WorldWideScience

Sample records for chemically treated wood

  1. Chemical remediation of wood treated with micronised, nano or soluble copper preservatives

    Science.gov (United States)

    Saip Nami Kartal; Evren Terzi; Bessie Woodward; Carol A. Clausen; Stan T. Lebow

    2013-01-01

    The potential for extraction of copper from wood treated with micronised, nano or soluble forms of copper has been evaluated in view of chemical remediation. In focus were EDTA, oxalic acid, bioxalate, and D-gluconic acid for extraction of Cu from treated wood. Bioxalate extractions for 24 h resulted in Cu removal over 95% for all tested...

  2. Chemical yields from low-temperature pyrolysis of CCA-treated wood

    Science.gov (United States)

    Qirong Fu; Dimitris Argyropolous; Lucian Lucia; David Tilotta; Stan Lebow

    2009-01-01

    Low-temperature pyrolysis offers a feasible option for wood-waste management and the recovery of a variety of useful chemicals. The effect of chromated copper arsenate (CCA) wood preservative on the yield and composition of various pyrolysis products was investigated in the present research. A novel quantitative 31P nuclear magnetic resonance (...

  3. FIRE RESISTANCE OF DOUGLAS FIR [Pseudotsuga menziesii (Mirb. Franco] WOOD TREATED WITH SOME CHEMICALS

    Directory of Open Access Journals (Sweden)

    M. Kemal YALINKILIÇ

    1998-02-01

    Full Text Available Combustible properties of treated douglas wood specimens and fire-retardancy of some preservatives were tested in this study. Crib test of ASTM E 160-150 was followed. Results indicated that, aqueous solutions of boric acid (BA, borax (Bx (Na2BO7 10H2O or BA + Bx mixture (7: 3, w: w had fire retardant efficacy (FRE over untreated wood and reduced the combustibility of vinil monomers (Styrene and methylmetacrylate which were applied as secondary treatment.

  4. Chemical modification of wood

    Science.gov (United States)

    Roger M. Rowell

    2007-01-01

    After millions of years of evolution, wood was designed to perform in a wet environment, and nature is programmed to recycle it, in a timely way, back to the basic building blocks of carbon dioxide and water through biological, thermal, aqueous, photochemical, chemical, and mechanical degradation. The properties of wood are, for the most part, a result of the chemistry...

  5. Chemical changes and increased degradability of wheat straw and oak wood chips treated with the white rot fungi Ceriporiopsis subvermispora and Lentinula edodes

    NARCIS (Netherlands)

    Kuijk, van Sandra J.A.; Sonnenberg, Anton S.M.; Baars, Johan J.P.; Hendriks, Wouter H.; Río, del José C.; Rencoret, Jorge; Gutiérrez, Ana; Ruijter, de Norbert C.A.; Cone, John W.

    2017-01-01

    Wheat straw and oak wood chips were incubated with Ceriporiopsis subvermispora and Lentinula edodes for 8 weeks. Samples from the fungal treated substrates were collected every week for chemical characterization. L. edodes continuously grew during the 8 weeks on both wheat straw and oak wood chips,

  6. The challenge of bonding treated wood

    Science.gov (United States)

    Charles R. Frihart

    2004-01-01

    Wood products are quite durable if exposure to moisture is minimized; however, most uses of wood involve considerable exposure to moisture. To preserve the wood, chemicals are used to minimize moisture pickup, to prevent insect attack, and/or to resist microbial growth. The chemicals used as preservatives can interfere with adhesive bonds to wood. Given the many...

  7. Marine exposure of preservative-treated small wood panels

    Science.gov (United States)

    B. R. Johnson; D. I. Gutzmer

    1984-01-01

    Small wood panels treated with many different chemicals have been exposed to limnorian and teredine marine borers in the sea at Key West, Florida. These preservatives and treatments include creosotes with and without modification, waterborne salts, salt-creosote dual treatments, chemical modifications of wood, and modified polymers. In spite of the accelerated nature...

  8. Bioremediation of treated wood with fungi

    Science.gov (United States)

    Barbara L. Illman; Vina W. Yang

    2006-01-01

    The authors have developed technologies for fungal bioremediation of waste wood treated with oilborne or metal-based preservatives. The technologies are based on specially formulated inoculum of wood-decay fungi, obtained through strain selection to obtain preservative-tolerant fungi. This waste management approach provides a product with reduced wood volume and the...

  9. Corrosion of Fasteners in Wood Treated with Newer Wood Preservatives

    Science.gov (United States)

    Samuel L. Zelinka

    2013-01-01

    This document compiles recent research findings related to corrosion of metals in preservative treated wood into a single report on corrosion of metals in wood. The research was conducted as part of the Research, Technology and Education portion of the National Historic Covered Bridge Preservation (NHCBP) Program administered by the Federal Highway Administration. The...

  10. Finishability of CCA pressure-treated wood

    Science.gov (United States)

    Alan Ross; Richard Carlson; William Feist; Steven Bussjaeger

    2000-01-01

    Thus, a need arose for the development of surface finishes for CCA-treated wood that could address the special requirements of this substrate and provide protection against the ravages of water, sunlight, mildew, and other aspects of weathering and wear. Initially, this need was not addressed, most wood preserving companies had little expertise in surface finishes and...

  11. Biocide leaching from CBA treated wood — A mechanistic interpretation

    International Nuclear Information System (INIS)

    Lupsea, Maria; Mathies, Helena; Schoknecht, Ute; Tiruta-Barna, Ligia; Schiopu, Nicoleta

    2013-01-01

    Treated wood is frequently used for construction. However, there is a need to ensure that biocides used for the treatment are not a threat for people or environment. The paper focused on Pinus sylvestris treated with copper–boron–azole (CBA), containing tebuconazole as organic biocide and monoethanolamine (Mea). This study investigates chemical mechanisms of fixation and mobilisation involved in the leaching process of the used inorganic and organic biocides in CBA. A pH dependent leaching test was performed, followed by a set of complementary analysis methods in order to identify and quantify the species released from wood. The main findings of this study are: -Organic compounds are released from untreated and treated wood; the quantity of released total organic carbon, carboxylic and phenolic functions increasing with the pH. -Nitrogen containing compounds, i.e. mainly Mea and its reaction products with extractives, are released in important quantities from CBA treated wood, especially at low pH. -The release of copper is the result of competitive reactions: fixation via complexation reactions and complexation with extractives in the liquid phase. The specific pH dependency of Cu leaching is explained by the competition of ligands for protonation and complexation. -Tebuconazole is released to a lesser extent relative to its initial content. Its fixation on solid wood structure seems to be influenced by pH, suggesting interactions with -OH groups on wood. Boron release appears to be pH independent and very high. This confirms its weak fixation on wood and also no or weak interaction with the extractives. - Highlights: ► A pH dependent leaching mechanism for CBA treated wood is described. ► The fixation and mobilisation of inorganic and organic biocides was investigated. ► Extractives' quantity and nature depend on pH. ► Competition of ligands for protonation and complexation explains Cu behaviour. ► Tebuconazole seems to interact with -OH groups on

  12. Modelling inorganic biocide emission from treated wood in water

    Energy Technology Data Exchange (ETDEWEB)

    Tiruta-Barna, Ligia, E-mail: Ligia.barna@insa-toulouse.fr [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); INRA, UMR792, Laboratoire d' Ingenierie des Systemes Biologiques et des Procedes, F-31400 Toulouse (France); CNRS, UMR5504, F-31400 Toulouse (France); Schiopu, Nicoleta [Universite Paris-Est, CSTB- Scientific and Technical Centre for the Building Industry, ESE/Environment, 24, rue Joseph Fourier, 38400 Saint Martin d' Heres (France)

    2011-09-15

    Highlights: {center_dot} We developed a mechanistic model for biocide metals fixation/mobilisation in wood. {center_dot} This is the first chemical model explaining the biocide leaching from treated wood. {center_dot} The main fixation mechanism is the surface complexation with wood polymers. {center_dot} The biocide mobilization is due to metal-DOC complexation and pH effect. - Abstract: The objective of this work is to develop a chemical model for explaining the leaching behaviour of inorganic biocides from treated wood. The standard leaching test XP CEN/TS14429 was applied to a commercial construction material made of treated Pinus sylvestris (Copper Boron Azole preservative). The experimental results were used for developing a chemical model under PHREEQC (a geochemical software, with LLNL, MINTEQ data bases) by considering the released species detected in the eluates: main biocides Cu and B, other trace biocides (Cr and Zn), other elements like Ca, K, Cl, SO{sub 4}{sup -2}, dissolved organic matter (DOC). The model is based on chemical phenomena at liquid/solid interfaces (complexation, ion exchange and hydrolysis) and is satisfactory for the leaching behaviour representation. The simulation results confronted with the experiments confirmed the hypotheses of: (1) biocide fixation by surface complexation reactions with wood specific sites (carboxyl and phenol for Cu, Zn, Cr(III), aliphatic hydroxyl for B, ion exchange to a lesser extent) and (2) biocide mobilisation by extractives (DOC) coming from the wood. The maximum of Cu, Cr(III) and Zn fixation occurred at neutral pH (including the natural pH of wood), while B fixation was favoured at alkaline pH.

  13. Determination of Mn, Fe, and Cu in chemically-treated wood pulps by the XRF addition method

    Energy Technology Data Exchange (ETDEWEB)

    Raemoe, J.; Klasila, T.; Piepponen, S. [VTT Chemical Technology (Finland); Sillanpaeae, M. [Oulu Univ. (Finland)

    2001-08-01

    A rapid X-ray fluorescence addition method has been developed for quantification of the technically most important metals in wood pulp matrix (Mn, Fe, and Cu). Pretreatment consisted of just two steps: first, acid was added to the sample to achieve homogeneous distribution of the metals; the pulp was then pressed lightly on to Mylar film. Total analysis time was less than 10 min. The concentration range investigated was up to 15 mg kg{sup -1} for Mn and up to 5 mg kg{sup -1} for Fe and Cu. Metal concentrations in Scandinavian pulps are not expected to exceed these amounts. The quantification limit was 2 mg kg{sup -1} for all three metals. The reproducibilities and repeatabilities were concentration-dependent and varied between 3 and 19% and between 1 and 17%, respectively. The squares of the linear correlation coefficients between measured intensity and added metal concentration were 0.994, 0.950, and 0.932 for Mn, Fe, and Cu, respectively. (orig.)

  14. Surface properties of thermally treated composite wood panels

    Science.gov (United States)

    Croitoru, Catalin; Spirchez, Cosmin; Lunguleasa, Aurel; Cristea, Daniel; Roata, Ionut Claudiu; Pop, Mihai Alin; Bedo, Tibor; Stanciu, Elena Manuela; Pascu, Alexandru

    2018-04-01

    Composite finger-jointed spruce and oak wood panels have been thermally treated under standard pressure and oxygen content conditions at two different temperatures, 180 °C and respectively 200 °C for short time periods (3 and 5 h). Due to the thermally-aided chemical restructuration of the wood components, a decrease in water uptake and volumetric swelling values with up to 45% for spruce and 35% for oak have been registered, comparing to the reference samples. In relation to water resistance, a 15% increase of the dispersive component of the surface energy has been registered for the thermal-treated spruce panels, which impedes water spreading on the surface. The thermal-treated wood presents superior resistance to accelerated UV exposure and subsequently, with up to 10% higher Brinell hardness values than reference wood. The proposed thermal treatment improves the durability of the finger-jointed wood through a more economically and environmental friendly method than traditional impregnation, with minimal degradative impact on the structural components of wood.

  15. Amount of leachant and water absorption levels of wood treated with borates and water repellents.

    Science.gov (United States)

    Baysal, Ergun; Sonmez, Abdullah; Colak, Mehmet; Toker, Hilmi

    2006-12-01

    Wood protection efficacy of borates against biological agents, flame retardancy, and suitability to the environment is well known. Since borates can be applied to timber as water based solutions, they are preferred economically as well. Even though they are highly mobile in wood, boron compounds are widely used in timber preservation. Borates migrate in liquid and increase the hygroscopicity of wood in damp conditions. This study deals with the physical restriction of water access in wood by impregnating water repellent agents into wood to limit amount of leachant and water absorption levels of wood after boron treatment. Borates were incorporated with polyethylene glycol-400 (PEG-400) their bulking effect in wood was considered. Results indicated that the amount of leachates from wood treated with borates in PEG-400 was remarkably higher compared to those of wood treated with the aqueous solutions of borates. Water absorption (WA) levels of wood treated with aqueous solutions of borates were higher than those of their treated samples with the solutions in PEG-400. Secondary treatments of wood with the water repellent (WR) chemicals following borate impregnation reduced the leaching of chemicals from wood in water and also WA of the specimens were less than those of the wood treated with only borates from aqueous and PEG solutions. Styrene (St) was the most effective monomer among the other agents used in terms of immobility effect on borates and WA.

  16. Application of a CCA-treated wood waste decontamination process to other copper-based preservative-treated wood after disposal

    Energy Technology Data Exchange (ETDEWEB)

    Janin, Amelie, E-mail: amelie.janin@ete.inrs.ca [University of Toronto, Faculty of Forestry, 33, Willcocks St., Toronto, ON, M5S 3B3 (Canada); Coudert, Lucie, E-mail: lucie.coudert@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Riche, Pauline, E-mail: pauline.riche@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Mercier, Guy, E-mail: guy_mercier@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Cooper, Paul, E-mail: p.cooper@utoronto.ca [University of Toronto, Faculty of Forestry, 33, Willcocks St., Toronto, ON, M5S 3B3 (Canada); Blais, Jean-Francois, E-mail: blaisjf@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada)

    2011-02-28

    Research highlights: {yields} This paper describes a process for the metal removal from treated (CA-, ACQ- or MCQ-) wood wastes. {yields} This sulfuric acid leaching process is simple and economic. {yields} The remediated wood could be recycled in the industry. - Abstract: Chromated copper arsenate (CCA)-treated wood was widely used until 2004 for residential and industrial applications. Since 2004, CCA was replaced by alternative copper preservatives such as alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper quaternary (MCQ), for residential applications due to health concerns. Treated wood waste disposal is becoming an issue. Previous studies identified a chemical process for decontaminating CCA-treated wood waste based on sulfuric acid leaching. The potential application of this process to wood treated with the copper-based preservatives (alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper quaternary (MCQ)) is investigated here. Three consecutive leaching steps with 0.1 M sulfuric acid at 75 deg, C for 2 h were successful for all the types of treated wood and achieved more than 98% copper solubilisation. The different acidic leachates produced were successively treated by coagulation using ferric chloride and precipitation (pH = 7) using sodium hydroxide. Between 94 and 99% of copper in leachates could be recovered by electrodeposition after 90 min using 2 A electrical current. Thus, the process previously developed for CCA-treated wood waste decontamination could be efficiently applied for CA-, ACQ- or MCQ-treated wood.

  17. PRESERVATIVE LEACHING FROM WEATHERED CCA-TREATED WOOD

    Science.gov (United States)

    Disposal of discarded CCA-treated wood in landfills raises concerns with respect to leaching of preservative compounds. When unweathered CCA-treated wood is leached using the toxicity characteristic leaching procedure (TCLP), arsenic concentrations exceed the toxicity characteris...

  18. Biocide leaching from CBA treated wood — A mechanistic interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Lupsea, Maria [University of Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); INRA, UMR 792, F-31400 Toulouse (France); CNRS, UMR 5504, F-31400 Toulouse (France); Paris-Est University, CSTB — Scientific and Technical Centre for the Building Industry, ESE/Environment, 24 rue Joseph Fourier, F-38400 Saint Martin d' Hères (France); Mathies, Helena; Schoknecht, Ute [BAM — Federal Institute for Materials Research and Testing, Division 4.1, Unter den Eichen 87, 12205 Berlin (Germany); Tiruta-Barna, Ligia, E-mail: ligia.barna@insa-toulouse.fr [University of Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); INRA, UMR 792, F-31400 Toulouse (France); CNRS, UMR 5504, F-31400 Toulouse (France); Schiopu, Nicoleta [Paris-Est University, CSTB — Scientific and Technical Centre for the Building Industry, ESE/Environment, 24 rue Joseph Fourier, F-38400 Saint Martin d' Hères (France)

    2013-02-01

    Treated wood is frequently used for construction. However, there is a need to ensure that biocides used for the treatment are not a threat for people or environment. The paper focused on Pinus sylvestris treated with copper–boron–azole (CBA), containing tebuconazole as organic biocide and monoethanolamine (Mea). This study investigates chemical mechanisms of fixation and mobilisation involved in the leaching process of the used inorganic and organic biocides in CBA. A pH dependent leaching test was performed, followed by a set of complementary analysis methods in order to identify and quantify the species released from wood. The main findings of this study are: -Organic compounds are released from untreated and treated wood; the quantity of released total organic carbon, carboxylic and phenolic functions increasing with the pH. -Nitrogen containing compounds, i.e. mainly Mea and its reaction products with extractives, are released in important quantities from CBA treated wood, especially at low pH. -The release of copper is the result of competitive reactions: fixation via complexation reactions and complexation with extractives in the liquid phase. The specific pH dependency of Cu leaching is explained by the competition of ligands for protonation and complexation. -Tebuconazole is released to a lesser extent relative to its initial content. Its fixation on solid wood structure seems to be influenced by pH, suggesting interactions with -OH groups on wood. Boron release appears to be pH independent and very high. This confirms its weak fixation on wood and also no or weak interaction with the extractives. - Highlights: ► A pH dependent leaching mechanism for CBA treated wood is described. ► The fixation and mobilisation of inorganic and organic biocides was investigated. ► Extractives' quantity and nature depend on pH. ► Competition of ligands for protonation and complexation explains Cu behaviour. ► Tebuconazole seems to interact with -OH groups

  19. Formation of dioxins and furans during combustion of treated wood

    Energy Technology Data Exchange (ETDEWEB)

    Tame, Nigel W.; Dlugogorski, Bogdan Z.; Kennedy, Eric M. [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2007-08-15

    Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F, dioxin) are produced in combustion of wood treated with copper-based preservatives. This review summarises and analyses the pertinent literature on the role of preservatives in the formation of dioxin in the low-temperature, vitiated environment that exists in the domestic combustion of wood, and in large-scale fires. Until recently, the role of preservatives was not thoroughly examined in the literature with respect to fires, as incineration attracted most of the research focus. However, latest studies have demonstrated that some current and emerging wood preservatives significantly increase dioxin formation during combustion in domestic stoves and in fires. The following pathways are identified: (i) copper, a common biocide that is chemically bound to the wood, is an important dioxin catalyst, (ii) preservative metals promote smouldering of wood char following cessation of flaming, providing the required temperature environment for dioxin formation, and (iii) chlorinated organics added as secondary preservative components yield dioxin precursors upon thermal decomposition. These conclusions indicate that it remains hazardous to dispose of preservative impregnated timber via domestic combustion even if arsenic is not present. (author)

  20. Effect of weathering on chromated copper arsenate (CCA) treated wood : leaching of metal salts and change in water repellency

    Science.gov (United States)

    R. Sam Williams; Stan Lebow; Patricia Lebow

    2003-01-01

    Wood pressure-treated with chromated copper arsenate (CCA) wood preservative is commonly used for outdoor construction. Oxides of arsenic, copper, and chromium are bound in the wood by a complex series of chemical reactions, but a small percentage of these compounds are gradually released by leaching and weathering. Recent studies suggest that the release of these...

  1. A Survey of Wood Protection Chemicals, Tree Killers and Sprayers ...

    African Journals Online (AJOL)

    chemicals used in wood protection (preservation) within Makurdi metropolis. A purposive, non-random sampling was undertaken in Makurdi metropolis to identify wood protection chemicals/tree-killers available in agrochemical stores, ...

  2. Variability in evaluating environmental impacts of treated wood.

    Science.gov (United States)

    Stan T. Lebow; Paul Cooper; Patricia K. Lebow

    2004-01-01

    Preservative-treated wood contains components that may be toxic to non-target organisms if released into the environment in sufficient quantities. Numerous studies have been conducted to determine the rate of preservative release from treated wood and/or the extent of their subsequent accumulation in the environment. These studies have produced a wide range of results...

  3. Factors affecting sodium hypochlorite extraction of CCA from treated wood.

    Science.gov (United States)

    Gezer, E D; Cooper, P A

    2009-12-01

    Significant amounts of chromated copper arsenate (CCA) treated wood products, such as utility poles and residential construction wood, remain in service. There is increasing public concern about environmental contamination from CCA-treated wood when it is removed from service for reuse or recycling, placed in landfills or burned in commercial incinerators. In this paper, we investigated the effects of time, temperature and sodium hypochlorite concentration on chromium oxidation and extraction of chromated copper arsenate from CCA-treated wood (Type C) removed from service. Of the conditions evaluated, reaction of milled wood with sodium hypochlorite for one hour at room temperature followed by heating at 75 degrees C for two hours gave the highest extraction efficiency. An average of 95% Cr, 99% Cu and 96% As could be removed from CCA-treated, milled wood by this process. Most of the extracted chromium was oxidized to the hexavalent state and could therefore be recycled in a CCA treating solution. Sodium hypochlorite extracting solutions could be reused several times to extract CCA components from additional treated wood samples.

  4. Creosote movement from treated wood immersed in fresh water

    Science.gov (United States)

    Sung-Mo Kang; Jeffrey J. Morrell; John Simonsen; Stan Lebow

    2005-01-01

    Creosote has a long history of successful use as a wood preservative, but polycyclic aromatic hydrocarbons in this preservative have raised environmental concerns, particularly when creosote-treated wood is used in aquatic environments. A number of models have been developed to predict the risk of creosote use in aquatic environments, but one limitation of these models...

  5. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    Science.gov (United States)

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  6. Weathering methods for preservative treated wood and their applicability for fire retarded wood

    NARCIS (Netherlands)

    Voss, A.

    1999-01-01

    preservative treated wood. The aim of the presentation is to inform you about current testing methods and to discuss their applicability to test fire retarded wood in outdoor use. Assuming that fire retardants will only be used in out of ground contact, only those methods are mentioned, which fit

  7. Modification of polypropylene with radiation-treated wood fiber

    International Nuclear Information System (INIS)

    Czvikovszky, T.; Tapolcai, I.

    1983-01-01

    The dispersed wood material is used not only as filler for thermosetting polymers but also as a new type of fibrous additive for thermoplastics e.g. polypropylene. Benefit of this additive (filler or reinforcement) is determined by the coupling between the wood and the synthetic resin. Fibrous, dispersed wood material was preirradiated in air, treated with vinyl monomer containing polyester resin and then mixed in polypropylene. Processability of such thermoplastic blends as well as reactivity of the mixed components were followed by measuring energy, absorbed during the kneading of the melt. The vinylmonomer vinylmonomer - polyester additive, activated at higher temperature by the radiation-formed peroxy groups on the wood fiber, results in good processability of the thermoplastic blend, and gives interesting mechanical properties. Calandering, extrusion, pressmoulding and mechanical testing demonstrated good workability and practical value of the polypropylene composite material containing radiation-treated wood fiber. (author)

  8. Resistance of treated rubber wood ( Hevea brasiliensis ) to termite ...

    African Journals Online (AJOL)

    Spent rubber trees from a 25 year old plantation were cut, sawn and treated with Copper Chromium Arsenate (CCA) and Cashew Nut Shell Liquid (CNSL). Two sets of wood samples were treated with CCA and CNSL respectively while the third set was not treated to serve as control. The three sets were exposed to termite ...

  9. Electrodialytic remediation of CCA treated waste wood in pilot scale

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Christensen, Iben Vernegren; Ottosen, Lisbeth M.

    2005-01-01

    study the utility of the method Electrodialytic Remediation was demonstrated for handling of CCA treated waste wood in pilot scale. The electrodialytic remediation method, which uses a low level DC current as the cleaning agent, combines elektrokinetic movement of ions in the wood matrix with the princi......-ples of electrodialysis. It has previously been shown that it is possible to remove Cu, Cr and As from CCA treated wood using electrodialytic remediation in laboratory scale (Ribeiro et al., 2000; Kristensen et al., 2003), but until now, the method had not been studied in larger scale. The pilot scale plant used...... in this study was designed to contain up to 2 m3 wood chips. Six remediation experiments were carried out. In these experiments, the process was up-scaled stepwise by increasing the distance between the electrodes from initially 60 cm to fi-nally 150 cm. The remediation time was varied between 11 and 21 days...

  10. Application of near-infrared spectroscopy to preservative-treated wood

    Science.gov (United States)

    Chi-Leung So; Stan T. Lebow; Thomas L. Eberhardt; Leslie H. Groom; Todd F. Shupe

    2009-01-01

    Near infrared (NIR) spectroscopy is now a widely-used technique in the field of forest products, especially for physical and mechanical property determinations. This technique is also ideal for the chemical analysis of wood. There has been a growing need to find a rapid, inexpensive and reliable method to distinguish between preservative-treated and untreated waste...

  11. The use of new, aqueous chemical wood modifications to improve the durability of wood-plastic composites

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons; George C. Chen

    2017-01-01

    The wood flour used in wood-plastic composites (WPCs) can biologically deteriorate and thus the overall mechanical performance of WPCs decrease when exposed to moisture and fungal decay. Protecting the wood flour by chemical modification can improve the durability of the wood in a nontoxic way so it is not harmful to the environment. WPCs were made with modified wood...

  12. A new material for chemical industry - wood polymer composites

    International Nuclear Information System (INIS)

    Majali, A.B.; Patil, N.D.

    1979-01-01

    The paper outlines the advantages of the radiation cured wood-polymer composites (WPC) for application in certain critical areas of chemical industry. The wood-polymer composite made filterpress frames and plates were tested in a chemical plant. The entire exercise is elaborated. The radiation cured wood exhibited a considerably extended useful life in alkaline and acidic solutions. Composites based on teak wood showed a remarkable improvement with a nominal polymer loading of 10%. The reports of accelerated aging test of WPC are also presented. (auth.)

  13. Statistical process control for residential treated wood

    Science.gov (United States)

    Patricia K. Lebow; Timothy M. Young; Stan Lebow

    2017-01-01

    This paper is the first stage of a study that attempts to improve the process of manufacturing treated lumber through the use of statistical process control (SPC). Analysis of industrial and auditing agency data sets revealed there are differences between the industry and agency probability density functions (pdf) for normalized retention data. Resampling of batches of...

  14. Bond quality of phenol-based adhesives containing liquefied creosote-treated wood

    Science.gov (United States)

    Chung-Yun Hse; Feng Fu; Hui Pan

    2009-01-01

    Liquefaction of spent creosote-treated wood was studied to determine the technological practicability of its application in converting treated wood waste into resin adhesives. A total of 144 plywood panels were fabricated with experimental variables included 2 phenol to wood (P/W) ratios in liquefaction, 6 resin formulations (3 formaldehyde/liquefied wood (F/...

  15. Wood

    DEFF Research Database (Denmark)

    Unterrainer, Walter

    2014-01-01

    come from? How is it harvested? How is it manufactured and treated ? How are the buildings detailed and protected against weather during construction to keep them dry and make them long-life ? In a period of climate change, forests are the last lungs of the planet to sequestrate CO2. Their global size......Wood – a sustainable building material ? For thousands of years and all over the planet, wood has been used as a building material and exciting architecture has been created in wood. The fantastic structural, physical and aesthetic properties of the material as well as the fact that wood...

  16. Pilot-scale investigation of the robustness and efficiency of a copper-based treated wood wastes recycling process

    Energy Technology Data Exchange (ETDEWEB)

    Coudert, Lucie [INRS-ETE (Canada); Blais, Jean-François, E-mail: blaisjf@ete.inrs.ca [INRS-ETE (Canada); Mercier, Guy [INRS-ETE (Canada); Cooper, Paul [University of Toronto (Canada); Gastonguay, Louis [IREQ (Canada); Morris, Paul [FPInnovations (Canada); Janin, Amélie; Reynier, Nicolas [INRS-ETE (Canada)

    2013-10-15

    Highlights: • A leaching process was studied for metals removal from CCA-treated wood wastes. • This decontamination process was studied at pilot scale (130-L reactor). • Removals up to 98% of As, 88% of Cr, and 96% of Cu were obtained from wood wastes. • The produced leachates can be treated by chemical precipitation. -- Abstract: The disposal of metal-bearing treated wood wastes is becoming an environmental challenge. An efficient recycling process based on sulfuric acid leaching has been developed to remove metals from copper-based treated wood chips (0 < x < 12 mm). The present study explored the performance and the robustness of this technology in removing metals from copper-based treated wood wastes at a pilot plant scale (130-L reactor tank). After 3× 2 h leaching steps followed by 3× 7 min rinsing steps, up to 97.5% of As, 87.9% of Cr, and 96.1% of Cu were removed from CCA-treated wood wastes with different initial metal loading (>7.3 kg m{sup −3}) and more than 94.5% of Cu was removed from ACQ-, CA- and MCQ-treated wood. The treatment of effluents by precipitation–coagulation was highly efficient; allowing removals more than 93% for the As, Cr, and Cu contained in the effluent. The economic analysis included operating costs, indirect costs and revenues related to remediated wood sales. The economic analysis concluded that CCA-treated wood wastes remediation can lead to a benefit of 53.7 US$ t{sup −1} or a cost of 35.5 US$ t{sup −1} and that ACQ-, CA- and MCQ-treated wood wastes recycling led to benefits ranging from 9.3 to 21.2 US$ t{sup −1}.

  17. Pretreatments for converting wood into paper and chemicals

    Science.gov (United States)

    William R. Kenealy; Carl J. Houtman; Jose Laplaza; Thomas W. Jeffries; Eric G. Horn

    2007-01-01

    Biorefining wood into paper and chemicals is not as easy as making a single traditional paper product. Paper is made from the cellulose- containing fractions of wood and processing may remove lignin and hemicellulose components. The yield and composition of the product depend upon the type of paper being produced. The paper process often alters the noncellulose...

  18. Wood anatomical and chemical properties related to the pulpability ...

    African Journals Online (AJOL)

    Eucalyptus globulus is one of the most important hardwood species used by the pulp and paper industry due to its high pulp yield, high wood density, excellent fibre quality and good handsheet properties. However, the wood is a highly variable and complex material that has different chemical, physical and anatomical ...

  19. ASSESSING CHILDREN'S EXPOSURES TO THE WOOD PRESERVATIVE CCA (CHROMATED COPPER ARSENATE) ON TREATED PLAYSETS AND DECKS

    Science.gov (United States)

    Concerns have been raised regarding the safety of young children contacting arsenic and chromium residues while playing on and around Chromated Copper Arsenate (CCA) treated wood playground structures and decks. Although CCA registrants voluntarily canceled treated wood for re...

  20. Role of construction debris in release of copper, chromium, and arsenic from treated wood structures

    Science.gov (United States)

    Stan T. Lebow; Steven A. Halverson; Jeffrey J. Morrell; John. Simonsen

    Recent research on the release of wood preservatives from treated wood used in sensitive environments has not considered the potential contribution from construction residues. This study sought to develop leaching rate data for small construction debris and compare those to the release rate from treated wood itself. Western hemlock boards were pressure treated with...

  1. Exposure testing of fasteners in preservative treated wood : gravimetric corrosion rates and corrosion product analyses

    Science.gov (United States)

    Samuel L. Zelinka; Rebecca J. Sichel; Donald S. Stone

    2010-01-01

    Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27oC at 100% relative humidity for 1 year. The...

  2. Corrosion of metals in treated wood examined by synchrotron based xanes and XFM

    Science.gov (United States)

    Samuel L. Zelinka; Joseph E. Jakes; Grant T. Kirker; Leandro Passarini; Barry Lai

    2016-01-01

    Copper based waterborne wood preservatives are frequently used to extend the service life of wood products used in outdoor environments. While these copper based treatments protect the wood from fungal decay and insect attack, they increase the corrosion of metals embedded or in contact with the treated wood. Over the past ten years, several studies have looked at the...

  3. The fungal composition of natural biofinishes on oil-treated wood

    NARCIS (Netherlands)

    van Nieuwenhuijzen, Elke J.; Houbraken, Jos A. M. P.; Punt, Peter J; Roeselers, Guus; Adan, Olaf C G; Samson, Robert A.

    2017-01-01

    Biofinished wood is considered to be a decorative and protective material for outdoor constructions, showing advantages compared to traditional treated wood in terms of sustainability and self-repair. Natural dark wood staining fungi are essential to biofinish formation on wood. Although all sorts

  4. The fungal composition of natural biofinishes on oil-treated wood

    NARCIS (Netherlands)

    van Nieuwenhuijzen, E.J.; Houbraken, J.A.M.P.; Punt, P.J.; Roeselers, G.; Adan, O.C.G.; Samson, R.A.

    2017-01-01

    Background Biofinished wood is considered to be a decorative and protective material for outdoor constructions, showing advantages compared to traditional treated wood in terms of sustainability and self-repair. Natural dark wood staining fungi are essential to biofinish formation on wood. Although

  5. Leaching of CCA-treated wood: implications for waste disposal

    International Nuclear Information System (INIS)

    Townsend, Timothy; Tolaymat, Thabet; Solo-Gabriele, Helena; Dubey, Brajesh; Stook, Kristin; Wadanambi, Lakmini

    2004-01-01

    Leaching of arsenic, chromium, and copper from chromated copper arsenate (CCA)-treated wood poses possible environmental risk when disposed. Samples of un-weathered CCA-treated wood were tested using a variety of the US regulatory leaching procedures, including the toxicity characteristic leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), extraction procedure toxicity method (EPTOX), waste extraction test (WET), multiple extraction procedure (MEP), and modifications of these procedures which utilized actual MSW landfill leachates, a construction and demolition (C and D) debris leachate, and a concrete enhanced leachate. Additional experiments were conducted to assess factors affecting leaching, such as particle size, pH, and leaching contact time. Results from the regulatory leaching tests provided similar results with the exception of the WET, which extracted greater quantities of metals. Experiments conducted using actual MSW leachate, C and D debris leachate, and concrete enhanced leachate provided results that were within the same order of magnitude as results obtained from TCLP, SPLP, and EPTOX. Eleven of 13 samples of CCA-treated dimensional lumber exceeded the US EPA's toxicity characteristic (TC) threshold for arsenic (5 mg/L). If un-weathered arsenic-treated wood were not otherwise excluded from the definition of hazardous waste, it frequently would require management as such. When extracted with simulated rainwater (SPLP), 9 of the 13 samples leached arsenic at concentrations above 5 mg/L. Metal leachability tended to increase with decreasing particle size and at pH extremes. All three metals leached above the drinking water standards thus possibly posing a potential risk to groundwater. Arsenic is a major concern from a disposal point of view with respect to ground water quality

  6. EFFECT OF CHEMICAL MODIFICATION AND HOT-PRESS DRYING ON POPLAR WOOD

    Directory of Open Access Journals (Sweden)

    Guo-Feng Wu

    2010-11-01

    Full Text Available Urea-formaldehyde prepolymer and hot-press drying were used to improve the properties of poplar wood. The wood was impregnated with the prepolymer using a pulse-dipping machine. The impregnated timbers were compressed and dried by a multilayer hot-press drying kiln. The drying rate was more rapid during the chemical modification and hot-press drying than conventional kiln-drying. In addition, the properties of timber were also enhanced obviously. When the compression rate was 28.6%, the basic density, oven dry density and air-dried density of modified wood improved 22%, 71%, and 70%, respectively. The bending strength and compressive strength parallel to grain increased 60% and 40%. The water uptake of treated wood was significantly decreased compared with the untreated wood. The FTIR analysis successfully showed that the intensity of hydroxyl and carbonyl absorption peaks decreased significantly, which was attributed to a reaction of the NHCH2OH of urea-formaldehyde prepolymer with the wood carboxyl (C=O and hydroxyl (-OH groups. The XRD results indicated that the degree of crystallinity increased from 35.09% to 36.91%. The morphologic models of chemical within wood were discovered by SEM.

  7. Chemical characterisation of the whole plant cell wall of archaeological wood: an integrated approach.

    Science.gov (United States)

    Zoia, Luca; Tamburini, Diego; Orlandi, Marco; Łucejko, Jeannette Jacqueline; Salanti, Anika; Tolppa, Eeva-Liisa; Modugno, Francesca; Colombini, Maria Perla

    2017-07-01

    Wood artefacts undergo complex alteration and degradation during ageing, and gaining information on the chemical composition of wood in archaeological artefacts is fundamental to plan conservation strategies. In this work, an integrated analytical approach based on innovative NMR spectroscopy procedures, gel permeation chromatography and analytical pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC-MS) was applied for the first time on archaeological wood from the Oseberg collection (Norway), in order to evaluate the chemical state of preservation of the wood components, without separating them. We adopted ionic liquids (ILs) as non-derivatising solvents, thus obtaining an efficient dissolution of the wood, allowing us to overcome the difficulty of dissolving wood in its native form in conventional molecular solvents. Highly substituted lignocellulosic esters were therefore obtained under mild conditions by reacting the solubilised wood with either acetyl chloride or benzoyl chloride. A phosphytilation reaction was also performed using 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholan. As a result, the functionalised wood developed an enhanced solubility in molecular solvents, thus enabling information about modifications of lignin, depolymerisation of cellulose and structure of lignin-carbohydrate complexes to be obtained by means of spectroscopic (2D-HSQC-NMR and 31 P-NMR) and chromatographic (gel permeation chromatography) techniques. Py-GC-MS was used to investigate the degradation undergone by the lignocellulosic components on the basis of their pyrolysis products, without any pre-treatment of the samples. The application of all these combined techniques enabled a comprehensive characterisation of the whole cell wall of archaeological wood and the evaluation of its state of preservation. High depletion of carbohydrates and high extent of lignin oxidation were highlighted in the alum-treated objects, whereas a good preservation state was found

  8. 76 FR 13616 - Picayune Wood Treating Site Picayune, Pearl River County, MS; Notice of Settlement

    Science.gov (United States)

    2011-03-14

    ... ENVIRONMENTAL PROTECTION AGENCY [Docket EPA-RO4-SFUND-2011-0201, FRL-9280-3] Picayune Wood... entered into a settlement for reimbursement of past response costs concerning the Picayune Wood Treating... No. EPA-RO4- SFUND-2011-0201 or Site name Picayune Wood Treating Superfund Site by one of the...

  9. CCA retention and its effects on the bonding performance of decommissioned treated wood: a preliminary study

    Science.gov (United States)

    Cheng Piao; Todd F. Shupe; Mark Gibson; Chung Y. Hse

    2009-01-01

    Chromated copper arsenate (CCA) continues to be widely used as a wood preservative for industrial uses in the U.S. Disposal of treated wood is a potential long-term environmental liability. Current practices for disposing of decommissioned preservative-treated wood include landfilling and incineration, which are increasingly impractical due to environmental...

  10. Mechanical and natural durability properties of wood treated with a novel organic preservative/consolidant product

    International Nuclear Information System (INIS)

    Lionetto, Francesca; Frigione, Mariaenrica

    2009-01-01

    An organic preservative/consolidant of new formulation was selected in order to evaluate its effect on the mechanical properties of worm-eaten walnut wood. Walnut wood is widely used for the realization of artistic handworks (e.g. statues, altars, etc.) furniture and flooring. The flexural strength and modulus of elasticity, the toughness and the hardness were determined on both treated and untreated samples. The experimental results showed that the product increased significantly the flexural strength while the other mechanical properties were not appreciably affected by the chemical treatment. The microstructure of the samples tested was observed using scanning electron microscopy. The preserving character against insects of the investigated product was assessed by both visual inspection and measurements of weight loss on the treated specimens after their exposure to living insects. The samples on which the product was applied, exposed to Oligomerus ptilinoides for one year, were more resistant to decay than the corresponding untreated samples.

  11. Detoxification of wood preserving waste under ambient, enhanced and chemical pretreatment conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, M.S.; Brown, K.W.; Dale, B.E.; Donnelly, K.C.; He, L.Y.; Markiewicz, K.V. [Texas A and M Univ., College Station, TX (United States)

    1994-12-31

    Detoxification of pentachlorophenol-containing wood preserving waste was monitored under ambient, enhanced and chemical pretreatment conditions for genotoxicity and parent compound removal. Samples were collected throughout the treatment periods and sequentially extracted with dichloromethane and methanol with the Tecator Soxtec apparatus. The organic extracts were analyzed on GC/ECD and GC/MS. The extract mutagenic and genotoxic potentials were evaluated with and without metabolic activation with the Salmonella Microsomal and E. coli Prophage Induction assays. The Salmonella mutagenic responses of extracts from Weswood soil amended with wood preserving waste and treated under ambient conditions were 2.0, 34.6 and 2.4 times greater than the solvent control on days 0, 540 and 1,200 respectively. Organic extracts of soil amended with wood preserving waste and treated under enhanced conditions in a solid-phase rotating drum bioreactor had mutagenic potentials of 3.4, 4.9 and 3.5 on days 0, 14 and 30, respectively. Extracts from wood preserving waste sludge treated with potassium polyethylene glycol were shown to have mutagenic potentials of 2.8, 6.1 and 3.8 at 0, 10 and 30 minutes. The results indicate that the initial products of the wood preserving waste detoxification under all treatment conditions appear to have greater genotoxic potentials than the starting material. The results also suggest that a more rapid detoxification occurs under enhanced and chemical pretreatment conditions.

  12. Microdistribution of copper-carbonate and iron oxide nanoparticles in treated wood

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Hiroshi, E-mail: mhiroshi@ffpri.affrc.go.jp; Kiguchi, Makoto [Forestry and Forest Products Research Institute (Japan); Evans, Philip D. [University of British Columbia, Centre for Advanced Wood Processing (Canada)

    2009-07-15

    Aqueous dispersions of copper-carbonate nanoparticles and microparticles have just begun to be exploited commercially for the preservative treatment of wood. The success of the new systems will depend, in part, on the uniform distribution of the preservative in wood and the ability of copper to penetrate cell walls. We examined the distribution of copper in wood treated with a nano-Cu preservative. Copper particles are not uniformly distributed in treated wood, but they accumulate in voids that act as the flow paths for liquids in wood. Particles are deposited on, but not within cell walls. Nevertheless, elemental copper is present within cell walls, but at a lower level than that in wood treated with a conventional wood preservative. These findings suggest that nano-Cu preservatives are able to deliver bioactive components into wood cell walls even though the majority of copper particles are too large to penetrate the cell wall's nanocapillary network.

  13. Influences of Thermo-Vacuum Treatment on Colors and Chemical Compositions of Alder Birch Wood

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2015-10-01

    Full Text Available With high temperature-heat treatment, the dimensional stability and durability of wood is improved and wood color is darkened as well. In this paper, alder birch wood (Betula alnoides was treated by the Thermo-Vacuum Treatment (TVT. The changes of wood color parameters and the chemical composition were determined by the CIE1976 L*a*b* method and the chemical analysis method, respectively. The results were revealed as follows: (1 A lower value of lightness, L*, and a higher value of total color difference, △E*, were obtained at the higher heat-treatment temperatures and longer treatment time. (2 The higher the heat-treatment temperatures and the longer the heat-treatment times were, the lower the contents of hemicellulose and cellulose were and the higher the content of lignin was. Moreover, Fourier Transform infrared spectroscopy (FTIR analysis demonstrated that the characteristic absorption peaks of cellulose, hemicellulose, and lignin diminished. The acetylation reaction of hemicellulose and the degradation reaction of groups of lignin side chain occurred during TVT. (3 TVT degraded the chemical composition of cell walls, which resulted in further changes of the wood color. A significant correlation existed between the differences of color indices and the differences of the chemical composition after TVT.

  14. Wood preservatives and pressure-treated wood: considerations for historic-preservation projects

    Science.gov (United States)

    Ronald W. Anthony; Stan T. Lebow

    2015-01-01

    Wood, an abundant resource throughout most of the world, has been used as a building material for thousands of years. Many historic buildings have been built primarily of wood, and masonry and stone buildings generally have wood elements, both structural and architectural. As a biological material, wood is both remarkably complex and yet quite durable if well...

  15. Environmental impact of preservative-treated wood in a wetland boardwalk.

    Science.gov (United States)

    Stan T. Lebow; Patricia K. Lebow; Daniel O. Foster; Kenneth M. Brooks

    Forest Service, Bureau of Land Management, and industry partners are cooperating in a study of the leaching and environmental effects of a wetland boardwalk. The construction project is considered bworst casec because the site has high rainfall and large volumes of treated wood were used. Separate boardwalk test sections were constructed using untreated wood or wood...

  16. Subterranean Termite Resistance of Polystyrene-Treated Wood from Three Tropical Wood Species

    Directory of Open Access Journals (Sweden)

    Yusuf Sudo Hadi

    2016-07-01

    Full Text Available The objective of this work was to investigate the resistance of three Indonesian wood species to termite attack. Samples from sengon (Falcataria moluccana, mangium (Acacia mangium, and pine (Pinus merkusii were treated with polystyrene at loading levels of 26.0%, 8.6%, and 7.7%, respectively. Treated and untreated samples were exposed to environmental conditions in the field for 3 months. Untreated specimens of sengon, mangium, and pine had resistance ratings of 3.0, 4.6, and 2.4, respectively, based on a 10-point scale from 0 (no resistance to 10 (complete or near-complete resistance. Corresponding resistance values of 7.8, 7.2, and 8.2 were determined for specimens treated with polystyrene. Overall weight loss values of 50.3%, 23.3%, and 66.4% were found for untreated sengon, mangium, and pine samples, respectively; for treated samples, the values were 7.6%, 14.4%, and 5.1%, respectively. Based on the findings in this study, overall resistance to termite attack was higher for treated samples compared to untreated samples.

  17. Enhanced oil recovery chemicals from renewable wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Grune, W.N.; Compere, A.L.; Griffith, W.L.; Crenshaw, J.M.

    1979-04-01

    Most of the wood pulp in the U.S. is produced by cooking, or digesting, wood chips in a chemical solution. These pulping processes have effluent streams which contain dissolved lignins, lignin breakdown products, and carbohydrates. There is a substantial economic incentive to use these materials as feedstocks for the production of high-valued micellar flood chemicals. The pulp and paper industries have practiced chemical recovery for almost a century. The largest chemical recycle processes are the internal recycle of inorganic salts for reuse in pulping. This is coupled with the use of waste organic compounds in the liquor as a fuel for directly-fired evaporation processes. Diversion of effluent and low valued streams for chemical recovery using fermentation, purification, or synthesis methods appears technically feasible in several cases. The use of new recovery processes could yield a variety of different wood-effluent based products. Some of the sugar acids in pulping liquors might be used as sequestering agents in reservoirs where there are large amounts of multivalent cations in flood brines. Fermentation production of high viscosity polymers, sequestering agents, and coagent alcohols appears worth further investigation. Tall oil acids and their derivatives can be used as surfactants in some reservoirs. Some waste constituents may adsorb preferentially on formations and thereby reduce loss of surfactants and other higher-valued chemicals.

  18. Enhanced understanding of the relationship between chemical modification and mechanical properties of wood

    Science.gov (United States)

    Charles R. Frihart; Daniel J. Yelle; John Ralph; Robert J. Moon; Donald S. Stone; Joseph E. Jakes

    2008-01-01

    Chemical additions to wood often change its bulk properties, which can be determined using conventional macroscopic mechanical tests. However, the controlling interactions between chemicals and wood take place at and below the scale of individual cells and cell walls. To better understand the effects of chemical additions to wood, we have adapted and extended two...

  19. Use of handheld X-ray fluorescence spectrometry units for identification of arsenic in treated wood

    Energy Technology Data Exchange (ETDEWEB)

    Block, Colleen N. [University of Miami, Department of Civil, Architectural, and Environmental Engineering, P.O. Box 248294, McArthur Building, Coral Gables, FL 33124-0630 (United States); Shibata, Tomoyuki [University of Miami, Department of Civil, Architectural, and Environmental Engineering, P.O. Box 248294, McArthur Building, Coral Gables, FL 33124-0630 (United States); Solo-Gabriele, Helena M. [University of Miami, Department of Civil, Architectural, and Environmental Engineering, P.O. Box 248294, McArthur Building, Coral Gables, FL 33124-0630 (United States)]. E-mail: hmsolo@miami.edu; Townsend, Timothy G. [University of Florida, Department of Environmental Engineering Sciences, Gainesville, FL 32611-6450 (United States)

    2007-07-15

    The objective of this study was to evaluate the performance of handheld XRF analyzers on wood that has been treated with a preservative containing arsenic. Experiments were designed to evaluate precision, detection limit, effective depth of analysis, and accuracy of the XRF arsenic readings. Results showed that the precision of the XRF improved with increased sample concentration and longer analysis times. Reported detection limits decreased with longer analysis times to values of less than 1 mg/kg or 18 mg/kg, depending on the model used. The effective depth of analysis was within the top 1.2 cm and 2.0 cm of sample for wood containing natural gradients of chemical preservative and concentration extremes, respectively. XRF results were found to be 1.5-2.3 times higher than measurements from traditional laboratory analysis. Equations can be developed to convert XRF values to results which are consistent with traditional laboratory testing. - Handheld XRF analyzers provided quantitative results for the amount of arsenic within preservative-treated wood.

  20. Long-term soil accumulation of chromium, copper, and arsenic adjacent to preservative-treated wood.

    Science.gov (United States)

    S. Lebow; D. Foster; J. Evans

    2004-01-01

    Chromated copper arsenate (CCA) treated wood has been used extensively in outdoor applications. The Environmental Protection Agency (EPA) and CCA producers recently reached an agreement to limit future use of CCA for some types of applications. One area of concern is the long-term accumulation of leached CCA in soil adjacent to treated wood structures. Interpreting...

  1. Physical and mechanical properties of flakeboard produced from recycled CCA-treated wood

    Science.gov (United States)

    W. Li; T.F. Shupe; Chung-Yun Hse

    2004-01-01

    Chromated copper arsenate (CCA) treated wood has been most widely used in North America since the 1970s for many exterior applications such as decks, fences, playground equipment, utility poles, and others. A large volume of CCA-treated wood is currently coming out of service. Traditional disposal methods such as landfilling and incineration are not without adverse...

  2. FIELD-SCALE LEACHING OF ARSENIC, CHROMIUM AND COPPER FROM WEATHERED TREATED WOOD

    Science.gov (United States)

    Hasan, A. Rasem; Hu, Ligang; Solo-Gabriele, Helena M.; Fieber, Lynne; Cai, Yong; Townsend, Timothy G.

    2010-01-01

    Earlier studies documented the loss of wood preservatives from new wood. The objective of this study was to evaluate losses from weathered treated wood under field conditions by collecting rainfall leachate from 5 different wood types, all with a surface area of 0.21 m2. Wood samples included weathered chromate copper arsenate (CCA) treated wood at low (2.7 kg/m3), medium (4.8 kg/m3) and high (35.4 kg/m3) retention levels, new alkaline copper quat (ACQ) treated wood (1.1 kg/m3 as CuO) and new untreated wood. Arsenic was found to leach at a higher rate (100 mg in 1 year for low retention) than chromium and copper (leached at the highest rate from the ACQ sample (670 mg). Overall results suggest that metals’ leaching is a continuous process driven by rainfall, and that the mechanism of release from the wood matrix changes as wood weathers. PMID:20053493

  3. Quantities of arsenic-treated wood in demolition debris generated by Hurricane Katrina.

    Science.gov (United States)

    Dubey, Brajesh; Solo-Gabriele, Helena M; Townsendt, Timothy G

    2007-03-01

    The disaster debris from Hurricane Katrina is one of the largest in terms of volume and economic loss in American history. One of the major components of the demolition debris is wood waste of which a significant proportion is treated with preservatives, including preservatives containing arsenic. As a result of the large scale destruction of treated wood structures such as electrical poles, fences, decks, and homes a considerable amount of treated wood and consequently arsenic will be disposed as disaster debris. In this study an effort was made to estimate the quantity of arsenic disposed through demolition debris generated in the Louisiana and Mississippi area through Hurricane Katrina. Of the 72 million cubic meters of disaster debris generated, roughly 12 million cubic meters were in the form of construction and demolition wood resulting in an estimated 1740 metric tons of arsenic disposed. Management of disaster debris should consider the relatively large quantities of arsenic associated with pressure-treated wood.

  4. Roughness study on homogeneous layer panels manufactured from treated wood waste

    Directory of Open Access Journals (Sweden)

    Maria Fátima do Nascimento

    2017-02-01

    Full Text Available Natural resource exploration is growing, highlighting woods and joinery waste, wood industries and the like. This study presents homogeneous particleboard (PPH roughness characterization manufactured from treated wood waste. Normative document with values of Brazilian Technical Standard Association ABNT NBR 8404 (1984, was adopted as a reference. The results show that the manufactured PPH showed roughness class N 10, with roughness values (Ra of less than 12.5 microns.

  5. Comparative study on liquefaction of creosote and chromated copper arsenate (CCA)-treated wood and untreated southern pine wood: effects of acid catalyst content, liquefaction time, temperature, and phenol to wood ratio

    Science.gov (United States)

    Hui Pan; Chung-Yun Hse; Todd F. Shupe

    2009-01-01

    Creosote- and chromated copper arsenate (CCA)-treated wood waste and untreated southern pine wood were liquefied with phenol and sulfuric acid. The effects of sulfuric acid content, liquefaction time, liquefaction temperature, and phenol to wood ratio on liquefaction rate (i.e., wood residue content) were investigated and analyzed by analysis of variance (...

  6. Pine Wood Treated with a Citric Acid and Glycerol Mixture: Biomaterial Performance Improved by a Bio-byproduct

    Directory of Open Access Journals (Sweden)

    Gatien Geraud Essoua Essoua

    2016-02-01

    Full Text Available Wood material is a good reservoir for biogenic carbon storage. The use of wood material for outdoor products such as siding in the building construction sector presents limits. These limits are bound to the nature of wood material (hygroscopic property and anatomical structure. They are responsible for the dimensional variation associated with moisture content variations. Fungal attacks and coating layers adhesion on wood surface, are other problems. This research investigated the feasibility of impregnation with environmentally friendly chemicals, i.e., a citric acid-glycerol mixture (CA-G. The anti-swelling efficiency (ASE, hardness, biodegradation, and coating adhesion tests were performed on softwood specimens. ASE results were up to 53%. The equilibrium moisture content of the treated specimens was less than half of the untreated ones. FTIR spectroscopy showed bands at 1720 to 1750 cm-1, indicating the presence of ester bonds, and scanning electron microscopy images confirmed the polymerization and condensation of treatment solution inside the wood structure. Hardness and decay resistance were increased; however, treatment reduces coating adhesion. In conclusion, CA-G represents a promising eco-responsible solution for improving the technical performance of outdoor wood products.

  7. REMOVAL COPPER, CHROMIUM, ARSENIC FROM OUT-OF- SERVICE CCA-TREATED WOOD MATERIALS

    Directory of Open Access Journals (Sweden)

    Engin Derya Gezer

    2004-11-01

    Full Text Available Remediation can be defined as removing copper, chromium and arsenic from out-of-service CCA treated wood products. There are some various remediation methods that can be applied to remove copper, chromium and arsenic from out-of service CCA treated wood products in order to re-use that wooden materials and minimize adverse impacts of those out-of service CCA treated wood to environment, human health, animals and other living organisms. In this study, those applied various remediation methods to remove copper, chromium and arsenic were summarized.

  8. Studies on thermal degradation and termite resistant properties of chemically modified wood

    Energy Technology Data Exchange (ETDEWEB)

    Deka, M.; Saikia, C.N. [Council for Scientific and Industrial Research (CSIR), Regional Research Laboratory, Jorhat (India); Baruah, K.K. [Assam Agricultural University, Jorhat (India)

    2002-09-01

    A series of experiments were carried out to examine the resistant capacity of a chemically treated hard wood, Anthocephalus cadamba (Roxb) Miq. to thermal and termite degradation. The treatment with thermosetting resins viz. urea formaldehyde (UF), melamine formaldehyde (MF) and phenol formaldehyde (PF) at 31-33 levels of weight percent gain (WPG) increased the strength property i.e. modulus of rupture (MOR) by 7.50-21.02% and stiffness i.e. modulus of elasticity (MOE) by 9.50-12.18% over the untreated one with no remarkable effect on specific gravity. The treated samples were found resistant to termite attack, while the untreated one was badly damaged by termites on 12 months' exposure to a termite colony. The thermal degradations of untreated and treated wood samples were studied using thermogravimetric (TGA) and differential thermogravimetric (DTG) techniques at heating rates 20 and 30 {sup o}Cmin{sup -1} in temperature range 30-650{sup o}C. The treated wood was found to be thermally more stable than the untreated one. (author)

  9. Effect of precipitation pattern on leaching of preservative from treated wood and implications for accelerated testing

    Science.gov (United States)

    Stan Lebow

    2014-01-01

    There is a need to develop improved accelerated test methods for evaluating the leaching of wood preservatives from treated wood exposed to precipitation. In this study the effects of rate of rainfall and length of intervals between rainfall events on leaching was evaluated by exposing specimens to varying patterns of simulated rainfall under controlled laboratory...

  10. Chapter 14: Evaluating the Leaching of Biocides from Preservative-Treated Wood Products

    Science.gov (United States)

    Stan T. Lebow

    2014-01-01

    Leaching of biocides is an important consideration in the long term durability and any potential for environmental impact of treated wood products. This chapter discusses factors affecting biocide leaching, as well as methods of evaluating rate and quantity of biocide released. The extent of leaching is a function of preservative formulation, treatment methods, wood...

  11. Understanding decay resistance, dimensional stability and strength changes in heat treated and acetylated wood

    Science.gov (United States)

    Roger M. Rowell; Rebecca E. Ibach; James McSweeny; Thomas Nilsson

    2009-01-01

    Reductions in hygroscopicity, increased dimensional stability and decay resistance of heat-treated wood depend on decomposition of a large portion of the hemicelluloses in the wood cell wall. In theory, these hemicelluloses are converted to small organic molecules, water and volatile furan-type intermediates that can polymerize in the cell wall. Reductions in...

  12. Electrodialytic remediation of CCA-treated waste wood in a 2 m3 pilot plant

    DEFF Research Database (Denmark)

    Christensen, Iben Vernegren; Pedersen, Anne Juul; Ottosen, Lisbeth M.

    2006-01-01

    Waste wood that has been treated with chromated-copper-arsenate (CCA) poses a potential environmental problem due to the content of copper, chromium and arsenic. A pilot plant for electrodialytic remediation of up to 2 m3 wood has been designed and tested and the results are presented here. Sever...

  13. Guide for minimizing the effect of preservative-treated wood on sensitive environments

    Science.gov (United States)

    Stan T. Lebow; Michael Tippie

    2001-01-01

    Preservative-treated wood is often used for construction of highway and foot bridges, wetland boardwalks, and other structures in or over water or sensitive environments. In these applications it is important that release of preservative from the wood into the environment is minimized. This publication addresses this concern by describing the various types of pressure-...

  14. Effect of simulated rainfall and weathering on release of preservative elements from CCA treated wood

    Science.gov (United States)

    Stan Lebow; R. Sam Williams; Patricia Lebow

    2003-01-01

    The release of arsenic from wood pressure-treated with chromated copper arsenate (CCA) can be decreased by application of wood finishes, but little is known about the types of finishes that are best suited for this purpose. This study evaluated the effects of finish water repellent content and ultraviolet (UV) radiation on the release of arsenic, copper, and chromium...

