WorldWideScience

Sample records for chemically synthesized nanoscale

  1. Correlation between magnetic spin structure and the three-dimensional geometry in chemically synthesized nanoscale magnetite rings

    DEFF Research Database (Denmark)

    Eltschka, M.; Klaui, M.; Rudiger, U

    2008-01-01

    The correlation between magnetic spin structure and geometry in nanoscale chemically synthesized Fe3O4 rings has been investigated by transmission electron microscopy. We find primarily the flux closure vortex states but in rings with thickness variations, an effective stray field occurs. Using t....... The interaction between exchange coupled rings leads to antiparallel vortex states and extended onion states. (c) 2008 American Institute of Physics....

  2. Enhanced photoluminescence from ordered arrays of cadmium sulfide nanotubes synthesized using nanoscale chemical reactors.

    Science.gov (United States)

    Varghese, Arthur

    2014-06-01

    We report enhanced room temperature photoluminescence from ordered arrays of few micrometers long cadmium sulfide nanotubes fabricated using 'nanoscale chemical reactors' of porous alumina by a unique two-chamber synthesis without using any surfactants. Photoluminescence from these nanotubes is -20 times larger than that of nanocrystalline cadmium sulfide particles prepared by bulk mixing of the same reactants. However, we rule out any quantum size effect as a source of enhanced photoluminescence from these intentionally un-passivated nanotubes. We identify sulfur deficiency in these nanotubes and directional orientation of these ordered nanotube arrays as the main reason for its superior photoluminescence as compared to agglomerated nanocrystallites of CdS prepared by bulk mixing.

  3. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer N. [Univ. of California, San Diego, CA (United States); Wang, Joseph [Univ. of California, San Diego, CA (United States)

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  4. Nanoscale grain growth behaviour of CoAl intermetallic synthesized ...

    Indian Academy of Sciences (India)

    Grain growth behaviour of the nanocrystalline CoAl intermetallic compound synthesized by mechanical alloying has been studied by isothermal annealing at different temperatures and durations. X-ray diffraction method was employed to investigate structural evolutions during mechanical alloying and annealing processes.

  5. Alternative chemical-based synthesis routes and characterization of nano-scale particles

    Energy Technology Data Exchange (ETDEWEB)

    Brocchi, E.A. [Department of Material Science and Metallurgy, Catholic University of Rio de Janeiro, DCMM-PUC-RIO, R. Margues de S. Vicente 225, C.P 3890-Gavea, 22451-970 Rio de Janeiro (Brazil); Motta, M.S. [Department of Material Science and Metallurgy, Catholic University of Rio de Janeiro, DCMM-PUC-RIO, R. Margues de S. Vicente 225, C.P 3890-Gavea, 22451-970 Rio de Janeiro (Brazil); Solorzano, I.G. [Department of Material Science and Metallurgy, Catholic University of Rio de Janeiro, DCMM-PUC-RIO, R. Margues de S. Vicente 225, C.P 3890-Gavea, 22451-970 Rio de Janeiro (Brazil)]. E-mail: guilsol@dcmm.puc-rio.br; Jena, P.K. [Department of Material Science and Metallurgy, Catholic University of Rio de Janeiro, DCMM-PUC-RIO, R. Margues de S. Vicente 225, C.P 3890-Gavea, 22451-970 Rio de Janeiro (Brazil); Moura, F.J. [Department of Material Science and Metallurgy, Catholic University of Rio de Janeiro, DCMM-PUC-RIO, R. Margues de S. Vicente 225, C.P 3890-Gavea, 22451-970 Rio de Janeiro (Brazil)

    2004-09-25

    Different nano-scale particles have been synthesized by alternative routes: nitrates dehydratation and oxide, or co-formed oxides, reduction by hydrogen. Chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support the feasibility for obtaining single-phase oxides and co-formed two-phase oxides. In addition, the reduction reaction has been applied to successfully produce metal/ceramic nanocomposites. Structural characterization has been carried out by means of X-ray diffraction and, more extensively, transmission electron microscopy operating in conventional diffraction contrast mode (CTEM) and high-resolution mode (HRTEM). Nano-scale size distribution of oxide particles is well demonstrated together with their defect-free structure in the lower range, around 20 nm, size. Structural features related to the synthesized nano-composites are also presented.

  6. Alternative chemical-based synthesis routes and characterization of nano-scale particles

    International Nuclear Information System (INIS)

    Brocchi, E.A.; Motta, M.S.; Solorzano, I.G.; Jena, P.K.; Moura, F.J.

    2004-01-01

    Different nano-scale particles have been synthesized by alternative routes: nitrates dehydratation and oxide, or co-formed oxides, reduction by hydrogen. Chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support the feasibility for obtaining single-phase oxides and co-formed two-phase oxides. In addition, the reduction reaction has been applied to successfully produce metal/ceramic nanocomposites. Structural characterization has been carried out by means of X-ray diffraction and, more extensively, transmission electron microscopy operating in conventional diffraction contrast mode (CTEM) and high-resolution mode (HRTEM). Nano-scale size distribution of oxide particles is well demonstrated together with their defect-free structure in the lower range, around 20 nm, size. Structural features related to the synthesized nano-composites are also presented

  7. Sorption of mercury on chemically synthesized polyaniline

    International Nuclear Information System (INIS)

    Remya Devi, P.S.; Verma, R.; Sudersanan, M.

    2006-01-01

    Sorption of inorganic mercury (Hg 2+ ) and methyl mercury, on chemically synthesized polyaniline, in 0.1-10N HCl solutions has been studied. Hg 2+ is strongly sorbed at low acidities and the extent of sorption decreases with increase in acidity. The sorption of methyl mercury is very low in the HCl concentration range studied. Sorption of Hg 2+ on polyaniline in 0.1-10N LiCl and H 2 SO 4 solutions has also been studied. The analysis of the data indicates that the sorption of Hg 2+ depends on the degree of protonation of polyaniline and the nature of mercury(II) chloride complexes in solution. X-ray photoelectron spectroscopy analysis (XPS) of polyaniline sorbed with mercury show that mercury is bound as Hg 2+ . Sorbed mercury is quantitatively eluted from polyaniline with 0.5N HNO 3 . Polyaniline can be used for separation and pre-concentration of inorganic mercury from aqueous samples. (author)

  8. Harnessing microbial subsurface metal reduction activities to synthesize nanoscale cobalt ferrite with enhanced magnetic properties

    International Nuclear Information System (INIS)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-01-01

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe 2 O 4 ) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of ∼ 10 6 erg cm -3 can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than Fe into the structure

  9. Nanoscale nuclear magnetic resonance with chemical resolution

    Science.gov (United States)

    Aslam, Nabeel; Pfender, Matthias; Neumann, Philipp; Reuter, Rolf; Zappe, Andrea; Fávaro de Oliveira, Felipe; Denisenko, Andrej; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Wrachtrup, Jörg

    2017-07-01

    Nuclear magnetic resonance (NMR) spectroscopy is a key analytical technique in chemistry, biology, and medicine. However, conventional NMR spectroscopy requires an at least nanoliter-sized sample volume to achieve sufficient signal. We combined the use of a quantum memory and high magnetic fields with a dedicated quantum sensor based on nitrogen vacancy centers in diamond to achieve chemical shift resolution in 1H and 19F NMR spectroscopy of 20-zeptoliter sample volumes. We demonstrate the application of NMR pulse sequences to achieve homonuclear decoupling and spin diffusion measurements. The best measured NMR linewidth of a liquid sample was ~1 part per million, mainly limited by molecular diffusion. To mitigate the influence of diffusion, we performed high-resolution solid-state NMR by applying homonuclear decoupling and achieved a 20-fold narrowing of the NMR linewidth.

  10. Physical controls on directed virus assembly at nanoscale chemical templates

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, C L; Chung, S; Chatterji, A; Lin, T; Johnson, J E; Hok, S; Perkins, J; De Yoreo, J

    2006-05-10

    Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In-situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, and drove 1D and 2D condensation at subcritical volume fractions. The growth kinetics followed a t{sup 1/2} law controlled by the slow diffusion of viruses. The lateral expansion of virus clusters that initially form on the 1D templates following introduction of polyethylene glycol (PEG) into the solution suggests a significant role for weak interaction.

  11. Viable chemical approach for patterning nanoscale magnetoresistive random access memory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taeseung; Kim, Younghee; Chen, Jack Kun-Chieh; Chang, Jane P., E-mail: jpchang@seas.ucla.edu [Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2015-03-15

    A reactive ion etching process with alternating Cl{sub 2} and H{sub 2} exposures has been shown to chemically etch CoFe film that is an integral component in magnetoresistive random access memory (MRAM). Starting with systematic thermodynamic calculations assessing various chemistries and reaction pathways leading to the highest possible vapor pressure of the etch products reactions, the potential chemical combinations were verified by etch rate investigation and surface chemistry analysis in plasma treated CoFe films. An ∼20% enhancement in etch rate was observed with the alternating use of Cl{sub 2} and H{sub 2} plasmas, in comparison with the use of only Cl{sub 2} plasma. This chemical combination was effective in removing metal chloride layers, thus maintaining the desired magnetic properties of the CoFe films. Scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy showed visually and spectroscopically that the metal chloride layers generated by Cl{sub 2} plasma were eliminated with H{sub 2} plasma to yield a clean etch profile. This work suggests that the selected chemistries can be used to etch magnetic metal alloys with a smooth etch profile and this general strategy can be applied to design chemically based etch processes to enable the fabrication of highly integrated nanoscale MRAM devices.

  12. Properties of Chemically Synthesized Nanostructured Copper (II ...

    African Journals Online (AJOL)

    Wet chemical method has been successfully used in preparation of Copper (II) Oxide Thin Film by spin coating on glass substrates, at an annealing temperature of 600°C for 1 hour in air. It has high absorbency within visible region wavelength 400 – 700 nm of the electromagnetic wave, making it a suitable absorber in the ...

  13. Probing Structural and Catalytic Characteristics of Galactose Oxidase Confined in Nanoscale Chemical Environments

    DEFF Research Database (Denmark)

    Ikemoto, Hideki; Mossin, Susanne; Ulstrup, Jens

    2014-01-01

    Galactose oxidase (GAOX) is a special metalloenzyme in terms of its active site structure and catalytic mechanisms. This work reports a study where the enzyme confined in a nanoscale chemical environment provided by mesoporous silicas (MPS) is probed. Two types of MPS, i.e. SBA-15 and MCF, were...... synthesized and used to accommodate GAOX. SBA-15-ROD is rod-shaped particles with periodically ordered nanopores (9.5 nm), while MCF has a mesocellular foam-like structure with randomly distributed pores (23 nm) interconnected by smaller windows (8.8 nm). GAOX is non-covalently confined in SBA-15- ROD, while...... it is covalently immobilized in MCF. Relatively high loadings in the range of 50–60 mg g1 are achieved. Electron spin resonance (ESR) spectroscopy is used to probe the active site structures of the enzyme. The similar ESR spectra observed for GAOX in the free and immobilized states support that the electronic...

  14. In Vitro Biocompatibility of Nanoscale Zerovalent Iron Particles (NZVI) Synthesized using tea-polyphenols.

    Science.gov (United States)

    A “green” protocol was used for the rapid generation of nanoscale zerovalent iron (NZVI) particles using tea polyphenols. The NZVI particles were subsequently examined for in vitro biocompatibility using the human keratinocyte cell (HaCaT) line as a skin exposure model. The cell...

  15. Characterization of chemically synthesized CdS nanoparticles

    Indian Academy of Sciences (India)

    Cadmium sulphide is an important semiconductor and has many optoelectronic applications including solar cells, photodiodes, light emitting diodes, nonlinear op- tics and hetergeneous photocatalysis. In the present study we have synthesized. CdS nanoparticles of size ~2.6 nm through chemical precipitation technique.

  16. Chemically synthesized metal-oxide-metal segmented nanowires with high ferroelectric response

    Energy Technology Data Exchange (ETDEWEB)

    Herderick, Edward D; Padture, Nitin P [Department of Materials Science and Engineering, Center for Emergent Materials, Ohio State University, Columbus, OH 43210 (United States); Polomoff, Nicholas A; Huey, Bryan D, E-mail: padture.1@osu.edu [Department of Chemical, Materials, and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States)

    2010-08-20

    A chemical synthesis method is presented for the fabrication of high-definition segmented metal-oxide-metal (MOM) nanowires in two different ferroelectric oxide systems: Au-BaTiO{sub 3}-Au and Au-PbTiO{sub 3}-Au. This method entails electrodeposition of segmented nanowires of Au-TiO{sub 2}-Au inside anodic aluminum oxide (AAO) templates, followed by topotactic hydrothermal conversion of the TiO{sub 2} segments into BaTiO{sub 3} or PbTiO{sub 3} segments. Two-terminal devices from individual MOM nanowires are fabricated, and their ferroelectric properties are measured directly, without the aid of scanning probe microscopy (SPM) methods. The MOM nanowire architecture provides high-quality end-on electrical contacts to the oxide segments, and allows direct measurement of properties of nanoscale volume, strain-free oxide segments. Unusually high ferroelectric responses, for chemically synthesized oxides, in these MOM nanowires are reported, and are attributed to the lack of residual strain in the oxides. The ability to measure directly the active properties of nanoscale volume, strain-free oxides afforded by the MOM nanowire architecture has important implications for fundamental studies of not only ferroelectric nanostructures but also nanostructures in the emerging field of multiferroics.

  17. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bharti, Amardeep, E-mail: abharti@pu.ac.in; Goyal, Navdeep [Department of Physics, Panjab University, Chandigarh, INDIA-160014 (India); Singh, Suman; Singla, M. L. [Agrionics, Central Scientific Instruments Organization, CSIR, Chandigarh, INDIA-160030 (India)

    2015-08-28

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  18. Improved chemical syntheses of 5,6-dihydro-5-fluorouracil.

    Science.gov (United States)

    LaFrate, Andrew L; Katzenellenbogen, John A

    2007-10-26

    5,6-dihydro-5-fluorouracil (5-DHFU) is a metabolite of the chemotherapy drug 5-fluorouracil (5-FU) of importance for biological studies. 5-DHFU has been prepared by enzymatic reduction of 5-FU and in very low yield by hydrogenation of 5-FU; however, a practical chemical synthesis is not available. Facile racemic syntheses of 5-DHFU from 5-FU or uracil, using p-methoxybenzyl protecting groups followed by L-Selectride reduction, are reported.

  19. Photothermal stability of biologically and chemically synthesized gold nanoprisms

    Science.gov (United States)

    Klekotko, Magdalena; Olesiak-Banska, Joanna; Matczyszyn, Katarzyna

    2017-10-01

    We report here the influence of the irradiation with femtosecond laser pulses on the gold nanoprisms synthesized using biological and chemical methods. For the bio-mediated growth, we used plant extract as a source of reducing, structure-directing, and stabilizing agents, while for the chemical method, we applied three-step protocol, involving chemicals commonly used in the synthesis of nanostructures. Exposition of the nanostructures to the laser beam causes morphological changes, which affect their extinction spectra. These modifications were followed using absorption spectroscopy and transmission electron microscopy. The observed effects depend on the applied laser power and excitation wavelength. Under resonance conditions, rounding of the tips of triangular nanoparticles and transformation towards more stable, spherical form were noticed. These changes were faster under higher laser power. Such shape modifications were weaker under off-resonance conditions. Moreover, chemically synthesized gold nanoprisms were less susceptible to the morphological changes than those obtained using plant extract; however, their colloidal stability was disrupted by long-time irradiation. [Figure not available: see fulltext.

  20. Characterization of Chemically Synthesized Polyaniline-Polyvinylchloride-Montmorillonite Nanocomposite

    Directory of Open Access Journals (Sweden)

    Arefeh Tabatabaei

    2015-06-01

    Full Text Available Polyaniline-montmorillonite (PANI-MMT nanocomposite was synthesized by chemical polymerization of aniline in the presence of montmorillonite (MMT nanostructures. The triple hybrid of polyaniline-polyvinylchloridemontmorillonite (PANI-PVC-MMT was prepared by mixing of the synthesized PANIMMT nanocomposite with a solution of polyvinylchloride (PVC in tetrahydrofurane (THF. In addition, PANI-PVC composite was prepared by mixing of pure synthesized PANI and PVC solution in THF. To investigate the mechanical properties, the PANIPVC composite and PANI- PVC-MMT nanocomposite films were prepared with 5, 10 and 15 wt% of pure PANI and PANI-MMT  nanocomposite, respectively. The results showed that the PANI- PVC-MMT nanocomposite film having 10 wt% of PANIMMT nanocomposite displayed the best mechanical properties. Therefore, it was chosen as optimum film and its physico-chemical properties were characterized. The cyclic voltammetry (CV technique confirmed that the triple hybrid of PANI-PVCMMT nanocomposite was electroactive. Also, Fourier transform infrared (FTIR spectroscopy and scanning electron microscopy (SEM techniques were used to characterize the composition and structure of the PANI-PVC-MMT triple hybrid nanocomposite. X- Ray diffraction (XRD technique showed an intercalated structure for the PANI-PVC-MMT nanocomposite. The thermal stability improvement of the PANI-PVC-MMT nanocomposite in comparison with the pure PVC was established by thermogravimetric analysis (TGA.

  1. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration.

