From biotechnology to cyber-risks, most extreme technological risks cannot be reliably estimated from historical statistics. Engineers resort to probability safety analysis (PSA), which consists in developing models to simulate accidents, potential scenarios, their severity and frequency. However, even the best safety analysis struggles to account for evolving risks resulting from inter-connected networks and cascade effects. Taking nuclear risks as an example, the predicted plant-specific distribution of losses is found to be significantly underestimated when compared with available empirical records. A simple cascade model suggests that the classification of the different possible safety regimes is intrinsically unstable in the presence of cascades. Even the best probabilistic safety analysis requires additional continuous validation, making the best use of the experienced realized incidents, near misses and accidents.

  9. Probabilistic safety analysis for the Unterweser Nuclear Power Station

    International Nuclear Information System (INIS)

    In October last year, a plant-specific probabilistic safety analysis (PSA) was conducted for the Unterweser Nuclear Power Station as part of the periodic safety review (PSR). As a living PSA, the probabilistic safety analysis was based on the first analysis conducted in 1995; its scope was extended in accordance with the 1996 PSA guideline. Besides the in-plant initiating events in the power mode, which were considered already in the 1995 PSA, the current PSA included external impacts, fires in the plant, and events occurring during plant outages as well as plant-specific data. Also findings of current research were incorporated. The results obtained show the KKU plant to enjoy a high level of safety and allow the PSA to be used alongside plant operation. (orig.)

  10. PSA analysis focused on Mochovce NPP safety measures evaluation from operational safety point of view

    International Nuclear Information System (INIS)

    Mochovce NPP consists of four reactor units of WWER 440/V213 type and it is located in the south-middle part of Slovakia. At present two units are operated and another two are under the construction. As these units represent second generation of WWER reactor design, the additional safety measures (SM) were implemented to enhance operational and nuclear safety according to the recommendations of performed international audits and operational experience based on the exploitation of similar units. These requirements result into a number of SMs grouped according to their purpose to reach recent international requirements on nuclear and operational safety. The paper presents the bases used for SMs establishing including their grouping covering different areas of safety goals and results of SM contributions to the total core damage frequency based on FPSA analysis. (author)

  11. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  12. Safety Analysis of Stochastic Dynamical Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2015-01-01

    This paper presents a method for verifying the safety of a stochastic system. In particular, we show how to compute the largest set of initial conditions such that a given stochastic system is safe with probability p. To compute the set of initial conditions we rely on the moment method that via...... Haviland's theorem allows an infinite dimensional optimization problem on measures to be formulated as a polynomial optimization problem. Subsequently, the moment sequence is truncated (relaxed) to obtain a finite dimensional polynomial optimization problem. Finally, we provide an illustrative example that...

  13. Safety Analysis of Liquid Rocket Engine Using Bayesian Networks

    Institute of Scientific and Technical Information of China (English)

    WANG Hua-wei; YAN Zhi-qiang

    2007-01-01

    Safety analysis for liquid rocket engine has a great meaning for shortening development cycle, saving development expenditure and reducing development risk. The relationship between the structure and component of liquid rocket engine is much more complex, furthermore test data are absent in development phase. Thereby, the uncertainties exist in safety analysis for liquid rocket engine. A safety analysis model integrated with FMEA(failure mode and effect analysis)based on Bayesian networks (BN) is brought forward for liquid rocket engine, which can combine qualitative analysis with quantitative decision. The method has the advantages of fusing multi-information, saving sample amount and having high veracity. An example shows that the method is efficient.

  14. Gas-cooled reactor safety and accident analysis

    International Nuclear Information System (INIS)

    The Specialists' Meeting on Gas-Cooled Reactor Safety and Accident Analysis was convened by the International Atomic Energy Agency in Oak Ridge on the invitation of the Department of Energy in Washington, USA. The meeting was hosted by the Oak Ridge National Laboratory. The purpose of the meeting was to provide an opportunity to compare and discuss results of safety and accident analysis of gas-cooled reactors under development, construction or in operation, to review their lay-out, design, and their operational performance, and to identify areas in which additional research and development are needed. The meeting emphasized the high safety margins of gas-cooled reactors and gave particular attention to the inherent safety features of small reactor units. The meeting was subdivided into four technical sessions: Safety and Related Experience with Operating Gas-Cooled Reactors (4 papers); Risk and Safety Analysis (11 papers); Accident Analysis (9 papers); Miscellaneous Related Topics (5 papers). A separate abstract was prepared for each of these papers

  15. SMV model-based safety analysis of software requirements

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kwang Yong [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Seong, Poong Hyun [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)], E-mail: phseong@kaist.ac.kr

    2009-02-15

    Fault tree analysis (FTA) is one of the most frequently applied safety analysis techniques when developing safety-critical industrial systems such as software-based emergency shutdown systems of nuclear power plants and has been used for safety analysis of software requirements in the nuclear industry. However, the conventional method for safety analysis of software requirements has several problems in terms of correctness and efficiency; the fault tree generated from natural language specifications may contain flaws or errors while the manual work of safety verification is very labor-intensive and time-consuming. In this paper, we propose a new approach to resolve problems of the conventional method; we generate a fault tree from a symbolic model verifier (SMV) model, not from natural language specifications, and verify safety properties automatically, not manually, by a model checker SMV. To demonstrate the feasibility of this approach, we applied it to shutdown system 2 (SDS2) of Wolsong nuclear power plant (NPP). In spite of subtle ambiguities present in the approach, the results of this case study demonstrate its overall feasibility and effectiveness.

  16. Analysis of Chemical Technology Division waste streams

    International Nuclear Information System (INIS)

    This document is a summary of the sources, quantities, and characteristics of the wastes generated by the Chemical Technology Division (CTD) of the Oak Ridge National Laboratory. The major contributors of hazardous, mixed, and radioactive wastes in the CTD as of the writing of this document were the Chemical Development Section, the Isotopes Section, and the Process Development Section. The objectives of this report are to identify the sources and the summarize the quantities and characteristics of hazardous, mixed, gaseous, and solid and liquid radioactive wastes that are generated by the Chemical Technology Division (CTD) of the Oak Ridge National Laboratory (ORNL). This study was performed in support of the CTD waste-reduction program -- the goals of which are to reduce both the volume and hazard level of the waste generated by the division. Prior to the initiation of any specific waste-reduction projects, an understanding of the overall waste-generation system of CTD must be developed. Therefore, the general approach taken in this study is that of an overall CTD waste-systems analysis, which is a detailed presentation of the generation points and general characteristics of each waste stream in CTD. The goal of this analysis is to identify the primary waste generators in the division and determine the most beneficial areas to initiate waste-reduction projects. 4 refs., 4 figs., 13 tabs

  17. Safety analysis and evaluation methodology for fusion systems

    International Nuclear Information System (INIS)

    Fusion systems which are under development as future energy systems have reached a stage that the break even is expected to be realized in the near future. It is desirable to demonstrate that fusion systems are well acceptable to the societal environment. There are three crucial viewpoints to measure the acceptability, that is, technological feasibility, economy and safety. These three points have close interrelation. The safety problem is more important since three large scale tokamaks, JET, TFTR and JT-60, start experiment, and tritium will be introduced into some of them as the fusion fuel. It is desirable to establish a methodology to resolve the safety-related issues in harmony with the technological evolution. The promising fusion system toward reactors is not yet settled. This study has the objective to develop and adequate methodology which promotes the safety design of general fusion systems and to present a basis for proposing the R and D themes and establishing the data base. A framework of the methodology, the understanding and modeling of fusion systems, the principle of ensuring safety, the safety analysis based on the function and the application of the methodology are discussed. As the result of this study, the methodology for the safety analysis and evaluation of fusion systems was developed. New idea and approach were presented in the course of the methodology development. (Kako, I.)

  18. A Safety Analysis Approach to Clinical Workflows: Application and Evaluation

    Directory of Open Access Journals (Sweden)

    Lamis Al-Qora’n

    2014-11-01

    Full Text Available Clinical workflows are safety critical workflows as they have the potential to cause harm or death to patients. Their safety needs to be considered as early as possible in the development process. Effective safety analysis methods are required to ensure the safety of these high-risk workflows, because errors that may happen through routine workflow could propagate within the workflow to result in harmful failures of the system’s output. This paper shows how to apply an approach for safety analysis of clinical workflows to analyse the safety of the workflow within a radiology department and evaluates the approach in terms of usability and benefits. The outcomes of using this approach include identification of the root causes of hazardous workflow failures that may put patients’ lives at risk. We show that the approach is applicable to this area of healthcare and is able to present added value through the detailed information on possible failures, of both their causes and effects; therefore, it has the potential to improve the safety of radiology and other clinical workflows.

  19. Safety analysis of JAEA-ADS in Japan

    International Nuclear Information System (INIS)

    It is considered that the ADS is safer than conventional critical nuclear reactors because the operation of the ADS is able to be stopped by the shutdown of the accelerator. Meanwhile, it is important to comprehend transients at the failure of the proton beam shutdown for the discussion of the ADS inherent safety. To investigate transients at such unprotected accidents, safety analyses for the JAEA ADS were performed. SIMMER-III, an advanced safety analysis code, was employed for the safety analysis. As typical accident scenarios, following two cases were analyzed by SIMMER-III code; unprotected beam overpower (UBOP) and unprotected loss of flow (ULOF). In this study, the word ‘unprotected’ means no shutdown of the proton beam during severe sequences 

  20. Preliminary safety analysis report for the Waste Characterization Facility

    International Nuclear Information System (INIS)

    This safety analysis report outlines the safety concerns associated with the Waste Characterization Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are to: define and document a safety basis for the Waste Characterization Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume. 142 refs., 38 figs., 39 tabs

  1. The Efficacy of a Condensed "Seeking Safety" Intervention for Women in Residential Chemical Dependence Treatment at 30 Days Posttreatment

    Science.gov (United States)

    Cash Ghee, Anna; Bolling, Lanny C.; Johnson, Candace S.

    2009-01-01

    This study examined the efficacy of a condensed version of the "Seeking Safety" intervention in the reduction of trauma-related symptoms and improved drug abstinence rates among women in residential chemical dependence treatment. One hundred and four women were randomly assigned to treatment including a condensed (six session) "Seeking Safety"…

  2. Safety analysis report for packaging (onsite) steel drum

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, W.A.

    1998-09-29

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

  3. Exploring the limits of safety analysis in complex technological systems

    OpenAIRE

    Sornette, D.; Maillart, T.; Kroeger, W.

    2012-01-01

    From biotechnology to cyber-risks, most extreme technological risks cannot be reliably estimated from historical statistics. Therefore, engineers resort to predictive methods, such as fault/event trees in the framework of probabilistic safety assessment (PSA), which consists in developing models to identify triggering events, potential accident scenarios, and estimate their severity and frequency. However, even the best safety analysis struggles to account for evolving risks resulting from in...

  4. 242-A evaporator safety analysis report

    International Nuclear Information System (INIS)

    In compliance with DOE Orders, an update of the 242-A SAR has been prepared, as documented in the referenced ECN. Several categories of changes were identified for inclusion in this revision of the SAR. These categories will be utilized to simplify the discussion of the changes for this USQ document. However, it is important to note that no new tests or experiments were included in this revision of the SAR. Editorial changes and/or informational updates to Chapters 9 and 11 were included as part of this revision. However, no changes to Operational Safety Requirements (OSRs) contained in Chapter 11 were required. General categories of changes included in this revision are listed

  5. Safety Analysis Report for the PWR Spent Fuel Canister

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Choi, Jong Won; Cho, Dong Keun; Chun, Kwan Sik; Lee, Jong Youl; Kim, Seong Ki; Kim, Seong Soo; Lee, Yang

    2005-11-15

    This report outlined the results of the safety assessment of the canisters for the PWR spent fuels which will be used in the KRS. All safety analyses including criticality and radiation shielding analyses, mechanical analyses, thermal analyses, and containment analyses were performed. The reference PWR spent fuels were in the 17x17 and determined to have 45,000 MWD/MTU burnup. The canister consists of copper outer shell and nodular cast iron inner structure with diameter of 102 cm and height of 483 cm. Criticality safety was checked for normal and abnormal conditions. It was assumed that the integrity of engineered barriers is preserved and saturated with water of 1.0g/cc for normal condition. For the abnormal condition container and bentonite was assumed to disappear, which allows the spent fuel to be surrounded by water with the most reactive condition. In radiation shielding analysis it was investigated that the absorbed dose at the surface of the canister met the safety limit. The structural analysis was conducted considering three load conditions, normal, extreme, and rock movement condition. Thermal analysis was carried out for the case that the canister with four PWR assemblies was deposited in the repository 500 meter below the surface with 40 m tunnel spacing and 6 m deposition hole spacing. The results of the safety assessment showed that the proposed KDC-1 canister met all the safety limits.

  6. Software Safety Analysis of a Flight Guidance System

    Science.gov (United States)

    Butler, Ricky W. (Technical Monitor); Tribble, Alan C.; Miller, Steven P.; Lempia, David L.

    2004-01-01

    This document summarizes the safety analysis performed on a Flight Guidance System (FGS) requirements model. In particular, the safety properties desired of the FGS model are identified and the presence of the safety properties in the model is formally verified. Chapter 1 provides an introduction to the entire project, while Chapter 2 gives a brief overview of the problem domain, the nature of accidents, model based development, and the four-variable model. Chapter 3 outlines the approach. Chapter 4 presents the results of the traditional safety analysis techniques and illustrates how the hazardous conditions associated with the system trace into specific safety properties. Chapter 5 presents the results of the formal methods analysis technique model checking that was used to verify the presence of the safety properties in the requirements model. Finally, Chapter 6 summarizes the main conclusions of the study, first and foremost that model checking is a very effective verification technique to use on discrete models with reasonable state spaces. Additional supporting details are provided in the appendices.

  7. Waste Sampling & Characterization Facility (WSCF) Complex Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    MELOY, R.T.

    2002-04-01

    This document was prepared to analyze the Waste Sampling and Characterization Facility for safety consequences by: Determining radionuclide and highly hazardous chemical inventories; Comparing these inventories to the appropriate regulatory limits; Documenting the compliance status with respect to these limits; and Identifying the administrative controls necessary to maintain this status. The primary purpose of the Waste Sampling and Characterization Facility (WSCF) is to perform low-level radiological and chemical analyses on various types of samples taken from the Hanford Site. These analyses will support the fulfillment of federal, Washington State, and Department of Energy requirements.

  8. Quantitative Safety and Security Analysis from a Communication Perspective

    DEFF Research Database (Denmark)

    Malinowsky, Boris; Schwefel, Hans-Peter; Jung, Oliver

    2014-01-01

    This paper introduces and exemplifies a trade-off analysis of safety and security properties in distributed systems. The aim is to support analysis for real-time communication and authentication building blocks in a wireless communication scenario. By embedding an authentication scheme into a rea...

  9. VALIDATION GUIDELINES FOR LABORATORIES PERFORMING FORENSIC ANALYSIS OF CHEMICAL TERRORISM

    Science.gov (United States)

    The Scientific Working Group on Forensic Analysis of Chemical Terrorism (SWGFACT) has developed the following guidelines for laboratories engaged in the forensic analysis of chemical evidence associated with terrorism. This document provides a baseline framework and guidance for...

  10. Chemical safety of cassava products in regions adopting cassava production and processing - experience from Southern Africa

    DEFF Research Database (Denmark)

    Nyirenda, D.B.; Chiwona-Karltun, L.; Chitundu, M.;

    2011-01-01

    The cassava belt area in Southern Africa is experiencing an unforeseen surge in cassava production, processing and consumption. Little documentation exists on the effects of this surge on processing procedures, the prevailing levels of cyanogenic glucosides of products consumed and the levels...... and perceptions concerning cassava and chemical food safety. Chips, mixed biscuits and flour, procured from households and markets in three regions of Zambia (Luapula-North, Western and Southern) as well as products from the Northern, Central and Southern regions of Malawi, were analyzed for total cyanogenic...

  11. PWR core safety analysis with 3-dimensional methods

    International Nuclear Information System (INIS)

    Highlights: • An overview of AREVA’s safety analysis codes their coupling is provided. • The validation base and licensing applications of these codes are summarized. • Coupled codes and methods provide improved margins and non-conservative results. • Examples for REA and inadvertent opening of the pressurizer safety valve are given. - Abstract: The main focus of safety analysis is to demonstrate the required safety level of the reactor core. Because of the demanding requirements, the quality of the safety analysis strongly affects the confidence in the operational safety of a reactor. To ensure the highest quality, it is essential that the methodology consists of appropriate analysis tools, an extensive validation base, and last but not least highly educated engineers applying the methodology. The sophisticated 3-dimensional core models applied by AREVA ensure that all physical effects relevant for safety are treated and the results are reliable and conservative. Presently AREVA employs SCIENCE, CASMO/NEMO and CASCADE-3D for pressurized water reactors. These codes are currently being consolidated into the next generation 3D code system ARCADIA®. AREVA continuously extends the validation base, including measurement campaigns in test facilities and comparisons of the predictions of steady state and transient measured data gathered from plants during many years of operation. Thus, the core models provide reliable and comprehensive results for a wide range of applications. For the application of these powerful tools, AREVA is taking benefit of its interdisciplinary know-how and international teamwork. Experienced engineers of different technical backgrounds are working together to ensure an appropriate interpretation of the calculation results, uncertainty analysis, along with continuously maintaining and enhancing the quality of the analysis methodologies. In this paper, an overview of AREVA’s broad application experience as well as the broad validation

  12. Bayesian-network-based safety risk analysis in construction projects

    International Nuclear Information System (INIS)

    This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical

  13. Analysis for design of passive safety injection line in IPSS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihee; Kim, Sangho; Chang, Soonheung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The current safety system of nuclear power plants cannot deal with loss-of-coolant accidents during the circumstance of station black-out (SBO), total loss of AC electric power. However, application of IPSS allows nuclear power plants to solve the combined accidents by its characteristics, only operated by natural phenomena. In order to achieve ultimate safety from the IPSS, analysis for currently operating nuclear power plants should be considered. Hence, in this research, analysis for the effectiveness of passive safety injection of IPSS was conducted for OPR1000 with using MARS code. In this study, application of PSIS for OPR1000 was evaluated. Following the results were simulated by MARS, we verified that PSIS can be the successful supplement for safety roles that HPSI and LPSI does in OPR1000. Even though, the result is strictly bounded to OPR1000, it gives us a prospect that PSIS of IPSS can cope with LBLOCA in the failure of active safety systems induced by SBO on other PWR. On the other hand, this simulation was evaluated with a hypothesis of direct vessel injection. Therefore, further study is needed for passive safety injection through cold legs to OPR1000 and other PWRs and those comparisons.

  14. Safety analysis for small and medium size integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jin H.; Chang, M. H.; Bae, K. H.; Lim, H. S.; Kwon, M.; Lee, Y. J.; Hwang, Y. D.; Kim, S. O.; Lee, W. J.; Chung, B. D.

    1997-09-01

    Sets of safety and performance related design basis events have been proposed for the SMART. Detailed descriptions of the events, justification and the selection criteria are specified. Operation modes of the SMART integral reactor are described. Safety systems as well as the components specific to the SMART integral reactor are evaluated. Thermal hydraulic system codes are evaluated for the use of the safety and performance analysis. Both the safety and performance methodology as well as the code systems are proposed for the safety and performance analysis of the SMART integral reactor. A preliminary PIRT for the SMART integral reactor was developed by an expert panel during the study. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect test was developed for the thermal hydraulic model development and the system code validation. This experimental program will be also used to evaluated the safety systems and to support licensing confirmation of the SMART integral reactor. The results of the study will be used for the conceptual design of the SMART integral reactor. (author). 58 refs., 23 tabs., 30 figs.

  15. 2014 PGSFR Safety Analysis for Loss of Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J. H.; Lee, K. L.; Choi, C. W.; Jeong, T. K.; Yoo, J.; Chang, W. P.; Ahn, S. J.; Lee, S. W.; Kang, S. H.; Ha, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The PGSFR consists of the PHTS (Primary Heat Transport System), the IHTS (Intermediate Heat Transport System), and the DHRS (Decay Heat Removal System). A LOF (Loss Of Flow) accident has been investigated for a safety evaluation of the PGSFR using the MARSLMR code. The safety analysis is evaluated by a CDF (Cumulative Damage Fraction). In case of the LOF accident, the tentative safety criterion is the CDF of under 0.05. The LOF accident has been evaluated in the PGSFR using MARS-LMR. The accident was initiated by both of PHTS pump trip. In the results, the CDF was predicted below a tentative safety criterion of 0.05 with a sufficient margin. The DHRS acceptably functioned for removing the core decay heat during long-term cooling period.

  16. Advanced analysis and design for fire safety of steel structures

    CERN Document Server

    Li, Guoqiang

    2013-01-01

    Advanced Analysis and Design for Fire Safety of Steel Structures systematically presents the latest findings on behaviours of steel structural components in a fire, such as the catenary actions of restrained steel beams, the design methods for restrained steel columns, and the membrane actions of concrete floor slabs with steel decks. Using a systematic description of structural fire safety engineering principles, the authors illustrate the important difference between behaviours of an isolated structural element and the restrained component in a complete structure under fire conditions. The book will be an essential resource for structural engineers who wish to improve their understanding of steel buildings exposed to fires. It is also an ideal textbook for introductory courses in fire safety for master’s degree programs in structural engineering, and is excellent reading material for final-year undergraduate students in civil engineering and fire safety engineering. Furthermore, it successfully bridges th...

  17. Tools to prevent process safety events at university research facility - chemical risk assessment and experimental set-up risk assessment

    DEFF Research Database (Denmark)

    Jensen, Niels; Jørgensen, Sten Bay

    2014-01-01

    The article discusses the two forms developed to examine the hazards of the chemicals to be used in the experiments in the experimental setup in the Department of Chemical and Biochemical Engineering of the Technical University of Denmark. A system for the safety assessment of new experimental...

  18. Tolerance and safety of superficial chemical peeling with salicylic acid in various facial dermatoses

    Directory of Open Access Journals (Sweden)

    Iqbal Zafar

    2005-03-01

    Full Text Available BACKGROUND: Chemical peeling is a skin-wounding procedure that may have some potentially undesirable side-effects. AIMS: The present study is directed towards safety concerns associated with superficial chemical peeling with salicylic acid in various facial dermatoses. METHODS: The study was a non-comparative and a prospective one. Two hundred and sixty-eight patients of either sex, aged between 10 to 60 years, undergoing superficial chemical peeling for various facial dermatoses (melasma, acne vulgaris, freckles, post-inflammatory scars/pigmentation, actinic keratoses, plane facial warts, etc. were included in the study. Eight weekly peeling sessions were carried out in each patient. Tolerance to the procedure and any undesirable effects noted during these sessions were recorded. RESULTS: Almost all the patients tolerated the procedure well. Mild discomfort, burning, irritation and erythema were quite common but the incidence of major side-effects was very low and these too, were easily manageable. There was no significant difference in the incidence of side-effects between facial dermatoses (melasma, acne and other pigmentary disorders. CONCLUSION: Chemical peeling with salicylic acid is a well tolerated and safe treatment modality in many superficial facial dermatoses.

  19. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x1011ncm-2s-1. The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000μg.g-1. Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  20. Safety analysis report for packaging (onsite) Castor GSF cask

    International Nuclear Information System (INIS)

    The CASTOR GSF packaging was designed and fabricated to be a certified Type B(U) packaging and comply with the requirements of the International Atomic Energy Agency (IAEA) for transport of up to five sealed canisters of vitrified radioactive materials. This onsite Safety Analysis Report for Packaging (SARP) provides the analysis and evaluations necessary to demonstrate that the casks, with the canister payload, meet the intent of the Type B packaging regulations set forth in 10 CFR 71 and therefore meet the onsite transportation safety requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping

  1. Safety analysis of SISL process module

    International Nuclear Information System (INIS)

    This report provides an assessment of various postulated accidental occurrences within an experimental process module which is part of a Special Isotope Separation Laboratory (SISL) currently under construction at the Lawrence Livermore National Laboratory (LLNL). The process module will contain large amounts of molten uranium and various water-cooled structures within a vacuum vessel. Special emphasis is therefore given to potential accidental interactions of molten uranium with water leading to explosive and/or rapid steam formation, as well as uranium oxidation and the potential for combustion. Considerations are also given to the potential for vessel melt-through. Evaluations include mechanical and thermal interactions and design implications both in terms of design basis as well as once-in-a-lifetime accident scenarios. These scenarios include both single- and multiple-failure modes leading to various contact modes and locations within the process module for possible thermal interactions. The evaluations show that a vacuum vessel design based upon nominal operating conditions would appear sufficient to meet safety requirements in connection with both design basis as well as once-in-a-lifetime accidents. Controlled venting requirements for removal of steam and hydrogen in order to avoid possible long-term pressurization events are recommended. Depending upon the resulting accident conditions, the vacuum system (i.e., the roughing system) could also serve this purpose. Finally, based upon accident evaluations of this study, immediate shut-off of all coolant water following an incident leak is not recommended, as such action may have adverse effects in terms of cool-down requirements for the melt crucibles etc. These requirements have not been assessed as part of this study

  2. Contribution of simplified vehicle dynamic models to road safety analysis

    OpenAIRE

    ORFILA, O; VANDANJON, PO; COIRET, A

    2008-01-01

    The skid resistance analysis is one part of the complex process which is involved in road safety analysis for a road project or for road maintenance. As early as the design phase, the road geometry choice is linked to the skid resistance for a given level of service. In the road maintenance case, different conventional measurements are performed on the road and by analyzing them together, risks can be enlightened. Currently, this analysis is done by comparing these data. This is time consumin...