  15. Synchrotron based x-ray fluorescence microscopy confirms copper in the corrosion products of metals in contact with treated wood

    Science.gov (United States)

    Samuel L. Zelinka; Joseph E. Jakes; Grant T. Kirker; David Vine; Stefan Vogt

    2017-01-01

    Copper based waterborne wood preservatives are frequently used to extend the service life of wood products when subjected to frequent moisture exposure. While these copper based treatments protect the wood from fungal decay and insect attack, they increase the corrosion of metals embedded or in contact with the treated wood. Previous research has shown the most...

  16. Statistical analysis of influence of soil source on leaching of arsenic and copper from CCA-C treated wood

    Science.gov (United States)

    Patricia Lebow; Richard Ziobro; Linda Sites; Tor Schultz; David Pettry; Darrel Nicholas; Stan Lebow; Pascal Kamdem; Roger Fox; Douglas Crawford

    2006-01-01

    Leaching of wood preservatives affects the long-term efficacy and environmental impact of treated wood. Soil properties and wood characteristicscan affectleaching of woad preservatives, but these effects are not well understood. This paper reports a statistical analysis of the effects of soil and wood properties on leaching of arsenic (As) and copper (Cu) from southern...

  17. Technological and Thermal Properties of Thermoplastic Composites Filled with Heat-treated Alder Wood

    Directory of Open Access Journals (Sweden)

    Mürşit Tufan

    2016-02-01

    Full Text Available This study investigated the effect of heat-treated wood content on the water absorption, mechanical, and thermal properties of wood plastic composites (WPCs. The WPCs were produced from various loadings (30, 40, and 50 wt% of heat-treated and untreated alder wood flours (Alnus glutinosa L. using high-density polyethylene (HDPE with 3 wt% maleated polyethylene (MAPE coupling agent. All WPC formulations were compression molded into a hot press for 3 min at 170 ºC. The WPCs were evaluated using mechanical testing, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, and differential scanning calorimetry (DSC. The mechanical property values of the WPC specimens decreased with increasing amounts of the heat-treated wood flour, except for the tensile modulus values. The heat treatment of alder wood slightly increased the thermal stability of the WPCs compared with the reference WPCs. The crystallization degree (Xc and the enthalpy of crystallization of the WPCs slightly decreased with increasing content of the heat-treated wood flour. However, all WPCs containing the heat-treated alder wood flour showed a higher crystallinity degree than that of the virgin HDPE.

  18. Wood preservative testing

    Science.gov (United States)

    Rebecca Ibach; Stan T. Lebow

    2012-01-01

    Most wood species used in commercial and residential construction have little natural biological durability and will suffer from biodeterioration when exposed to moisture. Historically, this problem has been overcome by treating wood for outdoor use with toxic wood preservatives. As societal acceptance of chemical use changes, there is continual pressure to develop and...

  19. CORROSION AND CHEMICAL WASTE IN SAWBLADES STEEL USED IN WOOD

    Directory of Open Access Journals (Sweden)

    Paulo Fernando Trugilho

    2002-01-01

    Full Text Available The objective this work was to evaluate the chemical waste provoked by the wood on the sheets of steel used in the making of the mountains and cut tools. It was certain the correlationbetween the chemical waste and the extractive soluble in cold water, hot water and in the sequencetoluene and ethanol content. Two types of steel and twenty-seven species different from wood wereused. The corrosive agent, constituted of 50 g of fresh sawdust (moist mixed to 50 ml of distilledwater, it was prepared and placed inside of the plastic box, hermetically closed, on the samples ofsteel, which were totally immersed. The box was placed in a water bath pre-heated to 75°C, that themedium temperature of reaction is considered, that affects the sheet of the sawblade in operation. Thisgroup was operated to 80 rotations per minute (rpm. The time of reaction was of four hours. Afterthat time the corrosive agent was discarded and the samples were washed, dried and weighed. At theend, each sample was processed by a total period of forty hours. The chemical waste was evaluated by the weight difference suffered from beginning at the end of the experiment. For theresults it was observed that the Eucalyptus tradryphloia and the Eucalyptus phaeotricha the speciesthat provoked were, respectively, the largest and smaller chemical waste for the two types of steelappraised. Great variation exists in the chemical waste due to the effect of the species. The corrosionand chemical waste are especially related with the quality of the material solved in ethanol. The 1070steel were more attached than the 6170 steel.

  20. Online Sorting of Wood Treated with Chromated Copper Arsenate Using Laser Induced Breakdown Spectroscopy

    National Research Council Canada - National Science Library

    Moskal, Thomas

    2001-01-01

    .... While CCA treated wood has several benefits, with perhaps the most important being the saving of an estimated 225 million trees annually due to its longer service life, there are growing concerns...

  1. In vitro bioaccessibility of copper azole following simulated dermal transfer from pressure-treated wood

    Data.gov (United States)

    U.S. Environmental Protection Agency — In vitro bioaccessibility of copper azole following simulated dermal transfer from pressure-treated wood. This dataset is associated with the following publication:...

  2. Electrochemical removal of CU, CR and AS from CCA-treated waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, I.V.; Ottosen, L.M.; Villumsen, A. [Dept. of Geology and Geotechnical Engineering, The Technical Univ. of Denmark, Lyngby (Denmark); Ribeiro, A.B. [Dept. of Geology and Geotechnical Engineering, The Technical Univ. of Denmark, Lyngby (Denmark)]|[Dept. de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia, Univ. Nova de Lisboa, Caparica (Portugal)

    2001-07-01

    CCA-treated waste wood poses a potential environmental problem due to the content of copper, chromium and arsenic. This paper presents the results obtained by electrodialytic remediation of CCA-treated waste wood. It is found that more than 90% Cu, and approximately 85% Cr and As was removed from the wood during the remediation. Thereby the concentration of copper in the wood is reduced from app. 426 ppm to app. 25 ppm, chromium is reduced from app. 837 ppm to app. 135 ppm and the arsenic content decreases from app. 589 ppm to app. 151 ppm. After remediation the removed metals are collected into liquids. The use of ion exchange membranes to separate the wood from the electrolytes result in a distribution of the metals after remediation that makes the collection of the metals easier, and reuse of the metals, for e.g. new CCA, may be possible. (orig.)

  3. Wood ash to treat sewage sludge for agricultural use

    Energy Technology Data Exchange (ETDEWEB)

    White, R.K. [Clemson Univ., SC (United States)

    1993-12-31

    About 90% of the three million tons of wood ash generated in the United States from wood burning facilities is being landfilled. Many landfills are initiated tipping fees and/or restrictions on the disposal of special wastes such as ash. The purpose of this work was to evaluate (1) the feasibility of using wood ash to stabilize sewage sludge and (2) the fertilizer and liming value of the sludge/ash mixture on plant response and soil pH. Research showed that wood ash, when mixed with sludge, will produce a pH above 12.0, which meets US EPA criteria for pathogen reduction for land application on non-direct food chain crops. Different ratios of wood ash to sludge mixtures were tested and the 1:1 ratio (by weight) was found to be optimal. Five replications of wood ash from four sources were tested for moisture content, pH and fertilizer nutrients. The pH of the ash/sludge mixture (1:1) on day one ranged from 12.4 to 13.2. In most cases the pH remained the same over a 21 day test or only dropped 0.1 to 0.3 units. Analyses of the mixtures showed that heavy metal concentrations (As, B, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, S, Se, Zn) were low. The 1:1 ash/sludge mixture had a calcium carbonate equivalency of 17%. Green house pot studies using tall fescue grass were loadings of 300 to 750 pounds per acre of TKN-N than for 500 lb/acre of 10-10-10 commercial fertilizer. Plant tissue analysis showed N, P, K, Ca, and Mg levels to be within the sufficiency range for tall fescue.

  4. Leachability of boron from wood treated with natural and semi-synthetic polymers and calcium precipitating agent

    Science.gov (United States)

    S. N. Kartal; F. Green

    2003-01-01

    Several fixation systems to limit or decrease boron leachability from treated wood have been developed. Some attempts have relied on limiting of water penetration of treated wood using water repellents, monomer and polymer systems. On the other hand, non-toxic polymers such as proteins were tried to reduce amount of boron leached from wood (Thevenon et al. 1997, 1998...

  5. Aureobasidium melanogenum: a native of dark biofinishes on oil treated wood.

    Science.gov (United States)

    van Nieuwenhuijzen, Elke J; Houbraken, Jos A M P; Meijer, Martin; Adan, Olaf C G; Samson, Robert A

    2016-05-01

    The genus Aureobasidium, which is known as a wood staining mould, has been detected on oil treated woods in the specific stain formation called biofinish. This biofinish is used to develop a new protective, self-healing and decorative biotreatment for wood. In order to understand and control biofinish formation on oil treated wood, the occurrence of different Aureobasidium species on various wood surfaces was studied. Phenotypic variability within Aureobasidium strains presented limitations of morphological identification of Aureobasidium species. PCR amplification and Sanger sequencing of ITS and RPB2 were used to identify the culturable Aureobasidium species composition in mould stained wood surfaces with and without a biofinish. The analysed isolates showed that several Aureobasidium species were present and that Aureobasidium melanogenum was predominantly detected, regardless of the presence of a biofinish and the type of substrate. A. melanogenum was detected on wood samples exposed in the Netherlands, Cameroon, South Africa, Australia and Norway. ITS-specific PCR amplification, cloning and sequencing of DNA extracted from biofinish samples confirmed results of the culturing based method: A. melanogenum is predominant within the Aureobasidium population of biofinishes on pine sapwood treated with raw linseed oil and the outdoor placement in the Netherlands.

  6. Effect of Different Heat Treatment Temperatures on the Chemical Composition and Structure of Chinese Fir Wood

    Directory of Open Access Journals (Sweden)

    Shichao Cheng

    2016-03-01

    Full Text Available The properties of wood can be improved after heat-treatment. There have been many studies dealing with mechanical properties and chemical modifications of heat-treated wood. The purpose of this paper is to provide a new analysis method, to give better insights on the hemicelluloses, cellulose, and lignin contents of heat-treated wood by using Fourier transform infrared (FT-IR and two-dimensional infrared (2D-IR spectroscopies. The FT-IR spectra results showed progressive degradation in the carbonyl groups of the glucuronic acid units and degradation of the pyranose of hemicelluloses. These changes were measured as the percentage decrease of crystalline cellulose and the loss of C=O and C=C groups linking together the aromatic skeleton of lignin. The 2D-IR spectra showed the appearance of 5 × 5 peak clusters in the 1000 to 1200 cm-1 region, which could account for the hemicellulose degradation. In addition, changes in the degree of sensitivity at 1627 and 1509 cm-1 coincided with cross-linking reactions among the aromatic units in the lignin molecules.

  7. Investigation of the Acoustic Properties of Chemically Impregnated Kayu Malam Wood Used for Musical Instrument

    Directory of Open Access Journals (Sweden)

    Md. Faruk Hossen

    2018-01-01

    Full Text Available The chemical modification or impregnation through preparing the wood polymer composites (WPCs can effectively reduce the hygroscopicity as well as can improve the acoustic properties of wood. On the other hand, a small amount of nanoclay into the chemical mixture can further improve the different properties of the WPCs through the preparation of wood polymer nanocomposites (WPNCs. Kayu Malam wood species with styrene (St, vinyl acetate (VA, and montmorillonite (MMT nanoclay were used for the preparation of WPNCs. The acoustic properties such as specific dynamic Young’s modulus (Ed/γ, internal friction (Q−1, and acoustic conversion efficiency (ACE of wood were examined using free-free flexural vibration. It was observed that the chemically impregnated wood composite showed a higher value of Ed/γ than raw wood and the nanoclay-loaded wood nanocomposite showed the highest value. The reverse trend was observed in the case of Q−1. On the other hand, chemical impregnation has a minor effect on ACE of wood for musical instruments. The results suggested that the chemically impregnated Kayu Malam wood polymer nanocomposite (WPNC is suitable for making soundboards of violin and guitar instruments to be played longer without losing tone quality.

  8. CHARACTERIZATION OF EMISSIONS OF THERMALLY MODIFIED WOOD AND THEIR REDUCTION BY CHEMICAL TREATMENT

    Directory of Open Access Journals (Sweden)

    Jana Peters

    2008-05-01

    Full Text Available Thermal treatment is a suitable method for improving the quality of wood types like spruce, beech or poplar, and thus to open up new fields of application that used to be limited to tropical woods or woods treated with timber preservatives. These thermally treated woods are characterized by a typical odor caused by degradation products of miscellaneous wood components. The characterization and removal of those odorous substances were investigated using chromatographic and spectroscopic methods. Headspace gas chromatography (GC in combination with solid-phase microextraction (SPME was used for a qualitative analysis of volatile wood emissions, and the detectable volatiles were compared before and after solvent extraction. Wood solvent extractives were investigated by means of gas chromatography/mass spectrometry and then evaluated in terms of changes in composition caused by the thermal treatment process.

  9. Fractionation of heavy metals in liquefied chromated copper arsenate (CCA)-treated wood sludge using a modified BCR-sequential extraction procedure

    Science.gov (United States)

    Hui Pan; Chung-Yun Hse; Robert Gambrell; Todd F. Shupe

    2009-01-01

    Chromated copper arsenate (CCA)-treated wood was liquefied with polyethylene glycol/glycerin and sulfuric acid. After liquefaction, most CCA metals (98% As, 92% Cr, and 83% Cu) were removed from liquefied CCA-treated wood by precipitation with calcium hydroxide. The original CCA-treated wood and liquefied CCA-treated wood sludge were fractionated by a modified...

  10. Heat-induced chemical and color changes of extractive-free Black Locust (Rosinia Pseudoacacia) wood

    Science.gov (United States)

    Yao Chen; Jianmin Gao; Yongming Fan; Mandla A. Tshabalala; Nicole M. Stark

    2012-01-01

    To investigate chemical and color changes of the polymeric constituents of black locust (Robinia pseudoacacia) wood during heat treatment, extractive-free wood flour was conditioned to 30% initial moisture content (MC) and heated for 24 h at 120 °C in either an oxygen or nitrogen atmosphere. The color change was measured using the CIELAB color system. Chemical changes...

  11. physico-chemical properties and energy potential of wood wastes

    African Journals Online (AJOL)

    user

    were performed to assess the energy characteristics of the collected wood .... Methods. Wood processing activities were physically observed for. 6 days/wk at the sawmills for 15weeks. ..... [10] Oladeji, J T “Fuel characterization of briquettes.

  12. Effect of coating systems on the vaporization of pentachlorophenol from treated wood

    Science.gov (United States)

    L. L. Ingram; G. D. McGinnis; P. M. Pope; W. C. Feist

    1983-01-01

    Specimens of southern pine treated with pentachlorophenol (penta) in mineral spirits (dip treatment), penta in P9 type A oil and penta in methylene chloride (pressure treatments) were used to evaluate the efficacy of different types of coatings in suppressing the vaporization of penta from treated wood. The clear film-forming coatings, such as polyurethane and alkyds,...

  13. Accelerated weathering of fire-retardant-treated wood for fire testing

    Science.gov (United States)

    Robert H. White

    2009-01-01

    Fire-retardant-treated products for exterior applications must be subjected to actual or accelerated weathering prior to fire testing. For fire-retardant-treated wood, the two accelerated weathering methods have been Method A and B of ASTM D 2898. The rain test is Method A of ASTM D 2898. Method B includes exposures to ultraviolet (UV) sunlamps in addition to water...

  14. A non-destructive approach for assessing decay in preservative treated wood

    NARCIS (Netherlands)

    Machek, L.; Edlund, M.L.; Sierra-Alvarez, R.; Militz, H.

    2004-01-01

    This study investigated the suitability of the non-destructive vibration-impulse excitation technique to assess the attack of preservative-treated wood in contact with the ground. Small stakes (10×5×100 mm3) of treated and untreated Scots pine sapwood were exposed to decay in laboratory-scale

  15. Effects of Treated Wood Flour on Physico-Mechanical Properties of ...

    African Journals Online (AJOL)

    Wood flour was crushed in to particle size and given two surface treatments each with alkali and 3-chloro-2 hydroxylpropyltrimethylammoniumchloride. The raw, alkali-treated and bonding agent treated fibers were used as natural rubber composites. The samples were used to produce fiber-reinforced natural rubber ...

  16. Content of Chemical Elements in Wood-Destroying Fungi

    Directory of Open Access Journals (Sweden)

    Strapáč I.

    2016-12-01

    Full Text Available The aim of this study was to examine the content of chemical elements in the dried fruiting bodies of edible wood decaying fungi such as Honey mushrooms (Armillaria mellea, Shiitakes (Lentinus edodes and Oyster mushrooms (Pleurotus ostreatus. Powdered samples of fungi were mineralized in a microwave digestion. Twenty-one (21 chemical elements were detected in the plasma of the device ICP-MS AGILENT 7500c by accredited methods with the aid of calibration curves. The content of individual elements varied within a considerable range. The highest contents of K, Mn, Cu and Cd were found in the fruiting bodies of Honey mushrooms (Armillaria mellea. Shiitakes (Lentinus edodes had the highest content of B and Mo. Significant differences were found in the content of elements in the Oyster mushrooms (Pleurotus ostreatus from Slovakia, Hungary and China. The highest content of Al was found in the Oyster mushrooms (Pleurotus ostreatus from Hungary. The Chinese oysters had a maximum contents of Ca, Mg, Co, Pb, As and U. The Oyster mushrooms (Pleurotus ostreatus from Lemešany (Slovakia had the highest contents of Na, Zn, Fe, Se, Ag, Hg and Cr. The difference of chemical element content could be influenced by the genotype of the fungus and by the composition of substrate on which mushroom grow up.

  17. Potassium methyl siliconate-treated pulp fibers and their effects on wood plastic composites: Water sorption and dimensional stability

    Science.gov (United States)

    Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Monlezun

    2013-01-01

    Potassium methyl siliconate (PMS) was investigated as a new nano modifier of wood fiber and wood flour to improve the compatibility between the fiber/flour and the plastic matrix in fiber reinforced plastic composites. Before injection molding, bleached and brown pulp fibers and mixed species wood flour were pretreated in PMS solutions. The morphology of the treated...

  18. Exposure testing of fasteners in preservative treated wood: Gravimetric corrosion rates and corrosion product analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Samuel L., E-mail: szelinka@fs.fed.u [USDA Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726 (United States); Sichel, Rebecca J. [College of Engineering, University of Wisconsin, Madison, WI 53706 (United States); Stone, Donald S. [Department of Materials Science and Engineering, College of Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2010-12-15

    Research highlights: {yields} The composition of the corrosion products was similar for the nail head and shank. {yields} Reduced copper was not detected on any of the fasteners. {yields} Measured corrosion rates were between 1 and 35 {mu}m year{sup -1}. - Abstract: Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27 {sup o}C at 100% relative humidity for 1 year. The corrosion rate was determined gravimetrically and the corrosion products were analyzed with scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Although the accepted mechanism of corrosion in treated wood involves the reduction of cupric ions from the wood preservative, no reduced copper was found on the corrosion surfaces. The galvanized corrosion products contained sulfates, whereas the steel corrosion products consisted of iron oxides and hydroxides. The possible implications and limitations of this research on fasteners used in building applications are discussed.

  19. Carcinogenic risk of chromium, copper and arsenic in CCA-treated wood

    International Nuclear Information System (INIS)

    Ohgami, Nobutaka; Yamanoshita, Osamu; Thang, Nguyen Dinh; Yajima, Ichiro; Nakano, Chihiro; Wenting, Wu; Ohnuma, Shoko

    2015-01-01

    We showed that 2.1% of 233 pieces of lumber debris after the Great East Japan Earthquake was chromated copper arsenate (CCA)-treated wood. Since hexavalent chromium (Cr), copper (Cu) and pentavalent arsenic (As) in the debris may be diffused in the air via incineration, we exposed human lung normal (BEAS-2B) and carcinoma (A549) cells to Cr, Cu and As at the molar ratio in a representative CCA-treated wood. Co-exposure to 0.10 μM Cr and 0.06 μM As, which solely had no effect on colony formation, synergistically promoted colony formation in BEAS-2B cells, but not A549 cells, with activation of the PI3K/AKT pathway. Sole exposure and co-exposure to Cu showed limited effects. Since previous reports showed Cr and As concentrations to which human lungs might be exposed, our results suggest the importance to avoid diffusion of Cr and As in the air via incineration of debris including CCA-treated wood after the disaster. - Highlights: • CCA-treated wood was found in debris after the Great East Japan Earthquake in 2011. • Carcinogenic risk of CCA-treated woods was evaluated with human lung cell lines. • Co-exposure to Cr and As synergistically promoted colony formation. • Co-exposure to Cr and As synergistically activated the PI3/AKT pathway. • Effects of sole exposure and co-exposure to Cu on colony formation were limited. - Co-exposure to Cr and As, but not Cu, in CCA-treated wood debris from the Great East Japan Earthquake showed carcinogenicity in vitro.

  20. Cellulose Nanocomposites by Melt Compounding of TEMPO-Treated Wood Fibers in Thermoplastic Starch Matrix

    Directory of Open Access Journals (Sweden)

    Aline Cobut

    2014-04-01

    Full Text Available To facilitate melt compounding of cellulose nanofibrils (CNF based composites, wood pulp fibers were subjected to a chemical treatment whereby the fibers were oxidized using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO. This treatment introduced negatively charged carboxylate groups to the fibers. TEMPO-treated fibers (TempoF were added to a mixture of amylopectin starch, glycerol, and water. Granules were prepared from this mixture and processed into CNF composites by extrusion. TempoF were easier to process into composites as compared with non-treated pulp fibers (PF. SEM revealed partial disintegration of TempoF during melt processing. Consequently, TempoF gave composites with much better mechanical properties than those of conventional composites prepared from pulp fibers and TPS. Particularly, at 20 wt% TempoF content in the composite, the modulus and strength were much improved. Such a continuous melt processing route, as an alternative to laboratory solvent casting techniques, may promote large-scale production of CNF-based composites as an environmentally friendly alternative to synthetic plastics/composites.

  1. Wood Chemical Composition in Species of Cactaceae: The Relationship between Lignification and Stem Morphology

    Science.gov (United States)

    Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level. PMID:25880223

  2. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.

    Directory of Open Access Journals (Sweden)

    Jorge Reyes-Rivera

    Full Text Available In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35% of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level.

  3. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.

    Science.gov (United States)

    Reyes-Rivera, Jorge; Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos; Terrazas, Teresa

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level.

  4. Nondestructive chemical imaging of wood at the micro-scale: advanced technology to complement macro-scale evaluations

    Science.gov (United States)

    Barbara L. Illman; Julia Sedlmair; Miriam Unger; Carol Hirschmugl

    2013-01-01

    Chemical images help understanding of wood properties, durability, and cell wall deconstruction for conversion of lignocellulose to biofuels, nanocellulose and other value added chemicals in forest biorefineries. We describe here a new method for nondestructive chemical imaging of wood and wood-based materials at the micro-scale to complement macro-scale methods based...

  5. Long term durability of wood-plastic composites made with chemically modified wood

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons

    2017-01-01

    Wood-plastic composites (WPCs) have slower moisture sorption than solid wood, but over time moisture can impact the strength, stiffness, and decay of the composite. These changes will become increasingly important if WPCs are used in more challenging environments such as in ground-contact applications. There are several options for mitigating the moisture sorption of...

  6. Physical and chemical characterization of waste wood derived biochars.

    Science.gov (United States)

    Yargicoglu, Erin N; Sadasivam, Bala Yamini; Reddy, Krishna R; Spokas, Kurt

    2015-02-01

    Biochar, a solid byproduct generated during waste biomass pyrolysis or gasification in the absence (or near-absence) of oxygen, has recently garnered interest for both agricultural and environmental management purposes owing to its unique physicochemical properties. Favorable properties of biochar include its high surface area and porosity, and ability to adsorb a variety of compounds, including nutrients, organic contaminants, and some gases. Physical and chemical properties of biochars are dictated by the feedstock and production processes (pyrolysis or gasification temperature, conversion technology and pre- and post-treatment processes, if any), which vary widely across commercially produced biochars. In this study, several commercially available biochars derived from waste wood are characterized for physical and chemical properties that can signify their relevant environmental applications. Parameters characterized include: physical properties (particle size distribution, specific gravity, density, porosity, surface area), hydraulic properties (hydraulic conductivity and water holding capacity), and chemical and electrochemical properties (organic matter and organic carbon contents, pH, oxidation-reduction potential and electrical conductivity, zeta potential, carbon, nitrogen and hydrogen (CHN) elemental composition, polycyclic aromatic hydrocarbons (PAHs), heavy metals, and leachable PAHs and heavy metals). A wide range of fixed carbon (0-47.8%), volatile matter (28-74.1%), and ash contents (1.5-65.7%) were observed among tested biochars. A high variability in surface area (0.1-155.1g/m(2)) and PAH and heavy metal contents of the solid phase among commercially available biochars was also observed (0.7-83 mg kg(-1)), underscoring the importance of pre-screening biochars prior to application. Production conditions appear to dictate PAH content--with the highest PAHs observed in biochar produced via fast pyrolysis and lowest among the gasification

  7. Physiognomic and chemical characters in wood as palaeoclimate proxies

    NARCIS (Netherlands)

    Poole, I.J.; Bergen, P.F. van

    2006-01-01

    Fossil wood is both abundant and ubiquitous through geological time and space. During growth the parent plant was directly influenced by the biotic and abiotic (including climatic-) factors in the surrounding environment. The climate affects wood production in a number of ways and it is the

  8. Phosphate removal by refined aspen wood fiber treated with carboxymethyl cellulose and ferrous chloride

    Science.gov (United States)

    Thomas L. Eberhardt; Soo-Hong Min; James S. Han

    2006-01-01

    Biomass-based filtration media are of interest as an economical means to remove pollutants and nutrients found in stormwater runoff. Refined aspen wood fiber samples treated with iron salt solutions demonstrated limited capacities to remove (ortho)phosphate from test solutions. To provide additional sites for iron complex formation, and thereby impart a greater...

  9. Nondestructive methods of evaluating quality of wood in preservative-treated piles

    Science.gov (United States)

    Xiping. Wang; Robert J. Ross; John R. Erickson; John W. Forsman; Gary D. McGinnis; Rodney C. De Groot

    2000-01-01

    Stress-wave-based nondestructive evaluation methods were used to evaluate the potential quality and modulus of elasticity (MOE) of wood in used preservative-treated Douglas-fir and southern pine piles. Stress wave measurements were conducted on each pile section. Stress wave propagation speeds in the piles were then obtained to estimate their MOE. This was followed by...

  10. New Approach to Remove Metals from Chromated Copper Arsenate (CCA)-Treated Wood

    Science.gov (United States)

    Todd F. Shupe; Chung Y. Hse; Hui Pan

    2012-01-01

    Recovery of metals from chromated copper arsenate (CCA)-treated southern pine wood particles was investigated using binary acid solutions consisting of acetic, oxalic, and phosphoric acids in a microwave reactor. Formation of an insoluble copper oxalate complex in the binary solution containing oxalic acid was the major factor for low copper removal. Furthermore, the...

  11. Corrosion rates of fasteners in treated wood exposed to 100% relative humidity

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2009-01-01

    In the past, gravimetric corrosion data for fasteners exposed to treated wood has been reported as a percent weight loss. Although percent weight loss is a valid measure of corrosion for comparing identical fasteners, it can distort the corrosion performance of fasteners with different geometries and densities. This report reevaluates a key report on the corrosiveness...

  12. Resistance of borax–copper treated wood in aboveground exposure to attack by Formosan subterranean termites

    Science.gov (United States)

    Stan Lebow; Bessie Woodward; Douglas Crawford; William Abbott

    2005-01-01

    The spread of Formosan subterranean termites (FSTs) in the southern United States has increased public interest in finding a preservative treatment to protect framing lumber from termite attack. This study evaluated the use of a borax-based preservative to protect wood from FST attack. Southern Pine and Douglas-fir specimens were pressure-treated with three...

  13. Modelling inorganic and organic biocide leaching from CBA-amine (Copper–Boron–Azole) treated wood based on characterisation leaching tests

    Energy Technology Data Exchange (ETDEWEB)

    Lupsea, Maria [University of Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F–31077 Toulouse (France); INRA, UMR 792, F-31400 Toulouse (France); CNRS, UMR 5504, F-31400 Toulouse (France); Paris-Est University, CSTB — Scientific and Technical Centre for the Building Industry, DEE/Environment and Life Cycle Engineering Team, 24 Rue Joseph Fourier, F-38400 Saint Martin d' Hères (France); Tiruta-Barna, Ligia, E-mail: ligia.barna@insa-toulouse.fr [University of Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F–31077 Toulouse (France); INRA, UMR 792, F-31400 Toulouse (France); CNRS, UMR 5504, F-31400 Toulouse (France); Schiopu, Nicoleta [Paris-Est University, CSTB — Scientific and Technical Centre for the Building Industry, DEE/Environment and Life Cycle Engineering Team, 24 Rue Joseph Fourier, F-38400 Saint Martin d' Hères (France); Schoknecht, Ute [BAM — Federal Institute for Materials Research and Testing, Division 4.1, Unter den Eichen 87, 12205 Berlin (Germany)

    2013-09-01

    Numerical simulation of the leaching behaviour of treated wood is the most pertinent and less expensive method for the prediction of biocides' release in water. Few studies based on mechanistic leaching models have been carried out so far. In this work, a coupled chemistry-mass transport model is developed for simulating the leaching behaviour of inorganic (Cu, B) and organic (Tebuconazole) biocides from CBA-amine treated wood. The model is based on experimental investigations (lab-scale leaching tests coupled with chemical and structural analysis). It considers biocides' interactions with wood solid components and with extractives (literature confirmed reactions), as well as transport mechanisms (diffusion, convection) in different compartments. Simulation results helped at identifying the main fixation mechanisms, like (i) direct complexation of Cu by wood-phenolic and -carboxylic sites (and not via monoethanolamine; complex) on lignin and hemicellulose and strong dependence on extractives' nature, (ii) pH dependent binding of tebuconazole on polarized -OH moieties on wood. The role of monoethanolamine is to provide a pore-solution pH of about 7.5, when copper solubility is found to be weakest. The capability of the developed model to simulate the chemical and transport behaviour is the main result of this study. Moreover, it proved that characterization leaching tests (pH dependency and dynamic tests), combined with appropriate analytical methods are useful experimental tools. Due to its flexibility for representing and simulating various leaching conditions, chemical-transport model developed could be used to further simulate the leaching behaviour of CBA treated wood at larger scales. - Highlights: • Biocide and extractives leaching from ammonia-CBA treated wood were modelled. • The chemical-transport model identifies the main fixation/solubilisation mechanisms. • The model describes well the results of equilibrium and dynamic leaching

  14. Changes in mechanical and chemical wood properties by electron beam irradiation

    International Nuclear Information System (INIS)

    Schnabel, Thomas; Huber, Hermann; Grünewald, Tilman A.; Petutschnigg, Alexander

    2015-01-01

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations

  15. Changes in mechanical and chemical wood properties by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Thomas, E-mail: thomas.schnabel@fh-salzburg.ac.at [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Huber, Hermann [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Grünewald, Tilman A. [BOKU University of Natural Resources and Life Sciences, Institute of Physics and Materials Science, Peter Jordan Straße 82, 1190 Vienna (Austria); Petutschnigg, Alexander [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); BOKU University of Natural Resources and Life Sciences, Konrad Lorenzstraße 24, 3430 Tulln (Austria)

    2015-03-30

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations.

  16. Rapid microwave-assisted acid extraction of metals from chromated copper arsenate (CCA)-treated southern pine wood

    Science.gov (United States)

    Bin Yu; Chung Y. Hse; Todd F. Shupe

    2009-01-01

    The effects of acid concentration, reaction time, and temperature in a microwave reactor on recovery of CCA-treated wood were evaluated. Extraction of copper, chromium, and arsenic metals from chromated copper arsenate (CCA)-treated southern pine wood samples with three different acids (i.e., acetic acid, oxalic acid, and phosphoric acid) was investigated using in...

  17. Metal loss from treated wood products in contact with municipal solid waste landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Brajesh [Department of Environmental Health, PO Box 70682, East Tennessee State University, Johnson City, TN 37614 (United States); Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Townsend, Timothy, E-mail: ttown@ufl.edu [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Solo-Gabriele, Helena [Department of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL 33124-0630 (United States)

    2010-03-15

    The research presented in this paper evaluates the potential impact of municipal solid waste (MSW) landfill leachate quality on the loss of metals from discarded treated wood during disposal. The loss of arsenic (As), chromium (Cr), copper (Cu), and boron (B) from several types of pressure-treated wood (CCA: chromated copper arsenate, ACQ: alkaline copper quaternary, CBA: copper boron azole, and DOT: disodium octaborate tetrahydrate) using leachate collected from 26 MSW landfills in Florida was examined. The toxicity characteristic leaching procedure (TCLP), the synthetic precipitation leaching procedure (SPLP), and California's waste extraction test (WET) were also performed. The results suggested that loss of preservative components was influenced by leachate chemistry. Copper loss from CCA-, ACQ- and CBA-treated wood was similar in magnitude when in contact with landfill leachates compared to synthetic TCLP and SPLP solutions. Ammonia was found as one of the major parameters influencing the leaching of Cu from treated wood when leached with MSW landfill leachates. The results suggest that disposal of ACQ- and CBA-treated wood in substantial quantity in MSW landfills may elevate the Cu concentration in the leachate; this could be of potential concern, especially for a bioreactor MSW landfill in which relatively higher ammonia concentrations in leachate have been reported in recent literature. For the As, Cr and B the concentrations observed with the landfill leachate as the leaching solutions were over a range from some sample showing the concentrations below and some showing above the observed value from corresponding SPLP and TCLP tests. In general the WET test showed the highest concentrations.

  18. Chemical investigation on wood tree species in a temperate forest, east-northern Romania

    Directory of Open Access Journals (Sweden)

    Teaca, C. A.

    2007-02-01

    Full Text Available A quantitative evaluation of wood chemical components for some tree species in a forest area from east-northern Romania is presented here, through a comparative study from 1964 to 2000. Investigation upon the wood tree-rings in a Quercus robur L. tree species, as a dominant species, as regards its chemical composition and structure of the natural polymer constituents - cellulose and lignin - was also performed through chemical methods to separate the main wood components, FT-IR spectroscopy, and thermogravimetry. Having in view the impact of climate and external factors (such as pollutant depositions, some possible correlations between wood chemical composition and its further use can be made. The FT-IR spectra give evidence of differences in the frequency domains of 3400-2900 cm-1 and 1730-1640 cm-1, due to some interactions between the chemical groups (OH, C=O. The crystallinity index of cellulose presents variations in the oak wood tree-rings. Thermogravimetry analyses show different behaviour of cellulose at thermal decomposition, as a function of radial growth and tree’s height. A preliminary chemical investigation of oak wood sawdust shows a relatively high content of mineral elements (ash, compared with a previous study performed in 1964, fact that may indicate an intense drying process of the oak tree, a general phenomenon present in European forests for this species.

  19. Mechanical and chemical properties of CCA-treated lumber removed from spent residential decks

    Science.gov (United States)

    Robert L. Smith; David Bailey; Philip A. Araman

    2007-01-01

    The amount of chromated copper arsenate (CCA)- treated wood being removed from spent residential decks is increasing at a tremendous rate. While most spent CCA-treated wood is being disposed in landfills, further useful and environmentally beneficial alternatives have to be met. If the volume of CCA-treated wood reaching landfills continues to rise, stricter disposal...

  20. USE OF AMAZONIAN SPECIES FOR AGING DISTILLED BEVERAGES: PHYSICAL AND CHEMICAL WOOD ANALYSIS

    Directory of Open Access Journals (Sweden)

    Jonnys Paz Castro

    2015-06-01

    Full Text Available The process of storing liquor in wooden barrels is a practice that aims to improve the sensory characteristics, such as color, aroma and flavor, of the beverage. The quality of the liquor stored in these barrels depends on wood characteristics such as density, permeability, chemical composition, anatomy, besides the wood heat treatment used to fabricate the barrels. Brazil has a great diversity of forests, mainly in the north, in the Amazon. This region is home to thousands of tree species, but is limited to the use of only a few native species to store liquors. The objective of this study was to determine some of the physical and chemical characteristics for four Amazon wood species. The results obtained in this study will be compared with others from woods that are traditionally used for liquor storage. The species studied were angelim-pedra (Hymenolobium petraeum Ducke cumarurana (Dipteryx polyphylla (Huber Ducke, jatobá (Hymenaea courbaril L. and louro-vermelho (Nectandra rubra (Mez CK Allen. The trees were collected from Precious Woods Amazon Company forest management area, in Silves, Amazonas. Analyzes such as: concentration of extractives, lignin amount, percentage of minerals (ash and tannin content, density, elemental analysis (CHNS-O and thermal analysis were done. It was observed that the chemical composition (lignin, holocellulose and elemental analysis (percentage of C, H, N and O of the woods have significant differences. The jatobá wood presented higher tannin content, and in the thermal analysis, was that which had the lowest mass loss.

  1. Copper Leaching from Copper-ethanolamine Treated Wood: Comparison of Field Test Studies and Laboratory Standard Procedures

    OpenAIRE

    Nejc Thaler; Miha Humar

    2014-01-01

    Copper-based compounds are some of the most important biocides for the protection of wood in heavy duty applications. In the past, copper was combined with chromium compounds to reduce copper leaching, but a recent generation of copper-based preservatives uses ethanolamine as a fixative. To elucidate the leaching of copper biocides from wood, Norway spruce (Picea abies) wood was treated with a commercial copper-ethanolamine solution with two different copper concentrations (cCu = 0.125% and 0...

  2. Soil quality in a cropland soil treated with wood ash containing charcoal

    Science.gov (United States)

    Omil, Beatriz; Balboa, Miguel A.; Fonturbel, M. Teresa; Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Vega, Jose A.; Merino, Agustin

    2014-05-01

    The strategy of the European Union "Europe 2020" states that by 2020, 20% of final energy consumption must come from renewables. In this scenario, there is an increasing use of biomass utilization for energy production. Indeed, it is expected that the production of wood-ash will increase in coming years. Wood ash, a mixture of ash and charcoal, generated as a by-product of biomass combustion in power plants, can be applied to soil to improve the soil quality and crop production. Since the residue contains significant content of charcoal, the application of mixed wood ash may also improve the SOM content and soil quality in the long term, in soils degraded as a consequence of intensive management. The objective of this study was asses the changes in SOM quality and soil properties in a degraded soils treated with wood ash containing charcoal. The study was carried out in a field devoted to cereal crops during the last decades. The soil was acidic (pH 4.5) with a low SOC content (3 %) and fine texture. The experiment was based on a randomised block design with four replicates. Each block included the following four treatments: Control, 16 Mg fly wood ash ha-1, 16 Mg mixed wood ash ha-1 (16 Mg) and 32 Mg mixed wood ash ha-1 (32 Mg). The application was carried out once. The ash used in the study was obtained from a thermal power plant and was mainly derived from the combustion of Pinus radiata bark and branches. The wood ash is highly alkaline (pH= 10), contains 10 % of highly condensed black carbon (atomic H/C ratio solid state 13C CPMAS NMR and Differential Scanning Calorimetry (DSC). These techniques were applied in bulk samples and aggregates of different sizes. The changes in microbial activity were studied by analysis of microbial biomass C and basal respiration. The soil bacterial community was studied by the Biolog method. Several physical properties, such soil aggregate distribution, hydraulic conductivity and available water contente were also determined

  3. Wood

    Science.gov (United States)

    David W. Green; Robert H. White; Antoni TenWolde; William Simpson; Joseph Murphy; Robert J. Ross; Roland Hernandez; Stan T. Lebow

    2006-01-01

    Wood is a naturally formed organic material consisting essentially of elongated tubular elements called cells arranged in a parallel manner for the most part. These cells vary in dimensions and wall thickness with position in the tree, age, conditions of growth, and kind of tree. The walls of the cells are formed principally of chain molecules of cellulose, polymerized...

  4. Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra

    International Nuclear Information System (INIS)

    Martin, Madhavi Z.; Labbe, Nicole; Rials, Timothy G.; Wullschleger, Stan D.

    2005-01-01

    In this work, multivariate statistical analysis (MVA) techniques are coupled with laser-induced breakdown spectroscopy (LIBS) to identify preservative types (chromated copper arsenate, ammoniacal copper zinc or alkaline copper quat), and to predict elemental content in preservative-treated wood. The elemental composition of the samples was measured with a standard laboratory method of digestion followed by atomic absorption spectroscopy analysis. The elemental composition was then correlated with the LIBS spectra using projection to latent structures (PLS) models. The correlations for the different elements introduced by different treatments were very strong, with the correlation coefficients generally above 0.9. Additionally, principal component analysis (PCA) was used to differentiate the samples treated with different preservative formulations. The research has focused not only on demonstrating the application of LIBS as a tool for use in the forest products industry, but also considered sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis of this complex wood substrate

  5. Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z. [Environmental Sciences Division Oak Ridge National Laboratory, P.O. Box 2008 MS 6422, Oak Ridge TN 37831-6422 (United States); Labbe, Nicole [Forest Products Center, University of Tennessee, 2506 Jacob Drive, Knoxville, TN 37996-4570 (United States)]. E-mail: nlabbe@utk.edu; Rials, Timothy G. [Forest Products Center, University of Tennessee, 2506 Jacob Drive, Knoxville, TN 37996-4570 (United States); Wullschleger, Stan D. [Environmental Sciences Division Oak Ridge National Laboratory, P.O. Box 2008 MS 6422, Oak Ridge TN 37831-6422 (United States)

    2005-08-31

    In this work, multivariate statistical analysis (MVA) techniques are coupled with laser-induced breakdown spectroscopy (LIBS) to identify preservative types (chromated copper arsenate, ammoniacal copper zinc or alkaline copper quat), and to predict elemental content in preservative-treated wood. The elemental composition of the samples was measured with a standard laboratory method of digestion followed by atomic absorption spectroscopy analysis. The elemental composition was then correlated with the LIBS spectra using projection to latent structures (PLS) models. The correlations for the different elements introduced by different treatments were very strong, with the correlation coefficients generally above 0.9. Additionally, principal component analysis (PCA) was used to differentiate the samples treated with different preservative formulations. The research has focused not only on demonstrating the application of LIBS as a tool for use in the forest products industry, but also considered sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis of this complex wood substrate.

  6. Improving the two-step remediation process for CCA-treated wood. Part I, Evaluating oxalic acid extraction

    Science.gov (United States)

    Carol Clausen

    2004-01-01

    In this study, three possible improvements to a remediation process for chromated-copper-arsenate (CCA) treated wood were evaluated. The process involves two steps: oxalic acid extraction of wood fiber followed by bacterial culture with Bacillus licheniformis CC01. The three potential improvements to the oxalic acid extraction step were (1) reusing oxalic acid for...

  7. Silver deposition on chemically treated carbon monolith

    Directory of Open Access Journals (Sweden)

    Jovanović Zoran M.

    2009-01-01

    Full Text Available Carbon monolith was treated with HNO3, KOH and H2O2. Effects of these treatments on the surface functional groups and on the amount of silver deposited on the CM surface were studied by temperature programmed desorption (TPD and atomic absorption spectrometry (AAS. As a result of chemical treatment there was an increase in the amount of surface oxygen complexes. The increase in the amount of silver deposit is proportional to the amount of surface groups that produce CO under decomposition. However, the high amount of CO groups, decomposing above 600°C, induces the smaller Ag crystallite size. Therefore, the high temperature CO evolving oxides are, most likely, the initial centers for Ag deposition.

  8. Mechanical Characteristics of Chemically Degraded Surface Layers of Wood

    Czech Academy of Sciences Publication Activity Database

    Frankl, Jiří; Kloiber, Michal; Drdácký, Miloš; Tippner, J.; Bryscejn, Jan

    2012-01-01

    Roč. 2, č. 11 (2012), s. 694-700 ISSN 2159-5275 R&D Projects: GA ČR(CZ) GPP105/11/P628 Institutional support: RVO:68378297 Keywords : wood * corrosion * defibering * mechanical properties Subject RIV: JN - Civil Engineering http://www.davidpublishing.com

  9. Elastic and Strength Properties of Heat-Treated Beech and Birch Wood

    Directory of Open Access Journals (Sweden)

    Vlastimil Borůvka

    2018-04-01

    Full Text Available This paper deals with the impact of heat treatment on the elastic and strength properties of two diffuse porous hardwoods, namely Fagus sylvatica and Betula pendula. Two degrees of the heat treatment were used at temperatures of 165 °C and 210 °C. The dynamic and static elasticity modulus, bending strength, impact toughness, hardness, and density were tested. It is already known that an increase in treatment temperature decreases the mechanical properties and, on the other hand, leads to a better shape and dimensional stability. Higher temperatures of the heat treatment correlated with lower elastic and strength properties. In the case of higher temperature treatments, the decline of tested properties was noticeable as a result of serious changes in the chemical composition of wood. It was confirmed that at higher temperature stages of treatment, there was a more pronounced decrease in beech properties compared to those of the birch, which was the most evident in their bending strength and hardness. Our research confirmed that there is no reason to consider birch wood to be of a lesser quality, although it is regarded by foresters as an inferior tree species. After the heat treatment, the wood properties are almost the same as in the case of beech wood.

  10. Use of near infared spectroscopy to measure the chemical and mechanical properties of solid wood

    Science.gov (United States)

    Stephen S. Kelley; Timothy G. Rials; Rebecca Snell; Leslie H. Groom; Amie Sluiter

    2004-01-01

    Near infrared (NIR) spectroscopy (500 nm-2400 nm), coupled with multivariate analytic (MVA) statistical techniques, have been used to predict the chemical and mechanical properties of solid loblolly pine wood. The samples were selected from different radial locations and heights of three loblolly pine trees grown in Arkansas. The chemical composition and mechanical...

  11. Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood

    Science.gov (United States)

    Stephen S. Kelley; Timothy G. Rials; Rebecca Snell; Leslie H. Groom; Amie Sluiter

    2004-01-01

    Near infrared (NIR) spectroscopy (500 nm-2400 nm), coupled with multivariate analytic (MVA) statistical techniques, have been used to predict the chemical and mechanical properties of solid loblolly pine wood. The samples were selected from different radial locations and heights of three loblolly pine trees grown in Arkansas. The chemical composition and mechanical...

  12. THE EFFECT OF HEAT TREATMENT ON THE CHEMICAL AND COLOR CHANGE OF BLACK LOCUST (ROBINIA PSEUDOACACIA WOOD FLOUR

    Directory of Open Access Journals (Sweden)

    Yao Chen,

    2012-01-01

    Full Text Available The aim of this study was to investigate the effects of oxygen and moisture content (MC on the chemical and color changes of black locust (Robinia pseudoacacia wood during heat treatment. The wood flour was conditioned to different initial MCs and heated for 24 h at a constant temperature of 120ºC in either oxygen or nitrogen atmosphere. The pH values and chromaticity indexes were examined. Diffuse reflectance UV-Vis (DRUV and Fourier transform infrared (FTIR spectra were used to characterize the changes of chromophores upon heating. The study demonstrated that the pH values decreased after heat treatment, and it was lower when the heat treated was in oxygen than in nitrogen. The L* decreased significantly, while a* and b* increased. The total color difference ΔE* increased with increasing initial MC until a plateau was reached after 30% MC. The color change was greater in oxygen than in nitrogen. The hydroxyl groups decreased after heat treatment. The releases of acid and formation of quinoid compounds and carboxylic groups during heat treatment were confirmed. Discoloration of wood is due mainly to the condensation and oxidation reactions, which are accelerated by oxygen. Higher MCs are required to obtain the greatest color change of wood in inert atmosphere.

  13. An emissions audit of a biomass combustor burning treated wood waste

    International Nuclear Information System (INIS)

    Jackson, P.M.; Jones, H.H.; King, P.G.

    1993-01-01

    This report describes the Emissions Audit carried out on a Biomass Combustor burning treated wood waste at the premises of a furniture manufacturer. The Biomass Combustor was tested in two firing modes; continuous fire and modulating fire. Combustion chamber temperatures and gas residence times were not measured. Boiler efficiencies were very good at greater than 75% in both tests. However, analysis of the flue gases indicated that improved efficiencies are possible. The average concentrations of CO (512mgm -3 ) and THC (34mgm -3 ) for Test 1 were high, indicating that combustion was poor. The combustor clearly does not meet the requirements of the Guidance Note for the Combustion of Wood Waste. CO 2 and O 2 concentrations were quite variable showing that combustion conditions were fairly unstable. Improved control of combustion should lead to acceptable emission concentrations. (Author)

  14. Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation.

    Science.gov (United States)

    Xue, Guobin; Liu, Kang; Chen, Qian; Yang, Peihua; Li, Jia; Ding, Tianpeng; Duan, Jiangjiang; Qi, Bei; Zhou, Jun

    2017-05-03

    Solar-enabled steam generation has attracted increasing interest in recent years because of its potential applications in power generation, desalination, and wastewater treatment, among others. Recent studies have reported many strategies for promoting the efficiency of steam generation by employing absorbers based on carbon materials or plasmonic metal nanoparticles with well-defined pores. In this work, we report that natural wood can be utilized as an ideal solar absorber after a simple flame treatment. With ultrahigh solar absorbance (∼99%), low thermal conductivity (0.33 W m -1 K -1 ), and good hydrophilicity, the flame-treated wood can localize the solar heating at the evaporation surface and enable a solar-thermal efficiency of ∼72% under a solar intensity of 1 kW m -2 , and it thus represents a renewable, scalable, low-cost, and robust material for solar steam applications.

  15. Mechanical properties of wood from Pinus sylvestris L. treated with Light Organic Solvent Preservative and with waterborne Copper Azole

    Energy Technology Data Exchange (ETDEWEB)

    Villasante, A.; Laina, R.; Rojas, J. A. M.; Rojas, I. M.; Vignote, S.

    2013-07-01

    Aim of study: To determine the effect on wood from Pinus sylvestris of treatment with preservatives on mechanical properties and to establish the relation between the penetration and compression strenght. Area of study: Spain. Material and methods: 40 samples of defect-free wood from Pinus sylvestris L. were treated with Light Organic Solvent Preservative (Vacsol Azure WR 2601) and 50 with waterborne Copper Azole (Tanalith E 3492). 40 control samples were not treated (water or preservative). Mechanical resistance to static bending, modulus of elasticity and compression strength parallel to the grain were compared with untreated wood. Regression analysis between the penetration and compression strength parallel was done with the samples treated with waterborne preservative. Main results: The results indicate that the treated wood (with either product) presents a statistically significant increase in mechanical resistance in all three mechanical characteristics. The results obtained differ from earlier studies carried out by other authors. There was no correlation between parallel compression strength and the degree of impregnation of the wood with waterborne Copper Azole. The most probable explanation for these results concerns changes in pressure during treatment. The use of untreated control samples instead of samples treated only with water is more likely to produce significant results in the mechanical resistance studies. Research highlights: Treated wood presents a statistically significant increase in MOE, modulus of rupture to static bending and parallel compression strength. There was no correlation between parallel compression strength and the degree of impregnation with waterborne preservative. (Author)

  16. Hexadecyl ammonium chloride amylose inclusion complex to emulsify cedarwood oil and treat wood against termites and wood-decay fungi

    Science.gov (United States)

    F.J. Eller; W.T. Hay; G.T. Kirker; M.E. Mankowski; G.W. Sellling

    2018-01-01

    Cedarwood oil (CWO) has a wide range of bioactivities, including insect repellency and toxicity, as well as conferring resistance against termites and wood-decay fungi. In previous work examining pressure treatment of wood, ethanol was used as the diluent/carrier for CWO. However, it is preferable to use a water-based carrier for environmental, safety and cost...

  17. Wood anatomy and physical and chemical properties of fast growing Athel tamarisk (Tamarix aphylla L.

    Directory of Open Access Journals (Sweden)

    Reza oladi

    2017-02-01

    Full Text Available Athel tamarisk (Tamarix aphylla is a fast growing, evergreen tree succeeding in the most soils and can tolerate the saline conditions. Despite its ecological importance and wide distribution in central and southern parts of Iran, wood properties of this species has little been concerned. However, the potential of this species in cellulosic industries of Middle East dry countries has recently been focused. Hence, to study wood anatomy and physical and chemical properties of Athel tamarisk, 3 stands were selected and felled from the Zabol region (Sistan and Baluchestan province. Wood anatomical features of this species were studied and listed according to the list of microscopic features for hardwood identification by IAWA Committee. In addition, lignin distribution in xylem was studied using fluorescence microscopy. Calculating fiber biometry features assessed that although fiber quality is not perfect but meets the standards of paper production, comparing other commercially used hardwoods in this industry. According to chemical composition analysis, cellulose content of this wood is rather low (39% which could be a result of large amount of thin-walled paranchyma cells in xylem. Lignin content is a bit higher than average hardwoods and this component is concentrated in vessels and fibers. Physical properties of studied wood samples (specific gravity and shrinkage values were in the range of other light-weight and fast growing hardwoods and thus this wood is expected to have similar end-use quality.

  18. Chemical constituents of the wood from Zanthoxylum quinduense Tul. (Rutaceae)

    International Nuclear Information System (INIS)

    Patino Ladino, Oscar Javier; Cuca Suarez, Luis Enrique

    2010-01-01

    Phytochemical investigation of the wood from Zanthoxylum quinduense Tul. allowed the isolation and identification of norchelerythrine, decarine, 6-acetonyldihydrochelerythrine, syringaresinol, evofilin C, p-hydroxybenzaldehyde, vanillic acid, a mixture of b-sitosterol, stigmasterol and campesterol and a mixture of saturated and unsaturated fatty acids, and their esters derivatives. The structures of the isolated compounds were elucidated by spectroscopic techniques and comparison with literature data and the mixture of sterols and fatty acids were identified by GC/MS. The antifungal activity of the ethanolic extract, fractions and pure compounds against Fusarium oxysporum f. sp. lycopersici was determined by bioautography. Evofilin C and nochelerytrine were the only substances that present antifungal activity. (author)

  19. Chemical constituents of the wood from Zanthoxylum quinduense Tul. (Rutaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Patino Ladino, Oscar Javier; Cuca Suarez, Luis Enrique, E-mail: ojpatinol@unal.edu.c [Universidad Nacional de Colombia, Bogota (Colombia). Facultad de Ciencias. Dept. de Quimica

    2010-07-01

    Phytochemical investigation of the wood from Zanthoxylum quinduense Tul. allowed the isolation and identification of norchelerythrine, decarine, 6-acetonyldihydrochelerythrine, syringaresinol, evofilin C, p-hydroxybenzaldehyde, vanillic acid, a mixture of b-sitosterol, stigmasterol and campesterol and a mixture of saturated and unsaturated fatty acids, and their esters derivatives. The structures of the isolated compounds were elucidated by spectroscopic techniques and comparison with literature data and the mixture of sterols and fatty acids were identified by GC/MS. The antifungal activity of the ethanolic extract, fractions and pure compounds against Fusarium oxysporum f. sp. lycopersici was determined by bioautography. Evofilin C and nochelerytrine were the only substances that present antifungal activity. (author)

  20. Counter-current acid leaching process for copper azole treated wood waste.

    Science.gov (United States)

    Janin, Amélie; Riche, Pauline; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Morris, Paul

    2012-09-01

    This study explores the performance of a counter-current leaching process (CCLP) for copper extraction from copper azole treated wood waste for recycling of wood and copper. The leaching process uses three acid leaching steps with 0.1 M H2SO4 at 75degrees C and 15% slurry density followed by three rinses with water. Copper is recovered from the leachate using electrodeposition at 5 amperes (A) for 75 min. Ten counter-current remediation cycles were completed achieving > or = 94% copper extraction from the wood during the 10 cycles; 80-90% of the copper was recovered from the extract solution by electrodeposition. The counter-current leaching process reduced acid consumption by 86% and effluent discharge volume was 12 times lower compared with the same process without use of counter-current leaching. However, the reuse of leachates from one leaching step to another released dissolved organic carbon and caused its build-up in the early cycles.

  1. Not just lumber--Using wood in the sustainable future of materials, chemicals, and fuels

    Science.gov (United States)

    Joseph E. Jakes; Xavier Arzola; Richard Bergman; Peter Ciesielski; Christopher G. Hunt; Nima Rahbar; Mandla Tshabalala; Alex C. Wiedenhoeft; Samuel L. Zelinka

    2016-01-01

    Forest-derived biomaterials can play an integral role in a sustainable and renewable future. Research across a range of disciplines is required to develop the knowledge necessary to overcome the challenges of incorporating more renewable forest resources in materials, chemicals, and fuels. We focus on wood specifically because in our view, better characterization of...

  2. Mechanical properties of wood from Pinus sylvestris L. treated with Light Organic Solvent Preservative and with waterborne Copper Azole

    Directory of Open Access Journals (Sweden)

    A.M. Villasante

    2013-12-01

    Full Text Available Aim of study: To determine the effect on wood from Pinus sylvestris of treatment with preservatives on mechanical properties and to establish the relation between the penetration and compression strength.Area of study: SpainMaterial and Methods: 40 samples of defect-free wood from Pinus sylvestris L. were treated with Light Organic Solvent Preservative (Vacsol Azure WR 2601 and 50 with waterborne Copper Azole (Tanalith E 3492. 40 control samples were not treated (water or preservative. Mechanical resistance to static bending, modulus of elasticity and compression strength parallel to the grain were compared with untreated wood. Regression analysis between the penetration and compression strength parallel was done with the samples treated with waterborne preservative.Main results: The results indicate that the treated wood (with either product presents a statistically significant increase in mechanical resistance in all three mechanical characteristics. The results obtained differ from earlier studies carried out by other authors.There was no correlation between parallel compression strength and the degree of impregnation of the wood with waterborne Copper Azole . The most probable explanation for these results concerns changes in pressure during treatment.The use of untreated control samples instead of samples treated only with water is more likely to produce significant results in the mechanical resistance studies.Research highlights: Treated wood presents a statistically significant increase in MOE, modulus of rupture to static bending  and parallel compression strength.There was no correlation between parallel compression strength and the degree of impregnation with waterborne preservative.Keywords: Light Organic Solvent Preservative; MOE; parallel compression; static bending; waterborne Copper Azole; wood technology.

  3. Assessment of the radiation field from radioactive elements in a wood-ash-treated coniferous forest in southwest Sweden

    International Nuclear Information System (INIS)

    Ravila, A.; Holm, E.

    1996-01-01

    The distribution of natural and antrophogenic radioactive elements in soil and wood was investigated in a 30-year-old forest stand of Norway spruce. Forest plots treated with a single dose of granulated wood ash in 1989 were compared with untreated control plots. It was observed that the retention of radiocesium and radiostrontium by the forest soil is rather strong in spite of the high annual precipitation (1100 mm a -1 ) and the relatively acidic conditions of the soil. Most of the deposited nuclear weapon fall-out of radiocesium and radiostrontium is still residing in the forest soil. Radiostrontium, but not radiocesium, was found in the intrasoil water collected with lysimeters at soil depths of 20 and 50 cm. Wood xylem radial distributions of radiostrontium indicated a decreased bioavailability with time after deposition of nuclear weapons fall-out, and no major differences could be observed on comparison of wood from ash-treated plots with wood from untreated plots. The activity concentration of radiocesium in tree rings formed prior to 1986 and grown at the ash-treated plot was about two to three times that found in wood from the untreated control plot. (author)

  4. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood

    International Nuclear Information System (INIS)

    Cao Xinde; Ma, Lena Q.