    Science.gov (United States)

    Jun, Young-Shin; Zhang, Lijie; Min, Yujia; Li, Qingyun

    2017-07-18

    Geologic CO 2 sequestration (GCS) is a promising strategy to mitigate anthropogenic CO 2 emission to the atmosphere. Suitable geologic storage sites should have a porous reservoir rock zone where injected CO 2 can displace brine and be stored in pores, and an impermeable zone on top of reservoir rocks to hinder upward movement of buoyant CO 2 . The injection wells (steel casings encased in concrete) pass through these geologic zones and lead CO 2 to the desired zones. In subsurface environments, CO 2 is reactive as both a supercritical (sc) phase and aqueous (aq) species. Its nanoscale chemical reactions with geomedia and wellbores are closely related to the safety and efficiency of CO 2 storage. For example, the injection pressure is determined by the wettability and permeability of geomedia, which can be sensitive to nanoscale mineral-fluid interactions; the sealing safety of the injection sites is affected by the opening and closing of fractures in caprocks and the alteration of wellbore integrity caused by nanoscale chemical reactions; and the time scale for CO 2 mineralization is also largely dependent on the chemical reactivities of the reservoir rocks. Therefore, nanoscale chemical processes can influence the hydrogeological and mechanical properties of geomedia, such as their wettability, permeability, mechanical strength, and fracturing. This Account reviews our group's work on nanoscale chemical reactions and their qualitative impacts on seal integrity and storage capacity at GCS sites from four points of view. First, studies on dissolution of feldspar, an important reservoir rock constituent, and subsequent secondary mineral precipitation are discussed, focusing on the effects of feldspar crystallography, cations, and sulfate anions. Second, interfacial reactions between caprock and brine are introduced using model clay minerals, with focuses on the effects of water chemistries (salinity and organic ligands) and water content on mineral dissolution and

  2. Nanoscale Chemical Imaging of an Individual Catalyst Particle with Soft X-ray Ptychography

    NARCIS (Netherlands)

    Wise, Anna M.; Weker, Johanna Nelson; Kalirai, Samanbir; Farmand, Maryam; Shapiro, David A.; Meirer, Florian; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2016-01-01

    Understanding Fe deposition in fluid catalytic cracking (FCC) catalysis is critical for the mitigation of catalyst degradation. Here we employ soft X-ray ptychography to determine at the nanoscale the distribution and chemical state of Fe in an aged FCC catalyst particle. We show that both particle

  3. Inducing repetitive action potential firing in neurons via synthesized photoresponsive nanoscale cellular prostheses.

    Science.gov (United States)

    Lu, Siyuan; Madhukar, Anupam

    2013-02-01

    Recently we reported an analysis that examined the potential of synthesized photovoltaic functional abiotic nanosystems (PVFANs) to modulate membrane potential and activate action potential firing in neurons. Here we extend the analysis to delineate the requirements on the electronic energy levels and the attendant photophysical properties of the PVFANs to induce repetitive action potential under continuous light, a capability essential for the proposed potential application of PVFANs as retinal cellular prostheses to compensate for loss of photoreceptors. We find that repetitive action potential firing demands two basic characteristics in the electronic response of the PVFANs: an exponential dependence of the PVFAN excited state decay rate on the membrane potential and a three-state system such that, following photon absorption, the electron decay from the excited state to the ground state is via intermediate state(s) whose lifetime is comparable to the refractory time following an action potential. In this study, the potential of synthetic photovoltaic functional abiotic nanosystems (PVFANs) is examined under continuous light to modulate membrane potential and activate action potential firing in neurons with the proposed potential application of PVFANs as retinal cellular prostheses. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Nanoscale protein arrays of rich morphologies via self-assembly on chemically treated diblock copolymer surfaces

    International Nuclear Information System (INIS)

    Song Sheng; Milchak, Marissa; Zhou Hebing; Lee, Thomas; Hanscom, Mark; Hahm, Jong-in

    2013-01-01

    Well-controlled assembly of proteins on supramolecular templates of block copolymers can be extremely useful for high-throughput biodetection. We report the adsorption and assembly characteristics of a model antibody protein to various polystyrene-block-poly(4-vinylpyridine) templates whose distinctive nanoscale structures are obtained through time-regulated exposure to chloroform vapor. The strong adsorption preference of the protein to the polystyrene segment in the diblock copolymer templates leads to an easily predictable, controllable, rich set of nanoscale protein morphologies through self-assembly. We also demonstrate that the chemical identities of various subareas within individual nanostructures can be readily elucidated by investigating the corresponding protein adsorption behavior on each chemically distinct area of the template. In our approach, a rich set of intricate nanoscale morphologies of protein arrays that cannot be easily attained through other means can be generated straightforwardly via self-assembly of proteins on chemically treated diblock copolymer surfaces, without the use of clean-room-based fabrication tools. Our approach provides much-needed flexibility and versatility for the use of block copolymer-based protein arrays in biodetection. The ease of fabrication in producing well-defined and self-assembled templates can contribute to a high degree of versatility and simplicity in acquiring an intricate nanoscale geometry and spatial distribution of proteins in arrays. These advantages can be extremely beneficial both for fundamental research and biomedical detection, especially in the areas of solid-state-based, high-throughput protein sensing. (paper)

  5. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy.

    Science.gov (United States)

    Wang, Le; Wang, Haomin; Wagner, Martin; Yan, Yong; Jakob, Devon S; Xu, Xiaoji G

    2017-06-01

    Nondestructive chemical and mechanical measurements of materials with ~10-nm spatial resolution together with topography provide rich information on the compositions and organizations of heterogeneous materials and nanoscale objects. However, multimodal nanoscale correlations are difficult to achieve because of the limitation on spatial resolution of optical microscopy and constraints from instrumental complexities. We report a novel noninvasive spectroscopic scanning probe microscopy method-peak force infrared (PFIR) microscopy-that allows chemical imaging, collection of broadband infrared spectra, and mechanical mapping at a spatial resolution of 10 nm. In our technique, chemical absorption information is directly encoded in the withdraw curve of the peak force tapping cycle after illumination with synchronized infrared laser pulses in a simple apparatus. Nanoscale phase separation in block copolymers and inhomogeneity in CH 3 NH 3 PbBr 3 perovskite crystals are studied with correlative infrared/mechanical nanoimaging. Furthermore, we show that the PFIR method is sensitive to the presence of surface phonon polaritons in boron nitride nanotubes. PFIR microscopy will provide a powerful analytical tool for explorations at the nanoscale across wide disciplines.

  6. Electrospray deposition of isolated chemically synthesized magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Pierre; Meffre, Anca; Lacroix, Lise-Marie; Ugnati, Damien [Université de Toulouse (France); INSA, UPS, CNRS, Laboratoire de Physique et Chimie des Nano-objets (LPCNO) (France); Ondarçuhu, Thierry [Centre d’Elaboration de Matériaux et d’Etudes Structurales (CEMES-CNRS) (France); Respaud, Marc; Lassagne, Benjamin, E-mail: lassagne@insa-toulouse.fr [Université de Toulouse (France); INSA, UPS, CNRS, Laboratoire de Physique et Chimie des Nano-objets (LPCNO) (France)

    2016-01-15

    The deposition of isolated magnetic nanoparticles onto a substrate was performed using electrohydrodynamic spraying. Two kinds of nanoparticles were sprayed, 11 nm CoFe carbide nanospheres and 10.5 nm Fe nanocubes. By studying carefully the evolution of the sprayed charged droplets and the mechanism of nanoparticle dispersion in them, we could optimize the nanoparticle concentration within the initial nanoparticle solution (i) to reduce the magnetic interaction and therefore prevent agglomeration and (ii) to obtain in a relatively short period (1 h) a deposit of isolated magnetic nanoparticles with a density of up to 400 nanoparticles per µm{sup 2}. These results open great perspectives for magnetic measurements on single objects using advanced magnetometry techniques as long as spintronics applications based on single chemically synthesized magnetic nanoparticles.

  7. Nanoscale chemical analysis and imaging of solid oxide cells

    DEFF Research Database (Denmark)

    Hauch, Anne; Bowen, Jacob R.; Kuhn, Luise Theil

    2008-01-01

    of the interface between the dense ceramic electrolyte and the porous metallic/ceramic hydrogen electrode of an SOC using focused ion beam milling. We show combined TEM/scanning TEM/energy-dispersive spectroscopy investigations of the nanostructure at the TPBs in a high-performance SOC. The chemical composition...

  8. Coupled Motion of Contact Line on Nanoscale Chemically Heterogeneous Surfaces for Improved Bubble Dynamics in Boiling.

    Science.gov (United States)

    Jaikumar, Arvind; Kandlikar, Satish G

    2017-11-16

    We demonstrate that the contact line (CL) motion on energetically heterogeneous solid surfaces occurs in a coupled fashion as against the traditional staggered stick-slip motion. Introducing chemical inhomogeneities at nanoscale induces a local change in dynamic contact angles which manifests as a smooth and continuous motion of the CL. Nanoscale chemically inhomogeneous surfaces comprising of gold, palladium and nickel were generated on copper substrates to demonstrate the underlying CL dynamics. The spatial variations of chemical constituents were mapped using elemental display scanning electron microscope images. Further, the coupled and stick-slip motion was confirmed for a sliding water droplet on these surfaces, and then used in studying the pool boiling bubble dynamics of a single bubble from nucleation to departure. The coupled motion was seen to increase the CL velocity thereby increasing the contribution from transient conduction heat transfer. Consequently, a ~2X increase in the boiling critical heat flux (CHF) was observed. Enhancing the pool boiling performance by introducing nanoscale surface features is an attractive approach in many applications and this work provides a framework and understanding of the CL motion induced through the chemical inhomogeneity effects.

  9. A nanoscale probe for dynamic-chemical imaging

    Science.gov (United States)

    2011-01-01

    BCB ) and benzoic acid (BA), shown for compar- ison purposes only. (B) and (C) SERS images demonstrating the loca- tion of BA and the uniform...distribution of BCB , respectively. possible to image only specific molecules (or to identify particu- lar molecules) based on the wavelengths that they scatter...example of such multispectral chemical images. They show a gelatin sample that has been prepared with the dye brilliant cresyl blue ( BCB ) dispersed

  10. Evaluation of Biological Activities of Chemically Synthesized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ashraf A. Mostafa

    2015-01-01

    Full Text Available Silver nanoparticles were synthesized by the earlier reported methods. The synthesized nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV/Vis, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDX, and X-ray powder diffraction (XRD. The synthesized materials were also evaluated for their antibacterial activity against Gram positive and Gram negative bacterial strains. TEM micrograph showed the spherical morphology of AgNPs with size range of 40–60 nm. The synthesized nanoparticles showed a strong antimicrobial activity and their effect depends upon bacterial strain as AgNPs exhibited greater inhibition zone for Pseudomonas aeruginosa (19.1 mm followed by Staphylococcus aureus (14.8 mm and S. pyogenes (13.6 mm while the least activity was observed for Salmonella typhi (12.5 mm at concentration of 5 µg/disc. The minimum inhibitory concentration (MIC of AgNPs against S. aureus was 2.5 µg/disc and less than 2.5 µg/disc for P. aeruginosa. These results suggested that AgNPs can be used as an effective antiseptic agent for infectious control in medical field.

  11. Evaluation of Biological Activities of Chemically Synthesized Silver Nanoparticles

    International Nuclear Information System (INIS)

    Mostafa, A. A.; Solkamy, E.N.; Sayed, Sh. R. M.; Khan, M.; Shaik, M.R.; Al-Warthan, A.; Adil, S.F.

    2015-01-01

    Silver nanoparticles were synthesized by the earlier reported methods. The synthesized nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV/Vis), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray powder diffraction (XRD). The synthesized materials were also evaluated for their antibacterial activity against Gram positive and Gram negative bacterial strains. TEM micrograph showed the spherical morphology of AgNPs with size range of 40-60 nm. The synthesized nanoparticles showed a strong antimicrobial activity and their effect depends upon bacterial strain as AgNPs exhibited greater inhibition zone for Pseudomonas aeruginosa (19.1 mm) followed by Staphylococcus aureus (14.8?mm) and S. pyogenes (13.6 mm) while the least activity was observed for Salmonella typhi (12.5 mm) at concentration of 5 μg/disc. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus was 2.5 μg/disc and less than 2.5 μg/disc for P. aeruginosa. These results suggested that AgNPs can be used as an effective antiseptic agent for infectious control in medical field.

  12. Electrochemically synthesized polymers in molecular imprinting for chemical sensing.

    Science.gov (United States)

    Sharma, Piyush S; Pietrzyk-Le, Agnieszka; D'Souza, Francis; Kutner, Wlodzimierz

    2012-04-01

    This critical review describes a class of polymers prepared by electrochemical polymerization that employs the concept of molecular imprinting for chemical sensing. The principal focus is on both conducting and nonconducting polymers prepared by electropolymerization of electroactive functional monomers, such as pristine and derivatized pyrrole, aminophenylboronic acid, thiophene, porphyrin, aniline, phenylenediamine, phenol, and thiophenol. A critical evaluation of the literature on electrosynthesized molecularly imprinted polymers (MIPs) applied as recognition elements of chemical sensors is presented. The aim of this review is to highlight recent achievements in analytical applications of these MIPs, including present strategies of determination of different analytes as well as identification and solutions for problems encountered.

  13. Planning chemical syntheses with deep neural networks and symbolic AI

    Science.gov (United States)

    Segler, Marwin H. S.; Preuss, Mike; Waller, Mark P.

    2018-03-01

    To plan the syntheses of small organic molecules, chemists use retrosynthesis, a problem-solving technique in which target molecules are recursively transformed into increasingly simpler precursors. Computer-aided retrosynthesis would be a valuable tool but at present it is slow and provides results of unsatisfactory quality. Here we use Monte Carlo tree search and symbolic artificial intelligence (AI) to discover retrosynthetic routes. We combined Monte Carlo tree search with an expansion policy network that guides the search, and a filter network to pre-select the most promising retrosynthetic steps. These deep neural networks were trained on essentially all reactions ever published in organic chemistry. Our system solves for almost twice as many molecules, thirty times faster than the traditional computer-aided search method, which is based on extracted rules and hand-designed heuristics. In a double-blind AB test, chemists on average considered our computer-generated routes to be equivalent to reported literature routes.

  14. Planning chemical syntheses with deep neural networks and symbolic AI.

    Science.gov (United States)

    Segler, Marwin H S; Preuss, Mike; Waller, Mark P

    2018-03-28

    To plan the syntheses of small organic molecules, chemists use retrosynthesis, a problem-solving technique in which target molecules are recursively transformed into increasingly simpler precursors. Computer-aided retrosynthesis would be a valuable tool but at present it is slow and provides results of unsatisfactory quality. Here we use Monte Carlo tree search and symbolic artificial intelligence (AI) to discover retrosynthetic routes. We combined Monte Carlo tree search with an expansion policy network that guides the search, and a filter network to pre-select the most promising retrosynthetic steps. These deep neural networks were trained on essentially all reactions ever published in organic chemistry. Our system solves for almost twice as many molecules, thirty times faster than the traditional computer-aided search method, which is based on extracted rules and hand-designed heuristics. In a double-blind AB test, chemists on average considered our computer-generated routes to be equivalent to reported literature routes.

  15. The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction.

    Science.gov (United States)

    Kwon, Sangku; Lee, Kyung Eun; Lee, Hyunsoo; Koh, Sang Joon; Ko, Jae-Hyeon; Kim, Yong-Hyun; Kim, Sang Ouk; Park, Jeong Young

    2018-01-18

    The tribological properties of two-dimensional (2D) atomic layers are quite different from three-dimensional continuum materials because of the unique mechanical responses of 2D layers. It is known that friction on graphene shows a remarkable decreasing behavior as the number of layers increases, which is caused by the puckering effect. On other graphene derivatives, such as graphene oxide (GO) or reduced graphene oxide (rGO), the thickness dependence of friction is important because of the possibilities for technical applications. In this report, we demonstrate unexpected layer-dependent friction behavior on GO and rGO layers. Friction force microscopy measurements show that nanoscale friction on GO does not depend on the number of layers; however, after reduction, friction on rGO shows an inverse thickness dependence compared with pristine graphene. We show that the friction on rGO is higher than that on SiO 2 at low load, and that an interesting crossover behavior at higher load occurs because of the lower friction coefficient and higher adhesion of the rGO. We provide a relevant interpretation that explains the effect of thickness and chemical reduction on nanoscale friction.

  16. Electrocatalysis of chemically synthesized noble metal nanoparticles on carbon electrodes

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    Noble metal nanoparticles (NPs), such as platinum (Pt) and palladium (Pd) NPs are promising catalysts for dioxygen reduction and oxidation of molecules such as formic acid and ethanol in fuel cells. Carbon nanomaterials are ideal supporting materials for electrochemical catalysts due to their good...... on their interfacial interaction with the supporting electrodes. In this work we aim at chemical production of size and shape controlled, specifically 22 nm cubic Pd NPs, and further understanding of the Pd NPs as electrocatalysts at the nanometer scale using both scanning tunneling microscopy (STM) and atomic force...

  17. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  18. Adsorption Kinetics in Nanoscale Porous Coordination Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Nune, Satish K.; Thallapally, Praveen K.; McGrail, Benard Peter; Annapureddy, Harsha V. R.; Dang, Liem X.; Mei, Donghai; Karri, Naveen; Alvine, Kyle J.; Olszta, Matthew J.; Arey, Bruce W.; Dohnalkova, Alice

    2015-10-07

    Nanoscale porous coordination polymers were synthesized using simple wet chemical method. The effect of various polymer surfactants on colloidal stability and shape selectivity was investigated. Our results suggest that the nanoparticles exhibited significantly improved adsorption kinetics compared to bulk crystals due to decreased diffusion path lengths and preferred crystal plane interaction.

  19. A study on the effect of chemically synthesized magnetite nanoparticles on earthworm: Eudrilus eugeniae

    Science.gov (United States)

    Samrot, Antony V.; Justin, C.; Padmanaban, S.; Burman, Ujjala

    2017-02-01

    Most look into the benefits of the nanoparticles, but keeping aside the benefits; this study focuses on the impacts of nanoparticles on living systems. Improper disposal of nanoparticles into the environment is a subject of pollution or nano-pollution which in turn affects the flora and fauna in the ecosystem, particularly soil ecosystem. Thus, this study was done to understand the impacts of chemically synthesized magnetite nanoparticles on earthworm— Eudrilus eugeniae, a soil-dependent organism which acquires food and nutrition from decaying matters. The chemically synthesized magnetite nanoparticles were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Earthworms were allowed to interact with different concentrations of synthesized nanoparticles and the effect of the nanoparticles was analysed by studying the phenotypic changes followed by histology and inductively coupled plasma optical emission spectrometry analyses.