  3. Development of evaluation method for software safety analysis techniques

    International Nuclear Information System (INIS)

    Full text: Full text: Following the massive adoption of digital Instrumentation and Control (I and C) system for nuclear power plant (NPP), various Software Safety Analysis (SSA) techniques are used to evaluate the NPP safety for adopting appropriate digital I and C system, and then to reduce risk to acceptable level. However, each technique has its specific advantage and disadvantage. If the two or more techniques can be complementarily incorporated, the SSA combination would be more acceptable. As a result, if proper evaluation criteria are available, the analyst can then choose appropriate technique combination to perform analysis on the basis of resources. This research evaluated the applicable software safety analysis techniques nowadays, such as, Preliminary Hazard Analysis (PHA), Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA), Markov chain modeling, Dynamic Flowgraph Methodology (DFM), and simulation-based model analysis; and then determined indexes in view of their characteristics, which include dynamic capability, completeness, achievability, detail, signal/ noise ratio, complexity, and implementation cost. These indexes may help the decision makers and the software safety analysts to choose the best SSA combination arrange their own software safety plan. By this proposed method, the analysts can evaluate various SSA combinations for specific purpose. According to the case study results, the traditional PHA + FMEA + FTA (with failure rate) + Markov chain modeling (without transfer rate) combination is not competitive due to the dilemma for obtaining acceptable software failure rates. However, the systematic architecture of FTA and Markov chain modeling is still valuable for realizing the software fault structure. The system centric techniques, such as DFM and Simulation-based model analysis, show the advantage on dynamic capability, achievability, detail, signal/noise ratio. However, their disadvantage are the completeness complexity

  4. Safety analysis for boiling water reactors

    International Nuclear Information System (INIS)

    This report is the translation of GRS-95 'Sicherheitsanalyse fuer Siedewasserreaktoren - Zusammenfassende Darstellung'. Recent analysis results -concerning the chapters on accident management, fire and earthquake - that were not included in the German text have been added to this translation. In cases of doubt, GRS-102 (main volume) is the factually correct version. (orig.)

  5. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    Science.gov (United States)

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-01-01

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically. PMID:26132533

  6. SAFETY

    CERN Multimedia

    Niels Dupont

    2013-01-01

    CERN Safety rules and Radiation Protection at CMS The CERN Safety rules are defined by the Occupational Health & Safety and Environmental Protection Unit (HSE Unit), CERN’s institutional authority and central Safety organ attached to the Director General. In particular the Radiation Protection group (DGS-RP1) ensures that personnel on the CERN sites and the public are protected from potentially harmful effects of ionising radiation linked to CERN activities. The RP Group fulfils its mandate in collaboration with the CERN departments owning or operating sources of ionising radiation and having the responsibility for Radiation Safety of these sources. The specific responsibilities concerning "Radiation Safety" and "Radiation Protection" are delegated as follows: Radiation Safety is the responsibility of every CERN Department owning radiation sources or using radiation sources put at its disposition. These Departments are in charge of implementing the requi...

  7. International conference on the strengthening of nuclear safety in Eastern Europe. Keynote papers. Regulatory aspects of NPP safety, status of safety improvements, status of safety analysis report

    International Nuclear Information System (INIS)

    The Objective of the Conference was to assess the past decade of nuclear safety efforts in countries operating WWER and RBMK nuclear reactors and to address remaining safety issues which require further work. A particular focus of the Conference was on international co-operation and assistance and where such efforts should be focused in the future. All Eastern European countries that operate RBMK or WWER reactors participated in the Conference, and presented papers on three key areas of nuclear safety: Regulatory Aspects of Nuclear Power Plant Safety; Status of Safety Improvements; and Status of Safety Analysis Reports. In addition, representatives from 18 additional countries that provide financial and/or technical assistance and co-operation in the area of WWER and RBMK safety offered the most extensive commentary. Key international (IAEA, World Association of Nuclear Operators, the Nuclear Energy Agency, the G-24 NUSAC, the European Commission, and the EBRD) organizations that provide nuclear safety assistance for WWER and RBMK reactors also made presentations. There is no question that considerable progress on nuclear safety has been made in Eastern Europe. Special mention should be made of successful efforts to strengthen the independence and technical competence of the nuclear regulatory authorities. Efforts should now concentrate on improving the depth and scope of the technical abilities of the regulatory authorities. More attention by governments is needed to ensure that the regulatory authorities have the financial resources and enforcement authority to fully execute their missions. In respect to the operators of the nuclear power plants, they have demonstrated clear progress in operational safety improvements. Significant additional efforts are required to maintain and enhance an effective safety culture. Design safety improvement programmes are in place in all countries. Implementation of these programmes has varied and is particularly affected by

  8. Systems analysis of past, present, and future chemical terrorism scenarios.

    Energy Technology Data Exchange (ETDEWEB)

    Hoette, Trisha Marie

    2012-03-01

    Throughout history, as new chemical threats arose, strategies for the defense against chemical attacks have also evolved. As a part of an Early Career Laboratory Directed Research and Development project, a systems analysis of past, present, and future chemical terrorism scenarios was performed to understand how the chemical threats and attack strategies change over time. For the analysis, the difficulty in executing chemical attack was evaluated within a framework of three major scenario elements. First, historical examples of chemical terrorism were examined to determine how the use of chemical threats, versus other weapons, contributed to the successful execution of the attack. Using the same framework, the future of chemical terrorism was assessed with respect to the impact of globalization and new technologies. Finally, the efficacy of the current defenses against contemporary chemical terrorism was considered briefly. The results of this analysis justify the need for continued diligence in chemical defense.

  9. Safety Analysis Report - Packages, 9965, 9968, 9972-9975 Packages

    International Nuclear Information System (INIS)

    This Safety Analysis Report for Packaging (SARP) documents the performance of the 9965 B, 9968 B, 9972 B(U), 9973 B(U), 9974 B(U), and 9975 B(U) packages in satisfying the regulatory safety requirements of the Code of Federal Regulations (CFR) 711 and the International Atomic Energy Agency (IAEA) Safety Series No. 6, Regulations for the Safe Transport of Radioactive Material, 1985 edition2. Results of the analysis and testing performed on the 9965 B, 9968 B, 9972 B(U), 9973 B(U), 9974 B(U), and 9975 B(U) packages are presented in this SARP, which was prepared in accordance with U.S. Department of energy (DOE) Order 5480.33 and in the format specified in the Nuclear Regulatory Commission (NRC) Regulatory Guides 7.94 and 7.10.5

  10. Safety analysis report - packages 9965, 9968, 9972-9975 packages

    International Nuclear Information System (INIS)

    This Safety Analysis Report for Packaging (SARP) documents the performance of the 9965 B( ), 9968 B( ), 9972 B(U), 9973 B(U), 9974 B(U), and 9975 B(U) packages in satisfying the regulatory safety requirements of the Code of Federal Regulations (CFR) 10 CFR 71 and the International Atomic Energy Agency (IAEA) Safety Series No. 6, Regulations for the Safe Transport of Radioactive Material, 1985 edition. Results of the analysis and testing performed on the 9965 B(), 9968 B(), 9972 B(U), 9973 B(U), and 9975 B(U) packages are presented in this SARP, which was prepared in accordance with U.S. Department of Energy (DOE) Order 5480.3 and in the format specified in the Nuclear Regulatory Commission (NRC) Regulatory Guides 7.9 and 7.10

  11. Risk and safety analysis of nuclear systems

    CERN Document Server

    Lee, John C

    2011-01-01

    The book has been developed in conjunction with NERS 462, a course offered every year to seniors and graduate students in the University of Michigan NERS program. The first half of the book covers the principles of risk analysis, the techniques used to develop and update a reliability data base, the reliability of multi-component systems, Markov methods used to analyze the unavailability of systems with repairs, fault trees and event trees used in probabilistic risk assessments (PRAs), and failure modes of systems. All of this material is general enough that it could be used in non-nuclear a

  12. Behaviour analysis of AC-600 passive safety systems

    International Nuclear Information System (INIS)

    Southwest Center of Reactor Engineering Research and Design has finished the first step conceptual design of 600 mwe advanced PWR (AC-600). The main research emphases of AC-600 conceptual design include the advanced reactor core, the passive safety systems and the simplification. The passive safety systems of AC-600 consist of two reactor make up water tanks, two accumulators, two emergency feedwater tanks, two emergency natural draft air condensers, a containment water jacket and an enhanced primary cycle natural circulation flow system. 25% of the rated reactor power can be removed by the natural circulation cooling. The full pressure reactor make up water tanks are able to provide enough borated water which would be injected into the reactor coolant system during small LOCA. The coolant natural circulations can be established in the primary system and the passive secondary emergency feedwater system, removing residual heat from the reactor core to the atmosphere when station blackout occurs. It is indicated from analysis that the containment diameter of AC-600 is about 35 m. The large tanks and the large vertical distances between the tanks and reactor core are the main reason of using the big containment. It is also indicated from analysis that the low head safety injection pumps are required in AC-600 design to assure the recirculation system operation when large LOCA occurs. The reliability of AC-600 engineered safety systems is increased because the function of the passive safety systems is conducted through the immutable natural laws. The paper discusses the natural circulation ability and safety behavior of the passive safety systems during LOCA or station blackout for AC-600. The passive limits to excess reactivity and thermal hydraulic transients are also preliminarily discussed. Figs and tabs

  13. Safety analysis and the code development on radioactive waste disposal

    International Nuclear Information System (INIS)

    Regarding development of the safety analysis codes to be used for 'cross-check' (which is the evaluation of the validity of the safety analysis conducted by the licensee through cross comparison of the simulated result) of the sub-surface disposal conducted by the licensee, the codes are required to be capable of confirming the long term safety of the sub-surface disposal. The influence of the rainfall infiltration change on groundwater flow over the long term period due to climate change was studied. As a result, it was found that shoreline movement caused by the sea level change significantly influenced groundwater flow. Regarding development of the safety analysis codes to be used for 'cross-check' of the near surface disposal, it is important to efficiently simulate the groundwater flow with finely discretized mesh model. We therefore improved the memory allocation algorithm of the groundwater flow simulation code, TOUGH2 to be able to treat the large mesh model, such as several million cells. Modifications are made for the simulation support system, by adding the groundwater flow code 3D-SEEP which can treat land uplift and erosion and its associated modules. This modification not only improves efficiency but also allows to avoid human error. Moreover, sensitivity analysis of the unsaturated conditions such as infiltration rate on the migration of important nuclides of near surface disposal was conducted. As a result, influence of the unsaturated conditions on the exposed dose was evaluated. (author)

  14. Standard model for safety analysis report of fuel reprocessing plants

    International Nuclear Information System (INIS)

    A standard model for a safety analysis report of fuel reprocessing plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.)

  15. Human reliability analysis methods for probabilistic safety assessment

    International Nuclear Information System (INIS)

    Human reliability analysis (HRA) of a probabilistic safety assessment (PSA) includes identifying human actions from safety point of view, modelling the most important of them in PSA models, and assessing their probabilities. As manifested by many incidents and studies, human actions may have both positive and negative effect on safety and economy. Human reliability analysis is one of the areas of probabilistic safety assessment (PSA) that has direct applications outside the nuclear industry. The thesis focuses upon developments in human reliability analysis methods and data. The aim is to support PSA by extending the applicability of HRA. The thesis consists of six publications and a summary. The summary includes general considerations and a discussion about human actions in the nuclear power plant (NPP) environment. A condensed discussion about the results of the attached publications is then given, including new development in methods and data. At the end of the summary part, the contribution of the publications to good practice in HRA is presented. In the publications, studies based on the collection of data on maintenance-related failures, simulator runs and expert judgement are presented in order to extend the human reliability analysis database. Furthermore, methodological frameworks are presented to perform a comprehensive HRA, including shutdown conditions, to study reliability of decision making, and to study the effects of wrong human actions. In the last publication, an interdisciplinary approach to analysing human decision making is presented. The publications also include practical applications of the presented methodological frameworks. (orig.)

  16. 10 CFR 72.248 - Safety analysis report updating.

    Science.gov (United States)

    2010-01-01

    ... Approval of Spent Fuel Storage Casks § 72.248 Safety analysis report updating. (a) Each certificate holder for a spent fuel storage cask design shall update periodically, as provided in paragraph (b) of this... Commission, in accordance with § 72.4, within 90 days after the spent fuel storage cask design has...

  17. Fast flux test facility final safety analysis report amendment 79

    International Nuclear Information System (INIS)

    This document is provided to replace, remove, or add applicable pages to the chapters on: Heat Transport System; Containment and Structures; Auxiliary Systems; Reactor Refueling System; Conduct of Operations; Safety Analysis; Quality Assurance; FFTF Criticality Specifications; and Appendix H's TRIGA Fuel Storage System

  18. Standard model for safety analysis report of fuel fabrication plants

    International Nuclear Information System (INIS)

    A standard model for a safety analysis report of fuel fabrication plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.)

  19. QuantUM: Quantitative Safety Analysis of UML Models

    Directory of Open Access Journals (Sweden)

    Florian Leitner-Fischer

    2011-07-01

    Full Text Available When developing a safety-critical system it is essential to obtain an assessment of different design alternatives. In particular, an early safety assessment of the architectural design of a system is desirable. In spite of the plethora of available formal quantitative analysis methods it is still difficult for software and system architects to integrate these techniques into their every day work. This is mainly due to the lack of methods that can be directly applied to architecture level models, for instance given as UML diagrams. Also, it is necessary that the description methods used do not require a profound knowledge of formal methods. Our approach bridges this gap and improves the integration of quantitative safety analysis methods into the development process. All inputs of the analysis are specified at the level of a UML model. This model is then automatically translated into the analysis model, and the results of the analysis are consequently represented on the level of the UML model. Thus the analysis model and the formal methods used during the analysis are hidden from the user. We illustrate the usefulness of our approach using an industrial strength case study.

  20. Synthesis report for the VSG (preliminary safety analysis Gorleben). Report on working package 13. Preliminary safety analysis for the Gorleben site

    International Nuclear Information System (INIS)

    The report on the preliminary safety analysis for the Gorleben site covers the following issues: Accomplishment of the project covering the 14 working packages: fundamentals; geosciences on the description of the site; waste specification and quantity structure, safety and verification concept, development of final repository concepts, repository design and optimization, evaluation of human intrusion, considerations on the operational security, system analysis, FEP (features, events and processes) catalogue, development of scenarios, integrity analysis, radiological consequence analysis, synthesis and recommendations. Special emphasis is given to the topics safety and verification concept, realization of the safety and verification concept in the frame of the preliminary safety analysis for the Gorleben site.

  1. CONACS: the DOE safety analysis system

    International Nuclear Information System (INIS)

    The CONtainment Analysis Code System (CONACS) is a large, comprehensive scientific simulation system for predicting conditions in an LMR facility following the occurrence of a postulated accident. It has now been developed to a stage of completion that can be referred to as a limited operational version. This version forms a permanent portion of the ultimate system. Because CONACS was developed with change in mind, it is now possible to draw on this strength to respond to changing requirements arising from advanced design concepts. The generalized design applications in the nuclear and non-nuclear fields and the quality assurance applied to the project make those adaptations reliable. In this paper the results of prototype tests and the implications of limited version tests are presented along with a brief description of CONACS and its relationship to LMR design optimization and cost reduction

  2. CONACS: the DOE safety analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.J.; Armstrong, G.R.; Niccoli, L.G.

    1985-03-01

    The CONtainment Analysis Code System (CONACS) is a large, comprehensive scientific simulation system for predicting conditions in an LMR facility following the occurrence of a postulated accident. It has now been developed to a stage of completion that can be referred to as a limited operational version. This version forms a permanent portion of the ultimate system. Because CONACS was developed with change in mind, it is now possible to draw on this strength to respond to changing requirements arising from advanced design concepts. The generalized design applications in the nuclear and non-nuclear fields and the quality assurance applied to the project make those adaptations reliable. In this paper the results of prototype tests and the implications of limited version tests are presented along with a brief description of CONACS and its relationship to LMR design optimization and cost reduction.

  3. Safety analysis of disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    The spent fuel from the Olkiluoto NPP (TVO I and II) is planned to be disposed of in a repository to be constructed at a depth of about 500 meters in the crystalline bedrock. The thesis is dealing with the safety analysis of the disposal. The main topics presented in the thesis are: (1) The amount of radioactive properties of the spent fuel, (2) The canister design and the planned disposal concept, (3) The results of the preliminary site investigations, (4) Discussion of the multi-barrier principle, (5) The general principles and methodology of the TVO-92 safety analysis, (6) Groundwater flow analysis, (7) Durability and behaviour of the canister, (8) Biosphere analysis and reference scenario, and (9) The sensitivity and uncertainty analyses. (246 refs., 75 figs., 44 tabs.)

  4. Safety

    CERN Multimedia

    2003-01-01

    Please note that the safety codes A9, A10 AND A11 (ex annexes of SAPOCO/42) entitled respectively "Safety responsibilities in the divisions" "The safety policy committee (SAPOCO) and safety officers' committees" and "Administrative procedure following a serious accident or incident" are available on the web at the following URLs: Code A9: http://edms.cern.ch/document/337016/LAST_RELEASED Code A10: http://edms.cern.ch/document/337019/LAST_RELEASED Code A11: http://edms.cern.ch/document/337026/LAST_RELEASED Paper copies can also be obtained from the TIS divisional secretariat, e-mail: tis.secretariat@cern.ch. TIS Secretariat

  5. Methods of probabilistic safety analysis for nuclear power plants - December 1996

    International Nuclear Information System (INIS)

    By identifying essential knowledge gaps, probabilistic safety analyses (PSA) provide insights which may affect the setting of priorities in reactor safety research including both plant safety and reduction of analysis insecurities. PSA is suitable for revealing methods and assumptions of safety assessment. No safety assessment of nuclear power plants (e.g. German Risk Study phase A and B) should do without is. (DG)

  6. Safety evaluation status report for the prototype license application safety analysis report

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission (NRC) staff and consultants reviewed a Prototype License Application Safety Analysis Report (PLASAR) submitted by the US Department of Energy (DOE) for the earth-mounded concrete bunker (EMCB) alternative method of low-level radioactive waste disposal. The NRC reviewers relied extensively on the Standard Review Plan (SRP), Rev.1 (NUREG-1200), to evaluate the acceptability of the information provided in the EMCB PLASAR. The NRC staff selected certain review areas in the PLASAR for development of safety evaluation report input to provide examples of safety assessments that are necessary as part of a licensing review. Because of the fictitious nature of the assumed disposal site, and the decision to limit the review to essentially first-round review status, the NRC staff report is labeled a ''Safety Evaluation Status Report'' (SESR). Appendix A comprises the NRC review comments and questions on the information that DOE submitted in the PLASAR. The NRC concentrated its review on the design and operations-related portions of the EMCB PLASAR

  7. Preliminary safety analysis for key design features of KALIMER

    International Nuclear Information System (INIS)

    KAERI is currently developing the conceptual design of a liquid metal reactor, KALIMER(Korea Advanced Liquid Metal Reactor) under the long-term nuclear R and D program. In this report, descriptions of the KALIMER safety design features and safety analyses results for selected ATWS accidents are presented. First, the basic approach to achieve the safety goal is introduced in chapter 1, and the safety evaluation procedure for the KALIMER design is described in chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events. In chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure design performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram(ATWS) have been performed to investigate the KALIMER system response to the events. They are categorized as bounding events(BEs) because of their low probability of occurrence. In chapter 4, the design of the KALIMER containment dome and the results of its performance analysis are presented. The designs of the existing LMR containment and the KALIMER containment dome have been compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core kinetics and hydraulic behavior during HCDA in chapter 5. Mathematical formulations have been developed in the framework of the modified bethe-tait method, and scoping analyses have been performed for the KALIMER core behavior during super-prompt critical excursions

  8. Preliminary safety analysis for key design features of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, D. H.; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, S. O.; Lee, Y. B.; Jeong, K. S

    2000-07-01

    KAERI is currently developing the conceptual design of a liquid metal reactor, KALIMER(Korea Advanced Liquid Metal Reactor) under the long-term nuclear R and D program. In this report, descriptions of the KALIMER safety design features and safety analyses results for selected ATWS accidents are presented. First, the basic approach to achieve the safety goal is introduced in chapter 1, and the safety evaluation procedure for the KALIMER design is described in chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events. In chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure design performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram(ATWS) have been performed to investigate the KALIMER system response to the events. They are categorized as bounding events(BEs) because of their low probability of occurrence. In chapter 4, the design of the KALIMER containment dome and the results of its performance analysis are presented. The designs of the existing LMR containment and the KALIMER containment dome have been compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core kinetics and hydraulic behavior during HCDA in chapter 5. Mathematical formulations have been developed in the framework of the modified bethe-tait method, and scoping analyses have been performed for the KALIMER core behavior during super-prompt critical excursions.

  9. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    International Nuclear Information System (INIS)

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3. The final hazard categorization for the deactivated 340 Waste Handling Facility (340 Facility) is presented in this document. This hazard categorization was prepared in accordance with DOE-STD-1 027-92, Change Notice 1, Hazard Categorization and Accident Analysis Techniques for Compliance with Doe Order 5480.23, Nuclear Safety Analysis Reports. The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category (HC) 3. Routine nuclear waste receiving, storage, handling, and shipping operations at the 340 Facility have been deactivated, however, the facility contains a small amount of radioactive liquid and/or dry saltcake in two underground vault tanks. A seismic event and hydrogen deflagration were selected as bounding accidents. The generation of hydrogen in the vault tanks without active ventilation was determined to achieve a steady state volume of 0.33%, which is significantly less than the lower flammability limit of 4%. Therefore, a hydrogen deflagration is not possible in these tanks. The unmitigated release from a seismic event was used to categorize the facility consistent with the process defined in Nuclear Safety Technical Position (NSTP) 2002-2. The final sum-of-fractions calculation concluded that the facility is less than HC 3. The analysis did not identify any required engineered controls or design features. The Administrative Controls that were derived from the analysis are: (1) radiological inventory control, (2) facility change control, and (3) Safety Management Programs (SMPs). The facility configuration and radiological inventory shall be controlled to ensure that the assumptions in the analysis remain valid. The facility commitment to SMPs protects the integrity of the facility and environment by ensuring training, emergency response, and radiation protection. The full scale

  10. Structural safety analysis of HTGR core supports

    Energy Technology Data Exchange (ETDEWEB)

    Ju, F.; Bennett, J.G.; Anderson, C.A.

    1977-01-01

    In the current design of the High Temperature Gas-Cooled Reactor (HTGR), the core is made up of stacked columns of graphite fuel blocks. Structural support for the core takes the form of graphite columns beneath the core together with lateral springs, which position and restrain the core from contact with the sides of the reactor containment vessel. Each individual support column carries the dead load of several fuel columns together with the equivalent load caused by the coolant pressure drop through the core. The adequacy of the support structure to provide torsional stability of the core for both static and seismic loadings as well as long term stability of the core support structure itself is discussed. Analysis for long term stability of the core support columns involves consideration of eccentric loading (caused by damaged spherical seats) and imperfections in the form of surface cracks. Nonlinear graphite behavior must also be taken into consideration. For predictions of the core torsional seismic response, the core was represented as a right circular cylinder supported on elastic posts; the lateral support was represented by a single torsional spring. Energy losses from friction and material hysteresis were represented by viscous dampers. The coupled equations for vertical and rotational motions were integrated numerically and dynamic core response was computed fromtorsional acceleration time-histories obtained by differentiating a horizontal accelerogram and dividing by the shear wave speed for hard and soft soil conditions.

  11. PAT-1 safety analysis report addendum.

    Energy Technology Data Exchange (ETDEWEB)

    Weiner, Ruth F.; Schmale, David T.; Kalan, Robert J.; Akin, Lili A.; Miller, David Russell; Knorovsky, Gerald Albert; Yoshimura, Richard Hiroyuki; Lopez, Carlos; Harding, David Cameron; Jones, Perry L.; Morrow, Charles W.

    2010-09-01

    The Plutonium Air Transportable Package, Model PAT-1, is certified under Title 10, Code of Federal Regulations Part 71 by the U.S. Nuclear Regulatory Commission (NRC) per Certificate of Compliance (CoC) USA/0361B(U)F-96 (currently Revision 9). The purpose of this SAR Addendum is to incorporate plutonium (Pu) metal as a new payload for the PAT-1 package. The Pu metal is packed in an inner container (designated the T-Ampoule) that replaces the PC-1 inner container. The documentation and results from analysis contained in this addendum demonstrate that the replacement of the PC-1 and associated packaging material with the T-Ampoule and associated packaging with the addition of the plutonium metal content are not significant with respect to the design, operating characteristics, or safe performance of the containment system and prevention of criticality when the package is subjected to the tests specified in 10 CFR 71.71, 71.73 and 71.74.

  12. Safety analysis report for packaging (onsite) multicanister overpack cask

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, W.S.

    1997-07-14

    This safety analysis report for packaging (SARP) documents the safety of shipments of irradiated fuel elements in the MUlticanister Overpack (MCO) and MCO Cask for a highway route controlled quantity, Type B fissile package. This SARP evaluates the package during transfers of (1) water-filled MCOs from the K Basins to the Cold Vacuum Drying Facility (CVDF) and (2) sealed and cold vacuum dried MCOs from the CVDF in the 100 K Area to the Canister Storage Building in the 200 East Area.

  13. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Linderoth, C.E.

    1984-03-01

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  14. Statistical analysis applied to safety culture self-assessment

    International Nuclear Information System (INIS)

    Interviews and opinion surveys are instruments used to assess the safety culture in an organization as part of the Safety Culture Enhancement Programme. Specific statistical tools are used to analyse the survey results. This paper presents an example of an opinion survey with the corresponding application of the statistical analysis and the conclusions obtained. Survey validation, Frequency statistics, Kolmogorov-Smirnov non-parametric test, Student (T-test) and ANOVA means comparison tests and LSD post-hoc multiple comparison test, are discussed. (author)

  15. Safety analysis report for packaging (onsite) multicanister overpack cask

    International Nuclear Information System (INIS)

    This safety analysis report for packaging (SARP) documents the safety of shipments of irradiated fuel elements in the MUlticanister Overpack (MCO) and MCO Cask for a highway route controlled quantity, Type B fissile package. This SARP evaluates the package during transfers of (1) water-filled MCOs from the K Basins to the Cold Vacuum Drying Facility (CVDF) and (2) sealed and cold vacuum dried MCOs from the CVDF in the 100 K Area to the Canister Storage Building in the 200 East Area

  16. QuantUM: Quantitative Safety Analysis of UML Models

    CERN Document Server

    Leitner-Fischer, Florian; 10.4204/EPTCS.57.2

    2011-01-01

    When developing a safety-critical system it is essential to obtain an assessment of different design alternatives. In particular, an early safety assessment of the architectural design of a system is desirable. In spite of the plethora of available formal quantitative analysis methods it is still difficult for software and system architects to integrate these techniques into their every day work. This is mainly due to the lack of methods that can be directly applied to architecture level models, for instance given as UML diagrams. Also, it is necessary that the description methods used do not require a profound knowledge of formal methods. Our approach bridges this gap and improves the integration of quantitative safety analysis methods into the development process. All inputs of the analysis are specified at the level of a UML model. This model is then automatically translated into the analysis model, and the results of the analysis are consequently represented on the level of the UML model. Thus the analysi...