    2004-01-01

    Leaching of arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil arsenic levels. Thus, an environmental concern arises regarding accumulation of As in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to evaluate As accumulation by vegetables from the soils adjacent to the CCA-treated utility poles and fences and examine the effects of soil amendments on plant As accumulation. Carrot (Daucus carota L.) and lettuce (Lactuca sativa L.) were grown for ten weeks in the soil with or without compost and phosphate amendments. As expected, elevated As concentrations were observed in the pole soil (43 mg kg -1 ) and in the fence soil (27 mg kg -1 ), resulting in enhanced As accumulation of 44 mg kg -1 in carrot and 32 mg kg -1 in lettuce. Addition of phosphate to soils increased As accumulation by 4.56-9.3 times for carrot and 2.45-10.1 for lettuce due to increased soil water-soluble As via replacement of arsenate by phosphate in soil. However, biosolid compost application significantly reduced plant As uptake by 79-86%, relative to the untreated soils. This suppression is possibly because of As adsorbed by biosolid organic mater, which reduced As phytoavailability. Fractionation analysis showed that biosolid decreased As in soil water-soluble, exchangeable, and carbonate fraction by 45%, whereas phosphate increased it up to 2.61 times, compared to the untreated soils. Our results indicate that growing vegetables in soils near CCA-treated wood may pose a risk of As exposure for humans. Compost amendment can reduce such a risk by reducing As accumulation by vegetables and can be an important strategy for remediating CCA-contaminated soils. Caution should be taken for phosphate application since it enhances As accumulation. - Capsule: Compost amendment can reduce As exposure risk for humans by reducing As accumulation by vegetables and can be an important strategy for remediating CCA-contaminated soils

  5. Landfill disposal of CCA-treated wood with construction and demolition (C&D) debris: arsenic, chromium, and copper concentrations in leachate.

    Science.gov (United States)

    Jambeck, Jenna R; Townsend, Timothy G; Solo-Gabriele, Helena M

    2008-08-01

    Although phased out of many residential uses in the United States, the disposal of CCA-treated wood remains a concern because significant quantities have yet to be taken out of service, and it is commonly disposed in landfills. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills. The goal of this research was to simulate the complex chemical and biological activity of a construction and demolition (C&D) debris landfill containing a realistic quantity of CCA-treated wood (10% by mass), produce leachate, and then evaluate the arsenic, copper, and chromium concentrations in the leachate as an indication of what may occur in a landfill setting. Copper concentrations were not significantly elevated in the control or experimental simulated landfill setting (alpha = 0.05). However, the concentrations of arsenic and chromium were significantly higher in the experimental simulated landfill leachate compared to the control simulated landfill leachate (alpha = 0.05, p debris can impact leachate quality which, in turn could affect leachate management practices or aquifers below unlined landfills.

  6. Leaching of chromated copper arsenate (CCA)-treated wood in a simulated monofill and its potential impacts to landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Jambeck, Jenna R. [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Townsend, Timothy [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States)]. E-mail: ttown@ufl.edu; Solo-Gabriele, Helena [Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146-0630 (United States)

    2006-07-31

    The proper end-of-life management of chromated copper arsenate (CCA)-treated wood, which contains arsenic, copper, and chromium, is a concern to the solid waste management community. Landfills are often the final repository of this waste stream, and the impacts of CCA preservative metals on leachate quality are not well understood. Monofills are a type of landfill designed and operated to dispose a single waste type, such as ash, tires, mining waste, or wood. The feasibility of managing CCA-treated wood in monofills was examined using a simulated landfill (a leaching lysimeter) that contained a mix of new and weathered CCA-treated wood. The liquid to solid ratio (LS) reached in the experiment was 0.63:1. Arsenic, chromium, and copper leached from the lysimeter at average concentrations of 42 mg/L for arsenic, 9.4 mg/L for chromium, and 2.4 mg/L for copper. Complementary batch leaching studies using deionized water were performed on similar CCA-treated wood samples at LS of 5:1 and 10:1. When results from the lysimeter were compared to the batch test results, copper and chromium leachability appeared to be reduced in the lysimeter disposal environment. Of the three metals, arsenic leached to the greatest extent and was found to have the best correlation between the batch and the lysimeter experiments.

  7. Transformation and Release of Micronized Cu Used as a Wood Preservative in Treated Wood in Wetland Soil.

    Science.gov (United States)

    Micronized Cu (µ-Cu) is used as a wood preservative, replacing toxic Chromated Copper Arsenates. Micronized Cu is Malachite [Cu2CO3(OH)2] that has been milled to micron/submicron particles, many with diameters less than 100 nm, and then mixed with quat or azol biocides. I...

  8. Chemical evolution of Miocene wood: Example from the Belchatow brown coal deposit, central Poland

    Science.gov (United States)

    Drobniak, A.; Mastalerz, Maria

    2006-01-01

    Miocene conifer wood samples from the Belchatow brown coal deposit in Poland were studied in order to discuss a range of chemical variations that occur as a result of biochemical coalification. Petrographic analysis, ultimate analysis, electron microprobe technique, and FTIR spectroscopy were used in this study. Our data show several progressive trends in functional groups distribution that take place during the wood transformation from group 1 to group 4, such as an overall increase in aromaticity, an increase in lignin/cellulose ratio, and an increase in oxygen functionalities. Other observations include an increase in aliphatic stretching and bending functionalities from groups 1 to 3; followed by a decrease in the wood of group 4; appearance of aliphatic out-of-plane bands in group 3 and increase in group 4; an increase in CH2/CH3 in group 4 compared to the other groups; and decrease in O-H groups in group 4 compared to other groups. These observations, together with other chemical and petrological observations, indicate that the progressive elimination of cellulose and modification of lignin are dominant processes of the wood transformation. ?? 2005 Elsevier B.V. All rights reserved.

  9. Chemical speciation of PM2.5 emissions from residential wood combustion and meat cooking

    International Nuclear Information System (INIS)

    McDonald, J.; Zielinska, B.; Fujita, E.; Chow, J.; Watson, J.; Sagebiel, J.; Sheetz, L.; Batie, S.

    1998-01-01

    Residential wood combustion and meat cooking emissions were each analyzed to develop a chemical emissions profile. Samples were collected using a DRI-constructed dilution stack sampler equipped with a 2.5 mm particle selective cyclone. Emissions were diluted 30-100 times, cooled to ambient temperature, and were allowed 80 seconds for condensation prior to collection. Fireplace and wood-stove emissions testing was conducted at the DRI facilities. Wood type, wood moisture, burn rate, and fuel load were varied for different experiments. Meat emissions testing was conducted at the CE-CERT stationary emissions lab in Riverside, California. Meat type, fat content, and the cooking appliance used were changed in different tests. Fine particle and semi-volatile organic compounds were collected on filter/PUF/XAD/PUF cartridges. Inorganic samples were collected on Teflon and quartz filters, which were analyzed for mass by gravimetry, elements by x-ray fluorescence, ammonium by automated colorimetry, organic and elemental carbon by thermal/optical reflectance, as well as chloride, nitrate, and sulfate by ion chromatography. Analysis of organic species was conducted by gas chromatography/mass spectrometry (GC/MS). These data have been utilized for constructing specific profiles for use in the Chemical Mass Balance model for apportionment of fine particle sources in the Denver, Colorado, region

  10. Advances in corrosion testing of metals in contact with treated wood

    Science.gov (United States)

    Samuel Zelinka; D.S. Stone

    2010-01-01

    A January 2004 change in the regulation of wood preservatives used in the U.S.has increased the use of newer wood preservatives, such as alkaline copper quaternary (ACQ) and copper azole (CuAz). These preservatives contain high amounts of cupric ions, which may be reduced to copper metal at the expense of less noble steel and galvanized fasteners in the wood....

  11. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle

    Directory of Open Access Journals (Sweden)

    Teng-Chun Yang

    2017-03-01

    Full Text Available This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP, and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature.

  12. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle

    Science.gov (United States)

    Yang, Teng-Chun; Chien, Yi-Chi; Wu, Tung-Lin; Hung, Ke-Chang; Wu, Jyh-Horng

    2017-01-01

    This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP), and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR) of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature. PMID:28772726

  13. ANATOMICAL CHARACTERISTICS AND CHEMICAL PROPERTIES OF THE BRANCH-WOOD OF Schizolobium amazonicum DUCKE SPECIES AND ITS POTENTIAL USES

    Directory of Open Access Journals (Sweden)

    Yusup Amin

    2013-10-01

    Full Text Available The scale of forest degradation and deforestation in Indonesia has inspired the use of lesser-known wood species, which are potentially abundant and so far has not much been utilized. Utilization of these woods should be imposed not only of the stem wood but also of the branch-wood portions. Schizolobiumamazonicum Ducke treeis one of those lesser-known species, and growing fast with an MAIof3.68 cm/year.In Indonesia this species is only found in the Purwodadi Botanical Garden. A research was conducted to study the basic characteristics (anatomical aspects and chemical properties of the branch-wood portion of this species. The branch-wood materials were obtained from the Purwodadi Botanical Garden situated in Pasuruan (East Java. The specimens used were the first branch of the trunk (stem of nine-year old S. amazonicum tree (= 29.46 cm. The branch-wood samples were then examined for the anatomical aspects (macroscopic and microscopic characteristics and chemical properties (chemical composition. Results revealed that the anatomical properties of S.amazonicum branch-wood exhibited close similarities to those of sengon wood; it was light in appearance and white in color. Its fiber averaged about 1500 μm, and based on the fiber dimension's derived values the branch- wood fiber of this species was categorized into first-class quality for pulp and paper manufacture. Further, the chemical composition of this branch-wood compared favorably with that of sengon and mangium wood. The composition of extractive content thatsoluble in alcohol-benzene; lignin; holocellulose; and α-cellulose of this branch-wood were 2.46; 28.71; 80.64; and 50.47%, respectively. The overall assessment implied that the branch-wood portion of S.amazonicum tree affords favorable potential to be developed as raw material for pulp and paper manufacture. Also, considering that both sengon and mangium woods were already used in the pulp and paper industries as well as the trees are

  14. Elemental analysis of ash residue from combustion of CCA treated wood waste before and after electrodialytic extraction

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.

    2006-01-01

    Element distribution in a combined fly ash and bottom ash from combustion of copper chromate arsenate (CCA) treated wood waste was investigated by scanning electron microscopy (SEM/EDX) before and after electrodialytic extraction. The untreated ash contained various particles, including pieces...... of incompletely combusted wood rich in Cr and Ca, and irregular particles rich in Si, Al and K. Cr was also found incorporated in silica-based matrix particles. As was associated with Ca in porous (char) particles, indicating that Ca-arsenates had been formed during combustion. Cu was associated with Cr...... in the incompletely combusted wood pieces and was also found in almost pure form in a surface layer of some matrix particles – indicating surface condensation of volatile Cu species. In treated ash, Ca and As were no longer found together, indicating that Ca-arsenates had been dissolved due to the electrodialytic...

  15. Fabrication of Hydrophobic Surface on Wood Veneer via Electroless Nickel Plating Combined with Chemical Corrosion

    Directory of Open Access Journals (Sweden)

    Zhaojun Tang

    2015-12-01

    Full Text Available Birch veneers were coated with Ni-P films by a combined process of KBH4 activation and electroless plating. The plated veneers were further chemically corroded to obtain hydrophobic surfaces on wood. The effect of chemical corrosion on the contact angle of the veneers was investigated. The hydrophobic veneers were characterized by X-ray photo electron spectroscopy (XPS, scanning electron microscopy (SEM, and X-ray diffraction (XRD. The surface contact angle of birch veneer before and after it was plated with Ni-P alloy coating was 41º and 121º, respectively. The contact angle reached 136.7º when the nickel-coated veneers were corroded in CuSO4 aqueous solution for 30 min. XPS analysis showed that Cu0 cluster doped with little CuO formed on the corroded surface of Ni-P alloy film after chemical corrosion. SEM and XRD showed that rough copper clusters formed on the surface of the wood veneer and revealed the reason of the surface hydrophobicity. This study provides a new pathway for fabricating hydrophobic wood.

  16. The effects of wood storage on the chemical composition and indigenous microflora of eucalyptus species used in the pulping industry

    CSIR Research Space (South Africa)

    Ramnath, L

    2018-02-01

    Full Text Available Lipophilic extractives naturally occurring in wood tend to coalesce during pulping to form pitch deposits, which have particularly undesirable effects on the pulping process and quality of pulp produced. A chemical characterization of different...

  17. Electrochemical impedance spectroscopy (EIS) as a tool for measuring corrosion of polymer-coated fasteners used in treated wood

    Science.gov (United States)

    Samuel L. Zelinka; Lorraine Ortiz-Candelaria; Donald S. Stone; Douglas R. Rammer

    2009-01-01

    Currently, many of the polymer-coated fasteners on the market are designed for improved corrosion performance in treated wood; yet, there is no way to evaluate their corrosion performance. In this study, a common technique for measuring the corrosion performance of polymer-coated metals, electrochemical impedance spectroscopy (EIS), was used to evaluate commercial...

  18. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood

    Energy Technology Data Exchange (ETDEWEB)

    Cao Xinde [Soil and Water Science Department, University of Florida, Gainesville, FL (United States)]. E-mail: xcao@stevens.edu; Ma, Lena Q. [Soil and Water Science Department, University of Florida, Gainesville, FL (United States)

    2004-12-01

    Leaching of arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil arsenic levels. Thus, an environmental concern arises regarding accumulation of As in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to evaluate As accumulation by vegetables from the soils adjacent to the CCA-treated utility poles and fences and examine the effects of soil amendments on plant As accumulation. Carrot (Daucus carota L.) and lettuce (Lactuca sativa L.) were grown for ten weeks in the soil with or without compost and phosphate amendments. As expected, elevated As concentrations were observed in the pole soil (43 mg kg{sup -1}) and in the fence soil (27 mg kg{sup -1}), resulting in enhanced As accumulation of 44 mg kg{sup -1} in carrot and 32 mg kg{sup -1} in lettuce. Addition of phosphate to soils increased As accumulation by 4.56-9.3 times for carrot and 2.45-10.1 for lettuce due to increased soil water-soluble As via replacement of arsenate by phosphate in soil. However, biosolid compost application significantly reduced plant As uptake by 79-86%, relative to the untreated soils. This suppression is possibly because of As adsorbed by biosolid organic mater, which reduced As phytoavailability. Fractionation analysis showed that biosolid decreased As in soil water-soluble, exchangeable, and carbonate fraction by 45%, whereas phosphate increased it up to 2.61 times, compared to the untreated soils. Our results indicate that growing vegetables in soils near CCA-treated wood may pose a risk of As exposure for humans. Compost amendment can reduce such a risk by reducing As accumulation by vegetables and can be an important strategy for remediating CCA-contaminated soils. Caution should be taken for phosphate application since it enhances As accumulation. - Capsule: Compost amendment can reduce As exposure risk for humans by reducing As accumulation by vegetables and can be an important strategy for remediating CCA

  19. EFFECT OF REMOVING OLEORESIN WITH VARIOUS CHEMICAL COMPOUNDS ON PHYSICAL AND MECHANICAL PROPERTIES OF KERUING WOOD (DIPTEROCARPUS SPP.

    Directory of Open Access Journals (Sweden)

    Bambang Wiyono

    2007-03-01

    Full Text Available Keruing  (Dipterocarpus spp.  was  the  second  important  wood  export of   Indonesia. Unfortunately, this wood contains oleoresin that hinders its utilization. Currently, the method used to remove oleoresin from keruing is by soaking it into bollied sodium salt solution. Result of  this method is unsatisfactory because the residual heavy oleoresin might still appear on the wood surface. The study was conducted to determine suitable chemical compounds for removing oleoresin from keruing, and the effects on physical and mechanical properties of the wood. Four types of chemical compounds were tested, i.e. sodium chloride, oxalic acid, sulfuric acid, and nitric acid, each at the concentrations of  0.5 percent, 1.0 percent, and 1.5 percent. Wood samples were soaked in the boiling solution at different concentration level for seven hours. When the solution cooled down, the oleoresin exudated out of  the wood samples was separated. The oleoresin was weighed for recovery determination after air dried, and the wood samples were cut into smaller-sized specimens for the physical and mechanical testing (MOE, MOR, compression parallel to grain, hardness and density. Results showed that sulfuric acid was the best chemical compound for removing oleoresin, and the higher the concentration the greater the oleoresin recovery. The second best chemical compound was nitric acid at an optimum concentration of one percent. The soaking of keruing in sulfuric acid and oxalic acid solution resulted in paler wood color compare with the untreated wood sample. Nitric acid solutions caused the color of the wood surface to turn into yellow brownish. The physical and mechanical properties (MOE, MOR, compression parallel to grain, hardness and density of the oleoresin-removed keruing were slightly lower than the untreated (control samples.

  20. CREEP BEHAVIOR OF BORATE-TREATED STRANDBOARD: EFFECT OF ZINC BORATE RETENTION, WOOD SPECIES, AND LOAD LEVEL

    OpenAIRE

    Wu,Qinglin; Lee,Ong N; Cai,Zhiyong; Zhou,Dingguo

    2009-01-01

    Creep performance of zinc borate-treated strandboard from southern pine (Pinus taeda L.) and red oak (Quercus falcata) was investigated at 25(0)C temperature and 65% relative humidity. It was shown that the borate treatment had some significant effect on creep deflection of the test panels, and the effect varied with wood species. There was no significant effect of creep loading on residual bending properties of treated strandboard under the stress levels used. The four element spring-dashpot...

  1. Mechanical properties of moso bamboo treated with chemical agents

    Science.gov (United States)

    Benhua Fei; Zhijia Liu; Zehui Jiang; Zhiyong Cai

    2013-01-01

    Bamboo is a type of biomass material and has great potential as a bioenergy resource for the future in China. Surface chemical and thermal–mechanical behavior play an important role in the manufacturing process of bamboo composites and pellets. In this study, moso bamboo was treated by sodium hydrate solution and acetic acid solution. Surface chemical and dynamic...

  2. Anatomical and chemical properties and density of Coffea arabica L. wood

    Directory of Open Access Journals (Sweden)

    Marisa Aparecida Pereira

    2014-09-01

    Full Text Available The state of Minas Gerais is the largest producer of coffee in Brazil and the amount of residue in crops seems adequate to support production of solid wood products of Coffea arabica L., which is currently used for energy purposes or remains in the area. This activity adds insignificant value the coffee products and release CO2, which has harmful effects to the environment. This study was conducted with the aim of characterizing technologically Coffea arabica L. wood to enhance its use in furniture, to characterize its anatomical, chemical and wood basic density. The density showed an average of 0.608g.cm-3. The anatomical analysis showed distinct growth layers, semiporosos vessels with simple perforation plates. The axial parenchyma is apotracheal and diffuse in the aggregate with heterogeneous rays, not laminated and fiber libriformes not septate with bordered pits distinct. The chemical content of extract in hot and cold water were respectively 6.1% and 9.6%. The ash content was found to be 0.68%. Data were comparable to those of mahogany (Swietenia macrophylla and Piptadenia peregrina Benth, (angico-vermelho used for the production of furniture.

  3. Influence of corn steep liquor and glucose on colonization of control and CCB (Cu/Cr/B)-treated wood by brown rot fungi

    International Nuclear Information System (INIS)

    Humar, Miha; Amartey, Sam A.; Pohleven, Franc

    2006-01-01

    There are increasing problems with regard to the disposal of treated wood waste. Due to heavy metals or arsenic in impregnated wood waste, burning and landfill disposal options are not considered to be environmentally friendly solutions for dealing with this problem. Extraction of the heavy metals and recycling of the preservatives from the wood waste is a much more promising and environmentally friendly solution. In order to study the scale up of this process, copper/chromium/boron-treated wood specimens were exposed to copper tolerant (Antrodia vaillantii and Leucogyrophana pinastri) and copper sensitive wood decay fungi (Gloeophyllum trabeum and Poria monticola). Afterwards, the ability of fungal hyphae to penetrate and overgrow the wood specimens was investigated. The fungal growths were stimulated by immersing the specimens into aqueous solution of glucose or corn steep liquor prior to exposure to the fungi. The fastest colonization of the impregnated wood was by the copper tolerant A. vaillantii. Addition of glucose onto the surface of the wood specimens increased the fungi colonization of the specimens; however, immersion of the specimens into the solution of corn steep liquor did not have the same positive influence. These results are important in elucidating copper toxicity in wood decay fungi and for using these fungi for bioremediation of treated wood wastes

  4. Chemical composition and sensory properties of non-wooded and wooded Shiraz (Vitis vinifera L.) wine as affected by vineyard row orientation and grape ripeness level.

    Science.gov (United States)

    Hunter, Jacobus J; Volschenk, Cornelis G

    2018-05-01

    The study aimed to unravel vineyard row orientation (NS, EW, NE-SW, NW-SE) and grape ripeness level (23, 25, 27 °Balling) implications for grape and wine composition and sensory properties/style (non-wooded/wooded wines) of Vitis vinifera L. cv. Shiraz (rootstock 101-14 Mgt). Soluble solid/titratable acidity ratios were lowest for EW, whereas warmer canopy sides (NW, N, NE) advanced grape ripening. Skin anthocyanins and phenolics generally decreased with ripening. NW-SE rows and S, SE, E and NE canopy sides showed highest skin total anthocyanins and phenolics. Wine total anthocyanins and phenolics increased with grape ripening; EW had lower values. Wine phenolic contents differed between canopy sides; N, NE, E and SE tended higher. Wine sensory profiles increased with grape ripening. For non-wooded wines, NW-SE and NE-SW row orientations generally resulted in highest scores, followed by NS. For EW rows, the N side presented better wines. Wood addition enhanced specific sensory descriptor perceptions. A large collection of wine styles surfaced in the same vineyard and terroir, increasing options to contribute positively to sustainable products. The study generated globally applicable, novel information vital for unlocking and valorising terroir/site potential for grape and wine chemical composition and wine sensory/style properties. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Chemical source characterization of residential wood combustion emissions in Denver, Colorado; Bakersfield, California; and Mammoth Lakes, California

    International Nuclear Information System (INIS)

    Houck, J.E.; Goulet, J.M.; Chow, J.C.; Watson, J.G.

    1989-01-01

    The chemical composition of residential wood combustion particulate emissions was determined for fireplaces and woodstoves. Burn rates, burn patterns, wood burning appliances, and cordwood types characteristic of Denver, Colorado; Bakersfield, California; and Mammoth Lakes, California, were used during sample collection. Samples were collected using a dilution/cooling system to ensure that condensible compounds were captured. Analyses for 44 chemical species were conducted. Source profiles for use in chemical mass balance (CMB) modeling were calculated from the analytical data. The principal chemical species comprising the profiles were organic compounds and elemental carbon. The minor chemical species were sulfur, chlorine, potassium, sodium, calcium, zinc, nitrate, and ammonium. Virtually all potassium was in a water-soluble form, and sulfur emissions between fireplaces and woodstoves were noted. Area-specific source profiles for fireplaces, woodstoves, and overall residential wood combustion are presented

  6. EFFECT OF ARTIFICIAL WEATHERING ON WOOD LAMINATES COLOR TREATED WITH TWO FINISHING PRODUCTS

    Directory of Open Access Journals (Sweden)

    Thais Jacob Mendes

    2016-03-01

    Full Text Available Weathering is one of the main reasons for the degradation of wood, especially its color. The application of finishes minimizes these effects. This study aimed to monitor the effect of artificial weathering on wood veneer of the species cumaru (Dipteryx odorata and pau marfim (Balfourodendron riedelianum with two finishes, the marine varnish and Cetol, with monitoring using a spectrophotometer. The samples were subjected to cycles of exposure to weathering for 20, 40, 52, 76, 124, 226, 430, 838 and 960 hours. The colorimetric parameters (L*, a*, b*, C and h* were measured before treatment, after application of the products and during the weathering time intervals. The application of finishes darkened veneer of cumaru wood and pau marfim in nature. However, in higher weathering times, both species returned to a lighter color, and even became lighter than the natural wood. The use of Cetol was more efficient, giving greater stability in the conservation of wood color of the species studied.

  7. Chemical studies on oils derived from aspen poplar wood, cellulose, and an isolated aspen poplar lignin

    Energy Technology Data Exchange (ETDEWEB)

    Eager, R L; Pepper, J M; Roy, J C; Mathews, J F

    1983-01-01

    An initial study has been made of the chemical nature of the oil phase resulting from the conversion of aspen poplar wood, cellulose, and an isolated lignin from the aspen poplar as a result of their interactions with water and carbon monoxide in the presence of sodium carbonate at 360 degrees C. Gas chromatographic analysis of the sodium hydroxide soluble fractions from each substrate revealed similar spectra of alkyl-substituted phenols. The relative abundance of identified low molecular weight phenolic compounds decreased from lignin to wood to cellulose. This was in agreement with the known phenolic nature of lignin. As well, it confirmed the synthesis during reaction of such compounds from a carbohydrate substrate. Gas chromatographic analysis of the whole oils also revealed the presence in each case of several alkyl-substituted cyclopentanones whose relative abundance decreased from cellulose to wood to lignin. Silica gel column separation of the oils, after a charcoal treatment, followed by capillary gas chromatographic - mass spectrometric analyses of the resulting fraction indicated the presence of other higher molecular weight phenols, napthols, cycloalkanols, and polycyclic and long chain alkanes and alkenes.

  8. Arsenic levels in wipe samples collected from play structures constructed with CCA-treated wood: Impact on exposure estimates

    Energy Technology Data Exchange (ETDEWEB)

    Barraj, Leila M. [Chemical Regulation and Food Safety, Exponent, Inc., Suite 1100, 1150 Connecticut Ave., NW, Washington, DC 20036 (United States)], E-mail: lbarraj@exponent.com; Scrafford, Carolyn G. [Chemical Regulation and Food Safety, Exponent, Inc., Suite 1100, 1150 Connecticut Ave., NW, Washington, DC 20036 (United States); Eaton, W. Cary [RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709 (United States); Rogers, Robert E.; Jeng, Chwen-Jyh [Toxcon Health Sciences Research Centre Inc., 9607 - 41 Avenue, Edmonton, Alberta, T6E 5X7 (Canada)

    2009-04-01

    Lumber treated with chromated copper arsenate (CCA) has been used in residential outdoor wood structures and playgrounds. The U.S. EPA has conducted a probabilistic assessment of children's exposure to arsenic from CCA-treated structures using the Stochastic Human Exposure and Dose Simulation model for the wood preservative scenario (SHEDS-Wood). The EPA assessment relied on data from an experimental study using adult volunteers and designed to measure arsenic in maximum hand and wipe loadings. Analyses using arsenic handloading data from a study of children playing on CCA-treated play structures in Edmonton, Canada, indicate that the maximum handloading values significantly overestimate the exposure that occurs during actual play. The objective of our paper is to assess whether the dislodgeable arsenic residues from structures in the Edmonton study are comparable to those observed in other studies and whether they support the conclusion that the values derived by EPA using modeled maximum loading values overestimate hand exposures. We compared dislodgeable arsenic residue data from structures in the playgrounds in the Edmonton study to levels observed in studies used in EPA's assessment. Our analysis showed that the dislodgeable arsenic levels in the Edmonton playground structures are similar to those in the studies used by EPA. Hence, the exposure estimates derived using the handloading data from children playing on CCA-treated structures are more representative of children's actual exposures than the overestimates derived by EPA using modeled maximum values. Handloading data from children playing on CCA-treated structures should be used to reduce the uncertainty of modeled estimates derived using the SHEDS-Wood model.

  9. The Effect of Heat Treatment on the chemical and color change of Black Locust (Robinia Pseudoacacia) wood flour

    Science.gov (United States)

    Yao Chen; Yongming Fan; Jianmin Gao; Nicole M. Stark

    2012-01-01

    The aim of this study was to investigate the effects of oxygen and moisture content (MC) on the chemical and color changes of black locust (Robinia pseudoacacia) wood during heat treatment. The wood flour was conditioned to different initial MCs and heated for 24 h at a constant temperature of 120°C in either oxygen or nitrogen atmosphere. The pH values and...

  10. Continuous Fixed-Bed Column Study and Adsorption Modeling: Removal of Lead Ion from Aqueous Solution by Charcoal Originated from Chemical Carbonization of Rubber Wood Sawdust

    Directory of Open Access Journals (Sweden)

    Swarup Biswas

    2015-01-01

    Full Text Available The efficiency of chemically carbonized rubber wood sawdust for the removal of lead ion from the aqueous stream was investigated by column process. Chemically carbonized rubber wood sawdust was prepared by treating the sawdust with H2SO4 and HNO3. Maximum removal of lead ion in column process was found as 38.56 mg/g. The effects of operating parameters such as flow rate, bed depth, concentration, and pH were studied in column mode. Experimental data confirmed that the adsorption capacity increased with the increasing inlet concentration and bed depth and decreased with increasing flow rate. Thomas, Yoon-Nelson, and Adams-Bohart models were used to analyze the column experimental data and the relationship between operating parameters. Chemically carbonized rubber wood sawdust was characterized by using Fourier transform infrared spectroscopy. Scanning electron microscope was also utilized for morphological analysis of the adsorbent. Furthermore X-ray fluorescence spectrum analysis and energy dispersive X-ray spectroscopy were also used for the confirmation of lead adsorption process.

  11. Superfund record of decision (EPA Region 3): Southern Maryland Wood Treating Site, Hollywood, MD, September 8, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The decision document presents the selected remedial action for the Southern Maryland Wood Treating Site (`the Site`), in Hollywood, Maryland. This is the second and final phase of remedial action for the Site. This phase addresses soil and sediment contamination and non-aqueous phase liquids (`NAPLs`) which are the principal threats remaining at the Site and are a source of contamination to the ground water and surface water.

  12. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.

    Science.gov (United States)

    Jambeck, Jenna; Weitz, Keith; Solo-Gabriele, Helena; Townsend, Timothy; Thorneloe, Susan

    2007-01-01

    Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated

  13. Effect of lime and wood ash on the nixtamalization of maize and tortilla chemical and nutritional characteristics.

    Science.gov (United States)

    Pappa, María Renée; de Palomo, Patricia Palacios; Bressani, Ricardo

    2010-06-01

    The objective of the study was to obtain information on the chemical composition, functional properties, sensory quality and protein value of tortillas made from the nixtamalization of maize using either lime or wood ashes. The Ca, K, Mg, Fe, and Zn content of lime and wood ashes showed lime to be high in Ca content while wood ash contained more K and about 71% of the Ca content of lime. Both contained relatively high levels of Mg, Fe and Zn, but more so in the wood ashes. The level of reagent for nixtamalization was set at 0.8% of the maize weight. All other processing conditions were kept constant. The pH of the cooking solution was 12.0 for lime and 10.9 for wood ash. The moisture content of maize at 60 min of cooking was 45.8% for both treatments, however after 12 h of soaking, moisture level was 51.0% for the lime treatment and only 46.8% for the ash treatment. Solids (2.4%) in the lime cooking liquor were higher than in the wood ash liquor (1.0%). Chemical composition changes were similar between treatments in masa and tortilla; however, both masa and tortillas absorbed relatively high levels of all minerals including Fe and Zn from the wood ash treatment. The different treatment influenced functional properties particularly hardness and color. Tortilla characteristics were also similar. Protein quality of both alkali cooked products was lower than that of raw corn, more so the product from the wood ash treatment. Although some differences were observed in the sensory studies, human subjects did not dislike the wood ash made tortillas.

  14. Combustion Characteristics of Impregnated and Surface-treated Chestnut (Castanea sativa Mill. Wood Left Outdoors for One Year

    Directory of Open Access Journals (Sweden)

    Muhammed Said Fidan

    2016-01-01

    Full Text Available Treating wood with impregnating materials in order to improve resistance to burning is a commonly employed safety measure. In this study, chestnut (Castanea sativa Mill. wood samples were impregnated using either Tanalith-E or Wolmanit-CB according to ASTM-D 1413-76 and surface-treated using water-based or synthetic varnish according to ASTM-D 3023. These samples were used to investigate the combustion characteristics of samples left outdoors for one year as detailed in ASTM-E 160-50. The combustion temperatures of the samples left outdoors were similar upon impregnation with either Tanalith-E or Wolmanit-CB. However, the combustion temperature of the samples treated with synthetic varnish was lower than those that were treated with water-based varnish. The time to collapse and the total duration of combustion of the samples left outdoors were shorter for those impregnated with Wolmanit-CB. Weight loss of the samples left outdoors was higher for those that were impregnated with Tanalith-E and treated with water-based varnish. Gas analysis of the samples that were left outdoors indicated that the O2 content of flue gas from samples that were impregnated with Wolmanit-CB and treated with synthetic varnish was high and the CO content of flue gas from the same samples was low.

  15. Arsenic, chromium, and copper leaching from CCA-treated wood and their potential impacts on landfill leachate in a tropical country.

    Science.gov (United States)

    Kamchanawong, S; Veerakajohnsak, C

    2010-04-01

    This study looks into the potential risks of arsenic, chromium, and copper leaching from disposed hardwoods treated with chromated copper arsenate (CCA) in a tropical climate. The Toxicity Characteristic Leaching Procedure (TCLP) and the Waste Extraction Test (WET) were employed to examine new CCA-treated Burseraceae and Keruing woods, weathered CCA-treated teak wood, and ash from new CCA-treated Burseraceae wood. In addition, a total of six lysimeters, measuring 2 m high and 203 mm in diameter were prepared to compare the leachate generated from the wood monofills, construction and demolition (C&D) debris landfills and municipal solid waste (MSW) landfills, containing CCA-treated Burseraceae wood. The TCLP and WET results showed that the CCA-treated Burseraceae wood leached higher metal concentrations (i.e. 9.19-17.70 mg/L, 1.14-5.89 mg/L and 4.83-23.89 mg/L for arsenic, chromium, and copper, respectively) than the CCA-treated Keruing wood (i.e. 1.74-11.34 mg/L, 0.26-3.57 mg/L and 0.82-13.64 mg/L for arsenic, chromium and copper, respectively). Ash from the CCA-treated Burseraceae wood leached significantly higher metal concentrations (i.e. 108.5-116.9 mg/L, 1522-3862 mg/L and 84.03-114.4 mg/L for arsenic, chromium and copper, respectively), making this type of ash of high concern. The lysimeter study results showed that the MSW lysimeter exhibited higher reducing conditions, more biological activities and more dissolved ions in their leachates than the wood monofill and C&D debris lysimeters. All leachates generated from the lysimeters containing the CCA-treated Burseraceae wood contained significantly higher concentrations of arsenic in comparison to those of the untreated wood: in the range of 0.53-15.7 mg/L. It can be concluded that the disposal of CCA-treated Burseraceae wood in an unlined C&D landfill or a MSW landfill has the potential to contaminate groundwater.

  16. Fast pyrolysis of creosote treated wood ties in a fluidized bed reactor and analytical characterization of product fractions

    International Nuclear Information System (INIS)

    Jung, Su-Hwa; Koo, Won-Mo; Kim, Joo-Sik

    2013-01-01

    A fraction of creosote treated wood ties was pyrolyzed in a pyrolysis plant equipped with a fluidized bed reactor and char-separation system at different temperatures. Analyses of each pyrolysis product, especially the oil, were carried out using a variety of analytical tools. The maximum oil yield was obtained at 458 °C with a value of 69.3 wt%. Oils obtained were easily separated into two phases, a creosote-derived fraction (CDF) and a wood-derived fraction (WDF). Major compounds of the WDF were acetic acid, furfural and levoglucosan, while the CDF was mainly composed of polycyclic aromatic hydrocarbons (PAHs), such as 1-methylnaphthalene, biphenyl, acenaphthene, dibenzofuran, fluorene, phenanthrene, anthracene, fluoranthene and pyrene. HPLC analysis showed that the concentration of PAHs of the CDF obtained at 458 °C constituted about 22.5 wt% of the oil. - Highlights: • Creosote treated wood ties was stably pyrolyzed in a fluidized bed reactor. • Pyrolysis oil contained extremely low metal content due to the char removal system. • Bio-oil components was quantitatively analyzed by relative response factor. • Creosote-derived pyrolysis oil fraction was composed of PHAs and has a high caloric value (39 MJ/kg)

  17. Assessing the Extent of Sediment Contamination Around Creosote-treated Pilings Through Chemical and Biological Analyses

    Science.gov (United States)

    Stefansson, E. S.

    2008-12-01

    Creosote is a common wood preservative used to treat marine structures, such as docks and bulkheads. Treated dock pilings continually leach polycyclic aromatic hydrocarbons (PAHs) and other creosote compounds into the surrounding water and sediment. Over time, these compounds can accumulate in marine sediments, reaching much greater concentrations than those in seawater. The purpose of this study was to assess the extent of creosote contamination in sediments, at a series of distances from treated pilings. Three pilings were randomly selected from a railroad trestle in Fidalgo Bay, WA and sediment samples were collected at four distances from each: 0 meters, 0.5 meters, 1 meter, and 2 meters. Samples were used to conduct two bioassays: an amphipod bioassay (Rhepoxynius abronius) and a sand dollar embryo bioassay. Grain size and PAH content (using a fluorometric method) were also measured. Five samples in the amphipod bioassay showed significantly lower effective survival than the reference sediment. These consisted of samples closest to the piling at 0 and 0.5 meters. One 0 m sample in the sand dollar embryo bioassay also showed a significantly lower percentage of normal embryos than the reference sediment. Overall, results strongly suggest that creosote-contaminated sediments, particularly those closest to treated pilings, can negatively affect both amphipods and echinoderm embryos. Although chemical data were somewhat ambiguous, 0 m samples had the highest levels of PAHs, which corresponded to the lowest average survival in both bioassays. Relatively high levels of PAHs were found as far as 2 meters away from pilings. Therefore, we cannot say how far chemical contamination can spread from creosote-treated pilings, and at what distance this contamination can still affect marine organisms. These results, as well as future research, are essential to the success of proposed piling removal projects. In addition to creosote-treated pilings, contaminated sediments must

  18. Incorporation of treated straw and wood fly ash into clay building brick

    DEFF Research Database (Denmark)

    Chen, Wan; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2016-01-01

    High Cd content in straw and wood fly ash, generated from biomass-fired power plants, prohibits its recycling as fertilizer spreading on the landfilled. To improve and alter the current mainstream of fly ash treatment by landfilling, different approaches were tried for treatment of straw and wood...... fly ash, such as washing with water to quickly recover the highly soluble salts (mainly K and Cl), and treatment of the washed fly ash with elevated heavy metal content resulted from washing by electrodialytic remediation (EDR). The finding that SiO2 (quartz) accounted for a significant portion...

  19. Environmental issues: New techniques for managing and using wood fuel ash

    Energy Technology Data Exchange (ETDEWEB)

    Fehrs, J.E.; Donovan, C.T. [C.T. Donovan Associates, Inc., Burlington, VT (United States)

    1993-12-31

    Continued research and development of environmentally-acceptable and cost-effective end uses for wood ash is having a significant affect on the ability to use wood and wood waste for fuel. This is particularly true for ash resulting from treated wood combustion. Concerns about the contents of ash from wood containing paint, stain, preservatives, or other chemicals is one of the largest regulatory barriers to its use as fuel. The purpose of this paper is to: (1) Identify the physical and chemical characteristics of ashes produced from the combustion of untreated and treated wood; (2) Explain the types of {open_quotes}clean, untreated{close_quotes} and {open_quotes}treated{close_quotes} wood that are likely to produce ash that can beneficially used; (3) Describe existing and potential products and end uses for untreated and treated wood ash.

  20. Removal of nano- and micronized-copper from treated wood by chelating agents

    Science.gov (United States)

    S. Nami Kartal; Evren Terzi; Bessie Woodward; Carol A. Clausen; Stan T. Lebow

    2013-01-01

    Micronized and nano-copper (Cu)-based and arsenic and chromium-free systems have received much attention for wood protection in recent years. Because they have different fixation, and micro-distribution properties, such copper systems may be more or less subject to release using known remediation methods than soluble forms of Cu. This study evaluated Cu recovery from...

  1. Starch inclusion complex to emulsify cedarwood oil and pressure treat wood

    Science.gov (United States)

    Previously, we have demonstrated that CO2-derived cedarwood oil has a range of bioactivities, including insect repellency and toxicity as well as conferring resistance to both termites and wood-rot fungi. In the earlier pressure treatment work, ethanol was used as the diluent/carrier. However, it is...

  2. In vitro bioaccessibility of copper azole following simulated dermal transfer from pressure-treated wood

    Science.gov (United States)

    Micronized copper azole (MCA) and micronized copper quaternary are the latest wood preservatives to replace the liquid lkaline copper and chromated copper arsenate preservatives due to concerns over the toxicity or lack of effectiveness of the earlier formulations. Today, the use...

  3. Studies on Solid Wood. II. The Influence of Chemical Modifications on Viscoelastic Properties

    DEFF Research Database (Denmark)

    Bjørkmann, Anders; Salmén, Lennart

    2000-01-01

    The relation between the properties of wood polymers and those of the composite material of wood is a subject that has been of interest for a long time. In order to increase oar knowledge in this matter, changes of wood properties have been studied on samples of spruce and birch, subjected to var...

  4. Chemical Profiles of Wood Components of Poplar Clones for Their Energy Utilization

    Directory of Open Access Journals (Sweden)

    Danica Kačíková

    2012-12-01

    Full Text Available Selected and tested poplar clones are very suitable biomass resources for various applications such as biofuels, the pulp and paper industry as well as chemicals production. In this study, we determined the content of lignin, cellulose, holocellulose, and extractives, syringyl to guaiacyl (S/G ratio in lignin, and also calculated higher heating values (HHV among eight examined clones of Populus grown on three different experimental sites. The highest lignin content for all the examined sites was determined in ‘I-214’ and ‘Baka 5’ clones, whereas the highest content of extractives was found in ‘Villafranca’ and ‘Baka 5’ clones. The highest S/G ratio for all the examined sites was determined in ‘Villafranca’ and ‘Agathe F’ clones. The chemical profiles of main wood components, extractives, and the S/G ratio in lignin were also influenced by both the experimental site and the clone × site interaction. Higher heating values, derived from calculations based on the contents of lignin and extractives (or lignin only, were in close agreement with the previously published data. The highest heating values were found for ‘Baka 5’ and ‘I-214’ clones. The optimal method of poplar biomass utilization can be chosen on basis of the lignocellulosics chemical composition and the S/G ratio in lignin.

  5. Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances.

    Science.gov (United States)

    Czech, Hendryk; Miersch, Toni; Orasche, Jürgen; Abbaszade, Gülcin; Sippula, Olli; Tissari, Jarkko; Michalke, Bernhard; Schnelle-Kreis, Jürgen; Streibel, Thorsten; Jokiniemi, Jorma; Zimmermann, Ralf

    2018-01-15

    Combustion technologies of small-scale wood combustion appliances are continuously developed decrease emissions of various pollutants and increase energy conversion. One strategy to reduce emissions is the implementation of air staging technology in secondary air supply, which became an established technique for modern wood combustion appliances. On that account, emissions from a modern masonry heater fuelled with three types of common logwood (beech, birch and spruce) and a modern pellet boiler fuelled with commercial softwood pellets were investigated, which refer to representative combustion appliances in northern Europe In particular, emphasis was put on the organic constituents of PM2.5, including polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs) and phenolic species, by targeted and non-targeted mass spectrometric analysis techniques. Compared to conventional wood stoves and pellet boilers, organic emissions from the modern appliances were reduced by at least one order of magnitude, but to a different extent for single species. Hence, characteristic ratios of emission constituents and emission profiles for wood combustion identification and speciation do not hold for this type of advanced combustion technology. Additionally, an overall substantial reduction of typical wood combustion markers, such as phenolic species and anhydrous sugars, were observed. Finally, it was found that slow ignition of log woods changes the distribution of characteristic resin acids and phytosterols as well as their thermal alteration products, which are used as markers for specific wood types. Our results should be considered for wood combustion identification in positive matrix factorisation or chemical mass balance in northern Europe. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Wood preservation

    Science.gov (United States)

    Kevin Archer; Stan Lebow

    2006-01-01

    Wood preservation can be interpreted to mean protection from fire, chemical degradation, mechanical wear, weathering, as well as biological attack. In this chapter, the term preservation is applied more restrictively to protection from biological hazards.

  7. In vitro bioactivity and cytotoxicity of chemically treated glass fibers

    Directory of Open Access Journals (Sweden)

    Ângela Leão Andrade

    2004-12-01

    Full Text Available Samples of a commercial glass fiber FM® (Fiber Max were used to test the efficacy of a chemical sol-gel surface treatment to enhance their bioactivity. After treatment with tetraethoxysilane (TEOS, individual fiber samples were soaked into a simulated body fluid (SBF solution, from which they were removed at intervals of 5 and 10 days. Micrographs obtained by scanning electron microscopy (SEM analysis of samples chemically treated with TEOS revealed the formation of a hydroxyapatite (HA coating layer after 5 days into SBF solution. Fourier transform infrared spectroscopic (FTIR analyses confirmed that the coating layer has P-O vibration bands characteristic of HA. The in vitro cytotoxicity was evaluated using a direct contact test, minimum essential medium elution test (ISO 10993-5 and MTT assay. Fibers immersed in SBF and their extracts exhibited lower cytotoxicity than the controls not subjected to immersion, suggesting that SBF treatment improves the biocompatibility of the fiber.

  8. Technological and chemical properties of heat-treated Anatolian ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... heat treatment temperature and time justifies these re- sults. Cellulose ..... properties of light-irradiated wood with heat treatment: Part 1. Effect ... Norway spruce (Picea abies) and birch (Betula pubescens) subjected to heat ...

  9. Physcio chemical analysis of browning inhibitors treated solanum turberosum powder

    International Nuclear Information System (INIS)

    Alizai, M.N.K.; Abid, H.

    2008-01-01

    White potatoes (Solanum turberosum) were procured from agriculture Research Institute Tarnab Farm Peshawar to use for the preparation of potato powder. The process involves sorting. Washing, peeling slicing, blanching, treating with poly phenol oxidase inhibitors, dehydration, grinding and packing. All these parameters used in process were standardized. Chemical analysis of fresh potato and potato powder were carried out. Microbiological examination, functional properties and storage life studies of the potato powder were also performed. The product prepared by drying in cabinet dryer at 55 C for 7 hours was off white colour potatoes chips which was grinded to make off white potato powder. The potato powder possessed taste and texture. (author)

  10. Characterization of residues from thermal treatment of treated wood and extraction of Cu, Cr, As and Zn

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul; Christensen, Iben Vernegren

    2005-01-01

    , that the charcoal contained a high concentration of Zn, probably from paint. Chemical extraction experiments in HNO were conducted with the charcoal and it was found that the order of extraction (in percentage) was Zn > Cu > As > Cr. A SEM/EDX investigation of the mixed ash from combustion showed the presence...... a matter to cope with when methods to avoid As emission are implemented: the residues with increased concentrations of Cu, Cr and As. In the present paper two different residues after thermal treatment are characterized: a mixed bottom and fly ash from combustion of CCA impregnated wood, and a charcoal...... form in a small layer on the surface of some matrix particles indicating condensation of volatile Cu species. Chemical extraction with inorganic acids showed the order of percentages mobilized as: As > Cu > Cr....

  11. Influence of wood-derived biochar on the physico-mechanical and chemical characteristics of agricultural soils

    Science.gov (United States)

    Ahmed, Ahmed S. F.; Raghavan, Vijaya

    2018-01-01

    Amendment of soil with biochar has been shown to enhance fertility and increase crop productivity, but the specific influence of biochar on soil workability remains unclear. Select physico-mechanical and chemical properties of clay loam and sandy loam soils were measured after amendment with wood-derived biochar of two particle size ranges (0.5-425 and 425-850 µm) at five dosages ranging from 0.5 to 10% dry weight. Whereas the clay loam soil workability decreased when the finer wood-derived biochar was applied at rates of 6 or 10%, soil fertility was not enhanced. The sandy loam soil, due to Proctor compaction, significantly decreased in bulk density with 6 and 10% wood-derived biochar amendments indicating higher soil resistance to compaction.

  12. Assessment of local wood species used for the manufacture of cookware and the perception of chemical benefits and chemical hazards associated with their use in Kumasi, Ghana

    Directory of Open Access Journals (Sweden)

    Mensah John Kenneth

    2012-12-01

    Full Text Available Abstract Background Historical proven wood species have no reported adverse health effect associated with its past use. Different historical proven species have traditionally been used to manufacture different wooden food contact items. This study uses survey questionnaires to assess suppliers’, manufacturers’, retailers’ and consumers’ (end-users’ preferences for specific wood species, to examine the considerations that inform these preferences and to investigate the extent of awareness of the chemical benefits and chemical hazards associated with wooden food contact material use. Methods Through the combined use of a cross sectional approach and a case study design, 25 suppliers, 25 manufacturers, 25 retailers and 125 consumers (end-users of wooden food contact materials in four suburbs in Kumasi Metropolitan Area (Anloga junction, Ahinsan Bus Stop, Ahwia-Pankrono and Race Course and Ashanti Akyim Agogo in the Ashanti Akyim North District of the Ashanti Region were administered with closed ended questionnaires. The questionnaires were prepared in English, but local language, Twi, was used to translate and communicate the content of the questionnaire where necessary. Results Suppliers’, manufacturers’ and retailers’ preferences for specific wood species for most wooden cookware differed from that of consumers (end-users. But all respondent groups failed to indicate any awareness of chemical benefits or chemical hazards associated with either the choice of specific wood species for specific wooden cookware or with the general use of wooden food contact materials. The lack of appreciation of chemical benefits or hazards associated with active principles of wooden cookware led to heavy reliance of consumers (end-users on the wood density, price, attractive grain pattern and colour or on the judgement of retailers in their choice of specific species for a wooden cookware. Conclusion This study contributes some practical suggestions

  13. Effects of permethrin treated wood on the subterranean termite Reticulitermes flavipes (Kollar) and comparison of solvent extraction for HPLC analysis of permethrin in wood

    Science.gov (United States)

    Mark Mankowski; Blossie Boyd; Geoffrey Webb

    2016-01-01

    Permethrin is a common insecticide used in wood preservation. It is an effective synthetic pyrethroid that is considered to be less toxic to higher organisms than organochlorine insecticides. In wood preservation, it can be used in combination with fungicides such as 3-iodo-2-propynyl butyl carbamate (IPBC). Permethrin has a dual mode of action as it is a repellent and...

  14. Demonstration of the efficiency and robustness of an acid leaching process to remove metals from various CCA-treated wood samples.

    Science.gov (United States)

    Coudert, Lucie; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Janin, Amélie; Gastonguay, Louis

    2014-01-01

    In recent years, an efficient and economically attractive leaching process has been developed to remove metals from copper-based treated wood wastes. This study explored the applicability of this leaching process using chromated copper arsenate (CCA) treated wood samples with different initial metal loading and elapsed time between wood preservation treatment and remediation. The sulfuric acid leaching process resulted in the solubilization of more than 87% of the As, 70% of the Cr, and 76% of the Cu from CCA-chips and in the solubilization of more than 96% of the As, 78% of the Cr and 91% of the Cu from CCA-sawdust. The results showed that the performance of this leaching process might be influenced by the initial metal loading of the treated wood wastes and the elapsed time between preservation treatment and remediation. The effluents generated during the leaching steps were treated by precipitation-coagulation to satisfy the regulations for effluent discharge in municipal sewers. Precipitation using ferric chloride and sodium hydroxide was highly efficient, removing more than 99% of the As, Cr, and Cu. It appears that this leaching process can be successfully applied to remove metals from different CCA-treated wood samples and then from the effluents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant

    Energy Technology Data Exchange (ETDEWEB)

    Helsen, Lieve [Katholieke Universiteit Leuven, Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion, Celestijnenlaan 300A, B-3001 Leuven (Heverlee) (Belgium)]. E-mail: lieve.helsen@mech.kuleuven.be; Hacala, Amelie [Company Thermya, 1 rue Nicolas Appert, 33140 Villenave d' Ornon (France)]. E-mail: hacala@thermya.com

    2006-10-11

    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during 'chartherisation'. The industrial setup leads to a broader range of agglomerates' size (0.1-50 {mu}m) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 {mu}m)

  16. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant

    International Nuclear Information System (INIS)

    Helsen, Lieve; Hacala, Amelie

    2006-01-01

    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during 'chartherisation'. The industrial setup leads to a broader range of agglomerates' size (0.1-50 μm) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 μm)

  17. Modeling the Emission of CO from Wood Fires using Detailed Chemical Kinetics

    DEFF Research Database (Denmark)

    Dederichs, Anne

    Carbon monoxide is treated as one of the most common and dangerous of gases evolving in fires. Modeling the formation of the toxic gas CO from in fire enclosures using detailed chemical kinetics is the topic of this manuscript. A semi-empirical model is developed to study the formation of CO from......, the model separately treats the process of pyrolysis and combustion. For under ventilated conditions and at high temperatures during pyrolysis it is found that the process of pyrolysation strongly influences the formation of CO in fire. CO2 follows the same trend....

  18. Bonding effectiveness to different chemically pre-treated dental zirconia.

    Science.gov (United States)

    Inokoshi, Masanao; Poitevin, André; De Munck, Jan; Minakuchi, Shunsuke; Van Meerbeek, Bart

    2014-09-01

    The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia. Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed. Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability. Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia. As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.

  19. Engineering Characteristics of Chemically Treated Water-Repellent Kaolin

    Directory of Open Access Journals (Sweden)

    Youngmin Choi

    2016-12-01

    Full Text Available Water-repellent soils have a potential as alternative construction materials that will improve conventional geotechnical structures. In this study, the potential of chemically treated water-repellent kaolin clay as a landfill cover material is explored by examining its characteristics including hydraulic and mechanical properties. In order to provide water repellency to the kaolin clay, the surface of clay particle is modified with organosilanes in concentrations (CO ranging from 0.5% to 10% by weight. As the CO increases, the specific gravity of treated clay tends to decrease, whereas the total organic carbon content of the treated clay tends to increase. The soil-water contact angle increases with an increase in CO until CO = 2.5%, and then maintains an almost constant value (≈134.0°. Resistance to water infiltration is improved by organosilane treatment under low hydrostatic pressure. However, water infiltration resistance under high hydrostatic pressure is reduced or exacerbated to the level of untreated clay. The maximum compacted dry weight density decreases with increasing CO. As the CO increases, the small strain shear modulus increases, whereas the effect of organosilane treatment on the constrained modulus is minimal. The results indicate that water-repellent kaolin clay possesses excellent engineering characteristics for a landfill cover material.

  20. Engineering Characteristics of Chemically Treated Water-Repellent Kaolin

    Science.gov (United States)

    Choi, Youngmin; Choo, Hyunwook; Yun, Tae Sup; Lee, Changho; Lee, Woojin

    2016-01-01

    Water-repellent soils have a potential as alternative construction materials that will improve conventional geotechnical structures. In this study, the potential of chemically treated water-repellent kaolin clay as a landfill cover material is explored by examining its characteristics including hydraulic and mechanical properties. In order to provide water repellency to the kaolin clay, the surface of clay particle is modified with organosilanes in concentrations (CO) ranging from 0.5% to 10% by weight. As the CO increases, the specific gravity of treated clay tends to decrease, whereas the total organic carbon content of the treated clay tends to increase. The soil-water contact angle increases with an increase in CO until CO = 2.5%, and then maintains an almost constant value (≈134.0°). Resistance to water infiltration is improved by organosilane treatment under low hydrostatic pressure. However, water infiltration resistance under high hydrostatic pressure is reduced or exacerbated to the level of untreated clay. The maximum compacted dry weight density decreases with increasing CO. As the CO increases, the small strain shear modulus increases, whereas the effect of organosilane treatment on the constrained modulus is minimal. The results indicate that water-repellent kaolin clay possesses excellent engineering characteristics for a landfill cover material. PMID:28774098

  1. Possible preparation of wood-plastic composites based on unsaturated polyester resins and styrene by radiation and chemical methods in combination

    International Nuclear Information System (INIS)

    Pesek, M.; Pultar, F.; Jarkovsky, J.; Andr, J.

    1983-01-01

    Using the radiation chemical method it is possible to prepare wood-plastic composites using doses of 1 to 2.5 kGy. The impregnation mixture in the wood gelatinates and subsequent curing using chemical initiators takes place without outflow of the mixture from the wood and without formation of incrustations. The basic components of the impregnation mixtures used were unsaturated polyester resins; styrene or methyl methacrylate was used as the thinner. The proven initiator of polymerization was 2,2'-azobisisobutyronitrile. The technology is described of wood impregnation and radiation or chemical curing. The effects were monitored of viscosity, temperature, radiation dose and the concentrations of the individual components of the impregnation mixtures and initiators of polymerization on the process of the preparation of wood-plastic composites. (M.D.)

  2. Wood mouse and box turtle populations in an area treated annually with DDT for five years

    Science.gov (United States)

    Stickel, L.F.

    1951-01-01

    A 117-acre area of dense woodland on the Patuxent Research Refuge received an aerial application of DDT in oil at the rate of 2 pounds per acre gnnually for five years. DDT reached ground level in a much smaller amount (thousandths to hundredths of a pound per acre). Treatment was made during the first week of June of each year from 1945 through 1949. Field studies of the wood mouse population in DDT and check areas showed no significant differences in the two areas before and after the 1949 DDT treatment. There was no significant difference between trapping samples taken in DDT and check areas in 1945 and those taken in 1949. Field studies of the box turtles in DDT and check areas in 1945 and 1949 showed no significant difference in population size. Growth of the four young turtles taken in the DDT area in both 1945 and 1949 appeared to be normal in comparison with growth of check area turtles.

  3. Determination of chromated copper arsenate (CCA) in treated wood of Eucalyptus

    International Nuclear Information System (INIS)

    Parreira, Paulo S.; Vendrametto, Guilherme R.; Cunha, Magda E.T.