  20. Nanoscale carbon materials from hydrocarbons pyrolysis: Structure, chemical behavior, utilisation for non-aqueous supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Savilov, Serguei V., E-mail: savilov@chem.msu.ru [Lomonosov Moscow State University, Chemistry Department (Russian Federation); Strokova, Natalia E.; Ivanov, Anton S.; Arkhipova, Ekaterina A. [Lomonosov Moscow State University, Chemistry Department (Russian Federation); Desyatov, Andrey V. [D. Mendeleyev University of Chemical Technology of Russia (Russian Federation); Hui, Xia [Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology (China); Aldoshin, Serguei M. [Lomonosov Moscow State University, Faculty of Fundamental Physical and Chemical Engineering (Russian Federation); Lunin, Valery V. [Lomonosov Moscow State University, Chemistry Department (Russian Federation)

    2015-09-15

    Highlights: • N-doped and regular carbon nanomaterials were obtained by pyrolitic technique. • Dynamic vapor sorption of different solvents reveals smaller S{sub BET} values. • Steric hindrance and specific chemical interactions are the reasons for this. • Nitrogen doping leads to raise of capacitance and coulombic efficiency with non-aqueous N-containing electrolyte. - Abstract: This work systematically studies adsorption properties of carbon nanomaterials that are synthesized through hydrocarbons that is a powerful technique to fabricate different kinds of carbon materials, e.g., nanotubes, nanoshells, onions, including nitrogen substituted. The adsorption properties of the as-synthesized carbons are achieved by low temperature nitrogen adsorption and organic vapors sorption. Heptane, acetonitrile, water, ethanol, benzene and 1-methylimidazole, which are of great importance for development of supercapacitors, are used as substrates. It is discovered that while nitrogen adsorption reveals a high specific surface area, this parameter for most of organic compounds is rather small depending not only on the size of its molecule but also on chemical interactions for a pair adsorbent–adsorbate. The experimental values of heat of adsorption for carbon and N-substituted structures, when Coulomb cross-coupling of nitrogen atoms in adsorbent and adsorbate takes place, confirms this supposition.

  1. Microstructure analysis of chemically synthesized wurtzite-type CdS ...

    Indian Academy of Sciences (India)

    Microstructure of chemically synthesized wurtzite-type CdS nanocrystals have been investigated by X-ray diffraction (XRD) peak profile analysis by applying different ... stress deformation model (USDM) and uniform deformation energy density model (UDEDM), and transmission electron microscope (TEM) observations.

  2. Microstructure analysis of chemically synthesized wurtzite-type CdS ...

    Indian Academy of Sciences (India)

    Abstract. Microstructure of chemically synthesized wurtzite-type CdS nanocrystals have been investigated by X-ray diffraction (XRD) peak profile analysis by applying different forms of. Williamson–Hall (WH) method viz., uniform deformation model (UDM), uniform stress deforma- tion model (USDM) and uniform deformation ...

  3. Green wet chemical route to synthesize capped CdSe quantum dots

    Indian Academy of Sciences (India)

    Green wet chemical route to synthesize capped CdSe quantum dots. A OUDHIA and P BICHPURIA. ∗. Department of Physics, Government VYT PG Autonomous College, Durg 491 001, India. MS received 25 November 2012; revised 13 February 2013. Abstract. In the present work, we report green synthesis of tartaric acid ...

  4. Lithium-ions diffusion kinetic in LiFePO4/carbon nanoparticles synthesized by microwave plasma chemical vapor deposition for lithium-ion batteries

    Science.gov (United States)

    Gao, Chao; Zhou, Jian; Liu, Guizhen; Wang, Lin

    2018-03-01

    Olivine structure LiFePO4/carbon nanoparticles are synthesized successfully using a microwave plasma chemical vapor deposition (MPCVD) method. Microwave is an effective method to synthesize nanomaterials, the LiFePO4/carbon nanoparticles with high crystallinity can shorten diffusion routes for ionic transfer and electron tunneling. Meanwhile, a high quality, complete and homogenous carbon layer with appropriate thickness coating on the surface of LiFePO4 particles during in situ chemical vapor deposition process, which can ensure that electrons are able to transfer fast enough from all sides. Electrochemical impedance spectroscopy (EIS) is carried out to collect information about the kinetic behavior of lithium diffusion in LiFePO4/carbon nanoparticles during the charging and discharging processes. The chemical diffusion coefficients of lithium ions, DLi, are calculated in the range of 10-15-10-9 cm2s-1. Nanoscale LiFePO4/carbon particles show the longer regions of the faster solid-solution diffusion, and corresponding to the narrower region of the slower two-phase diffusion during the insertion/exaction of lithium ions. The CV and galvanostatic charge-discharge measurements show that the LiFePO4/carbon nanoparticles perform an excellent electrochemical performance, especially the high rate capacity and cycle life.

  5. Chemically synthesized silver nanoparticles as cell lysis agent for bacterial genomic DNA isolation

    Science.gov (United States)

    Goswami, Gunajit; Boruah, Himangshu; Gautom, Trishnamoni; Jyoti Hazarika, Dibya; Barooah, Madhumita; Boro, Robin Chandra

    2017-12-01

    Silver nanoparticles (AgNPs) have seen a recent spurt of use in varied fields of science. In this paper, we showed a novel application of AgNP as a promising microbial cell-lysis agent for genomic DNA isolation. We utilized chemically synthesized AgNPs for lysing bacterial cells to isolate their genomic DNA. The AgNPs efficiently lysed bacterial cells to yield good quality DNA that could be subsequently used for several molecular biology works.

  6. Measurement of discrete energy-level spectra in individual chemically synthesized gold nanoparticles

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Bolotin, Kirill I; Shi, Su-Fei

    2008-01-01

    We form single-electron transistors from individual chemically synthesized gold nanoparticles, 5-15 nm in diameter, with monolayers of organic molecules serving as tunnel barriers. These devices allow us to measure the discrete electronic energy levels of individual gold nanoparticles that are......, by virtue of chemical synthesis, well-defined in their composition, size and shape. We show that the nanoparticles are nonmagnetic and have spectra in good accord with random-matrix-theory predictions taking into account strong spin-orbit coupling....

  7. Chemically synthesized 58-mer LysM domain binds lipochitin oligosaccharide

    DEFF Research Database (Denmark)

    Sørensen, Kasper Kildegaard; Simonsen, Jens Bæk; Maolanon, Nicolai Nareth

    2014-01-01

    molecules is receptor mediated, and nod factor receptor 5 (NFR5) from the model legume Lotus japonicus is predicted to contain three LysM domain binding sites. Here we studied the interactions between nod factor and each of the three NFR5 LysM domains, which were chemically synthesized. LysM domain variants...... (up to 58 amino acids) designed to optimize solubility were chemically assembled by solid-phase peptide synthesis (SPPS) with microwave heating. Their interaction with nod factors and chitin oligosaccharides was studied by isothermal titration calorimetry and circular dichroism (CD) spectroscopy. Lys...

  8. Characterization of Nano-Hydroxyapatite Synthesized from Sea Shells Through Wet Chemical Method

    Science.gov (United States)

    Santhosh, S.; Prabu, S. Balasivanandha

    2012-10-01

    Nano-hydroxyapatite (HA) was synthesized by a wet chemical reaction using powdered sea shells (CaO) as starting material which was converted to calcium hydroxide (Ca(OH)2) and subsequently reacted with phosphoric acid (H3PO4). Initially raw sea shells (CaCO3) were thermally converted to amorphous calcium oxide by heat treatment. Two sets of experiments were done; in the first experiment, HA powder was dried in an electric furnace and in the second experiment, the reactants were irradiated in a domestic microwave oven followed by microwave drying. In each set of experiments, the concentrations of the reactants were decreased gradually. HA was synthesized by slow addition of phosphoric acid (H3PO4) in to calcium hydroxide (Ca(OH)2) maintaining the pH of the solution at 10 to avoid the formation of calcium deficient apatites. In both the experiments, Ca:P ratio of 1.67 was maintained for the reagents. The synthesized samples showed X-ray diffraction (XRD) patterns corresponding to hydroxyapatite. The wet chemical process with furnace drying resulted in HA particles of size 7-34 nm, whereas microwave irradiated process yielded HA particles of size 34-102 nm as evidenced from XRD analyses. The above experimental work done by wet chemical synthesis to produce HA powder from sea shells is a simple processing method at room temperature. Microwave irradiation leads to uniform crystallite sizes as evident from this study, at differing concentrations of the reactants and is a comparatively easy method to synthesize HA. The high resolution scanning electron microscopy (HRSEM)/transmission electron microscopic (TEM) analyses revealed the characteristic rod-shaped nanoparticles of HA for the present study.

  9. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    Science.gov (United States)

    Debnath, A.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl3) and Calcium chloride dihydrate (CaCl2.2H2O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  10. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, A., E-mail: debnathanimesh@gmail.com [Department of Civil Engineering, National Institute of Technology Agartala, Jirania, West Tripura, 799046 India (India); Bera, A.; Saha, B. [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Chattopadhyay, K. K. [Department of Physics, Jadavpur University, Kolkata 700 032 (India)

    2016-05-23

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl{sub 3}) and Calcium chloride dihydrate (CaCl{sub 2}.2H{sub 2}O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  11. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    International Nuclear Information System (INIS)

    Debnath, A.; Bera, A.; Saha, B.; Chattopadhyay, K. K.

    2016-01-01

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl 3 ) and Calcium chloride dihydrate (CaCl 2 .2H 2 O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  12. Electrical relaxation, optical and magnetic studies of nanocrystalline lithium ferrite synthesized by different chemical routes

    Science.gov (United States)

    Cheruku, Rajesh; Govindaraj, G.; Vijayan, Lakshmi

    2017-12-01

    The nanocrystalline lithium ferrite was synthesized by wet chemical methods such as solution combustion technique, sol-gel, and hydrothermal for a comparative study. Different characterization techniques like x-ray powder diffraction and thermal analysis were employed to confirm the structure and phase. Temperature-dependent Raman analysis was employed to classify the phonon modes associated with precise atomic motions existing in the synthesized materials. Morphology of sample surface was explored by scanning electron microscopy, and elemental analysis was done by energy dispersive spectroscopy analysis. The nanocrystalline nature of the materials was confirmed through transmission electron microscopy. Magnetic properties of these samples were explored through a vibrating sample magnetometer. Ac electrical impedance spectroscopy data were investigated using two Cole-Cole functions, and activation energies were calculated for all materials. Among them, solution combustion prepared lithium ferrite shows the highest conductivity and lowest activation energy.

  13. The effect of biologically and chemically synthesized silver nanoparticles (AgNPs) on biofilm formation

    Science.gov (United States)

    Chojniak, Joanna; Biedroń, Izabela; Mendrek, Barbara; Płaza, Grażyna

    2017-11-01

    Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental-friendly technology for synthesis of nanomaterials. Different types of nanomaterials like copper, zinc, titanium, magnesium, gold, and silver have applied in the various industries but silver nanoparticles have proved to be most effective against bacteria, viruses and eukaryotic microorganisms. The antimicrobial property of silver nanoparticles are widely known. Due to strong antibacterial property silver nanoparticles are used, e.g. in clothing, food industry, sunscreens, cosmetics and many household and environmental appliances. The aim of the study was to compare the effect of silver nanoparticles (AgNPs) synthesized biologically and chemically on the biofilm formation. The biofilm was formed by the bacteria isolated from the water supply network. The commonly used crystal violet assay (CV) was applied for biofilm analysis. In this study effect of biologically synthesized Ag-NPs on the biofilm formation was evaluated.

  14. Effect of chemically and biologically synthesized Ag nanoparticles on the algae growth inhibition

    Science.gov (United States)

    Anna, Mražiková; Oksana, Velgosová; Jana, Kavuličová

    2017-12-01

    Over the past few years green methods for preparation of silver nanoparticles has become necessary due to its friendly influence on ecosystem. In the present work antimicrobial properties of biologically synthesized silver nanoparticles (Bio-AgNPs) using green algae extract and chemically synthesized silver nanoparticles (Chem-AgNPs) using sodium citrate against algae Parachlorella kessleri is investigated. Both used Bio-AgNPs and Chem-AgNPs exhibit long-term stability as demonstrated by UV-vis spectroscopy measurements. The results revealed stronger toxic effects of Bio-AgNPs on agar plates what was confirmed clear inhibition zone around wells impregnated with Bio-AgNPs. On the other hand Bio-AgNPs were confirmed to be less toxic in aquatic environments for the growths of green algae P. kessleri comparing to Chem-AgNPs.

  15. Chemical reduction methods for synthesizing Ag and Al nanoparticles and their respective nanoalloys

    International Nuclear Information System (INIS)

    Manikam, Vemal Raja; Cheong, Kuan Yew; Razak, Khairunisak Abdul

    2011-01-01

    Silver (Ag) and aluminium (Al) metals are widely used for various applications. Ag showcases excellent thermal and electrical properties in its bulk form. Al also displays good thermal and electrical properties, as well as good ductility and corrosion resistance. However, the need for nanomaterials, including Ag, Al and their respective nanoalloys has grown over the past decade or so. The use of nanomaterials lies inherently in their large surface-to-volume ratio which helps improve catalytic and interfacial processes. Their nano sizes also improve hardness, fracture toughness and low-temperature ductility. Nanomaterials also enable lower processing temperatures as compared to bulk materials and faster reaction time due to their higher surface reactivity. Nanomaterials of metal elements are regularly alloyed in order to create nanoalloys with much superior thermal and electrical properties. Many methods have been reported for synthesizing Ag and Al nanoparticles and their respective nanoalloys, including the chemical reduction route. This review covers the methodologies of synthesizing Ag and Al nanoparticles and their nanoalloys via chemical reduction means, as well as the chemicals incorporated in these methods and their effects on the nanoparticle characterization efforts.

  16. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining.

    Science.gov (United States)

    Skinnider, Michael A; Johnston, Chad W; Edgar, Robyn E; Dejong, Chris A; Merwin, Nishanth J; Rees, Philip N; Magarvey, Nathan A

    2016-10-18

    Microbial natural products are an evolved resource of bioactive small molecules, which form the foundation of many modern therapeutic regimes. Ribosomally synthesized and posttranslationally modified peptides (RiPPs) represent a class of natural products which have attracted extensive interest for their diverse chemical structures and potent biological activities. Genome sequencing has revealed that the vast majority of genetically encoded natural products remain unknown. Many bioinformatic resources have therefore been developed to predict the chemical structures of natural products, particularly nonribosomal peptides and polyketides, from sequence data. However, the diversity and complexity of RiPPs have challenged systematic investigation of RiPP diversity, and consequently the vast majority of genetically encoded RiPPs remain chemical "dark matter." Here, we introduce an algorithm to catalog RiPP biosynthetic gene clusters and chart genetically encoded RiPP chemical space. A global analysis of 65,421 prokaryotic genomes revealed 30,261 RiPP clusters, encoding 2,231 unique products. We further leverage the structure predictions generated by our algorithm to facilitate the genome-guided discovery of a molecule from a rare family of RiPPs. Our results provide the systematic investigation of RiPP genetic and chemical space, revealing the widespread distribution of RiPP biosynthesis throughout the prokaryotic tree of life, and provide a platform for the targeted discovery of RiPPs based on genome sequencing.

  17. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles - A comparative study.

    Science.gov (United States)

    Kummara, Sivaiah; Patil, Mrityunjaya B; Uriah, Tiewlasubon

    2016-12-01

    Silver nanoparticles (AgNPs) are superior cluster of nanomaterials that are recently recognized for their different applications in various pharmaceutical and clinical settings. The objective of this work deals with novel method for biosynthesis of AgNPs using Azadirachta indica (neem) leaf extract as reducing agent. These bio and chemical synthesized nanoparticles were characterized with the help of UV-vis Spectroscopy, Nanotarc, Dynamic light scattering (DLS), Zeta Potential (ZP), Transmission Electron Microscopy and Fourier transform infrared spectroscopy (FTIR). The obtained results from Nanotrac and TEM revealed that the synthesized AgNPs possess spherical shape with a mean diameter at 94nm for green and 104nm for chemical method, the zeta potential values was -12.02mV for green AgNPs and -10.4mV for chemical AgNPs. In addition, FT-IR measurement analysis was conceded out to identify the Ag + ions reduced from the specific functional groups on the AgNPs, which increased the stability of the particles. Further, we compared the toxicities of green and chemical AgNPs against human skin dermal fibroblast (HDFa) and brine shrimp followed by anticancer activity in NCI-H460 cells. We observed green AgNPs cause dose-dependent decrease in cell viability and increase in reactive oxygen species (ROS) generation. Further, we proved to exhibit excellent cytotoxic effect and induction of cellular apoptosis in NCI-H460 cells. Furthermore, green AgNPs had no significant changes in cell viability, ROS production and apoptotic changes in HDFa cells. In contrary, we observed that the chemical AgNPs possess significant toxicities in HDFa cells. Hence, the green AgNPs were able to induce selective toxicity in cancer cells than the chemical AgNPs. Furthermore, green AgNPs exhibit less toxic effects against human red blood cells and brine shrimp (Artemia salina) nauplii than the chemical AgNPs. It was concluded, that apart from being superior over chemical AgNPs, the green AgNPs are

  18. Nanoscale analysis of structural and chemical changes in aged hybrid Pt/NbOx/C fuel cell catalysts

    Science.gov (United States)

    Chinchilla, Lidia; Rossouw, David; Trefz, Tyler; Susac, Darija; Kremliakova, Natalia; Botton, Gianluigi A.