  17. Tritium Research Laboratory safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D.A.

    1979-03-01

    Design and operational philosophy has been evolved to keep radiation exposures to personnel and radiation releases to the environment as low as reasonably achievable. Each experiment will be doubly contained in a glove box and will be limited to 10 grams of tritium gas. Specially designed solid-hydride storage beds may be used to store temporarily up to 25 grams of tritium in the form of tritides. To evaluate possible risks to the public or the environment, a review of the Sandia Laboratories Livermore (SLL) site was carried out. Considered were location, population, land use, meteorology, hydrology, geology, and seismology. The risks and the extent of damage to the TRL and vital systems were evaluated for flooding, lightning, severe winds, earthquakes, explosions, and fires. All of the natural phenomena and human error accidents were considered credible, although the extent of potential damage varied. However, rather than address the myriad of specific individual consequences of each accident scenario, a worst-case tritium release caused indirectly by an unspecified natural phenomenon or human error was evaluated. The maximum credible radiological accident is postulated to result from the release of the maximum quantity of gas from one experiment. Thus 10 grams of tritium gas was used in the analysis to conservatively estimate the maximum whole-body dose of 1 rem at the site boundary and a maximum population dose of 600 man-rem. Accidental release of this amount of tritium implies simultaneous failure of two doubly contained systems, an occurrence considered not credible. Nuclear criticality is impossible in this facility. Based upon the analyses performed for this report, we conclude that the Tritium Research Laboratory can be operated without undue risk to employees, the general public, or the environment. (ERB)

  18. Application of causality diagram in system safety analysis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Causality Diagram (CD) is a new graphical knowledge representation based on probability theory. The application of this methodology in the safety analysis of the gas explosion in collieries was discussed in this paper, and the Minimal Cut Set, the Minimal Path Set and the Importance were introduced to develop the methodology. These concepts are employed to analyze the influence each event has on the top event ( the gas explosion, so as to find out about the defects of the system and accordingly help to work out the emphasis of the precautionary work and some preventive measures as well. The results of the safety analysis are in accordance with the practical requirements; therefore the preventive measures are certain to work effectively. In brief, according to the research CD is so effective in the safety analysis and the safety assessment that it can be a qualitative and quantitative method to predict the accident as well as offer some effective measures for the investigation, the prevention and the control of the accident.

  19. A new database for food safety: EDID (Endocrine disrupting chemicals Diet Interaction Database)

    International Nuclear Information System (INIS)

    Diet is a significant source of exposure to endocrine disrupting chemicals (EDC); health risks cannot be excluded, in particular long-term effects in vulnerable groups such as children. However, food safety assessment must also consider the effects of natural food components modulating the endocrine system. The scientific evidence on the complex interactions between EDC and food components is still limited. The new EDC-Diet Interactions Database (EDID) within the ISS EDC area (www.iss.it/inte/) aims to stimulate further research in the field of food toxicology: a database on international literature's studies, either on experimental systems and on animal population and humans, easy to consult and periodically updated. Examples of studies contained in EDID are provided concerning EDC with iodine, vitamins and phyto estrogens

  20. Style, content and format guide for writing safety analysis documents. Volume 1, Safety analysis reports for DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The purpose of Volume 1 of this 4-volume style guide is to furnish guidelines on writing and publishing Safety Analysis Reports (SARs) for DOE nuclear facilities at Sandia National Laboratories. The scope of Volume 1 encompasses not only the general guidelines for writing and publishing, but also the prescribed topics/appendices contents along with examples from typical SARs for DOE nuclear facilities.

  1. 'Geo'chemical research: a key building block for nuclear waste disposal safety cases.

    Science.gov (United States)

    Altmann, Scott

    2008-12-12

    Disposal of high level radioactive waste in deep underground repositories has been chosen as solution by several countries. Because of the special status this type waste has in the public mind, national implementation programs typically mobilize massive R&D efforts, last decades and are subject to extremely detailed and critical social-political scrutiny. The culminating argument of each program is a 'Safety Case' for a specific disposal concept containing, among other elements, the results of performance assessment simulations whose object is to model the release of radionuclides to the biosphere. Public and political confidence in performance assessment results (which generally show that radionuclide release will always be at acceptable levels) is based on their confidence in the quality of the scientific understanding in the processes included in the performance assessment model, in particular those governing radionuclide speciation and mass transport in the geological host formation. Geochemistry constitutes a core area of research in this regard. Clay-mineral rich formations are the subjects of advanced radwaste programs in several countries (France, Belgium, Switzerland...), principally because of their very low permeabilities and demonstrated capacities to retard by sorption most radionuclides. Among the key processes which must be represented in performance assessment models are (i) radioelement speciation (redox state, speciation, reactions determining radionuclide solid-solution partitioning) and (ii) diffusion-driven transport. The safety case must therefore demonstrate a detailed understanding of the physical-chemical phenomena governing the effects of these two aspects, for each radionuclide, within the geological barrier system. A wide range of coordinated (and internationally collaborated) research has been, and is being, carried out in order to gain the detailed scientific understanding needed for constructing those parts of the Safety Case

  2. Transition towards replacing animal tests in safety assessment of cosmetics and chemicals: a combined TIS-MLP framework

    OpenAIRE

    Kooijman, M.; van der Meer, P.; Moors, E.H.M.; Schellekens, H; Hekkert, M.P.

    2012-01-01

    The urgency of the transition to replace animal tests in safety assessment of chemicals and cosmetics was triggered by societal resistance to animal testing (Rowan, 2007) and the scientific dispute concerning the value of animal testing (Olson et al., 2000). Since the 1980s the European Union (EU) has been developing policies to reduce an-imal studies. However, these policies have not been very successful, since only a few regulatory safety assessments in animals (among which the Draize eye t...

  3. Chemical abundance analysis of 19 barium stars

    Science.gov (United States)

    Yang, Guo-Chao; Liang, Yan-Chun; Spite, Monique; Chen, Yu-Qin; Zhao, Gang; Zhang, Bo; Liu, Guo-Qing; Liu, Yu-Juan; Liu, Nian; Deng, Li-Cai; Spite, Francois; Hill, Vanessa; Zhang, Cai-Xia

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures Teff, surface gravities log g, metallicity [Fe/H] and microturbulence velocity ξt) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants as indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their Na, Al, α- and iron-peak elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-capture) process elements relative to the Sun. Their median abundances of [Ba/Fe], [La/Fe] and [Eu/Fe] are 0.54, 0.65 and 0.40, respectively. The Y I and Zr I abundances are lower than Ba, La and Eu, but higher than the α- and iron-peak elements for the strong Ba stars and similar to the iron-peak elements for the mild stars. There exists a positive correlation between Ba intensity and [Ba/Fe]. For the n-capture elements (Y, Zr, Ba, La), there is an anti-correlation between their [X/Fe] and [Fe/H]. We identify nine of our sample stars as strong Ba stars with [Ba/Fe] >0.6 where seven of them have Ba intensity Ba=2-5, one has Ba=1.5 and another one has Ba=1.0. The remaining ten stars are classified as mild Ba stars with 0.17<[Ba/Fe] <0.54.

  4. Performance and safety analysis of WP-cave concept

    International Nuclear Information System (INIS)

    The report presents a performance safety, and cost analysis of the WP-cave, WPC, concept. In the performance analysis, questions specific to the WPC have been addressed which have been identified to require more detailed studies. Based on the outcome of this analysis, a safety analysis has been made which comprises of the modeling and calculation of radionuclide transport from the repository to the biosphere and the resulting dose exposure to man. The result of the safety analysis indicates that the present design of a WPC repository may give unacceptably high doses. By improving the properties of the bentonite/sand barrier such that the hydraulic conductivity is reduced, or by changing the short-lived steel canisters to more long-lived canisters, e.g. copper canisters, it is judged possible to achieve a sufficiently low level of dose exposure rates to man. The cost for a WPC repository of the studied design is significantly higher than for a KBS-3 repository considering the Swedish conditions and the Swedish amount of spent fuel. The major costs are connected to the excavation and backfilling of the bentonite/sand barrier. The potential for cost savings is high but it is not judged possible to account for savings in such a way that the WPC concept shows lower cost than the KBS-3 concept. (34 figs., 33 tabs., 29 refs.)

  5. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F.; Reid, Ray D.

    2012-01-01

    This invention relates to non-contact spectroscopic methods and apparatus for performing chemical analysis and the ideal wavelengths and sources needed for this analysis. It employs deep ultraviolet (200- to 300-nm spectral range) electron-beam-pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor lightemitting devices, and hollow cathode metal ion lasers. Three achieved goals for this innovation are to reduce the size (under 20 L), reduce the weight [under 100 lb (.45 kg)], and reduce the power consumption (under 100 W). This method can be used in microscope or macroscope to provide measurement of Raman and/or native fluorescence emission spectra either by point-by-point measurement, or by global imaging of emissions within specific ultraviolet spectral bands. In other embodiments, the method can be used in analytical instruments such as capillary electrophoresis, capillary electro-chromatography, high-performance liquid chromatography, flow cytometry, and related instruments for detection and identification of unknown analytes using a combination of native fluorescence and/or Raman spectroscopic methods. This design provides an electron-beampumped semiconductor radiation-producing method, or source, that can emit at a wavelength (or wavelengths) below 300 nm, e.g. in the deep ultraviolet between about 200 and 300 nm, and more preferably less than 260 nm. In some variations, the method is to produce incoherent radiation, while in other implementations it produces laser radiation. In some variations, this object is achieved by using an AlGaN emission medium, while in other implementations a diamond emission medium may be used. This instrument irradiates a sample with deep UV radiation, and then uses an improved filter for separating wavelengths to be detected. This provides a multi-stage analysis of the sample. To avoid the difficulties related to producing deep UV semiconductor sources, a pumping approach has been developed that uses

  6. Hydrogen Safety Project: Chemical analysis support task. Window ``E`` analyses

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T E; Campbell, J A; Hoppe, E W; Greenwood, L R; Gillespie, B M

    1992-09-01

    Core samples taken from tank 101-SY at Hanford during ``window E`` were analyzed for organic and radiochemical constituents by staff of the Analytical Chemistry Laboratory at Pacific Northwest Laboratory. Westinghouse Hanford company submitted these samples to the laboratory.

  7. Practical management of chemicals and hazardous wastes: An environmental and safety professional`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Kuhre, W.L.

    1995-08-01

    This book was written to help the environmental and safety student learn about the field and to help the working professional manage hazardous material and waste issues. For example, one issue that will impact virtually all of these people mentioned is the upcoming environmental standardization movement. The International Standards Organization (ISO) is in the process of adding comprehensive environmental and hazardous waste management systems to their future certification requirements. Most industries worldwide will be working hard to achieve this new level of environmental management. This book presents many of the systems needed to receive certification. In order to properly manage hazardous waste, it is important to consider the entire life cycle, including when the waste was a useful chemical or hazardous material. Waste minimization is built upon this concept. Understanding the entire life cycle is also important in terms of liability, since many regulations hold generators responsible from cradle to grave. This book takes the life-cycle concept even further, in order to provide additional insight. The discussion starts with the conception of the chemical and traces its evolution into a waste and even past disposal. At this point the story continues into the afterlife, where responsibility still remains.

  8. Evaluation of safety assessment methodologies in Rocky Flats Risk Assessment Guide (1985) and Building 707 Final Safety Analysis Report (1987)

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, B.; Fisher, C.; Zigler, G.; Clark, R.A. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)

    1990-11-09

    FSARs. Rockwell International, as operating contractor at the Rocky Flats plant, conducted a safety analysis program during the 1980s. That effort resulted in Final Safety Analysis Reports (FSARs) for several buildings, one of them being the Building 707 Final Safety Analysis Report, June 87 (707FSAR) and a Plant Safety Analysis Report. Rocky Flats Risk Assessment Guide, March 1985 (RFRAG85) documents the methodologies that were used for those FSARs. Resources available for preparation of those Rocky Flats FSARs were very limited. After addressing the more pressing safety issues, some of which are described below, the present contractor (EG&G) intends to conduct a program of upgrading the FSARs. This report presents the results of a review of the methodologies described in RFRAG85 and 707FSAR and contains suggestions that might be incorporated into the methodology for the FSAR upgrade effort.

  9. Chemical management and control strategies: experiences from the GTZ pilot project on chemical safety in Indonesian small and medium-sized enterprises.

    Science.gov (United States)

    Tischer, M; Scholaen, S

    2003-10-01

    In 1998 the Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) launched the Convention Project on Chemical Safety in developing countries. The project aims to support developing countries in the implementation of the Rotterdam and Stockholm Conventions, create human resources and institutional capacities and to demonstrate via pilot measures how chemical safety in the partner countries can be improved and sustainably implemented in line with international standards. With this objective the development of a Chemical Management Guide (CM Guide) for small and medium-sized enterprises in developing countries has been initiated. The guide describes a step-by-step approach which is based on identifying 'hot-spots' as a first step, and making a chemical inventory as a second step. The third step is the continuous improvement of chemical management. In total, there are six tools that aim to support the chemical management process: basic concepts for risk assessment; description of control approaches; using material safety data sheets (MSDSs); risk phrases for hazardous substances; safety phrases for hazardous substances; symbols used for labelling hazardous substances. In the course of the test-implementation of the CM Guide in Indonesia, it was found that MSDSs were not available in most of the smaller companies. In contrast, medium-sized and larger companies do have more MSDSs available. It was also found that the way to engage the minds of company owners and managers is with economic arguments related to the loss, waste and expiry of materials, and quality standards expected from importing countries. PMID:14530183

  10. The probabilistic safety analysis of Jose Cabrera NPP in the Context of the Periodic safety review

    International Nuclear Information System (INIS)

    In July 1989, the Spanish Nuclear Safety Council (CSN) called on Jose Cabrera NPP (JCNPP) to perform a probabilistic safety analysis (PSA). Edition 1 of this PSA was presented in July 1993. Edition 2 was delivered to the CSN, along with the database of items pending from the evaluation of Edition 1, December 1997. In October 1998, the CSN and JCNPP agreed on the appropriateness of having a PSA approved for use in the evaluation of the Periodic Safety Review (PSR) and in the renewal process of the Provisional Operating Permit (October 1999). This involved a great effort on the part of both parties, who established a joint calendar of actions to be taken, setting strict deadlines. The deadline for delivering Edition 3 (models, data and quantification programmes was set for 15 june 1999. This was complemented by the preparation of applications on licensing-related issues, and a document reflecting the resolution of pending items. Subsequently, In April, JCNPP was required to prepare additional applications. (Author)

  11. Safety Analysis Report - Packages, 9965, 9968, 9972-9975 Packages

    International Nuclear Information System (INIS)

    This Safety Analysis Report for Packaging (SARP) documents the analysis and testing performed on four type B Packages: the 9972, 9973, 9974, and 9975 packages. Because all four packages have similar designs with very similar performance characteristics, all of them are presented in a single SARP. The performance evaluation presented in this SARP documents the compliance of the 9975 package with the regulatory safety requirements. Evaluations of the 9972, 9973, and 9974 packages support that of the 9975. To avoid confusion arising from the inclusion of four packages in a single document, the text segregates the data for each package in such a way that the reader interested in only one package can progress from Chapter 1 through Chapter 9. The directory at the beginning of each chapter identifies each section that should be read for a given package. Sections marked ''all'' are generic to all packages

  12. Advances In Burnup Credit Criticality Safety Analysis Methods And Applications

    International Nuclear Information System (INIS)

    An International Workshop on “Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition” organized by the Nuclear Safety Council of Spain (CSN) in cooperation with the International Atomic Energy Agency (IAEA) was held at Córdoba, Spain, on October 27– 30, 2009. The objectives of this workshop were to identify the benefits that accrue from recent improvements of the burnup credit (BUC) analysis methodologies, to analyze the implications of applying improved BUC methodologies, focusing on both the safety-related and operational aspects, and to foster the exchange of international experience in licensing and implementation of BUC applications. In the paper on hand the attention is focused on the improvements of BUC analysis methodologies. (author)

  13. Methods and criteria for safety analysis (FIN L2535)

    International Nuclear Information System (INIS)

    In response to the NRC request for a proposal dated October 20, 1992, Westinghouse Savannah River Company (WSRC) submit this proposal to provide contractural assistance for FIN L2535, ''Methods and Criteria for Safety Analysis,'' as specified in the Statement of Work attached to the request for proposal. The Statement of Work involves development of safety analysis guidance for NRC licensees, arranging a workshop on this guidance, and revising NRC Regulatory Guide 3.52. This response to the request for proposal offers for consideration the following advantages of WSRC in performing this work: Experience, Qualification of Personnel and Resource Commitment, Technical and Organizational Approach, Mobilization Plan, Key Personnel and Resumes. In addition, attached are the following items required by the NRC: Schedule II, Savannah River Site - Job Cost Estimate, NRC Form 189, Project and Budget Proposal for NRC Work, page 1, NRC Form 189, Project and Budget Proposal for NRC Work, page 2, Project Description

  14. 78 FR 73756 - Process Safety Management and Prevention of Major Chemical Accidents

    Science.gov (United States)

    2013-12-09

    ... Occupational Safety and Health Administration 29 CFR Part 1910 RIN 1218-AC82 Process Safety Management and... requests comment on potential revisions to its Process Safety Management (PSM) standard and its Explosives...://www.osha.gov/SLTC/processsafetymanagement/ . B. Process Safety Management of Highly...

  15. Final safety analysis report (FSAR) for waste receiving and processing (WRAP) facility

    International Nuclear Information System (INIS)

    This safety analysis report provides a summary description of the WRAP Facility, focusing on significant safety-related characteristics of the location and facility design. This report demonstrates that adherence to the safety basis wi11 ensure necessary operational safety considerations have been addressed sufficiently and justifies the adequacy of the safety basis in protecting the health and safety of the public, workers, and the environment

  16. Reliability and safety analysis for systems of fusion device

    Energy Technology Data Exchange (ETDEWEB)

    Alzbutas, Robertas, E-mail: robertas.alzbutas@lei.lt; Voronov, Roman

    2015-05-15

    Highlights: • Reliability is very important from fusion devices efficiency perspective. • Rich experience of probabilistic safety analysis exists in nuclear industry. • Reliability and safety analysis was applied for systems of fusion device. • This enables to identify and prioritize availability improvement measures. • Recommendations are based on cost effectiveness for risk decrease options. - Abstract: Fusion energy or thermonuclear power is a promising, literally endless source of energy. Development of fusion power is still under investigation and experimental phase, and a number of fusion devices are under construction in Europe. Since fusion energy is innovative and fusion devices contain unique and expensive equipment, an issue of their reliability is very important from their efficiency perspective. A Reliability, Availability, Maintainability, Inspectability (RAMI) analysis is being performed or is going to be performed in the nearest future for such fusion devices as ITER and DEMO in order to ensure reliable and efficient operation for experiments (e.g., in ITER) or for energy production purposes (e.g., in DEMO). On the other hand, rich experience of the reliability and Probabilistic Safety Analysis (PSA) exists in nuclear industry for fission power plants and other nuclear installations. In this paper, the Wendelstein 7-X (W7-X) device is mainly considered. This stellarator device is in commissioning stage in the Max-Planck-Institut für Plasmaphysik, Greifswald, Germany (IPP). In the frame of cooperation between the IPP and the Lithuanian Energy Institute (LEI) under the European Fusion Development Agreement a pilot project of a reliability analysis of the W7-X systems was performed with a purpose to adopt Nuclear Power Plant (NPP) PSA experience for fusion device systems. During the project reliability and safety (risk) analysis of a Divertor Target Cooling Circuit, which is an important system for permanent and reliable operation of in

  17. Latest developments on safety analysis methodologies at the Juzbado plant

    Energy Technology Data Exchange (ETDEWEB)

    Zurron-Cifuentes, Oscar; Ortiz-Trujillo, Diego; Blanco-Fernandez, Luis A. [ENUSA Industrias Avanzadas S. A., Juzbado Nuclear Fuel Fabrication Plant, Ctra. Salamanca-Ledesma, km. 26, 37015 Juzbado, Salamanca (Spain)

    2010-07-01

    Over the last few years the Juzbado Plant has developed and implemented several analysis methodologies to cope with specific issues regarding safety management. This paper describes the three most outstanding of them, so as to say, the Integrated Safety Analysis (ISA) project, the adaptation of the MARSSIM methodology for characterization surveys of radioactive contamination spots, and the programme for the Systematic Review of the Operational Conditions of the Safety Systems (SROCSS). Several reasons motivated the decision to implement such methodologies, such as Regulator requirements, operational experience and of course, the strong commitment of ENUSA to maintain the highest standards of nuclear industry on all the safety relevant activities. In this context, since 2004 ENUSA is undertaking the ISA project, which consists on a systematic examination of plant's processes, equipment, structures and personnel activities to ensure that all relevant hazards that could result in unacceptable consequences have been adequately evaluated and the appropriate protective measures have been identified. On the other hand and within the framework of a current programme to ensure the absence of radioactive contamination spots on unintended areas, the MARSSIM methodology is being applied as a tool to conduct the radiation surveys and investigation of potentially contaminated areas. Finally, the SROCSS programme was initiated earlier this year 2009 to assess the actual operating conditions of all the systems with safety relevance, aiming to identify either potential non-conformities or areas for improvement in order to ensure their high performance after years of operation. The following paragraphs describe the key points related to these three methodologies as well as an outline of the results obtained so far. (authors)

  18. Modeling of Safety Functions in Quantitative Risk Analysis

    OpenAIRE

    Nguyen, Thien Duy

    2012-01-01

    Quantitative risk analysis in the offshore industry is mandated by the Norwegian legislation. A literature survey is carried out, related to the current legislation from the Norwegian Petroleum Safety Authority (PSA) and supporting NORSOK standards. Process accidents on offshore installations, operating on the Norwegian continental shelf are emphasized. A risk picture is the synthesis of a risk assessment, describing the risk level. Requirements to the risk picture are discussed, and associat...

  19. Safety analysis report for packaging (onsite) sample pig transport system

    International Nuclear Information System (INIS)

    This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document

  20. Predictive Models for Public Safety Using Social Network Analysis

    OpenAIRE

    Tayebi, Mohammad Ali

    2015-01-01

    Crime reduction and prevention is the major concern of law enforcement agencies in order to increase public safety, reduce the crime costs to society and protect the personal integrity and property of citizens. Along with big data analytics, predictive policing which is a new paradigm for crime analysis has been emerging. An important task in predictive policing is analyzing the relationships between offenders to fully understand the criminal collaboration patterns. Law enforcement agencies h...

  1. Safety analysis report for packaging (onsite) sample pig transport system

    Energy Technology Data Exchange (ETDEWEB)

    MCCOY, J.C.

    1999-03-16

    This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document.

  2. Software safety analysis techniques for developing safety critical software in the digital protection system of the LMR

    International Nuclear Information System (INIS)

    This report has described the software safety analysis techniques and the engineering guidelines for developing safety critical software to identify the state of the art in this field and to give the software safety engineer a trail map between the code and standards layer and the design methodology and documents layer. We have surveyed the management aspects of software safety activities during the software lifecycle in order to improve the safety. After identifying the conventional safety analysis techniques for systems, we have surveyed in details the software safety analysis techniques, software FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability assessment techniques. The most important results from the reliability techniques are not the specific probability numbers generated, but the insights into the risk importance of software features. To defend against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to be key elements in digital I and C system design. To minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-D and D analysis guidelines

  3. Software safety analysis techniques for developing safety critical software in the digital protection system of the LMR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Cheon, Se Woo; Kim, Chang Hoi; Sim, Yun Sub

    2001-02-01

    This report has described the software safety analysis techniques and the engineering guidelines for developing safety critical software to identify the state of the art in this field and to give the software safety engineer a trail map between the code and standards layer and the design methodology and documents layer. We have surveyed the management aspects of software safety activities during the software lifecycle in order to improve the safety. After identifying the conventional safety analysis techniques for systems, we have surveyed in details the software safety analysis techniques, software FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability assessment techniques. The most important results from the reliability techniques are not the specific probability numbers generated, but the insights into the risk importance of software features. To defend against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to be key elements in digital I and C system design. To minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-D and D analysis guidelines.

  4. Development and assessment of best estimate integrated safety analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bub Dong; Lee, Young Jin; Hwang, Moon Kyu (and others)

    2007-03-15

    Improvement of the integrated safety analysis code MARS3.0 has been carried out and a multi-D safety analysis application system has been established. Iterative matrix solver and parallel processing algorithm have been introduced, and a LINUX version has been generated to enable MARS to run in cluster PCs. MARS variables and sub-routines have been reformed and modularised to simplify code maintenance. Model uncertainty analyses have been performed for THTF, FLECHT, NEPTUN, and LOFT experiments as well as APR1400 plant. Participations in international cooperation research projects such as OECD BEMUSE, SETH, PKL, BFBT, and TMI-2 have been actively pursued as part of code assessment efforts. The assessment, evaluation and experimental data obtained through international cooperation projects have been registered and maintained in the T/H Databank. Multi-D analyses of APR1400 LBLOCA, DVI Break, SLB, and SGTR have been carried out as a part of application efforts in multi-D safety analysis. GUI based 3D input generator has been developed for user convenience. Operation of the MARS Users Group (MUG) was continued and through MUG, the technology has been transferred to 24 organisations. A set of 4 volumes of user manuals has been compiled and the correction reports for the code errors reported during MARS development have been published.