    2009-01-01

    This work deals with the possible application of a portable energy dispersive handmade system (PXRF-LFNA-02) for the determination of Chromium, Copper and Arsenic in the preservative solution used to protect commercial wood of Eucalyptus, which are employed as wood fence, posts, contention fences, railroad sleepers, etc. It was prepared five body-of-proof made of eucalyptus alburnum with different concentrations for each element varying from 0.0061 to 0.0180 (g/g) for CrO 3 , 0.0024 to 0.0070 (g/g) for CuO and 0.0044 to 0.0129 (g/g) for As 2 O 5 . Four of them were used for calibration curves and one used as reference sample. It was used a commercial CCA (Chromated Copper Arsenate ) solution to prepare the samples. The results show a good linear regression between concentrations and X-rays intensities, after applied the multiple linear regression methodology for interelemental corrections. The values obtained with this methodology were 3.01(kg/m 3 ), 1.18 (kg/m 3 ) e 2.21 (kg/m 3 ) for CrO 3 , CuO and As 2 O 5 , respectively, while the nominal values are 2.90 (kg/m 3 ) for CrO 3 , 1.13 (kg/m 3 ) for CuO and 2.07 (kg/m 3 ) for As 2 O 5 . The ED-XRF (Energy Dispersive X-Rays Fluorescence) is a well established technique with high-speed of analytical procedure and its portable configuration allowing a multielemental, simultaneous and non destructive analyses besides in situ application. (author)

  4. Determination of chromated copper arsenate (CCA) in treated wood of Eucalyptus

    Energy Technology Data Exchange (ETDEWEB)

    Parreira, Paulo S., E-mail: parreira@uel.b [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica. Lab.de Fisica Nuclear Aplicada; Vendrametto, Guilherme R.; Cunha, Magda E.T., E-mail: grvendrametto@gmail.co [Universidade Norte do Parana, Arapongas, PR (Brazil). Centro de Ciencias Humanas, da Saude, Exatas e Tecnologicas-A

    2009-07-01

    This work deals with the possible application of a portable energy dispersive handmade system (PXRF-LFNA-02) for the determination of Chromium, Copper and Arsenic in the preservative solution used to protect commercial wood of Eucalyptus, which are employed as wood fence, posts, contention fences, railroad sleepers, etc. It was prepared five body-of-proof made of eucalyptus alburnum with different concentrations for each element varying from 0.0061 to 0.0180 (g/g) for CrO{sub 3}, 0.0024 to 0.0070 (g/g) for CuO and 0.0044 to 0.0129 (g/g) for As{sub 2}O{sub 5}. Four of them were used for calibration curves and one used as reference sample. It was used a commercial CCA (Chromated Copper Arsenate ) solution to prepare the samples. The results show a good linear regression between concentrations and X-rays intensities, after applied the multiple linear regression methodology for interelemental corrections. The values obtained with this methodology were 3.01(kg/m{sup 3}), 1.18 (kg/m{sup 3}) e 2.21 (kg/m{sup 3}) for CrO{sub 3}, CuO and As{sub 2}O{sub 5}, respectively, while the nominal values are 2.90 (kg/m{sup 3}) for CrO{sub 3}, 1.13 (kg/m{sup 3}) for CuO and 2.07 (kg/m{sup 3}) for As{sub 2}O{sub 5}. The ED-XRF (Energy Dispersive X-Rays Fluorescence) is a well established technique with high-speed of analytical procedure and its portable configuration allowing a multielemental, simultaneous and non destructive analyses besides in situ application. (author)

  5. Antioxidant activity and chemical composition of Juniperus excelsa ssp. polycarpos wood extracts.

    Science.gov (United States)

    Hosseinihashemi, S K; Dadpour, A; Lashgari, A

    2017-03-01

    Extracts from the wood of Juniperus excelsa ssp. polycarpos were analysed for their antioxidant activity using the DPPH method and compared with ascorbic acid and butylated hydroxytoluene. The most active extracts were analysed for their chemical composition using gas chromatography-mass spectrometry. Acetone extract was found to be moderately active as an antioxidant agent at 58.38%, which was lower than the value of vitamin C (98.56%) at the concentration of 14.20 mg/mL. The major components identified in the acetone extract as trimethylsilyl (TMS) derivatives were pimaric acid TMS (24.56%), followed by α-d-glucopyranoside,1,3,4,6-tetrakis-O-(TMS)-β-d-fructofuranosyl 2,3,4,6-tetrakis-O-(TMS) (21.39%), triflouromethyl-bis-(TMS)methyl ketone (9.32%), and cedrol (0.72%). The dissolved water:methanol (1:1 v/v) partitioned from acetone extract afforded 12 fractions; among them, the F9 fraction was found to have good antioxidant activity (88.49%) at the concentration of 14.20 mg/mL. The major compounds identified in F9 fraction were α-d-glucopyranoside, 1,3,4,6-tetrakis-O-(TMS) (20.22%) and trifluoromethyl-bis-(TMS)methyl ketone (5.10%).

  6. Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using Acid hydrolysis.

    Science.gov (United States)

    Shaheen, Th I; Emam, Hossam E

    2018-02-01

    Cellulose nanocrystal (CNC) is a unique material obtained from naturally occurring cellulose fibers. Owing to their mechanical, optical, chemical, and rheological properties, CNC gained significant interest. Herein, we investigate the potential of commercially non-recyclable wood waste, in particular, sawdust as a new resource for CNC. Isolation of CNC from sawdust was conducted as per acid hydrolysis which induced by ultrasonication technique. Thus, sawdust after being alkali delignified prior sodium chlorite bleaching, was subjected to sulfuric acid with concentration of 65% (w/w) at 60 ° C for 60min. After complete reaction, CNC were collected by centrifugation followed by dialyzing against water and finally dried via using lyophilization technique. The CNC yield attained values of 15% from purified sawdust. Acid hydrolysis mechanism exactly referred that, the amorphous regions along with thinner as well as shorter crystallites spreaded throughout the cellulose structure are digested by the acid leaving CNC suspension. The latter was freeze-dried to produce CNC powder. A thorough investigation pertaining to nanostructural characteristics of CNC was performed. These characteristics were monitored using TEM, SEM, AFM, XRD and FTIR spectra for following the changes in functionality. Based on the results obtained, the combination of sonication and chemical treatment was great effective in extraction of CNC with the average dimensions (diameter×length) of 35.2±7.4nm×238.7±81.2nm as confirmed from TEM. Whilst, the XRD study confirmed the crystal structure of CNC is obeyed cellulose type I with crystallinity index ∼90%. Cellulose nanocrystals are nominated as the best candidate within the range studied in the area of reinforcement by virtue of their salient textural features. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effects of Treated Wood Flour on Physico-Mechanical Properties of ...

    African Journals Online (AJOL)

    MBI

    2013-06-28

    Jun 28, 2013 ... The raw, alkali-treated and bonding agent treated fibers were used as natural .... group of the fiber, cause removal of lignin, and increase bonding sites in the fiber interface thereby making the surface of the fibre more reactive.

  8. Physical, Chemical, and Biological Properties of Soil under Decaying Wood in a Tropical Wet Forest in Puerto Rico

    Science.gov (United States)

    Marcela Zalamea; Grizelle Gonzalez; D. Jean Lodge

    2016-01-01

    Decaying wood is related to nutrient cycling through its role as either a sink or source of nutrients. However, at micro scales, what is the effect of decaying logs on the physical, chemical,and biotic characteristics of the soil underneath? We took samples from a 0 to 5 cm depth under and a 50 cm distance away from decaying logs (Dacryodes excelsa and Swietenia...

  9. Chemically treated carbon black waste and its potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Pengwei; Maneerung, Thawatchai; Ng, Wei Cheng; Zhen, Xu [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Dai, Yanjun [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Tong, Yen Wah [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Ting, Yen-Peng [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Koh, Shin Nuo [Sembcorp Industries Ltd., 30 Hill Street #05-04, 179360 (Singapore); Wang, Chi-Hwa, E-mail: chewch@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Neoh, Koon Gee, E-mail: chenkg@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore)

    2017-01-05

    Highlights: • Hazardous impurities separated from carbon black waste with little damage to solid. • Heavy metals were effectively removed from carbon black waste by HNO{sub 3} leaching. • Treated carbon black waste has high adsorption capacity (∼356.4 mg{sub dye}/g). • Carbon black waste was also found to show high electrical conductivity (10 S/cm). - Abstract: In this work, carbon black waste – a hazardous solid residue generated from gasification of crude oil bottom in refineries – was successfully used for making an absorbent material. However, since the carbon black waste also contains significant amounts of heavy metals (especially nickel and vanadium), chemical leaching was first used to remove these hazardous impurities from the carbon black waste. Acid leaching with nitric acid was found to be a very effective method for removal of both nickel and vanadium from the carbon black waste (i.e. up to 95% nickel and 98% vanadium were removed via treatment with 2 M nitric acid for 1 h at 20 °C), whereas alkali leaching by using NaOH under the same condition was not effective for removal of nickel (less than 10% nickel was removed). Human lung cells (MRC-5) were then used to investigate the toxicity of the carbon black waste before and after leaching. Cell viability analysis showed that the leachate from the original carbon black waste has very high toxicity, whereas the leachate from the treated samples has no significant toxicity. Finally, the efficacy of the carbon black waste treated with HNO{sub 3} as an absorbent for dye removal was investigated. This treated carbon black waste has high adsorption capacity (∼361.2 mg {sub dye}/g {sub carbonblack}), which can be attributed to its high specific surface area (∼559 m{sup 2}/g). The treated carbon black waste with its high adsorption capacity and lack of cytotoxicity is a promising adsorbent material. Moreover, the carbon black waste was found to show high electrical conductivity (ca. 10 S

  10. Chemically Treated 3D Printed Polymer Scaffolds for Biomineral Formation.

    Science.gov (United States)

    Jackson, Richard J; Patrick, P Stephen; Page, Kristopher; Powell, Michael J; Lythgoe, Mark F; Miodownik, Mark A; Parkin, Ivan P; Carmalt, Claire J; Kalber, Tammy L; Bear, Joseph C

    2018-04-30

    We present the synthesis of nylon-12 scaffolds by 3D printing and demonstrate their versatility as matrices for cell growth, differentiation, and biomineral formation. We demonstrate that the porous nature of the printed parts makes them ideal for the direct incorporation of preformed nanomaterials or material precursors, leading to nanocomposites with very different properties and environments for cell growth. Additives such as those derived from sources such as tetraethyl orthosilicate applied at a low temperature promote successful cell growth, due partly to the high surface area of the porous matrix. The incorporation of presynthesized iron oxide nanoparticles led to a material that showed rapid heating in response to an applied ac magnetic field, an excellent property for use in gene expression and, with further improvement, chemical-free sterilization. These methods also avoid changing polymer feedstocks and contaminating or even damaging commonly used selective laser sintering printers. The chemically treated 3D printed matrices presented herein have great potential for use in addressing current issues surrounding bone grafting, implants, and skeletal repair, and a wide variety of possible incorporated material combinations could impact many other areas.

  11. Characterisation of chemically lithiated heat-treated electrolytic manganese dioxide

    International Nuclear Information System (INIS)

    Dose, Wesley M.; Lehr, Joshua; Donne, Scott W.

    2012-01-01

    Highlights: ► Manganese oxides are a promising cathode material for lithium ion batteries. Here we examine the structural and morphological changes that occur upon reduction, and assess its impact on material performance. ► Upon reduction, MnO 2 transforms into LiMn 2 O 4 , which is subsequently reduced to Li 2 Mn 2 O 4 . ► Significant morphological changes occur, particularly to the material porosity. ► This transformation for MnO 2 has not been reported previously. -- Abstract: Heat treated manganese dioxide is partially lithiated using butyl-lithium to determine the changes in crystal structure, chemical composition and morphology upon reduction, as a means of simulating its discharge behaviour in a non-aqueous battery cathode. As reduction proceeds, and lithium ions are inserted into the heat treated electrolytic manganese dioxide (EMD) structure, the material undergoes a phase transition to LiMn 2 O 4 . This new phase is further reduced to Li 2 Mn 2 O 4 . Reduction initially results in a 56% decrease in the surface area of the material; however, at higher degrees of reduction a slight increase in this value is observed, as a consequence of the strain placed on the lattice through continued lithium insertion.

  12. Changes in structural and chemical components of wood delignified by fungi

    Energy Technology Data Exchange (ETDEWEB)

    Blanchette, R.A.; Otjen, L.; Effland, M.J.; Eslyn, W.E.

    1985-01-01

    Cerrena unicolor, Ganoderma applanatum, Ischnoderma resinosum and Poria medulla-panis were associated with birch (Betula papyrifera) wood that had been selectively delignified in the forest. Preferential lignin degradation was not uniformly distributed throughout the decayed wood. A typical white rot causing a simultaneous removal of all cell wall components was also present. In the delignified wood, 95 to 98% of the lignin was removed as well as substantial amounts of hemicelluloses. Scanning and transmission electron microscopy were used to identify the micromorphological and ultrastructural changes that occurred in the cells during degradation. In delignified areas the compound middle lamella was extensively degraded causing a defibration of cells. The secondary wall, especially the S2 layer, remained relatively unaltered. In simultaneously white-rotted wood all cell wall layers were progressively removed from the lumen toward the middle lamella causing erosion troughs or holes to form. Large voids filled with fungal mycelia resulted from a coalition of degraded areas. Birch wood decayed in laboratory soil-block tests was also intermittently delignified, selective delignification, sparsely distributed throughout the wood, and a simultaneous rot resulting in the removal of all cell wall components were evident. SEM appears to be an appropriate technique for examining selectively delignified decayed wood. 30 references.

  13. The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood

    International Nuclear Information System (INIS)

    Spiker, E.C.; Hatcher, P.G.

    1987-01-01

    Studies of modern and ancient buried wood show that there is a linear correlation between carbohydrate content and the stable carbon isotope composition as carbohydrates are preferentially degraded during early diagenesis. As the carbohydrate content decreases, the delta 13 C value of the degraded wood decreases 1 to 2 per mil, approaching the value of the residual lignin. These results indicate that carbohydrate degradation products are lost and not incorporated into the aromatic structure as lignin is selectively preserved during early diagenesis of wood. These results also indicate that attempts to quantify terrestrial inputs to modern sedimentary organic matter based on delta 13 C values should consider the possibility of a 1 to 2 per mil decrease in the delta 13 C value of degraded wood. (author)

  14. Comparison the performance of different catalysts in chemical modification of Poplar wood with Glutaraldehyde

    Directory of Open Access Journals (Sweden)

    ندا اسماعیلی

    2016-12-01

    Full Text Available In this study, the effect of different catalysts on chemical modification of poplar wood and physical properties of the resulting product was evaluated. 12.5% HCl and water soluble salts containing ZnCl2, CaCl2, AlCl3, MgCl2 (based on the weight of glutaraldehyde and 1% Al2O3, SiO2 and ZnO nano particles (based on the weight of glutaraldehyde were used. After heating in oven for 48 hour, modification with glutaraldehyde and MgCl2, ZnO nano particles, SiO2, Al2O3, ZnCl2, AlCl3, CaCl2 and HCl as catalysts were resulted to 14.5, 12.57, 10.62, 8.69, 8.51, 7.19, 5.97 and 5.41 % weight gain respectively. After 24h soaking in water, the physical properties of modified specimens, such as water absorption, volume swelling and ASE were measured. The highest and lowest bulking were calculated for Mgcl2 and Hcl catalysts with 6.98 and 2.37% respectively. The modification in presence of Mgcl2 catalyst was shown highest increase of density with average of 0.55 g/cm3. The highest and lowest water absorption was measured 79.61 and 45.32% in the modification with HCl and MgCl catalysts. Hcl with acidic quality, can break ether bonds in hemiacetal and even acetal structure. Modification with MgCl2 was shown best result in comparison with other catalysts. It is likely that the formation a complex of magnesium with oxygen, could resulted to activate carbonyl groups in glutaraldehyde and created the crosslink.

  15. Chemical composition of particles from traditional burning of Pakistani wood species

    Science.gov (United States)

    Shahid, Imran; Kistler, Magdalena; Mukhtar, Azam; Ramirez-Santa Cruz, Carlos; Bauer, Heidi; Puxbaum, Hans

    2015-11-01

    Total particulate matter (TPM) emitted during burning of three types of Pakistani wood (eucalyptus camaldulensis, local name Safeeda; acacia nilotica, local name Kikar, Babul; dalbergia sissoo, Shisham, Tali) in a traditional brick stove were collected and analyzed for anhydrosugars, sugar alcohols, trace metals, soluble ions and carbonaceous species. This is a first study reporting anhydrosugars in wood smoke particles emitted during traditional burning of common wood types in Pakistan. Carbonaceous species showed the highest contribution to the particulate matter. Although the total carbon (TC) contribution was similar for all burnings (64.8-70.2%), the EC/OC ratio varied significantly, from 0.2 to 0.3 for Accacia and Dalbergia to 0.7-0.8 for Eucalyptus and Wood-mix. Among inorganic constituents potassium chloride and silicon were found at levels higher than 1%. The levoglucosan concentrations ranged from 3.0 to 6.6% (average 5.6%) with the highest value for Accacia and lowest value for the wood-mix. The high levoglucosan/mannosan ratios of 20-28 were typical for hardwood. The ratio between levoglucosan and galactosan varied stronger and was found to be around 13-20 for Accacia, Eucalyptus and Wood mix, and 43 for Dalbergia. The determined levoglucosan concentrations allowed assessing the conversion factor for calculation of biomass smoke contribution to ambient particulate matter levels in Pakistan.

  16. Chemical composition and fuel wood characteristics of fast growing tree species in India

    Science.gov (United States)

    Chauhan, S. K.; Soni, R.

    2012-04-01

    India is one of the growing economy in the world and energy is a critical input to sustain the growth of development. Country aims at security and efficiency of energy. Though fossil fuel will continue to play a dominant role in energy scenario but country is committed to global environmental well being thus stressing on environment friendly technologies. Concerns of energy security in this changing climatic situation have led to increasing support for the development of new renewable source of energy. Government though is determined to facilitate bio-energy and many projects have been established but initial after-affects more specifically on the domestic fuelwood are evident. Even the biomass power generating units are facing biomass crisis and accordingly the prices are going up. The CDM projects are supporting the viability of these units resultantly the Indian basket has a large number of biomass projects (144 out of total 506 with 28 per cent CERs). The use for fuelwood as a primary source of energy for domestic purpose by the poor people (approx. 80 per cent) and establishment of bio-energy plants may lead to deforestation to a great extent and only solution to this dilemma is to shift the wood harvest from the natural forests to energy plantations. However, there is conspicuous lack of knowledge with regards to the fuelwood characteristics of fast growing tree species for their selection for energy plantations. The calorific value of the species is important criteria for selection for fuel but it is affected by the proportions of biochemical constituents present in them. The aim of the present work was to study the biomass production, calorific value and chemical composition of different short rotation tree species. The study was done from the perspective of using the fast growing tree species for energy production at short rotation and the study concluded that short rotation tree species like Gmelina arborea, Eucalyptus tereticornis, Pongamia pinnata

  17. Effects of wood saw dust ash admixed with treated sisal fibre on the geotechnical properties of lateritic soil

    Directory of Open Access Journals (Sweden)

    John Engbonye SANI

    2017-12-01

    Full Text Available The preliminary investigation conducted on the lateritic soil collected at Shika, Zaria shows that it falls under A-7-6 (10 classification for AASHTO (1986 and CL according to unified soil classification system USCS (ASTM 1992. The soil was treated with both wood saw dust ash (WSDA and treated sisal fiber, in stepped concentration of 0,2,4,6, and 8% for WSDA and 0, 0.25, 0.5, 0.75 and 1% treated sisal fibre by dry weight of soil using Standard proctor. The Sisal Fibre was treated with Sodium Borohydride (NaBH4 (1% wt/vol for 60 minutes at room temperature to remove the cellulose content present in the Fibre. Statistical analysis was carried out on the obtained results using XLSTART 2017 software and analysis of variance with the Microsoft Excel Analysis Tool Pak Software Package. The liquid limit (LL of the soil was found to be 48% while the plastic limit(PL is 21.27%. The maximum dry density(MDDhowever, decreases generally from a value of 1.85 Mg/m3 to 1.68Mg/m3 at 0.25% sisal fiber content/0% WSDA. It has its least value of 1.57Mg/m3 at 1% sisal fiber and 8% WSDA. The OMC increased from 18 % of the natural soil to 23.7% at 0.75% sisal fiber / 6% WSDA content. There was a general increase in the value of UCS of the soil-sisal fibre mixture with WSDA content from 100 kN/m2 of the natural soil to 696 kN/m2 at 0.75 % sisal fibre content / 6% WSDA. The UCS value met the standard of 687-1373 kN/m2 requirements of sub base for adequate lime and cement stabilization, respectively (Ingas and Metcalf 1972.

  18. Limited oxygen index levels of impregnated Scots pine wood

    International Nuclear Information System (INIS)

    Tomak, Eylem Dizman; Cavdar, Ayfer Donmez

    2013-01-01

    Highlights: • Scots pine samples were treated with 4 wood preservatives with various concentrations. • Limited oxygen index level was evaluated both for leached and un-leached samples. • All treatments improved fire retardance of samples despite some chemicals leached out. • Samples treated with fireproof agent showed the best results. • LOI of samples treated with boron powder and silicon oil was not changed by leaching. - Abstract: In this study, effect of various concentrations of boron powder, mixture of boric acid and borax, fireproof agent based on liquid blend of limestone, and silicon oil on limited oxygen index levels (LOI) of S. pine wood was investigated. Wood samples were first vacuum treated with the preservatives, and then were subjected to leaching procedure. Samples treated with fireproof agent showed the best results for improving the fire retardancy of wood, furthermore, samples treated with 25%, 50% and 100% of the solution did not burn. Leaching did not considerably change the LOI of wood samples treated with boron powder and silicon oil; however, LOI levels of samples treated with the mixture of boric acid and borax and fireproof agent were affected by leaching procedure probably arising those preservatives did not chemically bond to main wood components. All treatments improved fire retardancy of samples despite some amount of preservatives leached out from wood

  19. Limited oxygen index levels of impregnated Scots pine wood

    Energy Technology Data Exchange (ETDEWEB)

    Tomak, Eylem Dizman, E-mail: eylemdizman@yahoo.com [Forest Industry Engineering Department, Faculty of Forestry, Bursa Technical University, 16200 Bursa (Turkey); Cavdar, Ayfer Donmez [Interior Architecture Department, Faculty of Architecture, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2013-12-10

    Highlights: • Scots pine samples were treated with 4 wood preservatives with various concentrations. • Limited oxygen index level was evaluated both for leached and un-leached samples. • All treatments improved fire retardance of samples despite some chemicals leached out. • Samples treated with fireproof agent showed the best results. • LOI of samples treated with boron powder and silicon oil was not changed by leaching. - Abstract: In this study, effect of various concentrations of boron powder, mixture of boric acid and borax, fireproof agent based on liquid blend of limestone, and silicon oil on limited oxygen index levels (LOI) of S. pine wood was investigated. Wood samples were first vacuum treated with the preservatives, and then were subjected to leaching procedure. Samples treated with fireproof agent showed the best results for improving the fire retardancy of wood, furthermore, samples treated with 25%, 50% and 100% of the solution did not burn. Leaching did not considerably change the LOI of wood samples treated with boron powder and silicon oil; however, LOI levels of samples treated with the mixture of boric acid and borax and fireproof agent were affected by leaching procedure probably arising those preservatives did not chemically bond to main wood components. All treatments improved fire retardancy of samples despite some amount of preservatives leached out from wood.

  20. CANONICAL CORRELATION OF PHYSICAL AND CHEMICAL CHARACTERISTICS OF THE WOOD OF Eucalyptus grandis AND Eucalyptus saligna CLONES

    Directory of Open Access Journals (Sweden)

    Paulo Fernando Trugilho

    2003-01-01

    Full Text Available The analysis of canonical correlation measures the existence and the intensity of the association between two groups of variables. The research objectified to evaluate thecanonical correlation between chemical and physical characteristics and fiber dimensional ofwood of Eucalyptus grandis and Eucalyptus saligna clones, verifying the interdependenceamong the groups of studied variables. The analysis indicated that the canonical correlationswere high and that in two cases the first and second pair were significant at the level of 1% ofprobability. The analysis of canonical correlation showed that the groups are notindependent. The intergroup associations indicated that the wood of high insoluble lignin contentand low ash content is associated with the high radial and tangential contraction and highbasic density wood.

  1. Wood : adhesives

    Science.gov (United States)

    A.H. Conner

    2001-01-01

    This chapter on wood adhesives includes: 1) Classification of wood adhesives 2) Thermosetting wood adhesives 3) Thermoplastic adhesives, 4) Wood adhesives based on natural sources 5) Nonconventional bonding of wood 6) Wood bonding.

  2. Possible preparation of wood-plastic materials based on unsaturated polyester resins and methyl metacrylate, by radiation and chemical methods in combination

    International Nuclear Information System (INIS)

    Pesek, M.

    1982-01-01

    The preparation of wood-plastic combinations (WPC) using combined methods for curing intermediate products and final products is described. In the first step, impregnated wood was irradiated using doses of 1 to 10 kGy in the presence of chemical initiators of polymerization. Thereafter, curing of this partly cured impregnating mixture was accomplished in the wood at elevated temperatures with the aid of chemical initiators of polymerization. Impregnation mixtures based on unsaturated polyester resins and methyl methacrylate, and the wood species European Beech (Fagus silvatica) and Black Alder (Alnus glutinosa) were used. The results indicate that this method of preparing WPC allows substantially lower radiation doses to be used, i.e., doses in the range of 1 to 2.5 kGy. These doses gelatinate the impregnation mixture in the wood so that the subsequent curing by chemical polymerization initiators proceeds without the impregnation mixture flowing out of the wood, and without forming bosses and incrustations. Intermediate products and wood products needing no further finish may thus be prepared: in some cases regrinding or repolish is sufficient. The possibility of using impregnation mixtures based on various unsaturated polyester resins was investigated, and the influence on the curing process of temperature, polymerization initiator concentration, methyl methacrylate concentration, inhibitor concentration, and other factors affecting curing was evaluated. (author)

  3. Interrelationship between lignin-rich dichloromethane extracts of hot water-treated wood fibers and high-density polyethylene (HDPE) in wood plastic composite (WPC) production

    Science.gov (United States)

    Manuel R. Pelaez-Samaniego; Vikram Yadama; Manuel Garcia-Perez; Eini Lowell; Rui Zhu; Karl Englund

    2016-01-01

    Hot water extraction (HWE) partially removes hemicelluloses from wood while leaving the majority of the lignin and cellulose; however, the lignin partially migrates to the inner surfaces of the cell wall where it can be deposited as a layer that is sometimes visible as droplets. This lignin-rich material was isolated via Soxhlet extraction with dichloromethane to...

  4. Metals determination in wood treated by synchrotron radiation X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Vives, Ana Elisa Sirito de; Medeiros, Jean Gabriel da Silva; Tomazello Filho, Mario

    2005-01-01

    The paper describes the use of X-Ray fluorescence analysis for distribution and quantification of metals in the hardwood (Eucalyptus sp) and softwood (Pinus sp) treated with CCA (copper-chromium-arsenic). The sapwood/heartwood for hardwood sample and the growth-rings for softwood sample were analyzed. The samples were scanned in 320 mm steps in the vertical direction. For excitation of the elements a white beam synchrotron radiation of ∼ 320 x 180 mm was employed and for the X-ray detection a Si(Li) semiconductor detector. The elements K, Ca, Cr, Mn, Cu, Zn and As were determined. Fundamental parameters were used to quantify the elements concentrations. (author)

  5. Metals determination in wood treated by synchrotron radiation X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vives, Ana Elisa Sirito de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Silva, Richard Maximiliano da Cunha [Centro de Energia Nuclear na Agricultura, Piracicaba, SP (Brazil)]. E-mail: maxcunha@cena.usp.br; Medeiros, Jean Gabriel da Silva; Tomazello Filho, Mario [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz]. E-mail: jeangm@esalq.usp.br; mtomazel@esalq.usp.br; Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mail: Silvana@fec.unicamp.br; Zucchi, Orgheda Luiza Araujo Domingues [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Barroso, Regina Cely [Universidade do Estado, Rio de Janeiro, RJ (Brazil)]. E-mail: cely@uerj.br

    2005-07-01

    The paper describes the use of X-Ray fluorescence analysis for distribution and quantification of metals in the hardwood (Eucalyptus sp) and softwood (Pinus sp) treated with CCA (copper-chromium-arsenic). The sapwood/heartwood for hardwood sample and the growth-rings for softwood sample were analyzed. The samples were scanned in 320 mm steps in the vertical direction. For excitation of the elements a white beam synchrotron radiation of {approx} 320 x 180 mm was employed and for the X-ray detection a Si(Li) semiconductor detector. The elements K, Ca, Cr, Mn, Cu, Zn and As were determined. Fundamental parameters were used to quantify the elements concentrations. (author)

  6. Radiation-chemical conservation and evaluation of wood from the rampart installation of Stillfried

    International Nuclear Information System (INIS)

    Kies, A.; Reithmayr, P.; Schaudy, R.

    1985-12-01

    The conservation of wooden remnants from the rampart originating from the urn field period a t Stillfried/March, Lower Austria, by impregnation with methyl methacrylate and by subsequent curing with gamma radiation is as well described as the preparation of thin sections thereof, which were suitable for the determination of the wood species or genera. For the frame construction of the rampart from the period Ha B, oak, linden and elm were found as the mainly used wood genera. This demonstrates that in that period the main elements of the mixed oak forest were still important. The results are discussed. (G.Q.)

  7. Analysis of High Quality Agar wood Oil Chemical Compounds By Means Of SPME/ GC-MS and Z-Score Technique

    International Nuclear Information System (INIS)

    Nurlaila Ismail; Mohd Ali Nor Azah; Mailina Jamil; Saiful Nizam Tajuddin; Mohd Nasir Taib

    2013-01-01

    Currently, the grading of the agar wood oil to the high and low quality is done using manually such as human trained grader. It was performed based on the agar wood oil physical properties such as human experience and perception and the oil colour, odor and long lasting aroma. Several researchers found that chemical profiles of the oil should be utilized to overcome the problem facing by manual techniques for example human nose cannot tolerate with the many oils at the same time, so that accurate result can be obtained in grading the agar wood oil. The analysis involved of SPME/ GC-MS and Z-score techniques have been proposed in this study to analyze the chemical compounds especially from the high quality samples of agar wood oil (Aquilariamalaccensis) from Malaysia. Two SPME fibers were used such as divinylbenzene-carbogen-polydimethylsiloxane (DVB-CAR-PDMS) and polydimethylsiloxane (PDMS) in extracting the oils compound under three different sampling temperature conditions such as 40, 60 and 80 degree Celsius. The chemical compounds extracted by SPME/ GC-MS were analyzed. The chemical compounds as identified by Z-score as significant compounds were discussed before the conclusion is made. It was found that 10-epi-γ-eudesmol, aromadendrene, β-agar ofuran, α-agar ofuran and γ-eudesmol were highlighted as significant for high quality agar wood oil and can be used as a marker compounds in classifying the agar wood oil. (author)

  8. Corrosão de parafusos fixados à madeira tratada com soluções de creosoto vegetal Corrosion of screws fixed into wood treated with wood tar creosote solutions

    Directory of Open Access Journals (Sweden)

    Juarez Benigno Paes

    2002-05-01

    Full Text Available O objetivo desta pesquisa foi avaliar a corrosão de parafusos auto-rosqueáveis fixados à madeira tratada com soluções preservativas preparadas com creosoto vegetal, em condições de campo. Obteve-se o creosoto vegetal bruto por meio da destilação à temperatura de 110 - 255ºC do alcatrão vegetal. Uma fração dos destilados foi lavada com solução a 9% de bicarbonato de sódio, obtendo-se o creosoto vegetal purificado. Ambas as frações foram enriquecidas com 3% de naftenato de cobre; 3% de naftenato de zinco; 3% naftenato de cobalto; 2% de TBTO; 2% de tribromofenato de tubutil-estanho; 2% de pentaclorofenol; ou 0,4% de trióxido de arsênico. Foram preparadas 16 soluções, sendo 14 enriquecidas, além do creosoto vegetal bruto e do creosoto vegetal purificado. Estacas confeccionadas com madeira de alburno de Eucalyptus grandis foram tratadas pelo processo de célula- cheia (processo Bethell. Após o tratamento, parafusos auto-rosquéaveis de ferro zincado foram fixados às estacas. O ensaio foi instalado em três localidades da Zona da Mata de Minas Gerais (Viçosa, Ponte Nova e Leopoldina. A corrosividade das soluções de creosoto vegetal foi comparada à causada pelo creosoto mineral. As soluções preparadas com creosoto vegetal purificado foram menos corrosivas que suas similares preparadas com creosoto vegetal bruto, assemelhando-se ao creosoto mineral.The objective of this research was to evaluate the corrosion of screws fixed into wood treated with preservative solutions of wood tar creosote. The crude wood tar creosote was obtained through distillation of wood tar at 110 - 255ºC. A fraction of this product was washed with a solution of sodium bicarbonate at 9%, resulting in purified wood tar creosote. Both fractions were enriched with 3% of copper naphtenate, 3% of zinc naphtenate, 3% of cobalt naphtenate, 2% of TBTO, 2% of tributhyl-tin tribromophenate, 2% of pentachlorophenol, or with 0.4% of arsenic trioxide. A total

  9. Hot water extracted wood fiber for production of wood plastic composites (WPCs)

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Eini Lowell; Thomas E. Amidon; Timothy L. Chaffee

    2013-01-01

    Undebarked ponderosa pine chips were treated by hot water extraction to modify the chemical composition. In the treated pine (TP) , the mass was reduced by approximately 20%, and the extract was composed mainly of degradation products of hemicelluloses. Wood flour produced from TP and unextracted chips (untreated pine, UP) was blended with high-density polyethylene (...

  10. Weathering properties of treated southern yellow pine wood examined by X-ray photoelectron spectroscopy, scanning electron microscopy and physical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Salaita, Ghaleb N.; Ma, Frank M.S.; Parker, Trudy C. [Dow Chemical Company, Technical Center, 3200 Kanawha Turnpike, South Charleston, WV 25303 (United States); Hoflund, Gar B. [Department of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611 (United States)], E-mail: garho@hotmail.com

    2008-04-30

    In this study the weathering behavior of southern yellow pine (SYP) wood samples pretreated in different solutions has been examined using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and various types of physical characterization regarding material loss and discoloration. The treatment solutions include water as a control, a commercially available water repellent (WR) wood treating additive and polyethylene glycol (PEG) products including PEG PLUS{sup TM}, PEG 8000 solutions and Compound 20M in varying concentrations. All contained the wood preservative chromated copper arsenate (CCA). One sample was treated with a CCA solution only. The treatments were carried out at 20 deg. C and 150 psig for 1/2 h after exposure to vacuum (28 mmHg) for 15 min. Simulated weathering was achieved in an Atlas 65-W Weather-Ometer for 2000 h with both light and dark periods and rain. The temperature ranged from 23 deg. C during the dark cycle to 35 deg. C during the light cycle. With weathering the XPS O/C ratios increase due to oxidation of the surface. Exposure to UV light results in bond breakage and reaction with oxygen in the presence of air to form organic functional groups such as , , C=O and/or O-C-O. These oxidized products can protect the underlying wood from deterioration if they are insoluble in water and remain on the surface as a protective coating. If soluble, rain washes the compounds away and assists in the degradation. Correlated changes are observed in the XPS O/C ratios, the high-resolution XPS C 1s spectra, the SEM micrographs and physical measurements including thickness alteration, weight loss, and discoloration by yellowing or whitening of the weathered wood. The PEG treatments are effective in protecting wood with the 2% PEG PLUS treatment providing the best weathering behavior similar to that of the CCA treatment. The WR and water treatments yield the poorest weathering properties.

  11. Weathering properties of treated southern yellow pine wood examined by X-ray photoelectron spectroscopy, scanning electron microscopy and physical characterization

    International Nuclear Information System (INIS)

    Salaita, Ghaleb N.; Ma, Frank M.S.; Parker, Trudy C.; Hoflund, Gar B.

    2008-01-01

    In this study the weathering behavior of southern yellow pine (SYP) wood samples pretreated in different solutions has been examined using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and various types of physical characterization regarding material loss and discoloration. The treatment solutions include water as a control, a commercially available water repellent (WR) wood treating additive and polyethylene glycol (PEG) products including PEG PLUS TM , PEG 8000 solutions and Compound 20M in varying concentrations. All contained the wood preservative chromated copper arsenate (CCA). One sample was treated with a CCA solution only. The treatments were carried out at 20 deg. C and 150 psig for 1/2 h after exposure to vacuum (28 mmHg) for 15 min. Simulated weathering was achieved in an Atlas 65-W Weather-Ometer for 2000 h with both light and dark periods and rain. The temperature ranged from 23 deg. C during the dark cycle to 35 deg. C during the light cycle. With weathering the XPS O/C ratios increase due to oxidation of the surface. Exposure to UV light results in bond breakage and reaction with oxygen in the presence of air to form organic functional groups such as , , C=O and/or O-C-O. These oxidized products can protect the underlying wood from deterioration if they are insoluble in water and remain on the surface as a protective coating. If soluble, rain washes the compounds away and assists in the degradation. Correlated changes are observed in the XPS O/C ratios, the high-resolution XPS C 1s spectra, the SEM micrographs and physical measurements including thickness alteration, weight loss, and discoloration by yellowing or whitening of the weathered wood. The PEG treatments are effective in protecting wood with the 2% PEG PLUS treatment providing the best weathering behavior similar to that of the CCA treatment. The WR and water treatments yield the poorest weathering properties

  12. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column

    Directory of Open Access Journals (Sweden)

    Swarup Biswas

    2016-01-01

    Full Text Available The performance of a laboratory scale upflow anaerobic sludge blanket (UASB reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%, biochemical oxygen demand (BODT (93.98%, chemical oxygen demand (COD (95.59%, total suspended solid (TSS (95.98%, ammonia (80.68%, nitrite (79.71%, nitrate (71.16%, phosphorous (44.77%, total coliform (TC (99.9%, and fecal coliform (FC (99.9% was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM, X-ray fluorescence spectrum (XRF, and Fourier transforms infrared spectroscopy (FTIR. Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.

  13. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column.

    Science.gov (United States)

    Biswas, Swarup; Mishra, Umesh

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.

  14. Review of test methods used to determine the corrosion rate of metals in contact with treated wood

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2005-01-01

    The purpose of this literature review is to give an overview of test methods previously used to evaluate the corrosion of metals in contact with wood. This article reviews the test methods used to evaluate the corrosion of metals in contact with wood by breaking the experiments into three groups: exposure tests, accelerated exposure tests, and electrochemical tests....

  15. Colour and chemical changes of the lime wood surface due to CO{sub 2} laser thermal modification

    Energy Technology Data Exchange (ETDEWEB)

    Kubovský, Ivan, E-mail: kubovsky@tuzvo.sk; Kačík, František

    2014-12-01

    Highlights: • Influences of CO{sub 2} laser on lime wood surface were studied. • With growth of the irradiation dose brightness decrease and increase of the total colour difference were observed. • Cellulose degradation and loss of hemicelluloses were observed. • Higher values at the input energy lead to accelerating the mutual reaction of the functional groups resulting in the subsequent condensation of lignin. • CO{sub 2} laser irradiation can be used as a new colouring method. - Abstract: We studied colour and main wood components changes of lime wood caused by CO{sub 2} laser beam irradiation. The dry surface of lime wood (Tilia vulgaris L.) was irradiated with the CO{sub 2} laser beam (wavelength of 10.6 μm) at different exposures (expressed as the irradiation dose). Colour changes were monitored by the spectrophotometer, chemical changes were observed by the ATR-FTIR spectroscopy and carbohydrates were analysed by the HPLC method. With the growth of the irradiation dose (from 8.1 to 28.7 J cm{sup −2}) lightness (ΔL{sup *}) decrease and increase of the total colour difference (ΔE{sup *}) were observed. Higher values of the input energy lead to accelerating the mutual reaction of the functional groups resulting in the subsequent condensation of lignin. The total decrease in saccharides at the highest irradiation dose reaches 27.39% of the initial amount of saccharides in the reference sample. We have observed degradation and loss of hemicelluloses.

  16. Chemical characterisation of PM10 emissions from combustion in a closed stove of common woods grown in Portugal

    Science.gov (United States)

    Gonçalves, C.; Alves, C.; Pio, C.; Rzaca, M.; Schmidl, C.; Puxbaum, H.

    2009-04-01

    A series of source tests were conducted to determine the wood elemental composition, combustion gases and the chemical constitution of PM10 emissions from the closed stove combustion of four species of woods grown in Portugal: Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia. The burning tests were made in a closed stove with a dilution source sampler. To ascertain the combustion phase and conditions, continuous emission monitors measured O2, CO2, CO, NO, hydrocarbons, temperature and pressure, during each burning cycle. Woodsmoke samples have been collected and analysed to estimate the contribution of plant debris and biomass smoke to atmospheric aerosols. At this stage of work, cellulose, anhydrosugars and humic-like substances (HULIS) have been measured. Cellulose was determined photometrically after its conversion to D-Glucose. The determination of levoglucosan and other anhydrosugars, including mannosan and galactosan, was carried out by high performance liquid chromatography with electrochemical detection. HULIS determination was made with a total organic carbon analyser and an infrared non dispersive detector, after the isolation of substances. Cellulose was present in PM10 at mass fractions (w/w) of 0.13%, 0.13%, 0.05% and 0.08% for Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia, respectively. Levoglucosan was the major anhydrosugar present in the samples, representing mass fractions of 14.71%, 3.80%, 6.78% and 1.91%, concerning the above mentioned wood species, respectively. The levoglucosan-to-mannosan ratio, usually used to evaluate the proportion of hardwood or softwood smoke in PM10, gave average values of 34.9 (Eucalyptus globulos), 3.40 (Pinus pinaster), 24.8 (Quercus suber) and 10.4 (Acacia longifolia). HULIS were present at mass fractions of 2.35%, 2.99%, 1.52% and 1.72% for the four wood species listed in the same order as before.

  17. Adhesive interactions with wood

    Science.gov (United States)

    Charles R. Frihart

    2004-01-01

    While the chemistry for the polymerization of wood adhesives has been studied systematically and extensively, the critical aspects of the interaction of adhesives with wood are less clearly understood. General theories of bond formation need to be modified to take into account the porosity of wood and the ability of chemicals to be absorbed into the cell wall....

  18. Iron Stain on Wood

    Science.gov (United States)

    Mark Knaebe

    2013-01-01

    Iron stain, an unsightly blue–black or gray discoloration, can occur on nearly all woods. Oak, redwood, cypress, and cedar are particularly prone to iron stain because these woods contain large amounts of tannin-like extractives. The discoloration is caused by a chemical reaction between extractives in the wood and iron in steel products, such as nails, screws, and...

  19. Study of chemical and physical behavior cotton fabrics treated by ...

    African Journals Online (AJOL)

    After four times laundering, shrinkage behavior of corona discharge treated fabric as compared with un-treated fabric decrease. After 10 passages of corona discharge treatment, water, dye absorption and shrinkage are modified but after 14 passages, despite of shrinkage improvement, dyeing properties decrease.

  20. Effective Remediation of Lead Ions from Aqueous Solution by Chemically Carbonized Rubber Wood Sawdust: Equilibrium, Kinetics, and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Swarup Biswas

    2015-01-01

    Full Text Available Rubber wood sawdust was carbonized into charcoal by chemical treatment which was used for removal of lead ion from aqueous solution. The work involves batch experiments to investigate the pH effect, initial concentration of adsorbate, contact time, and adsorbent dose. Experimental data confirmed that the adsorption capacities increased with increasing inlet concentration and bed height and decreased with increasing flow rate. Adsorption results showed a maximum adsorption capacity of 37 mg/g at 308 K. Langmuir, Freundlich, and Temkin model adsorption isotherm models were applied to analyze the process where Temkin was found as a best fitted model for present study. Simultaneously kinetics of adsorption like pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were investigated. Thermodynamic parameters were used to analyze the adsorption experiment. Fourier transform infrared spectroscopy, scanning electron microscope, and energy dispersive X-ray spectroscopy confirmed the batch adsorption of lead ion onto chemically carbonized rubber wood sawdust.

  1. Assessment of chemical and material contamination in waste wood fuels--A case study ranging over nine years.

    Science.gov (United States)

    Edo, Mar; Björn, Erik; Persson, Per-Erik; Jansson, Stina

    2016-03-01

    The increased demand for waste wood (WW) as fuel in Swedish co-combustion facilities during the last years has increased the import of this material. Each country has different laws governing the use of chemicals and therefore the composition of the fuel will likely change when combining WW from different origins. To cope with this, enhanced knowledge is needed on WW composition and the performance of pre-treatment techniques for reduction of its contaminants. In this study, the chemical and physical characteristics of 500 WW samples collected at a co-combustion facility in Sweden between 2004 and 2013 were investigated to determine the variation of contaminant content over time. Multivariate data analysis was used for the interpretation of the data. The concentrations of all the studied contaminants varied widely between sampling occasions, demonstrating the highly variable composition of WW fuels. The efficiency of sieving as a pre-treatment measure to reduce the levels of contaminants was not sufficient, revealing that sieving should be used in combination with other pre-treatment methods. The results from this case study provide knowledge on waste wood composition that may benefit its management. This knowledge can be applied for selection of the most suitable pre-treatments to obtain high quality sustainable WW fuels. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Inventory of contaminants in waste wood; Inventering av foeroreningar i returtrae

    Energy Technology Data Exchange (ETDEWEB)

    Jermer, Joeran; Ekvall, Annika; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden)

    2001-03-01

    Waste wood is increasingly used as fuel in Sweden. It is of Swedish origin as well as imported, mainly from Germany and the Netherlands. The waste wood is contaminated by e.g. paint and wood preservatives and objects of metal, glass, plastics etc. The contaminants may cause technical problems such as deposits and corrosion as well as plugging of air openings. The present study has focussed on potential contaminants in waste wood that could cause problems of technical as well as environmental nature. The major chemical contaminants are surface treatments (paints etc) and wood preservatives. The surface treatments contribute in particular to contaminants of zinc and lead. In some cases zinc has been found to cause severe deposits in the furnaces. Surface treatments also contribute to increased levels of sodium, chlorine, sulphur and nitrogen. Preservative-treated wood is the most important source of increased levels of copper, chromium and arsenic in the waste wood. Waste wood imported from Germany contains less arsenic but the same amount of copper and chromium as Swedish waste wood. The contents of mercury in German waste wood can be expected to be higher than in waste wood of Swedish origin. The fraction consisting of wood-based panels is comparably free from contaminants but as a result of the high contents of adhesives wood-based panels contribute to a higher proportion of nitrogen in waste wood than in forest residues. A great number of non-wood compounds (such as plastics and metals) do also contaminate waste wood. By careful and selective demolition and various sorting procedures most non-wood compounds will be separated from the waste wood. Waste sorting analyses carried out indicate that the waste wood contains approximately 1% non-wood compounds, mainly plastic and metal compounds, glass, dirt, concrete, bricks and gypsum. This may seem to be a small proportion, but if large amounts of waste wood are incinerated the non-wood compounds will inevitably cause

  3. Penetration and Effectiveness of Micronized Copper in Refractory Wood Species.

    Science.gov (United States)

    Civardi, Chiara; Van den Bulcke, Jan; Schubert, Mark; Michel, Elisabeth; Butron, Maria Isabel; Boone, Matthieu N; Dierick, Manuel; Van Acker, Joris; Wick, Peter; Schwarze, Francis W M R

    2016-01-01

    The North American wood decking market mostly relies on easily treatable Southern yellow pine (SYP), which is being impregnated with micronized copper (MC) wood preservatives since 2006. These formulations are composed of copper (Cu) carbonate particles (CuCO3·Cu(OH)2), with sizes ranging from 1 nm to 250 μm, according to manufacturers. MC-treated SYP wood is protected against decay by solubilized Cu2+ ions and unreacted CuCO3·Cu(OH)2 particles that successively release Cu2+ ions (reservoir effect). The wood species used for the European wood decking market differ from the North American SYP. One of the most common species is Norway spruce wood, which is poorly treatable i.e. refractory due to the anatomical properties, like pore size and structure, and chemical composition, like pit membrane components or presence of wood extractives. Therefore, MC formulations may not suitable for refractory wood species common in the European market, despite their good performance in SYP. We evaluated the penetration effectiveness of MC azole (MCA) in easily treatable Scots pine and in refractory Norway spruce wood. We assessed the effectiveness against the Cu-tolerant wood-destroying fungus Rhodonia placenta. Our findings show that MCA cannot easily penetrate refractory wood species and could not confirm the presence of a reservoir effect.

  4. A General Evaluation for Recycling Process of Impregnated Wood Removed From the Service

    Directory of Open Access Journals (Sweden)

    Cihat Taşçıoğlu

    2011-03-01

    Full Text Available Wood presevatives such as creosote, pentaclorophenol (PCP and chromated copper arsenate (CCA have been widely used over the years in order to extend wood products’ service life. CCA was known as most widely used wood preservative chemical in residendial and commercial applications world wide until 2004 volanteered phase out of the chemical from residential use bye the major manufacturers. Over the years CCA treated wood acuumulated in service reaching millions of cubic meters. But there is growing concern about the environmental impacts and increasing difficulty in disposing of treated wood products in many countries. Since disposal of CCA treated wood material poses greater problems than the other treated wood products due to heavy and toxic metal componets of CCA such as chromium and arsenic Traditional disposal methods like landfillig or incineration, both have negative environmental consequences. For that reason the increasing volume of CCA-treated wood products coming out of service requires alternative disposal methods and recycling techniques never tried before. The main purpose of this study, except for traditional methods like landfilling and incineration, is to evaluate the current alternative disposal and recycling methods for CCA treated wood removed from service.

  5. Bacteriological and Physcio – Chemical Evaluation of Water Treated ...

    African Journals Online (AJOL)

    Bacteriological and physico-chemical evaluation of water coagulated with Moringa oleifera seed powder preparations on Challawa river water intake station was conducted for a period of ... The implications of the results are discussed in relation to water sanitation and human health and some recommendations presented.

  6. Chemical constituents isolated from the wood of Senna reticulata Willd. (Leguminoseae)

    International Nuclear Information System (INIS)

    Santos, Rogerio Nunes dos; Silva, Maria Goretti de Vasconcelos; Braz Filho, Raimundo

    2008-01-01

    The phytochemical investigation of the wood extracts of Senna reticulata (Leguminoseae) yielded six anthraquinones: chrysophanol, physcion, aloe-emodin, 1,3,8-trihydroxyanthraquinone, 3-methoxy-1,6,8-trihydroxyanthraquinone, emodin and the chrysophanol-10,10' bianthrone. The triterpenes α and β-amirin, the steroids β-sitosterol and stigmasterol as well as the flavonoid kaempferol were also identified. The structures were established by spectral analysis, including two-dimensional NMR techniques. It is the first report of 1,3,8-trihydroxyanthraquinone and 3-methoxy-1,6,8-trihydroxyanthraquinone in higher plants. (author)

  7. Mitigating the Expansive Behavior of Chemically Treated Soils

    OpenAIRE

    Jung, Sochan; Santagata, Maria Caterina

    2009-01-01

    Sulfate-induced heave, resulting from the chemical treatment of sulfate rich soils, has been known to cause significant damage to pavements and other structures particularly in the south-western United States. This research addressed the problem of sulfate-induced heave in coal mine spoils, formed as a result of shallow strip coal mining, after treatment with calcium-based stabilizers. These spoils occur in areas of Indiana in which substantial infrastructure development is taking place and w...

  8. Investigation of chemical and electrochemical reactions mechanisms in a direct carbon fuel cell using olive wood charcoal as sustainable fuel

    Science.gov (United States)

    Elleuch, Amal; Halouani, Kamel; Li, Yongdan

    2015-05-01

    Direct carbon fuel cell (DCFC) is a high temperature fuel cell using solid carbon as fuel. The use of environmentally friendly carbon material constitutes a promising option for the DCFC future. In this context, this paper focuses on the use of biomass-derived charcoal renewable fuel. A practical investigation of Tunisian olive wood charcoal (OW-C) in planar DCFCs is conducted and good power density (105 mW cm-2) and higher current density (550 mA cm-2) are obtained at 700 °C. Analytical and predictive techniques are performed to explore the relationships between fuel properties and DCFC chemical and electrochemical mechanisms. High carbon content, carbon-oxygen groups and disordered structure, are the key parameters allowing the achieved good performance. Relatively complex chain reactions are predicted to explain the gas evolution within the anode. CO, H2 and CH4 participation in the anodic reaction is proved.

  9. Biosorbents prepared from wood particles treated with anionic polymer and iron salt: Effect of particle size on phosphate adsorption

    Science.gov (United States)

    Thomas L. Eberhardt; Soo-Hong Min

    2008-01-01

    Biomass-based adsorbents have been widely studied as a cost-effective and environmentally-benign means to remove pollutants and nutrients from water. A two-stage treatment of aspen wood particles with solutions of carboxymethyl cellulose (CMC) and ferrous chloride afforded a biosorbent that was effective in removing phosphate from test solutions. FTIR spectroscopy of...

  10. A comparative study on Cu, Cr and As removal from CCA-treated wood waste by dialytic and electrodialytic processes

    DEFF Research Database (Denmark)

    Velizarova, Emiliya; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2002-01-01

    with the performance of a pure dialytic experiment (without an external power supply) in order to reveal transport of charged particles induced solely by internal electrochemical potential differences in the system. Oxalic acid proved to be a more suitable pre-treatment solution than deionised water for wood chips...

  11. Application of X-ray NDE in treating with chemical weapons abandoned by Japan

    International Nuclear Information System (INIS)

    Wang Bairong; Zhang Guohua; Jiang Yishan

    2006-01-01

    According as need of treating with CW abandoned by Japan, this paper designs a X-ray NDE system for chemical weapons. It consist of X-ray shooting unit, control and identification unit and some assistant equipment. (authors)

  12. The application of X-ray NDE in treating with chemical weapons abandoned by Japan

    International Nuclear Information System (INIS)

    Wang Bairong; Jiang Yishan; Zhang Guohua

    2003-01-01

    According as need of treating with CW abandoned by Japan, this paper designs a X-ray NDE system for chemical weapons, it consist of X-ray shooting unit, control and identification unit and some assistant equipments

  13. How to decrease the hydrophilicity of wood flour to process efficient composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Pouzet, M.; Gautier, D.; Charlet, K. [Institut Pascal, UMR 6602 UBP/CNRS/IFMA, BP 265, Aubière 63175 (France); Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, Clermont-Ferrand 63000 (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, Aubière 63177 (France); Dubois, M., E-mail: Marc.DUBOIS@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, Clermont-Ferrand 63000 (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, Aubière 63177 (France); Béakou, A. [Institut Pascal, UMR 6602 UBP/CNRS/IFMA, BP 265, Aubière 63175 (France)

    2015-10-30

    Graphical abstract: Evolution of the contact angle of a water drop on sample (θ{sub c}) according to the fluorinated material. - Highlights: • Fluorination was applied to wood flour. • Covalent attachment of fluorine atoms onto wood surface decreases its hydrophilicity. • Fluorinated wood flour was added into composites with polyester. • Fluorination enhances the interface between wood flour and polymer matrix. - Abstract: Dynamic fluorination and static fluorination were applied to wood flour to decrease its hydrophilic character, aiming at processing wood-polymer composites with good properties. Fourier-Transform infrared spectra and {sup 19}F solid state NMR (Nuclear Magnetic Resonance) results proved the successful covalent bonding of fluorine atoms onto the wood's chemical structure. It revealed that static fluorination brings about a less damaged and less hydrophilic fluorinated wood than with dynamic fluorination. Composites manufactured from this fluorinated wood presented a hydrophobic character directly related to the hydrophicity of these wood reinforcements. A composite made with fluorinated wood and polyester exhibited a higher hydrophobicity than the neat polyester and than the composite made with non-treated wood. Moreover, the further fluorination of a composite made of fluorinated wood led to a contact angle comparable to that of some metals (steel, gold) due to the etching of the composite surface during fluorination.

  14. A Scandinavian chemical wood pulp mill. Part 1. Energy audit aiming at efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Klugman, Sofia [Department of Technology and Building Environment, Gaevle University, SE-801 76 Gaevle (Sweden); Karlsson, Magnus; Moshfegh, Bahram [Department of Mechanical Engineering, Division of Energy Systems, Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2007-03-15

    A Swedish wood-pulp mill is surveyed in terms of energy supply and use in order to determine the energy-saving potential. Conservation measures are of increasing interest to Swedish industry, as energy prices have continued to rise in recent years. The electricity price particularly increased after the deregulation of the Scandinavian electricity market in 1996. The deregulation expanded to all of the EU in July 2004, which may increase the Swedish electricity price further until it reaches the generally higher European price level. Furthermore, oil prices have increased and the emissions trading scheme for CO{sub 2} adds to the incentive to reduce oil consumption. The energy system at the surveyed pulp mill is described in terms of electricity and process heat production and use. The total energy-saving potential is estimated and some saving points are identified. The heat that today is wasted at the mill has been surveyed in order to find potential for heat integration or heat export. The result shows that the mill probably could become self-sufficient in electricity. Particularly important in that endeavour is updating old pumps. (author)

  15. Proximate chemical composition of giant ipil-ipil wood from different sources

    Energy Technology Data Exchange (ETDEWEB)

    Escolano, E U; Gonzales, E V; Semana, J A

    1978-01-01

    Studies of the chemical composition of seven samples of giant ipil-ipil (Leucaena leucocephala) yielded holocellulose, 69.8 to 73.9%; pentosans, 8.9 to 20.1%; lignin, 21.8 to 26%; alcohol-benzene solubles, 1.4 to 3.0%; caustic soda solubles, 13.0 to 16.4%; and ash, 0.7 to 0.9%. Based on chemical composition, this should be a suitable species for pulp and paper. (Refs. 11).

  16. A Preliminary Toxicological Evaluation of Eight Chemicals Used as Wood Preservatives.

    Science.gov (United States)

    1984-05-01

    Fungicides , 1959. NAS/NRC. 2. Abstract journal searched: Chemical Abstracts to December 1980. 3. Computer searches: The following data bases were...changed the qualitative composition of the microflora by replacing Fusarium, Penicillium, Aspergillus, Trichoderma and Chaetomium species with Streptomyces

  17. Wood chemical composition as related to properties of handsheets made from loblolly pine refiner groundwood

    Science.gov (United States)

    Charles W. McMillin

    1969-01-01

    Burst and tear strengths of handsheets made from 48 pulps disk-refined from chips of varying chemical composition decreased with incressing extractive content after the independent effects of fiber morphology were specified. This result was attributed to lessened bond strength caused by reduced surface tension forces and blocking of reactive sites on the fiber surfaces...

  18. Production of bio-oil with low contents of copper and chlorine by fast pyrolysis of alkaline copper quaternary-treated wood in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Koo, Won-Mo; Jung, Su-Hwa; Kim, Joo-Sik

    2014-01-01

    Fast pyrolysis of ACQ (alkaline copper quaternary)-treated wood was carried out in a bench-scale pyrolysis plant equipped with a fluidized bed reactor and char separation system. This study focused on the production of a bio-oil with low copper and chlorine contents, especially by adopting the fractional condensation of bio-oil using water condensers, an impact separator and an electrostatic precipitator. In addition, various analytical tools were applied to investigate the physicochemical properties of the pyrolysis products and the behavior of the preservative during pyrolysis. The bio-oil yield was maximized at 63.7 wt% at a pyrolysis temperature of 411 °C. Highly water-soluble holocellulose-derived components such as acetic acid and hydroxyacetone were mainly collected by the condensers, while lignin-derived components and levoglucosan were mainly observed in the oils collected by the impact separator and electrostatic precipitator. All the bio-oils produced in the experiments were almost free of copper and chlorine. Most copper in ACQ was transferred into the char. - Highlights: • ACQ(alkaline copper quaternary)-treated wood was successfully pyrolyzed in a bench-scale fluidized bed. • Bio-oils separately collected were different in their characteristics. • Bio-oils were free of didecyldimethylammonium chloride. • Bio oils were almost free of copper and chlorine. • The concentration of levoglucosan in a bio-oil was 24–31 wt%

  19. Modeling of electrodialytic and dialytic removal of Cr, Cu and As from CCA-treated wood chips

    DEFF Research Database (Denmark)

    Ribeiro, Alexandra; Rodriguez-Maroto, J.M.; Mateus, Eduardo

    2007-01-01

    + and NO3 used as electrolyte solutions in the electrode compartments, and oxalate ions and protons incorporated with the oxalic acid solution during wood chips incubation. The model simulation also takes into account that OH generated on the cathode, during electrodialytic remediation, is periodically...... neutralized by addition of nitric acid in the cathode compartment. The anion and cation-exchange membranes are simply represented as ionic filters that preclude the transport of co-ions (the cations and anions respectively) with the exception of H+, which is retarded but considered to pass through the anion...

  20. Differential sensitivity to the antifouling chemical medetomidine between wood frog and American toad tadpoles with evidence for low-dose stimulation and high-dose inhibition of metamorphosis.