    2017-07-01

    We characterize the structural and chemical changes that take place in an electrochemically tested proton-exchange fuel cell cathode material composed of platinum nanoparticles on a niobium oxide-carbon black hybrid support. Two hybrid catalysts with different niobium oxide content (5 wt% and 12 wt%) are compared at the beginning and end of potential cycling. We observe an overall increase in the particle size of the hybrid catalysts after potential cycling, mediated by Ostwald ripening process. The general nanostructure of the catalysts was composed of small Pt-rich particles that were linked to niobium oxide particles. Nanoscale and microscale spectroscopy of the pristine materials reveals several co-existing oxidized forms of niobium (5+, 4+, 2+) in the systems; the most predominant being Nb(V). The study of the energy loss near-edge structure of the Niobium L2,3 edge of catalysts after being subjected to accelerated stress test (AST) potential cycles provides clues on the evolution of niobium oxides (NbOx), in which the relative distribution of Nb(V) decreases, while the number of Nb particles in lower oxidation states slightly increases. Furthermore, energy-dispersive spectroscopy reveals that the content of Nb decreased after cycling, implying that the loss of NbOx eventually altered the fraction of linked Pt-NbOx sites. The observed nanoscale catalyst changes and the presence of the NbOx may have important implications for developing an alternative design for improved hybrid catalyst materials.

  19. Nanoscale Confinement and Fluorescence Effects of Bacterial Light Harvesting Complex LH2 in Mesoporous Silicas

    DEFF Research Database (Denmark)

    Ikemoto, Hideki; Tubasum, Sumera; Pullerits, Tonu

    2013-01-01

    Many key chemical and biochemical reactions, particularly in living cells, take place in confined space at the mesoscopic scale. Towards understanding of physicochemical nature of biomacromolecules confined in nanoscale space, in this work we have elucidated fluorescent effects of a light...... harvesting complex LH2 in nanoscale chemical environments. Mesoporous silicas (SBA-15 family) with different shapes and pore sizes were synthesized and used to create nanoscale biomimetic environments for molecular confinement of LH2. A combination of UV-vis absorption, wide-field fluorescence microscopy...

  20. Thermal and chemical stabilities of some synthesized inorganic ion exchange materials

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; Abou-Mesalam, M. M.; El-Shorbagy, M.M.; Shady, S.A.

    2005-01-01

    Chromium and cerium titanate as inorganic ion exchange materials were synthesized by the reaction of potassium chromate or ammonium ceric nitrate with titanium tetrachloride with molar ratio equal unity. The crystal system of both chromium and cerium titanates were determined and set to be monoclinic and orthorhombic systems, respectively. The chemical composition of both chromium and cerium titanates were determined by X-ray fluorescence technique and based on the data obtained with other different techniques. We can proposed molecular formula for chromium and cerium titanates as Cr 2 Ti 1 2O27. 13H 2 O and Ce 2 ThO10. 7.46 H 2 O, respectively. Thermal stability of both ion exchangers was investigated at different heating temperatures. Also the stability of chromium and cerium titanates for chemical attack was studied in different media. The data obtained showed high thermal and chemical stabilities of chromium and cerium titanate ion exchangers compared to the same group of ion exchange materials. The ion exchange capacities of chromium and cerium titanates at different heating temperature were investigated

  1. Nanoscale leakage current measurements in metal organic chemical vapor deposition crystalline SrTiO3 films

    International Nuclear Information System (INIS)

    Rozier, Y.; Gautier, B.; Hyvert, G.; Descamps, A.; Plossu, C.; Dubourdieu, C.; Ducroquet, F.

    2009-01-01

    The properties of SrTiO 3 thin films, grown by liquid injection metal organic chemical vapor deposition on Si/SiO 2 , using a mixture of precursors, have been investigated at the nanoscale using an Atomic Force Microscope in the so-called Conductive Atomic Force Microscopy mode. Maps of the leakage currents with a nanometric resolution have been obtained on films elaborated at different temperatures and stoichiometries in order to discriminate the role of each parameter on the onset of leakage currents in the resulting layers. It appears that the higher the deposition temperature, the higher the leakage currents of the films. The mapping with a nanometric precision allows to show a heterogeneous behaviour of the surface with leaky grains and insulating boundaries. The study of films elaborated at the same temperature with different compositions supports the assumption that the leakage currents on Ti-rich layers are far higher than on Sr-rich layers

  2. Nanoscale leakage current measurements in metal organic chemical vapor deposition crystalline SrTiO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Rozier, Y. [Lyon Institute of Nanotechnology (INL), CNRS-UMR5270, INSA Lyon, 7 avenue Capelle, 69621 VILLEURBANNE Cedex (France); Gautier, B. [Lyon Institute of Nanotechnology (INL), CNRS-UMR5270, INSA Lyon, 7 avenue Capelle, 69621 VILLEURBANNE Cedex (France)], E-mail: bgautier@insa-lyon.fr; Hyvert, G.; Descamps, A.; Plossu, C. [Lyon Institute of Nanotechnology (INL), CNRS-UMR5270, INSA Lyon, 7 avenue Capelle, 69621 VILLEURBANNE Cedex (France); Dubourdieu, C. [Laboratoire des Materiaux et du Genie Physique (LMGP), CNRS, INPG, 3 parvis L. Neel, BP 257, 38016 Grenoble Cedex 1 (France); Ducroquet, F. [Institut de Microelectronique, Electromagnetisme et Photonique (IMEP), 3, rue Parvis Louis Neel BP 257, 38016 GRENOBLE Cedex 1 (France)

    2009-01-30

    The properties of SrTiO{sub 3} thin films, grown by liquid injection metal organic chemical vapor deposition on Si/SiO{sub 2}, using a mixture of precursors, have been investigated at the nanoscale using an Atomic Force Microscope in the so-called Conductive Atomic Force Microscopy mode. Maps of the leakage currents with a nanometric resolution have been obtained on films elaborated at different temperatures and stoichiometries in order to discriminate the role of each parameter on the onset of leakage currents in the resulting layers. It appears that the higher the deposition temperature, the higher the leakage currents of the films. The mapping with a nanometric precision allows to show a heterogeneous behaviour of the surface with leaky grains and insulating boundaries. The study of films elaborated at the same temperature with different compositions supports the assumption that the leakage currents on Ti-rich layers are far higher than on Sr-rich layers.

  3. Biological properties of carbon powders synthesized using chemical vapour deposition and detonation methods.

    Science.gov (United States)

    Batory, M; Batory, D; Grabarczyk, J; Kaczorowski, W; Kupcewicz, B; Mitura, K; Nasti, T H; Yusuf, N; Niedzielski, P

    2012-12-01

    Carbon powders can be synthesized using variety of CVD and detonation methods. Several interesting properties of carbon powder particles make them a very attractive material examined in many laboratories all over the world. However there is a lack of information discussing investigation of carbon powders directed to its application in pharmaceutical-cosmetic industry and medicine. Earlier investigation results proved that diamond powders present properties fighting free radicals. Presented work discusses the influence of carbon powder particles manufactured using MW/RF PACVD, RF PACVD and detonation methods onto hydro-lipid skin coat. Before the biological examinations physicochemical properties of carbon powders were determined. Grain size, shape and chemical composition of carbon powders were determined using the scanning electron microscopy. Surface functional groups were characterized by IR Fourier-transform spectroscopy and X-ray photoelectron spectroscopy. Structure and phase composition were investigated by means of the Raman spectroscopy. Results of allergy tests performed on laboratory mice proved that carbon powder particles synthesized using different methods do not cause allergy. In the following stage, the group of 20 patients applied the formula including carbon powder on their face skin. The influence of carbon powder onto hydro-lipid skin coat was determined by measurement of such parameters as: pH reaction, skin temperature, lipid fotometry and level of hydration. Additionally, macro pictures of places where the cream had been applied were registered. As the result of the investigation it was found that powders synthesized using various methods present different physicochemical properties which may individually affect the face skin parameters. The noticeable improvement of hydro-lipid skin coat kilter was observed.

  4. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    International Nuclear Information System (INIS)

    Jacques, S.; Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P.

    2013-01-01

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called “interphase” between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC–TiC) n interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC–TiC) n films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  5. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S., E-mail: jacques@lcts.u-bordeaux1.fr [LCTS, University of Bordeaux 1, CNRS, Herakles-Safran, CEA, 3 allee de la Boetie, F-33600 Pessac (France); Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P. [LCTS, University of Bordeaux 1, CNRS, Herakles-Safran, CEA, 3 allee de la Boetie, F-33600 Pessac (France)

    2013-06-15

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called “interphase” between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC–TiC){sub n} interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC–TiC){sub n} films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  6. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    Science.gov (United States)

    Jacques, S.; Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P.

    2013-06-01

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called "interphase" between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC-TiC)n interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC-TiC)n films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  7. Study on antibacterial activity of chemically synthesized PANI-Ag-Au nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Boomi, Pandi [Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu (India); Prabu, Halliah Gurumallesh, E-mail: hgprabu2010@gmail.com [Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu (India); Manisankar, Paramasivam [Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu (India); Ravikumar, Sundaram [Department of Oceanography and Coastal Area Studies, School of Marine Sciences, Alagappa University, Thondi Campus 623 409, Tamil Nadu (India)

    2014-05-01

    Graphical abstract: - Highlights: • New method of synthesizing PANI-Ag-Au nanocomposite. • Surface Plasmon resonance and formation of composite at nano level were analyzed. • HR-TEM study revealed uniform distribution of nanoparticles. • PANI-Ag-Au nanocomposite exhibited good antibacterial activity. - Abstract: Pristine polyaniline (PANI), PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites have been successfully synthesized by chemical oxidative polymerization method using aniline as monomer, ammonium persulphate as oxidant and metal (Ag, Au and Ag-Au) colloids. UV-Vis analysis exhibited surface Plasmon resonances of Ag, Au, Ag-Au nanoparticles. FT-IR spectra revealed the shift in peak position of N-H stretching. X-ray diffraction (XRD) results confirm the presence of Ag, Au and Au-Ag nanoparticles. HR-TEM images show nanosizes of Ag, Au, Ag-Au and the incorporation of such nanoparticles into the PANI matrix. Pristine PANI, PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites were tested for antibacterial activity by agar well diffusion method. PANI-Ag-Au nanocomposite exhibited higher antibacterial activity against both gram-positive [Streptococcus sp. (MTCC 890), Staphylococcus sp. (MTCC 96)] and gram-negative bacteria [Escherichia coli (MTCC 1671) and Klebsiella sp. (MTCC 7407)] when compared with PANI-Ag nanocomposite, PANI-Au nanocomposite and pristine PANI. The novelty of this study is the polymer-bimetal synthesis and its antibacterial potential.

  8. Spectacular enhancement of thermoelectric phenomena in chemically synthesized graphene nanoribbons with substitution atoms.

    Science.gov (United States)

    Zberecki, K; Swirkowicz, R; Wierzbicki, M; Barnaś, J

    2016-07-21

    We analyze theoretically the transport and thermoelectric properties of graphene nanoribbons of a specific geometry, which have been synthesized recently from polymers [Cai, et al., Nature, 2011, 466, 470]. When such nanoribbons are modified at one of the two edges by Al or N substitutions, they acquire a ferromagnetic moment localized at the modified edge. We present numerical results on the electronic structure and thermoelectric properties (including also spin thermoelectricity) of the modified nanoribbons. The results show that such nanoribbons can display large thermoelectric efficiency in certain regions of chemical potential, where the corresponding electric and spin figures of merit achieve unusually large values. The enhancement of thermoelectric efficiency follows from a reduced phonon heat conductance of the nanoribbons and from their peculiar electronic band structure. Thus, such nanoribbons are promising for practical applications in nanoelectronic and spintronic devices.

  9. Toxicity evaluation of silver nanoparticles synthesized by chemical and green route in different experimental models.

    Science.gov (United States)

    Vasanth, Shakila Banu; Kurian, Gino A

    2017-12-01

    With the increased exposure of silver nanoparticles (AgNPs) to human beings, the risk and safety should be considered. In this study, nephro-toxicity of AgNPs prepared by chemical and green route (aqueous extract of Desmodium gangeticum root) in rat, proximal epithelial cell lines and renal mitochondria was evaluated. AgNPs (100 mg/kg) were administered orally to the wistar rats. After 15 d, we observed significant changes in the renal architecture of both AgNPs, supported by the urine and blood chemistry data. Further, exposure towards renal epithelial cells and renal mitochondria also confirm the toxic similarities between the AgNPs synthesized from two routes.

  10. Syntheses, structures and chemical sensing properties of three complexes with mixed ligands of carboxylate and bipyridine.

    Science.gov (United States)

    Jiao, Chengli; Li, Fen; Zhang, Jian; Li, Zhangpeng; Wang, Shuang; Wang, Zhonggang; Yu, Hao; Li, Zhibao; Liu, Shuang; Wang, Ziqiang; Jiang, Xia; Sun, Lixian; Xu, Fen

    2013-02-07

    Three mixed-ligand coordination polymers, [Cu(oda)(2,2'-bipy)](2) (1), Ni(2)(oda)(2)(4,4'-bipy)·DMF (2), and [{Ni(oda)(H(2)O)(2)}(2)(μ-4,4'-bipy)]·2H(2)O (3) were synthesized and characterized. Complex 1 features a 1D chain via intermolecular π-π interactions. Complex 2 is a novel 3D microporous coordination polymer with 1D polarized channels. Complex 3 forms a 3D network via extensive hydrogen bonding interactions. Thermogravimetric analyses have been studied. The chemical sensing properties have been investigated in situ by quartz crystal microbalance (QCM). Complex 1 has a good sensitivity to toluene, complexes 2 and 3 have exceptionally high selectivity and sensitivity to water over organic solvents.

  11. Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors

    International Nuclear Information System (INIS)

    Wu, M.-S.; Hsieh, H.-H.

    2008-01-01

    Nickel hydroxide powder prepared by directly chemical precipitation method at room temperature has a nanoplatelet-like morphology and could be converted into nickel oxide at annealing temperature higher than 300 deg. C, confirmed by the thermal gravimetric analysis and X-ray diffraction. Annealing temperature influences significantly both the electrical conductivity and the specific surface area of nickel oxide/hydroxide powder, and consequently determines the capacitor behavior. Electrochemical capacitive behavior of the synthesized nickel hydroxide/oxide film is investigated by cyclic voltammetry and electrochemical impedance spectroscope methods. After 300 deg. C annealing, the highest specific capacitance of 108 F g -1 is obtained at scan rate of 10 mV s -1 . When annealing temperature is lower than 300 deg. C, the electrical conductivity of nickel hydroxide dominates primarily the capacitive behavior. When annealing temperature is higher than 300 deg. C, both electrical conductivity and specific surface area of the nickel oxide dominate the capacitive behavior

  12. Investigation of pH effect on chemically synthesized tin selenide films

    International Nuclear Information System (INIS)

    Okereke, N.A.; Ekpunobi, A.J.

    2013-01-01

    Semiconducting thin films of tin selenide (SnSe) were chemically synthesized at room temperature by varying two different pH. X-ray diffraction data revealed that the crystallinity of SnSe films prepared at pH 11.0 slightly increased. XRD patterns of SnSe showed polycrystalline nature. The optical properties of the films were studied in the wavelength range of 0.36-1.10 μm. Optical absorption studies show that the pH has no effect on the band gap energy of the grown SnSe films; hence, the band gap remains the same as pH increases from 10.0 to 11.0. (authors)

  13. Observation of high coercive fields in chemically synthesized coated Fe-Pt nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Dalavi, Shankar B.; Panda, Rabi N., E-mail: rnp@goa.bits-pilani.ac.in

    2017-04-15

    Nanocrystalline Fe-Pt alloys have been synthesized via chemical reduction route using various capping agents; such as: oleic acid/oleylamine (route-1) and oleic acid/CTAB (route-2). We could able to synthesize Fe50Pt and Fe54Pt alloys via route 1 and 2, respectively. As-prepared Fe-Pt alloys crystallize in disordered fcc phase with crystallite sizes of 2.3 nm and 6 nm for route-1 and route-2, respectively. Disordered Fe-Pt alloys were transformed to ordered fct phase after annealing at 600 °C. SEM studies confirm the spherical shape morphologies of annealed Fe-Pt nanoparticles with SEM particle sizes of 24.4 nm and 21.2 nm for route-1 and route-2, respectively. TEM study confirms the presence of 4.6 nm particles for annealed Fe50Pt alloys with several agglomerating clusters of bigger size and appropriately agrees well with the XRD study. Room temperature magnetization studies of as-prepared Fe-Pt alloys (fcc) show ferromagnetism with negligible coercivities. Average magnetic moments per particle for as-prepared Fe-Pt alloys were estimated to be 753 μ{sub B} and 814 μ{sub B}, for route 1 and 2, respectively. Ordered fct Fe-Pt alloys show high values of coercivities of 10,000 Oe and 10,792 Oe for route-1 and route-2, respectively. Observed magnetic properties of the fct Fe-Pt alloys nps were interpreted with the basis of order parameters, size, surface, and composition effects. - Highlights: • Synthesis of capped nanocrystalline Fe-Pt alloys via chemical routes. • Ordered fct phase were obtained at 600 °C. • Microstructural studies were carried out using SEM and TEM. • Investigation on evolution of magnetic properties from fcc to fct state. • Maximum values of coercivities up to 10,792 Oe were observed.

  14. Chemically synthesized hydrous RuO2 thin films for supercapacitor application

    International Nuclear Information System (INIS)

    Patil, U.M.; Kulkarni, S.B.; Jamadade, V.S.; Lokhande, C.D.