  5. Development and assessment of best estimate integrated safety analysis code

    International Nuclear Information System (INIS)

    Improvement of the integrated safety analysis code MARS3.0 has been carried out and a multi-D safety analysis application system has been established. Iterative matrix solver and parallel processing algorithm have been introduced, and a LINUX version has been generated to enable MARS to run in cluster PCs. MARS variables and sub-routines have been reformed and modularised to simplify code maintenance. Model uncertainty analyses have been performed for THTF, FLECHT, NEPTUN, and LOFT experiments as well as APR1400 plant. Participations in international cooperation research projects such as OECD BEMUSE, SETH, PKL, BFBT, and TMI-2 have been actively pursued as part of code assessment efforts. The assessment, evaluation and experimental data obtained through international cooperation projects have been registered and maintained in the T/H Databank. Multi-D analyses of APR1400 LBLOCA, DVI Break, SLB, and SGTR have been carried out as a part of application efforts in multi-D safety analysis. GUI based 3D input generator has been developed for user convenience. Operation of the MARS Users Group (MUG) was continued and through MUG, the technology has been transferred to 24 organisations. A set of 4 volumes of user manuals has been compiled and the correction reports for the code errors reported during MARS development have been published

  6. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    International Nuclear Information System (INIS)

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly

  7. Safety culture and accident analysis--a socio-management approach based on organizational safety social capital.

    Science.gov (United States)

    Rao, Suman

    2007-04-11

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, the key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization--seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly.

  8. Application of Computer Integration Technology for Fire Safety Analysis

    Institute of Scientific and Technical Information of China (English)

    SHI Jianyong; LI Yinqing; CHEN Huchuan

    2008-01-01

    With the development of information technology, the fire safety assessment of whole structure or region based on the computer simulation has become a hot topic. However, traditionally, the concemed studies are performed separately for different objectives and difficult to perform an overall evaluation. A new multi-dimensional integration model and methodology for fire safety assessment were presented and two newly developed integrated systems were introduced to demonstrate the function of integration simulation technology in this paper. The first one is the analysis on the fire-resistant behaviors of whole structure under real fire loads. The second one is the study on fire evaluation and emergency rescue of campus based on geography information technology (GIS). Some practical examples are presented to illuminate the advan-tages of computer integration technology on fire safety assessment and emphasize some problems in the simulation. The results show that the multi-dimensional integration model offers a new way and platform for the integrating fire safety assessment of whole structure or region, and the integrated software developed is the useful engineering tools for cost-saving and safe design.

  9. Thermal analysis and safety information for metal nanopowders by DSC

    International Nuclear Information System (INIS)

    Highlights: • Metal nanopowders are common and frequently employed in industry. • Nano iron powder experimental results of To were 140–150 °C. • Safety information can benefit relevant metal powders industries. - Abstract: Metal nanopowders are common and frequently employed in industry. Iron is mostly applied in high-performance magnetic materials and pollutants treatment for groundwater. Zinc is widely used in brass, bronze, die casting metal, alloys, rubber, and paints, etc. Nonetheless, some disasters induced by metal powders are due to the lack of related safety information. In this study, we applied differential scanning calorimetry (DSC) and used thermal analysis software to evaluate the related thermal safety information, such as exothermic onset temperature (To), peak of temperature (Tp), and heat of reaction (ΔH). The nano iron powder experimental results of To were 140–150 °C, 148–158 °C, and 141–149 °C for 15 nm, 35 nm, and 65 nm, respectively. The ΔH was larger than 3900 J/g, 5000 J/g, and 3900 J/g for 15 nm, 35 nm, and 65 nm, respectively. Safety information can benefit the relevant metal powders industries for preventing accidents from occurring

  10. 2014 PGSFR Safety Analysis for Loss of Heat Sink

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J. H.; Lee, K. L.; Choi, C. W.; Jeong, T. K.; Yoo, J.; Chang, W. P.; Ahn, S. J.; Lee, S. W.; Kang, S. H.; Ha, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    KAERI has been developing a conceptual design of the PGSFR (Prototype Gen-4 Sodium-cooled Fast Reactor) with the thermal power of 392.1 MWt, which is the pool type SFR (Sodium-cooled Fast Reactor) with metal fuel. The PGSFR consists of the PHTS (Primary Heat Transport System), the IHTS (Intermediate Heat Transport System), and the DHRS (Decay Heat Removal System). A LOHS (Loss Of Heat Sink) accident has been investigated for a safety evaluation of the PGSFR using the MARS-LMR code. The safety analysis is evaluated by a CDF (Cumulative Damage Function). In case of the LOHS accident, the tentative safety criterion is the CDF of under 0.05. The LOHS accident has been evaluated in the PGSFR using MARS-LMR. The accident was initiated by both of PHTS pump trip. In the results, the CDF was predicted below a tentative safety criterion of 0.05 with a sufficient margin. The DHRS acceptably functioned for removing the core decay heat during long-term cooling period. Furthermore, it has been elucidated that LOHS with LOOP is more conservative than LOHS without LOOP.

  11. Reliability and safety analysis of redundant vehicle management computer system

    Institute of Scientific and Technical Information of China (English)

    Shi Jian; Meng Yixuan; Wang Shaoping; Bian Mengmeng; Yan Dungong

    2013-01-01

    Redundant techniques are widely adopted in vehicle management computer (VMC) to ensure that VMC has high reliability and safety. At the same time, it makes VMC have special char-acteristics, e.g., failure correlation, event simultaneity, and failure self-recovery. Accordingly, the reliability and safety analysis to redundant VMC system (RVMCS) becomes more difficult. Aimed at the difficulties in RVMCS reliability modeling, this paper adopts generalized stochastic Petri nets to establish the reliability and safety models of RVMCS. Then this paper analyzes RVMCS oper-ating states and potential threats to flight control system. It is verified by simulation that the reli-ability of VMC is not the product of hardware reliability and software reliability, and the interactions between hardware and software faults can reduce the real reliability of VMC obviously. Furthermore, the failure undetected states and false alarming states inevitably exist in RVMCS due to the influences of limited fault monitoring coverage and false alarming probability of fault mon-itoring devices (FMD). RVMCS operating in some failure undetected states will produce fatal threats to the safety of flight control system. RVMCS operating in some false alarming states will reduce utility of RVMCS obviously. The results abstracted in this paper can guide reliable VMC and efficient FMD designs. The methods adopted in this paper can also be used to analyze other intelligent systems’ reliability.

  12. Organizational Culture and Safety Performance in the Manufacturing Companies in Malaysia: A Conceptual Analysis

    OpenAIRE

    Ong Choon Hee; Lim Lee Ping

    2014-01-01

    The purpose of this paper is to provide a conceptual analysis of organizational culture and safety performance in the manufacturing companies in Malaysia. Our conceptual analysis suggests that manufacturing companies that adopt group culture or hierarchical culture are more likely to demonstrate safety compliance and safety participation. Manufacturing companies that adopt rational culture or developmental culture are less likely to demonstrate safety compliance and safety participation. Give...

  13. Guidance for preparation of safety analysis reports for nonreactor facilities and operations

    International Nuclear Information System (INIS)

    Department of Energy (DOE) Orders 5480.23, ''Nuclear Safety Analysis Reports,'' and 5481.1B, ''Safety Analysis and Review System'' require the preparation of appropriate safety analyses for each DOE operation and subsequent significant modifications including decommissioning, and independent review of each safety analysis. The purpose of this guide is to assist in the preparation and review of safety documentation for Oak Ridge Field Office (OR) nonreactor facilities and operation. Appendix A lists DOE Orders, NRC Regulatory Guides and other documents applicable to the preparation of safety analysis reports

  14. Management implementation plan for a safety analysis and review system

    International Nuclear Information System (INIS)

    The US Department of Energy has issued an Order, DOE 5481.1, which establishes uniform requirements for the preparation and review of Safety Analysis for DOE Operations. The Management Implementation Plan specified herein establishes the administrative procedures and technical requirements for implementing DOE 5481.1 to Operations under the cognizance of the Pittsburgh Energy Technology Center. This Implementation Plan is applicable to all present and future Operations under the cognizance of PETC. The Plan identifies those Operations for which DOE 5481.1 is applicable and those Operations for which no further analysis is required because the initial determination and review has concluded that DOE 5481.1 does not apply

  15. Application of Fisher Discriminant Analysis in Safety Evaluation

    Directory of Open Access Journals (Sweden)

    ZHU XiaoZhen

    2016-06-01

    Full Text Available The multivariate statistical method of Fisher discriminant analysis is applied to safety evaluation, through the analysis of the original data, the assessment process, built up to reflect the evaluated object security status of evaluation function model, so as to simplify the subsequent similar evaluation target workload. The two mine in south of a mining enterprise subordinate to the environmental conditions in six integrated index evaluation, comprehensive index function model is established, finally, the Fisher discrimination obtained results with Bayesian discriminant obtained results, the correctness of the model is verified that the model reliability is high, and simple and practical.

  16. Waste sampling and characterization facility complex safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meloy, R.T., Westinghouse Hanford

    1996-06-04

    The Waste Sampling and Characterization Facility is a `Non-Nuclear, Radiological Facility. This document demonstrates, by analysis, that WSCF can meet the chemical and radiological inventory limits for a radiological facility. It establishes control that ensures those inventories are maintained below threshold values to preserve the `Non- Nuclear, Radiological` classification.

  17. 78 FR 4477 - Review of Safety Analysis Reports for Nuclear Power Plants, Introduction

    Science.gov (United States)

    2013-01-22

    ... COMMISSION Review of Safety Analysis Reports for Nuclear Power Plants, Introduction AGENCY: Nuclear... subsection to NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power..., Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants:...

  18. Safety analysis, 200 Area, Savannah River Plant: Separations area operations

    International Nuclear Information System (INIS)

    The nev HB-Line, located on the fifth and sixth levels of Building 221-H, is designed to replace the aging existing HB-Line production facility. The nev HB-Line consists of three separate facilities: the Scrap Recovery Facility, the Neptunium Oxide Facility, and the Plutonium Oxide Facility. There are three separate safety analyses for the nev HB-Line, one for each of the three facilities. These are issued as supplements to the 200-Area Safety Analysis (DPSTSA-200-10). These supplements are numbered as Sup 2A, Scrap Recovery Facility, Sup 2B, Neptunium Oxide Facility, Sup 2C, Plutonium Oxide Facility. The subject of this safety analysis, the, Plutonium Oxide Facility, will convert nitrate solutions of 238Pu to plutonium oxide (PuO2) powder. All these new facilities incorporate improvements in: (1) engineered barriers to contain contamination, (2) barriers to minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance

  19. TVO-92 safety analysis of spent fuel disposal

    Energy Technology Data Exchange (ETDEWEB)

    Vieno, T.; Hautojaervi, A.; Koskinen, L.; Nordman, H. [Technical Research Centre of Finland, Espoo (Finland). Nuclear Engineering Lab.

    1993-08-01

    The spent fuel from the TVO I and TVO II reactors at the Olkiluoto nuclear power plant is planned to be disposed in a repository constructed at a depth of about 500 meters in crystalline bedrock. Teollisuuden Voima Oy (TVO) has carried out preliminary site investigations for spent fuel disposal between 1987 and 1992 at five areas in Finland (Olkiluoto, Kivetty, Romuvaara, Syyry and Veitsivaara). The Safety analysis of the disposal system is presented in the report. Spent fuel will be encapsulated in composite copper-steel canisters. The canister design (ACP canister) consists of an inner container of steel as a load-bearing element and an outer container of oxygen-free copper to provide a shield against corrosion. In the repository the canisters will be emplaced in vertical holes drilled in the floors of horizontal deposition tunnels. The annulus between the canister and the rock is filled with compacted bentonite. The results of the safety analysis attest that the planned disposal system fulfils the safety requirements. Suitable places for the repository can be found at each of the five investigation sites.

  20. TVO-92 safety analysis of spent fuel disposal

    International Nuclear Information System (INIS)

    The spent fuel from the TVO I and TVO II reactors at the Olkiluoto nuclear power plant is planned to be disposed in a repository constructed at a depth of about 500 meters in crystalline bedrock. Teollisuuden Voima Oy (TVO) has carried out preliminary site investigations for spent fuel disposal between 1987 and 1992 at five areas in Finland (Olkiluoto, Kivetty, Romuvaara, Syyry and Veitsivaara). The Safety analysis of the disposal system is presented in the report. Spent fuel will be encapsulated in composite copper-steel canisters. The canister design (ACP canister) consists of an inner container of steel as a load-bearing element and an outer container of oxygen-free copper to provide a shield against corrosion. In the repository the canisters will be emplaced in vertical holes drilled in the floors of horizontal deposition tunnels. The annulus between the canister and the rock is filled with compacted bentonite. The results of the safety analysis attest that the planned disposal system fulfils the safety requirements. Suitable places for the repository can be found at each of the five investigation sites

  1. Event analysis for safety relevance rating of human performance

    International Nuclear Information System (INIS)

    The paper describes a project for establishing instruments allowing identification and evaluation of safety relevance of human action without the need for prior, detailed PSA. Criteria and auxiliary means such as tabulated information for rapid acquisition, analysis and evaluation of available technical and organisational/administrative information have been elaborated, and are applied for safety relevance rating of human factors. The method has been applied to evaluate human performance under specified normal operating conditions including in-service inspections. Human performance in notifiable events was analysed, and particularly comprehensive examinations have been carried out relating to maintenance and repair work, in-service inspections, standard switching processes, modifications, and work scheduling. (orig./CB)

  2. Safety analysis and code development for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Development effort of computer codes applicable to nuclear fuel cycle facilities for assisting the task of NISA has been carried out. The work consists of 1) verification of criticality safety analysis codes : MVP and SCALE, 2) studies on burn-up credit applied methods, 3) preparation of non-uniformity effect calculation for criticality safety, 4) development of the new convenient library for shielding calculation based on JENDL-3.3 nuclear data, 5) development of a numerical simulation code DYMPL for analyzing abnormal transients of PUREX processes, 6) radiation dose evaluation code development for reprocessing facilities, 7) updating the dose evaluation data for the probabilistic environmental assessment code MACCS2-JF by emergency scenario. (author)

  3. In tank processing safety analysis program summary report. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Radder, J.A.

    1994-11-01

    The purpose of this summary report is to present results from the safety analysis work that was performed in support of the ``Seismic Safety Issue Resolution Program Plan`` for the In-Tank Processing (ITP) Facility. Results from this effort include estimates of the consequences that postulated earthquakes might introduce. For beyond evaluation based earthquake (EBE) events, best estimate values (e.g., waste tank volumes) are used rather than bounding values to analyze the consequences of such events. This is consistent with the probabilistic approach outlined in Attachment C of the program plan. Planned follow-on work will also involve best estimates of probabilities for soil liquefaction and differential settlement. These probabilities will be combined in an accident progression event tree (APET) model that is used to provide estimates of risk for beyond EBE seismic events.

  4. Safety analysis of JMTR LEU fuel core, (3)

    International Nuclear Information System (INIS)

    Dose analysis in the safety evaluation and the site evaluation were performed for the JMTR core conversion from MEU fuel to LEU fuel. In the safety evaluation, the effective dose equivalents for the public surrounding the site were estimated in fuel handling accident and flow blockage to coolant channel which were selected as the design basis accidents with release of radioactive fission products to the environment. In the site evaluation, the flow blockage to coolant channel was selected as siting basis events, since this accident had the possibility of spreading radioactive release. Maximum exposure doses for the public were estimated assuming large amounts of fission products to release. It was confirmed that risk of radiation exposure of the public is negligible and the siting is appropriate. (author)

  5. A 'Toolbox' Equivalent Process for Safety Analysis Software

    International Nuclear Information System (INIS)

    Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1 (Quality Assurance for Safety-Related Software) identified a number of quality assurance issues on the use of software in Department of Energy (DOE) facilities for analyzing hazards, and designing and operating controls that prevent or mitigate potential accidents. The development and maintenance of a collection, or 'toolbox', of multiple-site use, standard solution, Software Quality Assurance (SQA)-compliant safety software is one of the major improvements identified in the associated DOE Implementation Plan (IP). The DOE safety analysis toolbox will contain a set of appropriately quality-assured, configuration-controlled, safety analysis codes, recognized for DOE-broad, safety basis applications. Currently, six widely applied safety analysis computer codes have been designated for toolbox consideration. While the toolbox concept considerably reduces SQA burdens among DOE users of these codes, many users of unique, single-purpose, or single-site software may still have sufficient technical justification to continue use of their computer code of choice, but are thwarted by the multiple-site condition on toolbox candidate software. The process discussed here provides a roadmap for an equivalency argument, i.e., establishing satisfactory SQA credentials for single-site software that can be deemed ''toolbox-equivalent''. The process is based on the model established to meet IP Commitment 4.2.1.2: Establish SQA criteria for the safety analysis ''toolbox'' codes. Implementing criteria that establish the set of prescriptive SQA requirements are based on implementation plan/procedures from the Savannah River Site, also incorporating aspects of those from the Waste Isolation Pilot Plant (SNL component) and the Yucca Mountain Project. The major requirements are met with evidence of a software quality assurance plan, software requirements and design documentation, user's instructions, test report, a

  6. Chemical compositional, biological, and safety studies of a novel maple syrup derived extract for nutraceutical applications.

    Science.gov (United States)

    Zhang, Yan; Yuan, Tao; Li, Liya; Nahar, Pragati; Slitt, Angela; Seeram, Navindra P

    2014-07-16

    Maple syrup has nutraceutical potential given the macronutrients (carbohydrates, primarily sucrose), micronutrients (minerals and vitamins), and phytochemicals (primarily phenolics) found in this natural sweetener. We conducted compositional (ash, fiber, carbohydrates, minerals, amino acids, organic acids, vitamins, phytochemicals), in vitro biological, and in vivo safety (animal toxicity) studies on maple syrup extracts (MSX-1 and MSX-2) derived from two declassified maple syrup samples. Along with macronutrient and micronutrient quantification, thirty-three phytochemicals were identified (by HPLC-DAD), and nine phytochemicals, including two new compounds, were isolated and identified (by NMR) from MSX. At doses of up to 1000 mg/kg/day, MSX was well tolerated with no signs of overt toxicity in rats. MSX showed antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) assay) and anti-inflammatory (in RAW 264.7 macrophages) effects and inhibited glucose consumption (by HepG2 cells) in vitro. Thus, MSX should be further investigated for potential nutraceutical applications given its similarity in chemical composition to pure maple syrup.

  7. An Operational Safety and Health Program.

    Science.gov (United States)

    Uhorchak, Robert E.

    1983-01-01

    Describes safety/health program activities at Research Triangle Institute (North Carolina). These include: radioisotope/radiation and hazardous chemical/carcinogen use, training, monitoring, disposal; chemical waste management; air monitoring and analysis; medical program; fire safety/training, including emergency planning; Occupational Safety and…

  8. Safety analysis and the code development on radioactive waste disposal

    International Nuclear Information System (INIS)

    In order to confirm the long-term safety concerning sub-surface disposal, we studied the function about the climatic and topographic changes included in three-dimensional groundwater flow analysis code 3D-SEEP. And, we studied the methods of the groundwater flow analysis and particle tracking analysis in consideration of long-term phenomenon. Moreover, we made the trial calculations of the long-term transient analysis using this function. As a result, we found the adaptation range of the code and the differences from the results obtained by the steady state analysis. As a reflection of new knowledge about the particle tracking analysis, we carried out the trial calculation which was adapted in the analysis technique in consideration of the geometry model which changes with time progress. As a result, we found the differences from the results obtained by the conventional method, and the present subjects. We introduced and improved the groundwater flow and nuclide migration analysis code MH-FLOW using the mixed hybrid finite element method. This analysis code was developed for the purpose of obtaining a solution with sufficient accuracy even for the heterogeneous place where coefficients of permeability is greatly different. Moreover, we used MH-FLOW for the benchmark problem defined in an international project, and compared results with those obtained by the project. As a result, we checked the validity of MH-FLOW. (author)

  9. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    Science.gov (United States)

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level.

  10. Canister Storage Building (CSB) safety analysis report, phase 3: Safety analysis documentation supporting CSB construction

    International Nuclear Information System (INIS)

    The US Department of Energy established the K Basins Spent Nuclear Fuel Project to address safety and environmental concerns associated with deteriorating spent nuclear fuel presently stored under water in the Hanford Site's K Basins, which are located near the Columbia River. Recommendations for a series of aggressive projects to construct and operate systems and facilities to manage the safe removal of K Basins fuel were made in WHC-EP-0830, Hanford Spent Nuclear Fuel Recommended Path Forward, and its subsequent update, WHC-SD-SNF-SP-005, Hanford Spent Nuclear Fuel Project Integrated Process Strategy for K Basins Fuel. The integrated process strategy recommendations include the following steps: Fuel preparation activities at the K Basins, including removing the fuel elements from their K Basin canisters, separating fuel particulate from fuel elements and fuel fragments greater than 0.6 cm (0.25 in.) in any dimension, removing excess sludge from the fuel and fuel fragments by means of flushing, as necessary, and packaging the fuel into multicanister overpacks (MCOs); Removal of free water by draining and vacuum drying at a cold vacuum drying facility ES-122; Dry shipment of fuel from the Cold Vacuum Drying to the Canister Storage Building (CSB), a new facility in the 200 East Area of the Hanford Site

  11. Gap Analysis Approach for Construction Safety Program Improvement

    OpenAIRE

    Thanet Aksorn; B.H.W. Hadikusumo

    2007-01-01

    To improve construction site safety, emphasis has been placed on the implementation of safety programs. In order to successfully gain from safety programs, factors that affect their improvement need to be studied. Sixteen critical success factors of safety programs were identified from safety literature, and these were validated by safety experts. This study was undertaken by surveying 70 respondents from medium- and large-scale construction projects. It explored the importance and the actual...

  12. Application of CFD Codes in Nuclear Reactor Safety Analysis

    Directory of Open Access Journals (Sweden)

    T. Höhne

    2010-01-01

    Full Text Available Computational Fluid Dynamics (CFD is increasingly being used in nuclear reactor safety (NRS analyses as a tool that enables safety relevant phenomena occurring in the reactor coolant system to be described in more detail. Numerical investigations on single phase coolant mixing in Pressurised Water Reactors (PWR have been performed at the FZD for almost a decade. The work is aimed at describing the mixing phenomena relevant for both safety analysis, particularly in steam line break and boron dilution scenarios, and mixing phenomena of interest for economical operation and the structural integrity. For the experimental investigation of horizontal two phase flows, different non pressurized channels and the TOPFLOW Hot Leg model in a pressure chamber was build and simulated with ANSYS CFX. In a common project between the University of Applied Sciences Zittau/Görlitz and FZD the behaviour of insulation material released by a LOCA released into the containment and might compromise the long term emergency cooling systems is investigated. Moreover, the actual capability of CFD is shown to contribute to fuel rod bundle design with a good CHF performance.

  13. Analysis of Safety from a Human Clinical Trial with Pterostilbene

    Directory of Open Access Journals (Sweden)

    Daniel M. Riche

    2013-01-01

    Full Text Available Objectives. The purpose of this trial was to evaluate the safety of long-term pterostilbene administration in humans. Methodology. The trial was a prospective, randomized, double-blind placebo-controlled intervention trial enrolling patients with hypercholesterolemia (defined as a baseline total cholesterol ≥200 mg/dL and/or baseline low-density lipoprotein cholesterol ≥100 mg/dL. Eighty subjects were divided equally into one of four groups: (1 pterostilbene 125 mg twice daily, (2 pterostilbene 50 mg twice daily, (3 pterostilbene 50 mg + grape extract (GE 100 mg twice daily, and (4 matching placebo twice daily for 6–8 weeks. Safety markers included biochemical and subjective measures. Linear mixed models were used to estimate primary safety measure treatment effects. Results. The majority of patients completed the trial (91.3%. The average age was 54 years. The majority of patients were females (71% and Caucasians (70%. There were no adverse drug reactions (ADRs on hepatic, renal, or glucose markers based on biochemical analysis. There were no statistically significant self-reported or major ADRs. Conclusion. Pterostilbene is generally safe for use in humans up to 250 mg/day.

  14. LOFT integral test system final safety analysis report

    International Nuclear Information System (INIS)

    Safety analyses are presented for the following LOFT Reactor systems: engineering safety features; support buildings and facilities; instrumentation and controls; electrical systems; and auxiliary systems. (JWR)

  15. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    International Nuclear Information System (INIS)

    The regulatory requirement to develop an upgraded safety basis for a DOE Nuclear Facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830). Subpart B of 10 CFR 830, ''Safety Basis Requirements,'' requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements. 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, ''Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants'' as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830

  16. Pooling, meta-analysis, and the evaluation of drug safety

    Directory of Open Access Journals (Sweden)

    Leizorovicz Alain

    2002-03-01

    Full Text Available Abstract Background The "integrated safety report" of the drug registration files submitted to health authorities usually summarizes the rates of adverse events observed for a new drug, placebo or active control drugs by pooling the safety data across the trials. Pooling consists of adding the numbers of events observed in a given treatment group across the trials and dividing the results by the total number of patients included in this group. Because it considers treatment groups rather than studies, pooling ignores validity of the comparisons and is subject to a particular kind of bias, termed "Simpson's paradox." In contrast, meta-analysis and other stratified analyses are less susceptible to bias. Methods We use a hypothetical, but not atypical, application to demonstrate that the results of a meta-analysis can differ greatly from those obtained by pooling the same data. In our hypothetical model, a new drug is compared to 1 a placebo in 4 relatively small trials in patients at high risk for a certain adverse event and 2 an active reference drug in 2 larger trials of patients at low risk for this event. Results Using meta-analysis, the relative risk of experiencing the adverse event with the new drug was 1.78 (95% confidence interval [1.02; 3.12] compared to placebo and 2.20 [0.76; 6.32] compared to active control. By pooling the data, the results were, respectively, 1.00 [0.59; 1.70] and 5.20 [2.07; 13.08]. Conclusions Because these findings could mislead health authorities and doctors, regulatory agencies should require meta-analyses or stratified analyses of safety data in drug registration files.