    Science.gov (United States)

    Fong, Peter P; Lambert, Olivia J; Hoagland, Margot L; Kurtz, Emily R

    2018-05-05

    Antifouling chemicals are legacy contaminants in aquatic ecosystems. Previous experiments have shown that a 14-day exposure to the antifouling chemical medetomidine delays metamorphosis and reduces body mass in wood frog tadpoles. In the present study, we exposed wood frog tadpoles to medetomidine for 3, 7, and 10 days at 100 nM, 1 μM, and 10 μM. We also exposed American toad tadpoles to medetomidine for 3 days at four concentrations (10 nM, 100 nM, 1 μM, and 10 μM) in static renewal experiments. In each experiment, we measured growth, frequency and time to metamorphosis, and mass at metamorphosis. In both species, medetomidine significantly slowed development as measured by the Gosner stage. After 34 days in culture, wood frog tadpoles exposed to 1 and 10 μM medetomidine for as few as 3 days were significantly less developed compared to controls. Toads exposed to 1 μM medetomidine for 3 days were also significantly less developed on day 27, but by day 34, there was no difference from controls. For wood frogs, medetomidine significantly affected time to metamorphosis with a trend for tadpoles at lower concentrations metamorphosing sooner than those at higher concentrations. While medetomidine affected time to metamorphosis in wood frogs, it did not affect fresh mass, dry mass, or mortality compared to controls. Wood frog tadpoles that did not metamorphose after over 90 days in culture were more frequent in high-concentration groups than in the control. In toads, 10 μM medetomidine was 100% lethal within 23 days, but at the same concentration and duration, no wood frog tadpoles died. Lower concentrations were also significantly lethal to toads compared to controls, but tadpoles that survived in 10 and 100 nM metamorphosed sooner than those in 1 μM. Fresh mass of toad tadpoles exposed to 1 μm was significantly smaller at metamorphosis compared to that of controls. Medetomidine also affected the behavior of tadpoles. In toads, medetomidine

  1. Prediction of wood mechanical and chemical properties in the presence and absence of blue stain using two near infrared instruments

    Science.gov (United States)

    Brian K. Via; Chi-Leung So; Todd F. Shupe; Lori G. Eckhardt; Michael Stine; Leslie H. Groom

    2005-01-01

    The objective of this research was to (a) determine if blue stain in solid wood influenced calibration equations developed from a nonstained wood population, (b) assess the bias introduced when scanning was performed by the slave instrument without calibration transfer from the master instrument and (c) partition absorbance-based variation by instrument, stain and...

  2. Wood Colorization through Pressure Treating: The Potential of Extracted Colorants from Spalting Fungi as a Replacement for Woodworkers’ Aniline Dyes

    Directory of Open Access Journals (Sweden)

    Sara C. Robinson

    2014-07-01

    Full Text Available The extracellular colorants produced by Chlorociboria aeruginosa, Scytalidium cuboideum, and Scytalidium ganodermophthorum, three commonly utilized spalting fungi, were tested against a standard woodworker’s aniline dye to determine if the fungal colorants could be utilized in an effort to find a naturally occurring replacement for the synthetic dye. Fungal colorants were delivered in two methods within a pressure treater—the first through solubilization of extracted colorants in dichloromethane, and the second via liquid culture consisting of water, malt, and the actively growing fungus. Visual external evaluation of the wood test blocks showed complete surface coloration of all wood species with all colorants, with the exception of the green colorant (xylindein from C. aeruginosa in liquid culture, which did not produce a visible surface color change. The highest changes in external color came from noble fir, lodgepole pine, port orford cedar and sugar maple with aniline dye, cottonwood with the yellow colorant in liquid culture, lodgepole pine with the red colorant in liquid culture, red alder and Oregon maple with the green colorant in dichloromethane, and sugar maple and port orford cedar with the yellow colorant in dichloromethane. The aniline dye was superior to the fungal colorants in terms of internal coloration, although none of the tested compounds were able to completely visually color the inside of the test blocks.

  3. Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Negro, M.J.; Manzanares, P.; Oliva, J.M.; Ballesteros, I.; Ballesteros, M. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain). Departamento de Energias Renovables

    2003-09-01

    Steam-explosion process can be satisfactorily used as a pretreatment in ethanol production from lignocellulosic biomass. Traditionally, pretreatment effectiveness is evaluated in terms of hemicellulose solubilization, enzymatic convertibility of cellulosic fraction, and recovery of both polysaccharides. In this study some parameters different from composition (main components) have been evaluated as an alternative tool to characterise the effect of steaming pretreatment on lignocellulosic materials. The effect of the most important variables in steam explosion pretreatment (temperature, residence time and chip size) on various physical/chemical parameters of pine biomass were investigated. Changes in O/C and H/C atomic ratios, colour analysis, elementary composition, water drop penetration time, organic soluble content, cellulose crystallinity index, and thermogravimetric analysis after the pretreatment were evaluated. Furthermore the influence of operational pretreatment variables on all such parameters and their interactions were examined with the Yates' algorithm. (author)

  4. Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment

    International Nuclear Information System (INIS)

    Negro, M.J.; Manzanares, P.; Oliva, J.M.; Ballesteros, I.; Ballesteros, M.

    2003-01-01

    Steam-explosion process can be satisfactorily used as a pretreatment in ethanol production from lignocellulosic biomass. Traditionally, pretreatment effectiveness is evaluated in terms of hemicellulose solubilization, enzymatic convertibility of cellulose fraction, and recovery of both polysaccharides. In this study some parameters different from composition (main components) have been evaluated as an alternative tool to characterise the effect of steaming pretreatment on lignocellulosic materials. The effect of the most important variables in steam explosion pretreatment (temperature, residence time and chip size) on various physical/chemical parameters of pine biomass were investigated. Changes in O/C and H/C atomic ratios, colour analysis, elementary composition, water drop penetration time, organic soluble content, cellulose cristallinity index, and thermogravimetric analysis after the pretreatment were evaluated. Furthermore the influence of operational pretreatment variables on all such parameters and their interactions were examined with the Yates' algorithm

  5. MODELING AGGREGATE EXPOSURE AND DOSE OF CHILDREN TO A WOOD TREATMENT PRESERVATIVE FROM PLAYSETS AND HOME DECKS

    Science.gov (United States)

    Pressure- or non-pressure- treated lumber may pose a potential health hazard to children if the children contact certain chemicals in soils around leaching wood structures and/or in dislodgeable residues that may form on the wood surfaces of the structures. A physically-based,...

  6. Effects of long-term ambient ozone exposure on biomass and wood traits in poplar treated with ethylenediurea (EDU)

    International Nuclear Information System (INIS)

    Carriero, G.; Emiliani, G.; Giovannelli, A.; Hoshika, Y.; Manning, W.J.; Traversi, M.L.; Paoletti, E.

    2015-01-01

    This is the longest continuous experiment where ethylenediurea (EDU) was used to protect plants from ozone (O 3 ). Effects of long-term ambient O 3 exposure (23 ppm h AOT40) on biomass of an O 3 sensitive poplar clone (Oxford) were examined after six years from in-ground planting. Trees were irrigated with either water or 450 ppm EDU. Above (−51%) and below-ground biomass (−47%) was reduced by O 3 although the effect was significant only for stem and coarse roots. Ambient O 3 decreased diameter of the lower stem, and increased moisture content along the stem of not-protected plants (+16%). No other change in the physical wood structure was observed. A comparison with a previous assessment in the same experiment suggested that O 3 effects on biomass partitioning to above-ground organs depend on the tree ontogenetic stage. The root/shoot ratios did not change, suggesting that previous short-term observations of reduced allocation to tree roots may be overestimated. - Highlights: • 6-y ambient O 3 exposure was investigated in a sensitive poplar clone. • EDU irrigation protected poplar against ambient O 3 exposure. • O 3 reduced biomass of roots and stem, but did not change biomass allocation. • O 3 decreased stem diameter only in the lower third of the stem. • O 3 increased moisture content of the wood along the stem. - Ozone exposure reduced lateral branching, leaves and roots in younger trees, and affected stem and roots in older trees, while shoot/root ratios did not change.

  7. Chemical changes in the soil and production of oat fertilized with treated wastewater

    Directory of Open Access Journals (Sweden)

    Paulo Fortes Neto

    2013-12-01

    Full Text Available The purpose of this project was to ensure the quality and impact of the application of treated sewage wastewater on the chemical properties of Dystrophic Yellow Argisol and on biomass and grain production of white oat (Avena sativa, L. After the wastewater was chemically characterized, it was applied to the soil in concentrations of 0, 30, 60 and 90 m3 ha-1 in plots of 200 m2. Doses of water were compared with mineral fertilizer doses recommended for oat. The experimental design was a split plot with four randomized blocks. The wastewater had chemical qualities useful for grain cultivation. The values of calcium, CTC, V, pH increased and acidity potential decreased in the soil after the wastewater was applied. Doses of the wastewater provided increments in biomass production and oat grains similar to that obtained with chemical fertilizers. We conclude that wastewater can be used to correct soil acidity and replace or supplement chemical fertilizers.

  8. Superfund Record of Decision (EPA Region 3): Southern Maryland Wood Treating Site, Hollywood, Maryland (first remedial action) June 1988. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-29

    The Southern Maryland Wood Treating (SMWT) site is located in Hollywood, St. Mary's County, Maryland. The site is situated within a wetland area in a drainage divide such that runoff from the site discharges into Brooks Run and McIntosh Run tributaries, which flow into the Potomac River. The area surrounding the site is predominantly used for agricultural and residential purposes. Currently, part of the site is being used as a retail outlet for pretreated lumber and crab traps. The waste generated at the site included retort and cylinder sludges, process wastes, and material spillage. These wastes were in six onsite unlined lagoons. The primary contaminants of concern affecting the onsite ground water, soil, surface water, sediments, and debris include: VOCs, PNA, and base/neutral acid extractables. The selected remedial action for the site is included.

  9. Effect of different extracting solutions on the electrodialytic remediation of CCA-treated wood waste Part I. - Behaviour of Cu and Cr

    DEFF Research Database (Denmark)

    Velizarova, E.; Ribeiro, A. B.; Mateus, E.

    2004-01-01

    Removal of Cu and Cr from chromated copper arsenate (CCA)-treated wood waste under batch electrodialytic conditions was studied. The effect of different types of extracting solutions, such as deionised water or aqueous solutions of NaCl, formic acid, oxalic acid, and EDTA, on the magnitude...... and direction of the fluxes of Cu- and Cr-containing species in the electrodialytic cell was investigated. Oxalic acid was found to have the best performance if simultaneous removal of the two elements is required (removal efficiencies of 80.5% for Cu and 87.4% for Cr, respectively). A mixture of oxalic acid...... and formic acid also led to similar removal efficiencies. In these experiments, the target elements were accumulated in both the anode and cathode compartments of the electrodialytic cell due to the formation of negatively charged complexes with the organic acids used besides the free cationic forms...

  10. Chemical characterzation of fine particle emissions from the fireplace combustion of woods grown in the Southern United States.

    Science.gov (United States)

    Fine, Philip M; Cass, Glen R; Simoneit, Bernd R T

    2002-04-01

    The fireplace combustion of wood is a significant and largely unregulated source of fine particle pollution in the United States. Source apportionment techniques that use particulate organic compounds as tracers have been successful in determining the contribution of wood smoke to ambient fine particle levels in specific areas in California. To apply these techniques to the rest of the United States, the differences in emissions profiles between different wood smoke sources and fuel types should be resolved. To this end, a series of fireplace source tests was conducted on six fuel wood species found in the Southern United States to determine fine particulate emission factors for total mass, ionic and elemental species, elemental and organic carbon, and over 250 individual organic compounds. The wood species tested, chosen for their high abundance and availability in the Southern U.S. region, were yellow poplar, white ash, sweetgum, mockernut hickory, loblolly pine, and slash pine. The differences in the emissions of compounds such as substituted phenols and resin acids help to distinguish between the smoke from hardwood and softwood combustion. Levoglucosan, a cellulose pyrolysis product which may serve as a tracer for wood smoke in general, was quantified in the emissions from all the wood species burned. The furofuran lignan, yangambin, which was emitted in significant quantities from yellow poplar combustion and not detected in any of the other North American wood smokes, is a potential species-specific molecular tracer which may be useful in qualitatively identifying particulate emissions from a specific geographical area where yellow poplar is being burned.

  11. Steam-treated wood pellets: Environmental and financial implications relative to fossil fuels and conventional pellets for electricity generation

    International Nuclear Information System (INIS)

    McKechnie, Jon; Saville, Brad; MacLean, Heather L.

    2016-01-01

    Highlights: • Steam-treated pellets can greatly reduce greenhouse gas emissions relative to coal. • Cost advantage is seen relative to conventional pellets. • Higher pellet cost is more than balanced by reduced retrofit capital requirements. • Low capacity factors further favour steam-treated pellets over conventional pellets. - Abstract: Steam-treated pellets can help to address technical barriers that limit the uptake of pellets as a fuel for electricity generation, but there is limited understanding of the cost and environmental impacts of their production and use. This study investigates life cycle environmental (greenhouse gas (GHG) and air pollutant emissions) and financial implications of electricity generation from steam-treated pellets, including fuel cycle activities (biomass supply, pellet production, and combustion) and retrofit infrastructure to enable 100% pellet firing at a generating station that previously used coal. Models are informed by operating experience of pellet manufacturers and generating stations utilising coal, steam-treated and conventional pellets. Results are compared with conventional pellets and fossil fuels in a case study of electricity generation in northwestern Ontario, Canada. Steam-treated pellet production has similar GHG impacts to conventional pellets as their higher biomass feedstock requirement is balanced by reduced process electricity consumption. GHG reductions of more than 90% relative to coal and ∼85% relative to natural gas (excluding retrofit infrastructure) could be obtained with both pellet options. Pellets can also reduce fuel cycle air pollutant emissions relative to coal by 30% (NOx), 97% (SOx), and 75% (PM 10 ). Lesser retrofit requirements for steam-treated pellets more than compensate for marginally higher pellet production costs, resulting in lower electricity production cost compared to conventional pellets ($0.14/kW h vs. $0.16/kW h). Impacts of retrofit infrastructure become increasingly

  12. Wood burning

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, H

    1955-01-01

    Discussed are the use of wood as a fuel, the technique of wood combustion and the operation of wood-burning stoves for cooking and heating. In addition, there is a section which reviews the use of wood stoves in various countries and lists manufacturers of stoves, central heating furnaces and in some cases sawdust burners.

  13. Wood frame systems for wood homes

    Directory of Open Access Journals (Sweden)

    Julio Cesar Molina

    2010-12-01

    Full Text Available The use of constructive systems that combine strength, speed, with competitive differential techniques and mainly, compromising with the environment, is becoming more popular in Brazil. The constructive system in wood frame for houses of up to five stories is very interesting, because it is a light system, structured in reforested treated wood which allows the combination of several materials, besides allowing speed in the construction and total control of the expenses already in the project phase for being industrialized. The structural behavior of the wood frame is superior to the structural masonry in strength, thermal and acoustic comfort. However, in Brazil, the wood frame is still little known and used, due to lack of technical knowledge about the system, prejudice associated the bad use of the wood as construction material, or still, in some cases, lack of normalization. The aim of this manuscript consists of presenting the main technical characteristics and advantages of the constructive system in wood frame homes, approaching the main stages of the constructive process through examples, showing the materials used in the construction, in addition the main international normative recommendations of the project. Thus, this manuscript also hopes to contribute to the popularization of the wood frame system in Brazil, since it is a competitive, fast and ecologically correct system. Moreover, nowadays, an enormous effort of the technical, commercial and industrial section has been accomplished for the development of this system in the country.

  14. Effects of copper amine treatments on mechanical, biological and surface/interphase properties of poly (vinyl chloride)/wood composites

    Science.gov (United States)

    Jiang, Haihong

    2005-11-01

    The copper ethanolamine (CuEA) complex was used as a wood surface modifier and a coupling agent for wood-PVC composites. Mechanical properties of composites, such as unnotched impact strength, flexural strength and flexural toughness, were significantly increased, and fungal decay weight loss was dramatically decreased by wood surface copper amine treatments. It is evident that copper amine was a very effective coupling agent and decay inhibitor for PVC/wood flour composites, especially in high wood flour loading level. A DSC study showed that the heat capacity differences (DeltaCp) of composites before and after PVC glass transition were reduced by adding wood particles. A DMA study revealed that the movements of PVC chain segments during glass transition were limited and obstructed by the presence of wood molecule chains. This restriction effect became stronger by increasing wood flour content and by using Cu-treated wood flour. Wood flour particles acted as "physical cross-linking points" inside the PVC matrix, resulting in the absence of the rubbery plateau of PVC and higher E', E'' above Tg, and smaller tan delta peaks. Enhanced mechanical performances were attributed to the improved wetting condition between PVC melts and wood surfaces, and the formation of a stronger interphase strengthened by chemical interactions between Cu-treated wood flour and the PVC matrix. Contact angles of PVC solution drops on Cu-treated wood surfaces were decreased dramatically compared to those on the untreated surfaces. Acid-base (polar), gammaAB, electron-acceptor (acid) (gamma +), electron-donor (base) (gamma-) surface energy components and the total surface energies increased after wood surface Cu-treatments, indicating a strong tendency toward acid-base or polar interactions. Improved interphase and interfacial adhesion were further confirmed by measuring interfacial shear strength between wood and the PVC matrix.

  15. Mineral preservatives in the wood of Stradivari and Guarneri.

    Directory of Open Access Journals (Sweden)

    Joseph Nagyvary

    Full Text Available Following the futile efforts of generations to reach the high standard of excellence achieved by the luthiers in Cremona, Italy, by variations of design and plate tuning, current interest is being focused on differences in material properties. The long-standing question whether the wood of Stradivari and Guarneri were treated with wood preservative materials could be answered only by the examination of wood specimens from the precious antique instruments. In a recent communication (Nature, 2006, we reported about the degradation of the wood polymers in instruments of Stradivari and Guarneri, which could be explained only by chemical manipulations, possibly by preservatives. The aim of the current work was to identify the minerals from the small samples of the maple wood which were available to us from the antique instruments. The ashes of wood from one violin and one cello by Stradivari, two violins by Guarneri, one viola by H. Jay, one violin by Gand-Bernardel were analyzed and compared with a variety of commercial tone woods. The methods of analysis were the following: back-scattered electron imaging, X-ray fluorescence maps for individual elements, wave-length dispersive spectroscopy, energy dispersive X-ray spectroscopy and quantitative microprobe analysis. All four Cremonese instruments showed the unmistakable signs of chemical treatments in the form of chemicals which are not present in natural woods, such as BaSO4, CaF2, borate, and ZrSiO4. In addition to these, there were also changes in the common wood minerals. Statistical evaluation of 12 minerals by discriminant analysis revealed: a. a difference among all four Cremona instruments, b. the difference of the Cremonese instruments from the French and English antiques, and c. only the Cremonese instruments differed from all commercial woods. These findings may provide the answer why all attempts to recreate the Stradivarius from natural wood have failed. There are many obvious

  16. A Tool for Estimating Variability in Wood Preservative Treatment Retention

    Science.gov (United States)

    Patricia K. Lebow; Adam M. Taylor; Timothy M. Young

    2015-01-01

    Composite sampling is standard practice for evaluation of preservative retention levels in preservative-treated wood. Current protocols provide an average retention value but no estimate of uncertainty. Here we describe a statistical method for calculating uncertainty estimates using the standard sampling regime with minimal additional chemical analysis. This tool can...

  17. Effects of Chemical Curing Temperature and Time on the Properties of Liquefied Wood based As-cured Precursors and Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Junbo Shang

    2015-09-01

    Full Text Available Liquefied wood based as-cured precursors and carbon fibers prepared by different chemical curing processes were carried out to investigate the effects of curing temperature and time on the thermostability and microstructure of liquefied wood based precursors, the tensile strength of carbon fibers as well. The primary fibers can be converted into precursors with high performance by directly heating at target curing temperature. With the temperature and duration increasing, the numbers of methylene bonds in precursors increased, resulting in the enhancement of cross-linkages among molecular chains and then the improvement of thermostability of precursors. Carbon fibers prepared from as-cured precursors (curing temperature 95 oC, curing time 3h had the minimum value of the average interlayer spacing (d002, it also showed the highest tensile strength, almost 800 MPa, which can be classified as fibers of general grade.

  18. A comparative study on Cu, Cr and As removal from CCA-treated wood waste by dialytic and electrodialytic processes

    DEFF Research Database (Denmark)

    Velizarova, Emiliya; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2002-01-01

    In this study, electrodialytic and dialytic techniques were used for Cu, Cr and As removal from 20-years out-of-service CCA-treated Pinus pinaster Ait. pole. The effect of applying direct current, as "cleaning agent", of up to 120mA was investigated. Focus was given to a parallel comparison...

  19. Chemical properties of a Haplustalf soil under irrigation with treated wastewater and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Leda V. B. D. Silva

    2016-04-01

    Full Text Available ABSTRACT The objective of this research was to investigate the effects of irrigation with treated wastewater and nitrogen (N fertilization on the chemical characteristics of a Haplustalf soil cultivated with cotton. An experiment was conducted in a greenhouse in a completely randomized design with four replicates, and arranged in a 5 x 4 factorial. Five doses of N fertilization (0, 45, 90, 135 and 180 kg ha-1 and four sources of irrigation water (freshwater, wastewater treated by an anaerobic reactor, wastewater treated by an anaerobic reactor and post-treated by intermittent sand filter in series, wastewater treated in a septic tank and post-treated by an intermittent sand filter were tested. Irrigation was daily performed from July 2011 to January 2012 according to the water demand of cotton resulting in a water depth of 620 mm. It was found that, compared with the conventional management with freshwater irrigation, treated wastewater provides greater accumulation of micronutrient, potassium and sodium in the soil, increasing the risk of sodification in irrigated areas.

  20. Chemical characterization and stable carbon isotopic composition of particulate Polycyclic Aromatic Hydrocarbons issued from combustion of 10 Mediterranean woods

    Directory of Open Access Journals (Sweden)

    A. Guillon

    2013-03-01

    Full Text Available The objectives of this study were to characterize polycyclic aromatic hydrocarbons from particulate matter emitted during wood combustion and to determine, for the first time, the isotopic signature of PAHs from nine wood species and Moroccan coal from the Mediterranean Basin. In order to differentiate sources of particulate-PAHs, molecular and isotopic measurements of PAHs were performed on the set of wood samples for a large panel of compounds. Molecular profiles and diagnostic ratios were measured by gas chromatography/mass spectrometry (GC/MS and molecular isotopic compositions (δ13C of particulate-PAHs were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS. Wood species present similar molecular profiles with benz(aanthracene and chrysene as dominant PAHs, whereas levels of concentrations range from 1.8 to 11.4 mg g−1 OC (sum of PAHs. Diagnostic ratios are consistent with reference ratios from literature but are not sufficient to differentiate the species of woods. Concerning isotopic methodology, PAH molecular isotopic compositions are specific for each species and contrary to molecular fingerprints, significant variations of δ13C are observed for the panel of PAHs. This work allows differentiating wood combustion (with δ13CPAH = −28.7 to −26.6‰ from others origins of particulate matter (like vehicular exhaust using isotopic measurements but also confirms the necessity to investigate source characterisation at the emission in order to help and complete source assessment models. These first results on woodburnings will be useful for the isotopic approach to source tracking.

  1. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2016-06-01

    The results obtained show that, application of the investigated hydrogels positively affects bio-chemical properties of the soil. These effects are assembled in the following: (a slightly decreasing soil pH, (b increasing cation exchange capacity (CEC of the soil indicating improvement in activating chemical reactions in the soil, (c increasing organic matter (OM, organic carbon, total nitrogen percent in the soil. Because the increase in organic nitrogen surpassed that in organic carbon, a narrower CN ratio of treated soils was obtained. This indicated the mineralization of nitrogen compounds and hence the possibility to save and provide available forms of N to growing plants, (d increasing available N, P and K in treated soil, and (e improving biological activity of the soil expressed as total count of bacteria and counts of Azotobacter sp., phosphate dissolving bacteria (PDB, fungi and actinomycetes/g soil as well as the activity of both dehydrogenase and phosphatase.

  2. Yield of Peas Treated with Compost and Chemical Fertilizer Using 15N Technique

    International Nuclear Information System (INIS)

    El-Degwy, S.M.A.

    2011-01-01

    A field experiment was carried out to evaluate the yield of peas treated with organic compost and mineral N fertilizer under sandy soil conditions. The obtained results showed that all the tested vegetative growth parameters, i.e. fresh and dry weight of leaves, root and pods of pea plants, were significantly increased with increasing the levels of mineral N fertilizer from 20 up to 50 kg N ha-1 either solely or in combination with compost. Nitrogen, phosphorus and potassium uptake by pea plants were ranked as follow: chemical N fertilize > compost + chemical N fertilize > compost. Organic additives either alone or in combination with chemical fertilizer had enhanced Ndff uptake by pods over aerial parts and roots while reversible trend was noticed with sole application of chemical fertilizer. Nitrogen derived from compost (Ndfc) and uptake by aerial parts followed by pods were enhanced by addition of organic plus chemical fertilizers comparable to sole addition of organic compost. In other term, chemical fertilizer had enhanced the portion of N derived from organic compost

  3. Health assessment for Southern Maryland Wood Treating (SMWT) National Priorities List (NPL) Site, Hollywood, St. Mary's County, Maryland, Region 3. CERCLIS No. MDD980704852. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-10

    The Southern Maryland Wood Treating National Priorities List site is located in Hollywood, St. Mary's County, Maryland. Approximately 12,000 gallons of dioxin-contaminated wastes and 2,000 gallons of wastes contaminated with volatile organic compounds or polynuclear aromatic hydrocarbons, or both, remain in on-site tanks used during wood treatment operations. Until remediation of the site is completed there is a potential public health concern from dermal absorption, ingestion, or inhalation of contaminants from groundwater, surface water, sediments, soil, and contaminated on-site structures.

  4. Wood Dust

    Science.gov (United States)

    Learn about wood dust, which can raise the risk of cancers of the paranasal sinuses and nasal cavity. High amounts of wood dust are produced in sawmills, and in the furniture-making, cabinet-making, and carpentry industries.

  5. Wood Smoke

    Science.gov (United States)

    Smoke is made up of a complex mixture of gases and fine, microscopic particles produced when wood and other organic matter burn. The biggest health threat from wood smoke comes from fine particles (also called particulate matter).

  6. Online sorting of recovered wood waste by automated XRF-technology: part II. Sorting efficiencies.

    Science.gov (United States)

    Hasan, A Rasem; Solo-Gabriele, Helena; Townsend, Timothy

    2011-04-01

    Sorting of waste wood is an important process practiced at recycling facilities in order to detect and divert contaminants from recycled wood products. Contaminants of concern include arsenic, chromium and copper found in chemically preserved wood. The objective of this research was to evaluate the sorting efficiencies of both treated and untreated parts of the wood waste stream, and metal (As, Cr and Cu) mass recoveries by the use of automated X-ray fluorescence (XRF) systems. A full-scale system was used for experimentation. This unit consisted of an XRF-detection chamber mounted on the top of a conveyor and a pneumatic slide-way diverter which sorted wood into presumed treated and presumed untreated piles. A randomized block design was used to evaluate the operational conveyance parameters of the system, including wood feed rate and conveyor belt speed. Results indicated that online sorting efficiencies of waste wood by XRF technology were high based on number and weight of pieces (70-87% and 75-92% for treated wood and 66-97% and 68-96% for untreated wood, respectively). These sorting efficiencies achieved mass recovery for metals of 81-99% for As, 75-95% for Cu and 82-99% of Cr. The incorrect sorting of wood was attributed almost equally to deficiencies in the detection and conveyance/diversion systems. Even with its deficiencies, the system was capable of producing a recyclable portion that met residential soil quality levels established for Florida, for an infeed that contained 5% of treated wood. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Characterization of chemically and enzymatically treated hemp fibres using atomic force microscopy and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    George, Michael; Mussone, Paolo G. [Biorefining Conversions and Fermentations Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6E 2P5 (Canada); Abboud, Zeinab [Biorefining Conversions and Fermentations Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6E 2P5 (Canada); Department of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1 (Canada); Bressler, David C., E-mail: david.bressler@ualberta.ca [Biorefining Conversions and Fermentations Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6E 2P5 (Canada)

    2014-09-30

    The mechanical and moisture resistance properties of natural fibre reinforced composites are dependent on the adhesion between the matrix of choice and the fibre. The main goal of this study was to investigate the effect of NaOH swelling of hemp fibres prior to enzymatic treatment and a novel chemical sulfonic acid method on the physical properties of hemp fibres. The colloidal properties of treated hemp fibres were studied exclusively using an atomic force microscope. AFM imaging in tapping mode revealed that each treatment rendered the surface topography of the hemp fibres clean and exposed the individual fibre bundles. Hemp fibres treated with laccase had no effect on the surface adhesion forces measured. Interestingly, mercerization prior to xylanase + cellulase and laccase treatments resulted in greater enzyme access evident in the increased adhesion force measurements. Hemp fibres treated with sulfonic acid showed an increase in surface de-fibrillation and smoothness. A decrease in adhesion forces for 4-aminotoulene-3-sulfonic acid (AT3S) treated fibres suggested a reduction in surface polarity. This work demonstrated that AFM can be used as a tool to estimate the surface forces and roughness for modified fibres and that enzymatic coupled with chemical methods can be used to improve the surface properties of natural fibres for composite applications. Further, this work is one of the first that offers some insight into the effect of mercerization prior to enzymes and the effect on the surface topography. AFM will be used to selectively screen treated fibres for composite applications based on the adhesion forces associated with the colloidal interface between the AFM tip and the fibre surfaces.

  8. Removal of Cd (II from Aqueous Media by Adsorption onto Chemically and Thermally Treated Rice Husk

    Directory of Open Access Journals (Sweden)

    María Camila Hoyos-Sánchez

    2017-01-01

    Full Text Available Chemically and thermally treated rice husks were evaluated as a potential decontaminant of toxic Cd (II in aqueous media. Rice husk (RH, a by-product from rice milling, was chemically treated with HCl and NaOH. Then, thermal treatments to 300, 500, and 700°C were applied. The chemical composition and morphological characteristics of RH were evaluated by different techniques. The specific surface area analysis of RH samples by BET nitrogen adsorption method provided specific surface areas ranging from 6 to 14 m2/g. SEM, FTIR, and EDX analyses of RH were carried out to determine the surface morphology, functional groups involved in metal binding mechanism, and C/O and C/Si ratios, respectively. The maximum Cd (II adsorption capacity was 28.27 mg/g at an optimum pH, 6.0. The kinetic studies revealed that adsorption process followed the pseudo-second-order kinetic model.

  9. Chemical and microbiological attributes of an oxisol treated with successive applications of sewage sludge¹

    Directory of Open Access Journals (Sweden)

    José Rafael Pires Bueno

    2011-08-01

    Full Text Available Studies on sewage sludge (SS have confirmed the possibilities of using this waste as fertilizer and/or soil conditioner in crop production areas. Despite restrictions with regard to the levels of potentially toxic elements (PTE and pathogens, it is believed that properly treated SS with low PTE levels, applied to soil at adequate rates, may improve the soil chemical and microbiological properties. This study consisted of a long-term field experiment conducted on a Typic Haplorthox (eutroferric Red Latosol treated with SS for seven successive years for maize production, to evaluate changes in the soil chemical and microbiological properties. The treatments consisted of two SS rates (single and double dose of the crop N requirement and a mineral fertilizer treatment. Soil was sampled in the 0-0.20 m layer and analyzed for chemical properties (organic C, pH, P, K, Ca, Mg, CEC, B, Cu, Fe, Mn, Zn, Cd, Ni, and Pb and microbiological properties (basal respiration, microbial biomass activity, microbial biomass C, metabolic quotient, microbial quotient, and protease and dehydrogenase enzyme activities. Successive SS applications to soil increased the macro- and micronutrient availability, but the highest SS dose reduced the soil pH significantly, indicating a need for periodic corrections. The SS treatments also affected soil microbial activity and biomass negatively. There were no significant differences among treatments for maize grain yield. After seven annual applications of the recommended sludge rate, the heavy metal levels in the soil had not reached toxic levels.

  10. Dual protection of wood surface treated with melamine-modified urea-formaldehyde resin mixed with ammonium polyphosphate against both fire and decay

    Science.gov (United States)

    Xing-xia Ma; Grant T. Kirker; Ming-liang Jiang; Yu-zhang Wu

    2016-01-01

    Surface coatings of melamine-modified urea-formaldehyde resins (MUFs) containing ammonium polyphosphate (APP) have been shown to significantly improve the fire retardancy of wood by prolonging the ignition time and reducing the heat release rate, total heat released, and mass loss rate. Dual protection of wood against both decay and fire has been proposed for remedial...

  11. The Effect of Ultrasound Pretreatment on Poplar Wood Dimensional Stability

    Directory of Open Access Journals (Sweden)

    Shu Qiu

    2016-08-01

    Full Text Available Dimensional stability is a key property of wood that significantly affects its applications. The effect of an ultrasound pretreatment on poplar wood (Populous tomentosa dimensional stability was examined. During the pretreatments, wood samples were immersed in distilled water and treated ultrasonically under three different powers and frequencies. The samples were then analyzed by Fourier transform infrared spectroscopy (FTIR and X-ray diffraction (XRD. The chemical transformation of the cell-wall material was studied and then associated with the change of water absorption and the swelling coefficient. The results showed that the water absorption decreased after the ultrasonic pretreatment. The axial and radial swelling coefficients of the pretreated samples decreased, while the tangential swelling coefficients increased. The volumetric swelling coefficient of pretreated specimens fluctuated near 4.48% (the volumetric swelling coefficient of untreated wood. Ultrasonic pretreatment increased the number of hydrophilic groups, such as the hydroxyl, acetyl, and uronic ester groups. Meanwhile, the pretreatment also increased the degree of crystallinity and reduced the available polar groups. These two factors together caused the change of the moisture absorption and the swelling coefficient of the pretreated wood. These conclusions suggest that the ultrasonic pretreatment is a promising method for further chemical modification of wood.

  12. physico-chemical changes in UHT treated and whole milk powder during storage at ambient temperature

    International Nuclear Information System (INIS)

    Akhtar, S.; Zahoor, T.; Hashmi, A.M.

    2003-01-01

    We studied the changes in pH, acidity and viscosity of ultra high temperature (UHT) treated and reconstituted whole milk powder (WMP) during storage of 90 days at room temperature. The samples were analyzed at 0,30,60 and 90 days intervals for these physico-chemical properties of the milk types. Values indicated an increase in acidity and viscosity with a decrease in pH with the storage time increased both in UHT treated and reconstituted whole milk powder. Apart from many enzymatic changes to deteriorate the milk, these apparent changes in milk characteristics may be one of the reasons that UHT milk cannot be kept unspoiled above 90 days and the quality of WMP is influenced within this time period. (author)

  13. Characterization samples of Tigris river water treated with nano colloidal silver (physically, chemically, microbiologically)

    International Nuclear Information System (INIS)

    Dumboos, H. I.; Beden, S. J.; Zouari, K.; Chkir, N.; Ahmed, H. A.

    2012-12-01

    Many researches of using nano silver in purification of drinking water from bacteria and its effect on stan dared properties as drinking water were established. Two stages accomplished in these projects. First stage include preparation of colloidal silver with characterization process and prepare water samples through sedimentation, filtration process, PH and turbidity measure then treated with colloidal silver in volume ratio (0.1-Λ) ml/100ml. The second stage represent select the better results from stage one and take samples to determine the standard characterization values with chemical, physical and microbiological taste. Results will be compared with Iraq standard certification. (Author)

  14. Comparative study of Nd:YAG laser-induced breakdown spectroscopy and transversely excited atmospheric CO2 laser-induced gas plasma spectroscopy on chromated copper arsenate preservative-treated wood.

    Science.gov (United States)

    Khumaeni, Ali; Lie, Zener Sukra; Niki, Hideaki; Lee, Yong Inn; Kurihara, Kazuyoshi; Wakasugi, Motoomi; Takahashi, Touru; Kagawa, Kiichiro

    2012-03-01

    Taking advantage of the specific characteristics of a transversely excited atmospheric (TEA) CO(2) laser, a sophisticated technique for the analysis of chromated copper arsenate (CCA) in wood samples has been developed. In this study, a CCA-treated wood sample with a dimension of 20 mm × 20 mm and a thickness of 2 mm was attached in contact to a nickel plate (20 mm × 20 mm × 0.15 mm), which functions as a subtarget. When the TEA CO(2) laser was successively irradiated onto the wood surface, a hole with a diameter of approximately 2.5 mm was produced inside the sample and the laser beam was directly impinged onto the metal subtarget. Strong and stable gas plasma with a very large diameter of approximately 10 mm was induced once the laser beam had directly struck the metal subtarget. This gas plasma then interacted with the fine particles of the sample inside the hole and finally the particles were effectively dissociated and excited in the gas plasma region. By using this technique, high precision and sensitive analysis of CCA-treated wood sample was realized. A linear calibration curve of Cr was successfully made using the CCA-treated wood sample. The detection limits of Cr, Cu, and As were estimated to be approximately 1, 2, and 15 mg/kg, respectively. In the case of standard LIBS using the Nd:YAG laser, the analytical intensities fluctuate and the detection limit was much lower at approximately one-tenth that of TEA CO(2) laser. © 2012 Optical Society of America

  15. HerDing: herb recommendation system to treat diseases using genes and chemicals.

    Science.gov (United States)

    Choi, Wonjun; Choi, Chan-Hun; Kim, Young Ran; Kim, Seon-Jong; Na, Chang-Su; Lee, Hyunju

    2016-01-01

    In recent years, herbs have been researched for new drug candidates because they have a long empirical history of treating diseases and are relatively free from side effects. Studies to scientifically prove the medical efficacy of herbs for target diseases often spend a considerable amount of time and effort in choosing candidate herbs and in performing experiments to measure changes of marker genes when treating herbs. A computational approach to recommend herbs for treating diseases might be helpful to promote efficiency in the early stage of such studies. Although several databases related to traditional Chinese medicine have been already developed, there is no specialized Web tool yet recommending herbs to treat diseases based on disease-related genes. Therefore, we developed a novel search engine, HerDing, focused on retrieving candidate herb-related information with user search terms (a list of genes, a disease name, a chemical name or an herb name). HerDing was built by integrating public databases and by applying a text-mining method. The HerDing website is free and open to all users, and there is no login requirement. Database URL: http://combio.gist.ac.kr/herding. © The Author(s) 2016. Published by Oxford University Press.

  16. Holistic approach to wood protection

    Science.gov (United States)

    Roger M. Rowell

    2006-01-01

    When untreated wood is exposed to adverse outdoor conditions, nature has a series of chemistries to degrade it to its original building blocks of carbon dioxide and water. Fungi, termites, heat, moisture, ultraviolet (UV) energy, and chemicals take their toll on the performance properties of wood. We tend to study each of these degradation chemistries as individual...

  17. Chemical constituents isolated from the wood of Senna reticulata Willd. (Leguminoseae); Constituintes quimicos do caule de Senna reticulata Willd. (Leguminoseae)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rogerio Nunes dos; Silva, Maria Goretti de Vasconcelos [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: mgvsilva@ufc.br; Braz Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil). Setor de Quimica de Produtos Naturais

    2008-07-01

    The phytochemical investigation of the wood extracts of Senna reticulata (Leguminoseae) yielded six anthraquinones: chrysophanol, physcion, aloe-emodin, 1,3,8-trihydroxyanthraquinone, 3-methoxy-1,6,8-trihydroxyanthraquinone, emodin and the chrysophanol-10,10' bianthrone. The triterpenes {alpha} and {beta}-amirin, the steroids {beta}-sitosterol and stigmasterol as well as the flavonoid kaempferol were also identified. The structures were established by spectral analysis, including two-dimensional NMR techniques. It is the first report of 1,3,8-trihydroxyanthraquinone and 3-methoxy-1,6,8-trihydroxyanthraquinone in higher plants. (author)

  18. Nanoscale protein arrays of rich morphologies via self-assembly on chemically treated diblock copolymer surfaces

    International Nuclear Information System (INIS)

    Song Sheng; Milchak, Marissa; Zhou Hebing; Lee, Thomas; Hanscom, Mark; Hahm, Jong-in

    2013-01-01

    Well-controlled assembly of proteins on supramolecular templates of block copolymers can be extremely useful for high-throughput biodetection. We report the adsorption and assembly characteristics of a model antibody protein to various polystyrene-block-poly(4-vinylpyridine) templates whose distinctive nanoscale structures are obtained through time-regulated exposure to chloroform vapor. The strong adsorption preference of the protein to the polystyrene segment in the diblock copolymer templates leads to an easily predictable, controllable, rich set of nanoscale protein morphologies through self-assembly. We also demonstrate that the chemical identities of various subareas within individual nanostructures can be readily elucidated by investigating the corresponding protein adsorption behavior on each chemically distinct area of the template. In our approach, a rich set of intricate nanoscale morphologies of protein arrays that cannot be easily attained through other means can be generated straightforwardly via self-assembly of proteins on chemically treated diblock copolymer surfaces, without the use of clean-room-based fabrication tools. Our approach provides much-needed flexibility and versatility for the use of block copolymer-based protein arrays in biodetection. The ease of fabrication in producing well-defined and self-assembled templates can contribute to a high degree of versatility and simplicity in acquiring an intricate nanoscale geometry and spatial distribution of proteins in arrays. These advantages can be extremely beneficial both for fundamental research and biomedical detection, especially in the areas of solid-state-based, high-throughput protein sensing. (paper)

  19. Performance of Chemically Treated Jute Geotextile in Unpaved Roads at Different in situ Conditions

    Science.gov (United States)

    Midha, Vinay Kumar; Joshi, Shubham; Suresh Kumar, S.

    2017-06-01

    Biodegradable jute geotextiles are an effective reinforcing material for unpaved roads, but its serviceability is limited because of faster microbial degradation. Different methods are in use to improve the serviceability of jute geotextiles. In this paper, influence of chemical treatment (transesterification and bitumen coating), road design and rainfall intensity on the time dependent serviceability of jute geotextiles has been studied. Chemically treated jute geotextiles, were laid in unpaved road designs with and without sand layer, for 30, 60 and 90 days' duration, and subjected to simulated rainfall intensities of 50 and 100 mm/h. With increase in time of usage, tensile strength and puncture resistance decrease due to microbial attack, and pore size decreases due to clogging of soil in jute geotextiles. Chemical treatment was observed to have greater influence on the serviceability, followed by the presence of sand layer in road design and the rainfall intensity. Further, overall performance of bitumen coated jute geotextiles was observed to be better than transesterified jute geotextile, due to its hydrophobic nature.

  20. Wood composites

    Science.gov (United States)

    Lars Berglund; Roger M. Rowell

    2005-01-01

    A composite can be defined as two or more elements held together by a matrix. By this definition, what we call “solid wood” is a composite. Solid wood is a three-dimensional composite composed of cellulose, hemicelluloses and lignin (with smaller amounts of inorganics and extractives), held together by a lignin matrix. The advantages of developing wood composites are (...

  1. PYROLIGNEOUS LIQUOR PRODUCED FROM ACACIA MEARNSII DE WILD WOOD UNDER CONTROLLED CONDITIONS AS A RENEWABLE SOURCE OF CHEMICALS

    Directory of Open Access Journals (Sweden)

    Carolina M. Furtado

    2015-09-01

    Full Text Available Acacia mearnsii de Wild (black wattle is one of the most important trees planted in Southern Brazil for tannin extraction and charcoal production. The pyrolysis of the black wattle wood used for obtaining charcoal is performed in brick ovens, with the gas fraction being sent directly into the environment. The present study examines the condensable compounds present in the liquor produced from black wattle wood at different thermal degradation conditions, using gas chromatography coupled with mass spectrometry (GC/MS. Branches of black wattle were thermally degraded at controlled ambient and temperature conditions. Overall, a higher variety of compounds were obtained under atmospheric air pressure than under synthetic air pressure. Most of the tentatively identified compounds, such as carboxylic acids, phenols, aldehydes, and low molecular mass lignin fragments, such as guayacol, syringol, and eugenol, were products of lignin thermoconversion. Substituted aromatic compounds, such as vanillin, ethyl vanillin, and 2-methoxy-4-propeny-phenol, were also identified. At temperatures above 200 ºC, furan, 2-acetylfuran, methyl-2-furoate, and furfural, amongst others, were identified as polysaccharide derivatives from cellulose and hemicellulose depolymerization. This study evidences the need for adequate management of the condensable by-products of charcoal production, both for economic reasons and for controlling their potential environmental impact.

  2. Isolation and characterization of mold fungi and insects infecting sawmill wood, and their inhibition by gamma radiation

    Science.gov (United States)

    Kalawate, Aparna; Mehetre, Sayaji

    2015-12-01

    This article describes the isolation, identification, and characterization of wood-rotting fungi and insects, and their inhibition was studied using gamma radiation. Products manufactured from plantation timber species are deteriorated by wood-rotting fungi such as Hypocrea lixii, Fusarium proliferatum, and Aspergillus flavus, and insects such as powderpost beetles. Proper preservation methods are necessary for ensuring a long service life of wood products. In this study, wood samples were treated with 2.5% copper ethanolamine boron (CEB) (10% w/v) and subsequently irradiated with gamma rays (10 kGy). It was observed that CEB-treated and gamma-irradiated samples controlled fungi and powderpost beetles significantly. As wood is a dead organic material, penetration of chemicals into it is very difficult. Gamma rays easily pass through wooden objects with hidden eggs and dormant spores of insects and fungi, respectively. Gamma irradiation was proved very effective in reducing damage caused by both fungi and insects.

  3. Physical-chemical effects of irrigation with treated wastewater on Dusky Red Latosol soil

    Directory of Open Access Journals (Sweden)

    Vanessa Ribeiro Urbano

    2015-11-01

    Full Text Available The current water crisis underlines the importance of improving water management. The use of effluent from secondary treatment in agriculture can reduce the discharge of effluent into natural bodies and provide nutrients to crops. This study evaluated the physical and chemical properties of a Dusky Red Latosol soil that had been irrigated with treated wastewater. Conducted at the Center of Agricultural Sciences (CCA of Federal University of São Carlos (UFSCar, in Araras/São Paulo/Brazil, 18 undisturbed soil samples were collected and deposited on a constant-head permeameter in order to simulate the irrigation of five growth cycles of lettuce (Lactuca sativa L., organized in five different treatments and one control group. For each treatment 0.58 L, 1.16 L, 1.74 L, 2.32 L, and 2.90 L of treated wastewater and distilled water were applied . The treated wastewater came from a domestic waste treatment plant. After the water filtered through the soil, samples of treated wastewater were collected for analyses of electrical conductivity (EC, sodium adsorption ratio (SAR, turbidity, pH, Na, K, Mg, P and Ca and, in the soil the granulometry, complete fertility, exchangeable sodium percentage (ESP and saturated hydraulic conductivity (Ksat. The Ksat decreased, but did not alter the infiltration of water and nutrients in the soil. The concentration of nutrients in the soil increased, including Na, which raises the need for monitoring soil’s salinity. In conclusion, the application of wastewater did not cause damage to the physical properties of the soil, but resulted in a tendency towards salinization.

  4. Advances and challenges of wood polymer composites

    Science.gov (United States)

    Roger M. Rowell

    2006-01-01

    Wood flour and fiber have been blended with thermoplastic such as polyethylene, polypropylene, polylactic acid and polyvinyl chloride to form wood plastic composites (WPC). WPCs have seen a large growth in the United States in recent years mainly in the residential decking market with the removal of CCA treated wood decking from residential markets. While there are...

  5. SimpleTreat 3.0: a model to predict the distribution and elimination of Chemicals by Sewage Treatment Plants

    NARCIS (Netherlands)

    Struijs J; ECO

    1996-01-01

    The spreadsheet SimpelTreat 3.0 is a model to predict the distribution and elimination of chemicals by sewage treatment. Simpeltreat 3.0 is an improved version of SimpleTreat, applied in the Netherlands in the Uniform System for the Evaluation of Substances (USES version 1.0, 1994). Although in the

  6. PHYSICO-CHEMICAL EVALUATION OF AN EFFLUENT TREATED IN ANAEROBIC BIODIGESTER REGARDING ITS EFFICIENCE AND APPLICATION AS FERTILIZER

    OpenAIRE

    Lopes da Silva, Wilson Tadeu; de Novaes, Antonio Pereira; Kuroki, Vivian; de Almeida Martelli, Lilian Fernanda; Magnoni Junior, Lourenco

    2012-01-01

    PHYSICO-CHEMICAL EVALUATION OF AN EFFLUENT TREATED IN ANAEROBIC BIODIGESTER REGARDING ITS EFFICIENCE AND APPLICATION AS FERTILIZER. The use of biodigester for basic and environmental sanitation has large demand in Brazil. A biodigester was built to treat conjunctly the human and pig feces and urine, regarding to its future application in rural small towns. The results show that the biodigester can reduce 90% of COD and BOD and, up to 99.99% of thermotolerant coliforms. The treated effluent ha...

  7. STOCHASTIC HUMAN EXPOSURE AND DOSE SIMULATION MODEL FOR THE WOOD PRESERVATIVE SCENARIO (SHEDS-WOOD), VERSION 2 MODEL SAS CODE

    Science.gov (United States)

    Concerns have been raised regarding the safety of young children contacting arsenic and chromium residues while playing on and around Chromated Copper Arsenate (CCA) treated wood playground structures and decks. Although CCA registrants voluntarily canceled treated wood for resi...

  8. Análise da madeira do Pinus oocarpa parte II: caracterização estrutural da lignina de madeira moída Chemical analysis of the Pinus oocarpa wood. Part II: characterization of the milled wood lignin

    Directory of Open Access Journals (Sweden)

    Sérgio Antônio Lemos de Morais

    2005-06-01

    Full Text Available Este estudo caracterizou a Lignina de Madeira Moída (LMM proveniente de Pinus oocarpa cultivado na região do Cerrado brasileiro. A LMM foi isolada e analisada por meio das espectrometrias no infravermelho com transformada de Fourier (IVTF, de ressonância magnética nuclear do próton e carbono-13 e por intermédio de métodos químicos de análise por via úmida. A LMM apresentou uma fórmula mínima igual a C9H9,2O2,6(OCH 30,8 e massas molares médias em massa (Mw e numérica (Mn de 3.969 e 1.133 Da, respectivamente. A LMM dessa madeira se enquadra dentro das ligninas típicas de coníferas.This work presents the characterization of the milled wood lignin (MWL of the Pinus oocarpa cultivated in the Brazilian cerrado. FTIR, carbon-13 and proton NMR spectroscopies as well as wet chemical methods were used. The established C9 unit formula for MWL was C9H9,2O2,6(OCH 30,8 and its relative molecular weights (Mw and (Mn were 3969 and 1133 Da, respectively. Pinus oocarpa MWL was typical of softwood lignins.

  9. Wood preservation

    Science.gov (United States)

    Rebecca E. Ibach

    1999-01-01

    When left untreated in many outdoor applications, wood becomes subject to degradation by a variety of natural causes. Although some trees possess naturally occurring resistance to decay (Ch. 3, Decay Resistance), many are in short supply or are not grown in ready proximity to markets. Because most commonly used wood species, such as Southern Pine, ponderosa pine, and...

  10. Selected mechanical properties of modified beech wood

    Directory of Open Access Journals (Sweden)

    Jiří Holan

    2008-01-01

    Full Text Available This thesis deals with an examination of mechanical properties of ammonia treated beach wood with a trademark Lignamon. For determination mechanical properties were used procedures especially based on ČSN. From the results is noticeable increased density of wood by 22% in comparison with untreated beach wood, which makes considerable increase of the most mechanical wood properties. Considering failure strength was raised by 32% and modulus of elasticity was raised at average about 46%.

  11. Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation.

    Science.gov (United States)

    Ercan, Utku K; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D; Joshi, Suresh G

    2016-02-02

    In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation.

  12. Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhi [Materials Research Institute, Athlone Institute of Technology, Athlone (Ireland); Daly, Michael [Mergon International, Castlepollard, Westmeath (Ireland); Clémence, Lopez [Polytech Grenoble, Grenoble (France); Geever, Luke M.; Major, Ian; Higginbotham, Clement L. [Materials Research Institute, Athlone Institute of Technology, Athlone (Ireland); Devine, Declan M., E-mail: ddevine@ait.ie [Materials Research Institute, Athlone Institute of Technology, Athlone (Ireland)

    2016-08-15

    strength than the composites containing untreated and “dry” treated CaCO{sub 3}. This is mainly because the “wet” and “complex” treatment processes have increased adsorption density of stearate, which enhances the interfacial interaction between matrix and filler. These results confirm that the chemical adsorption of the surfactant ions at the solid-liquid interface is higher than at other interface. From this study, it was concluded that the utilization of the “complex” method minimised the negative effects of void coalescence provides key information for the improvement of existing processes.

  13. Yield and Chemical Composition of Cucumber Treated by Nitrogen Levels and Doses of Gamma Rays

    International Nuclear Information System (INIS)

    Fath El-Bab, T.Sh.; Abo El-Khier, Om.M.; Abdallah, A.A.G.

    2013-01-01

    Two field experiments were performed at the Atomic Energy Authority, Experimental farm, Inshas, Egypt during 2010 and 2011 summer growing seasons in sandy soil. The experiments were conducted to study the effect of pre-sowing seeds which treated by gamma irradiation with different doses of 0, 2, 4 and 6 Gy. This was in combination with three rates of nitrogen, fertilizer i.e., 30, 60 and 90 Kg N/fed. The experiments were laid out using drip irrigation system. The obtained results indicated that gamma rays doses showed significant differences on cucumber yield per plot or per Fed., increasing doses of gamma rays gradually increased cucumber yield per plot up to highest dose, i.e., (6 Gy). The highest value of total yield was obtained with the highest nitrogen rate (90 Kg N/fed.). Doses of gamma rays significantly increased total soluble solids (T.S.S.), total Carbohydrates, fats, total protein, NPK and Ca of cucumber fruits. Application of 60 Kg N/fed. recorded the highest values of all above mentioned chemical characters except of total protein with 90 kg N/fed. every all dose treatments. The effect of interaction between doses and fertilizer levels on chemical characters were significant therefore, the highest values was found at 4 Gy and 60 Kg N/fed. treatment for protein, fat, nitrogen and potassium contents while the carbohydrate and calcium contents had the highest value with the treatment of 6 Gy and 60 Kg N/fed

  14. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  15. Uranium adsorption by non-treated and chemically modified cactus fibres in aqueous solutions

    International Nuclear Information System (INIS)

    Melpomeni Prodromou; Ioannis Pashalidis

    2013-01-01

    The adsorption efficiency of Opuntia ficus indica fibres regarding the removal of hexavalent uranium [U(VI)] from aqueous solutions has been investigated prior and after the chemical treatment (e.g. phosphorylation and MnO 2 -coating) of the biomass. The separation/removal efficiency has been studied as a function of pH, uranium concentration, adsorbent mass, ionic strength, temperature and contact time. Evaluation of the experimental data shows that biosorption is strongly pH-depended and that the MnO 2 -coated product presents the highest adsorption capacity followed by the phosphorylated and non-treated material. Experiments with varying ionic strength/salinity don't show any significant effect on the adsorption efficiency, indicating the formation of inner-sphere surface complexes. The adsorption reactions are in all cases exothermic and relatively fast, particularly regarding the adsorption on the MnO 2 -coated product. The results of the present study indicate that adsorption of uranium from waters is very effective by cactus fibres and particularly the modified treated fibres. The increased adsorption efficiency of the cactus fibres is attributed to their primary and secondary fibrillar structure, which result in a relative relative high specific surface available for sorption. (author)

  16. Phenotypic and biochemical profile changes in calendula (Calendula officinalis L.) plants treated with two chemical mutagenesis.

    Science.gov (United States)

    El-Nashar, Y I; Asrar, A A

    2016-05-06

    Chemical mutagenesis is an efficient tool used in mutation-breeding programs to improve the vital characters of the floricultural crops. This study aimed to estimate the effects of different concentrations of two chemical mutagens; sodium azide (SA) and diethyl sulfate (DES). The vegetative growth and flowering characteristics in two generations (M1 and M2) of calendula plants were investigated. Seeds were treated with five different concentrations of SA and DES (at the same rates) of 1000, 2000, 3000, 4000, and 5000 ppm, in addition to a control treatment of 0 ppm. Results showed that lower concentrations of SA mutagen had significant effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements in plants of both generations. Calendula plants tended to flower earlier under low mutagen concentrations (1000 ppm), whereas higher concentrations delayed flowering significantly. Positive results on seed germination, plant height, number of branches, plant fresh weight, and leaf area were observed in the M2-generation at lower concentrations of SA (1000 ppm), as well as at 4000 ppm DES on number of leaves and inflorescences. The highest total soluble protein was detected at the concentrations of 1000 ppm SA and 2000 ppm DES. DES showed higher average of acid phosphatase activity than SA. Results indicated that lower concentrations of SA and DES mutagens had positive effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements. Thus, lower mutagen concentrations could be recommended for better floral and physio-chemical performance.

  17. Modeling strength loss in wood by chemical composition. Part I, An individual component model for southern pine

    Science.gov (United States)

    J. E. Winandy; P. K. Lebow

    2001-01-01

    In this study, we develop models for predicting loss in bending strength of clear, straight-grained pine from changes in chemical composition. Although significant work needs to be done before truly universal predictive models are developed, a quantitative fundamental relationship between changes in chemical composition and strength loss for pine was demonstrated. In...

  18. Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash

    DEFF Research Database (Denmark)

    Cruz Paredes, Carla; Wallander, Håkan; Kjøller, Rasmus

    2017-01-01

    is the current land-use. In forestry, wood ash has been proposed as a liming agent and a fertilizer, but has been questioned due to the risk associated with its Cd content. The aim of this study was to determine the effects of wood ash on the structure and function of decomposer microbial communities in forest......The identification of causal links between microbial community structure and ecosystem functions are required for a mechanistic understanding of ecosystem responses to environmental change. One of the most influential factors affecting plants and microbial communities in soil in managed ecosystems...... soils and to assign them to causal mechanisms. To do this, we assessed the responses to wood ash application of (i) the microbial community size and structure, (ii) microbial community trait-distributions, including bacterial pH relationships and Cd-tolerance, to assign the microbial responses to p...

  19. Effects of Treatment Materials on the Physical Properties of Eucalyptus (Eucalyptus camaldulensis Dehn. Wood

    Directory of Open Access Journals (Sweden)

    Selahattin Bardak

    2011-04-01

    Full Text Available This study was designed to determine effects on retention and shrink levels of Eucalyptus (Eucalyptus camaldulensis Dehn. which treated with some commercial preservative types, borates, polyethylene glycol, and water repellents. In this study, four type impregnation chemicals were chosen: 1. Commercial preservative types, [Ammonium sulphate, Vacsol-WR WR and Immersol-WR (WR], 2. Borates chemicals, [Boric acid, Borax, Boric acid+ Borax] 3. Polyethylene glycol such as Polyethylene glycol (PEG-400 4. Water repellents [Styrene, Methylmetacrylate.]. As a result, retention % and shrink levels of Eucalyptus wood was lower treated with commercial preservative types and borates preservatives compare to other treatment chemicals. However, retention % levels of Eucalyptus wood treated with WR chemicals were highly significant levels. According to their leachability period although PEG 400 showed antishrink effectiveness other treatments didnt showed antishrink efficiency.