    2011-01-01

    Research highlights: → The hydrous RuO 2 thin films have been successfully synthesized at low temperature on glass and stainless steel substrates using lucrative chemical bath deposition (CBD) method. → The cost effective CBD method allows to formation of amorphous, porous, superhydrophilic, semiconducting, hydrous RuO 2 thin films with 2.7 eV optical band gap. → The supercapacitive behavior of hydrous RuO 2 in 0.5 M H 2 SO 4 electrolyte showed maximum specific capacitance of 73 F g -1 . → The electrochemical parameters such as, specific power (SP), specific energy (SE) and coulombic efficiency (η%) is found to be 0.151 kW kg -1 , 3.57 Wh kg -1 and 94%, respectively. - Abstract: The hydrous RuO 2 thin films have been successfully synthesized at low temperature on glass and stainless steel substrates using lucrative chemical bath deposition (CBD) method. Their structural, morphological, optical, electrical and wettability properties were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), UV-vis-NIR spectrophotometer, two point probe method and water contact angle measurement techniques. The results showed that, the CBD method allows to formation of amorphous, porous, superhydrophilic, semiconducting, hydrous RuO 2 thin films with optical band gap of 2.7 eV. The supercapacitive behavior of hydrous RuO 2 in 0.5 M H 2 SO 4 electrolyte examined by cyclic voltammetric (CV) measurements showed maximum specific capacitance of 73 F g -1 .

  15. Observation of high coercive fields in chemically synthesized coated Fe-Pt nanostructures

    Science.gov (United States)

    Dalavi, Shankar B.; Panda, Rabi N.

    2017-04-01

    Nanocrystalline Fe-Pt alloys have been synthesized via chemical reduction route using various capping agents; such as: oleic acid/oleylamine (route-1) and oleic acid/CTAB (route-2). We could able to synthesize Fe50Pt and Fe54Pt alloys via route 1 and 2, respectively. As-prepared Fe-Pt alloys crystallize in disordered fcc phase with crystallite sizes of 2.3 nm and 6 nm for route-1 and route-2, respectively. Disordered Fe-Pt alloys were transformed to ordered fct phase after annealing at 600 °C. SEM studies confirm the spherical shape morphologies of annealed Fe-Pt nanoparticles with SEM particle sizes of 24.4 nm and 21.2 nm for route-1 and route-2, respectively. TEM study confirms the presence of 4.6 nm particles for annealed Fe50Pt alloys with several agglomerating clusters of bigger size and appropriately agrees well with the XRD study. Room temperature magnetization studies of as-prepared Fe-Pt alloys (fcc) show ferromagnetism with negligible coercivities. Average magnetic moments per particle for as-prepared Fe-Pt alloys were estimated to be 753 μB and 814 μB, for route 1 and 2, respectively. Ordered fct Fe-Pt alloys show high values of coercivities of 10,000 Oe and 10,792 Oe for route-1 and route-2, respectively. Observed magnetic properties of the fct Fe-Pt alloys nps were interpreted with the basis of order parameters, size, surface, and composition effects.

  16. Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy

    NARCIS (Netherlands)

    de Smit, Emiel|info:eu-repo/dai/nl/304824232; Swart, Ingmar|info:eu-repo/dai/nl/304837652; Creemer, J. Fredrik; Hoveling, Gerard H.; Gilles, Mary K.; Tyliszczak, Tolek; Kooyman, Patricia J.; Zandbergen, Henny W.; Morin, Cynthia; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397; de Groot, Frank M. F.|info:eu-repo/dai/nl/08747610X

    2008-01-01

    The modern chemical industryuses heterogeneous catalysts in almost every production process(1). They commonly consist of nanometre- size active components ( typically metals or metal oxides) dispersed on a high- surface- area solid support, with performance depending on the catalysts' nanometre-

  17. Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities.

    Science.gov (United States)

    Kahng, Yung Ho; Lee, Sangchul; Park, Woojin; Jo, Gunho; Choe, Minhyeok; Lee, Jong-Hoon; Yu, Hyunung; Lee, Takhee; Lee, Kwanghee

    2012-02-24

    Thermal stability is an important property of graphene that requires thorough investigation. This study reports the thermal stability of graphene films synthesized by chemical vapor deposition (CVD) on catalytic nickel substrates in a reducing atmosphere. Electron microscopies, atomic force microscopy, and Raman spectroscopy, as well as electronic measurements, were used to determine that CVD-grown graphene films are stable up to 700 °C. At 800 °C, however, graphene films were etched by catalytic metal nanoparticles, and at 1000 °C many tortuous tubular structures were formed in the film and carbon nanotubes were formed at the film edges and at catalytic metal-contaminated sites. Furthermore, we applied our pristine and thermally treated graphene films as active channels in field-effect transistors and characterized their electrical properties. Our research shows that remnant catalytic metal impurities play a critical role in damaging graphene films at high temperatures in a reducing atmosphere: this damage should be considered in the quality control of large-area graphene films for high temperature applications.

  18. Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes

    Directory of Open Access Journals (Sweden)

    Muhammad Akram Raza

    2016-04-01

    Full Text Available Silver nanoparticles (AgNPs of different shapes and sizes were prepared by solution-based chemical reduction routes. Silver nitrate was used as a precursor, tri-sodium citrate (TSC and sodium borohydride as reducing agents, while polyvinylpyrrolidone (PVP was used as a stabilizing agent. The morphology, size, and structural properties of obtained nanoparticles were characterized by scanning electron microscopy (SEM, UV-visible spectroscopy (UV-VIS, and X-ray diffraction (XRD techniques. Spherical AgNPs, as depicted by SEM, were found to have diameters in the range of 15 to 90 nm while lengths of the edges of the triangular particles were about 150 nm. The characteristic surface plasmon resonance (SPR peaks of different spherical silver colloids occurring in the wavelength range of 397 to 504 nm, whereas triangular particles showed two peaks, first at 392 nm and second at 789 nm as measured by UV-VIS. The XRD spectra of the prepared samples indicated the face-centered cubic crystalline structure of metallic AgNPs. The in vitro antibacterial properties of all synthesized AgNPs against two types of Gram-negative bacteria, Pseudomonas aeruginosa and Escherichia coli were examined by Kirby–Bauer disk diffusion susceptibility method. It was noticed that the smallest-sized spherical AgNPs demonstrated a better antibacterial activity against both bacterial strains as compared to the triangular and larger spherical shaped AgNPs.

  19. Industrial-scale proteomics: from liters of plasma to chemically synthesized proteins.

    Science.gov (United States)

    Rose, Keith; Bougueleret, Lydie; Baussant, Thierry; Böhm, Günter; Botti, Paolo; Colinge, Jacques; Cusin, Isabelle; Gaertner, Hubert; Gleizes, Anne; Heller, Manfred; Jimenez, Silvia; Johnson, Andrew; Kussmann, Martin; Menin, Laure; Menzel, Christoph; Ranno, Frederic; Rodriguez-Tomé, Patricia; Rogers, John; Saudrais, Cedric; Villain, Matteo; Wetmore, Diana; Bairoch, Amos; Hochstrasser, Denis

    2004-07-01

    Human blood plasma is a useful source of proteins associated with both health and disease. Analysis of human blood plasma is a challenge due to the large number of peptides and proteins present and the very wide range of concentrations. In order to identify as many proteins as possible for subsequent comparative studies, we developed an industrial-scale (2.5 liter) approach involving sample pooling for the analysis of smaller proteins (M(r) generally < ca. 40 000 and some fragments of very large proteins). Plasma from healthy males was depleted of abundant proteins (albumin and IgG), then smaller proteins and polypeptides were separated into 12 960 fractions by chromatographic techniques. Analysis of proteins and polypeptides was performed by mass spectrometry prior to and after enzymatic digestion. Thousands of peptide identifications were made, permitting the identification of 502 different proteins and polypeptides from a single pool, 405 of which are listed here. The numbers refer to chromatographically separable polypeptide entities present prior to digestion. Combining results from studies with other plasma pools we have identified over 700 different proteins and polypeptides in plasma. Relatively low abundance proteins such as leptin and ghrelin and peptides such as bradykinin, all invisible to two-dimensional gel technology, were clearly identified. Proteins of interest were synthesized by chemical methods for bioassays. We believe that this is the first time that the small proteins in human blood plasma have been separated and analyzed so extensively.

  20. Integrated Raman and electron microscopy : correlative chemical specificity and nanoscale resolution

    NARCIS (Netherlands)

    Timmermans, Frank Jan

    2017-01-01

    This thesis describes the integration of a Raman microscope in a focused ion beam - scanning electron microscope (FIB-SEM). Raman micro-spectroscopy enables chemical specific characterization, while electron microscopy enables high resolution imaging. The Raman - SEM combination thus enables the

  1. Aerogel nanoscale magnesium oxides as a destructive sorbent for toxic chemical agents

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Maříková, Monika; Šubrt, Jan; Oplustil, F.; Olšanská, M.

    2004-01-01

    Roč. 2, č. 1 (2004), s. 16-33 ISSN 1644-3624 R&D Projects: GA MŠk LN00A028 Institutional research plan: CEZ:AV0Z4032918 Keywords : nanostructures * organometallic compounds * chemical synthesis Subject RIV: CA - Inorganic Chemistry Impact factor: 0.171, year: 2004

  2. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth.

    Science.gov (United States)

    Gordon, Lyle M; Joester, Derk

    2011-01-13

    Biological organisms possess an unparalleled ability to control the structure and properties of mineralized tissues. They are able, for example, to guide the formation of smoothly curving single crystals or tough, lightweight, self-repairing skeletal elements. In many biominerals, an organic matrix interacts with the mineral as it forms, controls its morphology and polymorph, and is occluded during mineralization. The remarkable functional properties of the resulting composites-such as outstanding fracture toughness and wear resistance-can be attributed to buried organic-inorganic interfaces at multiple hierarchical levels. Analysing and controlling such interfaces at the nanometre length scale is critical also in emerging organic electronic and photovoltaic hybrid materials. However, elucidating the structural and chemical complexity of buried organic-inorganic interfaces presents a challenge to state-of-the-art imaging techniques. Here we show that pulsed-laser atom-probe tomography reveals three-dimensional chemical maps of organic fibres with a diameter of 5-10 nm in the surrounding nano-crystalline magnetite (Fe(3)O(4)) mineral in the tooth of a marine mollusc, the chiton Chaetopleura apiculata. Remarkably, most fibres co-localize with either sodium or magnesium. Furthermore, clustering of these cations in the fibre indicates a structural level of hierarchy previously undetected. Our results demonstrate that in the chiton tooth, individual organic fibres have different chemical compositions, and therefore probably different functional roles in controlling fibre formation and matrix-mineral interactions. Atom-probe tomography is able to detect this chemical/structural heterogeneity by virtue of its high three-dimensional spatial resolution and sensitivity across the periodic table. We anticipate that the quantitative analysis and visualization of nanometre-scale interfaces by laser-pulsed atom-probe tomography will contribute greatly to our understanding not

  3. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles.

    Science.gov (United States)

    Amooaghaie, Rayhaneh; Saeri, Mohammad Reza; Azizi, Morteza

    2015-10-01

    Despite the development potential in the field of nanotechnology, there is a concern about possible effects of nanoparticles on the environment and human health. In this study, silver nanoparticles (AgNPs) were synthesized by 'green' and 'chemical' methods. In the wet-chemistry method, sodium borohydrate, sodium citrate and silver nitrate were used as raw materials. Leaf extract of Nigella sativa was used as reducing as well as capping agent to reduce silver nitrate in the green synthesis method. In addition, toxic responses of both synthesized AgNPs were monitored on bone-building stem cells of mice as well as seed germination and seedling growth of six different plants (Lolium, wheat, bean and common vetch, lettuce and canola). In both synthesis methods, the colorless reaction mixtures turned brown and UV-visible spectra confirmed the presence of silver nanoparticles. Scanning electron microscope (SEM) observations revealed the predominance of silver nanosized crystallites and fourier transform infra-red spectroscopy (FTIR) indicated the role of different functional groups in the synthetic process. MTT assay showed cell viability of bone-building stem cells of mice was further in the green AgNPs synthesized using black cumin extract than chemical AgNPs. IC50 (inhibitory concentrations) values for seed germination, root and shoot length for 6 plants in green AgNPs exposures were higher than the chemical AgNPs. These results suggest that cytotoxicity and phytotoxicity of the green synthesized AgNPs were significantly less than wet-chemistry synthesized ones. This study indicated an economical, simple and efficient ecofriendly technique using leaves of N. sativa for synthesis of AgNPs and confirmed that green AgNPs are safer than chemically-synthesized AgNPs. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    Science.gov (United States)

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  5. Effect of precursor supply on structural and morphological characteristics of fe nanomaterials synthesized via chemical vapor condensation method.

    Science.gov (United States)

    Ha, Jong-Keun; Ahn, Hyo-Jun; Kim, Ki-Won; Nam, Tae-Hyun; Cho, Kwon-Koo

    2012-01-01

    Various physical, chemical and mechanical methods, such as inert gas condensation, chemical vapor condensation, sol-gel, pulsed wire evaporation, evaporation technique, and mechanical alloying, have been used to synthesize nanoparticles. Among them, chemical vapor condensation (CVC) has the benefit of its applicability to almost all materials because a wide range of precursors are available for large-scale production with a non-agglomerated state. In this work, Fe nanoparticles and nanowires were synthesized by chemical vapor condensation method using iron pentacarbonyl (Fe(CO)5) as the precursor. The effect of processing parameters on the microstructure, size and morphology of Fe nanoparticles and nanowires were studied. In particular, we investigated close correlation of size and morphology of Fe nanoparticles and nanowires with atomic quantity of inflow precursor into the electric furnace as the quantitative analysis. The atomic quantity was calculated by Boyle's ideal gas law. The Fe nanoparticles and nanowires with various diameter and morphology have successfully been synthesized by the chemical vapor condensation method.

  6. Nanoscale chemical surface characterization of four different types of dental pulp-capping materials.

    Science.gov (United States)

    Gong, Victor; França, Rodrigo

    2017-03-01

    The surface of any dental pulp-capping material has important implications for its clinical success because it is in direct contact with dental tissue, which influences its cytotoxicity. The aim was to determine the chemical composition of the first atomic layers of four pulp-protection agents because these atoms can initiate the pulp healing process. Biodentine (Septodont), ProRoot MTA (Dentsply), Dycal (Caulk) and TheraCal (Bisco) were prepared (n=5) according to manufacturer recommendations. The chemical surface composition was analyzed using X-ray photoelectron spectroscopy (XPS), and the bulk composition was analyzed by Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX). Both survey and high resolution XPS spectra of the elements detected were obtained, with element-dependent probe depths of 4-5nm; the binding energy scale was normalized to the C1s adventitious carbon peak at 285eV. There was a significant difference between bulk and surface compositions for all the pulp-capping materials. The calcium surface concentrations at 0nm and 70nm were Dycal 7.9% and 15.1%; ProRoot MTA 14.1% and 17%; TheraCal 0% and 3.6%; and Biodentine 17.6% and 33.7%, respectively. Trace amounts of the following elements (<1%) were also found: Ti, S and Zr in Biodentine; Bi in ProRoot MTA and TheraCal; Na, P, Zn and N in Dycal. The XPS results showed that Ca in the surface layer could vary from 0 to 18%, depending on the material. Aliphatic carbons, from the polymerization reactions, especially in Dycal and TheraCal, were found to mask the other components. This study compares, for the first time, the chemical composition of the first atomic layers of four pulp-capping materials. This information is relevant because the interaction between pulpar cells and the material's outermost atomic layer is an important factor for leading the pulpal response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Nanoscale fabrication and characterization of chemically modified silicon surfaces using conductive atomic force microscopy in liquids

    Science.gov (United States)

    Kinser, Christopher Reagan

    This dissertation examines the modification and characterization of hydrogen-terminated silicon surfaces in organic liquids. Conductive atomic force microscope (cAFM) lithography is used to fabricate structures with sub-100 nm line width on H:Si(111) in n-alkanes, 1-alkenes, and 1-alkanes. Nanopatterning is accomplished by applying a positive (n-alkanes and 1-alkenes) or a negative (1-alkanes) voltage pulse to the silicon substrate with the cAFM tip connected to ground. The chemical and kinetic behavior of the patterned features is characterized using AFM, lateral force microscopy, time-of-flight secondary ion mass spectroscopy (TOF SIMS), and chemical etching. Features patterned in hexadecane, 1-octadecene, and undecylenic acid methyl ester exhibited chemical and kinetic behavior consistent with AFM field induced oxidation. The oxide features are formed due to capillary condensation of a water meniscus at the AFM tip-sample junction. A space-charge limited growth model is proposed to explain the observed growth kinetics. Surface modifications produced in the presence of neat 1-dodecyne and 1-octadecyne exhibited a reduced lateral force compared to the background H:Si(111) substrate and were resistant to a hydrofluoric acid etch, characteristics which indicate that the patterned features are not due to field induced oxidation and which are consistent with the presence of the methyl-terminated 1-alkyne bound directly to the silicon surface through silicon-carbon bonds. In addition to the cAFM patterned surfaces, full monolayers of undecylenic acid methyl ester (SAM-1) and undec-10-enoic acid 2-bromoethyl ester (SAM-2) were grown on H:Si(111) substrates using ultraviolet light. The structure and chemistry of the monolayers were characterized using AFM, TOF SIMS, X-ray photoelectron spectroscopy (XPS), X-ray reflectivity (XRR), X-ray standing waves (XSW), and X-ray fluorescence (XRF). These combined analyses provide evidence that SAM-1 and SAM-2 form dense monolayers

  8. Total reflection of x-ray fluorescence (TXRF): a mature technique for environmental chemical nanoscale metrology

    Science.gov (United States)

    Borgese, L.; Zacco, A.; Bontempi, E.; Colombi, P.; Bertuzzi, R.; Ferretti, E.; Tenini, S.; Depero, L. E.