  17. Current trends of the development of chemical analysis

    Directory of Open Access Journals (Sweden)

    Rema Matakova

    2014-12-01

    Full Text Available This paper presents dynamics of the development of all stages of chemical analysis during last 15 years. The ways of the quality improvement of chemical analysis and its considerable advancement into the field of trace concentrations of substances are shown. Features of development of analytical methods, modern techniques for concentration and separation of substances, as well as chemomerrical processing of results are analyzed. Huge importance of computerization and automation of the analysis is shown.

  18. NUSAR: N Reactor Updated Safety Analysis Report, Amendment 21

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G L

    1989-12-01

    The enclosed pages are Amendment 21 of the N Reactor Updated Safety Analysis Report (NUSAR). NUSAR, formerly UNI-M-90, was revised by 18 amendments that were issued by UNC Nuclear Industries, the contractor previously responsible for N Reactor operations. As of June 1987, Westinghouse Hanford Company (WHC) acquired the operations and engineering contract for N Reactor and other facilities at Hanford. The document number for NUSAR then became WHC-SP-0297. The first revision was issued by WHC as Amendment 19, prepared originally by UNC. Summaries of each of the amendments are included in NUSAR Section 1.1.

  19. Safety analysis for the 233-S decontamination and decommissioning project

    International Nuclear Information System (INIS)

    Decommissioning of the 233-S Plutonium Concentration Facility (REDOX) is a proposed expedited response action that is regulated by the Comprehensive Environmental Response Compensation and Liability Act of 1980 and the Hanford Federal Facility Agreement and Consent Order. Due to progressive physical deterioration of this facility, a decontamination and decommissioning plan is being considered for the immediate future. This safety analysis describes the proposed actions involved in this D ampersand D effort; identifies the radioactive material inventories involved; reviews site specific environmental characteristics and postulates an accident scenario that is evaluated to identify resultant effects

  20. Special characteristics of the safety analysis of BWRs

    International Nuclear Information System (INIS)

    The boiling water reactor uses the direct cycle. The live steam with 70 bar saturated pressure is given directly to the turbine. The reactor coolant recirculation is performed by means of internal pumps which are directly attached to the vessel bottom. This general arrangement offers some advantages concerning safety analysis. For example, in the case of a loss of coolant accident, the reactor pressure vessel itself forms a refloodable tank, which results, by proper design of the emergency cooling systems, in only a small increase of fuel temperature. (orig./RW)

  1. Fast Flux Test Facility final safety analysis report. Amendment 73

    Energy Technology Data Exchange (ETDEWEB)

    Gantt, D.A.

    1993-08-01

    This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.

  2. Occupational Health, Safety and Risk Analysis in Large Scale Industry of Lahore

    OpenAIRE

    Muhammad Qasim; Aroj Bashir; Malik Muhammad Anees; Muhammad Usman Ghani; Moeen Khalid; Faisal Hanan; Jahanzaib Malik

    2014-01-01

    Occupational safety and health (OSH) it is concerned with guarding the safety, health and welfare of people who are engaged in work or employment. The aim of paper is discussed Occupational Health, Safety and Risk Analysis In large scale industry of Lahore. The paper has completed after study various articles and research paper related to Occupational safety and health so it concluded that Promotion of Health is an important part of occupational health professionals. Health educators, safety ...

  3. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  4. Chemical Diversity, Origin, and Analysis of Phycotoxins

    DEFF Research Database (Denmark)

    Rasmussen, Silas Anselm; Andersen, Aaron John Christian; Andersen, Nikolaj Gedsted;

    2016-01-01

    Microalgae, particularly those from the lineage Dinoflagellata, are very well-known for their ability to produce phycotoxins that may accumulate in the marine food chain and eventually cause poisoning in humans. This includes toxins accumulating in shellfish, such as saxitoxin, okadaic acid......, yessotoxins, azaspiracids, brevetoxins, and pinnatoxins. Other toxins, such as ciguatoxins and maitotoxins, accumulate in fish, where, as is the case for the latter compounds, they can be metabolized to even more toxic metabolites. On the other hand, much less is known about the chemical nature of compounds...... complex natural compounds known to mankind, with chemical structures that show no resemblance to what has been characterized from plants, fungi, or bacteria. In addition, it will summarize algal species known to be related to fish-killing blooms, but from which ichthyotoxins are yet to be characterized....

  5. Hybrid chemical and nondestructive analysis technique

    International Nuclear Information System (INIS)

    A hybrid chemical/NDA technique has been applied at the Los Alamos National Laboratory to the assay of plutonium in ion-exchange effluents. Typical effluent solutions contain low concentrations of plutonium and high concentrations of americium. A simple trioctylphosphine oxide (TOPO) separation can remove 99.9% of the americium. The organic phase that contains the separated plutonium can be accurately assayed by monitoring the uranium L x-ray intensities

  6. Hybrid chemical and nondestructive-analysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Hsue, S.T.; Marsh, S.F.; Marks, T.

    1982-01-01

    A hybrid chemical/NDA technique has been applied at the Los Alamos National Laboratory to the assay of plutonium in ion-exchange effluents. Typical effluent solutions contain low concentrations of plutonium and high concentrations of americium. A simple trioctylphosphine oxide (TOPO) separation can remove 99.9% of the americium. The organic phase that contains the separated plutonium can be accurately assayed by monitoring the uranium L x-ray intensities.

  7. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    International Nuclear Information System (INIS)

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included

  8. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  9. Integrated deterministic and probabilistic safety analysis for safety assessment of nuclear power plants

    International Nuclear Information System (INIS)

    The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these 'safety-related' SSCs and activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA)

  10. PSA analysis focused on Mochovce safety measure evaluation from operational safety point of view

    International Nuclear Information System (INIS)

    Mochovce NPP consists of four reaktor units of WWER 440/V213 type and it is located in the south-middle part of Slovakia. At present units 1 and 2 are in operation. As these units represent the second generation of WWER reactor design, additional safety measures were implemented to enhance operational and nuclear safety according to the recommendations of international audits and operational experience from other simular units (such as Dukovany and Bohunice). These requirements result into a number of safety measures grouped according to their purpose to achieve recent international requirements on nuclear and operational safety. The paper presents the bases used for specification of safety measures including their grouping into comprehensive tasks covering different areas of safety goals as well as structural organization of project management including participating companies and work performance. Results are also given regarding the contribution of selected safety measures to reduction of total core damage frequency. (authors)

  11. PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, L.; Diamond, D.; Xu, J.; Carew, J.; Rorer, D.

    2004-03-31

    Detailed reactor physics and safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron and photon transport calculations were performed with the MCNP code to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim safety arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim safety arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model that includes the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the

  12. 化工行业“安全观察与沟通”的初步探索%Safety Observation and Communication Exploration on Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    赵林; 王述存; 孟力

    2016-01-01

    安全观察与沟通是落实有感领导、展现领导承诺的一种有效手段[1]。通过对杜邦公司安全文化体系的认知,深刻剖析在化工危险作业中应该如何做好安全观察与沟通。结合当前在化工生产中的重点应用及注意事项,本文分别对安全观察与沟通的概况、内容及应用等,进行了较详细的分析与阐述。在工作中倡导并积极开展安全观察与沟通,将达到较好的安全管理效果。%Security Watch is to implement felt leadership and communication, as a means to show leadership commitments. Through the perception of the state company's safety culture system, a profound analysis of the chemical industry should be how to do dangerous work safety observation and communication. Combined with the current focus on the application and precautions in chemical production, the significance of safety observation and communication, content and applications were carried on for a more detailed exposition and analysis. Advocacy at work and actively carrying out safety observation and communication will achieve better security management effectiveness.

  13. Method for fractional solid-waste sampling and chemical analysis

    DEFF Research Database (Denmark)

    Riber, Christian; Rodushkin, I.; Spliid, Henrik;

    2007-01-01

    Chemical characterization of solid waste is a demanding task due to the heterogeneity of the waste. This article describes how 45 material fractions hand-sorted from Danish household waste were subsampled and prepared for chemical analysis of 61 substances. All material fractions were subject...

  14. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Suman [Risk Analyst (India)]. E-mail: sumanashokrao@yahoo.co.in

    2007-04-11

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly.

  15. SAFETY

    CERN Multimedia

    C. Schaefer and N. Dupont

    2013-01-01

      “Safety is the highest priority”: this statement from CERN is endorsed by the CMS management. An interpretation of this statement may bring you to the conclusion that you should stop working in order to avoid risks. If the safety is the priority, work is not! This would be a misunderstanding and misinterpretation. One should understand that “working safely” or “operating safely” is the priority at CERN. CERN personnel are exposed to different hazards on many levels on a daily basis. However, risk analyses and assessments are done in order to limit the number and the gravity of accidents. For example, this process takes place each time you cross the road. The hazard is the moving vehicle, the stake is you and the risk might be the risk of collision between both. The same principle has to be applied during our daily work. In particular, keeping in mind the general principles of prevention defined in the late 1980s. These principles wer...

  16. SAFETY

    CERN Multimedia

    M. Plagge, C. Schaefer and N. Dupont

    2013-01-01

    Fire Safety – Essential for a particle detector The CMS detector is a marvel of high technology, one of the most precise particle measurement devices we have built until now. Of course it has to be protected from external and internal incidents like the ones that can occur from fires. Due to the fire load, the permanent availability of oxygen and the presence of various ignition sources mostly based on electricity this has to be addressed. Starting from the beam pipe towards the magnet coil, the detector is protected by flooding it with pure gaseous nitrogen during operation. The outer shell of CMS, namely the yoke and the muon chambers are then covered by an emergency inertion system also based on nitrogen. To ensure maximum fire safety, all materials used comply with the CERN regulations IS 23 and IS 41 with only a few exceptions. Every piece of the 30-tonne polyethylene shielding is high-density material, borated, boxed within steel and coated with intumescent (a paint that creates a thick co...

  17. Introduction to nuclear propulsion safety analysis of military ships; Introducao a seguranca da propulsao nuclear de navios militares

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Leonam dos Santos [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil)

    1996-07-01

    This paper presents a brief introduction to naval vessels nuclear propulsion plants safety analysis, including differences regarding nuclear power plants safety objectives, operational conditions analysis and general safety requirements for design, construction and operation. (author)

  18. Canister storage building (CSB) safety analysis report phase 3: Safety analysis documentation supporting CSB construction

    International Nuclear Information System (INIS)

    The Canister Storage Building (CSB) will be constructed in the 200 East Area of the U.S. Department of Energy (DOE) Hanford Site. The CSB will be used to stage and store spent nuclear fuel (SNF) removed from the Hanford Site K Basins. The objective of this chapter is to describe the characteristics of the site on which the CSB will be located. This description will support the hazard analysis and accident analyses in Chapter 3.0. The purpose of this report is to provide an evaluation of the CSB design criteria, the design's compliance with the applicable criteria, and the basis for authorization to proceed with construction of the CSB

  19. Radiation shielding and safety analysis for SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yoshihiro; Sasamoto, Nobuo [Japan Atomic Energy Research Inst., Kamigori, Hyogo (Japan). Kansai Research Establishment

    1998-03-01

    The methods of shielding design and safety analysis applied to SPring-8 are summarized. SPring-8, a third generation synchrotron radiation facility, is the facility with the highest stored electron energy of 8 GeV and very low beam emittance of 5.5 nm{center_dot}rad. Because of these distinguished features, a variety of radiation issues have to be taken up, requiring the latest information for analyses. In this technical report are described the calculational methods and the conditions for the following shielding matters as well as verification of the validity; a bulk shielding, synchrotron radiation beamline shielding, skyshine, streaming through ducts and mazes, induced activities in air, cooling water and targets, and incident analysis due to abnormal beam losses. (author)

  20. EDXRF for non-destructive chemical analysis

    International Nuclear Information System (INIS)

    One of the non-destructive methods used for the identification and verification of metals is by the energy-dispersive X-ray fluorescence (EDXRF) technique. EDXRF analysis provides several important advantages such as simultaneous determination of the elements present, enable to analyse a very wide concentration range, fast analysis with no sample preparation. The paper shows how this technique is developed and applied in the identification and verification of different grades of stainless steels and also precious metals analysis. (Author)

  1. Empirical Analysis of Construction Safety Climate - A Study

    Directory of Open Access Journals (Sweden)

    S.V.S.RAJA PRASAD

    2010-06-01

    Full Text Available Safety in the construction industry has always been a major issue. Though much improvement in construction safety has been achieved, the industry still continues to lag behind most other industries with regard to safety. The safety climate of any organization consists of employee’s attitudes towards and perceptions of, health and safety behavior. Construction workers attitudes towards safety are influenced by their perceptions of risk, management, safety rulesand procedures. A measure of safety climate could be used to identify those areas of safety that need more attention and improvement. The dynamic nature of safety climate, which has the ability to change on daily basis, means there is a great need for reliable tools that can measure safety climate. Safety climate is a leading performance indicator that can provide insight into safety performance before accidents have occurred. In the present study a questionnaire was framed to ascertain safety climate in major construction rganizations across India involved in construction of Thermal power plants, Hydro power plants, Highway projects, Bridge works, Refinery works, High rise works, Pipe line works and Dam woks and its content validity was verified. The internal consistency of the questionnaire was tested by using Cronbachs alpha coefficient. Data was collected based on questionnaire from employees working in various construction firms in India. The results of questionnaires survey was tested statistically by using the Kruskal – Wallis test to ascertain the attitudes of different categories of employees towards safety climate.

  2. Evaluation on safety concerns of integral reactor: development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W. S.; Kim, W. K.; Yun, Y. G.; Ahn, H. J.; Lee, J. S.; Lee, S. G.; Sin, A. D. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The Nuclear Desalination Plant (NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in a present study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current light water reactor and advanced reactor designs, and user requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified and discussed. They includes the use of proven technology for new safety features, systematic event classification and selection, strengthening containment function, and the safety impacts on desalination-related systems. These efforts to identify and technically resolve the safety concerns in the design stage will provide the early confidence of SMART safety and the technical basis to evaluate the safety to designers and reviewers in the future. 62 refs., 3 figs., 21 tabs. (Author)

  3. Analysis of Aviation Safety Reporting System Incident Data Associated With the Technical Challenges of the Vehicle Systems Safety Technology Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This analysis was conducted to support the Vehicle Systems Safety Technology (VSST) Project of the Aviation Safety Program (AVsP) milestone VSST4.2.1.01, "Identification of VSST-Related Trends." In particular, this is a review of incident data from the NASA Aviation Safety Reporting System (ASRS). The following three VSST-related technical challenges (TCs) were the focus of the incidents searched in the ASRS database: (1) Vechicle health assurance, (2) Effective crew-system interactions and decisions in all conditions; and (3) Aircraft loss of control prevention, mitigation, and recovery.

  4. Fundamentals of the safety and certification concept. Report on working package 4. Preliminary safety analysis for the site Gorleben

    International Nuclear Information System (INIS)

    The report on the preliminary safety analysis of the planned high-level radioactive waste repository Gorleben includes the following issues: Boundary conditions and scope of work; safety concept for the operational phase and the post-operation (closure) phase; uncertainty handling; certification concept: operational phase, identification of the geological barrier efficiency, integrity of the geological barrier and the geotechnical closure structures, criticality exclusion, long-term safety, assessment of model calculations concerning the radiological long-term behavior, evaluation of human intrusion scenarios.

  5. Documented Safety Analysis for the B695 Segment

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D

    2008-09-11

    This Documented Safety Analysis (DSA) was prepared for the Lawrence Livermore National Laboratory (LLNL) Building 695 (B695) Segment of the Decontamination and Waste Treatment Facility (DWTF). The report provides comprehensive information on design and operations, including safety programs and safety structures, systems and components to address the potential process-related hazards, natural phenomena, and external hazards that can affect the public, facility workers, and the environment. Consideration is given to all modes of operation, including the potential for both equipment failure and human error. The facilities known collectively as the DWTF are used by LLNL's Radioactive and Hazardous Waste Management (RHWM) Division to store and treat regulated wastes generated at LLNL. RHWM generally processes low-level radioactive waste with no, or extremely low, concentrations of transuranics (e.g., much less than 100 nCi/g). Wastes processed often contain only depleted uranium and beta- and gamma-emitting nuclides, e.g., {sup 90}Sr, {sup 137}Cs, or {sup 3}H. The mission of the B695 Segment centers on container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. The B695 Segment is used for storage of radioactive waste (including transuranic and low-level), hazardous, nonhazardous, mixed, and other waste. Storage of hazardous and mixed waste in B695 Segment facilities is in compliance with the Resource Conservation and Recovery Act (RCRA). LLNL is operated by the Lawrence Livermore National Security, LLC, for the Department of Energy (DOE). The B695 Segment is operated by the RHWM Division of LLNL. Many operations in the B695 Segment are performed under a Resource Conservation and Recovery Act (RCRA) operation plan, similar to commercial treatment operations with best demonstrated available technologies. The buildings of the B695 Segment were designed and built considering such operations, using proven building

  6. Idaho National Engineering Laboratory (INEL) Environmental Restoration Program (ERP), Baseline Safety Analysis File (BSAF). Revision 1

    International Nuclear Information System (INIS)

    This document was prepared to take the place of a Safety Evaluation Report since the Baseline Safety Analysis File (BSAF)and associated Baseline Technical Safety Requirements (TSR) File do not meet the requirements of a complete safety analysis documentation. Its purpose is to present in summary form the background of how the BSAF and Baseline TSR originated and a description of the process by which it was produced and approved for use in the Environmental Restoration Program.The BSAF is a facility safety reference document for INEL environmental restoration activities including environmental remediation of inactive waste sites and decontamination and decommissioning (D ampersand D) of surplus facilities. The BSAF contains safety bases common to environmental restoration activities and guidelines for performing and documenting safety analysis. The common safety bases can be incorporated by reference into the safety analysis documentation prepared for individual environmental restoration activities with justification and any necessary revisions. The safety analysis guidelines in BSAF provide an accepted method for hazard analysis; analysis of normal, abnormal, and accident conditions; human factors analysis; and derivation of TSRS. The BSAF safety bases and guidelines are graded for environmental restoration activities

  7. Idaho National Engineering Laboratory (INEL) Environmental Restoration Program (ERP), Baseline Safety Analysis File (BSAF). Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-20

    This document was prepared to take the place of a Safety Evaluation Report since the Baseline Safety Analysis File (BSAF)and associated Baseline Technical Safety Requirements (TSR) File do not meet the requirements of a complete safety analysis documentation. Its purpose is to present in summary form the background of how the BSAF and Baseline TSR originated and a description of the process by which it was produced and approved for use in the Environmental Restoration Program.The BSAF is a facility safety reference document for INEL environmental restoration activities including environmental remediation of inactive waste sites and decontamination and decommissioning (D&D) of surplus facilities. The BSAF contains safety bases common to environmental restoration activities and guidelines for performing and documenting safety analysis. The common safety bases can be incorporated by reference into the safety analysis documentation prepared for individual environmental restoration activities with justification and any necessary revisions. The safety analysis guidelines in BSAF provide an accepted method for hazard analysis; analysis of normal, abnormal, and accident conditions; human factors analysis; and derivation of TSRS. The BSAF safety bases and guidelines are graded for environmental restoration activities.

  8. Tribology analysis of chemical-mechanical polishing

    Energy Technology Data Exchange (ETDEWEB)

    Runnels, S.R.; Eyman, L.M. (Sematech, Austin, TX (United States))

    1994-06-01

    To better understand the variation of material removal rate on a wafer during chemical-mechanical polishing (CMP), knowledge of the stress distribution on the wafer surface is required. The difference in wafer-surface stress distributions could be considerable depending on whether or not the wafer hydroplanes during polishing. This study analyzes the fluid film between the wafer and pad and demonstrates that hydroplaning is possible for standard CMP processes. The importance of wafer curvature, slurry viscosity, and rotation speed on the thickness of the fluid film is also demonstrated.

  9. Canister storage building (CSB) safety analysis report phase 3: Safety analysis documentation supporting CSB construction

    Energy Technology Data Exchange (ETDEWEB)

    Garvin, L.J.

    1997-04-28

    The Canister Storage Building (CSB) will be constructed in the 200 East Area of the U.S. Department of Energy (DOE) Hanford Site. The CSB will be used to stage and store spent nuclear fuel (SNF) removed from the Hanford Site K Basins. The objective of this chapter is to describe the characteristics of the site on which the CSB will be located. This description will support the hazard analysis and accident analyses in Chapter 3.0. The purpose of this report is to provide an evaluation of the CSB design criteria, the design's compliance with the applicable criteria, and the basis for authorization to proceed with construction of the CSB.

  10. Guidelines for retrospective safety analysis. Prepared for DRIVE II Project V2002 Horizontal Project for the Evaluation of Safety HOPES.

    OpenAIRE

    Oppe, S.

    1994-01-01

    This report contains the following contributions: Concepts and definitions (Oppe, S); Traffic in its social context (Chaloupka, C and Risser, R); The checklist as a retrospective safety tool (Chaloupka, C and Risser, R); Experimental design (Kulmala, R); Evaluation of the traffic process and its safety effects (Oppe, S); Methods for process evaluation (Steyvers, FJJM); Methods for product evaluation (Oppe, S); Accident analysis (Oppe, S); Time related models (Oppe, S); Behavioural models (Ste...

  11. Survey of systems safety analysis methods and their application to nuclear waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelto, P.J.; Winegardner, W.K.; Gallucci, R.H.V.

    1981-11-01

    This report reviews system safety analysis methods and examines their application to nuclear waste management systems. The safety analysis methods examined include expert opinion, maximum credible accident approach, design basis accidents approach, hazard indices, preliminary hazards analysis, failure modes and effects analysis, fault trees, event trees, cause-consequence diagrams, G0 methodology, Markov modeling, and a general category of consequence analysis models. Previous and ongoing studies on the safety of waste management systems are discussed along with their limitations and potential improvements. The major safety methods and waste management safety related studies are surveyed. This survey provides information on what safety methods are available, what waste management safety areas have been analyzed, and what are potential areas for future study.

  12. Survey of systems safety analysis methods and their application to nuclear waste management systems

    International Nuclear Information System (INIS)

    This report reviews system safety analysis methods and examines their application to nuclear waste management systems. The safety analysis methods examined include expert opinion, maximum credible accident approach, design basis accidents approach, hazard indices, preliminary hazards analysis, failure modes and effects analysis, fault trees, event trees, cause-consequence diagrams, G0 methodology, Markov modeling, and a general category of consequence analysis models. Previous and ongoing studies on the safety of waste management systems are discussed along with their limitations and potential improvements. The major safety methods and waste management safety related studies are surveyed. This survey provides information on what safety methods are available, what waste management safety areas have been analyzed, and what are potential areas for future study

  13. PWR safety/relief valve blowdown analysis experience

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.Z.; Chou, L.Y.; Yang, S.H. (Gilbert/Commonwealth Engineers and Consultants, Reading, PA (USA). Speciality Engineering Dept.)

    1982-10-01

    The paper describes the difficulties encountered in analyzing a PWR primary loop pressurizer safety relief valve and power operated relief valve discharge system, as well as their resolution. The experience is based on the use of RELAP5/MOD1 and TPIPE computer programs as the tools for fluid transient analysis and piping dynamic analysis, respectively. General approaches for generating forcing functions from thermal fluid analysis solution to be used in the dynamic analysis of piping are reviewed. The paper demonstrates that the 'acceleration or wave force' method may have numerical difficulties leading to unrealistic, large amplitude, highly oscillatory forcing functions in the vicinity of severe flow area discontinuities or choking junctions when low temperature loop seal water is discharged. To avoid this problem, an alternate computational method based on the direct force method may be used. The simplicity and superiority in numerical stability of the forcing function computation method as well as its drawbacks are discussed. Additionally, RELAP modeling for piping, valve, reducer, and sparger is discussed. The effects of loop seal temperature on SRV and PORV discharge line blowdown forces, pressure and temperature distributions are examined. Finally, the effects of including support stiffness and support eccentricity in piping analysis models, method and modeling relief tank connections, minimization of tank nozzle loads, use of damping factors, and selection of solution time steps are discussed.

  14. Simplifying documentation while approaching site closure: integrated health and safety plans as documented safety analysis

    International Nuclear Information System (INIS)

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). By isolating any remediation activities that deal with Enriched Restricted Materials, the SBRs and PRs assure that the hazard categories of former nuclear facilities undergoing remediation remain less than Nuclear. These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D and D) of over 150 structures, including six major nuclear production plants. This paper presents the FCP method for maintaining safety basis documentation, using the D and D I-HASP as an example

  15. Development of safety analysis technology for integral reactor; evaluation on safety concerns of integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Chul; Kim, Woong Sik; Lee, J. H. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2002-03-01

    The Nuclear Desalination Plant (NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in this study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current light water reactor and advanced reactor designs, and user requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified and discussed. They include the use of proven technology for new safety features, systematic event classification and selection, strengthening containment function, and the safety impacts on desalination-related systems. The study presents the general safety requirements applicable to licensing of an integral reactor and suggests additional regulatory requirements, which need to be developed, based on the direction to resolution of the safety concerns. The efforts to identify and technically resolve the safety concerns in the design stage will provide the early confidence of SMART safety and the technical basis to evaluate the safety to designers and reviewers in the future. Suggestion on the development of additional regulatory requirements will contribute for the regulator to taking actions for licensing of an integral reactor. 66 refs., 5 figs., 24 tabs. (Author)

  16. Patient safety work in Sweden: quantitative and qualitative analysis of annual patient safety reports

    OpenAIRE

    Ridelberg, Mikaela; Roback, Kerstin; Nilsen, Per; Carlfjord, Siw

    2016-01-01

    Background There is widespread recognition of the problem of unsafe care and extensive efforts have been made over the last 15 years to improve patient safety. In Sweden, a new patient safety law obliges the 21 county councils to assemble a yearly patient safety report (PSR). The aim of this study was to describe the patient safety work carried out in Sweden by analysing the PSRs with regard to the structure, process and result elements reported, and to investigate the perceived usefulness of...