  20. Effect of Single and Double Stage Chemically Treated Kenaf Fibers on Mechanical Properties of Polyvinyl Alcohol Film

    Directory of Open Access Journals (Sweden)

    Md Ershad Ali

    2014-12-01

    Full Text Available The physico-mechanical properties of lignocellulosic kenaf fiber reinforced polyvinyl alcohol (PVA biocomposite films were investigated. To improve the properties of the biocomposite, kenaf fibers were chemically treated separately in a single stage (with Cr2(SO4312(H2O and double stages (with CrSO4 and NaHCO3 to improve the adhesion and compatibility between the kenaf fiber and PVA matrix. PVA was reinforced with various compositions of chemically treated kenaf fiber by using a solution casting technique. Microstructural analyses and mechanical tests were subsequently conducted. Scanning electron microscopic analysis indicated that chemical treatment improved the uniformity distribution of kenaf fiber within the PVA matrix. FTIR and XRD analyses confirmed the presence of chromium on the fiber surface. The tensile strength of PVA reinforced with chemical treated kenaf fiber was found to be higher than those reinforced with untreated kenaf. The Young’s modulus, flexural strength, and flexural modulus increased with fiber loading for both untreated and treated kenaf fiber reinforced PVA films. The double stage treated kenaf fiber showed better mechanical properties and lower moisture uptake than the single stage treated kenaf fiber.

  1. Methods for Mitigating the Environmental Risks Associated with Wood Preservatives

    Science.gov (United States)

    Dennis Hayward; Stan T. Lebow; Kenneth M. Brooks

    2011-01-01

    As noted in earlier chapters, the treatment of wood is both art and science. Wood is a variable material; treatment results tend to vary with the preservative and wood species and even within boards of the same species. This means that treated wood often contains a range of preservative retentions. Some pieces will have less than the desired retention, while others may...

  2. Exposure assessment of residents living near a wood treatment plant

    International Nuclear Information System (INIS)

    Dahlgren, James; Warshaw, Raphael; Horsak, Randy D.; Parker, Frank M. III; Takhar, Harpreet

    2003-01-01

    We report the results of environmental sampling and modeling in a neighborhood adjacent to a wood processing plant. This plant used creosote and pentachlorophenol (PCP) to treat wood for over 70 years. Between 1999 and 2001, environmental samples were obtained to quantify the level of environmental contamination from the wood processing plant. Blood from 10 residents was measured for chlorinated dioxins and dibenzofurans. Soil sediment samples from drainage ditches and attic/dust samples from nearby residents' homes were tested for polychlorinated dioxins, furans, and polycyclic aromatic hydrocarbons (PAH). The dioxin congeners analysis of the 10 residents revealed elevated valued for octachlorodibenzo-p-dioxin and heptachlorodibenzo-p-dioxin compatible with PCP as the source. The levels of carcinogenic PAHs were higher than background levels and were similar to soil contamination on wood preserving sites. Wipe sampling in the kitchens of 11 homes revealed that 20 of the 33 samples were positive for octachlorinated dioxins with a mean value of 10.27 ng/m 2 . The soil, ditch samples, and positive wipe samples from the homes indicate a possible ongoing route of exposure to the contaminants in the homes of these residents. Modeled air exposure estimated for the wood processing waste chemicals indicate some air exposure to combustion products. The estimated air levels for benzo(a)pyrene and tetrachlorodibenzodiozin in this neighborhood exceeded the recommended levels for these compounds in some states. The quantitative data presented suggest a significant contamination of a neighborhood by wood processing waste chemicals. These findings suggest the need for more stringent regulations on waste discharges from wood treatment plants

  3. EFFECTS OF SOME BORON COMPOUNDS ON THE LEACHABILITY OF EUCALYPTUS (Eucalyptus camaldulensis Dehn. WOOD

    Directory of Open Access Journals (Sweden)

    Hüseyin Tan

    2003-04-01

    Full Text Available Wood preservation effectiveness of boron compounds against biological damagers and fire is well known. But these compounds are not widely used in preservation of wood because of their leachability from wood by rain water and making wood more hyroscopic than untreated wood in damp environments. Main aim of this study is; therefore, to improve the undesired leachability properties of some boron compounds by various water repellents (WRs. Aqueous solutions with polyethyleneglycole (PEG-400 of boric acid and sodium perborate were chosen as boron compounds. WRs were used as secondary treatment chemicals which were considered as dimensional stabilizer of wood and phsical bariers of boron retained at innerparts of treated wood. Results indicated that WRs were reduced leachability of boron from wood significantly (P<0.05. Boron salts applied with. PEG were more leachable than were of equeous solutions. WRs were not found effective on reducing the leachability of boron solved in PEG. Longer leaching time caused more leachant and reduction the phsical alleviation of WRs on boron leaching.

  4. The role of natural wood constituents on the anaerobic treatability of forest industry wastewaters

    NARCIS (Netherlands)

    Sierra - Alvarez, R.

    1990-01-01

    Anaerobic treatment has been shown to be an efficient and energy conserving method for treating various types of readily biodegradable non-inhibitory forest industry wastewaters. However, the high toxicity of paper mill effluents derived from chemical wood processing operations has hampered

  5. Corrosion of metals in wood : comparing the results of a rapid test method with long-term exposure tests across six wood treatments

    Science.gov (United States)

    Samuel L. Zelinka; Donald S. Stone

    2011-01-01

    This paper compares two methods of measuring the corrosion of steel and galvanized steel in wood: a long-term exposure test in solid wood and a rapid test method where fasteners are electrochemically polarized in extracts of wood treated with six different treatments. For traditional wood preservatives, the electrochemical extract method correlates with solid wood...

  6. Photodegradation of wood and depth profile analysis

    International Nuclear Information System (INIS)

    Kataoka, Y.

    2008-01-01

    Photochemical degradation is a key process of the weathering that occurs when wood is exposed outdoors. It is also a major cause of the discoloration of wood in indoor applications. The effects of sunlight on the chemical composition of wood are superficial in nature, but estimates of the depth at which photodegradation occurs in wood vary greatly from 80 microm to as much as 2540 mic rom. Better understanding of the photodegradation of wood through depth profile analysis is desirable because it would allow the development of more effective photo-protective treatments that target the surface layers of wood most susceptible to photodegradation. This paper briefly describes fundamental aspects of photodegradation of wood and reviews progress made in the field of depth profile study on the photodegradation of wood. (author)

  7. Fungi treated with small chemicals exhibit increased antimicrobial activity against facultative bacterial and yeast pathogens.

    Science.gov (United States)

    Zutz, Christoph; Bandian, Dragana; Neumayer, Bernhard; Speringer, Franz; Gorfer, Markus; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2014-01-01

    For decades, fungi have been the main source for the discovery of novel antimicrobial drugs. Recent sequencing efforts revealed a still high number of so far unknown "cryptic" secondary metabolites. The production of these metabolites is presumably epigenetically silenced under standard laboratory conditions. In this study, we investigated the effect of six small mass chemicals, of which some are known to act as epigenetic modulators, on the production of antimicrobial compounds in 54 spore forming fungi. The antimicrobial effect of fungal samples was tested against clinically facultative pathogens and multiresistant clinical isolates. In total, 30 samples of treated fungi belonging to six different genera reduced significantly growth of different test organisms compared to the untreated fungal sample (growth log reduction 0.3-4.3). For instance, the pellet of Penicillium restrictum grown in the presence of butyrate revealed significant higher antimicrobial activity against Staphylococcus (S.) aureus and multiresistant S. aureus strains and displayed no cytotoxicity against human cells, thus making it an ideal candidate for antimicrobial compound discovery. Our study shows that every presumable fungus, even well described fungi, has the potential to produce novel antimicrobial compounds and that our approach is capable of rapidly filling the pipeline for yet undiscovered antimicrobial substances.

  8. Chemical coagulants and Moringa oleifera seed extract for treating concrete wastewater

    Directory of Open Access Journals (Sweden)

    Heber Martins de Paula

    2016-01-01

    Full Text Available Wastewater from concrete plants has a high pH and a high concentration of suspended solids, necessitating treatment before reuse or discharge into the environment. The objective of this study is to evaluate the efficiency of two chemical coagulants, aluminum sulfate (Al2(SO43 and iron chloride (FeCl3, and a natural coagulant, Moringa oleifera (MO, all in their soluble forms, in the treatment of wastewater from concrete plants. To this end, the efficiencies of the three coagulants, in combinations with different proportions, were tested. The quality parameters of the wastewater obtained after the treatments were compared to the limit values for non-potable water. The use of coagulants in their soluble form potentiates their effect, especially when preparing the MO extract, i.e., greater amounts of the protein responsible for the coagulation is extracted. A mixture with MO and Al2(SO43 in a 20:80 proportion showed the best results, with 97.5% of the turbidity removed at 60 min. of sedimentation, allowing the treated water to be used for washing vehicles and flushing toilets. The FeCl3 treatment produced a high concentration of chlorides, which could cause corrosion problems, and is therefore not recommended for concrete wastewater treatment.

  9. Classification of waste wood treated with chromated copper arsenate and boron/fluorine preservatives; Classificacao de residuos de madeira tratada com preservativos a base de arseniato de cobre cromatado e de boro/fluor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrarini, Suzana Frighetto; Santos, Heldiane Souza dos; Miranda, Luciana Gampert; Azevedo, Carla M.N.; Pires, Marcal J.R., E-mail: suzana.ferrarini@gmail.com [Faculdade de Quimica, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Maia, Sandra Maria [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2012-07-01

    Classification of waste wood treated with chromated copper arsenate (CCA) and boron/fluorine preservatives, according to NBR 10004, was investigated. The leaching test (ABNT NBR 10005) for As and Cr, and solubilization test (ABNT NBR 10006) for F, were applied to out-of-service wooden poles. Concentrations of As and Cr in leachates were determined by ICP-MS and of F by ESI. Values for As were higher than 1 mg L{sup -1} classifying the waste as hazardous material (Class I) whereas values for F (> 1.5 mg L{sup -1}) were non-hazardous but indicated non-inert material (Class IIA). (author)

  10. Wood handbook : wood as an engineering material

    Science.gov (United States)

    Robert J. Ross; Forest Products Laboratory. USDA Forest Service.

    2010-01-01

    Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

  11. Evaluation of Simple Treat 3.0 for two hydrophobic and slowly biodegradable chemicals: Polycyclic musks HHCB and AHTN

    NARCIS (Netherlands)

    Artola-Garicano, E.; Hermens, J.L.M.; Vaes, W.H.J.

    2003-01-01

    In the current study, predictions by Simple Treat 3.0, a fate model for organic chemicals in sewage treatment plants (STPs), are compared with actual measurements in three STPs. Two polycyclic musks, Tonalide® (AHTN) and Galaxolide® (HHCB), were used for model evaluation. Results show that Simple

  12. Chemical characteristics and methane potentials of source-separated and pre-treated organic municipal solid waste

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Svärd, Å; Angelidaki, Irini

    2003-01-01

    A research project has investigated the biogas potential of pre-screened source-separated organic waste. Wastes from five Danish cities have been pre-treated by three methods: screw press; disc screen; and shredder and magnet. This paper outlines the sampling procedure used, the chemical...... composition of the wastes and the estimated methane potentials....

  13. Energy Effectiveness of Direct UV and UV/H2O2 Treatment of Estrogenic Chemicals in Biologically Treated Sewage

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2012-01-01

    and the UV/H2O2-treatment were investigated in biologically treated sewage for most of the estrogenic compounds reported in wastewater. The investigated compounds included parabens, industrial phenols, sunscreen chemicals and steroid estrogens. Treatment experiments were performed in a flow through set...

  14. Environmental Degradation of Fiber-Reinforced Polymer Fasteners in Wood

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2013-01-01

    This paper examines the durability of fiber-reinforced polymer (FRP) nails in treated wood. The FRP nails were exposed to four conditions: (1) accelerated weathering, consisting of exposure to ultraviolet light and condensation; (2) 100% relative humidity (RH); (3) being driven into untreated wood and exposed to 100% RH; and (4) being driven into wood treated with...

  15. Turning wood residues into wood revenues

    International Nuclear Information System (INIS)

    Graham, R.G.; Kravetz, Don

    1996-01-01

    Ensyn is a profitable commercial company which derives its revenues from the conversion of wood residues into liquid biofuel and chemicals. The technology, Rapid Thermal Processing (RTP (TM) )is based on extremely fast ''cracking'' of biomass which results in light liquid yields exceeding 70% by weight, from wood. Whether producing chemicals or liquid biofuel, the RTP plant is configured identically and operated essentially in the same mode. Chemicals production simply allows economical production to occur at a lower plant capacity, as low as 2 tonnes/day, than is feasible for a dedicated fuel plant (typically greater than 100 tonnes/day). Ensyn has developed the commercialisation of RTP TM from bench to industrial scale in 10 years. A variety of crative funding initiatives in the early years allowed for capital to be raised for R and D without the loss of intellectual property (IP). The transition years of technology demonstration, prior to full commercialisation, were funded by a blend of revenues from venture capital and public sources, and by quickly tapping into a niche market for RTP TM . The utilisation of the technology at the niche market scale opened the doors to the larger fuel and commodity markets. Once, again, both IP and control of the company were maintained during these years. Flexibility, creativity and expertise are necessary to understand the significance of various financing options (private investments, commercial banking and bond issues) and to integrate these options with various renewable energy, recycling and tax incentives. Understanding these options with various renewable energy, recycling and tax incentives is necessary. Understanding both the core and peripheral needs of the customer are essential in successfully advancing a commercial wood energy venture. Ensyn's experience in these areas is the focus of the paper. (Author)

  16. A new shock wave assisted wood preservative injection system

    Science.gov (United States)

    Rao, K. S.; Ravikumar, G.; Lai, Ram; Jagadeesh, G.

    Preservative treatment of many tropical hard woods and bamboo pose severe problem. A number of wood preservatives (chemical formulations toxic to wood decay/ destroying organisms like fungi, wood destroying termites, marine borers etc.) and wood impregnating techniques are currently in use for improving bio resistance of timber and bamboo and thereby enhancing service life for different end uses. How ever, some species of tropical hardwoods and many species of bamboo are difficult to treat, posing technical problems. In this paper we report preliminary results of treatment of bamboo with a novel Shockwave assisted injection treatment. Samples (30×2.5×1.00 cm) of an Indian species of bamboo Dendrocalamus strictus prepared from defect free culms of dry bamboo are placed in the driven section of a vertical shock tube filled with the 4Coppepr-Chrome-Arsenic(CCA) preservative solution.The bamboo samples are subjected to repeated shock wave loading (3 shots) with typical over pressures of 30 bar. The results from the study indicate excellent penetration and retention of CCA preservative in bamboo samples. The method itself is much faster compared to the conventional methods like pressure treatment or hot and cold process.

  17. The assessment of treated wastewater quality and the effects of mid-term irrigation on soil physical and chemical properties (case study: Bandargaz-treated wastewater)

    Science.gov (United States)

    Kaboosi, Kami

    2017-09-01

    This study was conducted to investigate the characteristics of inflow and outflow wastewater of the Bandargaz wastewater treatment plant on the basis of the data collection of operation period and the samples taken during the study. Also the effects of mid-term use of the wastewater for irrigation (from 2005 to 2013) on soil physical and chemical characteristics were studied. For this purpose, 4 samples were taken from the inflow and outflow wastewater and 25 quality parameters were measured. Also, the four soil samples from a depth of 0-30 cm of two rice field irrigated with wastewater in the beginning and middle of the planting season and two samples from one adjacent rice field irrigated with fresh water were collected and their chemical and physical characteristics were determined. Average of electrical conductivity, total dissolved solids, sodium adsorption ratio, chemical oxygen demand and 5 days biochemical oxygen demand in treated wastewater were 1.35 dS/m, 707 ppm, 0.93, 80 ppm and 40 ppm, respectively. Results showed that although some restrictions exist about chlorine and bicarbonate, the treated wastewater is suitable for irrigation based on national and international standards and criteria. In comparison with fresh water, the mid-term use of wastewater caused a little increase of soil salinity. However, it did not lead to increase of soil salinity beyond rice salinity threshold. Also, there were no restrictions on soil in the aspect of salinity and sodium hazard on the basis of many irrigated soil classifications. In comparison with fresh water, the mid-term use of wastewater caused the increase of total N, absorbable P and absorbable K in soil due to high concentration of those elements in treated wastewater.

  18. Morphology and Chemical Composition of soot particles emitted by Wood-burning Cook-Stoves: a HRTEM, XPS and Elastic backscattering Studies.

    Science.gov (United States)

    Carabali-Sandoval, G. A., Sr.; Castro, T.; Peralta, O.; De la Cruz, W.; Días, J.; Amelines, O.; Rivera-Hernández, M.; Varela, A.; Muñoz-Muñoz, F.; Policroniades, R.; Murillo, G.; Moreno, E.

    2014-12-01

    The morphology, microstructure and the chemical composition on surface of soot particles were studied by using high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and elastic backscattering spectrometry. In order to obtain freshly soot particles emitted by home-made wood-burning cook stoves, copper grids for Transmission Electron Microscope (TEM) were placed on the last two of an 8-stages MOUDI cascade impactor. The analysis of HRTEM micrographs revealed the nanostructure and the particle size of soot particles. The XPS survey spectra show a large carbon peak around 285 eV and the oxygen signal at 533 eV. Some differences observed in the carbon/oxygen (C/O) ratio of the particles probably depend on the combustion process efficiency of each cook-stove analyzed. The C-1s XPS spectra show an asymmetric broad peak and other with low intensity that corresponds to sp2 and sp3hybridization, which were fitted with a convolution using Gaussian functions. Elastic backscattering technique allows a chemical elemental analysis of samples and confirms the presence of C, O and Si observed by XPS. Additionally, the morphological properties of soot aggregates were analyzed calculating the border-based fractal dimension (Df). Particles exhibit complex shapes with high values of Df. Also, real-time absorption (σabs) and scattering (σsct) coefficients of fine (with aerodynamic diameter < 2.5 µm) soot particles were measured. The trend in σabs and σsct indicate that the cooking process has two important combustion stages which varied in its flaming strength, being vigorous in the first stage and soft in the second one.

  19. Characterization of Wood-Plastic Composites Made with Different Lignocellulosic Materials that Vary in Their Morphology, Chemical Composition and Thermal Stability

    Directory of Open Access Journals (Sweden)

    Ke-Chang Hung

    2017-12-01

    Full Text Available In this study, four kinds of lignocellulosic fibers (LFs, namely, those from Chinese fir (Cunninghamia lanceolata, Taiwan red pine (Pinus taiwanensis, India-charcoal trema (Trema orientalis and makino bamboo (Phyllostachys makinoi, were selected as reinforcements and incorporated into high-density polyethylene (HDPE to manufacture wood-plastic composites (WPCs by a flat platen pressing process. In addition to comparing the differences in the physico-mechanical properties of these composites, their chemical compositions were evaluated and their thermal decomposition kinetics were analyzed to investigate the effects of the lignocellulosic species on the properties of the WPCs. The results showed that the WPC made with Chinese fir displayed a typical M-shaped vertical density profile due to the high aspect ratio of its LFs, while a flat vertical density profile was observed for the WPCs made with other LFs. Thus, the WPC made with Chinese fir exhibited higher flexural properties and lower internal bond strength (IB than other WPCs. In addition, the Taiwan red pine contained the lowest holocellulose content and the highest extractives and α-cellulose contents, which gave the resulting WPC lower water absorption and flexural properties. On the other hand, consistent with the flexural properties, the results of thermal decomposition kinetic analysis showed that the activation energy of the LFs at 10% of the conversion rate increased in the order of Taiwan red pine (146–161 kJ/mol, makino bamboo (158–175 kJ/mol, India-charcoal trema (185–194 kJ/mol and Chinese fir (194–202 kJ/mol. These results indicate that the morphology, chemical composition and thermal stability of the LFs can have a substantial impact on the physico-mechanical properties of the resulting WPCs.

  20. PROTECTIVE TREATMENT OF WOOD IMPREGNATING COMPOSITION OF PETROCHEMICAL WASTE

    Directory of Open Access Journals (Sweden)

    T. V. Maslakova

    2015-01-01

    Full Text Available The paper presents results of experimental and theoretical studies aimed at expanding the applications of the copolymers on the basis of the waste styrene production. One of the areas is used as impregnating compositions of wood materials, selection of optimal conditions modification on samples of the most widely used in the industry of wood, such as birch, aspen and other. Studies were conducted to obtain and use an impregnating compositions based on copolymers synthesized from waste products of styrene and the cubic remainder rectification of ethylbenzene (CRRE for the protective treatment of birch wood. Identified physic-chemical characteristics of physical mixtures of copolymers «CORS», «STAM», CRRE at different ratios. Studied the process of modification birch using the method of experiment planning greco-latin square of the fourth order, and the influence of such factors as the temperature of the impregnating composition, the duration of the impregnation, the temperature and duration of thermal treatment on the performance moisture resistance of wood. Were established optimal conditions modification birch wood treated impregnating compositions on the basis of physical mixtures of copolymer «CORS» with CRRE and copolymer «STAM» with CRRE is the mixing ratio 2:1, the duration and temperature of the impregnation 7 h and 95 0C, time and temperature of heat treatment 7 h and 170 0C, respectively. A sealing composition containing CRRE with copolymer «STAM» 1:2 is more preferable, as in the structure of the copolymer «STAM» contains carboxyl and anhydrite group. Thus was justified use for the modification of natural wood impregnating compositions on the basis of physical mixtures of CRRE with copolymers «CORS» and «STAM», which improve the properties of wood, increase moisture and weather resistance more than twice.

  1. Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations

    International Nuclear Information System (INIS)

    Ogawa, Erika S.; Matos, Adaias O.; Beline, Thamara; Marques, Isabella S.V.; Sukotjo, Cortino; Mathew, Mathew T.; Rangel, Elidiane C.; Cruz, Nilson C.; Mesquita, Marcelo F.; Consani, Rafael X.

    2016-01-01

    Modified surfaces have improved the biological performance and biomechanical fixation of dental implants compared to machined (polished) surfaces. However, there is a lack of knowledge about the surface properties of titanium (Ti) as a function of different surface treatment. This study investigated the role of surface treatments on the electrochemical, structural, mechanical and chemical properties of commercial pure titanium (cp-Ti) under different electrolytes. Cp-Ti discs were divided into 6 groups (n = 5): machined (M—control); etched with HCl + H_2O_2 (Cl), H_2SO_4 + H_2O_2 (S); sandblasted with Al_2O_3 (Sb), Al_2O_3 followed by HCl + H_2O_2 (SbCl), and Al_2O_3 followed by H_2SO_4 + H_2O_2 (SbS). Electrochemical tests were conducted in artificial saliva (pHs 3; 6.5 and 9) and simulated body fluid (SBF—pH 7.4). All surfaces were characterized before and after corrosion tests using atomic force microscopy, scanning electron microscopy, energy dispersive microscopy, X-ray diffraction, surface roughness, Vickers microhardness and surface free energy. The results indicated that Cl group exhibited the highest polarization resistance (R_p) and the lowest capacitance (Q) and corrosion current density (I_c_o_r_r) values. Reduced corrosion stability was noted for the sandblasted groups. Acidic artificial saliva decreased the R_p values of cp-Ti surfaces and produced the highest I_c_o_r_r values. Also, the surface treatment and corrosion process influenced the surface roughness, Vickers microhardness and surface free energy. Based on these results, it can be concluded that acid-etching treatment improved the electrochemical stability of cp-Ti and all treated surfaces behaved negatively in acidic artificial saliva. - Highlights: • Characterization of surface treatment for biomedical implants was investigated. • Sandblasting reduced the corrosion stability of cp-Ti. • Acid etching is a promising dental implants surface treatment.

  2. Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Erika S.; Matos, Adaias O.; Beline, Thamara [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); IBTN/Br—Institute of Biomaterials, Tribocorrosion and Nanomedicine—Brazilian Branch (Brazil); Marques, Isabella S.V. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); Sukotjo, Cortino [Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, IL, USA, 60612 (United States); IBTN—Institute of Biomaterials, Tribocorrosion and Nanomedicine (United States); Mathew, Mathew T. [IBTN—Institute of Biomaterials, Tribocorrosion and Nanomedicine (United States); Department of Biomedical Sciences, University of Illinois, College of Medicine at Rockford, 1601 Parkview Avenue, Rockford, IL, USA, 61107 (United States); Rangel, Elidiane C.; Cruz, Nilson C. [IBTN/Br—Institute of Biomaterials, Tribocorrosion and Nanomedicine—Brazilian Branch (Brazil); Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Av Três de Março, 511, Sorocaba, São Paulo 18087-180 (Brazil); Mesquita, Marcelo F.; Consani, Rafael X. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); and others

    2016-08-01

    Modified surfaces have improved the biological performance and biomechanical fixation of dental implants compared to machined (polished) surfaces. However, there is a lack of knowledge about the surface properties of titanium (Ti) as a function of different surface treatment. This study investigated the role of surface treatments on the electrochemical, structural, mechanical and chemical properties of commercial pure titanium (cp-Ti) under different electrolytes. Cp-Ti discs were divided into 6 groups (n = 5): machined (M—control); etched with HCl + H{sub 2}O{sub 2} (Cl), H{sub 2}SO{sub 4} + H{sub 2}O{sub 2} (S); sandblasted with Al{sub 2}O{sub 3} (Sb), Al{sub 2}O{sub 3} followed by HCl + H{sub 2}O{sub 2} (SbCl), and Al{sub 2}O{sub 3} followed by H{sub 2}SO{sub 4} + H{sub 2}O{sub 2} (SbS). Electrochemical tests were conducted in artificial saliva (pHs 3; 6.5 and 9) and simulated body fluid (SBF—pH 7.4). All surfaces were characterized before and after corrosion tests using atomic force microscopy, scanning electron microscopy, energy dispersive microscopy, X-ray diffraction, surface roughness, Vickers microhardness and surface free energy. The results indicated that Cl group exhibited the highest polarization resistance (R{sub p}) and the lowest capacitance (Q) and corrosion current density (I{sub corr}) values. Reduced corrosion stability was noted for the sandblasted groups. Acidic artificial saliva decreased the R{sub p} values of cp-Ti surfaces and produced the highest I{sub corr} values. Also, the surface treatment and corrosion process influenced the surface roughness, Vickers microhardness and surface free energy. Based on these results, it can be concluded that acid-etching treatment improved the electrochemical stability of cp-Ti and all treated surfaces behaved negatively in acidic artificial saliva. - Highlights: • Characterization of surface treatment for biomedical implants was investigated. • Sandblasting reduced the corrosion stability of cp

  3. Competitive outcomes between wood-decaying fungi are altered in burnt wood.

    Science.gov (United States)

    Edman, Mattias; Eriksson, Anna-Maria

    2016-06-01

    Fire is an important disturbance agent in boreal forests where it creates a wide variety of charred and other types of heat-modified dead wood substrates, yet how these substrates affect fungal community structure and development within wood is poorly understood. We allowed six species of wood-decaying basidiomycetes to compete in pairs in wood-discs that were experimentally burnt before fungal inoculation. The outcomes of interactions in burnt wood differed from those in unburnt control wood for two species:Antrodia sinuosanever lost on burnt wood and won over its competitor in 67% of the trials compared to 40% losses and 20% wins on unburnt wood. In contrast, Ischnoderma benzoinumwon all interactions on unburnt wood compared to 33% on burnt wood. However, the responses differed depending on the identity of the competing species, suggesting an interaction between competitor and substrate type. The observed shift in competitive balance between fungal species probably results from chemical changes in burnt wood, but the underlying mechanism needs further investigation. Nevertheless, the results indicate that forest fires indirectly structure fungal communities by modifying dead wood, and highlight the importance of fire-affected dead wood substrates in boreal forests. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Long-term Effects of Different Irrigation Methods with Treated Wastewater on Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    P. Najafi

    2016-02-01

    Full Text Available Introduction: Reuse of wastewater for agricultural irrigation is increasing due to an increased demand for water resources in different parts of the world. Almost 70% of deviated water from rivers and pumped groundwater is used for agriculture. If wastewater is used for irrigation in agriculture, then the amount of discharged water from natural sources will be decreased and the flow of wastewater to the environment and its ensuing pollution will be prevented. Using wastewater in applications such as irrigation of agricultural lands has caused an increase of some exchangeable ions, salts and suspended solids (organic and mineral in the soil and has significantly affected physical, chemical and biological features. Therefore, paying attention to the soil health is important during use of wastewater when it is the source of irrigation water. In such cases, there will be some worries about pollution of harvested products, contact of farm workers with pathogenes and environmental issues in the farm. In these conditions, attention to irrigation methods along with consideration of environmental protection standards is important. Materials and Methods: In this study, the effects of treated wastewater (TW irrigation were tested on some chemical properties of soil for three years under five different irrigation treatments. The treatments were as follows: surface furrow irrigation (FI, surface drip irrigation (SDI, subsurface drip irrigation in 30 cm depth (SDI30, subsurface drip irrigation in 60 cm depth (SDI60 and bubbler irrigation (BI. At the end of the experiment, soil samples were collected from a depth of 0-30, 30-60 and 60-90 cm in order to measure the electrical conductivity (EC, pH, sodium adsorption ratio (SAR, organic matter (OM and calcium carbonate equivalent (CaCO3. Results and Discussion: According to the results of soil analysis, the soil became more saline than the beginning by applying the treatments. Generally, in two plots of urban and

  5. Inhibition effect of phosphorus-based chemicals on corrosion of carbon steel in secondary-treated municipal wastewater.

    Science.gov (United States)

    Shen, Zhanhui; Ren, Hongqiang; Xu, Ke; Geng, Jinju; Ding, Lili

    2013-01-01

    Secondary-treated municipal wastewater (MWW) could supply a viable alternative water resource for cooling water systems. Inorganic salts in the concentrated cooling water pose a great challenge to corrosion control chemicals. In this study, the inhibition effect of 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP), trimethylene phosphonic acid (ATMP) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) on corrosion of carbon steel in secondary-treated MWW was investigated by the means of potentiodynamic polarization and electrochemical impedance spectroscopy. The inhibition effect increased with increasing concentration of inhibitors. The corrosion rates of carbon steel were 1.5, 0.8, 0.2 and 0.5 mm a(-1) for blank, HEDP, ATMP and PBTCA samples at 50 mg L(-1), respectively. The phosphorus-based chemicals could adsorb onto the surface of the carbon steel electrode, form a coat of protective film and then protect the carbon steel from corrosion in the test solution.

  6. Startup and long-term performance of biotrickling filters packed with polyurethane foam and poplar wood chips treating a mixture of ethylmercaptan, H2S, and NH3.

    Science.gov (United States)

    Hernández, J; Lafuente, J; Prado, O J; Gabriel, D

    2013-04-01

    Treatment of a mixture of NH3, H2S, and ethylmercaptan (EM) was investigated for more than 15 months in two biotrickling filters packed with poplar wood chips and polyurethane foam. Inlet loads ranging from 5 to 10 g N-NH3 m-3 hr-1, from 5 to 16 g S-H2S m-3 hr-1, and from 0 to 5 g EM m-3 hr-1 were applied. During startup, the biotrickling filter packed with polyurethane foam was re-inoculated due to reduced biomass retention as well as a stronger effect of nitrogen compounds inhibition compared with the biotrickling filter packed with poplar wood. Accurate pH control between 7 and 7.5 favored pollutants abatement. In the long run, complete NH3 removal in the gas phase was achieved in both reactors, while H2S removal efficiencies exceeded 90%. EM abatement was significantly different in both reactors. A systematically lower elimination capacity was found in the polyurethane foam bioreactor. N fractions in the liquid phase proved that high nitrification rates were reached throughout steady-state operation in both bioreactors. CO2 production showed the extent of the organic packing material degradation, which allowed estimating its service lifetime in around 2 years. In the long run, the bioreactor packed with the organic packing material had a lower stability. However, an economic analysis indicated that poplar wood chips are a competitive alternative to inorganic packing materials in biotrickling filters. We provide new insights in the use of organic packing materials in biotrickling filters for the treatment of H2S, NH3, and mercaptans and compare them with polyurethane foam, a packing commonly used in biotrickling filters. We found interesting features related with the startup of the reactors and parameterized both the performance under steady-state conditions and the influence of the gas contact time. We provide relevant conclusions in the profitability of organic packing materials under a biotrickling filter configuration, which is infrequent but proven reliable

  7. Deflouridation of water using physico-chemically treated sand as a ...

    African Journals Online (AJOL)

    Prof. Dr. Mahamadi

    chemically modified sand has potential application as an adsorbent for fluoride ions removal. ... activated carbon, minerals, fish bone charcoal, coconut ... (2003), established that red soils ..... solutions by granular ferric hydroxide (GFH). Water ...

  8. MILD ALKALINE TREATMENT ACTIVATES SPRUCE WOOD FOR ENZYMATIC PROCESSING: A POSSIBLE STAGE IN BIO-REFINERY PROCESSES

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2011-05-01

    Full Text Available The structure of wood is so compact that enzymes are too large to penetrate into the structure and thereby attack the wood components for modifications that can be valuable for various purposes. Here we present a pretreatment method based on traditional kraft pulping, which opens the wood structure, so that enzymes are able to attack the wood components. To study this kind of chemical pretreatment, spruce wood samples were treated at similar conditions used in kraft cooking at varying intensities (H-factors. To verify if the structure was “opened” for enzymes, the pretreated wood samples were incubated with a cellulolytic culture filtrate, and the released reducing sugar concentration after the enzymatic hydrolysis was measured. The results indicated that un-pretreated wood fibers could not be attacked by the enzymes, but already relatively mild pretreatment was sufficient for letting the culture filtrate attack wood polysaccharides, and more intensive treatments opened the structure further. The mildest treatments did not cause any significant yield losses of lignin (Klason lignin. Some galactogluco-mannans were however lost during the pretreatments. The mechanisms behind the effect and the technical significance of the method are discussed.

  9. Determination of the distribution of copper and chromium in partly remediated CCA-treated pine wood using SEM and EDX analyses

    DEFF Research Database (Denmark)

    Christensen, Iben Vernegren; Ottosen, Lisbeth M.; Melcher, Eckhard

    2005-01-01

    . After soaking, a small amount of Cu and Cr was still present in the cell walls but larger particles were now found on wall surfaces. Most effective removal of Cu was obtained after soaking in phosphoric and oxalic acid followed by EDR; here numerous rice grain-shaped particles were observed containing...... large amounts of Cu and no Cr. Cr was most effectively removed after soaking in oxalic acid and subsequent EDR treatment or dual soaking in phosphoric acid and oxalic acid with and without subsequent EDR.......Soaking in different acids and electrodialytic remediation (EDR) were applied for removing copper and chromium from freshly Chromated Copper Arsenate (CCA) impregnated EN 113 pine wood samples. After remedial treatments, AAS analyses revealed that the concentration of copper (Cu) and chromium (Cr...

  10. Significance of wood extractives for wood bonding.

    Science.gov (United States)

    Roffael, Edmone

    2016-02-01

    Wood contains primary extractives, which are present in all woods, and secondary extractives, which are confined in certain wood species. Extractives in wood play a major role in wood-bonding processes, as they can contribute to or determine the bonding relevant properties of wood such as acidity and wettability. Therefore, extractives play an immanent role in bonding of wood chips and wood fibres with common synthetic adhesives such as urea-formaldehyde-resins (UF-resins) and phenol-formaldehyde-resins (PF-resins). Extractives of high acidity accelerate the curing of acid curing UF-resins and decelerate bonding with alkaline hardening PF-resins. Water-soluble extractives like free sugars are detrimental for bonding of wood with cement. Polyphenolic extractives (tannins) can be used as a binder in the wood-based industry. Additionally, extractives in wood can react with formaldehyde and reduce the formaldehyde emission of wood-based panels. Moreover, some wood extractives are volatile organic compounds (VOC) and insofar also relevant to the emission of VOC from wood and wood-based panels.

  11. Chemical Vapor Identification by Plasma Treated Thick Film Tin Oxide Gas Sensor Array and Pattern Recognition

    Directory of Open Access Journals (Sweden)

    J. K. Srivastava

    2011-02-01

    Full Text Available Present study deals the class recognition potential of a four element plasma treated thick film tin oxide gas sensor array exposed with volatile organic compounds (VOCs. Methanol, Ethanol and Acetone are selected as target VOCs and exposed on sensor array at different concentration in range from 100-1000 ppm. Sensor array consist of four tin oxide sensors doped with 1-4 % PbO concentrations were fabricated by thick film technology and then treated with oxygen plasma for 5-10 minute durations. Sensor signal is analyzed by principal component analysis (PCA for visual classification of VOCs. Further output of PCA is used as input for classification of VOCs by four pattern classification techniques as: linear discriminant analysis (LDA, k-nearest neighbor (KNN, back propagation neural network (BPNN and support vector machine (SVM. All the four classifier results 100 % correct classification rate of VOCs by response analysis of sensor array treated with plasma for 5 minute.

  12. Environmental education on wood preservatives and preservative ...

    African Journals Online (AJOL)

    The development and use of wood preservatives in Nigeria should address not only the cost and demand functions but also the potential hazards in environmental equations. Forest products specialists are often asked about the perceived risks and environmental costs of treated wood products. Evidently, the civil society is ...

  13. Comparison of physico-chemical properties of various lignites treated by mechanical thermal expression

    Energy Technology Data Exchange (ETDEWEB)

    Janine Hulston; Alan L. Chaffee; Christian Bergins; Karl Strauss [Monash University, Vic. (Australia). School of Chemistry and CRC for Clean Power from Lignite

    2005-12-01

    This study investigates how the Mechanical Thermal Expression (MTE) process affects the physico-chemical properties of low rank lignites sourced from Australia, Greece, and Germany. The MTE process was effective in reducing the moisture content of all three coals and resulted in significant Na reductions in both the Australian and German coals. However, the organic composition of the coals investigated remained relatively unaffected. Upon oven drying, all wet MTE products underwent significant shrinkage, the degree of which was dependent upon the temperature and pressure used during the MTE process. Upon rehydration, the oven-dried MTE products underwent significant swelling, which is most likely related to the chemical composition of the coals.

  14. Chemical variations observed in irradiated, treated with IPC and control potato tubers

    International Nuclear Information System (INIS)

    Mazon Matanzo, M. P.; Fernandez Gonzalez, J.

    1976-01-01

    The content in soluble sugars, ascorbic acid and phenolic acids of potato tubers preserved by irradiation and IPC, during storage period of five months are studied. In the irradiated tubers, soluble sugars increased immediately after the irradiation, in relation to the control tubers reaching inferior values to those reached by the control tubers, at the end of the storage period. The content in ascorbic acid is generally kept higher in the irradiated and IPC treated tubers than in the control tubers and the content in phenolic acids increased in the irradiated and IPC treated tubers by immediate effect of this treatment. (Author) 39 refs

  15. Chemical variations observed in irradiated, treated with IPC and control potato tubers

    International Nuclear Information System (INIS)

    Mazon Matanzo, M.P.; Fernandez Gonzalez, J.

    1976-01-01

    The content in soluble sugars, ascorbic acid and phenolic acids of potato tubers preserved by irradiation and IPC, during a storage period of five months are studied. In the irradiated tubers, soluble sugars increased immediately after the irradiation, in relation to the control tubers reaching inferior values to those reached by the control tubers, at the end of the storage period. The content in ascorbic acid is generally kept higher in the irradiated and IPC treated tubers than in the control tubers and the content in phenolic acids increased in the irradiated and IPC treated tubers by immediate effect of this treatment.(author) [es

  16. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    Javier Ribera

    Full Text Available The production of new generation of wood preservatives (without addition of a co-biocide in combination with an exchange of wood poles on identical sites with high fungal inoculum, has resulted in an increase of premature failures of wood utility poles in the last decades. Wood destroying basidiomycetes inhabiting sites where poles have been installed, have developed resistance against wood preservatives. The objective of the in vitro studies was to identify a Trichoderma spp. with a highly antagonistic potential against wood destroying basidiomycetes that is capable of colonizing Cu-rich environments. For this purpose, the activity of five Trichoderma spp. on Cu-rich medium was evaluated according to its growth and sporulation rates. The influence of the selected Trichoderma spp. on wood colonization and degradation by five wood destroying basidiomycetes was quantitatively analyzed by means of dry weight loss of wood specimens. Furthermore, the preventative effect of the selected Trichoderma spp. in combination with four Cu-based preservatives was also examined by mass loss and histological changes in the wood specimens. Trichoderma harzianum (T-720 was considered the biocontrol agent with higher antagonistic potential to colonize Cu-rich environments (up to 0.1% CuSO4 amended medium. T. harzianum demonstrated significant preventative effect on wood specimens against four wood destroying basidiomycetes. The combined effect of T. harzianum and Cu-based wood preservatives demonstrated that after 9 months incubation with two wood destroying basidiomycetes, wood specimens treated with 3.8 kg m-3 copper-chromium had weight losses between 55-65%, whereas containers previously treated with T. harzianum had significantly lower weight losses (0-25%. Histological studies on one of the wood destroying basidiomycetes revealed typical decomposition of wood cells by brown-rot fungi in Cu-impregnated samples, that were notably absent in wood specimens

  17. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    Science.gov (United States)

    Ribera, Javier; Fink, Siegfried; Bas, Maria Del Carmen; Schwarze, Francis W M R

    2017-01-01

    The production of new generation of wood preservatives (without addition of a co-biocide) in combination with an exchange of wood poles on identical sites with high fungal inoculum, has resulted in an increase of premature failures of wood utility poles in the last decades. Wood destroying basidiomycetes inhabiting sites where poles have been installed, have developed resistance against wood preservatives. The objective of the in vitro studies was to identify a Trichoderma spp. with a highly antagonistic potential against wood destroying basidiomycetes that is capable of colonizing Cu-rich environments. For this purpose, the activity of five Trichoderma spp. on Cu-rich medium was evaluated according to its growth and sporulation rates. The influence of the selected Trichoderma spp. on wood colonization and degradation by five wood destroying basidiomycetes was quantitatively analyzed by means of dry weight loss of wood specimens. Furthermore, the preventative effect of the selected Trichoderma spp. in combination with four Cu-based preservatives was also examined by mass loss and histological changes in the wood specimens. Trichoderma harzianum (T-720) was considered the biocontrol agent with higher antagonistic potential to colonize Cu-rich environments (up to 0.1% CuSO4 amended medium). T. harzianum demonstrated significant preventative effect on wood specimens against four wood destroying basidiomycetes. The combined effect of T. harzianum and Cu-based wood preservatives demonstrated that after 9 months incubation with two wood destroying basidiomycetes, wood specimens treated with 3.8 kg m-3 copper-chromium had weight losses between 55-65%, whereas containers previously treated with T. harzianum had significantly lower weight losses (0-25%). Histological studies on one of the wood destroying basidiomycetes revealed typical decomposition of wood cells by brown-rot fungi in Cu-impregnated samples, that were notably absent in wood specimens previously exposed to T

  18. Binding of Vapour-Phase Mercury (Hg0) on Chemically Treated Bauxite Residues (Red Mud)

    Science.gov (United States)

    In this study, Hg capture using red mud, seawater-neutralized red mud, and acid-treated red mud is evaluated and compared to other, more conventional sorbent materials. Red mud (also known as bauxite residue) is a by-product of extracting alumina from ground bauxite ore by treati...

  19. Understanding extractive bleed : wood extractives: distribution, properties, and classes

    Science.gov (United States)

    Edward Burke; Norm Slavik; Tony Bonura; Dennis Connelly; Tom Faris; Arnie Nebelsick; Brent Stuart; Sam Williams; Alex C. Wiedenhoeft

    2010-01-01

    Color, odor, and natural durability of heartwood are characteristics imparted by a class of chemicals in wood known collectively extractives. Wood is converted by the tree from sapwood to heartwood by the deposition of extractives, typically many years after the growth ring undergoing this change was formed by the tree. Extractives are thus not a part of the wood...

  20. Innovations in Wood Protection in the age of Nanotechnology

    Science.gov (United States)

    Carol A. Clausen

    2014-01-01

    Advances in wood protection based on nanotechnology are being developed to improve resistance of wood products to biodeterioration, reduce environmental impacts from chemical leaching and resist UV degradation of in-service wood. A number of different approaches have been explored. First, the nanometals zinc oxide and copper oxide were evaluated as preservative...

  1. 75 FR 44251 - Wood Oils and Gums, and Streptomyces

    Science.gov (United States)

    2010-07-28

    ... ENVIRONMENTAL PROTECTION AGENCY EPA-HQ-OPP-2010-0441; FRL-8829-8 Wood Oils and Gums, and... integrated use in tank mixes with chemical fungicides. The Wood Oils and Gums Registration Review Case no longer contains any other wood oils or gums with active ingredients with registered products except for...

  2. Harvested wood products : basis for future methodological development

    Science.gov (United States)

    Kenneth E. Skog

    2003-01-01

    The IPCC Guidelines (IPCC 1997) provide an outline of how harvested wood could be treated in national greenhouse gas (GHG) inventories. This section shows the relation of that outline to the approaches and estimation methods to be presented in this Appendix. Wood and paper products are referred to as harvested wood products (HWP). It does not include carbon in...

  3. Chapter 23: Corrosion of Metals in Wood Products

    Science.gov (United States)

    Samuel L. Zelinka

    2014-01-01

    The corrosion of metals in contact with wood has been studied for over 80 years, and in most situations wood is not corrosive [1]. Recently, however, the durability of fasteners in preservative--treated wood has become a concern. Changes in legislation and certification in the United States, the European Union, and Australasia have restricted the use of chromated...

  4. Development of a purification system at Dhruva to treat oil contaminated and chemically impure heavy water

    International Nuclear Information System (INIS)

    Suttraway, S.K.; Mishra, V.; Bitla, S.V.; Ghosh, S.K.

    2006-01-01

    Dhruva, a 100 MW (thermal) Research reactor uses Heavy Water as moderator, reflector and coolant. Normally during plant operation, the Heavy water from the system gets removed during operational and maintenance activities and this collected heavy water gets degraded and contaminated in the process. The degraded heavy water meeting the chemical specification requirement of the up gradation plant is sent for up gradation. Part of the Heavy water collected is contaminated with various organic and inorganic impurities and therefore cannot be sent for IP up gradation as it does not meet the chemical specification of the up gradation plant. This contaminated Heavy water was being stored in SS drums. Over the years of Reactor operation reasonable amount of contaminated Heavy water got collected in the plant. This Heavy water collected from leakages, during routine maintenance, operational activities and fuelling operation had tritium activity and variety of contamination including oil, chlorides, turbidity due to which the specific conductivity was very high. It was decided to purify this Heavy water in house to bring it up to up gradation plant chemical specification requirement. There were number of challenges in formulating a scheme to purify this Heavy water. The scheme needed to be simple and compact in design which could be set up in the plant itself. It should not pose radiological hazards due to radioactive Heavy water during its purification and handling. The contaminated Heavy water collected in drums had varying chemistry and IP. The purification plant should be able to do batch processing so that the different IP and chemical quality of Heavy water stored in different drums are not mixed during purification. It should be capable of removing the oil, chlorides, turbidity and decrease the conductivity to acceptable limits of the Up gradation plant. A purification plant was developed and commissioned after detail laboratory studies and trials. This paper explains

  5. Develop of a model to minimize and to treat waste coming from the chemical laboratories

    International Nuclear Information System (INIS)

    Chacon Hernandez, M.

    2000-01-01

    They were investigated and proposed alternative of minimization and treatment of waste organic type coming from chemical laboratories, considering as alternative the disposition for the drainage, the chemical treatment of the waste, the disposition in sanitary fillers, the creation of a cellar to recycle material, the incineration, the distillation and the possibility to establish an agreement with the company Cements INCSA to discard the materials in the oven to cements of this enterprise. the methodology had as first stage the summary of information about the production of residuals for Investigation Center or Academic Unit. For this they were considered the laboratories of investigation of the CICA, CELEQ, CIPRONA, LAYAFA, and the laboratories of teaching of the sections of Organic Chemistry, Inorganic Chemistry, Physicochemical, Pharmacognosy, Drugs Analysis, Physicopharmacy, Histology and Physiology. Additionally, you considers the office of purveyor of the Microbiology School. Subsequently one carries out an analysis of costs to determine which waste constituted most of the waste generated by the University, as for cost and volume. Then, they were carried out classifications of the materials according to chemical approaches, classification of the NFPA and for data of combustion heats. Once carried out this classification and established the current situation of the laboratories considered as for handling and treatment of waste, they proceeded to evaluate and select treatment options and disposition of waste considering advantages and disadvantages as for implementation possibility and cost stops this way a minimization model and treatment that it can be implemented in the University to settle down [es

  6. Effect of irrigation with treated wastewater on soil chemical properties and infiltration rate.

    Science.gov (United States)

    Bedbabis, Saida; Ben Rouina, Béchir; Boukhris, Makki; Ferrara, Giuseppe

    2014-01-15

    In Tunisia, water scarcity is one of the major constraints for agricultural activities. The reuse of treated wastewater (TWW) in agriculture can be a sustainable solution to face water scarcity. The research was conducted for a period of four years in an olive orchard planted on a sandy soil and subjected to irrigation treatments: a) rain-fed conditions (RF), as control b) well water (WW) and c) treated wastewater (TWW). In WW and TWW treatments, an annual amount of 5000 m(3) ha(-1) of water was supplied to the orchard. Soil samples were collected at the beginning of the study and after four years for each treatment. The main soil properties such as electrical conductivity (EC), pH, soluble cations, chloride (Cl(-)), sodium adsorption ratio (SAR), organic matter (OM) as well as the infiltration rate were investigated. After four years, either a significant decrease of pH and infiltration rate or a significant increase of OM, SAR and EC were observed in the soil subjected to treated wastewater treatment. Copyright © 2013. Published by Elsevier Ltd.

  7. Chemical Composition and Rheological Properties of Set Yoghurt Prepared from Skimmed Milk Treated with Horseradish Peroxidase

    Directory of Open Access Journals (Sweden)

    Yan Wen

    2012-01-01

    Full Text Available The aim of this work is to determine the impact of an enzymatic treatment on the fermentation and rheological properties of set yoghurt prepared from skimmed milk. Skimmed bovine milk was treated with horseradish peroxidase added at the level of 645 U per g of proteins in the presence (addition level of 7.8 mmol per L of milk or absence of ferulic acid as a cross-linking agent, and used to prepare set yoghurt with commercial direct vat set starter culture. The evaluation showed that the treatment of skimmed milk with horseradish peroxidase enhanced its apparent viscosity, and storage and loss moduli. The prepared yoghurt contained protein, fat and total solids at 3.49–3.59, 0.46–0.52 and 15.23–15.43 %, respectively, had titratable acidity of 0.83–0.88 %, and no significant difference in the composition was found among the yoghurt samples (p>0.05. Compared to the control yoghurt, the yoghurt prepared from the milk treated with horseradish peroxidase had a higher apparent viscosity, storage and loss moduli and flow behavior indices, especially when ferulic acid was added. Yoghurt samples from the skimmed milk treated either with horseradish peroxidase only or with the additional ferulic acid treatment had better structural reversibility, because their hysteresis loop area during rheological analysis was larger (p<0.05.

  8. Changes of wood cell walls in response to hygro-mechanical steam treatment.

    Science.gov (United States)

    Guo, Juan; Song, Kunlin; Salmén, Lennart; Yin, Yafang

    2015-01-22

    The effects of compression combined with steam treatment (CS-treatment), i.e. a hygro-mechanical steam treatment on Spruce wood were studied on a cell-structure level to understand the chemical and physical changes of the secondary cell wall occurring under such conditions. Specially, imaging FT-IR microscopy, nanoindentation and dynamic vapour absorption were used to track changes in the chemical structure, in micromechanical and hygroscopic properties. It was shown that CS-treatment resulted in different changes in morphological, chemical and physical properties of the cell wall, in comparison with those under pure steam treatment. After CS-treatment, the cellular structure displayed significant deformations, and the biopolymer components, e.g. hemicellulose and lignin, were degraded, resulting in decreased hygroscopicity and increased mechanical properties of the wood compared to both untreated and steam treated wood. Moreover, CS-treatment resulted in a higher degree of degradation especially in earlywood compared to a more uniform behaviour of wood treated only by steam. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Chemical composition of Clarias Lazera (cuv and val., 1840) as an indicator of fish raising in treated sewage effluents

    International Nuclear Information System (INIS)

    Awad Elkareem, Manal Mohamed El Hassan

    1998-07-01

    The present study is one of the pioneer studies dealing with the possibility of growing fish in treated sewage water in Sudan. Khartoum sewage treatment plant - Green Belt area - was the main study site for this work, where fish was some how introduced to the canal which receives water from the last stage of treatment. Fish have reached large sizes and numbers, they are highly consumed by people of the area and widely marketed in the nearby localities. So this study aimed to discuss the potential health associated with the utilization of such fish for food, throwing light, on the advantages and disadvantages of fish culture in treated sewage effluent. The research was directed towards the study of the chemical composition of Clarias lazera (Cuv. and Val., 1840) (Garmout fish) being the only fish species in the area during the course of this study . Fish samples were collected from the Green Belt and the White Nile at the vicinity of Jebel Aulia reservoir which was taken as a control area for (April 1995 - April 1996). Basic biology was studies for each specimen, the concentrations of some of the hazardous and potentially hazardous heavy metals were investigated in the flesh of 30, randomly selected fish samples from both study sites, beside the major chemical body constituents : fats, proteins, moisture and ash in all specimens, to determine the quality of the flesh> Data obtained was analyzed, trying to correlate fish chemical composition to the surrounding environment. Treated sewage-fish showed higher weights and lengths than natural water-fish from the White Nile. Most of the hazardous metals investigated in the muscle tissues of treated sewage-fish were found to be of insignificant variation from that of natural water-fish (Mercury and Lead). They were found to be at lower levels than what is recommended by the International Agencies human consumption. The essential micronutrients for fish like Copper, Ferric (Iron) and Zinc showed significantly higher levels

  10. STRUCTURAL ANALYSIS OF WOOD-LEATHER PANELS BY RAMAN SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Tilman Grünewald,

    2012-02-01

    Full Text Available Besides other ligno-cellulosic materials such as straw, rice husks, or bagasse, wet blue particles from leather production are a promising new raw material stock for wood-based panels, as they offer not only a high availability, but increase the properties of the panel with regard to fire resistance or mechanical characteristics. A panel with a mixture of 42.5% wood fibers, 42.5% wet blue leather particles, and 15% lignin adhesive was produced, and an inhomogeneous sample was prepared. An area of 9 x 10 mm was rasterized and scanned by means of Raman Spectroscopy. Furthermore, the reference spectra of the constituents, i.e. wood fiber, wet blue leather particle, and lignin powder were recorded. The obtained data were treated and analyzed using chemometric methods (principal components analysis PCA and cluster analysis. An important finding was that the reference data were not directly represented in the panels’ spectra, and the correlation matrix of the PCA was not applicable to the panel data. This indicated that chemical changes might take place during the pressing. After processing the panel Raman spectra with the help of PCA and cluster analysis, three distinctive clusters were obtained, discriminating wood, leather, and mixed regions. With the assigned spectral information, it was possible to create a spectral image of the surface.

  11. Choosing Wood Burning Appliances

    Science.gov (United States)

    Information to assist consumers in choosing a wood burning appliance, including types of appliances, the differences between certified and non-certified appliances, and alternative wood heating options.

  12. Radioactivity of wood ash

    International Nuclear Information System (INIS)

    Rantavaara, A.; Moring, M.

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg -1 , in decreasing order: 137 Cs, 40 K, 90 Sr, 210 Pb, 226 Ra, 232 Th, 134 Cs, 235 U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and 210 Pb was hardly detectable. The NH 4 Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  13. Characteristics of neutron-irradiated CR-39 foils treated by sequential chemical and electrochemical etching

    International Nuclear Information System (INIS)

    Somogyi, G.; Dajko, G.; Turek, K.; Spurny, F.

    1982-01-01

    The density of background spots revealed by chemical (CE) and electrochemical (ECE) etching and by their sequential application (CE + ECE) has been measured in several sorts of CR-39 material. The trends in the variation of sensitivity to Am-Be neutrons have been determined in CR-39 sheets covered by thick proton-radiator, when changing the field strength, frequency, etchant concentration, pre-etch duration and the fluence of neutrons. The results are analyzed in order to find out an optimum set of experimental parameters which may be proposed to attain high registration sensitivity to neutrons. (author)

  14. Quality of cowpea seeds treated with chemicals and stored in controlled and uncontrolled temperature and humidity conditions

    Directory of Open Access Journals (Sweden)

    Lucicléia Mendes de Oliveira

    2015-06-01

    Full Text Available The cowpea is a Fabaceae originated in Africa cultivated in the northern and northeastern of Brazil, where stands out as the main source of protein for the population. For the establishment of culture, seeds are treated to control and prevent pest attacks and diseases, can also attach nutrients to the seeds which will be available for plant development. The objective of the research was to evaluate the performance of cowpea seeds treated with chemical products and stored in controlled and uncontrolled temperature and humidity conditions. The following seeds treatments were applied: control (no treatment; micronutrient Comol 118, insecticide thiamethoxam, fipronil and pyraclostrobin+thiophanate-methyl and imidacloprid+thiodicarb were then stored in a cold environment and natural. The assessment of physiological seed quality was made initially and every 45 days through the germination and vigor. Among all products used, the imidacloprid + thiodicarb and fipronil + pyraclostrobin + thiophanate methyl provides stimulating effect on seed performance; seeds treated with thiamethoxam were less affected by storage than the untreated seeds; seeds treated with micronutrients exhibits similar behavior to untreated seeds and storage in a controlled environment better preserves the seed physiological quality.

  15. Wood hydrolyzate treatments for improved fermentation of wood sugars to 2,3-butanediol

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, F.R.; McCaskey, T.A.

    1989-01-01

    Acid-hydrolyzed hardwood contains compounds inhibitory to micro-organisms that convert wood sugars to fermentation products such as fuels and chemicals. Several methods of treating acid-hydrolyzed hardwood (hydrolyzate) to reduce the levels of potential microbial inhibitors (acetate, furfural, sulfate, and phenolics) were evaluated. The methods evaluated were precipitation with calcium hydroxide, extraction with organic solvents, treatment with ion-exchange resins, adsorption resins, and activated charcoal. Treatment of the hydrolyzate with an anion exchange resin (Amberlite IRA-400) was the most effective method for removing potential inhibitors. Non-treatment hydrolyzate adjusted to pH 6 inhibited growth of a 2,3-butanediol-producing culture of Klebsiella pneumoniae. However, hydrolyzate treated with Amberlite IRA-400 was not inhibitory and resulted in yields of 2,3-butanediol that were greater than 90% of theoretical. (author).

  16. Treating respiratory viral diseases with chemically modified, second generation intranasal siRNAs.

    Science.gov (United States)

    Barik, Sailen

    2009-01-01

    Chemically synthesized short interfering RNA (siRNA) of pre-determined sequence has ushered a new era in the application of RNA interference (RNAi) against viral genes. We have paid particular attention to respiratory viruses that wreak heavy morbidity and mortality worldwide. The clinically significant ones include respiratory syncytial virus (RSV), parainfluenza virus (PIV) and influenza virus. As the infection by these viruses is clinically restricted to the respiratory tissues, mainly the lungs, the logical route for the application of the siRNA was also the same, i.e., via the nasal route. Following the initial success of intranasal siRNA against RSV, second-generation siRNAs were made against the viral polymerase large subunit (L) that were chemically modified and screened for improved stability, activity and pharmacokinetics. 2'-O-methyl (2'-O-Me) and 2'-deoxy-2'-fluoro (2'-F) substitutions in the ribose ring were incorporated in different positions of the sense and antisense strands and the resultant siRNAs were tested with various transfection reagents intranasally against RSV. Based on these results, we propose the following consensus for designing intranasal antiviral siRNAs: (i) modified 19-27 nt long double-stranded siRNAs are functional in the lung, (ii) excessive 2'-OMe and 2'-F modifications in either or both strands of these siRNAs reduce efficacy, and (iii) limited modifications in the sense strand are beneficial, although their precise efficacy may be position-dependent.