    2009-08-01

    Total reflection x-ray fluorescence (TXRF) is a technique well established for chemical analysis of samples deposited as a thin layer. Nowadays it is mainly employed for electronic industry quality control. Recently, very compact and economic TXRF instrumentation was proposed. Combining this with the capability to analyze liquid samples, this technique is suitable to be employed in many different applications, comprising the very critical field of environmental analysis. Comparisons with the standard atomic absorption spectroscopy (AAS) technique show that TXRF is a practical, accurate, and reliable technique. Indeed, round-robin activities have already been started. Despite the efficiency and economy of the developed portable TXRF instrumentation, this is not widely employed for chemical laboratory analysis probably because TXRF is not an officially recognized technique, i.e. it is not yet normative-subjected. This fact could also be due to the long background of analytical applications developed for AAS, ICPS or inductively coupled plasma mass spectroscopy (ICP-MS) up to now. In this paper, we present a work of environmental monitoring of an industrial site, performed by means of bioindicators (lichens). The analysis of trace elements concentration in lichen was usually conducted with spectrophotometric techniques, such as AAS and ICP-MS, which were accepted by common regulations and normative-subjected. In this study, we accomplished a comparative lichen analysis by AAS and TXRF. The reproducibility of the obtained results showed the high correspondence between the two techniques. This comparison highlighted the versatility of the TXRF apparatus that allowed more rapid and simultaneous element detection. The obtained results suggested that this portable TXRF system could be suitable for regulation to produce certificated analysis upto ppb concentrations for some elements.

  9. Correlating the nanoscale mechanical and chemical properties of knockout mice bones

    Science.gov (United States)

    Kavukcuoglu, Nadire Beril

    Bone is a mineral-organic composite where the organic matrix is mainly type I collagen plus small amounts of non-collagenous proteins including osteopontin (OPN), osteocalcin (OC) and fibrillin 2 (Fbn2). Mature bone undergoes remodeling continually so new bone is formed and old bone resorbed. Uncoupling between the bone resorption and bone formation causes an overall loss of bone mass and leads to diseases like osteoporosis and osteopenia. These are characterized by structural deterioration of the bone tissue and an increased risk of fracture. The non-collagenous bone proteins are known to have a role in regulating bone turnover and to affect the structural integrity of bone. OPN and OC play a key role in bone resorption and formation, while absence of Fbn-2 causes a connective tissue disorder (congenital contractural arachnodactyly) and has been associated with decreased bone mass. In this thesis nanoindentation and Raman-microspectroscopy techniques were used to investigate and correlate the mechanical and chemical properties of cortical femoral bones from OPN deficient (OPN-/-), OC deficient (OC-/-) and Fbn-2 deficient (Fbn2-/-) mice and their age, sex and background matched wild-type controls (OPN+/+, OC+/+ and Fbn2+/+). For OPN the hardness (H) and elastic modulus (E) of under 12 week OPN-/- bones were significantly lower than for OPN+/+ bones, but Raman showed no significant difference. Mechanical properties of bones from mice older than 12 weeks were not significantly different with genotype. However, mineralization and crystallinity from >50 week OPN-/- bones were significantly higher than for OPN+/+ bones. Mechanical properties of OPN-/- bones showed no variation with age, but mineralization, crystallinity and type-B carbonate substitution increased for both genotypes. For OC-/- intra-bone analyses showed that the hardness and crystallinity of the bones were significantly higher, especially in the mid-cortical sections, compared to OC+/+ bones. Fbn2

  10. A new route to nanoscale tomographic chemical analysis: Focused ion beam-induced auger electron spectrosocpy

    Science.gov (United States)

    Parvaneh, Hamed

    This research project is aimed to study the application of ion-induced Auger electron spectroscopy (IAES) in combination with the characteristics of focused ion beam (FIB) microscopy for performing chemical spectroscopy and further evaluate its potential for 3-dimensional chemical tomography applications. The mechanism for generation of Auger electrons by bombarding ions is very different from its electron induced counterpart. In the conventional electron-induced Auger electron spectroscopy (EAES), an electron beam with energy typically in the range 1-10kV is used to excite inner-shell (core) electrons of the solid. An electron from a higher electron energy state then de-excites to fill the hole and the extra energy is then transferred to either another electron, i.e. the Auger electron, or generation of an X-ray (photon). In both cases the emitting particles have charac-teristic energies and could be used to identify the excited target atoms. In IAES, however, large excitation cross sections can occur by promotion of in-ner shell electrons through crossing of molecular orbitals. Originally such phenomenological excitation processes were first proposed [3] for bi-particle gas phase collision systems to explain the generation of inner shell vacancies in violent collisions. In addition to excitation of incident or target atoms, due to a much heavier mass of ions compared to electrons, there would also be a substantial momentum transfer from the incident to the target atoms. This may cause the excited target atom to recoil from the lattice site or alternatively sputter off the surface with the possibility of de-excitation while the atom is either in motion in the matrix or traveling in vacuum. As a result, one could expect differences between the spectra induced by incident electrons and ions and interpretation of the IAE spectra requires separate consideration of both excitation and decay processes. In the first stage of the project, a state-of-the-art mass

  11. Wet Chemically Synthesized CuO Bipods and their Optical Properties.

    Science.gov (United States)

    Samanta, Pijus K; Saha, Abhijit; Kamilya, Tapanendu

    2016-01-01

    Metal oxide nanostructures are being investigated widely due to their strong optical absorption, efficient photoluminescence, abundant of availability and structural stability which lead them as a possible substitute of Si based solar cells and many optoelectronic and sensor devices. Due to their non-toxic nature they are supposed to be promising materials for drug delivery and medical research. Among several metal oxides, cupric oxide (CuO) is being investigated nowadays due to their high transparency and visible luminescence. It is a p-type semiconductor of band gap varying from 1.3 eV to 2.1 eV depending of the structure and process of fabrication. This low band gap of CuO nanostructures leads its application in photoconductive and photothermal applications. This leads rigorous investigations on CuO nanostructures. A simple wet chemical methods has been used to synthesize CuO bipods. Predetermined amount of Copper sulphate penta-hydrate (CuSO4, 5H2O) was dissolved in double distilled de-ionized water to prepare 0.5 M solution. Predetermined amount of Lithium hydroxide (LiOH) was dissolved in de-ionized water to prepare 1 M solution. Under rigorous magnetic stirring of the LiOH solution CuSO4 solution was added drop by drop for five minutes and the stirring was maintained for 2 hours at room temperature (30°C). After the reaction a white precipitate was observed at the bottom of the flask. This solution was then aged for 24 hours. The color of the precipitate solution was turned into grey. The precipitate was filtered and subsequently washed with distilled de-ionized water thrice for the removal of unreacted salts if any. The precipitate was then dried in an ordinary furnace at 150°C for further characterization. X-ray diffraction data confirmed the formation of well crystalline CuO having monoclinic unit cell structure. The crystallite size was ~ 12 nm as calculated from the XRD pattern. Transmission electron microscope images revealed that the bipod

  12. Plasma assisted chemical vapor deposited tantalum silicon nitride thin films for applications in nanoscale devices

    Science.gov (United States)

    Zeng, Wanxue

    The scaling issues resulting from diminishing device feature sizes have prompted the investigation of alternative materials and deposition techniques for copper diffusion barrier applications. As device sizes shrink to sub 100-nm technology nodes, the allowable copper diffusion barrier thickness falls to less than 10 nm. In this respect, novel materials are needed to stop copper diffusion into surrounding materials. TaSiN has been regarded as one of the most promising materials for copper diffusion barrier applications, owing to its excellent thermal stability, amorphous structure, and low resistivity. In this respect, a plasma assisted chemical vapor deposition (PACVD) process using TaF5, SiI4, N2, H2, and in-situ radio frequency (RF) plasma was optimized for depositing ultrathin TaSiN films, employing a design of experiments (DOE) approach. Film properties were characterized using Rutherford backscattering spectrometry (RBS), nuclear reaction analysis (NRA), Auger electron spectroscopy (AES), x-ray diffraction (XRD), atomic force microscopy (AFM), four-point resistivity probe, and cross-section scanning electron microscopy (CS-SEM). The TaSiN films, deposited via optimized process conditions, exhibited low resistivity, low contamination levels, smooth surface morphology, good step coverage, excellent thermal stability, and amorphous structure. The copper diffusion barrier performance of optimized PACVD TaSiN films was assessed in Cu/TaSiN/Si structures using traditional high temperature annealing methods and in Cu/TaSiN/SiO2/Si structures using a triangular voltage sweep (TVS) method. The results from the former technique show that the diffusion barrier performance of TaSiN films with higher silicon concentration, corresponding to a more prevalent amorphous structure, leads to worse Cu diffusion barrier performance. The results from the TaSiN barrier testing also show that thinner TaSiN films (≤5 nm) performed better as Cu diffusion barriers than thicker Ta

  13. Fluorescent carbon quantum dots synthesized by chemical vapor deposition: An alternative candidate for electron acceptor in polymer solar cells

    Science.gov (United States)

    Cui, Bo; Yan, Lingpeng; Gu, Huimin; Yang, Yongzhen; Liu, Xuguang; Ma, Chang-Qi; Chen, Yongkang; Jia, Husheng

    2018-01-01

    Excitation-wavelength-dependent blue-greenish fluorescent carbon quantum dots (CQDs) with graphite structure were synthesized by chemical vapor deposition (CVD) method. In comparison with those synthesized by hydrothermal method (named H-CQDs), C-CQDs have less hydrophilic terminal groups, showing good solubility in common organic solvents. Furthermore, these synthesized C-CQDs show a low LUMO energy level (LUMO = -3.84 eV), which is close to that of phenyl-C61-butyric acid methyl ester (PC61BM, LUMO = -4.01 eV), the most widely used electron acceptor in polymer solar cells. Photoluminescence quenching of the poly(3-hexylthiophene-2,5-diyl):C-CQDs blended film (P3HT:C-CQDs) indicated that a photo-induced charge transfer between P3HT and C-CQDs occurs in such a composite film. Bulk heterojunction solar cells using C-CQDs as electron acceptors or doping materials were fabricated and tested. High fill factors were achieved for these C-CQDs based polymer solar cells, demonstrating that CQDs synthesized by CVD could be alternative to the fullerene derivatives for applying in polymer solar cells.

  14. Optically stimulated luminescence of ZnO obtained by thermal treatment of ZnS chemically synthesized

    International Nuclear Information System (INIS)

    Cruz V, C.; Burruel I, S.E.; Orante B, V.R.; Grijalva M, H.; Perez S, R.; Bernal, R.

    2005-01-01

    In this work, we report the optically stimulated luminescence (OSL) dosimetry of new nano phosphors of ZnO obtained by thermal annealing of chemically synthesized ZnS powder. The synthesized ZnS nano powder was compressed in order to form pellet shaped pellets, which were afterwards subjected to a thermal annealing at 700 C during 24 h under air atmosphere. X-ray diffraction (XRD) patterns and energy-disperse X-ray Spectrometry (EDS) analyses confirmed the transformation of ZnS to ZnO. Samples were exposed to several doses of beta radiation up to 600 Gy, and the optically stimulated luminescence with 470 nm wavelength light was recorded as a function of dose. The intensity of the OSL signal increases by increasing dose, for what it is concluded that these new phosphor materials are suitable to be used in optically stimulated luminescence dosimetry. (Author)

  15. SCRIPDB: a portal for easy access to syntheses, chemicals and reactions in patents

    Science.gov (United States)

    Heifets, Abraham; Jurisica, Igor

    2012-01-01

    The patent literature is a rich catalog of biologically relevant chemicals; many public and commercial molecular databases contain the structures disclosed in patent claims. However, patents are an equally rich source of metadata about bioactive molecules, including mechanism of action, disease class, homologous experimental series, structural alternatives, or the synthetic pathways used to produce molecules of interest. Unfortunately, this metadata is discarded when chemical structures are deposited separately in databases. SCRIPDB is a chemical structure database designed to make this metadata accessible. SCRIPDB provides the full original patent text, reactions and relationships described within any individual patent, in addition to the molecular files common to structural databases. We discuss how such information is valuable in medical text mining, chemical image analysis, reaction extraction and in silico pharmaceutical lead optimization. SCRIPDB may be searched by exact chemical structure, substructure or molecular similarity and the results may be restricted to patents describing synthetic routes. SCRIPDB is available at http://dcv.uhnres.utoronto.ca/SCRIPDB. PMID:22067445

  16. High performance SERS on nanoporous gold substrates synthesized by chemical de-alloying a Au-based metallic glass

    Science.gov (United States)

    Xue, Yanpeng; Scaglione, Federico; Rizzi, Paola; Battezzati, Livio

    2017-12-01

    A Au20Cu48Ag7Pd5Si20 metallic glass precursor has been used to synthesize nanoporous gold by chemical de-alloying in a mixture of HNO3 and HF. Gold ligaments of size ranging from 45 to 100 nm were obtained as a function of HNO3 concentration, electrolyte temperature and de-alloying time. The as-prepared nanoporous gold exhibited strong surface enhanced Raman scattering (SERS) effect using 4,4‧-bi-pyridine as probe molecule. For application in melamine sensing, the detection limit of 10-6 M was achieved, which indicated that this biocompatible material has great potential as SERS active substrate.

  17. ZnO/SnO2 nanoflower based ZnO template synthesized by thermal chemical vapor deposition

    International Nuclear Information System (INIS)

    Sin, N. D. Md.; Amalina, M. N.; Ismail, Ahmad Syakirin; Shafura, A. K.; Ahmad, Samsiah; Mamat, M. H.; Rusop, M.

    2016-01-01

    The ZnO/SnO 2 nanoflower like structures was grown on a glass substrate deposited with seed layer using thermal chemical vapor deposition (CVD) with combining two source materials. The ZnO/SnO 2 nanoflower like structures had diameter in the range 70 to 100 nm. The atomic percentage of ZnO nanoparticle , SnO 2 nanorods and ZnO/SnO 2 nanoflower was taken using EDS. Based on the FESEM observations, the growth mechanism is applied to describe the growth for the synthesized nanostructures.

  18. ZnO/SnO{sub 2} nanoflower based ZnO template synthesized by thermal chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sin, N. D. Md., E-mail: diyana0366@johor.uitm.edu.my; Amalina, M. N., E-mail: amalina0942@johor.uitm.edu.my [NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Fakulti Kejuruteraan Elektrik, Universiti Teknologi MARA Cawangan Johor, Kampus Pasir Gudang, 81750 Masai, Johor (Malaysia); Ismail, Ahmad Syakirin, E-mail: kyrin-samaxi@yahoo.com; Shafura, A. K., E-mail: shafura@ymail.com; Ahmad, Samsiah, E-mail: samsiah.ahmad@johor.uitm.edu.my; Mamat, M. H., E-mail: mhmamat@salam.uitm.edu.my [NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Rusop, M., E-mail: rusop@salam.uitm.edu.my [NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    The ZnO/SnO{sub 2} nanoflower like structures was grown on a glass substrate deposited with seed layer using thermal chemical vapor deposition (CVD) with combining two source materials. The ZnO/SnO{sub 2} nanoflower like structures had diameter in the range 70 to 100 nm. The atomic percentage of ZnO nanoparticle , SnO{sub 2} nanorods and ZnO/SnO{sub 2} nanoflower was taken using EDS. Based on the FESEM observations, the growth mechanism is applied to describe the growth for the synthesized nanostructures.

  19. Composites comprising biologically-synthesized nanomaterials

    Science.gov (United States)

    Curran, Seamus; Dias, Sampath; Blau, Werner; Wang, Jun; Oremland, Ronald S; Baesman, Shaun

    2013-04-30

    The present disclosure describes composite materials containing a polymer material and a nanoscale material dispersed in the polymer material. The nanoscale materials may be biologically synthesized, such as tellurium nanorods synthesized by Bacillus selenitireducens. Composite materials of the present disclosure may have optical limiting properties and find use in optical limiting devices.

  20. Chemical characterization of Xanthan biopolymers synthesized by Xanthomonas campestris pv pruni strains

    International Nuclear Information System (INIS)

    Moreira, Angelita da S.; Vendruscolo, Claire T.; Furlan, Ligia; Galland, Griselda

    2001-01-01

    In this work we describe the characterisation of Xanthan biopolymers synthesized by two Xanthomonas campestris pv pruni strains, in aerobic fermentation. By chromatography on TLC we could notice the presence of Mannose monomer in higher proportion in the 82 strain with relation to the another ones. The viscosity results showed the temperature dependence. The 06 and 82 strains had their viscosity increased whereas for the 87 strain we could observe a reduction with temperature increasing. The 13 C NMR spectrum of 87 strain showed the characteristic signals at approximately 92.8, 70.4 and 61.4 ppm, attributed to C1, C4 and C6 from glucose monomer, with higher intensity. (author)

  1. Green wet chemical route to synthesize capped CdSe quantum dots

    Indian Academy of Sciences (India)

    cadmium selenide quantum dots (CdSe QDs) employing chemical bath deposition (CBD) method. The mechanism of capping using ... more, the process can be operated under open atmosphere. (Chang and Lee 2007). Here, we report ... kept in bath at 65. ◦. C for. 1 h. In order to control the pH further, appropriate amount of.

  2. Phthalic Acid Chemical Probes Synthesized for Protein-Protein Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Chin-Jen Wu

    2013-06-01

    Full Text Available Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP. According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES was deposited on silicon dioxides (SiO2 particles and phthalate chemical probes were manufactured from phthalic acid and APTES–SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA software showed that these chemical probes were a practical technique for protein-protein interaction analysis.