  17. Chemical equilibrium analysis of dry hydrogen combustion

    International Nuclear Information System (INIS)

    The present work is based on a thermo-chemical equilibrium model for studying the effect of combustion of hydrogen during postulated accident scenarios in nuclear reactor containments. This model is based on the method of element potentials which seeks to minimize the free energy of the system. The condition on internal energy balance is imposed as a constraint during the minimization process. Another simplified model purely based on the internal energy balance has also been implemented to investigate the isolated impact of free energy and the conditions under which it becomes dominant. The two models have been used to extract final pressures for a wide range of initial conditions and mixture compositions that are typically found during accident scenarios. In the absence of hydrogen combustion experimental data, such models will become important for laying down a first estimate on the possible outcomes. (author)

  18. Hazard screening application guide. Safety Analysis Report Update Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-06-01

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

  19. Safety analysis factors for environmental restoration and decontamination and decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, D.R.

    1993-04-01

    Environmental restoration (ER) and facility decontamination/decommissioning (D&D) operations can be grouped into two general categories. ``Nonstationary cleanup`` or simply ``cleanup`` activities are where the operation must relocate to the site of new contaminated material at the completion of each task (i.e., the operation moves to the contaminated material). ``Stationary production`` or simply ``production`` activities are where the contaminated material is moved to a centralized location (i.e., the contaminated material is moved to the operation) for analysis, sorting, treatment, storage, and disposal. This paper addresses the issue of nonstationary cleanup design. The following are the specific assigned action items: Collect and compile a list of special safety-related ER/D&D design factors, especially ones that don`t follow DOE Order 6430.1A requirements. Develop proposal of what makes sense to recommend to designers; especially consider recommendations for short-term projects. Present proposal at the January meeting. To achieve the action items, applicable US Department of Energy (DOE) design requirements, and cleanup operations and differences from production activities are reviewed and summarized; basic safety requirements influencing design are summarized; and finally, approaches, considerations, and methods for safe, cost-effective design of cleanup activities are discussed.

  20. Documented Safety Analysis for the Waste Storage Facilities March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  1. Nuclear Safety Analysis for the Mars Exploration Rover 2003 Project

    Science.gov (United States)

    Firstenberg, Henry; Rutger, Lyle L.; Mukunda, Meera; Bartram, Bart W.

    2004-02-01

    The National Aeronautics and Space Administration's Mars Exploration Rover (MER) 2003 project is designed to place two mobile laboratories (Rovers) on Mars to remotely characterize a diversity of rocks and soils. Milestones accomplished so far include two successful launches of identical spacecraft (the MER-A and MER-B missions) from Cape Canaveral Air Force Station, Florida on June 10 and July 7, 2003. Each Rover uses eight Light Weight Radioisotope Heater Units (LWRHUs) fueled with plutonium-238 dioxide to provide local heating of Rover components. The LWRHUs are provided by the U.S. Department of Energy. In addition, small quantities of radioactive materials in sealed sources are used in scientific instrumentation on the Rover. Due to the radioactive nature of these materials and the potential for accidents, a formal Launch Approval Process requires the preparation of a Final Safety Analysis Report (FSAR) for submittal to and independent review by an Interagency Nuclear Safety Review Panel. This paper presents a summary of the FSAR in terms of potential accident scenarios, probabilities, source terms, radiological consequences, mission risks, and uncertainties in the reported results.

  2. Safety analysis report for packaging (onsite) contaminated well cars

    International Nuclear Information System (INIS)

    In support of past operations, railcars were used to ship irradiated fuel from the 100 Area fuel storage basins to the Plutonium Uranium Extraction (PUREX) Facility. There are two configurations for the packaging systems that transported the fuel: the Three-Well Cask Car, which is outfitted with three casks, and the taller, single well, New Production Reactor (NPR) Cask Car. In this document, these cask cars are referred to collectively as well cars. The purpose of this document is to evaluate and authorize the onsite transportation of well cars that contain significant levels of contamination. No irradiated fuel will be transported in the well cars. Neutron detection data confirmed that the well cars do not contain fuel. The intention is to move 14 retired well cars from their current locations in the 100 Area to a suitable storage location in the 200 Area. Each well car contains Type B quantities of radioactivity; so that the hazard of the transport operation is relatively low. This safety analysis report for packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the contaminated well cars meet the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for Hazardous Material Shipments for an onsite packaging. The scope of this document addresses the preparation and transportation of the contaminated well cars

  3. Documented Safety Analysis for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  4. Phase 2 safety analysis report: National Synchrotron Light Source

    International Nuclear Information System (INIS)

    The Phase II program was established in order to provide additional space for experiments, and also staging and equipment storage areas. It also provides additional office space and new types of advanced instrumentation for users. This document will deal with the new safety issues resulting from this extensive expansion program, and should be used as a supplement to BNL Report No. 51584 ''National Synchrotron Light Source Safety Analysis Report,'' July 1982 (hereafter referred to as the Phase I SAR). The initial NSLS facility is described in the Phase I SAR. It comprises two electron storage rings, an injection system common to both, experimental beam lines and equipment, and office and support areas, all of which are housed in a 74,000 sq. ft. building. The X-ray Ring provides for 28 primary beam ports and the VUV Ring, 16. Each port is capable of division into 2 or 3 separate beam lines. All ports receive their synchrotron light from conventional bending magnet sources, the magnets being part of the storage ring lattice. 4 refs

  5. An Analysis of Excavation Support Safety Based on Experimental Studies

    Directory of Open Access Journals (Sweden)

    Gorska Karolina

    2015-09-01

    Full Text Available The article presents the results of inclinometric measurements and numerical analyses of soldier-pile wall displacements. The excavation under investigation was made in cohesive soils. The measurements were conducted at points located at the edge of the cantilever excavation support system. The displacements of the excavation support observed over the period of three years demonstrated the pattern of steady growth over the first two months, followed by a gradual levelling out to a final plateau. The numerical analyses were conducted based on 3D FEM models. The numerical analysis of the problem comprise calculations of the global structural safety factor depending on the displacement of the chosen points in the lagging and conducted by means of the φ/c reduction procedure. The adopted graphical method of safety estimation is very conservative in the sense that it recognizes stability loss quite early, when one could further load the medium or weaken it by further strength reduction. The values of the Msf factor are relatively high. This is caused by the fact that the structure was designed for excavation twice as deep. Nevertheless, the structure is treated as a temporary one.

  6. An Analysis of Excavation Support Safety Based on Experimental Studies

    Science.gov (United States)

    Gorska, Karolina; Wyjadłowski, Marek

    2015-09-01

    The article presents the results of inclinometric measurements and numerical analyses of soldier-pile wall displacements. The excavation under investigation was made in cohesive soils. The measurements were conducted at points located at the edge of the cantilever excavation support system. The displacements of the excavation support observed over the period of three years demonstrated the pattern of steady growth over the first two months, followed by a gradual levelling out to a final plateau. The numerical analyses were conducted based on 3D FEM models. The numerical analysis of the problem comprise calculations of the global structural safety factor depending on the displacement of the chosen points in the lagging and conducted by means of the φ/c reduction procedure. The adopted graphical method of safety estimation is very conservative in the sense that it recognizes stability loss quite early, when one could further load the medium or weaken it by further strength reduction. The values of the Msf factor are relatively high. This is caused by the fact that the structure was designed for excavation twice as deep. Nevertheless, the structure is treated as a temporary one.

  7. Human Resources Readiness as TSO for Deterministic Safety Analysis on the First NPP in Indonesia

    International Nuclear Information System (INIS)

    In government regulation no. 43 year 2006 it is mentioned that preliminary safety analysis report and final safety analysis report are one of requirements which should be applied in construction and operation licensing for commercial power reactor (NPPs). The purpose of safety analysis report is to confirm the adequacy and efficiency of provisions within the defence in depth of nuclear reactor. Deterministic analysis is used on the safety analysis report. One of the TSO task is to evaluate this report based on request of operator or regulatory body. This paper discusses about human resources readiness as TSO for deterministic safety analysis on the first NPP in Indonesia. The assessment is done by comparing the analysis step on SS-23 and SS-30 with human resources status of BATAN currently. The assessment results showed that human resources for deterministic safety analysis are ready as TSO especially to review preliminary safety analysis report and to revise final safety analysis report in licensing on the first NPP in Indonesia. Otherwise, to prepare the safety analysis report is still needed many competency human resources. (author)

  8. 29 CFR 1910.119 - Process safety management of highly hazardous chemicals.

    Science.gov (United States)

    2010-07-01

    .... Facility means the buildings, containers or equipment which contain a process. Highly hazardous chemical... from changes in process chemicals, technology, and equipment, and changes to facilities. The employer... “replacements in kind”) to process chemicals, technology, equipment, and procedures; and, changes to...

  9. Analysis for Passive Safety Injection of IPSS in Various LOCAs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sangho; Chang, Soonheung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The Fukushima accident shows US the possibility of accidents that are beyond a designed imagination. Lots of lessons can be shortly summarized into three issues. First of all, the original cause was the occurrence of a Station Black-Out (SBO). Even if engineers considered the possibility of a loss of offsite power enough to be managed, the failure of EDGs seemed to be unnoticed. The second is poor operation and accident management. They could not understand the overall system and did not check the availability of alternating systems. The third is the large release of radioactive materials outside the containment. Even if SBO occurred and the accident was not managed well, all the means must have prevented the large release out of containment. After that, lots of problems were pointed and numerous actions were carried out in each country. The representative proposals are AAC, additional physical barrier, bunker concept and large big tank. Integrated passive safety system (IPSS) was proposed as one of the solutions for enhancing the safety. IPSS can cope with a SBO and accidents with a SBO. IPSS has five functions which are passive decay heat removal, passive safety injection, passive containment cooling, passive in-vessel retention and filtered venting system. The results showed a high performance of removing decay heat through steam generator cooling by forming natural circulation in the primary circuit. The design concept of passive safety injection system (PSIS) consists of the injection line from integrated passive safety tank (IPST) to reactor vessel. The previous works were only focused on a double ended guillotine break LOCA in SBO. The purpose of this paper is to analyze the performance of PSIS in IPSS for various LOCAs by using MARS (Multi-dimensional Analysis of Reactor Safety) code. The simulated accidents were LOCAs which were accompanied with a SBO. The conditions of the LOCAs were varied only for the size of break. It shall show the capability of PSIS

  10. The Radiological Safety Analysis Computer Program (RSAC-5) user's manual

    International Nuclear Information System (INIS)

    The Radiological Safety Analysis Computer Program (RSAC-5) calculates the consequences of the release of radionuclides to the atmosphere. Using a personal computer, a user can generate a fission product inventory from either reactor operating history or nuclear criticalities. RSAC-5 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated through the inhalation, immersion, ground surface, and ingestion pathways. RSAC+, a menu-driven companion program to RSAC-5, assists users in creating and running RSAC-5 input files. This user's manual contains the mathematical models and operating instructions for RSAC-5 and RSAC+. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-5 and RSAC+. These programs are designed for users who are familiar with radiological dose assessment methods

  11. Safety analysis report for packaging (onsite) doorstop samplecarrier system

    Energy Technology Data Exchange (ETDEWEB)

    Obrien, J.H.

    1997-02-24

    The Doorstop Sample Carrier System consists of a Type B certified N-55 overpack, U.S. Department of Transportation (DOT) specification or performance-oriented 208-L (55-gal) drum (DOT 208-L drum), and Doorstop containers. The purpose of the Doorstop Sample Carrier System is to transport samples onsite for characterization. This safety analysis report for packaging (SARP) provides the analyses and evaluation necessary to demonstrate that the Doorstop Sample Carrier System meets the requirements and acceptance criteria for both Hanford Site normal transport conditions and accident condition events for a Type B package. This SARP also establishes operational, acceptance, maintenance, and quality assurance (QA) guidelines to ensure that the method of transport for the Doorstop Sample Carrier System is performed safely in accordance with WHC-CM-2-14, Hazardous Material Packaging and Shipping.

  12. Chemical aspects of nuclear methods of analysis

    International Nuclear Information System (INIS)

    This final report includes papers which fall into three general areas: development of practical pre-analysis separation techniques, uranium/thorium separation from other elements for analytical and processing operations, and theory and mechanism of separation techniques. A separate abstract was prepared for each of the 9 papers

  13. Analysis of School Food Safety Programs Based on HACCP Principles

    Science.gov (United States)

    Roberts, Kevin R.; Sauer, Kevin; Sneed, Jeannie; Kwon, Junehee; Olds, David; Cole, Kerri; Shanklin, Carol

    2014-01-01

    Purpose/Objectives: The purpose of this study was to determine how school districts have implemented food safety programs based on HACCP principles. Specific objectives included: (1) Evaluate how schools are implementing components of food safety programs; and (2) Determine foodservice employees food-handling practices related to food safety.…

  14. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  15. Safety analysis of the 700-horsepower combustion test facility

    Energy Technology Data Exchange (ETDEWEB)

    Berkey, B.D.

    1981-05-01

    The objective of the program reported herein was to provide a Safety Analysis of the 700 h.p. Combustion Test Facility located in Building 93 at the Pittsburgh Energy Technology Center. Extensive safety related measures have been incorporated into the design, construction, and operation of the Combustion Test Facility. These include: nitrogen addition to the coal storage bin, slurry hopper, roller mill and pulverizer baghouse, use of low oxygen content combustion gas for coal conveying, an oxygen analyzer for the combustion gas, insulation on hot surfaces, proper classification of electrical equipment, process monitoring instrumentation and a planned remote television monitoring system. Analysis of the system considering these factors has resulted in the determination of overall probabilities of occurrence of hazards as shown in Table I. Implementation of the recommendations in this report will reduce these probabilities as indicated. The identified hazards include coal dust ignition by hot ductwork and equipment, loss of inerting within the coal conveying system leading to a coal dust fire, and ignition of hydrocarbon vapors or spilled oil, or slurry. The possibility of self-heating of coal was investigated. Implementation of the recommendations in this report will reduce the ignition probability to no more than 1 x 10/sup -6/ per event. In addition to fire and explosion hazards, there are potential exposures to materials which have been identified as hazardous to personal health, such as carbon monoxide, coal dust, hydrocarbon vapors, and oxygen deficient atmosphere, but past monitoring experience has not revealed any problem areas. The major environmental hazard is an oil spill. The facility has a comprehensive spill control plan.

  16. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D. J.; Baek, J. S.; Hanson, A. L.; Cheng, L-Y; Brown, N.; Cuadra, A.

    2015-01-30

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.

  17. Safety analysis of disposal of decommissioning wastes from Olkiluoto

    International Nuclear Information System (INIS)

    The disposal plans for decommissioning wastes from the Olkiluoto nuclear power plant (2x710 MWe BWR) are based on co-location of the necessary repository caverns with the repository to be constructed for low and medium level operational reactor waste. The repository will be excavated at a depth of about 50-90 meters in the bedrock at the power plant site. The planned cavern for activated metal waste consists of a pile of concrete waste containers surrounded by thick concrete walls and a layer of low permeable buffer material. The analysis includes also safety evaluation of an alternative disposal concept for activated metal waste: a deep bedrock repository assumed to be co-located with a planned repository for spent nuclear fuel. The obtained results of the analysis show clear safety margins. In the realistic scenario for intermediate depth (ca. 75 m) disposal the maximum annual dose rate is 3.10-12 Sv/a via the local sea pathways, 8.10-9 Sv/a via the lake pathways and 2.10-5 Sv/a via a well bored in the vicinity of the repository. In the basic scenario the corresponding dose rates are 4.10-10 Sv/a (sea), 5.10-7 Sv/a (lake) and 4.10-5 Sv/a (well). For disposal of low level decommissioning wastes two alternatives have been compared: concrete silos and rock silos, both at a d epth of about 60-90 meters in the bedrock at the power plant site. The consequent doses are rather low in both cases. Final optimization of the engineered barriers necessitates more precisive data about the activity contents of the wastes to be disposed of the these silos

  18. Planning Document for an NBSR Conversion Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Diamond D. J.; Baek J.; Hanson, A.L.; Cheng, L-Y.; Brown, N.; Cuadra, A.

    2013-09-25

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the National Bureau of Standards Reactor (NBSR). The NBSR is a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a planning document for the conversion Safety Analysis Report (SAR) that would be submitted to, and approved by, the Nuclear Regulatory Commission (NRC) before the reactor could be converted.This report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis herein is on the SAR chapters that require significant changes as a result of conversion, primarily Chapter 4, Reactor Description, and Chapter 13, Safety Analysis. The document provides information on the proposed design for the LEU fuel elements and identifies what information is still missing. This document is intended to assist ongoing fuel development efforts, and to provide a platform for the development of the final conversion SAR. This report contributes directly to the reactor conversion pillar of the GTRI program, but also acts as a boundary condition for the fuel development and fuel fabrication pillars.

  19. RETRAN safety analysis to increase the over-pressure safety margin for OPR1000 nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Woon [Dongguk Univ., Gyeongju (Korea, Republic of). Nuclear and Energy Engineering Dept.

    2016-02-15

    A need to enlarge the pressurizer set point tolerances is desirable to prevent unnecessary tests. The increase of test tolerances needs verification by safety analyses. Existing safety analysis method are too conservative to accommodate the expanded tolerance. To overcome this insufficient margin, two approaches are taken: First one is to increase valve discharge flow rate, reactor coolant pump coast down delay time and trip delay time retaining the analysis code, CESEC. The second one is changing a computer code to a realistic code such as RETRAN.

  20. Analysis on relation between safety input and accidents

    Institute of Scientific and Technical Information of China (English)

    YAO Qing-guo; ZHANG Xue-mu; LI Chun-hui

    2007-01-01

    The number of safety input directly determines the level of safety, and there exists dialectical and unified relations between safety input and accidents. Based on the field investigation and reliable data, this paper deeply studied the dialectical relationship between safety input and accidents, and acquired the conclusions. The security situation of the coal enterprises was related to the security input rate, being effected little by the security input scale, and build the relationship model between safety input and accidents on this basis, that is the accident model.

  1. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ... requirements in 10 CFR Chapter I, including: (1) An analysis and evaluation of the design and performance of...; technical information in final safety analysis report. The application must contain a final safety analysis... NRC: (a) The principal design criteria for the reactor to be manufactured. Appendix A of 10 CFR...

  2. Improvement of safety by analysis of costs and benefits of the system

    OpenAIRE

    Karkoszka, T.; M. Andraczke

    2011-01-01

    Purpose: of the paper has been the assessment of the dependence between improvement of the implemented occupational health and safety management system and both minimization of costs connected with occupational health and safety assurance and optimization of real work conditions.Design/methodology/approach: used for the analysis has included definition of the occupational health and safety system with regard to the rules and tool allowing for occupational safety assurance in the organisationa...

  3. A Study of Time Response for Safety-Related Operator Actions in Non-LOCA Safety Analysis

    International Nuclear Information System (INIS)

    The classification of initiating events for safety analysis report (SAR) chapter 15 is categorized into moderate frequency events (MF), infrequent events (IF), and limiting faults (LF) depending on the frequency of its occurrence. For the non-LOCA safety analysis with the purpose to get construction or operation license, however, it is assumed that the operator response action to mitigate the events starts at 30 minutes after the initiation of the transient regardless of the event categorization. Such an assumption of corresponding operator response time may have over conservatism with the MF and IF events and results in a decrease in the safety margin compared to its acceptance criteria. In this paper, the plant conditions (PC) are categorized with the definitions in SAR 15 and ANS 51.1. Then, the consequence of response for safety-related operator action time is determined based on the PC in ANSI 58.8. The operator response time for safety analysis regarding PC are reviewed and suggested. The clarifying alarm response procedure would be required for the guideline to reduce the operator response time when the alarms indicate the occurrence of the transient

  4. RAMI analysis of the ITER Central Safety System

    International Nuclear Information System (INIS)

    Highlights: • We performed the functional analysis of the ITER CSS. • We performed a failure mode analysis of the ITER CSS. • We estimated the reliability and availability of the ITER CSS. • The ITER RAMI approach was applied to the ITER CSS for technical risk control in the design phase. - Abstract: ITER is the first worldwide international project aiming to design a facility to produce nuclear fusion energy. The technical requirements of its plant systems have been established in the ITER Project Baseline. In the project, the Reliability, Availability, Maintainability and Inspectability (RAMI) approach has been adopted for technical risk control to help aid the design of the components in preparation for operation and maintenance. A RAMI analysis was performed on the conceptual design of the ITER Central Safety System (CSS). A functional breakdown was prepared in a bottom-up approach, resulting in the system being divided into 2 main functions and 20 sub-functions. These functions were described using the IDEF0 method. Reliability block diagrams were prepared to estimate the reliability and availability of each function under the stipulated operating conditions. Initial and expected scenarios were analyzed to define risk-mitigation actions. The inherent availability of the ITER CSS expected after implementation of mitigation actions was calculated to be 99.80% over 2 years, which is the typical interval of the scheduled maintenance cycles. This is consistent with the project required value of 99.9 ± 0.1%. A Failure Modes, Effects and Criticality Analysis was performed with criticality charts highlighting the risk level of the different failure modes with regard to their probability of occurrence and their effects on the availability of the plasma operation. This analysis defined when risk mitigation actions were required in terms of design, testing, operation procedures and/or maintenance to reduce the risk levels and increase the availability of the

  5. PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    Carew, J.; Hanson, A.; Xu, J.; Rorer, D.; Diamond, D.

    2003-08-26

    Detailed reactor physics and safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional MCNP Monte Carlo neutron and photon transport calculations were performed to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model including the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the core power transient is terminated

  6. Lessons learned from non-medical industries: root cause analysis as culture change at a chemical plant

    OpenAIRE

    Carroll, J; J. Rudolph; Hatakenaka, S

    2002-01-01

    

 Root cause analysis was introduced to a chemical plant as a way of enhancing performance and safety, exemplified by the investigation of an explosion. The cultural legacy of the root cause learning intervention was embodied in managers' increased openness to new ideas, individuals' questioning attitude and disciplined thinking, and a root cause analysis process that provided continual opportunities to learn and improve. Lessons for health care are discussed, taking account of differences b...

  7. Interface design of VSOP'94 computer code for safety analysis

    International Nuclear Information System (INIS)

    Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects

  8. Interface design of VSOP'94 computer code for safety analysis

    Science.gov (United States)

    Natsir, Khairina; Yazid, Putranto Ilham; Andiwijayakusuma, D.; Wahanani, Nursinta Adi

    2014-09-01

    Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.

  9. Development of Safety Analysis Technology for Integral Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, S. K. [Korea Atomic Energy Research Institute, Taejeon (Korea); Seul, K. W.; Kim, W. S.; Kim, W. K.; Yun, Y. G.; Ahn, H. J.; Lee, J. S.; Sin, A. D. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2000-03-01

    The Nuclear Desalination Plant(NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in a present study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated based on the design of foreign and domestic integral reactors. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current and advanced reactor designs, and use requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified. They includes the use of proven technology for new safety systems, the systematic classification and selection of design basis accidents, and the safety assurance of desalination-related systems. These efforts to identify and resolve the safety concerns in the design stage will provide the early confidence of SMART safety to designers, and the technical basis to evaluate the safety to reviewers in the future. 8 refs., 20 figs., 4 tabs. (Author)

  10. Waste Isolation Pilot Plant Safety Analysis Report. Volume 5

    International Nuclear Information System (INIS)

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  11. Waste Isolation Pilot Plant Safety Analysis Report. Volume 1

    International Nuclear Information System (INIS)

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection: Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating control and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  12. Waste Isolation Pilot Plant Safety Analysis Report. Volume 2

    International Nuclear Information System (INIS)

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  13. Waste Isolation Pilot Plant Safety Analysis Report. Volume 4

    International Nuclear Information System (INIS)

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  14. Waste Isolation Pilot Plant Safety Analysis Report. Volume 3

    International Nuclear Information System (INIS)

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  15. Safety and performance analysis of a commercial photovoltaic installation

    Science.gov (United States)

    Hamzavy, Babak T.; Bradley, Alexander Z.

    2013-09-01

    Continuing to better understand the performance of PV systems and changes in performance with the system life is vital to the sustainable growth of solar. A systematic understanding of degradation mechanisms that are induced as a result of variables such as the service environment, installation, module/material design, weather, operation and maintenance, and manufacturing is required for reliable operation throughout a system's lifetime. We wish to report the results from an analysis of a commercial c-Si PV array owned and operated by DuPont. We assessed the electrical performance of the modules by comparing the original manufacturers' performance data with the measurements obtained using a solar simulator to determine the degradation rate. This evaluation provides valuable PV system field experience and document key issues regarding safety and performance. A review of the nondestructive and destructive analytical methods and characterization strategies we have found useful for system, module, and subsequent material component evaluations are presented. We provide an overview of our inspection protocol and subsequent control process to mitigate risk. The objective is to explore and develop best practice protocols regarding PV asset optimization and provide a rationale to reduce risk based on the analysis of our own commercial installations.