  17. Electron treatment of wood pulp for the viscose process

    Science.gov (United States)

    Stepanik, T. M.; Ewing, D. E.; Whitehouse, R.

    2000-03-01

    Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology.

  18. Thermal Properties of Wood-Plastic Composites Prepared from Hemicellulose-extracted Wood Flour

    Directory of Open Access Journals (Sweden)

    A.A. Enayati

    2013-01-01

    Full Text Available Hemicellulose of Southern Yellow Pine wood spices was extracted by pressurized hot water at three different temperatures: 140°C, 155°C and 170°C. Compounding with PP (polypropylene was performed by extrusion after preparing wood flour and sieving to determine its mesh size. The ratio of wood to polymer was 50:50 based on oven-dry weight of wood flour. All extraction treatments and control samples were compounded under two sets of conditions, without and with 2% MAPP as coupling agent. Injection molding was used to make tensile test samples (dogbone from the pellets made by extrusion. Thermal properties of wood-plastic composites were studied by TGA and DSC while the thermal stability of pretreated wood flours, PP and MAPP were studied by TGA as well. The greater weight loss of wood materials was an indication that higher treatment temperature increases the extractability of hemicellulose. The removal of hemicellulose by extraction improves thermal stability of wood flour, especially for extraction at 170°C. Wood-plastic composites made from extracted fibers at 170°C showed the highest thermal stability. Coupling agent did not have a significant effect on thermal stability but it improved the degree of crystallinity of the composites.Surface roughness of wood fiber increased after treatment. Extraction of hemicellulose increased the degree of crystallinity but it was not significant except for samples from treated wood flour at 170°C and with MAPP.

  19. How overdrying wood reduces its bonding to phenol-formaldehyde adhesives : a critical review of the literature. Part II, Chemical reactions

    Science.gov (United States)

    Alfred W. Christiansen

    1991-01-01

    Literature dealing with the effect of excessive drying (overdrying) on wood surface inactivation to bonding is reviewed in two parts and critically evaluated, primarily for phenolic adhesives. Part 1 of the review, published earlier, covers physical mechanisms that could contribute to surface inactivation. The principal physical mechanism is the migration to the...

  20. Changes in the pH and other soil chemical parameters in soil surrounding wood ant (.i.Formica polyctena./i.) nests

    Czech Academy of Sciences Publication Activity Database

    Jílková, Veronika; Matějíček, L.; Frouz, J.

    2011-01-01

    Roč. 47, č. 1 (2011), s. 72-76 ISSN 1164-5563 Institutional research plan: CEZ:AV0Z60660521 Keywords : wood ants * soil pH * nutrients Subject RIV: EH - Ecology, Behaviour Impact factor: 1.578, year: 2011

  1. Arsenic Accumulation by Pteris vittata L. in Two Chemically Variant Soils Treated with Arsenical Pesticides - Greenhouse Study

    Science.gov (United States)

    Therapong, C.; Datta, R.; Sarkar, D.; Pachanoor, D.

    2006-05-01

    Arsenic (As) is one of the most toxic elements present in the environment. Over the years, arsenic has found its way to the environment due to its extensive use in agriculture and in industrial practices as pesticides, fertilizers, wood preservatives, smelter wastes and coal combustion ash, all of which are of great environmental concern. Arsenic contamination affects biological activities because it is a carcinogen and a mutagen, which has detrimental effects on the immune system of animals. Remediation of arsenic-contaminated soils has become a major environmental issue in the recent years. Several physical and chemical treatment methods, such as soil washing, co-precipitation, and excavation, have used to remediate As, but all of these methods are rather expensive and can disturb soil physiology and ecology. Phytoremediation, a plant based technology for the removal of toxic contaminants from soil and water is an attractive approach. Of late, this technology has received a high degree of attention from the scientific community because it is environment-friendly and also because of its tremendous cost efficiency compared to the conventional methods. Chinese Brake Fern (Pteris vittata L.) is a known arsenic hyperaccumulator that is being used extensively at present to remove As from soils. However, the degree of efficiency of this plant in accumulating As is likely to be a function of the soil properties. The objective of the reported study was to investigate arsenic uptake by Chinese Brake Fern in As-contaminated soils from the Immokalee (acid sand with minimal As-retention potential) and Millhopper series (sandy loam with high Fe/Al content, hence, high As-retention potential). A greenhouse experiment was designed to evaluate the effects on As uptake by Chinese Brake Fern at two pesticide application rates: 225 mg/kg and 500 mg/kg As in two chemical forms, namely sodium arsenate (AsV) and dimethylarsinic acid (DMA). Each treatment was replicated three times in

  2. As (V) biosorption in an aqueous solution using chemically treated lemon (Citrus aurantifolia Swingle) residues.

    Science.gov (United States)

    Marín-Rangel, Vania Marilyn; Cortés-Martínez, Raúl; Villanueva, Ruth Alfaro Cuevas; Garnica-Romo, Ma Guadalupe; Martínez-Flores, Héctor Eduardo

    2012-01-01

    The use of biosorbents to remove metals and metalloids from contaminated water systems has gained great usage in various parts of the world. The objective of the current study was to test lemon peels as biosorbents for As (V). Lemon peels were chemically characterized and arsenic contact experiments were performed to determine the adsorption capacity of the peels using different empirical models. The model that fit the experimental data was the Lagergren empirical model with a correlation coefficient of R= 0.8841. The results show that lemon peels were able to retain 474.8 μg of As (V)/g of biosorbent. Lemon agro-industrial waste can be useful in the removal of heavy metals, such as arsenic, from aqueous media. © 2011 Institute of Food Technologists®

  3. The hardness and chemical changes in demineralized primary dentin treated by fluoride and glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Gisele Fernandes DIAS

    Full Text Available Abstract Background Fluoride plays an important role in the control of dental caries. Aim To evaluate the chemical exchange between restoration of glass ionomer cement of high viscosity (GIC and primary dentin with application of sodium fluoride (NaF 2% through changes in hardness from uptake of calcium, phosphate and fluoride. Material and method Class I cavities were prepared in 40 sound primary molars, and the sample was divided into two groups (n=20 according to dentin condition: sound (1 and demineralized (2. Sub-groups (n=10 were formed to investigate the isolated action of the GIC or the association with NaF (F. This in vitro study examined the chemical exchange under two conditions, sound and demineralized dentin (pH cycling, to simulate the occurrence of mineral loss for the caries lesion. G1 and G2 received GIC restoration only; groups G1F and G2F received NaF before GIC restoration. The specimens were prepared for Knoop hardness test and micro-Raman spectroscopy. A two-way ANOVA test (α = 0.05 was used for statistical analysis. Micro-Raman data were qualitatively described. Result Increased hardness was observed in all the sites of direct contact with GIC in sound and demineralized dentin for all groups (p0.05. In the evaluation of micro-Raman, direct contact between GIC and dentin for sound and demineralized dentin resulted in increased peaks of phosphate. Conclusion The exchange between GIC and demineralized dentin may induce changes of mechanical properties of the substrate, and uptake of mineral ions (phosphate occurs without the influence of NaF.

  4. Preparation of coloured wood plastics

    International Nuclear Information System (INIS)

    Lebedev, V.T.; Filippova, T.G.; Rajchuk, F.Z.

    1977-01-01

    A study has been made into the possibility of using fat, as well as alcohol- and water-soluble dyes for radiation-chemical dying of polymers and plastics filled with wood. The use of fat-soluble azo and anthraquinone dyes permits obtaining intensely colored wood-plastic materials based on methyl methacrylate by way of gamma radiation with doses of up to 3 Mrad. At a dose above 5 Mrad, a marked tarnishing of the dye or a change in color and stains are observed. Dyes in styrene withstand higher radiation doses without any significant destruction

  5. Energy Effectiveness of Direct UV and UV/H2O2 Treatment of Estrogenic Chemicals in Biologically Treated Sewage

    Directory of Open Access Journals (Sweden)

    Kamilla M. S. Hansen

    2012-01-01

    Full Text Available Continuous exposure of aquatic life to estrogenic chemicals via wastewater treatment plant effluents has in recent years received considerable attention due to the high sensitivity of oviparous animals to disturbances of estrogen-controlled physiology. The removal efficiency by direct UV and the UV/H2O2 treatment was investigated in biologically treated sewage for most of the estrogenic compounds reported in wastewater. The investigated compounds included parabens, industrial phenols, sunscreen chemicals, and steroid estrogens. Treatment experiments were performed in a flow through setup. The effect of different concentrations of H2O2 and different UV doses was investigated for all compounds in an effluent from a biological wastewater treatment plant. Removal effectiveness increased with H2O2 concentration until 60 mg/L. The treatment effectiveness was reported as the electrical energy consumed per unit volume of water treated required for 90% removal of the investigated compound. It was found that the removal of all the compounds was dependent on the UV dose for both treatment methods. The required energy for 90% removal of the compounds was between 28 kWh/m3 (butylparaben and 1.2 kWh/m3 (estrone for the UV treatment. In comparison, the UV/H2O2 treatment required between 8.7 kWh/m3 for bisphenol A and benzophenone-7 and 1.8 kWh/m3 for ethinylestradiol.

  6. Oxidation of CO and Methanol on Pd-Ni Catalysts Supported on Different Chemically-Treated Carbon Nanofibers

    Directory of Open Access Journals (Sweden)

    Juan Carlos Calderón

    2016-10-01

    Full Text Available In this work, palladium-nickel nanoparticles supported on carbon nanofibers were synthesized, with metal contents close to 25 wt % and Pd:Ni atomic ratios near to 1:2. These catalysts were previously studied in order to determine their activity toward the oxygen reduction reaction. Before the deposition of metals, the carbon nanofibers were chemically treated in order to generate oxygen and nitrogen groups on their surface. Transmission electron microscopy analysis (TEM images revealed particle diameters between 3 and 4 nm, overcoming the sizes observed for the nanoparticles supported on carbon black (catalyst Pd-Ni CB 1:2. From the CO oxidation at different temperatures, the activation energy Eact for this reaction was determined. These values indicated a high tolerance of the catalysts toward the CO poisoning, especially in the case of the catalysts supported on the non-chemically treated carbon nanofibers. On the other hand, apparent activation energy Eap for the methanol oxidation was also determined finding—as a rate determining step—the COads diffusion to the OHads for the catalysts supported on carbon nanofibers. The results here presented showed that the surface functional groups only play a role in the obtaining of lower particle sizes, which is an important factor in the obtaining of low CO oxidation activation energies.

  7. Interactions between physical, chemical and biological processes in aquatic systems - impacts on receiving waters with different contents of treated wastewater

    International Nuclear Information System (INIS)

    Kreuzinger, N.

    2000-08-01

    Two scenarios have be chosen within this PhD Thesis to describe the integrative key-significance of interactions between most relevant physical, chemical and biological processes in aquatic systems. These two case studies are used to illustrate and describe the importance of a detailed synthesis of biological, physical and chemical interactions in aquatic systems in order to provide relevant protection of water resources and to perform a sound water management. Methods are described to allow a detailed assessment of particular aspects within the complexity of the overall integration and therefore serve as a basis to determine the eventual necessity of proposed water management measures. Regarding the anthropogenic influence of treated wastewater on aquatic systems, one case study focuses on the interactions between emitted waters from a wastewater treatment plant and the resulting immission situation of its receiving water (The receiving water is quantitatively influenced by the treated wastewater by 95 %). This thesis proves that the effluent of wastewater treatment plants operated by best available technology meets the quality standards of running waters for the nutrients nitrogen and phosphorus, carbon-parameters, oxygen-regime and ecotoxicology. Within the second case study the focus is put on interactions between immissions and water usage. The general importance of biological phosphorus precipitation on the trophic situation of aquatic systems is described. Nevertheless, this generally known but within the field of applied limnology so far unrespected process of immobilization of phosphorus could be shown to represent a significant and major impact on phytoplannctotic development and eutrification. (author)

  8. QUALITY OF REACTION WOOD IN EucalyptusTREES TILTED BY WIND FOR PULP PRODUCTION

    Directory of Open Access Journals (Sweden)

    Walter Torezani Neto Boschetti

    2017-09-01

    Full Text Available This study aims to evaluate the quality of normal, tension and opposite wood of eucalyptus trees lengthwise, in straight and inclined stems, affected by wind action. It also aims to explain the pulping parameters resultant from the quality of the wood. The trees were grouped into four tilt ranges, ranging from 0 to 50º, and the basic density, chemical composition of the wood, and performance in kraft pulping were assessed. Normal and tension wood had similar basic densities; while for opposite wood, the density was lower, being responsible for a decrease in reaction wood density. The chemical composition of the wood was influenced by the presence of reaction wood in the stem.Tension and opposite wood showed lower levels of extractives and lignin and higher holocellulose content when compared to normal wood, with favorable wood quality for pulping. The increase in holocellulose content and the reduction of lignin and extractives content contributed positively to a more delignified pulp and reduction of the Kappa number. However, after cooking the reaction wood under the same conditions as those of normal wood, reaction wood pulping tends to have a lower screen yields. Due to differences in basic density and chemical constituents between opposite and normal wood, it is recommended not to designate the opposite wood as normal wood.

  9. Preliminary investigation of biological resistance, water absorption and swelling of thermally compressed pine wood panels

    Science.gov (United States)

    Oner Unsal; S. Nami Kartal; Zeki Candan; Rachel Arango; Carol A. Clausen; Frederick Green

    2008-01-01

    Wood can be modified by compressive, thermal and chemical treatments. Compression of wood under thermal conditions is resulted in densification of wood. This study evaluated decay and termite resistance of thermally compressed pine wood panels at either 5 or 7 MPa and at either 120 or 150°C for one hour. The process caused increases in density and decreases in...

  10. Chemical properties of soils treated with biological sludge from gelatin industry

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Melo Guimarães

    2012-04-01

    Full Text Available The impact of agro-industrial organic wastes in the environment can be reduced when used in agriculture. From the standpoint of soil fertility, residue applications can increase the organic matter content and provide nutrients for plants. This study evaluated the effect of biological sludge from gelatin industry on the chemical properties of two Ultisols (loamy sand and sandy clay and an Oxisol (clay. The experiment lasted 120 days and was carried out in laboratory in a completely randomized design with factorial arrangement, combining the three soils and six biological sludge rates (0, 100, 200, 300, 400, and 500 m³ ha-1, with three replications. Biological sludge rates of up to 500 m³ ha-1 decreased soil acidity and increased the effective cation exchange capacity (CEC and N, Ca, Mg, and P availability, without exceeding the tolerance limit for Na. The increase in exchangeable base content, greater than the effective CEC, indicates that the major part of cations added by the sludge remains in solution and can be lost by leaching.

  11. Non-surgical and non-chemical attempts to treat echinococcosis: do they work?

    Directory of Open Access Journals (Sweden)

    Tamarozzi Francesca

    2014-01-01

    Full Text Available Cystic echinococcosis (CE and alveolar echinococcosis (AE are chronic, complex and neglected diseases. Their treatment depends on a number of factors related to the lesion, setting and patient. We performed a literature review of curative or palliative non-surgical, non-chemical interventions in CE and AE. In CE, some of these techniques, like radiofrequency thermal ablation (RFA, were shelved after initial attempts, while others, such as High-Intensity Focused Ultrasound, appear promising but are still in a pre-clinical phase. In AE, RFA has never been tested, however, radiotherapy or heavy-ion therapies have been attempted in experimental models. Still, application to humans is questionable. In CE, although prospective clinical studies are still lacking, therapeutic, non-surgical drainage techniques, such as PAIR (puncture, aspiration, injection, re-aspiration and its derivatives, are now considered a useful option in selected cases. Finally, palliative, non-surgical drainage techniques such as US- or CT-guided percutaneous biliary drainage, centro-parasitic abscesses drainage, or vascular stenting were performed successfully. Recently, endoscopic retrograde cholangiopancreatography (ERCP-associated techniques have become increasingly used to manage biliary fistulas in CE and biliary obstructions in AE. Development of pre-clinical animal models would allow testing for AE techniques developed for other indications, e.g. cancer. Prospective trials are required to determine the best use of PAIR, and associated procedures, and the indications and techniques of palliative drainage.

  12. Effect of chemical heterogeneity on photoluminescence of graphite oxide treated with S-/N-containing modifiers

    Science.gov (United States)

    Ebrahim, Amani M.; Rodríguez-Castellón, Enrique; Montenegro, José María; Bandosz, Teresa J.

    2015-03-01

    Graphite oxide (GO) obtained using Hummers method was modified by hydrothermal treatment either with sulfanilic acid or polystyrene (3-ammonium) sulfonate at 100 °C or 85 °C, respectively. Both modifiers contain sulfur in the oxidized forms and nitrogen in the reduced forms. The materials were characterized using FTIR, XPS, thermal analysis, potentiometric titration and SEM. Their photoluminescent properties and their alteration with an addition of Ag+ were also measured. As a result of these modifications nitrogen was introduced to the graphene layers as amines, imides, amides, and sulfur as sulfones and sulfonic acids. Moreover, the presence of polyaniline was detected. This significantly affected the polarity, acid-base character, and conductivity of the materials. Apparently carboxylic groups of GO were involved in the surface reactions. The modified GOs lost their layered structure and the modifications resulted in the high degree of structural and chemical heterogeneity. Photoluminescence in visible light was recorded and linked to the presence of heteroatoms. For the polystyrene (3-ammonium) sulfonate modified sample addition of Ag+ quenched the photoluminescence at low wavelength showing sensitivity as a possible optical detector. No apparent effect was found for the sulfanilic acid modified sample.

  13. Electrophoretic mobility of PM2 DNA treated with ultimate chemical carcinogens or with ultraviolet light

    International Nuclear Information System (INIS)

    Thielmann, H.W.; Hecht, R.

    1980-01-01

    Superhelical DNA of the Pseudomonas phage PM2 was irradiated with UV-light or reacted with covalently binding carcinogens, such as 7-bromomethyl-benz[a]anthracene, (Ac) 2 ONFln, K-region epoxides, and alkylating agents. Migration velocity of the DNA products was determined using agarose gel electrophoresis. In gels of more than 1.3%-1.9% agarose, modified PM2 DNA exhibited a dose-(concentration-)dependent decrease of migration velocity. This phenomenon is probably due to a decrease in superhelix density which caused the compact DNA coil to assume eventually an open-circular conformation. Comparison of the extent of DNA modification with the decrease of migration velocity revealed that the superhelical structure sensitively reflected the chemical DNA alterations. DNA species exhibiting in 1.6% agarose gels, a migration velocity of up to 30% of that of control DNA showed an increase of velocity in 0.4% agarose. Therefore, in 1.3%-1.9% agarose gels, the decrease of superhelix density is accompanied by an increase of the frictional coefficient, whereas in 0.4%-0.9% agarose gels the same decrease of superhelix density apparently led to a higher degree of flexibility of the macromolecule and/or exposure of additional electric charges. (orig.) [de

  14. Treating exposure to chemical warfare agents: implications for health care providers and community emergency planning.

    Science.gov (United States)

    Munro, N B; Watson, A P; Ambrose, K R; Griffin, G D

    1990-01-01

    Current treatment protocols for exposure to nerve and vesicant agents found in the U.S. stockpile of unitary chemical weapons are summarized, and the toxicities of available antidotes are evaluated. The status of the most promising of the new nerve agent antidotes is reviewed. In the U.S. atropine and pralidoxime compose the only approved antidote regimen for organophosphate nerve agent poisoning. Diazepam may also be used if necessary to control convulsions. To avoid death, administration must occur within minutes of substantial exposure together with immediate decontamination. Continuous observation and repeated administration of antidotes are necessary as symptoms warrant. Available antidotes do not necessarily prevent respiratory failure or incapacitation. The toxicity of the antidotes themselves and the individualized nature of medical care preclude recommending that autoinjectors be distributed to the general public. In addition, precautionary administration of protective drugs to the general population would not be feasible or desirable. No antidote exists for poisoning by the vesicant sulfur mustard (H, HD, HT); effective intervention can only be accomplished by rapid decontamination followed by palliative treatment of symptoms. British anti-Lewisite (BAL) (2,3-dimercapto-1-propanolol) is the antidote of choice for treatment of exposure to Lewisite, another potent vesicant. Experimental water-soluble BAL analogues have been developed that are less toxic than BAL. Treatment protocols for each antidote are summarized in tabular form for use by health care providers. PMID:2088748

  15. Effect of Treated Wastewater Combined with Various Amounts of Manure and Chemical Fertilizers on Nutrient Content and Yield in Corn

    Directory of Open Access Journals (Sweden)

    Abolfazal Tavassoli

    2010-09-01

    Full Text Available In order to study the effects of treated wastewater combined with manure and chemical fertilizers on the nutrients content and forage yield in corn, field experiments were conducted in 2007. The experiments were conducted in a split plot design with three replications. The treatments were comprised of two levels of irrigation water (W1= well water and W2= wastewater in the main plot and five levels of fertilizer (F1= unfertilized, F2 = 100% manure, F3= 50% manure, F4= 100% fertilizer, and F5= 50% fertilizer in the subplot. Results showed that, compared to ordinary water, irrigation with treated wastewater significantly increased fresh and dry forage yield of corn. The treatment using treated wastewater also had a significant effect on N, P, and K contents in corn forage. However, wastewater had no significant effect on plant Fe, Mn, and Zn contents. Among the fertilizer treatments, the highest fresh and dry forage yields and the highest N, P and K contents belonged to the treatments using 100% fertilizer. The highest Fe, Mn, and Zn contents were observed in plants in the treatment with 100% manure.

  16. Finishing of wood

    Science.gov (United States)

    R. Sam Williams

    1999-01-01

    The primary function of any wood finish (paint, varnish, and stain, for example) is to protect the wood surface, help maintain a certain appearance, and provide a cleanable surface. Although wood can be used both outdoors and indoors without finishing, unfinished wood surfaces exposed to the weather change color, are roughened by photodegradation and surface checking,...

  17. Liquefaction of aspen poplar wood

    Energy Technology Data Exchange (ETDEWEB)

    Eager, R L; Mathews, J F; Pepper, J M

    1982-01-01

    Dried and green aspen poplar wood suspended in water containing alkali catalysts was converted completely to an oil, water-soluble chemical, and gases by heating for 1 hour in the presence of CO in a rocking batch reactor. Within the ranges of parameters studied: temperature of 593-633 K; nominal reaction times of less than or equal to 1 hour; water-to-wood ratio of 0.5:1-5:1; Na/sub 2/CO/sub 3/, K/sub 2/CO/sub 3/, and NaOH catalysts; amount of catalyst 7.0-12.5%; and initial H-CO ratios of 2:1-0:1, the water-to-wood ratio was most important. Oil yields of approximately 50% with a C plus H content of approximately 80% and representing a C recovery of approximately 66% were obtained. The higher heats of combustion were 32.2-36.0 MJ/kg.

  18. Behavioral, biological, and chemical perspectives on targeting CRF1 receptor antagonists to treat alcoholism

    Science.gov (United States)

    Zorrilla, Eric P.; Heilig, Markus; de Wit, Harriet; Shaham, Yavin

    2013-01-01

    Background Alcohol use disorders are chronic disabling conditions for which existing pharmacotherapies have only modest efficacy. In the present review, derived from the 2012 Behavior, Biology and Chemistry “Translational Research in Addiction” symposium, we summarize the anti-relapse potential of corticotropin-releasing factor type 1 (CRF1) receptor antagonists to reduce negative emotional symptoms of acute and protracted alcohol withdrawal and stress-induced relapse to alcohol seeking. Methods We review the biology of CRF1 systems, the activity of CRF1 receptor antagonists in animal models of anxiolytic and antidepressant activity, and experimental findings in alcohol addiction models. We also update the clinical trial status of CRF1 receptor antagonists, including pexacerfont (BMS-562086), emicerfont (GW876008), verucerfont (GSK561679), CP316311, SSR125543A, R121919/NBI30775, R317573/19567470/CRA5626, and ONO-2333Ms. Finally, we discuss the potential heterogeneity and pharmacogenomics of CRF1 receptor pharmacotherapy for alcohol dependence. Results The evidence suggests that brain penetrant-CRF1 receptor antagonists have therapeutic potential for alcohol dependence. Lead compounds with clinically desirable pharmacokinetic properties now exist, and longer receptor residence rates (i.e., slow dissociation) may predict greater CRF1 receptor antagonist efficacy. Functional variants in genes that encode CRF system molecules, including polymorphisms in Crhr1 (rs110402, rs1876831, rs242938) and Crhbp genes (rs10055255, rs3811939) may promote alcohol seeking and consumption by altering basal or stress-induced CRF system activation. Conclusions Ongoing clinical trials with pexacerfont and verucerfont in moderately to highly severe dependent anxious alcoholics may yield insight as to the role of CRF1 receptor antagonists in a personalized medicine approach to treat drug or alcohol dependence. PMID:23294766

  19. The Physical, Chemical and Microbial Quality of Treated Water in Qom s Desalination Plants

    Directory of Open Access Journals (Sweden)

    A. R. Yari

    2007-04-01

    Full Text Available Background and objectivesWater is the basis of life and health. The health of food and water supply plays an important role in human health. One of the methods of water desalination is membrane filter reverse osmosis method. This method is used for desalination of drinking water supply in Qom.MethodsThis is a descriptive, cross-sectional study designed to determine the quality of treated water in Qom desalination plant in year 2002. Inlet and outlet water samples of this plant were examined by the standard examination methods and the collected data were compared with national and international standards. Excel software was used for statistical analysis.ResultsThe results showed that the residual chlorine concentration, total hardness and fluoride concentration were lower than the minimum standard limit set for drinking water. The pH was also lower than the minimum standard limit. Microbial contamination was detected in 6% of samples.ConclusionThe results show that the acidity of water was lower than standard in whole plant. This gives corrosive properties to the water and increases the dissolution of materials, which are in contact with this water. In order to eliminate the secondary contamination, the concentration of residual chlorine should be 1 mg/l. But, none of the measurements showed a concentration as high as this value. As fluoride is an important element for health and growth of bone and teeth, especially in growing children, fluoride should be added to the drinking water. As the relationship between hardness of water and cardiovascular diseases has been established, it can be concluded that this drinking water supply can increase the risk of cardiovascular diseases in long time. Dilution of this water is recommended to adjust various factors to the standard limits and keep the total dissolved solids low.Keywords: Qom ;Water; Reverse Osmosis; Desalination Plant; Water Quality

  20. The Physical, Chemical and Microbial Quality of Treated Water in Qom s Desalination Plants

    Directory of Open Access Journals (Sweden)

    A.R Yari

    2012-05-01

    Full Text Available

    Background and objectives

    Water is the basis of life and health. The health of food and water supply plays an important role in human health. One of the methods of water desalination is membrane filter reverse osmosis method. This method is used for desalination of drinking water supply in Qom.

    Methods

    This is a descriptive, cross-sectional study designed to determine the quality of treated water in Qom desalination plant in year 2002. Inlet and outlet water samples of this plant were examined by the standard examination methods and the collected data were compared with national and international standards. Excel software was used for statistical analysis.

    Results

    The results showed that the residual chlorine concentration, total hardness and fluoride concentration were lower than the minimum standard limit set for drinking water. The pH was also lower than the minimum standard limit. Microbial contamination was detected in 6% of samples.

    Conclusion

    The results show that the acidity of water was lower than standard in whole plant. This gives corrosive properties to the water and increases the dissolution of materials, which are in contact with this water. In order to eliminate the secondary contamination, the concentration of residual chlorine should be 1 mg/l. But, none of the measurements showed a concentration as high as this value. As fluoride is an important element for health and growth of bone and teeth, especially in growing children, fluoride should be added to the drinking water. As the relationship between hardness of water and cardiovascular diseases has been established, it can be concluded that this drinking water supply can increase the risk of cardiovascular diseases in long time. Dilution of this water is recommended to adjust various factors to the standard limits and keep the total dissolved solids low.

  1. Wood chemistry symposium: from muka to lignin

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, M.

    1979-01-01

    The Canadian Wood Chemistry Symposium held during September, 1979, is reviewed. The chemical and physical explanations of delignification were debated. Problems of mechanical pulping include insufficient brightness, yellowing, and low strength relative to energy consumption. A session on chemicals, energy, and food from wood began with criteria for a viable project, which included adequate return on investment, modest capital investment requirements, identified pre-existing markets, and favorable thermodynamic balances. The pulp and paper industry should improve its methods of using bark and wood waste in direct combustion (by pre-drying wastes and improving furnace efficiency) rather than supporting oil-from-wood projects, since using a waste for fuel will free fossil fuels for uses in synthetic fibers and thermoplastics. In the area of food, there are modest successes with cellulose fiber additives to bread and snack food and single cell protein (which, though made from wastes, cannot compete with soy protein). However, making monomeric sugars from wood polysaccharides is not an efficient process, and muka, animal feed supplement from foliage, is successful only in Russia. In Canada it cannot compete with agricultural products. Alpha cellulose is a major wood chemical product. Promising uses include cellulose derived thermoplastics and lignosulphonates for secondary oil recovery. Instead of breaking wood polysaccharides and lignin into monomers and then repolymerizing them, it is possible to use the pre-built polymers; such an approach is illustrated by use of lignin in polyurethane foams, adhesives, and coatings.

  2. Who's Counting Dead Wood ?

    OpenAIRE

    Woodall, C. W.; Verkerk, H.; Rondeux, Jacques; Ståhl, G.

    2009-01-01

    Dead wood in forests is a critical component of biodiversity, carbon and nutrient cycles, stand structure, and fuel loadings. Until recently, very few countries have conducted systematic inventories of dead wood resources across their forest lands. This may be changing as an increasing number of countries implement dead wood inventories. A recent survey looks at the status and attributes of forest dead wood inventories in over 60 countries. About 13 percent of countries inventory dead wood gl...

  3. Neutron Scattering Studies of Nano-Scale Wood-Water Interactions

    Science.gov (United States)

    Plaza Rodriguez, Nayomi Z.

    modifications, namely, adhesive infiltration and acetylation, on the wood nanostructure as well as its moisture-induced swelling. Tangential-longitudinal latewood loblolly pine 0.5 mm thick sections were acetylated or treated with an adhesive (Phenol-formaldehyde (PF) or polymeric methylene diisocyanate (pMDI)) using deuterated or hydrogenated chemicals. Contrast variation experiments on wood modified with deuterated chemicals revealed that PF can infiltrate the regions between the elementary fibrils, while acetylation does not. The moisture-induced swelling of the chemically modified wood was studied, by studying the samples modified with hydrogenated chemicals using SANS and the previously built humidity chamber. These studies revealed that while both PF and pMDI can infiltrate the microfibrils, only PF reduced significantly the swelling at both the elementary fibril and bulk levels. In acetylated samples, the elementary fibril spacing was proportional to the moisture-content of the sample, which was reduced with increasing acetylation. This suggested that the acetylation treatment did not reduce the swelling at the elementary fibril but prevented water from entering the microfibril by modifying the regions surrounding the elementary fibrils. Using quasi-elastic neutron scattering (QENS) and a custom-built in situ relative humidity sample environment I measured experimentally the (5 - 400 ps) water dynamics inside wood cell walls for the first time and found that there are two types of bound water in the cell wall, namely, slow and fast water. The motion of both water types is well described by a jump-diffusion model, which corresponds to water molecules whose movement follows a stop and go process. Here, the slow water corresponds to water molecules that are highly associated to the wood polymers, whereas the fast water corresponds to water confined inside nanopores within the wood cell wall.

  4. Effects of wood polymers and extractives on the adsorption of wet-end chemicals and the properties of the sheet - MPKY 03

    Energy Technology Data Exchange (ETDEWEB)

    Bobacka, V; Lindholm, J; Nurmi, M; Naesman, J [Aabo Akademi, Turku (Finland). Lab. of Paper Chemistry; Holmbom, B; Konn, J; Sundberg, A; Willfoer, S [Aabo Akademi, Turku (Finland). Lab. of Forest Products Chemistry

    1999-12-31

    The effects of deposition of dissolved and colloidal substances (disco, DCS) together with fixing agents on the wet end chemistry, and the paper quality have been studied. Increased amounts of wood resin in handsheets results in lower strength properties and friction of the sheets. Addition of isolated polysaccharides together with wood resin results in higher strength properties compared, at the same resin content, to sheets without added polysaccharides. Disco substances released from TMP were adsorbed/deposited onto different fillers. It is possible to determine the distribution of aggregated wood resin in handsheets of kraft pulp by confocal laser scanning microscopy. Addition of iron salts to a TMP suspension results in a decrease in the brightness of the fibers. The adsorption of cationic starch and cationic polyacrylamide was studied as well as the flocculation of a peroxide bleached TMP and mixture of TMP and kraft pulp in the presence of retention aids and fixing agents. The fixing agent had a minor effect on the flocculation in peroxide bleached TMP, while cationic starch induced flocculation after a threshold. When added together, cationic starch induced flocculation immediately. The retention of carbohydrates in the mixture was not much influenced by the presence of fixing agents and retention aids, but the extractives were efficiently retained. Colloidal substances adsorb both cationic starch and polyacrylamide. Of the dissolved substances, pectic acids are most efficiently aggregated. (orig.)

  5. Effects of wood polymers and extractives on the adsorption of wet-end chemicals and the properties of the sheet - MPKY 03

    Energy Technology Data Exchange (ETDEWEB)

    Bobacka, V.; Lindholm, J.; Nurmi, M.; Naesman, J. [Aabo Akademi, Turku (Finland). Lab. of Paper Chemistry; Holmbom, B.; Konn, J.; Sundberg, A.; Willfoer, S. [Aabo Akademi, Turku (Finland). Lab. of Forest Products Chemistry

    1998-12-31

    The effects of deposition of dissolved and colloidal substances (disco, DCS) together with fixing agents on the wet end chemistry, and the paper quality have been studied. Increased amounts of wood resin in handsheets results in lower strength properties and friction of the sheets. Addition of isolated polysaccharides together with wood resin results in higher strength properties compared, at the same resin content, to sheets without added polysaccharides. Disco substances released from TMP were adsorbed/deposited onto different fillers. It is possible to determine the distribution of aggregated wood resin in handsheets of kraft pulp by confocal laser scanning microscopy. Addition of iron salts to a TMP suspension results in a decrease in the brightness of the fibers. The adsorption of cationic starch and cationic polyacrylamide was studied as well as the flocculation of a peroxide bleached TMP and mixture of TMP and kraft pulp in the presence of retention aids and fixing agents. The fixing agent had a minor effect on the flocculation in peroxide bleached TMP, while cationic starch induced flocculation after a threshold. When added together, cationic starch induced flocculation immediately. The retention of carbohydrates in the mixture was not much influenced by the presence of fixing agents and retention aids, but the extractives were efficiently retained. Colloidal substances adsorb both cationic starch and polyacrylamide. Of the dissolved substances, pectic acids are most efficiently aggregated. (orig.)

  6. Physical, chemical, microbiological and sensorial behaviour evolution of non cooked pressed cheese paste while in refrigerated storage, made with red chilli powder, treated by heat or ionization

    International Nuclear Information System (INIS)

    Iben El Hadj Mohamed, A.

    1998-01-01

    The evolution of different physical, chemical, microbiological and sensorial characteristics of a Tunisian manufactured cheese made of non cooked pressed cheese paste with red chilli powder treated by heat, was measured while in refrigerated storage and compared to the one treated by ionization (author)

  7. MC-PELMO 3.0 - a computer model to estimate groundwater contamination caused by leaching of wood preservatives from storage sites of treated wood in Germany; Grundwassergefaehrdung durch Holzschutzmittel. MCPELMO 3.0 - ein mathematische Simulationsprogramm zur Abschaetzung der Grundwassergefaehrdung unter Holzlagerflaechen in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M. [Fraunhofer-Inst. fuer Molekularbiologie und Angewandte Oekologie, Schmallenberg-Grafschaft (Germany); Herrmann, M. [Umweltbundesamt, Berlin (Germany)

    2004-07-01

    Methods. Based on already in-use versions of the leaching model PELMO, an advanced version (MC-PELMO 3.0) was developed with a specific focus on estimating groundwater contamination under storage sites at wood preserving facilities in Germany. The model processes twenty-two different leaching scenarios that were derived from twelve characteristic soil profiles representing pedological regions in Germany along with recorded meteorological data from nine weather stations. These data are related to geographic distribution of industrial wood preserving activity. The model calculates statistic probabilities of concentrations of wood preservatives in seepage water beneath timber storage sites of regions to be selected by the user. Results and Discussion. The reports provided by MC-PELMO 3.0 include mean average concentrations, 55 to 99 percentiles, and single maximum concentrations for each of the scenarios. The results can be related to the total area of Germany, its forest area or to the density of preservation activity in various regions. Beside concentrations of the parent compounds, those of degradation products may be calculated for the seepage water. Conclusion. The described model is a particularly useful tool for comparative assertion of various wood preservative products under aspects of the exposure of groundwater resources. Comparative assertion is a new element within EU-chemicals policy, for the first time materialized in the biocidal products directive 98/8/EC. Furthermore, the results of model calculations identify vulnerable regions in Germany for which appropriate risk management measures have to be taken in order to protect groundwater from contamination. (orig.) [German] Methoden. Basierend auf bestehenden Versionen des Versickerungsmodells PELMO wurde eine Version speziell fuer die Abschaetzung des Versickerungsverhaltens von Holzschutzmitteln unter Lagerplaetzen von Holz-Impraegnierbetrieben in Deutschland entwickelt. Das stochastische Modell

  8. Optimising hydrogen bonding in solid wood

    DEFF Research Database (Denmark)

    Engelund, Emil Tang

    2009-01-01

    The chemical bonds of wood are both covalent bonds within the wood polymers and hydrogen bonds within and between the polymers. Both types of bonds are responsible for the coherence, strength and stiffness of the material. The hydrogen bonds are more easily modified by changes in load, moisture...... and temperature distorting the internal bonding state. A problem arises when studying hydrogen bonding in wood since matched wood specimens of the same species will have very different internal bonding states. Thus, possible changes in the bonding state due to some applied treatment such as conditioning...... maintaining 100 % moisture content of the wood. The hypothesis was that this would enable a fast stress relaxation as a result of reorganization of bonds, since moisture plasticizes the material and temperature promotes faster kinetics. Hereby, all past bond distortions caused by various moisture, temperature...

  9. Field application of the Numobag as a portable disposable isolation unit and for treating chemical, radiological or biologically induced wounds.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Keith A.; Felton, Robert; Vaughan, Courtenay Thomas

    2005-04-01

    Numotech Inc. has developed the Numobag{trademark}, a disposable, lightweight, wound healing device which produces Topical Hyperbaric Oxygen Therapy (THOT). The Numobag{trademark} is cost effective and has been clinically validated to heal large skin lesions rapidly and has proven to arrest wound advancement from several insidious forms of biological attack including dermal anthrax, small pox, necrotizing fasciitis etc. The Numobag{trademark} can treat mass casualties wounded by chemical/radiological burns or damaging biological exposures. The Numobag{trademark} can be a frontline tool as an isolation unit, reducing cross-contamination and infection of medical personnel. The heightened oxygen content kills organisms on the skin and in the wound, avoids expensive hospital trash disposal procedures, and helps the flesh heal. The Numobag{trademark} requires high purity oxygen. Numotech Inc. is teaming with Sandia National Laboratories and Spektr Conversion in Russia to develop a cost effective, portable, low power oxygen generator.

  10. Wood-ash addition on a drained forest peatland in Southern Sweden - Effects on water chemistry; Tillfoersel av biobra ensleaska i tallskog paa en dikad torvmark i soedra Sverige - Effekter paa vattenkemin

    Energy Technology Data Exchange (ETDEWEB)

    Ring, Eva; Broemssen, Claudia von; Losjoe, Katarina; Sikstroem Ulf

    2012-02-15

    Wood ash can be used for forest fertilization on peatlands or for nutrient compensation following intensive harvesting. This project was performed in order to investigate effects on water chemistry of applying wood ash to a Scots pine stand on a drained peatland. Ditch-water chemistry was monitored before and after the application of wood ash. Furthermore, groundwater was collected and chemically analyzed both from the ash-treated peatland and from an adjacent untreated reference peatland. Both short term (a few months) and more long term effects (up to three years after application) were detected on water chemistry

  11. A PROBABILISTIC EXPOSURE ASSESSMENT FOR CHILDREN WHO CONTACT CCA-TREATED PLAYSETS AND DECKS USING THE STOCHASTIC HUMAN EXPOSURE AND DOSE SIMULATION (SHEDS) MODEL FOR THE WOOD PRESERVATIVE EXPOSURE SCENARIO

    Science.gov (United States)

    The U.S. Environmental Protection Agency has conducted a probabilistic exposure and dose assessment on the arsenic (As) and chromium (Cr) components of Chromated Copper Arsenate (CCA) using the Stochastic Human Exposure and Dose Simulation model for wood preservatives (SHEDS-Wood...

  12. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent

    International Nuclear Information System (INIS)

    Zhang, Yan; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang

    2014-01-01

    Highlights: • Mice exposed to mixed chemical wastewater and its treated effluent for 90 days. • Hepatic transcriptomic alterations were analyzed by digital gene expression. • Serum metabolomic alterations were analyzed by proton nuclear magnetic resonance. • The water samples induced disruption of lipid metabolism and hepatotoxicity. • Omics approaches are valuable to evaluate the complicated toxicity of wastewater. - Abstract: Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ( 1 H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE

  13. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang, E-mail: hqren@nju.edu.cn

    2014-05-01

    Highlights: • Mice exposed to mixed chemical wastewater and its treated effluent for 90 days. • Hepatic transcriptomic alterations were analyzed by digital gene expression. • Serum metabolomic alterations were analyzed by proton nuclear magnetic resonance. • The water samples induced disruption of lipid metabolism and hepatotoxicity. • Omics approaches are valuable to evaluate the complicated toxicity of wastewater. - Abstract: Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ({sup 1}H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE.

  14. Comparative Evaluation of Dimensional Accuracy of Elastomeric Impression Materials when Treated with Autoclave, Microwave, and Chemical Disinfection.

    Science.gov (United States)

    Kamble, Suresh S; Khandeparker, Rakshit Vijay; Somasundaram, P; Raghav, Shweta; Babaji, Rashmi P; Varghese, T Joju

    2015-09-01

    Impression materials during impression procedure often get infected with various infectious diseases. Hence, disinfection of impression materials with various disinfectants is advised to protect the dental team. Disinfection can alter the dimensional accuracy of impression materials. The present study was aimed to evaluate the dimensional accuracy of elastomeric impression materials when treated with different disinfectants; autoclave, chemical, and microwave method. The impression materials used for the study were, dentsply aquasil (addition silicone polyvinylsiloxane syringe and putty), zetaplus (condensation silicone putty and light body), and impregum penta soft (polyether). All impressions were made according to manufacturer's instructions. Dimensional changes were measured before and after different disinfection procedures. Dentsply aquasil showed smallest dimensional change (-0.0046%) and impregum penta soft highest linear dimensional changes (-0.026%). All the tested elastomeric impression materials showed some degree of dimensional changes. The present study showed that all the disinfection procedures produce minor dimensional changes of impression material. However, it was within American Dental Association specification. Hence, steam autoclaving and microwave method can be used as an alternative method to chemical sterilization as an effective method.

  15. SHIFTING WEED COMPOSITIONS AND BIOMASS PRODUCTION IN SWEET CORN FIELD TREATED WITH ORGANIC COMPOSTS AND CHEMICAL WEED CONTROLS

    Directory of Open Access Journals (Sweden)

    Marulak Simarmata

    2015-10-01

    Full Text Available The objectives of the research were to study the shift of weed compositions in sweet corn field treated with organic compost and chemical weed controls and to compare the effect of treatment combinations on weed growth, weed biomass and sweet corn biomass. The research was conducted in Bengkulu, Indonesia, from April to July 2014. Results showed that the number of weed species decreased after the trials from 14 to 13. There was a shift in weed compositions because 5 species of weeds did not emerge after the trials, but 4 new species were found. Chemical weed control used a herbiside mixture of atrazine and mesotrione applied during postemergence was the most effective method to control weeds, which was observed on decreased weed emergence and weed biomass down to 22.33 and 25.00 percent of control, respectively. Subsequently, biomass production of sweet corn increased up to 195.64 percent at the same trials. Biomass of weeds and sweet corn were also affected by the organic composts. Weed biomass was inhibited by treatment of composted empty fruith bunches of oil palm, whereas significantly increased of sweet corn biomass were observed in the plots of organic manure.

  16. Degradation of organic pollutants and characteristics of activated sludge in an anaerobic/anoxic/oxic reactor treating chemical industrial wastewater

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-09-01

    Full Text Available A laboratory-scale anaerobic/anoxic/oxic system operated at the hydraulic retention times (HRT of 20, 40, and 60 h with mixed liquor suspended solids (MLSS concentrations of 3 g/L and 6 g/L was considered for treating chemical industrial wastewater rich in complex organic compounds and total dissolved solids. Extending the HRT and increasing the MLSS concentration resulted in higher removal efficiency for chemical oxygen demand at 72%. Organic compounds in wastewater could be classified into easily-removed and refractory compounds during treatment. The easily-removed compounds consisted primarily of ethers, alcohols, and aldehydes, whereas the refractory compounds included mainly oxygen-containing heterocyclic and benzene-containing compounds. Results from energy-dispersive X-ray spectroscopy showed that several metal ions accumulated in activated sludge, particularly Fe(III. Fe accumulated mainly on the surface of sludge floc pellets and resulted in the compactness of activated sludge, which caused the values of mixed liquor volatile suspended solids /MLSS and sludge volume index to decrease.

  17. Cost-Benefit and Performance of Handmade Carpets Produced with Wool, Untreated and Chemical Treated Jute Pile Yarns

    Science.gov (United States)

    Gupta, Shravan Kumar; Goswami, Kamal Kanti

    2018-03-01

    Jute is a natural fibre which is used to make different type of products due to low cost, easy availability and eco-friendliness. However, the stiffness and harshness of jute fibre affect the use of jute in many products like pile yarns in hand knotted carpets. In this research, a study has been done on the application of jute pile yarns in Persian hand knotted carpet. Three types of commercial yarns (wool, untreated jute and woollenized jute) as well as three types of chemical treated jute yarns (hydrogen peroxide bleached, softened bleached and woollenized yarns) have been applied as pile yarns in Persian hand knotted carpets. Cost-benefit analysis of hand knotted carpets shows that manufacturing cost of wool carpet is lower than others. The contribution of manpower charges is higher than material cost during carpet manufacturing. Hand knotted carpet shows the lowest pile abrasion loss and highest compression recovery when wool is used as pile. Wool hand knotted carpet shows higher compression than untreated and treated jute carpets.

  18. Physical and chemical properties of MgO ceramics treated in molten K2SO4 for a long period

    International Nuclear Information System (INIS)

    Iwasa, Mikio; Kose, Saburo; Korenaga, Sadayoshi; Furukawa, Mitsuhiko.

    1978-01-01

    The wall materials of MHD power generating channel are exposed to thermally, physically and chemically severe conditions, so that they have to withstand great damages, especially the attack of seed materials. Several kinds of ceramics proposed as the wall materials have been tested in the simulated MHD environment. In this paper, MgO ceramics were treated in molten K 2 SO 4 , a typical seed material, and the changes in their physical and chemical properties were investigated in comparison with those of Al 2 O 3 ceramics. four kinds of MgO ceramics, three sintered and one electric fused, were immersed in molten K 2 SO 4 at 1300 0 C for the periods up to 1000 h, and weight, volume, surface roughness, bending strength and hardness were measured. The changes in the microstructures and chemical compositions due to the K 2 SO 4 treatment were also investigated. MgO ceramics were attacked by molten K 2 SO 4 only at the grain boundaries on the surface, in contrast at Al 2 O 3 ceramics which were severely damaged to form β-Al 2 O 3 . It was found that SiO 2 and CaO in the grain boundaries had played important roles to the attack of K 2 SO 4 . Generally, the changes in the properties of MgO ceramics by the K 2 SO 4 treatment were very small compared with those of Al 2 O 3 ceramics. It was concluded that MgO ceramics are more stable than Al 2 O 3 ceramics in molten K 2 SO 4 and their properties do not show substantial drops for long periods. (author)

  19. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery.

    Science.gov (United States)

    Olguín, Eugenia J

    2012-01-01

    Excess greenhouse gas emissions and the concomitant effect on global warming have become significant environmental, social and economic threats. In this context, the development of renewable, carbon-neutral and economically feasible biofuels is a driving force for innovation worldwide. A lot of effort has been put into developing biodiesel from microalgae. However, there are still a number of technological, market and policy barriers that are serious obstacles to the economic feasibility and competitiveness of such biofuels. Conversely, there are also a number of business opportunities if the production of such alternative biofuel becomes part of a larger integrated system following the Biorefinery strategy. In this case, other biofuels and chemical products of high added value are produced, contributing to an overall enhancement of the economic viability of the whole integrated system. Additionally, dual purpose microalgae-bacteria-based systems for treating wastewater and production of biofuels and chemical products significantly contribute to a substantial saving in the overall cost of microalgae biomass production. These types of systems could help to improve the competitiveness of biodiesel production from microalgae, according to some recent Life Cycle Analysis studies. Furthermore, they do not compete for fresh water resources for agricultural purposes and add value to treating the wastewater itself. This work reviews the most recent and relevant information about these types of dual purpose systems. Several aspects related to the treatment of municipal and animal wastewater with simultaneous recovery of microalgae with potential for biodiesel production are discussed. The use of pre-treated waste or anaerobic effluents from digested waste as nutrient additives for weak wastewater is reviewed. Isolation and screening of microalgae/cyanobacteria or their consortia from various wastewater streams, and studies related to population dynamics in mixed cultures

  20. Dietary effects of oregano (Origanum vulgaris L. plant or sweet chestnut (Castanea sativa Mill. wood extracts on microbiological, chemical-physical characteristics and lipid oxidation of cooked ham during storage

    Directory of Open Access Journals (Sweden)

    David Ranucci

    2015-12-01

    Full Text Available The aim of this study was to evaluate the dietary effect of feeding pigs with diets enriched with sweet chestnut wood (Castanea sativa Mill. or oregano (Origanum vulgaris L. extract on the microbiological and chemical characteristics of cooked pork ham. Three groups of 10 pigs were fed with a control diet (CTRL, with the CTRL diet enriched with 0.2% of oregano extract (OR and with the CTRL diet enriched with 0.2% of sweet chestnut wood extract (SCW, respectively. Six cooked hams per group were produced, sliced and packaged under a modified atmosphere (N2:CO2=80:20 and stored at refrigeration temperature (4±1°C. Three packages per cooked ham were sampled for analyses at three different storage times (0, 10 and 20 days. At day 0 time, antioxidant capacity of the products (ORACFL assay and chemical composition were performed. At each sampling time, from all the samples the following analyses were performed: Total Microbial Count (TMC, Lactic Acid Bacteria count (LAB, Enterobacteriaceae count, Listeria monocytogenes, pH value, colour coordinates (L*, a*, b*, total basic volatile nitrogen (TBVN and thio-barbituric reactive substances (TBARs determinations. No differences in TMC, LAB and Enterobacteriaceae count, pH, TBVN, chemical composition and L* values were registered between the three groups at all the sampling times considered. No Listeria monocytogenes was detected in the samples tested. Significant differences were registered for ORACFL at 0 days, a* and b* values and TBARs value at 10 and 20 days of storage, with higher values for ORACFL, a* and b* values and lower values for TBARs in SCW and OR than CTRL. No antimicrobial effect could be recorded for OR and SCW but a higher oxidative stability, also highlighted by the colour maintenance, was observed in both OR and SCW.

  1. Constituintes químicos do caule de Senna reticulata Willd. (Leguminoseae: Chemical constituents isolated from the wood of Senna reticulata Willd.

    Directory of Open Access Journals (Sweden)

    Rogério Nunes dos Santos

    2008-01-01

    Full Text Available The phytochemical investigation of the wood extracts of Senna reticulata (Leguminoseae yielded six anthraquinones: chrysophanol, physcion, aloe-emodin, 1,3,8-trihydroxyanthraquinone, 3-methoxy-1,6,8-trihydroxyanthraquinone, emodin and the chrysophanol-10,10' bianthrone. The triterpenes a and b-amirin, the steroids b-sitosterol and stigmasterol as well as the flavonoid kaempferol were also identified. The structures were established by spectral analysis, including two-dimensional NMR techniques. It is the first report of 1,3,8-trihydroxyanthraquinone and 3-methoxy-1,6,8-trihydroxyanthraquinone in higher plants.

  2. Structural analysis of heat-treated birch (Betule papyrifera) surface during artificial weathering

    International Nuclear Information System (INIS)

    Huang Xianai; Kocaefe, Duygu; Kocaefe, Yasar; Boluk, Yaman; Krause, Cornélia

    2013-01-01

    Highlights: ► Investigate detailed structural changes of heat-treated wood due to weathering. ► Identify connection between physical structural changes and chemical degradation. ► Study effect of heat treatment conditions on weathering degradation process. - Abstract: Effect of artificial weathering on the surface structural changes of birch (Betule papyrifera) wood, heat-treated to different temperatures, was studied using the fluorescence microscopy and the scanning electron microscopy (SEM). Changes in the chemical structure of wood components were analyzed by FTIR in order to understand the mechanism of degradation taking place due to heat treatment and artificial weathering. The results are compared with those of the untreated (kiln-dried) birch. The SEM analysis results show that the effect of weathering on the cell wall of the untreated birch surface is more than that of heat-treated samples. The FTIR spectroscopy results indicate that lignin is the most sensitive component of heat-treated birch to the weathering degradation process. Elimination of the amorphous and highly crystallised cellulose is observed for both heat-treated and untreated wood during weathering. It is also observed that heat treatment increases the lignin and crystallised cellulose contents, which to some extent protects heat-treated birch against degradation due to weathering.

  3. Irradiation effects in wood and cellulose

    International Nuclear Information System (INIS)

    McLaren, K.G.

    1976-01-01

    For cellulosic materials the predominant effect of high energy radiation is depolymerisation and degradation by chain scission, although there is some evidence that crosslinking or cellulose stabilisation can occur under certain conditions. When the cellulose is in the form of a natural product such as wood, where it is intimately associated with other polysaccharides, lignins, resins and gums, the effects of radiation can be significantly modified. Examination of cellulose produced by chemical pulping treatment of wood which had been previously given small doses of radiation, showed significant differences in the extent of cellulose depolymerisation with different wood species. The relevance of this work to the paper pulp industry will also be discussed. (author)

  4. Chemical oxidizers treat wastewater

    International Nuclear Information System (INIS)

    Stephenson, F.A.

    1992-01-01

    Based on the inherent benefits of these original oxidation systems, a second generation of advanced oxidation processes (AOPs) has emerged. These processes combine key features of the first generation technologies with more sophisticated advances in UV technology, such as the new pulsed plasma xenon flash lamp that emits high-energy, high-intensity UV light. Second generation systems can be equipped with a transmittance controller to prevent lamp fouling or scaling. The coupling of the first generation's technology with the new UV sources provides the rapid destruction of chlorinated and nonchlorinated hydrocarbons and humic acids from contaminated water. It also is effective in the treatment of organic laden gases from soil vapor extraction systems. AOPs may promote the oxidation (and subsequent removal) of heavy metals in water, though few data are available to verify the claim. The success of AOPs, including ozonation with UV light, hydrogen peroxide with UV light and advanced photolysis, is linked with their creation of hydroxyl-free radicals (OH·) that are effective in eliminating contaminants such as formaldehyde, chlorinated hydrocarbons and chlorinated solvents. Hydroxyl free-radicals are consumed in microsecond reactions and exhibit little substrate selectivity with the exception of halogenated alkanes such as chloroform. They can act as chain carriers. Given their power, hydroxyl free-radicals react with virtually all organic solutes more quickly (especially in water) than any other oxidants, except fluorine. There are projects that have found the combination of some AOPs to be the most efficient organic destruction techniques for the job. For example, one project successfully remediated groundwater contaminated with gasoline and Number 2 diesel through successive treatments of ozone and hydrogen peroxide with ultraviolet light, followed by granular activated carbon. 5 refs., 2 tabs

  5. The effect of some wood preservatives on the thermal degradation of Scots pine

    International Nuclear Information System (INIS)

    Tomak, Eylem D.; Baysal, Ergun; Peker, Huseyin

    2012-01-01

    Highlights: ► Scots pine samples were impregnated with 10 commercial wood preservatives. ► Thermal degradation of wood was evaluated by TG, DTG and DTA. ► The thermal behavior of treated wood differed from that of untreated wood. ► Boron containing wood preservatives yielded more charcoal than other preservatives. ► Boric oxide and metal compounds in the formulations may affect char weight. - Abstract: Wood has been a structural material for many years; however, its ability to burn has limited its use in some applications. This study aims to evaluate the effect of commercial wood preservatives having concentration of 4% on the thermal behavior of Scots pine wood, and compare the fire retardant effectiveness of these preservatives with that of boron compounds. Thermal degradation of treated and untreated wood samples was evaluated by thermogravimetry (TG), differential thermogravimetry (DTG) and differential thermal analysis (DTA). Thermal behavior of treated wood differed from thermal behavior of untreated wood in terms of a high char yield. Results showed that weight loss of wood reduced while char yield increased in the charring phase of the pyrolysis in the boron containing preservative treated wood accompanying with pyrolysis temperature lowered. The highest char yield was obtained from the samples treated with disodium octaborate tetrahydrate in the all treated groups.

  6. The effect of some wood preservatives on the thermal degradation of Scots pine

    Energy Technology Data Exchange (ETDEWEB)

    Tomak, Eylem D., E-mail: eylemdizman@yahoo.com [Karadeniz Technical University, Faculty of Forestry, Forest Industrial Engineering Department, 61080 Trabzon (Turkey); Baysal, Ergun, E-mail: bergun@mu.edu.tr [Mugla University, Faculty of Technology, Department of Wood Science and Technology, Kotekli, 48000 Mugla (Turkey); Peker, Huseyin, E-mail: peker100@hotmail.com [Artvin Coruh University, Faculty of Forestry, Forest Industrial Engineering Department, 06100 Artvin (Turkey)

    2012-11-10

    Highlights: Black-Right-Pointing-Pointer Scots pine samples were impregnated with 10 commercial wood preservatives. Black-Right-Pointing-Pointer Thermal degradation of wood was evaluated by TG, DTG and DTA. Black-Right-Pointing-Pointer The thermal behavior of treated wood differed from that of untreated wood. Black-Right-Pointing-Pointer Boron containing wood preservatives yielded more charcoal than other preservatives. Black-Right-Pointing-Pointer Boric oxide and metal compounds in the formulations may affect char weight. - Abstract: Wood has been a structural material for many years; however, its ability to burn has limited its use in some applications. This study aims to evaluate the effect of commercial wood preservatives having concentration of 4% on the thermal behavior of Scots pine wood, and compare the fire retardant effectiveness of these preservatives with that of boron compounds. Thermal degradation of treated and untreated wood samples was evaluated by thermogravimetry (TG), differential thermogravimetry (DTG) and differential thermal analysis (DTA). Thermal behavior of treated wood differed from thermal behavior of untreated wood in terms of a high char yield. Results showed that weight loss of wood reduced while char yield increased in the charring phase of the pyrolysis in the boron containing preservative treated wood accompanying with pyrolysis temperature lowered. The highest char yield was obtained from the samples treated with disodium octaborate tetrahydrate in the all treated groups.