  3. Green wet chemical route to synthesize capped CdSe quantum dots

    Indian Academy of Sciences (India)

    In the present work, we report green synthesis of tartaric acid (TA) and triethanolamine (TEA) capped cadmium selenide quantum dots (CdSe QDs) employing chemical bath deposition (CBD) method. The mechanism of capping using non-toxic binary capping agents is also discussed. Stable QDs of various sizes were ...

  4. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO 3

    KAUST Repository

    Li, Yangyang

    2016-06-27

    Metal/oxide interfaces are ubiquitous in a wide range of applications such as electronics, photovoltaics, memories, catalysis, and sensors. However, there have been few investigations dedicated to the nanoscale structural and chemical characteristics of these buried interfaces. In this work, the metal/oxide interface between Ti and SrTiO3 (STO) is examined as a prototypical system using high-resolution scanning transmission electron microscopy and electron energy loss spectroscopy. An atomic-thin Ti2O3-like layer at the Ti/STO interface prepared at room temperature is discovered, and first-principles calculations predict a metallic band structure of this 2D electron system. As a universal feature of such interfaces prepared at different temperatures, near the interface nanoscale oxygen-deficient domains and continuous modulation of Ti oxidation states are found. Overall, these results directly reveal complex chemical and valence evolutions at the metal/oxide interfaces, providing microscopic insights on such heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  5. Rapid Prototyping of Chemical Microsensors Based on Molecularly Imprinted Polymers Synthesized by Two-Photon Stereolithography.

    Science.gov (United States)

    Gomez, Laura Piedad Chia; Spangenberg, Arnaud; Ton, Xuan-Anh; Fuchs, Yannick; Bokeloh, Frank; Malval, Jean-Pierre; Tse Sum Bui, Bernadette; Thuau, Damien; Ayela, Cédric; Haupt, Karsten; Soppera, Olivier

    2016-07-01

    Two-photon stereolithography is used for rapid prototyping of submicrometre molecularly imprinted polymer-based 3D structures. The structures are evaluated as chemical sensing elements and their specific recognition properties for target molecules are confirmed. The 3D design capability is exploited and highlighted through the fabrication of an all-organic molecularly imprinted polymeric microelectromechanical sensor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. SHI induced defects in chemically synthesized graphene oxide for hydrogen storage applications

    International Nuclear Information System (INIS)

    Sharma, Preetam K.; Sharma, Vinay; Rajaura, Rajveer Singh; Singh, M.; Srivastava, Subodh; Vijay, Y. K.; Sharma, S. S.

    2016-01-01

    Graphene, due to its unique properties arising from the single carbon layer, is a potential candidate for applications in a variety of fields including sensors, photovoltaics and energy storage. The atomic structure and morphology of the carbon nanomaterials especially graphene can be tailored by energetic ionic irradiation. As graphene sheet is very stable, the surface have less reactivity as compared to the edges of the sheets. By surface modification with energetic ion-beams additional dangling bonds can be formed to enhance the surface activity of the graphene film which could be exploited in a variety of applications. In the present work, graphene oxide was synthesized by improved Hummers’ Method. The irradiation was done with Ag + ions carrying energy 100 MeV with the fluence of 3×10 13 . Raman spectrum of graphene irradiated by Ag + beam shows additional disordered peaks of D´ and D+G bands. There is also a decrease in the intensity of D band. AFM images depict the increase in the surface roughness of the films. This can be attributed to the increase in the defects in the flakes and intermixing of adjacent layers by irradiation.

  7. Nonlinear optical characterization of ZnS thin film synthesized by chemical spray pyrolysis method

    Energy Technology Data Exchange (ETDEWEB)

    G, Sreeja V; Anila, E. I., E-mail: anilaei@gmail.com; R, Reshmi, E-mail: anilaei@gmail.com; John, Manu Punnan, E-mail: anilaei@gmail.com [Optolectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva-683 102, Kerala (India); V, Sabitha P; Radhakrishnan, P. [International School of Photonics, CUSAT, Cochin-22 (India)

    2014-10-15

    ZnS thin film was prepared by Chemical Spray Pyrolysis (CSP) method. The sample was characterized by X-ray diffraction method and Z scan technique. XRD pattern showed that ZnS thin film has hexagonal structure with an average size of about 5.6nm. The nonlinear optical properties of ZnS thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated ZnS thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated.

  8. Bolaamphiphiles as carriers for siRNA delivery: From chemical syntheses to practical applications.

    Science.gov (United States)

    Gupta, Kshitij; Afonin, Kirill A; Viard, Mathias; Herrero, Virginia; Kasprzak, Wojciech; Kagiampakis, Ioannis; Kim, Taejin; Koyfman, Alexey Y; Puri, Anu; Stepler, Marissa; Sappe, Alison; KewalRamani, Vineet N; Grinberg, Sarina; Linder, Charles; Heldman, Eliahu; Blumenthal, Robert; Shapiro, Bruce A

    2015-09-10

    In this study we have investigated a new class of cationic lipids--"bolaamphiphiles" or "bolas"--for their ability to efficiently deliver small interfering RNAs (siRNAs) to cancer cells. The bolas of this study consist of a hydrophobic chain with one or more positively charged head groups at each end. Recently, we reported that micelles of the bolas GLH-19 and GLH-20 (derived from vernonia oil) efficiently deliver siRNAs, while having relatively low toxicities in vitro and in vivo. Our previous studies validated that; bolaamphiphiles can be designed to vary the magnitude of siRNA shielding, its delivery, and its subsequent release. To further understand the structural features of bolas critical for siRNAs delivery, new structurally related bolas (GLH-58 and GLH-60) were designed and synthesized from jojoba oil. Both bolas have similar hydrophobic domains and contain either one, in GLH-58, or two, in GLH-60 positively charged head groups at each end of the hydrophobic core. We have computationally predicted and experimentally validated that GLH-58 formed more stable nano sized micelles than GLH-60 and performed significantly better in comparison to GLH-60 for siRNA delivery. GLH-58/siRNA complexes demonstrated better efficiency in silencing the expression of the GFP gene in human breast cancer cells at concentrations of 5μg/mL, well below the toxic dose. Moreover, delivery of multiple different siRNAs targeting the HIV genome demonstrated further inhibition of virus production. Published by Elsevier B.V.

  9. Microstructures and photocatalytic properties of porous ZnO films synthesized by chemical bath deposition method

    International Nuclear Information System (INIS)

    Wang Huihu; Dong, Shijie; Chang Ying; Zhou Xiaoping; Hu Xinbin

    2012-01-01

    Different porous ZnO film structures on the surface of alumina substrates were prepared through a simple chemical bath deposition method in the methanolic zinc acetate solution. The surface morphology and phase structure of porous ZnO film were determined by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Both initial zinc acetate concentration and sintering temperature have great impact on the final film structures. With the increase of initial zinc acetate concentration, the porous structures can be finely tuned from circular nest like assemblies composed film into successive nest like film, and finally to globular aggregates composed film. By increasing the sintering temperature, the porous structure of successive nest like film can be further controlled. Furthermore, the crystallinity of photocatalysts also can be greatly improved. The photodegradation results of Methyl Orange revealed that porous ZnO film with successive nest like structure sintered at 500 °C exhibited the highest photocatalytic activity under UV illumination.

  10. Photoluminescence study of novel phosphorus-doped ZnO nanotetrapods synthesized by chemical vapour deposition

    International Nuclear Information System (INIS)

    Yu Dongqi; Hu Lizhong; Qiao Shuangshuang; Zhang Heqiu; Fu Qiang; Chen Xi; Sun Kaitong; Len, Song-En Andy; Len, L K

    2009-01-01

    Novel phosphorus-doped and undoped single crystal ZnO nanotetrapods were fabricated on sapphire by a simple chemical vapour deposition method, using phosphorus pentoxide (P 2 O 5 ) as the dopant source. The optical properties of the samples were investigated by photoluminescence (PL) spectroscopy. Low-temperature PL measurements of phosphorus-doped and undoped samples were compared, and the results indicated a decrease in deep level defects due to the incorporation of a phosphorus acceptor dopant. The PL spectrum of the phosphorus-doped sample at 10 K exhibited several acceptor-bound exciton related emission peaks. The effect of phosphorus doping on the optical characteristics of the samples was investigated by excitation intensity and temperature dependent PL spectra. The acceptor-binding energies of the phosphorus dopant were estimated to be about 120 meV, in good agreement with the corresponding theoretical and experimental values in phosphorus-doped ZnO films and nanowires.

  11. Is Chemically Synthesized Graphene ‘Really’ a Unique Substrate for SERS and Fluorescence Quenching?

    Science.gov (United States)

    Sil, Sanchita; Kuhar, Nikki; Acharya, Somnath; Umapathy, Siva

    2013-01-01

    We demonstrate observation of Raman signals of different analytes adsorbed on carbonaceous materials, such as, chemically reduced graphene, graphene oxide (GO), multi-walled carbon nanotube (MWCNT), graphite and activated carbon. The analytes selected for the study were Rhodamine 6G (R6G) (in resonant conditions), Rhodamine B (RB), Nile blue (NBA), Crystal Violet (CV) and acetaminophen (paracetamol). All the analytes except paracetamol absorb and fluoresce in the visible region. In this article we provide experimental evidence of the fact that observation of Raman signals of analytes on such carbonaceous materials are more due to resonance effect, suppression of fluorescence and efficient adsorption and that this property in not unique to graphene or nanotubes but prevalent for various type of carbon materials. PMID:24275718

  12. A comparative study of geopolymers synthesized from OXY-combustion and chemical looping combustion bottom ashes

    CSIR Research Space (South Africa)

    Nkuna, CN

    2017-04-01

    Full Text Available under fluidised bed conditions, is 51 Chemical looping combustion (CLC). CLC is a process where metal oxides are used to 52 transport the oxygen between the two reactors, fuel reactor and air reactor [3-5]. In the fuel 53 reactor the metal oxide... reacts with the fuel to produce CO2 and H2O as fuel gases [ (CnHn)m + 54 (2n+m)MexOy →nCO2 + mH2O + (2n+m)MexOy-1].The reduced metal oxide is transported 55 into the air reactor in order to be oxidized by air [O2 + 2MexOy-1 →2MexOy], then oxidized 56...

  13. Identification of Chemical Attribution Signatures of Fentanyl Syntheses Using Multivariate Statistical Analysis of Orthogonal Analytical Data

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, B. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mew, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); DeHope, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spackman, P. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Williams, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-24

    Attribution of the origin of an illicit drug relies on identification of compounds indicative of its clandestine production and is a key component of many modern forensic investigations. The results of these studies can yield detailed information on method of manufacture, starting material source, and final product - all critical forensic evidence. In the present work, chemical attribution signatures (CAS) associated with the synthesis of the analgesic fentanyl, N-(1-phenylethylpiperidin-4-yl)-N-phenylpropanamide, were investigated. Six synthesis methods, all previously published fentanyl synthetic routes or hybrid versions thereof, were studied in an effort to identify and classify route-specific signatures. 160 distinct compounds and inorganic species were identified using gas and liquid chromatographies combined with mass spectrometric methods (GC-MS and LCMS/ MS-TOF) in conjunction with inductively coupled plasma mass spectrometry (ICPMS). The complexity of the resultant data matrix urged the use of multivariate statistical analysis. Using partial least squares discriminant analysis (PLS-DA), 87 route-specific CAS were classified and a statistical model capable of predicting the method of fentanyl synthesis was validated and tested against CAS profiles from crude fentanyl products deposited and later extracted from two operationally relevant surfaces: stainless steel and vinyl tile. This work provides the most detailed fentanyl CAS investigation to date by using orthogonal mass spectral data to identify CAS of forensic significance for illicit drug detection, profiling, and attribution.

  14. Magnetic properties of Ni nanoparticles embedded in silica matrix (KIT-6) synthesized via novel chemical route

    Science.gov (United States)

    Dalavi, Shankar B.; Raja, M. Manivel; Panda, Rabi. N.

    2015-06-01

    Thermally stable Ni nanoparticles have been embedded in mesoporous silica matrix (KIT-6) via novel chemical reduction method by using superhydride as reducing agent. X-ray diffraction (XRD) study confirms that pure and embedded Ni nanoparticles crystallize in face centered cubic (fcc) structure. Crystallite sizes of pure Ni, 4 wt% and 8 wt% Ni in silica were estimated to be 6.0 nm, 10.4 nm and 10.5 nm, respectively. Morphology and dispersion of Ni in silica matrix were studied by scanning electron microscopy (SEM). Magnetic study shows enhancement of magnetic moments of Ni nanoparticles embedded in silica matrix compared with that of pure Ni. The result has been interpreted on the basis of size reduction and magnetic exchange effects. Saturation magnetization values for pure Ni, 4 wt% and 8 wt% Ni in silica were found to be 15.77 emu/g, 5.08 emu/g and 2.00 emu/g whereas coercivity values were 33.72 Oe, 92.47 Oe and 64.70 Oe, respectively. We anticipate that the observed magnetic properties may find application as soft magnetic materials.

  15. Magnetic properties of Ni nanoparticles embedded in silica matrix (KIT-6) synthesized via novel chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Dalavi, Shankar B.; Panda, Rabi N., E-mail: rnp@goa.bits-pilani.ac.in [Department of Chemistry, BITS-Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa-403726 (India); Raja, M. Manivel [Defence Metallurgical Research Laboratory, Hyderabad-500058 (India)

    2015-06-24

    Thermally stable Ni nanoparticles have been embedded in mesoporous silica matrix (KIT-6) via novel chemical reduction method by using superhydride as reducing agent. X-ray diffraction (XRD) study confirms that pure and embedded Ni nanoparticles crystallize in face centered cubic (fcc) structure. Crystallite sizes of pure Ni, 4 wt% and 8 wt% Ni in silica were estimated to be 6.0 nm, 10.4 nm and 10.5 nm, respectively. Morphology and dispersion of Ni in silica matrix were studied by scanning electron microscopy (SEM). Magnetic study shows enhancement of magnetic moments of Ni nanoparticles embedded in silica matrix compared with that of pure Ni. The result has been interpreted on the basis of size reduction and magnetic exchange effects. Saturation magnetization values for pure Ni, 4 wt% and 8 wt% Ni in silica were found to be 15.77 emu/g, 5.08 emu/g and 2.00 emu/g whereas coercivity values were 33.72 Oe, 92.47 Oe and 64.70 Oe, respectively. We anticipate that the observed magnetic properties may find application as soft magnetic materials.

  16. Chemical Architecture and Applications of Nucleic Acid Derivatives Containing 1,2,3-Triazole Functionalities Synthesized via Click Chemistry

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2012-10-01

    Full Text Available There is considerable attention directed at chemically modifying nucleic acids with robust functional groups in order to alter their properties. Since the breakthrough of copper-assisted azide-alkyne cycloadditions (CuAAC, there have been several reports describing the synthesis and properties of novel triazole-modified nucleic acid derivatives for potential downstream DNA- and RNA-based applications. This review will focus on highlighting representative novel nucleic acid molecular structures that have been synthesized via the “click” azide-alkyne cycloaddition. Many of these derivatives show compatibility for various applications that involve enzymatic transformation, nucleic acid hybridization, molecular tagging and purification, and gene silencing. The details of these applications are discussed. In conclusion, the future of nucleic acid analogues functionalized with triazoles is promising.

  17. Structural and electrochemical analysis of chemically synthesized microcubic architectured lead selenide thin films

    Science.gov (United States)

    Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.

    2018-01-01

    The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.

  18. Nanoscale Structural/Chemical Characterization of Manganese Oxide Surface Layers and Nanoparticles, and the Associated Implications for Drinking Water

    Science.gov (United States)

    Michel Eduardo Vargas Vallejo

    Water treatment facilities commonly reduce soluble contaminants, such as soluble manganese (Mn2+), in water by oxidation and subsequent filtration. Previous studies have shown that conventional porous filter system removes Mn2+ from drinking water by developing Mn-oxides (MnO x(s)) bearing coating layers on the surface of filter media. Multiple models have been developed to explain this Mn2+ removal process and the formation mechanism of MnOx(s) coatings. Both, experimental and theoretical studies to date have been largely focused on the micrometer to millimeter scale range; whereas, coating layers are composed of nanoscale particles and films. Hence, understanding the nanoscale particle and film formation mechanisms is essential to comprehend the complexity of soluble contaminant removal processes. The primary objective of this study was to understand the initial MnOx(s) coating formation mechanisms and evaluate the influence of filter media characteristics on these processes. We pursued this objective by characterizing at the micro and nanoscale MnO x(s) coatings developed on different filter media by bench-scale column tests with simulating inorganic aqueous chemistry of a typical coagulation fresh water treatment plant, where free chlorine is present across filter bed. Analytical SEM and TEM, powder and synchrotron-based XRD, XPS, and ICPMS were used for characterization of coatings, filter media and water solution elemental chemistry. A secondary objective was to model how surface coating formation occurred and its correlation with experimentally observed physical characteristics. This modeling exercise indicates that surface roughness and morphology of filtering media are the major contributing factors in surface coating formation process. Contrary to previous models that assumed a uniform distribution and growth of surface coating, the experimental results showed that greater amounts of coating were developed in rougher areas. At the very early stage of

  19. Chemical Imaging of Nanoscale Interfacial Inhomogeneity in LiFePO4Composite Electrodes from a Cycled Large-Format Battery.

    Science.gov (United States)

    Zhou, Jigang; Wang, Jian; Hu, Yongfeng; Lu, Mi

    2017-11-15

    The nanoscale interfacial inhomogeneity in a cycled large-format LiFePO 4 (LFP) composite electrode has been studied by X-ray photoemission electron microscopy at single particle spatial resolution with a probe depth of ∼5 nm. The loss of active lithium in cycled LFP causes the coexsitence of fully delithiated LFP (FePO 4 ) and partially delithiated LFP (Li 0.6 FePO 4 or Li 0.8 FePO 4 ) as a function of the extent of lithium loss. The distribution of various lithium loss phases along with local agglomeration of LFP and degradation of binder and carbon black are correlatively visualized. This is the first experimental exploration of chemical interplay between components in the composite electrode from a large-format battery, and implications on the LFP degradation in this battery are discussed.