  16. Safety evaluation by living probabilistic safety assessment. Procedures and applications for planning of operational activities and analysis of operating experience

    International Nuclear Information System (INIS)

    Living Probabilistic Safety Assessment (PSA) is a daily safety management system and it is based on a plant-specific PSA and supporting information systems. In the living use of PSA, plant status knowledge is used to represent actual plant safety status in monitoring or follow-up perspective. The PSA model must be able to express the risk at a given time and plant configuration. The process, to update the PSA model to represent the current or planned configuration and to use the model to evaluate and direct the changes in the configuration, is called living PSA programme. The main purposes to develop and increase the usefulness of living PSA are: Long term safety planning: To continue the risk assessment process started with the basic PSA by extending and improving the basic models and data to provide a general risk evaluation tool for analyzing the safety effects of changes in plant design and procedures. Risk planning of operational activities: To support the operational management by providing means for searching optimal operational maintenance and testing strategies from the safety point of view. The results provide support for risk decision making in the short term or in a planning mode. The operational limits and conditions given by technical specifications can be analyzed by evaluating the risk effects of alternative requirements in order to balance the requirements with respect to operational flexibility and plant economy. Risk analysis of operating experience: To provide a general risk evaluation tool for analyzing the safety effects of incidents and plant status changes. The analyses are used to: identify possible high risk situations, rank the occurred events from safety point of view, and get feedback from operational events for the identification of risk contributors. This report describes the methods, models and applications required to continue the process towards a living use of PSA. 19 tabs, 20 figs

  17. An integrated approach towards safety during change in the chemical process industry

    NARCIS (Netherlands)

    Gort, J.; Zwetsloot, G.I.J.M.; Lemkowitz, S.; Steijger, N.; Moonen, C.

    2004-01-01

    Increasing global competition and shareholder pressure cause major changes in the chemical industry. Over the last decade companies continuously improve their manpower efficiency. As a result most chemical plants of today can be regarded as lean plants. Plans to further reduce the number of staff ar

  18. Airborne chemistry: acoustic levitation in chemical analysis.

    Science.gov (United States)

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals. PMID:14762640

  19. Black tea: chemical analysis and stability.

    Science.gov (United States)

    Li, Shiming; Lo, Chih-Yu; Pan, Min-Hsiung; Lai, Ching-Shu; Ho, Chi-Tang

    2013-01-01

    Tea is the most popular flavored and functional drink worldwide. The nutritional value of tea is mostly from the tea polyphenols that are reported to possess a broad spectrum of biological activities, including anti-oxidant properties, reduction of various cancers, inhibition of inflammation, and protective effects against diabetes, hyperlipidemia and obesity. Tea polyphenols include catechins and gallic acid in green and white teas, and theaflavins and thearubigins as well as other catechin polymers in black and oolong teas. Accurate analysis of black tea polyphenols plays a significant role in the identification of black tea contents, quality control of commercial tea beverages and extracts, differentiation of various contents of theaflavins and catechins and correlations of black tea identity and quality with biological activity, and most importantly, the establishment of the relationship between quantitative tea polyphenol content and its efficacy in animal or human studies. Global research in tea polyphenols has generated much in vitro and in vivo data rationally correlating tea polyphenols with their preventive and therapeutic properties in human diseases such as cancer, and metabolic and cardiovascular diseases etc. Based on these scientific findings, numerous tea products have been developed including flavored tea drinks, tea-based functional drinks, tea extracts and concentrates, and dietary supplements and food ingredients, demonstrating the broad applications of tea and its extracts, particularly in the field of functional food.

  20. Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.

    1993-09-01

    An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: to determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.

  1. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    International Nuclear Information System (INIS)

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  2. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; J. Blair Briggs; David W. Nigg

    2009-11-01

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  3. Terahertz Chemical Analysis of Exhaled Human Breath - Broad Essay of Chemicals

    Science.gov (United States)

    Branco, Daniela R.; Fosnight, Alyssa M.; Thomas, Jessica R.; Medvedev, Ivan R.

    2013-06-01

    Approximately 3000 chemicals are thought to be present in human breath. Of these chemicals, many are considered typical of exhaled air. Yet, others can allude to different disease pathologies. The detection of chemicals in breath could have many practical purposes in medicine and provide a noninvasive means of diagnostics. We have previously reported on detection of ethanol, methanol, and acetone in exhaled human breath using a novel sub-millimeter/THz spectroscopic approach. This paper reports on our most recent study. A tentative list has been made of approximately 20 chemicals previously found in breath using other methods. Though many of these chemicals are only expressed in samples from donors with certain pathologies, at the time of this submission we are able to detect and quantitatively measure acetaldehyde and dimethyl sulfide in the breath of several healthy donors. Additional tentatively identified chemicals have been seen using this approach. This presentation will explain our experimental procedures and present our most recent results in THz breath analysis. Prospects, challenges and future plans will be outlined and discussed.

  4. Design and safety analysis of the helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuai; Zhou, Guangming; Lv, Zhongliang; Jin, Cheng; Chen, Hongli [University of Science and Technology of China, Anhui (China). School of Nuclear Science and Technology

    2016-05-15

    This paper reports the design and safety analysis results of the helium cooled solid breeder blanket of the Chinese Fusion Engineering Test Reactor (CFETR). Materials selection and basic structure of the blanket have been presented. Performance analysis including neutronics analysis and thermo-mechanical analysis has shown good results. And the safety analysis of the blanket under Loss Of Coolant Accident (LOCA) conditions has been described. Results showed the current design can deal well with the selected accident scenarios.

  5. Design and safety analysis of the helium cooled solid breeder blanket for CFETR

    International Nuclear Information System (INIS)

    This paper reports the design and safety analysis results of the helium cooled solid breeder blanket of the Chinese Fusion Engineering Test Reactor (CFETR). Materials selection and basic structure of the blanket have been presented. Performance analysis including neutronics analysis and thermo-mechanical analysis has shown good results. And the safety analysis of the blanket under Loss Of Coolant Accident (LOCA) conditions has been described. Results showed the current design can deal well with the selected accident scenarios.

  6. Development of safety evaluation methods and analysis codes applied to the safety regulations for the design and construction stage of fast breeder reactor

    International Nuclear Information System (INIS)

    The purposes of this study are to develop the safety evaluation methods and analysis codes needed in the design and construction stage of fast breeder reactor (FBR). In JFY 2012, the following results are obtained. As for the development of safety evaluation methods needed in the safety examination conducted for the reactor establishment permission, development of the analysis codes, such as core damage analysis code, were carried out following the planned schedule. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied. (author)

  7. Petri net modeling and software safety analysis: methodology for an embedded military application.

    OpenAIRE

    Lewis, Alan D.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis investigates the feasibility of software safety analysis using Petri net modeling and an automated suite of Petri Net UTilities (P-NUT) developed at UC Irvine. We briefly introduce software safety concepts, Petri nets, reachability theory, and the use of P-NUT. We then develop a methodology to combine these ideas for efficient and effective preliminary safety analysis of a real-time, embedded software, ...

  8. Annual activity report of Ignalina NPP Safety Analysis Group for 1996 year

    International Nuclear Information System (INIS)

    The main results of Ignalina NPP Safety Analysis Group (ISAG) investigations for 1996 are presented. ISAG is concentrating its research activities into four areas: the neutrons dynamics modelling, simulation of transient processes during loss of coolant accident, the reactor cooling systems modelling and the probabilistic safety assessment of accident confinement system. Ignalina Safety Analysis Report was prepared on the basis of these results. 37 refs., 9 tabs., 96 figs

  9. Packaging Review Guide for Reviewing Safety Analysis Reports for Packagings

    Energy Technology Data Exchange (ETDEWEB)

    DiSabatino, A; Biswas, D; DeMicco, M; Fisher, L E; Hafner, R; Haslam, J; Mok, G; Patel, C; Russell, E

    2007-04-12

    This Packaging Review Guide (PRG) provides guidance for Department of Energy (DOE) review and approval of packagings to transport fissile and Type B quantities of radioactive material. It fulfills, in part, the requirements of DOE Order 460.1B for the Headquarters Certifying Official to establish standards and to provide guidance for the preparation of Safety Analysis Reports for Packagings (SARPs). This PRG is intended for use by the Headquarters Certifying Official and his or her review staff, DOE Secretarial offices, operations/field offices, and applicants for DOE packaging approval. This PRG is generally organized at the section level in a format similar to that recommended in Regulatory Guide 7.9 (RG 7.9). One notable exception is the addition of Section 9 (Quality Assurance), which is not included as a separate chapter in RG 7.9. Within each section, this PRG addresses the technical and regulatory bases for the review, the manner in which the review is accomplished, and findings that are generally applicable for a package that meets the approval standards. This Packaging Review Guide (PRG) provides guidance for DOE review and approval of packagings to transport fissile and Type B quantities of radioactive material. It fulfills, in part, the requirements of DOE O 460.1B for the Headquarters Certifying Official to establish standards and to provide guidance for the preparation of Safety Analysis Reports for Packagings (SARPs). This PRG is intended for use by the Headquarters Certifying Official and his review staff, DOE Secretarial offices, operations/field offices, and applicants for DOE packaging approval. The primary objectives of this PRG are to: (1) Summarize the regulatory requirements for package approval; (2) Describe the technical review procedures by which DOE determines that these requirements have been satisfied; (3) Establish and maintain the quality and uniformity of reviews; (4) Define the base from which to evaluate proposed changes in scope

  10. Integrated safety analysis to operate while constructing Urenco USA

    International Nuclear Information System (INIS)

    The URENCO USA (UUSA) site in Lea County, New Mexico, USA is authorized by the U.S. Nuclear Regulatory Commission (NRC) for construction and operation of a uranium enrichment facility under 10 CFR 70 (Ref 1). The facility employs the gas centrifuge process to separate natural uranium hexafluoride (UF6) feed material into a product stream enriched up to 5% U-235 and a depleted UF6 stream containing approximately 0.2 to 0.34% U-235. Initial plant operations, with a limited number of cascades on line, commenced in the second half of 2010. Construction activities continue as each subsequent cascade is commissioned and placed into service. UUSA performed an Integrated Safety Analysis (ISA) to allow the facility to operate while constructing the remainder of the facility. The ISA Team selected the What-If/Checklist method based on guidance in NUREG-1513 (Ref 2) and AIChE Guidelines (Ref 3). Of the three methods recommended for high risk events HAZOP, What-If/Checklist, or Failure Modes and Effects Analysis (FMEA), the What-If/Checklist lends itself best to construction activities. It combines the structure of a checklist with an unstructured 'brainstorming' approach to create a list of specific accident events that could produce an undesirable consequence. The What-If/Checklist for Operate While Constructing divides the UUSA site into seven areas and creates what-if questions for sixteen different construction activities, such as site preparation, external construction cranes, and internal construction lifts. The result is a total of 112 nodes, for which the Operate While Constructing ISA Team created hundreds of what-if questions. For each what-if question the team determined the likelihood, consequences, safeguards, and acceptability of risk. What-if questions with unacceptable risk are the accident sequences and their selected safeguards are the Items Relied on For Safety (IROFS). The final ISA identified four (4) new accident sequences that, unless

  11. Safety margins of operating reactors. Analysis of uncertainties and implications for decision making

    International Nuclear Information System (INIS)

    Maintaining safety in the design and operation of nuclear power plants (NPPs) is a very important task under the conditions of a challenging environment, affected by the deregulated electricity market and implementation of risk informed regulations. In Member States, advanced computer codes are widely used as safety analysis tools in the framework of licensing of new NPP projects, safety upgrading programmes of existing NPPs, periodic safety reviews, renewal of operating licences, use of the safety margins for reactor power uprating, better utilization of nuclear fuel and higher operational flexibility, for justification of lifetime extensions, development of new emergency operating procedures, analysis of operational events, and development of accident management programmes. The issue of inadequate quality of safety analysis is becoming important due to a general tendency to use advanced tools for better establishment and utilization of safety margins, while the existence of such margins assure that NPPs operate safely in all modes of operation and at all times. The most important safety margins relate to physical barriers against release of radioactive material, such as fuel matrix and fuel cladding, reactor coolant system boundary, and the containment. Typically, safety margins are determined with use of computational tools for safety analysis. Advanced best estimate computer codes are suggested e.g. in the IAEA Safety Guide on Safety Assessment and Verification for Nuclear Power Plants to be used for current safety analysis. Such computer codes require their careful application to avoid unjustified reduction in robustness of the reactor safety. The issue of uncertainties in safety analyses and their impact on evaluation of safety margins is addressed in a number of IAEA guidance documents, in particular in the Safety Report on Accident Analysis for Nuclear Power Plants. It is also discussed in various technical meetings and workshops devoted to this area. The

  12. A review of chemical gradient systems for cell analysis.

    Science.gov (United States)

    Somaweera, Himali; Ibraguimov, Akif; Pappas, Dimitri

    2016-02-11

    Microfluidic spatial and temporal gradient generators have played an important role in many biological assays such as in the analysis of wound healing, inflammation, and cancer metastasis. Chemical gradient systems can also be applied to other fields such as drug design, chemical synthesis, chemotaxis, etc. Microfluidic systems are particularly amenable to gradient formation, as the length scales used in chips enable fluid processes that cannot be conducted in bulk scale. In this review we discuss new microfluidic devices for gradient generation and applications of those systems in cell analysis.

  13. PSA analysis focused on Mochovce NPP safety measures evaluation from operational safety point of view

    International Nuclear Information System (INIS)

    Mochovce NPP consists of four reactor units of WWER 440/V213 type and it is located in the south-middle part of Slovakia. At present first unit operated and the second one under the construction finishing. As these units represent second generation of WWER reactor design, the additional safety measures (SM) were implemented to enhance operational and nuclear safety according to the recommendations of performed international audits and operational experience based on exploitation of other similar units (as Dukovany and J. Bohunice NPPs). These requirements result into a number of SMs grouped according to their purpose to reach recent international requirements on nuclear and operational safety. The paper presents the bases used for safety measures establishing including their grouping into the comprehensive tasks covering different areas of safety goals as well as structural organization of a project management of including participating companies and work performance. More, results are given regarding contribution of selected SMs to the total core damage frequency decreasing.(author)

  14. Chemical Compositional, Biological, and Safety Studies of a Novel Maple Syrup Derived Extract for Nutraceutical Applications

    OpenAIRE

    Zhang, Yan; Yuan, Tao; Li, Liya; Nahar, Pragati; Slitt, Angela; Seeram, Navindra P.

    2014-01-01

    Maple syrup has nutraceutical potential given the macronutrients (carbohydrates, primarily sucrose), micronutrients (minerals and vitamins), and phytochemicals (primarily phenolics) found in this natural sweetener. We conducted compositional (ash, fiber, carbohydrates, minerals, amino acids, organic acids, vitamins, phytochemicals), in vitro biological, and in vivo safety (animal toxicity) studies on maple syrup extracts (MSX-1 and MSX-2) derived from two declassified maple syrup samples. Alo...

  15. Safety Training for the Developmentally Disabled in Icon Recognition for the Safe Use of Hazardous Chemicals

    Science.gov (United States)

    Sandoz, Jeff

    2005-01-01

    This unique document is a training manual for individuals such as job coaches and janitorial crew supervisors who train and work with Developmentally Disabled (DD) workers in vocational classrooms and on job sites. These workers need to be taught the importance of safety in the workplace using methods appropriate to their developmental needs. The…

  16. Study contribution to the new international philosophy of the radiological safety system on chemical processing of the natural uranium

    International Nuclear Information System (INIS)

    The objective of the work is to adapt the radiological Safety System in the facilities concerned to the chemical treatment of the uranium concentrated (yellow-cake) until conversion in uranium hexafluoride in the pilot plant of IPEN-CNEN/SP, to the new international philosophy adopted by the International Commission Radiological on Protection ICPR publication 22(1973), 26(1977), 30(1978) and the International Atomic Energy Agency IAEA publication 9(1982). The new philosophy changes fully the Radiological Protection concepts of preceding philosophy, changes, also, the concept of the work place and individual monitoring as well as the classification of the working areas. These new concepts are applied in each phase of the natural uranium treatment chemical process in conversion facility. (author)

  17. Gradient Bundle Analysis: A Full Topological Approach to Chemical Bonding

    CERN Document Server

    Morgenstern, Amanda

    2016-01-01

    The "chemical bond" is a central concept in molecular sciences, but there is no consensus as to what a bond actually is. Therefore, a variety of bonding models have been developed, each defining the structure of molecules in a different manner with the goal of explaining and predicting chemical properties. This thesis describes the initial development of gradient bundle analysis (GBA), a chemical bonding model that creates a high resolution picture of chemical interactions within the charge density framework. GBA is based on concepts from the quantum theory of atoms in molecules (QTAIM), but uses a more complete picture of the topology and geometry of the electron charge density to understand and predict bonding interactions. Gradient bundles are defined as volumes bounded by zero-flux surfaces (ZFSs) in the gradient of the charge density with well-defined energies. The structure of gradient bundles provides an avenue for detecting the locations of valence electrons, which correspond to reactive regions in a ...

  18. Surface chemical composition analysis of heat-treated bamboo

    Science.gov (United States)

    Meng, Fan-dan; Yu, Yang-lun; Zhang, Ya-mei; Yu, Wen-ji; Gao, Jian-min

    2016-05-01

    In this study, the effect of heat treatment on the chemical composition of bamboo slivers was studied. The chemical properties of the samples were examined by chemical analysis. Results showed a decrease in the contents of holocellulose and α-cellulose, as well as an increase in the contents of lignin and extractives. Changes in the chemical structure of bamboo components were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy results indicated that hemicellulose contents decrease, whereas lignin contents increase after heat treatment. Ester formation linked to lignin decreased the hygroscopicity of the bamboo samples and consequently improved their dimensional stability and durability. XPS spectroscopy results showed that hemicelluloses and celluloses are relatively more sensitive to the heating process than lignin. As a consequence, hemicellulose and cellulose contents decreased, whereas lignin contents increased during heat treatment. The results obtained in this study provide useful information for the future utilization of heat-treated bamboo.

  19. Promoting chemical laboratory safety management in colleges and universities by constructing safety culture%以安全文化建设促进高校化学实验室安全管理

    Institute of Scientific and Technical Information of China (English)

    牛焕双; 张润杰; 刘滨

    2013-01-01

    This paper elaborates on the origin and the connotation of safety culture .Considering the role of safety culture in safety management of chemical laboratory ,the safety culture construction is implemented in chemical laboratory management in colleges and universities .This paper also puts forward the main contents , including safety material culture ,safety system culture ,safety behavior culture and safety spirit culture .The construction of safety culture reflects the people-oriented management concept . And it can inspired the initiative of the teacher and students ,and strengthen their safety consciousness .This will ensure the safety and stability of the chemical laboratory .%阐述了安全文化概念的起源及其内涵,通过分析安全文化在化学实验室安全管理中的作用,提出在高校化学实验室的管理中推行安全文化建设的主要内容,包括安全物质文化、安全制度文化、安全行为文化、安全精神文化4个层次。安全文化建设体现了以人为本的管理理念,能充分调动广大师生的主动性和自觉强化安全的意识,确保化学实验室安全稳定。

  20. Leadership and occupational safety and health (OSH): an expert analysis

    NARCIS (Netherlands)

    Elsler, D.; Flintrop, J.; Kaluza, S.; Hauke, A.; Starren, A.; Drupsteen, L.; Bell, N.

    2012-01-01

    In EU legislation as well as in scientific literature ever more attention is being paid to the important role of leadership in the improvement of Occupational Safety and Health (OSH). Improving the safety behaviour of employees requires understanding of the good leadership practices that can help pr

  1. Design and development of visual learning techniques to construct chemical engineering safety knowledge

    OpenAIRE

    Nishaben Santibhai, Dholakiya

    2009-01-01

    People working in the chemical industry require specific skills to deal with hazardous environments and to operate complicated machinery which often requires on site training. The importance of designing systems and environments with safe possible ways to train operators is essential for the chemical industries. Virtual reality offers the potential to train personnel in a safe highly visual and interactive manner. Virtual Learning Environments(VLE) represent an entirely new form of educat...

  2. Safety culture evaluation and asset root cause analysis

    International Nuclear Information System (INIS)

    This paper examines the role of organizational and management factors in nuclear power plant safety through the use of operating experiences. The ASSET (Assessment of Safety Significant Events Team) reports of thirteen plants (total thirty events) have been analyzed in term of twenty organizational dimensions (factors) identified by Brookhaven National Laboratory and Pennsylvania State University. For three plants detailed results are reported in this paper. The results of thirteen plants are summarized in the form of a table. The study tends to confirm that organizational and management factors play an important role in plant safety. The twenty organizational dimensions and their definitions, in general, were adequate in this study. Formalization, Safety Culture, Technical Knowledge, Training, Roles-Responsibilities and Problem Identification appear to be key organizational factors which influence the safety of nuclear power plants studied

  3. Transportable cesium irradiator (TPCI): Final safety analysis report: Revision 1

    International Nuclear Information System (INIS)

    This Final Safety Analysis Report describes the Transportable Cesium Irradiator (TPCI) and assesses the hazards associated with its operation. The TPCI consists of a mobile, lead-shielded, irradiation unit with support equipment mounted within an enclosed trailer. The irradiation unit has two basic compartments; a source chamber sized to mate with the transportation cask which houses the source capsules, and an irradiation chamber formed as a large shielded cylinder (drum) with a window. The irradiation chamber is mounted on a large diameter support bearing. As this chamber is rotated its window moves from the product access door, where produce is inserted or extracted, to a position in line with a similar window in the source chamber. When the windows are aligned the produce is irradiated, while the back wall of the irradiation chamber shields the product access door. The TPCI is designed to be transported throughout the continental United States. The transportation cask containing the cesium source capsules is transported separately from the irradiation unit and is installed when the TPCI unit has been readied for operation at a particular site. The transportation cask is a separate unit and is documented in a separate FSAR

  4. Regulatory applications of probabilistic safety analysis in the OECD

    International Nuclear Information System (INIS)

    The paper summarizes the results and conclusions of a study conducted by the OECD Nuclear Energy Agency (NEA) Committee on Nuclear Regulatory Activities (CNRA) on the approaches taken by regulatory organizations to deal with probabilistic safety analysis (PSA). The information for the study was collected through a questionnaire distributed to the OECD/NEA member countries. This information was then discussed in depth by a committee consisting of senior representatives of regulatory organizations. The paper establishes the general background and the regulatory environment in which PSAs are currently being used in the member countries. On this basis, national programmes, real case examples of the application of PSA, and the direction and trends for future use of PSA are developed. It is evident that PSA is in a state of transition from its use as an exploratory tool (by a small number of experts) to its use as a regulatory and management tool (by many organizations in a large number of applications) in the area of regulatory decision making. While experts recognize weaknesses or limitations in methodology and practices, the basic framework of PSA is a powerful tool for logically and systematically evaluating the sensitivity and importance to risk in many different applications. It is also understood and recognized that these so-called weaknesses and limitations could be solved or overcome by additional and continuing research and development. (author)

  5. Soft Mathematical Aggregation in Safety Assessment and Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J. Arlin

    1999-06-10

    This paper improves on some of the limitations of conventional safety assessment and decision analysis methods. It develops a top-down mathematical method for expressing imprecise individual metrics as possibilistic or fuzzy numbers and shows how they may be combined (aggregated) into an overall metric, also portraying the inherent uncertainty. Both positively contributing and negatively contributing factors are included. Metrics are weighted according to significance of the attribute and evaluated as to contribution toward the attribute. Aggregation is performed using exponential combination of the metrics, since the accumulating effect of such factors responds less and less to additional factors. This is termed soft mathematical aggregation. Dependence among the contributing factors is accounted for by incorporating subjective metrics on overlap of the factors and by correspondingly reducing the overall contribution of these combinations to the overall aggregation. Decisions corresponding to the meaningfulness of the results are facilitated in several ways. First, the results are compared to a soft threshold provided by a sigmoid function. Second, information is provided on input ''Importance'' and ''Sensitivity,'' in order to know where to place emphasis on controls that may be necessary. Third, trends in inputs and outputs are tracked in order to add important information to the decision process. The methodology has been implemented in software.

  6. Extension of HCDA safety analysis to large PCRV containment structures

    Energy Technology Data Exchange (ETDEWEB)

    Marchertas, A.H.; Fistedis, S.H.; Bazant, A.P.; Belytschko, T.

    1977-01-01

    The introduction of PCRV as part of LMFBR containment also brings in the need for dynamic analysis. The conventional design would not be adequate for designing PCRVs subject to highly transient loading. The PCRV models described provide a valuable illustration of the design arrived at by conventional means and loaded dynamically by means of the transient computer code. In particular the value of the computer code is realized in the case of the loop-type model. The original pressure-volume source used for the illustrative examples corresponds to a total available energy of 2720 MW-s, if the expansion were continued down to one bar. Thus the energy source is considerably larger than the energy releases utilized in the currently prevailing LMFBR safety evaluations. Although the resultant pressure acting on the walls of the PCRV varies with the particular design, the two sample cases indicate that no apparent difficulty is encountered in designing the PCRV to sustain those higher loads. The computer code is established as a valuable tool to study the PCRV response. It serves as a means to locate critical areas of the particular design. Parameter- or sensitivity studies could thus be made with great efficiency. As an example, one interesting and somewhat unexpected result of the illustrations presented is the occurrence of circumferential cracks through the walls of the PCRV.