  7. Wood-plastic combination

    International Nuclear Information System (INIS)

    Schaudy, R.

    1978-02-01

    A review on wood-plastic combinations is given including the production (wood and plastic component, radiation hardening, curing), the obtained properties, present applications and prospects for the future of these materials. (author)

  8. Mechanics of Wood Machining

    CERN Document Server

    Csanády, Etele

    2013-01-01

    Wood is one of the most valuable materials for mankind, and since our earliest days wood materials have been widely used. Today we have modern woodworking machine and tools; however, the raw wood materials available are continuously declining. Therefore we are forced to use this precious material more economically, reducing waste wherever possible. This new textbook on the “Mechanics of Wood Machining” combines the quantitative, mathematical analysis of the mechanisms of wood processing with practical recommendations and solutions. Bringing together materials from many sources, the book contains new theoretical and experimental approaches and offers a clear and systematic overview of the theory of wood cutting, thermal loading in wood-cutting tools, dynamic behaviour of tool and work piece, optimum choice of operational parameters and energy consumption, the wear process of the tools, and the general regularities of wood surface roughness. Diagrams are provided for the quick estimation of various process ...

  9. Wood's lamp examination

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003386.htm Wood lamp examination To use the sharing features on this page, please enable JavaScript. A Wood lamp examination is a test that uses ultraviolet ( ...

  10. Wood's lamp illumination (image)

    Science.gov (United States)

    A Wood's lamp emits ultraviolet light and can be a diagnostic aid in determining if someone has a fungal ... is an infection on the area where the Wood's lamp is illuminating, the area will fluoresce. Normally ...

  11. Robert Wood Johnson Foundation

    Science.gov (United States)

    Robert Wood Johnson Foundation Search How We Work Our Focus Areas About RWJF Search Menu How We Work Grants ... Learn more For Grantees and Grantseekers The Robert Wood Johnson Foundation funds a wide array of programs ...

  12. Characterization of volatile constituents in commercial oak wood chips.

    Science.gov (United States)

    Fernández de Simón, Brígida; Muiño, Iria; Cadahía, Estrella

    2010-09-08

    The volatile composition of the different oak wood pieces (chips of Quercus spp.) that can be found on the market to be used as alternatives to barrels for aging wines, as well as of chips of Quercus pyrenaica which are being introduced, was studied, evaluating the contents of volatile phenols, lactones, furanic compounds, pyranones, phenolic aldehydes, phenolic ketones, and others. In regard to the overall results, the volatile composition of these products varies widely and has not been clearly laid out according to either the oak species or the wood toasting intensity. Taking into account that the different characteristics of alternatives to barrel products are reflected in the wine treated with them and that an oenological profile based on these variables (origin and toasting level) cannot be defined, only an appropriate chemical analysis would reveal the quality of alternative-to-barrel products and allow us to attempt to foresee its effects on the chemical and organoleptic characteristics of the wines treated with them. On the other hand, the Q. pyrenaica alternative products are very similar to those of other species, with some aromatic particularities, such as their high levels of furanic compounds, eugenol, Furaneol, and cis-whiskylactone, and low levels of vanillin.

  13. Composite structure of wood cells in petrified wood

    International Nuclear Information System (INIS)

    Nowak, Jakub; Florek, Marek; Kwiatek, Wojciech; Lekki, Janusz; Chevallier, Pierre; Zieba, Emil; Mestres, Narcis; Dutkiewicz, E.M.; Kuczumow, Andrzej

    2005-01-01

    Special kinds of petrified wood of complex structure were investigated. All the samples were composed of at least two different inorganic substances. The original cell structure was preserved in each case. The remnants of the original biological material were detected in some locations, especially in the cell walls. The complex inorganic structure was superimposed on the remnant organic network. The first inorganic component was located in the lumena (l.) of the cells while another one in the walls (w.) of the cells. The investigated arrangements were as follows: calcite (l.)-goethite-hematite (w.)-wood from Dunarobba, Italy; pyrite (l.)-calcite (w.)-wood from Lukow, Poland; goethite (l.)-silica (w.)-wood from Kwaczala, Poland. The inorganic composition was analysed and spatially located by the use of three spectral methods: electron microprobe, X-ray synchrotron-based microprobe, μ-PIXE microprobe. The accurate mappings presenting 2D distribution of the chemical species were presented for each case. Trace elements were detected and correlated with the distribution of the main elements. In addition, the identification of phases was done by the use of μ-Raman and μ-XRD techniques for selected and representative points. The possible mechanisms of the described arrangements are considered. The potential synthesis of similar structures and their possible applications are suggested

  14. Composite structure of wood cells in petrified wood

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Jakub [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland); Florek, Marek [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland); Kwiatek, Wojciech [Institute of Nuclear Physics, Department of Nuclear Spectroscopy, 31-342 Cracow (Poland); Lekki, Janusz [Institute of Nuclear Physics, Department of Nuclear Spectroscopy, 31-342 Cracow (Poland); Chevallier, Pierre [LPS, CEN Saclay et LURE, Universite Paris-Sud, Bat 209D, F-91405 Orsay (France); Zieba, Emil [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland); Mestres, Narcis [Institut de Ciencia de Materials de Barcelona (ICMAB), Campus de la UAB, E-08193-Bellaterra (Spain); Dutkiewicz, E.M. [Institute of Nuclear Physics, Department of Nuclear Spectroscopy, 31-342 Cracow (Poland); Kuczumow, Andrzej [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland)

    2005-04-28

    Special kinds of petrified wood of complex structure were investigated. All the samples were composed of at least two different inorganic substances. The original cell structure was preserved in each case. The remnants of the original biological material were detected in some locations, especially in the cell walls. The complex inorganic structure was superimposed on the remnant organic network. The first inorganic component was located in the lumena (l.) of the cells while another one in the walls (w.) of the cells. The investigated arrangements were as follows: calcite (l.)-goethite-hematite (w.)-wood from Dunarobba, Italy; pyrite (l.)-calcite (w.)-wood from Lukow, Poland; goethite (l.)-silica (w.)-wood from Kwaczala, Poland. The inorganic composition was analysed and spatially located by the use of three spectral methods: electron microprobe, X-ray synchrotron-based microprobe, {mu}-PIXE microprobe. The accurate mappings presenting 2D distribution of the chemical species were presented for each case. Trace elements were detected and correlated with the distribution of the main elements. In addition, the identification of phases was done by the use of {mu}-Raman and {mu}-XRD techniques for selected and representative points. The possible mechanisms of the described arrangements are considered. The potential synthesis of similar structures and their possible applications are suggested.

  15. Non_standard Wood

    DEFF Research Database (Denmark)

    Tamke, Martin

    . Using parametric design tools and computer controlled production facilities Copenhagens Centre for IT and Architecture undertook a practice based research into performance based non-standard element design and mass customization techniques. In close cooperation with wood construction software......, but the integration of traditional wood craft techniques. The extensive use of self adjusting, load bearing wood-wood joints contributed to ease in production and assembly of a performance based architecture....

  16. Evaluation of wood species and preservatives for WisDOT sign posts.

    Science.gov (United States)

    2013-10-01

    The Wisconsin Department of Transportation (WisDOT) uses preservative-treated wood posts for much of the signage along state highways because wood is relatively inexpensive, easy to install, and has the necessary strength properties to tolerate typic...

  17. Evaluation of wood species and preservatives for Wisconsin transportation sign posts : [research brief].

    Science.gov (United States)

    2013-12-01

    The Wisconsin Department of Transportation (WisDOT) administers approximately 11,800 miles of state highways. It uses preservative-treated wood posts for much of the signage along these highways because wood is relatively inexpensive, easy to install...

  18. Biocompatibility and calcification of bovine pericardium employed for the construction of cardiac bioprostheses treated with different chemical crosslink methods.

    Science.gov (United States)

    Jorge-Herrero, Eduardo; Fonseca, Carlos; Barge, Alexandra P; Turnay, Javier; Olmo, Nieves; Fernández, Pilar; Lizarbe, María A; García Páez, José M

    2010-05-01

    The use of biological materials in the construction of bioprostheses requires the application of different chemical procedures to improve the durability of the material without producing any undesirable effects. A number of crosslinking methods have been tested in biological tissues composed mainly of collagen. The aim of this study was to evaluate the in vitro biocompatibility, the mechanical properties, and in vivo calcification of chemically modified bovine pericardium using glutaraldehyde acetals (GAAs) in comparison with glutaraldehyde (GA) treatment. Homsy's tests showed that the most cytotoxic treatment is GA whereas GAA treatments showed lower cytotoxicity. Regarding the mechanical properties of the modified materials, no significant differences in stress at rupture were detected among the different treatments. Zeta-Potential showed higher negative values for GA treatment (-4.9 +/- 0.6 mV) compared with GAA-0.625% (-2.2 +/- 0.5 mV) and GAA-1% (-2.2 +/- 0.4 mV), which presented values similar to native tissue. Similar results were obtained for calcium permeability coefficients which showed the highest values for GA treatment (0.12 +/- 0.02 mm(2)/min), being significantly lower for GAA treatments or non-crosslinked pericardium. These results confirmed the higher propensity of the GA-treated tissues for attraction of calcium cations and were in good agreement with the calcification degree obtained after 60 days implantation into young rats, which was significantly higher for the GA group (22.70 +/- 20.80 mg/g dry tissue) compared with GAA-0.625% and GAA-1% groups (0.49 +/- 0.28 mg/g dry tissue and 3.51 +/- 3.27 mg/g dry tissue, respectively; P alternative to GA treatment.

  19. Impact of watering with UV-LED-treated wastewater on microbial and physico-chemical parameters of soil.

    Science.gov (United States)

    Chevremont, A-C; Boudenne, J-L; Coulomb, B; Farnet, A-M

    2013-04-15

    Advanced oxidation processes based on UV radiations have been shown to be a promising wastewater disinfection technology. The UV-LED system involves innovative materials and could be an advantageous alternative to mercury-vapor lamps. The use of the UV-LED system results in good water quality meeting the legislative requirements relating to wastewater reuse for irrigation. The aim of this study was to investigate the impact of watering with UV-LED treated wastewaters (UV-LED WW) on soil parameters. Solid-state ¹³C NMR shows that watering with UV-LED WW do not change the chemical composition of soil organic matter compared to soil watered with potable water. Regarding microbiological parameters, laccase, cellulase, protease and urease activities increase in soils watered with UV-LED WW which means that organic matter brought by the effluent is actively degraded by soil microorganisms. The functional diversity of soil microorganisms is not affected by watering with UV-LED WW when it is altered by 4 and 8 months of watering with wastewater (WW). After 12 months, functional diversity is similar regardless of the water used for watering. The persistence of faecal indicator bacteria (coliform and enterococci) was also determined and watering with UV-LED WW does not increase their number nor their diversity unlike soils irrigated with activated sludge wastewater. The study of watering-soil microcosms with UV-LED WW indicates that this system seems to be a promising alternative to the UV-lamp-treated wastewaters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Sensory and chemical assessment of silver pomfret (Pampus argenteus treated with Ginkgo biloba leaf extract treatment during storage in ice

    Directory of Open Access Journals (Sweden)

    Weiqing Lan

    2018-01-01

    Full Text Available This study investigated the physical (L*, a*, b*, texture profile analyses, pH, chemical (TVB-N, K value and TBA, microbiological, amino acid content, and flavor effects that Gingko biloba leaf extract (GBLE had on silver pomfret (Pampus argenteus stored at 4 ± 1 °C in ice for 18 days. Fresh pomfret samples were obtained directly from the local fish market and transported to the laboratory with ice immediately. After being gutted, washed, filleted and trimmed in a water-ice mixture, samples were treated with different concentrations of GBLE (0.0 mg/mL, 2.5 mg/mL, 5.0 mg/mL, 10.0 mg/mL and packaged in Polyethylene bag, then stored in a refrigerator at 4 ± 1 °C with ice. The results show that the shelf-life of untreated (0.0 mg/mL pomfret samples was 8–9 days compared to 14–15 days for the GBLE1 (2.5 mg/mL treated group. The assessment results showed that different concentrations of GBLE had variable effects on preserving the texture parameters of acceptability limit, inhibit lipid oxidation, protein degradation, and microorganism growth. 2.5 mg/mL of GBLE was the best for the preservation of pomfret during storage in ice. Therefore, there is potential use for GBLE as a preservative to extend the shelf-life of pomfret during chilled storage in ice.

  1. Soil-wood interactions

    NARCIS (Netherlands)

    Wal, van der Annemieke; klein Gunnewiek, Paulien; Boer, de Wietse

    2017-01-01

    Wood-inhabiting fungi may affect soil fungal communities directly underneath decaying wood via their exploratory hyphae. In addition, differences in wood leachates between decaying tree species may influence soil fungal communities. We determined the composition of fungi in 4-yr old decaying logs

  2. Wood thermoplastic composites

    Science.gov (United States)

    Daniel F. Caulfield; Craig Clemons; Roger M. Rowell

    2010-01-01

    The wood industry can expand into new sustainable markets with the formation of a new class of composites with the marriage of the wood industry and the plastics industry. The wood component, usually a flour or fiber, is combined with a thermoplastic to form an extrudable, injectable or thermoformable composite that can be used in many non-structural applications....

  3. Request for wood samples

    NARCIS (Netherlands)

    NN,

    1977-01-01

    In recent years the wood collection at the Rijksherbarium was greatly expanded following a renewed interest in wood anatomy as an aid for solving classification problems. Staff members of the Rijksherbarium added to the collection by taking interesting wood samples with them from their expeditions

  4. Extant contents of chromium, copper and arsenic in waste CCA-treated timber

    International Nuclear Information System (INIS)

    Chiba, Keiko; Uchida, Shinpei; Honma, Yoshinori; Sera, Koichiro; Saitoh, Katsumi

    2009-01-01

    The segregation and disposal of chromated copper arsenate (CCA)-treated wood waste when recycling building waste materials is a serious issue. We examined the contents of CCA preserved cedar timber by PIXE analysis. CCA preserved timber contained large amounts of these metals both on the surface and core of the wood. The ratio of chromium, copper and arsenic contained on the surface was 1:2:1, and in contrast, the ratio in the core was 1:1:2. In other words, the arsenic content was highest in the core. Moreover, the chemical form of arsenic in both parts of the wood was only inorganic arsenic; the same form of arsenic in preservative components known as carcinogenic substances. These findings mean that the complete separation of waste CCA preserved timber from construction and demolition wood is needed. (author)

  5. Construction of Hydrophobic Wood Surface and Mechanical Property of Wood Cell Wall on Nanoscale Modified by Dimethyldichlorosilane

    Science.gov (United States)

    Yang, Rui; Wang, Siqun; Zhou, Dingguo; Zhang, Jie; Lan, Ping; Jia, Chong

    2018-01-01

    Dimethyldichlorosilane was used to improve the hydrophobicity of wood surface. The water contact angle of the treated wood surface increased from 85° to 143°, which indicated increased hydrophobicity. The nanomechanical properties of the wood cell wall were evaluated using a nanoindentation test to analyse the hydrophobic mechanism on the nano scale. The elastic modulus of the cell wall was significantly affected by the concentration but the influence of treatment time is insignificant. The hardness of the cell wall for treated samples was significantly affected by both treatment time and concentration. The interaction between treatment time and concentration was extremely significant for the elastic modulus of the wood cell wall.

  6. Protective effect of conditioning agents on Afro-ethnic hair chemically treated with thioglycolate-based straightening emulsion.

    Science.gov (United States)

    Dias, Tania Cristina de Sá; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2008-06-01

    Straightening is a chemical process by which excessively curly hair is straightened in an irreversible way. Generally, products are formulated as emulsions with high pH value (9.0-12.0), which, after applied on hair, cause considerable damage, making it dry and fragile. This research work evaluated the protective effect of lauryl PEG/PPG-18/18 methicone, cyclopentasiloxane (and) PEG-12 dimethicone cross-polymer, jojoba oil, and aqua (and) cystine bis-PG propyl silanetriol, as conditioning agents, on Afro-ethnic hair locks treated with thioglycolate-based straightening emulsions by protein loss, combability, and traction to rupture. Standard Afro-ethnic hair locks were prepared following a protocol for straightening emulsion application. Considering the assays performed, the addition of conditioning agents to the straightening emulsion with ammonium thioglycolate benefited the hair fiber, thus diminishing protein loss, protecting the hair thread, and improving resistance to breakage. Jojoba oil and lauryl PEG/PPG-18/18 methicone were the conditioning agents that presented the best results. Straightening emulsions with ammonium thioglycolate containing aqua (and) cystine bis-PG propyl silanetriol and cyclopentasiloxane (and) PEG-12 dimethicone cross-polymer were the ones that provided higher breakage resistance of the thread.

  7. Chemical changes in carbon Nanotube-Nickel/Nickel Oxide Core/Shell nanoparticle heterostructures treated at high temperatures

    International Nuclear Information System (INIS)

    Chopra, Nitin; McWhinney, Hylton G.; Shi Wenwu

    2011-01-01

    Heterostructures composed of carbon nanotube (CNT) coated with Ni/NiO core/shell nanoparticles (denoted as CNC heterostructures) were synthesized in a wet-chemistry and single-step synthesis route involving direct nucleation of nanoparticles on CNT surface. Two different aspects of CNC heterostructures were studied here. First, it was observed that the nanoparticle coatings were more uniform on the as-produced and non-purified CNTs compared to purified (or acid treated) CNTs. These heterostructures were characterized using electron microscopy, Raman spectroscopy, and energy dispersive spectroscopy. Second, thermal stability of CNC heterostructures was studied by annealing them in N 2 -rich (O 2 -lean) environment between 125 and 750 deg. C for 1 h. A detailed X-ray photoelectron spectroscopy and Raman spectroscopy analysis was performed to evaluate the effects of annealing temperatures on chemical composition, phases, and stability of the heterostructures. It was observed that the CNTs present in the heterostructures completely decomposed and core Ni nanoparticle oxidized significantly between 600 and 750 deg. C. - Research Highlights: → Heterostructures composed of CNTs coated with Ni/NiO core/shell nanoparticles. → Poor nanoparticle coverage on purified CNT surface compared to non-purified CNTs. → CNTs in heterostructures decompose between 600 and 750 deg. C in N 2 -rich atmosphere. → Metallic species in heterostructures were oxidized at higher temperatures.

  8. Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites.

    Science.gov (United States)

    Poyraz, Bayram; Tozluoğlu, Ayhan; Candan, Zeki; Demir, Ahmet; Yavuz, Mustafa

    2017-11-01

    This study reports on the effects of organic polyvinyl alcohol (PVA) and inorganic silica polymer on properties of Celluclast-treated nanofibrillated cellulose composites. Nanofibrillated cellulose was isolated from Eucalyptus camaldulensis and prior to high-pressure homogenizing was pretreated with Celluclast enzyme in order to lower energy consumption. Three nanocomposite films were fabricated via the casting process: nanofibrillated cellulose (CNF), nanocellulose-PVA (CNF-P) and nanocellulose-silica (CNF-Si). Chemical characterization, crystallization and thermal stability were determined using FT-IR and TGA. Morphological alterations were monitored with SEM. The Young's and storage moduli of the nanocomposites were determined via a universal testing machine and DTMA. The real and imaginary parts of permittivity and electric modulus were evaluated using an impedance analyzer. The crystallinity values of the nanocomposites calculated from the FT-IR were in agreement with the TGA results, showing that the lowest crystallinity value was in the CNF-Si. The CNF-P displayed the highest tensile strength. At a high temperature interval, the storage modulus of the CNF-Si was greater than that of the CNF or CNF-P. The CNF-Si also exhibited a completed singular relaxation process, while the CNF and the CNF-P processes were uncompleted. Consequently, in terms of industrial applications, although the CNF-P composite had mechanical advantages, the CNF-Si composite displayed the best thermo-mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cooling tower wood sampling and analyses: A case study

    International Nuclear Information System (INIS)

    Haymore, J.L.

    1985-01-01

    Extensive wood sampling and analyses programs were initiated on crossflow and counterflow cooling towers that have been in service since 1951 and 1955, respectively. Wood samples were taken from all areas of the towers and were subjected to biological, chemical and physical tests. The tests and results for the analyses are discussed. The results indicate the degree of wood deterioration, and areas of the towers which experience the most advanced degree of degradation

  10. Wood quality changes caused by mineral fertilization

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Sette Jr

    2014-06-01

    Full Text Available The diverse and important use of wood from fast growth eucalyptus plantations requires the analysis of the effect of mineral fertilizers on wood quality. The objective of this study was to evaluate the anatomical characteristics and wood density from Eucalyptus grandis trees (3 m x 2 m spacing fertilized with potassium and sodium (at planting, 6 th and 12th month. Fifteen (15 6 years old eucalyptus trees were selected (5 trees/treatment, cut and wood samples at DBH (1,3 m were taken for anatomical characteristics (fiber and vessels and wood density analysis. Results showed that eucalyptus trees treated with mineral fertilizers did not show significant alteration in average wood density, with radial profile model common to all three treatments, characterized by a values increase in the region next to the pith, toward to bark. Mineral fertilization influenced wood anatomical characteristics: treatment with sodium was characterized by thinner walls and lumen larger diameter; in treatment with potassium, larger vessels were detected.

  11. Protection of Wood from Microorganisms by Laccase-Catalyzed Iodination

    Science.gov (United States)

    Engel, J.; Thöny-Meyer, L.; Schwarze, F. W. M. R.; Ihssen, J.

    2012-01-01

    In the present work, Norway spruce wood (Picea abies L.) was reacted with a commercial Trametes versicolor laccase in the presence of potassium iodide salt or the phenolic compounds thymol and isoeugenol to impart an antimicrobial property to the wood surface. In order to assess the efficacy of the wood treatment, a leaching of the iodinated and polymerized wood and two biotests including bacteria, a yeast, blue stain fungi, and wood decay fungi were performed. After laccase-catalyzed oxidation of the phenols, the antimicrobial effect was significantly reduced. In contrast, the enzymatic oxidation of iodide (I−) to iodine (I2) in the presence of wood led to an enhanced resistance of the wood surface against all microorganisms, even after exposure to leaching. The efficiency of the enzymatic wood iodination was comparable to that of a chemical wood preservative, VP 7/260a. The modification of the lignocellulose by the laccase-catalyzed iodination was assessed by the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The intensities of the selected lignin-associated bands and carbohydrate reference bands were analyzed, and the results indicated a structural change in the lignin matrix. The results suggest that the laccase-catalyzed iodination of the wood surface presents an efficient and ecofriendly method for wood protection. PMID:22865075

  12. X-ray initiated polymerization of wood impregnants

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Marshall R.; Galloway, Richard A. [IBA Industrial, Inc., Edgewood, NY (United States); Berejka, Anthony J. [Ionicorp, Huntington, NY 11743 (United States)], E-mail: berejka@msn.com; Montoney, Daniel [Strathmore Products, Syracuse, NY (United States); Driscoll, Mark; Smith, Leonard; Scott Larsen, L. [State University of New York, SUNY-ESF, Syracuse, NY (United States)

    2009-07-15

    X-rays, derived from a high energy, high-current electron beam (EB), initiated in-situ polymerization of a unique class of monomers that were found to penetrate the cell walls of wood. X-rays initiated an auto-catalytic acrylic polymerization and penetrated through thick pieces of wood. The final cured product having the polymerizate, a polymer, both in the wood cell lumens and in the cell walls is called wood impregnated with a wood-polymer penetrant (WPP). The controlled lower dose rate of X-rays overcame disproportionation encountered when using higher dose-rate electron beam initiation. With X-rays, the in-situ polymerization took place in one exposure of modest dose. With EB, multiple passes were needed to avoid excessive heat build-up and monomer volatilization. Having entered the cell walls of the wood and then being polymerized within the cell walls, these radiation-cured unique monomers imparted outstanding dimensional stability upon exposure of the impregnated wood to humidity cycling. The preferred monomer system was also chemically modified prior to impregnation with agents that would remain in the wood and prevent the growth of fungi and other microbials. This technique differs from historic uses of monomers that merely filled the lumens of the wood (historic wood-polymer composites), which are only suitable for indoor use. The WPP impregnated wood that was either X-ray cured or EB cured demonstrated enhanced structural properties, dimensional stability, and decay resistance.

  13. X-ray initiated polymerization of wood impregnants

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Galloway, Richard A.; Berejka, Anthony J.; Montoney, Daniel; Driscoll, Mark; Smith, Leonard; Scott Larsen, L.

    2009-01-01

    X-rays, derived from a high energy, high-current electron beam (EB), initiated in-situ polymerization of a unique class of monomers that were found to penetrate the cell walls of wood. X-rays initiated an auto-catalytic acrylic polymerization and penetrated through thick pieces of wood. The final cured product having the polymerizate, a polymer, both in the wood cell lumens and in the cell walls is called wood impregnated with a wood-polymer penetrant (WPP). The controlled lower dose rate of X-rays overcame disproportionation encountered when using higher dose-rate electron beam initiation. With X-rays, the in-situ polymerization took place in one exposure of modest dose. With EB, multiple passes were needed to avoid excessive heat build-up and monomer volatilization. Having entered the cell walls of the wood and then being polymerized within the cell walls, these radiation-cured unique monomers imparted outstanding dimensional stability upon exposure of the impregnated wood to humidity cycling. The preferred monomer system was also chemically modified prior to impregnation with agents that would remain in the wood and prevent the growth of fungi and other microbials. This technique differs from historic uses of monomers that merely filled the lumens of the wood (historic wood-polymer composites), which are only suitable for indoor use. The WPP impregnated wood that was either X-ray cured or EB cured demonstrated enhanced structural properties, dimensional stability, and decay resistance.

  14. Wood ethanol and synthetic natural gas pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-30

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs.

  15. Wood ethanol and synthetic natural gas pathways

    International Nuclear Information System (INIS)

    2006-01-01

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs

  16. State-of-the-art of the European regulation on wood wastes and wood ashes valorization. Synthesis

    International Nuclear Information System (INIS)

    Mousseau, S.

    2007-01-01

    This study has the objective of comparing the regulations of 10 European countries with that of France, in relation to the classification and recycling of wood waste, in particular lightly treated wood, as well as recycling of wood ash. The first part relating to wood waste presents a detailed analysis by country as well as a summary, on the one hand, of the various sectors for recycling waste wood and, on the other, the emission limits for their energy recovery. Generally, there is a distinction between waste covered by the incineration directive, and the others, without any particular category for lightly treated wood. However, recommendations emerge from this that are based essentially on the regulations or guidelines observed in Germany, Austria and the United Kingdom. The second part relating to wood ash also a presents a detailed analysis by country as well as a summary of the various sectors of recycling and limit values for spreading. Ash is generally considered as waste, and is recycled on a case-by case basis. Only Germany and Austria have clearly integrated wood ash in their regulatory framework. Overall this study shows the need for uniform regulation at European level, establishing environment requirements for recycling wood waste and wood ash, in order to encourage development of the use of biomass

  17. SimpleTreat 3.0: a model to predict the distribution and elimination of Chemicals by Sewage Treatment Plants

    NARCIS (Netherlands)

    Struijs J; ECO

    1996-01-01

    Dit rapport beschrijft het spreadsheet SimpelTreat 3.0 een model waarmee de distributie en eliminatie van chemicalien door een rioolwaterzuiveringsinstallatie (rwzi) kan worden voorspeld. SimpelTreat 3.0 is een verbeterde versie van SimpleTreat, dat ten behoeve van het Uniform

  18. Análise da madeira de Pinus oocarpa parte I: estudo dos constituintes macromoleculares e extrativos voláteis Chemical analysis of Pinus oocarpa wood part I: quantification of macromolecular components and volatile extractives

    Directory of Open Access Journals (Sweden)

    Sérgio Antônio Lemos de Morais

    2005-06-01

    Full Text Available Neste estudo foram analisados os principais componentes químicos da madeira de Pinus oocarpa, cultivado na região do cerrado. A composição química dessa madeira foi: 59,05% de a-celulose, 21,22% de hemiceluloses A e B, 25,18% de lignina, 2,78% de extrativos em diclorometano, 4,38% de extrativos em etanol:tolueno, 4,31% de extrativos em água quente e 1,26% de cinzas. O conteúdo de celulose foi relativamente elevado, indicando que essa madeira possui grande potencial para produção de pasta de celulose. Investigou-se, também, a composição dos extrativos. Os principais constituintes do extrato diclorometano dessa madeira foram os ácidos diterpênicos, além dos ácidos palmítico e oléico. No óleo essencial, extraído por aparelho de Clevenger, os principais componentes identificados foram aromadendreno, ledano, hexadecanal e ácido oléico.The chemical composition of Pinus oocarpa wood cultivated in the Brazilian cerrado was established. The obtained results were: a-cellulose (59.05%, hemicelluloses A and B (21.22%, lignin (25.18%, dichloromethane extractives (2.78%, ethanol:toluene extractives (4.38%, hot water extractives (4.31% and ash (1.26%. The cellulose content was high. This result opens perspectives for using Pinus oocarpa wood in pulp and paper industries. Most of the dichloromethane extractives were diterpenic, palmitic and oleic acids. The volatile composition, obtained by means of the Clevenger method followed by GC-MS analysis was constituted mainly by aromadendrene, ledane, hexadecanal and oleic acid.

  19. Enhancing durability of wood-based composites with nanotechnology

    Science.gov (United States)

    Carol Clausen

    2012-01-01

    Wood protection systems are needed for engineered composite products that are susceptible to moisture and biodeterioration. Protection systems using nano-materials are being developed to enhance the durability of wood-based composites through improved resistance to biodeterioration, reduced environmental impact from chemical leaching, and improved resistance to...

  20. Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers

    Science.gov (United States)

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Daniel J. Yelle; Gisela Buschle-Diller

    2011-01-01

    Nanoreinforced hydrogels with a unique network structure were prepared from wood cellulose whiskers coated with chemically modified wood hemicelluloses. The hemicelluloses were modified with 2-hydroxyethylmethacrylate prior to adsorption onto the cellulose whiskers in aqueous medium. Synthesis of the hydrogels was accomplished by in situ radical polymerization of the...

  1. Cone calorimeter tests of wood-based decking materials

    Science.gov (United States)

    Robert H. White; Mark A. Dietenberger; Nicole M. Stark

    2007-01-01

    New technologies in building materials have resulted in the use of a wide variety of materials in decks. As part of our effort to address fire concerns in the wildland-urban interface, the Forest Products Laboratory has been examining the fire performance of decking products. In addition to preservative-treated wood, decking products include wood-plastic composites and...

  2. Many Roles of Wood Adhesives

    Science.gov (United States)

    Charles R. Frihart

    2014-01-01

    Although wood bonding is one of the oldest applications of adhesives, going back to early recorded history (1), some aspects of wood bonds are still not fully understood. Most books in the general area of adhesives and adhesion do not cover wood bonding. However, a clearer understanding of wood bonding and wood adhesives can lead to improved products. This is important...

  3. Urban Wood Waste Resource Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.

    1998-11-20

    This study collected and analyzed data on urban wood waste resources in 30 randomly selected metropolitan areas in the United States. Three major categories wood wastes disposed with, or recovered from, the municipal solid waste stream; industrial wood wastes such as wood scraps and sawdust from pallet recycling, woodworking shops, and lumberyards; and wood in construction/demolition and land clearing debris.

  4. Controversy. The wood war

    International Nuclear Information System (INIS)

    James, O.

    2010-01-01

    The author comments the conflict emerging in France between industries exploiting wood for construction and those exploiting it as a heating material for power generation. The first ones accuse the others to steal their raw material, to pull the prices up, and to destabilize the sector. This conflict takes place notably around sawmill wastes which are used either by wood panel fabricators or by wood pellets producers. Both sectors are claiming they are creating more jobs than the other. The French forest indeed offers good opportunities for both sectors, but other countries which are lacking forest surfaces, are buying wood in France. Several issues are matter of discussion: burning wood seems to go against the reduction of greenhouse gas emissions, subsidies awarded to big heater projects. The situation of the wood sector in Austria, Finland and Poland is briefly presented

  5. Chemical compounds in teak

    Directory of Open Access Journals (Sweden)

    Fernanda Viana da Silva Leonardo

    2015-09-01

    Full Text Available Quinone compounds are largely generated at extractive fraction of the woods in a complex and variable biological system. The literature has indications for many segments from food industry to pharmaceutical industry. Within the field of industrial use of wood, they are less desirable since they are treated only as incidental substances in production strings of pulp, paper, charcoal, and sawmill. In spite of its small amount, compared to other chemical compounds called essential, these substances have received special attention from researchers revealing a diverse range of offerings to market products textiles, pharmaceuticals, colorants, and other polymers, for which are being tested and employed. Quinones are found in fungi, lichens, and mostly in higher plants. Tectona grandis, usually called teak, is able to biosynthesize anthraquinones, which is a quinone compound, byproduct of secondary metabolism. This species provides wood that is much prized in the furniture sector and can also be exploited for metabolites to supply the market in quinone compounds and commercial development of new technologies, adding value to the plantations of this species within our country.

  6. Chapter 9: Wood Energy

    Science.gov (United States)

    Francisco X. Aguilar; Karen Abt; Branko Glavonjic; Eugene Lopatin; Warren  Mabee

    2016-01-01

    The availabilty of information on wood energy continues to improve, particularly for commoditized woodfuels.  Wood energy consumption and production vary in the UNECE region because demand is strngly affected by weather and the prices of competing energy sources.  There has been an increase in wood energy in the power-and-heat sector in the EU28 and North American...

  7. Complex geometries in wood

    DEFF Research Database (Denmark)

    Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob

    2009-01-01

    The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners....

  8. Micronized copper wood preservatives: An efficiency and potential health risk assessment for copper-based nanoparticles

    International Nuclear Information System (INIS)

    Civardi, Chiara; Schwarze, Francis W.M.R.; Wick, Peter

    2015-01-01

    Copper (Cu) is an essential biocide for wood protection, but fails to protect wood against Cu-tolerant wood-destroying fungi. Recently Cu particles (size range: 1 nm–25 μm) were introduced to the wood preservation market. The new generation of preservatives with Cu-based nanoparticles (Cu-based NPs) is reputedly more efficient against wood-destroying fungi than conventional formulations. Therefore, it has the potential to become one of the largest end uses for wood products worldwide. However, during decomposition of treated wood Cu-based NPs and/or their derivate may accumulate in the mycelium of Cu-tolerant fungi and end up in their spores that are dispersed into the environment. Inhaled Cu-loaded spores can cause harm and could become a potential risk for human health. We collected evidence and discuss the implications of the release of Cu-based NPs by wood-destroying fungi and highlight the exposure pathways and subsequent magnitude of health impact. - Highlights: • We compared copper particulate wood preservatives with conventional ones. • We assessed the fungicidal activity of particulate copper wood preservatives. • We reviewed the Cu-tolerance mechanisms of some wood-destroying fungi. • Fungi colonizing wood treated with particulate copper may release Cu-loaded spores. - We assess the fungicidal activity of particulate copper wood preservatives and their possible release in the air by Cu-tolerant wood-destroying fungi

  9. Creosote treated timber in the Alaskan marine environment : Volume I.

    Science.gov (United States)

    2010-02-01

    ADOT&PF is responsible for many structures that incorporate wood pilings and other timber in Alaska waters. Most are treated with preservative to inhibit marine borers : that will quickly destroy unprotected wood. Creosote is generally the most econo...

  10. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  11. Moisture Transport in Wood

    DEFF Research Database (Denmark)

    Astrup, Thomas; Hansen, Kurt Kielsgaard; Hoffmeyer, Preben

    2005-01-01

    Modelling of moisture transport in wood is of great importance as most mechanical and physical properties of wood depend on moisture content. Moisture transport in porous materials is often described by Ficks second law, but several observations indicate that this does not apply very well to wood....... Recently at the Technical University of Denmark, Department of Civil Engineering, a new model for moisture transport in wood has been developed. The model divides the transport into two phases, namely water vapour in the cell lumens and bound water in the cell walls....

  12. Wood pellet seminar

    International Nuclear Information System (INIS)

    Aarniala, M.; Puhakka, A.

    2001-01-01

    The objective of the wood pellet seminar, arranged by OPET Finland and North Karelia Polytechnic, was to deliver information on wood pellets, pellet burners and boilers, heating systems and building, as well as on the activities of wood energy advisors. The first day of the seminar consisted of presentations of equipment and products, and of advisory desks for builders. The second day of the seminar consisted of presentations held by wood pellet experts. Pellet markets, the economy and production, the development of the pellet markets and their problems (in Austria), the economy of heating of real estates by different fuel alternatives, the production, delivery and marketing of wood pellets, the utilization of wood pellet in different utilization sites, the use of wood pellets in detached houses, pellet burners and fireplaces, and conversion of communal real estate houses to use wood pellets were discussed in the presentations. The presentations held in the third day discussed the utilization of wood pellets in power plants, the regional promotion of the production and the use of pellets. The seminar consisted also of visits to pellet manufacturing plant and two pellet burning heating plants

  13. Estimation of Corn Yield and Soil Nitrogen via Soil Electrical Conductivity Measurement Treated with Organic, Chemical and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    H. Khalilzade

    2016-02-01

    Full Text Available Introduction Around the world maize is the second crop with the most cultivated areas and amount of production, so as the most important strategic crop, have a special situation in policies, decision making, resources and inputs allocation. On the other side, negative environmental consequences of intensive consumption of agrochemicals resulted to change view concerning food production. One of the most important visions is sustainable production of enough food plus attention to social, economic and environmental aspects. Many researchers stated that the first step to achieve this goal is optimization and improvement of resources use efficiencies. According to little knowledge on relation between soil electrical conductivity and yield of maize, beside the environmental concerns about nitrogen consumption and need to replace chemical nitrogen by ecological inputs, this study designed and aimed to evaluate agroecological characteristics of corn and some soil characteristics as affected by application of organic and biological fertilizers under field conditions. Materials and Methods In order to probing the possibility of grain yield and soil nitrogen estimation via measurement of soil properties, a field experiment was conducted during growing season 2010 at Research Station, Ferdowsi University of Mashhad, Iran. A randomized complete block design (RCBD with three replications was used. Treatments included: 1- manure (30 ton ha-1, 2-vermicompost (10 ton ha-1, 3- nitroxin (containing Azotobacter sp. and Azospirillum sp., inoculation was done according to Kennedy et al., 4- nitrogen as urea (400 kg ha-1 and 5- control (without fertilizer. Studied traits were soil pH, soil EC, soil respiration rate, N content of soil and maize yield. Soil respiration rate was measured using equation 1: CO2= (V0- V× N×22 Equation 1 In which V0 is the volume of consumed acid for control treatment titration, V is of the volume of consumed acid for sample treatment

  14. GC-MS Characterizations of Termiticidal Heartwood Extractives from Wood Species Utilized in Pakistan

    Science.gov (United States)

    Mark Mankowski; Blossie Boyd; Barbar Hassan; Grant T. Kirker

    2016-01-01

    Wood species that exhibit innate tolerance to wood destroying organisms such as termites are considered to be naturally durable. This durability can, in part, be due to the complex chemical compounds in the heartwood of naturally durable wood species. We examined the effects of varying concentrations of heartwood extractives on the subterranean termite, ...

  15. A brief review of machine vision in the context of automated wood identification systems

    Science.gov (United States)

    John C. Hermanson; Alex C. Wiedenhoeft

    2011-01-01

    The need for accurate and rapid field identification of wood to combat illegal logging around the world is outpacing the ability to train personnel to perform this task. Despite increased interest in non-anatomical (DNA, spectroscopic, chemical) methods for wood identification, anatomical characteristics are the least labile data that can be extracted from solid wood...

  16. Use of wood ash in the treatment of high tannin sorghum for poultry ...

    African Journals Online (AJOL)

    A study was conducted to investigate the effects of wood ash treatment on the nutritional value of high tannin sorghum. High tannin sorghum was either soaked in wood ash slurry and then germinated for four days or soaked in wood ash extract and germinated for 28 hours or germinated after soaking in water. Chemical ...

  17. Preliminary studies of Brazilian wood using different radioisotopic sources

    International Nuclear Information System (INIS)

    Carvalho, Gilberto; Silva, Leonardo Gondim de Andrade e

    2013-01-01

    Due to availability and particular features, wood was one of the first materials used by mankind with a wide variety of applications. It can be used as raw material for paper and cellulose manufacturing; in industries such as chemical, naval, furniture, sports goods, toys, and musical instrument; in building construction and in the distribution of electric energy. Wood has been widely researched; therefore, wood researchers know that several aspects such as temperature, latitude, longitude, altitude, sunlight, soil, and rainfall index interfere with the growth of trees. This behavior explains why average physical-chemical properties are important when wood is studied. The majority of researchers consider density to be the most important wood property because of its straight relationship with the physical and mechanical properties of wood. There are three types of wood density: basic, apparent and green. The apparent density was used here at 12% of moisture content. In this study, four different types of wood were used: 'freijo', 'jequetiba', 'muiracatiara' and 'ipe'. For wood density determination by non-conventional method, Am-241, Ba-133 and Cs-137 radioisotopic sources; a NaI scintillation detector and a counter were used. The results demonstrated this technique to be quick and accurate. By considering the nuclear parameters obtained as half value layers and linear absorption coefficients, Cs-137 radioisotopic source demonstrated to be the best option to be used for inspection of the physical integrity of electric wooden poles and live trees for future works. (author)

  18. Pretreatment Characteristics of Waste Oak Wood by Ammonia Percolation

    Science.gov (United States)

    Kim, Jun-Seok; Kim, Hyunjoon; Lee, Jin-Suk; Lee, Joon-Pyo; Park, Soon-Chul

    A log of waste oak wood collected from a Korean mushroom farm has been tested for ammonia percolation pretreatment. The waste log has different physical characteristics from that of virgin oak wood. The density of the waste wood was 30% lower than that of virgin oak wood. However, there is little difference in the chemical compositions between the woods. Due to the difference in physical characteristics, the optimal pretreatment conditions were also quite different. While for waste oak the optimum temperature was determined to be 130°C, for virgin oak wood the optimum pretreatment was only achieved at 170°C. Presoaking for 12 h with ammonia solution before pretreatment was helpful to increase the delignification efficiency.

  19. From laboratory corrosion tests to a corrosion lifetime for wood fasteners : progress and challenges

    Science.gov (United States)

    Samuel L. Zelinka; Dominique Derome; Samuel V. Glass

    2010-01-01

    Determining a “corrosion-lifetime” for fasteners embedded in wood treated with recently adopted preservative systems depends upon successfully relating results of laboratory tests to in-service conditions. In contrast to laboratory tests where metal is embedded in wood at constant temperature and moisture content, the in-service temperature and moisture content of wood...

  20. Chemical and energetic characterization for utilization of thinning and slab wood from Australian red cedar Caracterização química e energética para aproveitamento da madeira de costaneira e desbaste de cedro australiano

    Directory of Open Access Journals (Sweden)

    Lina Bufalino

    2012-06-01

    Full Text Available

    This work aimed to quantify and compare chemical and energetic properties of Australian red cedar Toona ciliata MJ Roem var. australis (FV Muell. C. DC wood from thinning and primary sawing for reconstituted panel and energy production; and also to verify the efficiency of extractive removal by water treatments, in order to improve wood quality for particleboard production. Lignin, holocellulose, extractives, ash, carbon, hydrogen, oxygen, nitrogen and sulfur contents and higher heating value were determined. Two water treatments for extractive removal were performed: immersion in cold water for 24 hours and immersion in boiling water for 2 hours. Lower values of ash, holocellulose, hydrogen and nitrogen contents and higher contents of lignin, total extractives, hydrogen and nitrogen contents were found for wood from primary sawing residues. For other properties, the values were significantly equal. Australian red cedar wood presents high extractive content, being water pre-treatment necessary for the production of some particleboards. Higher heating values of materials indicate potential for energy production.

    doi: 10.4336/2012.pfb.32.70.13

    O objetivo desse trabalho foi quantificar e comparar as propriedades químicas e energéticas da madeira de cedro australiano Toona ciliata MJ Roem var. australis (FV Muell. C. DC proveniente de desbaste e desdobro para produção de painéis reconstituídos e energia, além de verificar a eficiência da remoção de extrativos por tratamentos em água para viabilizar a produção de painéis de partículas. Os teores de lignina, holocelulose, extrativos totais, cinzas, carbono, hidrogênio, oxigênio, nitrogênio, enxofre e poder calorífico superior foram determinados. Dois tratamentos em água para remoção de extrativos foram realizados nos materiais: imersão em água fria durante 24 horas e em água fervente durante 2 horas. Foram encontrados menores teores de cinzas, holocelulose

  1. Remarks on orthotropic elastic models applied to wood

    Directory of Open Access Journals (Sweden)

    Nilson Tadeu Mascia

    2006-09-01

    Full Text Available Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal, R( radial and T(tangential are coincident with the Cartesian axes (x, y, z, is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.

  2. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    Energy Technology Data Exchange (ETDEWEB)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by

  3. Radiation processing of wood-plastic composites

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1992-01-01

    There are three main types of radiation-processed composite material derived from plastics and fibrous natural polymers. The first are the monomer-impregnated, radiation-treated wood-plastic composites (WPC). They became a commercial success in the early 1970s. More recently, work has focused on improving the WPCs by creating in them interpenetrating network (IPN) systems by the use of appropriate multifunctional oligomers and monomers. The main kinetic features of radiation-initiated chain polymerization remain applicable even in impregnated wood. The second type are the plastics filled or reinforced with dispersed wood fiber or other cellulosics (WFRP). In their case, radiation processing offers a new opportunity to apply radiation-reactive adhesion promoters between wood or cellulosic fibers and the thermoplastic matrices. The third type are the laminar composites made by electron beam coating of wood-based agglomerate sheets and boards. This chapter reviews the industrial applications and the radiation processing of the three types of the wood-plastic composites and indicates future trends. (orig.)

  4. Host-cell reactivation of UV-irradiated and chemically-treated herpes simplex virus-1 by xeroderma pigmentosum, xp heterozygotes and normal skin fibroblasts

    International Nuclear Information System (INIS)

    Selsky, C.A.

    1978-01-01

    The host-cell reactivation of UV-irradiated and N-acetoxy-2-acetylamino-fluorene-treated herpes simplex virus type 1 strain MP was studied in normal and xeroderma pigmentosum human skin fibroblasts. Virus treated with either agent demonstrated lower survival in XP cells from complementation groups A, B, C and D than in normal fibroblasts. The relative reactivation ability of XP cells from the different genetic complementation groups was found to be the same for both irradiated and chemically treated virus. In addition, the inactivation kinetics for virus treated with either agent in the XP variant were comparable to that seen in normal skin fibroblasts. The addition of 2 or 4 mmoles caffeine to the post-infection assay medium had no effect on the inactivation kinetics of virus treated by either agent in the XP variant or in XP cells from the different genetic complementation groups. Treatment of the virus with nitrogen mustard resulted in equivalent survival in normal and XP genetic complementation group D cells. No apparent defect was observed in the ability of XP heterozygous skin fibroblasts to repair virus damaged with up to 100 μg N-acetoxy-2-acetylaminofluorene per ml. These findings indicate that the repair of UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated virus is accomplished by the same pathway or different pathways sharing a common intermediate step and that the excision defect of XP cells plays little if any role in the reactivation of nitrogen mustard treated virus. (Auth.)

  5. Modification of the original color of the Eucalyptus grandis wood by heat treatments

    Directory of Open Access Journals (Sweden)

    Rosilei Aparecida Garcia

    2014-09-01

    Full Text Available The objective of this study was to determine the modification of original color of Eucalyptus grandis Hill ex. Maiden wood after heat-treatment. Wood samples were heat-treated under different temperatures (180, 200, 215 and 230ºC and time conditions (15 minutes, 2 and 4 hours. Color analysis were performed on the CIE L*a*b* system by using a Color Eye XTH-X-Rite 200d spectrophotometer. All heat treatments promoted an alteration of the original color of wood. Heat-treated woods presented lower L* (lightness values than untreated wood (control, characterizing the wood darkness, mainly for more severe conditions of temperature and time. Chromatic coordinates (a* and b* showed different behaviors depending on the temperature-time combination. The modification of the original color of the wood allowed the creation of new color patterns, which can add greater value to the studied wood.

  6. BIOREMEDIATION TREATABILITY STUDIES OF CONTAMINATED SOILS AT WOOD PRESERVING SITES

    Science.gov (United States)

    Bioremediationis used frequently at sites contaminated with organic hazardous chemical where releases from processing vessels and the mismanagement of reagents and generated waste have contributed to significant impairment of the environment. At wood treater sites, process reagen...

  7. Specifications in the application form for environmental assessment of wood preservatives

    Energy Technology Data Exchange (ETDEWEB)

    Lucks, U J [ed.

    2000-09-01

    In 1990 the former Federal Health Office (Bundesgesundheitsamt) and the Federal Environmental Agency (Umweltbundesamt) jointly elaborated a catalogue of test requirements necessary for assessing the impact of wood preservatives on man and environment. Based on several years of experience, a revision was deemed necessary. Complying with the provisions of the Directive 98/8/EC of the European Parliament and the Council of 16 February 1998 concerning the placing of biocidal products on the market, which have to be transposed into national laws, the regulatory bodies BAM, BgVV and UBA, in cooperation with industry and academia (IUCT), developed an amended application form for wood preservatives. The provisions laid down there include different sets of data for wood preservatives, depending on the intended uses/hazard classes, e.g. physico-chemical and ecotoxicological properties, data on exposure, fate and behaviour in the environment and on waste management. The tests should be conducted according to standardized test protocols. Next to the list of data requirements explanations and justifications are given on why the data are needed and how they contribute to the risk assessment. Furthermore, recommendations are given on which test guidelines should preferably be followed to generate the data. In addition, annex I includes a proposal for a test guideline on how to screen leachates from preservative-treated wood surfaces for their ecotoxic potential to aquatic organisms. (orig.)

  8. Acute wood or coal exposure with carbon monoxide intoxication induces sister chromatid exchange

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, S.; Vatansever, S.; Cefle, K.; Palanduz, S.; Guler, K.; Erten, N.; Erk, O.; Karan, M.A.; Tascioglu, C. [University of Istanbul, Istanbul (Turkey). Istanbul Faculty of Medicine

    2002-07-01

    The object of this study was to investigate the genotoxic effect of acute overexposure to combustion products originating from coal or wood stoves in patients presenting with acute carbon monoxide intoxication. The authors analyzed the frequency of sister chromatid exchange and the carboxyhemoglobin concentration in 20 consecutive patients without a history of smoking or drug use who had been treated in the Emergency Care Unit of Istanbul Medical Faculty due to acute carbon monoxide intoxication. All of these cases were domestic accidents due to dysfunctioning coal or wood stoves. The results were compared with a control group of 20 nonsmoking, nondrug-using healthy individuals matched for age, sex, and absence of other chemical exposure. It was concluded that acute exposure to combustion products of wood or coal is genotoxic to DNA. Potential causes of genotoxicity include known mutagenic compounds present in coal or wood smoke and ash, oxygen radicals formed during combustion, as well as hypoxic and reperfusion injury mechanisms initiated by carbon monoxide intoxication.

  9. IN SITU BIOREMEDIATION STRATEGIES FOR ORGANIC WOOD PRESERVATIVES

    Science.gov (United States)

    Laboratory biotreatability studies evaluated the use of bioventing and biosparging plus groundwater circulation (UVB technology) for their potential abililty to treat soil and groundwater containing creosote and pentachlorophenol. Soils from two former wood-treatment facilities w...

  10. Possibilities of producing sundry wood-plastic articles by different methods

    International Nuclear Information System (INIS)

    Pesek, M.

    1978-01-01

    In making wood-plastic materials, i.e., the combination of wood and polymers, wood is impregnated by a polymerizable mixture; the incorporated mixture may be polymerized by ionizing radiation or by chemical initiation or by a combination of both. The advantages and drawbacks of the individual procedures are described. Examples are shown of the preparation of small wood-plastic articles, e.g., mosaic parquets, parts of music instruments, handles, etc., cured in a rotary curing container. (author)

  11. The wood, renewable energy

    International Nuclear Information System (INIS)

    Acket, C.

    2006-12-01

    This document evaluates the french forest situation and its future. Indeed, the wood energy constitutes in France the first renewable energy after the hydraulic. It presents the today situation of the french forest providing statistical data, evaluation of the energy estimation, the carbon fixation, the resources, the perspectives wood energy for 2050, the biofuels and an economic analysis. (A.L.B.)

  12. Heat sterilization of wood

    Science.gov (United States)

    Xiping Wang

    2010-01-01

    Two important questions should be considered in heat sterilizing solid wood materials: First, what temperature–time regime is required to kill a particular pest? Second, how much time is required to heat the center of any wood configuration to the kill temperature? The entomology research on the first question has facilitated the development of international standards...

  13. Wood thermoplastic composites

    Science.gov (United States)

    Daniel F. Caulfield; Craig Clemons; Rodney E. Jacobson; Roger M. Rowell

    2005-01-01

    The term “wood-plastic composites” refers to any number of composites that contain wood (of any form) and either thermoset or thermoplastic polymers. Thermosets or thermoset polymers are plastics that, once cured, cannot be remelted by heating. These include cured resins, such as epoxies and phenolics, plastics with which the forest products industry is most familiar (...

  14. Wood supply and demand

    Science.gov (United States)

    Peter J. Ince; David B. McKeever

    2011-01-01

    At times in history, there have been concerns that demand for wood (timber) would be greater than the ability to supply it, but that concern has recently dissipated. The wood supply and demand situation has changed because of market transitions, economic downturns, and continued forest growth. This article provides a concise overview of this change as it relates to the...

  15. Economy of wood supply

    International Nuclear Information System (INIS)

    Imponen, V.

    1993-01-01

    Research and development of wood fuels production was vigorous in the beginning of the 1980's. Techniques and working methods used in combined harvesting and transportation of energy and merchantable wood were developed in addition to separate energy wood delivery. After a ten year silent period the research on this field was started again. At present the underutilization of forest supplies and the environmental effects of energy production based on fossil fuels caused the rebeginning of the research. One alternative for reduction of the price of wood fuels at the utilization site is the integration of energy and merchantable wood deliveries together. Hence the harvesting and transportation devices can be operated effectively, and the organizational costs are decreased as well. The wood delivery costs consist of the stumpage price, the harvesting and transportation costs, and of general expenses. The stumpage price form the largest cost category (over 50 %) of the industrial merchantable wood delivery, and the harvesting and transportation costs in the case of thinningwood delivery. Forest transportation is the largest part of the delivery costs of logging residues. The general expenses, consisting of the management costs and the interest costs of the capital bound to the storages, form a remarkable cost category in delivery of low-rank wood for energy or conversion purposes. The costs caused by the harvesting of thinningwood, the logging residues, chipping and crushing, the lorry transportation are reviewed in this presentation

  16. How James Wood Works

    Science.gov (United States)

    Goldstein, Evan R., Comp.

    2008-01-01

    Reading through news-media clippings about James Wood, one might reasonably conclude that "pre-eminent critic" is his official job title. In fact, Wood is a staff writer for "The New Yorker" and a professor of the practice of literary criticism at Harvard University. But at a time when there is much hand-wringing about the death of the…

  17. Method of stabilizing wood

    International Nuclear Information System (INIS)

    Pesek, M.; Jarkovsky, J.

    1973-01-01

    Wood is impregnated with a mixture of a vinyl or an allyl monomer (20 - 90 wt. %) and unsaturated polyester resins. The impregnated wood is then exposed to ionizing radiation at doses of 0.1 to 20 Mrad at a temperature of 60 to 180 degC. (B.S.)

  18. Utilization of poplar wood sawdust for heavy metals removal from model solutions

    Directory of Open Access Journals (Sweden)

    Demcak Stefan

    2017-06-01

    Full Text Available Some kinds of natural organic materials have a potential for removal of heavy metal ions from wastewater. It is well known that cellulosic waste materials or by-products can be used as cheap adsorbents in chemical treatment process. In this paper, poplar wood sawdust were used for removal of Cu(II, Zn(II and Fe(II ions from model solutions with using the static and dynamic adsorption experiments. Infrared spectrometry of poplar wood sawdust confirmed the presence of the functional groups which correspond with hemicelluloses, cellulose and lignin. At static adsorption was achieved approximately of 80 % efficiency for all treated model solutions. Similar efficiency of the adsorption processes was reached after 5 min at dynamic condition. The highest efficiency of Cu(II removal (98 % was observed after 30 min of dynamic adsorption. Changes of pH values confirmed a mechanism of ion exchange on the beginning of the adsorption process.

  19. Physical-morphological and chemical changes leading to an increase in adhesion between plasma treated polyester fibres and a rubber matrix

    International Nuclear Information System (INIS)

    Krump, H.; Hudec, I.; Jasso, M.; Dayss, E.; Luyt, A.S.

    2006-01-01

    The effects of plasma treatment, used to increase adhesion strength between poly(ethylene terephtalate) (PET) fibres and a rubber matrix, were investigated and compared. Morphological changes as a result of atmospheric plasma treatment were observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Wettability analysis using a surface energy evaluation system (SEE system) suggested that the plasma treated fibre was more wetting towards a polar liquid. When treated, these fibres showed a new lamellar crystallization, as shown by a new melting peak using differential scanning calorimetry (DSC). X-ray photoelectron spectroscopy (XPS) has been used to study the chemical effect of inert (argon), active and reactive (nitrogen and oxygen) microwave-plasma treatments of a PET surface. Reactive oxygen plasma treatment by a de-convolution method shows new chemical species that drastically alter the chemical reactivity of the PET surface. These studies have also shown that the surface population of chemical species formed after microwave-plasma treatment is dependent on the plasma gas. All these changes cause better adhesion strength of the PET fibres to the rubber matrix

  20. Optical sensing method to analyze germination rate of Capsicum annum seeds treated with growth-promoting chemical compounds using optical coherence tomography

    Science.gov (United States)

    Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Kim, Pilun; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun

    2017-09-01

    Seed germination rate differs based on chemical treatments, and nondestructive measurements of germination rate have become an essential requirement in the field of agriculture. Seed scientists and other biologists are interested in optical sensing technologies-based biological discoveries due to nondestructive detection capability. Optical coherence tomography (OCT) has recently emerged as a powerful method for biological and plant material discoveries. We report an extended application of OCT by monitoring the germination rate acceleration of chemically primed seeds. To validate the versatility of the method, Capsicum annum seeds were primed using three chemical compounds: sterile distilled water (SDW), butandiol, and 1-hexadecene. Monitoring was performed using a 1310-nm swept source OCT system. The results confirmed more rapid morphological variations in the seeds treated with 1-hexadecene medium than the seeds treated with SDW and butandiol within 8 consecutive days. In addition, fresh weight measurements (gold standard) of seeds were monitored for 15 days, and the obtained results were correlated with the OCT results. Thus, such a method can be used in various agricultural fields, and OCT shows potential as a rigorous sensing method for selecting the optimal plant growth-promoting chemical compounds rapidly, when compared with the gold standard methods.