  7. Establishment of joint application system of safety analysis codes between Korea and Vietnam

    International Nuclear Information System (INIS)

    The following KAERI-VAEI collaboration works have been performed during the 2 year project ('09.4∼'11.4). 1) On the job training of Vietnam code users(1st training for 4 VAEI staff-3 months. 2nd training for 3 VAEI staff- 3 month), 2) Lecture of nuclear safety analysis (30 hrs basic course and 30 hrs advanced course), 3) Review of safety analysis method (IAEA safety concept and requirements), 4) Collaborative assessment of safety analysis code MARS (13 conceptual problem, 2 separate effect test problem, 1 integral effect test problem), 5) Input deck preparation of standard PWR (Preparation of APR1400 input deck and safety analysis of DBA). VAEI staffs have been familiarized to Korean PWR safety assessment technology through the collaboration assessment work using a computer code developed in Korea. The lectures for Vietnamese research will be contributed to the utilization and cultivation of Korean safety technology. The collaborated assessment works will be used for the establishment of MARS based safety analysis system which is independent from US safety assessment system

  8. Automated validation of patient safety clinical incident classification: macro analysis.

    Science.gov (United States)

    Gupta, Jaiprakash; Patrick, Jon

    2013-01-01

    Patient safety is the buzz word in healthcare. Incident Information Management System (IIMS) is electronic software that stores clinical mishaps narratives in places where patients are treated. It is estimated that in one state alone over one million electronic text documents are available in IIMS. In this paper we investigate the data density available in the fields entered to notify an incident and the validity of the built in classification used by clinician to categories the incidents. Waikato Environment for Knowledge Analysis (WEKA) software was used to test the classes. Four statistical classifier based on J48, Naïve Bayes (NB), Naïve Bayes Multinominal (NBM) and Support Vector Machine using radial basis function (SVM_RBF) algorithms were used to validate the classes. The data pool was 10,000 clinical incidents drawn from 7 hospitals in one state in Australia. In first part of the study 1000 clinical incidents were selected to determine type and number of fields worth investigating and in the second part another 5448 clinical incidents were randomly selected to validate 13 clinical incident types. Result shows 74.6% of the cells were empty and only 23 fields had content over 70% of the time. The percentage correctly classified classes on four algorithms using categorical dataset ranged from 42 to 49%, using free-text datasets from 65% to 77% and using both datasets from 72% to 79%. Kappa statistic ranged from 0.36 to 0.4. for categorical data, from 0.61 to 0.74. for free-text and from 0.67 to 0.77 for both datasets. Similar increases in performance in the 3 experiments was noted on true positive rate, precision, F-measure and area under curve (AUC) of receiver operating characteristics (ROC) scores. The study demonstrates only 14 of 73 fields in IIMS have data that is usable for machine learning experiments. Irrespective of the type of algorithms used when all datasets are used performance was better. Classifier NBM showed best performance. We think the

  9. The Unsuspected Roles of Chemistry in Nuclear Power Plants: Special Chemical Technologies for Enhanced Safety and Increased Performance

    Energy Technology Data Exchange (ETDEWEB)

    Sempere Belda, Luis [AREVA NP GmbH, An AREVA and SIEMENS Company, P.O. Box 1109, Erlangen (Germany)

    2008-07-01

    The plant's chemists main responsibility is the establishment and monitoring of an adequate water chemistry to minimize corrosion and in PWRs, to control the neutron flux. But this is by no means the only way in which chemical applications contribute to the performance and safety of a NPP during its entire life: The use of special coatings and treatment protects the plant's components from aggressive environmental conditions. The chemical scale removal in steam generators improves the power output of aging plants, helping even to achieve permissions for NPP life extension. The use of special adhesives can replace welding in complicated or high-dose areas, even underwater. And chemical decontamination is used to remove activity from the components of the primary circuit prior to maintenance or replacement works in order to decrease the radiation exposure of the plant's personnel, employing revolutionary methods of waste minimization to limit the amount of generated radioactive waste to a minimum. The AREVA Group, in its pursue of excellence in all stages of the nuclear cycle, has devoted years of research and development to be able to provide the most advanced technological solutions in this field. The awareness of the existing possibilities will help present and future nuclear professionals, chemists and non-chemists alike, to benefit from the years of experience and continuous development in chemical technologies at the service of the nuclear industry. (authors)

  10. Chemical contents in Lygeum spartum L. using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nedjimi, Bouzid [Djelfa Univ. (Algeria). Lab. of Exploration and Valorization of Steppe Ecosystem; Beladel, Brahim [Djelfa Univ. (Algeria)

    2015-09-01

    The present investigation was conducted to determine the chemical contents of Lygeum spartum L. (Poaceae). Samples were analyzed in order to determine essential (Ca, K, Na, Fe, Co) and some potentially toxic elements (Eu, Sb, Tb) using instrumental neutron activation analysis (INAA). In general chemical element contents were in substantial amounts to meet adult sheep requirements. Potential intake of Ca, K, Zn, Co and Fe by ruminant weighing 50 kg BW consuming 2.0 kg per day DM was sufficient to satisfy their requirements. However, only Na level was still insufficient to meet the requirements for grazing ruminants. Potential toxic elements in this species were within the safety baseline of all the assayed elements recommended by NRC. Na supplementation would seem to be necessary in this zone, for optimum productivity of grazing animals.

  11. Chemical analysis of Ginkgo biloba leaves and extracts

    NARCIS (Netherlands)

    Beek, van T.A.

    2002-01-01

    The chemical analysis and quality control of Ginkgo leaves and extracts is reviewed. Important constituents present in the medicinally used leaves are the terpene trilactones, i.e., ginkgolides A, B, C, J and bilobalide, many flavonol glycosides, biflavones, proanthocyanidins, alkylphenols, simple p

  12. Shotgun lipidomic analysis of chemically sulfated sterols compromises analytical sensitivity

    DEFF Research Database (Denmark)

    Casanovas, Albert; Hannibal-Bach, Hans Kristian; Jensen, Ole Nørregaard;

    2014-01-01

    Fourier transform mass spectrometry (FTMS) for identification and quantification of lipid species [6]. Shotgun lipidomics affords extensive lipidome coverage by combining the analysis of lipid extracts in positive and negative ion mode [1, 3]. Notably, sterols such as cholesterol and ergosterol exhibit...... low ionization efficiency in ESI [7]. For this reason, chemical derivatization procedures including acetylation [8] or sulfation [9] are commonly implemented to facilitate ionization, detection and quantification of sterols for global lipidome analysis [1-3, 10]....

  13. Sensitivity analysis: Theory and practical application in safety cases

    International Nuclear Information System (INIS)

    The projects described here aim at deriving an adaptive and stepwise approach to sensitivity analysis (SA). Since the appropriateness of a single SA method strongly depends on the nature of the model under study, a top-down approach (from simple to sophisticated methods) is suggested. If simple methods explain the model behaviour sufficiently well then there is no need for applying more sophisticated ones and the SA procedure can be considered complete. The procedure is developed and tested using a model for a LLW/ILW repository in salt. Additionally, a new model for the disposal of HLW in rock salt will be available soon for SA studies within the MOSEL/NUMSA projects. This model will address special characteristics of waste disposal in undisturbed rock salt, especially the case of total confinement, resulting in a zero release which is indeed the objective of radioactive waste disposal. A high proportion of zero-output realisations causes many SA methods to fail, so special treatment is needed and has to be developed. Furthermore, the HLW disposal model will be used as a first test case for applying the procedure described above, which was and is being derived using the LLW/ILW model. How to treat dependencies in the input, model conservatism and time-dependent outputs will be addressed in the future project programme: - If correlations or, more generally, dependencies between input parameters exist, the question arises about the deeper meaning of sensitivity results in such cases: A strict separation between inputs, internal states and outputs is no longer possible. Such correlations (or dependencies) might have different reasons. In some cases correlated input parameters might have a common physically (well-)known fundamental cause but there are reasons why this fundamental cause cannot or should not be integrated into the model, i.e. the cause might generate a very complex model which cannot be calculated in appropriate time. In other cases the correlation may

  14. Collaborative decision support and documentation in chemical safety with KnowSEC.

    Science.gov (United States)

    Baumeister, Joachim; Striffler, Albrecht; Brandt, Marc; Neumann, Michael

    2016-01-01

    To protect the health of human and environment, the European Union implemented the REACH regulation for chemical substances. REACH is an acronym for Registration, Evaluation, Authorization, and Restriction of Chemicals. Under REACH, the authorities have the task of assessing chemical substances, especially those that might pose a risk to human health or environment. The work under REACH is scientifically, technically and procedurally a complex and knowledge-intensive task that is jointly performed by the European Chemicals Agency and member state authorities in Europe. The assessment of substances under REACH conducted in the German Environment Agency is supported by the knowledge-based system KnowSEC, which is used for the screening, documentation, and decision support when working on chemical substances. The software KnowSEC integrates advanced semantic technologies and strong problem solving methods. It allows for the collaborative work on substances in the context of the European REACH regulation. We discuss the applied methods and process models and we report on experiences with the implementation and use of the system. PMID:27110289

  15. Finite mixture models for sensitivity analysis of thermal hydraulic codes for passive safety systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Nicola, Giancarlo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge Fondation EDF, Ecole Centrale Paris and Supelec, Paris (France); Yu, Yu [School of Nuclear Science and Engineering, North China Electric Power University, 102206 Beijing (China)

    2015-08-15

    Highlights: • Uncertainties of TH codes affect the system failure probability quantification. • We present Finite Mixture Models (FMMs) for sensitivity analysis of TH codes. • FMMs approximate the pdf of the output of a TH code with a limited number of simulations. • The approach is tested on a Passive Containment Cooling System of an AP1000 reactor. • The novel approach overcomes the results of a standard variance decomposition method. - Abstract: For safety analysis of Nuclear Power Plants (NPPs), Best Estimate (BE) Thermal Hydraulic (TH) codes are used to predict system response in normal and accidental conditions. The assessment of the uncertainties of TH codes is a critical issue for system failure probability quantification. In this paper, we consider passive safety systems of advanced NPPs and present a novel approach of Sensitivity Analysis (SA). The approach is based on Finite Mixture Models (FMMs) to approximate the probability density function (i.e., the uncertainty) of the output of the passive safety system TH code with a limited number of simulations. We propose a novel Sensitivity Analysis (SA) method for keeping the computational cost low: an Expectation Maximization (EM) algorithm is used to calculate the saliency of the TH code input variables for identifying those that most affect the system functional failure. The novel approach is compared with a standard variance decomposition method on a case study considering a Passive Containment Cooling System (PCCS) of an Advanced Pressurized reactor AP1000.

  16. Recent advances in chemical imaging technology for the detection of contaminants for food safety and security

    Science.gov (United States)

    Priore, Ryan J.; Olkhovyk, Oksana; Drauch, Amy; Treado, Patrick; Kim, Moon; Chao, Kaunglin

    2009-05-01

    The need for routine, non-destructive chemical screening of agricultural products is increasing due to the health hazards to animals and humans associated with intentional and unintentional contamination of foods. Melamine, an industrial additive used to increase flame retardation in the resin industry, has recently been used to increase the apparent protein content of animal feed, of infant formula, as well as powdered and liquid milk in the dairy industry. Such contaminants, even at regulated levels, pose serious health risks. Chemical imaging technology provides the ability to evaluate large volumes of agricultural products before reaching the consumer. In this presentation, recent advances in chemical imaging technology that exploit Raman, fluorescence and near-infrared (NIR) are presented for the detection of contaminants in agricultural products.

  17. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    International Nuclear Information System (INIS)

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: sm-bullet Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) sm-bullet Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as open-quotes lowclose quotes hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with open-quotes moderateclose quotes or open-quotes highclose quotes hazard classifications

  18. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: {sm_bullet} Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) {sm_bullet} Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as {open_quotes}low{close_quotes} hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with {open_quotes}moderate{close_quotes} or {open_quotes}high{close_quotes} hazard classifications.

  19. Organizational analysis and safety for utilities with nuclear power plants: perspectives for organizational assessment. Volume 2

    International Nuclear Information System (INIS)

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. Volume 1 of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety. The six chapters of this volume discuss the major elements in our general approach to safety in the nuclear industry. The chapters include information on organizational design and safety; organizational governance; utility environment and safety related outcomes; assessments by selected federal agencies; review of data sources in the nuclear power industry; and existing safety indicators

  20. Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they?

    DEFF Research Database (Denmark)

    Carvalho, Raquel N.; Arukwe, Augustine; Ait-Aissa, Selim;

    2014-01-01

    The risk posed by complex chemical mixtures in the environment to wildlife and humans is increasingly debated, but has been rarely tested under environmentally relevant scenarios. To address this issue, two mixtures of 14 or 19 substances of concern (pesticides, pharmaceuticals, heavy metals...... levels. A consortium of 16 laboratories was involved in performing the bioassays. The mixtures elicited quantifiable toxic effects on some of the test systems employed, including i) changes in marine microbial composition, ii) microalgae toxicity, iii) immobilization in the crustacean Daphnia magna, iv...... on the assessment of chemical mixtures even in cases where individual toxicants are present at seemingly harmless concentrations....

  1. Dukovany nuclear power plant safety

    International Nuclear Information System (INIS)

    Presentation covers recommended safety issues for the Dukovany NPP which have been solved with satisfactory conclusions. Safety issues concerned include: radiation safety; nuclear safety; security; emergency preparedness; health protection at work; fire protection; environmental protection; chemical safety; technical safety. Quality assurance programs at all stages on NPP life time is described. Report includes description of NPP staff training provision, training simulator, emergency operating procedures, emergency preparedness, Year 2000 problem, inspections and life time management. Description of Dukovany Plant Safety Analysis Projects including integrity of the equipment, modernisation, equipment innovation and safety upgrading program show that this approach corresponds to the actual practice applied in EU countries, and fulfilment of current IAEA requirements for safety enhancement of the WWER 440/213 units in the course of MORAWA Equipment Upgrading program

  2. Analysis of Current Global Nuclear Safety and Security Cooperation

    Institute of Scientific and Technical Information of China (English)

    Liu; Chong

    2014-01-01

    Last year, global nuclear security and safety cooperation achieved some progress. In terms of nuclear safety, too many flaws are exposed by the current severe situation of the Fukushima in Japan’s new nuclear safety regulation system, and sound the alarm for East Asia countries accelerating the regional nuclear safety cooperation. In terms of nuclear security, since the Seoul Summit in March 2012, global nuclear security cooperation has achieved new successes. IAEA has and would play the central role in pushing forward the international framework and strengthening nuclear security globally. However, there are still some obstacles to overcome in the future, which need international society to enhance communication and common understanding, especially high-level consultations.

  3. Remarks on statistical aspects of safety analysis of complex systems

    CERN Document Server

    Pál, L

    2003-01-01

    We analyze safety problems of complex systems using the methods of mathematical statistics for testing the output variables of a code simulating the operation of the system under consideration when the input variables are uncertain. We have defined a black box model of the code and derived formulas to calculate the number of runs needed for a given confidence level to achieve a preassigned measure of safety. In order to show the capabilities of different statistical methods, firstly we have investigated one output variable with unknown and known distribution functions. The general conclusion has been that the different methods do not bring about large differences in the number of runs needed to ensure a given level of safety. Analyzing the case of several statistically dependent output variables we have arrived at the conclusion that the testing of the variables separately may lead to false, safety related decisions with unforseen consequences. We have advised two methods: the sign test and the tolerance inte...

  4. Safety culture evaluation and asset root cause analysis

    International Nuclear Information System (INIS)

    This paper examines the role of organizational and management factors in nuclear power plant safety through the use of operating experiences. The ASSET reports of thirteen plants (total thirty events) have been analyzed in term of twenty organizational dimensions (factors) identified by Brookhaven National Laboratory and Pennsylvania State University. For three plants detailed results are reported in this paper. The results of thirteen plants are summarized in the form of a table. The study tends to confirm that organizational and management factors play an important role in plant safety. The twenty organizational dimensions and their definitions, in general, were adequate in this study. Formalization, safety culture, technical knowledge, training, roles-responsibilities and problem identification appear to be key organizational factors which influence the safety of nuclear power plants studied. (author)

  5. Mines Systems Safety Improvement Using an Integrated Event Tree and Fault Tree Analysis

    Science.gov (United States)

    Kumar, Ranjan; Ghosh, Achyuta Krishna

    2016-06-01

    Mines systems such as ventilation system, strata support system, flame proof safety equipment, are exposed to dynamic operational conditions such as stress, humidity, dust, temperature, etc., and safety improvement of such systems can be done preferably during planning and design stage. However, the existing safety analysis methods do not handle the accident initiation and progression of mine systems explicitly. To bridge this gap, this paper presents an integrated Event Tree (ET) and Fault Tree (FT) approach for safety analysis and improvement of mine systems design. This approach includes ET and FT modeling coupled with redundancy allocation technique. In this method, a concept of top hazard probability is introduced for identifying system failure probability and redundancy is allocated to the system either at component or system level. A case study on mine methane explosion safety with two initiating events is performed. The results demonstrate that the presented method can reveal the accident scenarios and improve the safety of complex mine systems simultaneously.

  6. Analysis Study of Survey for Safety and Efficacy of Pharmacopuncture

    OpenAIRE

    Hong Kwon-eui

    2010-01-01

    This study was done in order to present clinical trial method for safety and efficacy of Pharmacopuncture. The results were summarized as follow:Objective : The purpose of this study is to verify about safety and effectiveness of pharmacopuncture. Methods : We use questionnaire created by expert group. Survey was conducted to target clinicians who using pharmacopuncture more then 5 years. Results & Conclusion : Pharmacopuncture is effective. and that is widely used in the musculoskeleta...

  7. Reliability Analysis of Public Survey in Satisfaction with Nuclear Safety

    International Nuclear Information System (INIS)

    Korea Institute of Nuclear Safety (KINS) carried out a questionnaire survey on public's understanding nuclear safety and regulation in order to grasp public acceptance for nuclear energy. The survey was planned to help to analyze public opinion on nuclear energy and provide basic data for advertising strategy and policy development. In this study, based on results of the survey, the reliability of the survey was evaluated according to each nuclear site

  8. Remarks on statistical aspects of safety analysis of complex systems

    OpenAIRE

    Pal, L.; Makai, M.

    2003-01-01

    We analyze safety problems of complex systems using the methods of mathematical statistics for testing the output variables of a code simulating the operation of the system under consideration when the input variables are uncertain. We have defined a black box model of the code and derived formulas to calculate the number of runs needed for a given confidence level to achieve a preassigned measure of safety. In order to show the capabilities of different statistical methods, firstly we have i...

  9. Near-field Optical Imagigng and Chemical Analysis

    Science.gov (United States)

    Andres, La Rosa

    1998-03-01

    Identification of molecular structures in complex mixtures represents a major challenge in chemical research today. Microfabricated devices or lab-on-a-chip that perform chemical analysis allows dynamic sampling of picoliter microenvironments and separation. The long-term goals of nanochemistry down to the femtoliter scale involve refinement of the detection limit to single-molecule. Our approach consists in designing a very sensitive near-field optical microscope (NSOM-SIAM) to explore the mesoscopic properties of organic compounds. The validity, sensitivity and unique spatial resolution of this system will be discussed for multiple analyte chemosensing.

  10. An Extended Algorithm of Flexibility Analysis in Chemical Engineering Processes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An extended algorithm of flexibility analysis with a local adjusting method for flexibility region of chemical processes, which is based on the active constraint strategy, is proposed, which fully exploits the flexibility region of the process system operation. The hyperrectangular flexibility region determined by the extended algorithm is larger than that calculated by the previous algorithms. The limitation of the proposed algorithm due to imperfect convexity and its corresponding verification measure are also discussed. Both numerical and actual chemical process examples are presented to demonstrate the effectiveness of the new algorithm.

  11. New Methods and Tools to Perform Safety Analysis within RISMC

    Energy Technology Data Exchange (ETDEWEB)

    Diego Mandelli; Curtis Smith; Cristian Rabiti; Andrea Alfonsi; Robert Kinoshita; Joshua Cogliati

    2013-11-01

    The Risk Informed Safety Margins Characterization (RISMC) Pathway uses a systematic approach developed to characterize and quantify safety margins of nuclear power plant structures, systems and components. What differentiates the RISMC approach from traditional probabilistic risk assessment (PRA) is the concept of safety margin. In PRA, a safety metric such as core damage frequency (CDF) is generally estimated using static fault-tree and event-tree models. However, it is not possible to estimate how close we are to physical safety limits (say peak clad temperature) for most accident sequences described in the PRA. In the RISMC approach, what we want to understand is not just the frequency of an event like core damage, but how close we are (or not) to this event and how we might increase our safety margin through margin management strategies in a Dynamic PRA (DPRA) fashion. This paper gives an overview of methods that are currently under development at the Idaho National Laboratory (INL) with the scope of advance the current state of the art of dynamic PRA.

  12. 75 FR 29754 - Claims of Confidentiality of Certain Chemical Identities Contained in Health and Safety Studies...

    Science.gov (United States)

    2010-05-27

    ... U.S.C. 2601 et seq.). You may be identified by the North American Industrial Classification System... processes used in the manufacturing or processing of a chemical substance or mixture or, in the case of a..., identified by docket identification (ID) number EPA-HQ-OPPT-2010-0446, by one of the following...

  13. High-throughput Raman chemical imaging for rapid evaluation of food safety and quality

    Science.gov (United States)

    High-throughput macro-scale Raman chemical imaging was realized on a newly developed line-scan hyperspectral system. The system utilizes a custom-designed 785 nm line laser with maximum power of 5 W as an excitation source. A 24 cm × 1 mm excitation line is normally projected on the sample surface u...

  14. The Impact of Flow Injection on Modern Chemical Analysis

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    There is no doubt that Flow Injection Analysis (FIA) has had a profound impact on the ways and means that modern analytical chemical procedures are performed. This is amply reflected in the voluminous scientific literature, which by the middle of 2004 passed more than 14,500 FIA-publications in i......There is no doubt that Flow Injection Analysis (FIA) has had a profound impact on the ways and means that modern analytical chemical procedures are performed. This is amply reflected in the voluminous scientific literature, which by the middle of 2004 passed more than 14,500 FIA...... and preconcentration procedures. In recent years, FIA has been supplemented by Sequential Injection Analysis (SIA) and the Lab-on-Valve (LOV) approach. Following a brief historic introduction and an account of the impact of FIA in academia, the lecture will describe these two new generations of FIA, accompanied...

  15. Antioxidant capacity versus chemical safety of wheat bread enriched with pomegranate peel powder

    DEFF Research Database (Denmark)

    Altunkaya, Arzu; Hedegaard, Rikke Susanne Vingborg; Brimer, Leon;

    2013-01-01

    Pomegranate peel powder (PP), a by-product of the pomegranate juice industry rich in polyphenols, was explored for use in bread production, due to its potential health effects. Wheat bread was prepared using different levels for replacement of flour with PP (0 to 10 g per 100 g flour) resulting...... electron spin resonance (ESR) spectroscopy, and peroxide value, and the highest capacity of scavenging of radicals (Fremy's salt) and the lowest content of peroxide values were found in bread with the highest percentage of PP. Safety evaluation was performed by the Artemia salina assay. An increased death...

  16. Probabilistic reliability analysis, quantitative safety goals, and nuclear licensing in the United Kingdom.

    Science.gov (United States)

    Cannell, W

    1987-09-01

    Although unpublicized, the use of quantitative safety goals and probabilistic reliability analysis for licensing nuclear reactors has become a reality in the United Kingdom. This conclusion results from an examination of the process leading to the licensing of the Sizewell B PWR in England. The licensing process for this reactor has substantial implications for nuclear safety standards in Britain, and is examined in the context of the growing trend towards quantitative safety goals in the United States. PMID:3685540

  17. Analysis on evaluation ability of nonlinear safety assessment model of coal mines based on artificial neural network

    Institute of Scientific and Technical Information of China (English)

    SHI Shi-liang; LIU Hai-bo; LIU Ai-hua

    2004-01-01

    Based on the integration analysis of goods and shortcomings of various methods used in safety assessment of coal mines, combining nonlinear feature of mine safety sub-system, this paper establishes the neural network assessment model of mine safety, analyzes the ability of artificial neural network to evaluate mine safety state, and lays the theoretical foundation of artificial neural network using in the systematic optimization of mine safety assessment and getting reasonable accurate safety assessment result.

  18. Deterministic and risk-informed approaches for safety analysis of advanced reactors: Part I, deterministic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang Kyu [Korea Institute of Nuclear Safety, 19 Kusong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Kim, Inn Seock, E-mail: innseockkim@gmail.co [ISSA Technology, 21318 Seneca Crossing Drive, Germantown, MD 20876 (United States); Oh, Kyu Myung [Korea Institute of Nuclear Safety, 19 Kusong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of)

    2010-05-15

    The objective of this paper and a companion paper in this issue (part II, risk-informed approaches) is to derive technical insights from a critical review of deterministic and risk-informed safety analysis approaches that have been applied to develop licensing requirements for water-cooled reactors, or proposed for safety verification of the advanced reactor design. To this end, a review was made of a number of safety analysis approaches including those specified in regulatory guides and industry standards, as well as novel methodologies proposed for licensing of advanced reactors. This paper and the companion paper present the review insights on the deterministic and risk-informed safety analysis approaches, respectively. These insights could be used in making a safety case or developing a new licensing review infrastructure for advanced reactors including Generation IV reactors.

  19. Testing Chemical Safety: What Is Needed to Ensure the Widespread Application of Non-animal Approaches?

    OpenAIRE

    Natalie Burden; Fiona Sewell; Kathryn Chapman

    2015-01-01

    Scientists face growing pressure to move away from using traditional animal toxicity tests to determine whether manufactured chemicals are safe. Numerous ethical, scientific, business, and legislative incentives will help to drive this shift. However, a number of hurdles must be overcome in the coming years before non-animal methods are adopted into widespread practice, particularly from regulatory, scientific, and global perspectives. Several initiatives are nevertheless underway that promis...

  20. Prospective Safety Analysis and the Complex Aviation System

    Science.gov (United States)

    Smith, Brian E.

    2013-01-01

    Fatal accident rates in commercial passenger aviation are at historic lows yet have plateaued and are not showing evidence of further safety advances. Modern aircraft accidents reflect both historic causal factors and new unexpected "Black Swan" events. The ever-increasing complexity of the aviation system, along with its associated technology and organizational relationships, provides fertile ground for fresh problems. It is important to take a proactive approach to aviation safety by working to identify novel causation mechanisms for future aviation accidents before they happen. Progress has been made in using of historic data to identify the telltale signals preceding aviation accidents and incidents, using the large repositories of discrete and continuous data on aircraft and air traffic control performance and information reported by front-line personnel. Nevertheless, the aviation community is increasingly embracing predictive approaches to aviation safety. The "prospective workshop" early assessment tool described in this paper represents an approach toward this prospective mindset-one that attempts to identify the future vectors of aviation and asks the question: "What haven't we considered in our current safety assessments?" New causation mechanisms threatening aviation safety will arise in the future because new (or revised) systems and procedures will have to be used under future contextual conditions that have not been properly anticipated. Many simulation models exist for demonstrating the safety cases of new operational concepts and technologies. However the results from such models can only be as valid as the accuracy and completeness of assumptions made about the future context in which the new operational concepts and/or technologies will be immersed. Of course that future has not happened yet. What is needed is a reasonably high-confidence description of the future operational context, capturing critical contextual characteristics that modulate