  20. Self-assembled monolayer resists and nanoscale lithography of silicon dioxide thin films by chemically enhanced vapor etching (CEVE)

    Science.gov (United States)

    Pan, M.; Yun, M.; Kozicki, M. N.; Whidden, T. K.

    1996-10-01

    We report on the use of electron-beam exposed monolayers of undecylenic acid in the etch rate enhancement of silicon dioxide films in HF vapor for the formation of nanoscale features in the oxide. Variations of the etching characteristics with electron beam parameters are examined and the results analyzed in terms of proposed models of the etching mechanism. Apparent variations in the relative concentrations of etch initiator with the thermal history of the samples prior to etching provides support for the dominant etch initiator within this system as the carboxylic acid moiety bound at the oxide surface. Other variations in the etching characteristics are discussed in terms of differences in localized concentrations of hydrocarbon crosslinks and the effect that this has upon the etch initiation. The process has been employed in the production of features in silicon dioxide surface masks with sizes down to 50 nm.

  1. A Comparative Study of Chemically and Biologically Synthesized MgO Nanomaterial for Liquefied Petroleum Gas Detection

    Science.gov (United States)

    Thirupathi, Rampelly; Solleti, Goutham; Sreekanth, Tirumala; Sadasivuni, Kishor Kumar; Venkateswara Rao, Kalagadda

    2018-03-01

    The exceptional chemical and physical properties of nanostructured materials are extremely suitable for designing new and enhanced sensing devices, particularly gas sensors and biosensors. The present work describes the synthesis of magnesium oxide (MgO) nanoparticles through two methods: a green synthesis using aloe vera plant extract and a chemical method using a glycine-based solution combustion route. In a single step, the extracted organic molecules from aloe vera plants were used to reduce metal ions by the green method. MgO nanoparticles were coated onto the interdigital electrode using the drop-drying method. The dynamic gas-sensing characteristics were measured for liquefied petroleum gas (LPG) at different concentrations and various temperatures. The MgO nanoparticles were characterized by using x-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy to determine the size and structure of the particles. The product's functional properties were analyzed by Fourier transform-infrared spectroscopy and UV-visible spectroscopy. We found that the LPG sensing behavior of biologically synthesized MgO registers excellent sensitivity at various operating temperatures.

  2. Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions.

    Directory of Open Access Journals (Sweden)

    Liang Gong

    Full Text Available BACKGROUND: Over the last 60 years, synthetic chemical pesticides have served as a main tactic in the field of crop protection, but their availability is now declining as a result of the development of insect resistance. Therefore, alternative pest management agents are needed. However, the demonstration of RNAi gene silencing in insects and its successful usage in disrupting the expression of vital genes opened a door to the development of a variety of novel, environmentally sound approaches for insect pest management. METHODOLOGY/PRINCIPAL FINDINGS: Six small interfering RNAs (siRNAs were chemically synthesized and modified according to the cDNA sequence of P. xylostella acetylcholine esterase genes AChE1 and AChE2. All of them were formulated and used in insecticide activity screening against P. xylostella. Bioassay data suggested that Si-ace1_003 and Si-ace2_001 at a concentration of 3 µg cm(-2 displayed the best insecticidal activity with 73.7% and 89.0%, mortality, respectively. Additional bioassays were used to obtain the acute lethal concentrations of LC50 and LC90 for Si-ace2_001, which were 53.66 µg/ml and 759.71 µg/ml, respectively. Quantitative Real-time PCR was used to confirm silencing and detected that the transcript levels of P. xylostella AChE2 (PxAChE2 were reduced by 5.7-fold compared to the control group. Consequently, AChE activity was also reduced by 1.7-fold. Finally, effects of the siRNAs on treated plants of Brassica oleracea and Brassica alboglabra were investigated with different siRNA doses. Our results showed that Si-ace2_001 had no negative effects on plant morphology, color and growth of vein under our experimental conditions. CONCLUSIONS: The most important finding of this study is the discovery that chemically synthesized and modified siRNA corresponding to P. xylostella AChE genes cause significant mortality of the insect both under laboratory and field conditions, which provides a novel strategy to control P

  3. Atomic Resolution Imaging of Nanoscale Chemical Expansion in PrxCe1-xO2-δduring In Situ Heating.

    Science.gov (United States)

    Swallow, Jessica G; Lee, Ja Kyung; Defferriere, Thomas; Hughes, Gareth M; Raja, Shilpa N; Tuller, Harry L; Warner, Jamie H; Van Vliet, Krystyn J

    2018-02-27

    Thin film nonstoichiometric oxides enable many high-temperature applications including solid oxide fuel cells, actuators, and catalysis. Large concentrations of point defects (particularly, oxygen vacancies) enable fast ionic conductivity or gas exchange kinetics in these materials but also manifest as coupling between lattice volume and chemical composition. This chemical expansion may be either detrimental or useful, especially in thin film devices that may exhibit enhanced performance through strain engineering or decreased operating temperatures. However, thin film nonstoichiometric oxides can differ from bulk counterparts in terms of operando defect concentrations, transport properties, and mechanical properties. Here, we present an in situ investigation of atomic-scale chemical expansion in Pr x Ce 1-x O 2-δ (PCO), a mixed ionic-electronic conducting oxide relevant to electrochemical energy conversion and high-temperature actuation. Through a combination of electron energy loss spectroscopy and transmission electron microscopy with in situ heating, we characterized chemical strains and changes in oxidation state in cross sections of PCO films grown on yttria-stabilized zirconia (YSZ) at temperatures reaching 650 °C. We quantified, both statically and dynamically, the nanoscale chemical expansion induced by changes in PCO redox state as a function of position and direction relative to the film-substrate interface. Additionally, we observed dislocations at the film-substrate interface, as well as reduced cation localization to threading defects within PCO films. These results illustrate several key aspects of atomic-scale structure and mechanical deformation in nonstoichiometric oxide films that clarify distinctions between films and bulk counterparts and that hold several implications for operando chemical expansion or "breathing" of such oxide films.

  4. Study on hydrothermal synthesis dynamics of nanoscale xonotlite fibers

    Science.gov (United States)

    Liu, F.; Chen, S.; Lin, Q.; Wang, X. D.; Cao, J. X.

    2018-01-01

    The xonotlite crystals were synthesized via the hydrothermal synthesis manner from CaO and SiO2 as the raw materials with their Si/Ca molar ratio of 1.0. Hydrothermal synthesis dynamics of nanoscale xonotlite fibers was explored by masterly measuring the electrical conductivities and the calcium concentrations of product slurries synthesized at various reaction temperature in this paper. The results indicated that the calculated values of the products’ quality at various reaction temperatures were consistent with the measured values. Based on chemical reaction kinetic, using fourth-order Runge-Kutta method, spline interpolation and least-squares fitting method, the dynamic relationship of xonotlite fibers synthesized via hydrothermal synthesis process is of -{dc}A/{dt}={kc}A4/5.

  5. Chemically synthesized TiO2 and PANI/TiO2 thin films for ethanol sensing applications

    Science.gov (United States)

    Gawri, Isha; Ridhi, R.; Singh, K. P.; Tripathi, S. K.

    2018-02-01

    Ethanol sensing properties of chemically synthesized titanium dioxide (TiO2) and polyaniline/titanium dioxide nanocomposites (PANI/TiO2) had been performed at room temperature. In-situ oxidative polymerization process had been employed with aniline as a monomer in presence of anatase titanium dioxide nanoparticles. The prepared samples were structurally and morphologically characterized by x-ray diffraction, fourier transform infrared spectra, high resolution-transmission electron microscopy and field emission-scanning electron microscopy. The crystallinity of PANI/TiO2 nanocomposite was revealed by XRD and FTIR spectra confirmed the presence of chemical bonding between the polymer chains and metal oxide nanoparticles. HR-TEM micrographs depicted that TiO2 particles were embedded in polymer matrix, which provides an advantage over pure TiO2 nanoparticles in efficient adsorption of vapours. These images also revealed that the TiO2 nanoparticles were irregular in shape with size around 17 nm. FE-SEM studies revealed that in the porous structure of PANI/TiO2 film, the intercalation of TiO2 in PANI chains provides an advantage over pure TiO2 film for uniform interaction with ethanol vapors. The sensitivity values of prepared samples were examined towards ethanol vapours at room temperature. The PANI/TiO2 nanocomposite exhibited better sensing response and faster response-recovery examined at different ethanol concentrations ranging from 5 ppm to 20 ppm in comparison to pure TiO2 nanoparticles. The increase in vapour sensing of PANI/TiO2 sensing film as compared to pure TiO2 film had been explained in detail with the help of gas sensing mechanism of TiO2 and PANI/TiO2. This provides strong evidence that gas sensing properties of TiO2 had been considerably improved and enhanced with the addition of polymer matrix.

  6. High-level expression of the chemically synthesized gene for microbial transglutaminase from Streptoverticillium in Escherichia coli.

    Science.gov (United States)

    Kawai, M; Takehana, S; Takagi, H

    1997-05-01

    We developed a novel approach for the high-level production of a microbial transglutaminase (TGase) from Streptoverticillium in E. coli. The direct expression of the TGase gene in E. coli cells did not cause overproduction, probably due to the harmful influence of TGase activity, which introduces covalent crosslinks between proteins. Therefore, we fused the chemically synthesized TGase gene coding for the entire 331 amino acid residues at the amino terminus to a bacteriophage T7 gene 10 leader peptide (260 amino acids) using an inducible expression vector. The TGase gene was expressed as inclusion bodies in the E. coli cytoplasm. Restoring 15 amino acid residues upstream of the amino terminus of the mature TGase by a two-step deletion of the fusion sequence facilitated solubilization and subsequent proteolytic cleavage, thus releasing mature TGase. Although the mature form had less TGase activity than native TGase, because of the poor refolding rate, these results suggest that this system is suitable for the efficient production of TGase.

  7. Methylene Blue Photocatalytic Degradation under Visible Irradiation on In2S3 Synthesized by Chemical Bath Deposition

    Directory of Open Access Journals (Sweden)

    William Vallejo

    2017-01-01

    Full Text Available In this work, we synthesized In2S3 powder through chemical bath deposition method (CBD in acid medium; we used thioacetamide as sulphide source and InCl3 as indium ion source. X-ray diffraction, diffuse reflection, and Raman spectroscopy measurements were used for In2S3 powder physicochemical characterization. Optical analysis indicated that In2S3 was active in the visible region of electromagnetic spectrum; it had a band gap of 2.47 eV; the diffraction patterns and Raman spectroscopy suggested that powder had polycrystalline structure. Furthermore, we also studied the adsorption process of methylene blue (MB on In2S3 powder; adsorption studies indicated that the Langmuir model describes experimental data. Finally, photocatalytic degradation of MB was studied under visible irradiation in aqueous solution; besides, pseudo-first-order model was used to obtain kinetic information about photocatalytic degradation; results indicated that the powder catalyst reduces 26% concentration of MB under visible irradiation.

  8. Syntheses, structural elucidation, thermal properties, theoretical quantum chemical studies (DFT and biological studies of barbituric–hydrazone complexes

    Directory of Open Access Journals (Sweden)

    Amina A. Soayed

    2015-03-01

    Full Text Available Condensation of barbituric acid with hydrazine hydrate yielded barbiturichydrazone (L which was characterized using IR, 1H NMR and mass spectra. The Co(II, Ni(II and Cu(II complexes derived from this ligand have been synthesized and structurally characterized by elemental analyses, spectroscopic methods (IR, UV–Vis and ESR and thermal analyses (TGA, DTG and DTA and the structures were further elucidated using quantum chemical density functional theory. Complexes of L were found to have the ML.nH2O stoichiometry with either tetrahedral or octahedral geometry. The ESR data showed the Cu(II complex to be in a tetragonal geometry. Theoretical investigation of the electronic structure of metal complexes at the TD-DFT/B3LYP level of theory has been carried out and discussed. The fundamental vibrational wavenumbers were calculated and a good agreement between observed and scaled calculated wavenumbers was achieved. Thermal studies were performed to deduce the stabilities of the ligand and complexes. Thermodynamic parameters, such as the order of reactions (n, activation energy ΔE∗, enthalpy of reaction ΔH∗ and entropy ΔS∗ were calculated from DTA curves using Horowitz–Metzger method. The ligand L and its complexes have been screened for their antifungal and antibacterial activities and were found to possess better biological activities compared to those of unsubstituted barbituric acid complexes.

  9. Multi-phase structures of boron-doped copper tin sulfide nanoparticles synthesized by chemical bath deposition for optoelectronic devices

    Science.gov (United States)

    Rakspun, Jariya; Kantip, Nathakan; Vailikhit, Veeramol; Choopun, Supab; Tubtimtae, Auttasit

    2018-04-01

    We investigated the influence of boron doping on the structural, optical, and electrical properties of copper tin sulfide (CTS) nanoparticles coated on a WO3 surface and synthesized using chemical bath deposition. Boron doping at concentrations of 0.5, 1.0, 1.5, and 2.0 wt% was investigated. The X-ray diffraction pattern of CTS showed the presence of monoclinic Cu2Sn3S7, cubic Cu2SnS3, and orthorhombic Cu4SnS4. Boron doping influenced the preferred orientation of the nanoparticles for all phase structures and produced a lattice strain effect and changes in the dislocation density. Increasing the concentration of boron in CTS from 0.5 wt% to 2.0 wt% reduced the band gap for all phases of CTS from 1.46 to 1.29 eV and reduced the optical transmittance. Optical constants, such as the refractive index, extinction coefficient, and dissipation factor, were also obtained for B-doped CTS. The dispersion behavior of the refractive index was investigated in terms of a single oscillator model and the physical parameters were determined. Fourier transform infrared spectroscopy confirmed the successful synthesis of CTS nanoparticles. Cyclic voltammetry indicated that optimum boron doping (<1.5 wt% for all phases) resulted in desirable p-n junction behavior for optoelectronic applications.

  10. Annealed Ce{sup 3+}-doped ZnO flower-like morphology synthesized by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Koao, Lehlohonolo F., E-mail: koaolf@ufs.ac.za [Department of Physics, University of the Free State (Qwa Qwa campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Dejene, Francis B.; Tsega, Moges [Department of Physics, University of the Free State (Qwa Qwa campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Swart, Hendrik C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa)

    2016-01-01

    We have successfully synthesized ZnO:xmol% Ce{sup 3+} (0≤x≤10 mol%) doped nanopowders via the chemical bath deposition method (CBD) technique at low temperature (80 °C) and annealed in air at 700 °C. The X-ray diffraction patterns showed that all the undoped and Ce-doped ZnO nanopowders have a hexagonal wurtzite polycrystalline structure with an average crystallite size of about 46 nm. Weak diffraction peaks related mainly to cerium oxide were also detected at higher concentrations of Ce{sup 3+} (x=5–10 mol%). The scanning electron microscopy study revealed that the nanopowder samples were assembled in flower-shaped undoped ZnO and pyramid-shaped Ce{sup 3+}-doped ZnO nanostructures. The UV–vis spectra showed that the absorption edges shifted slightly to the longer wavelengths with the increase in the Ce{sup 3+} ions concentration. Moreover, the photoluminescence (PL) results showed a relative weak visible emission for the Ce{sup 3+}-doped ZnO nanoparticles compared to the undoped ZnO. The effects of Ce{sup 3+}-doping on the structure and PL of ZnO nanopowders are discussed in detail.

  11. Improved magnetic and electrical properties of Cu doped Fe–Ni invar alloys synthesized by chemical reduction technique

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Sajjad, E-mail: sajjadhaleli@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Ziya, Amer Bashir [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Ashiq, Muhammad Naeem, E-mail: naeemashiqqau@yahoo.com [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Ibrahim, Ather; Atiq, Shabbar [Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60800 (Pakistan); Ahmad, Naseeb [Department of Physics, Government College University, Faisalabad (Pakistan); Shakeel, Muhammad [Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60800 (Pakistan); Khan, Muhammad Azhar [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2016-12-01

    Fe–Ni–Cu invar alloys of various compositions (Fe{sub 65}Ni{sub 35−x}Cu{sub x}, x=0, 0.2, 0.6, 1, 1.4 and 1.8) were synthesized via chemical reduction route. These alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM) techniques. The XRD analysis revealed the formation of face centered cubic (fcc) structure. The lattice parameter and the crystallite size of the investigated alloys were calculated and the line broadening indicated the nano-crystallites size of alloy powder. The particle size was estimated from SEM and it decreases by the incorporation of Cu and found to be in the range of 24–40 nm. The addition of Cu in these alloys appreciably enhances the saturation magnetization and it increases from 99 to 123 emu/g. Electrical conductivity has been improved with Cu addition. The thermal conductivity was calculated using the Wiedemann–Franz law. - Graphical abstract: M–H loops of Fe{sub 65}Ni{sub 35−x}Cu{sub x} x =0, 0.2, 0.6, 1, 1.4, 1.8 nano-invar alloys. - Highlights: • A simple method has been employed for the synthesis of invar alloys. • The magnetic properties has been enhanced by the Cu content. • The electrical conductivity has been improved.

  12. Improved magnetic and electrical properties of Cu doped Fe-Ni invar alloys synthesized by chemical reduction technique

    Science.gov (United States)

    Ahmad, Sajjad; Ziya, Amer Bashir; Ashiq, Muhammad Naeem; Ibrahim, Ather; Atiq, Shabbar; Ahmad, Naseeb; Shakeel, Muhammad; Khan, Muhammad Azhar

    2016-12-01

    Fe-Ni-Cu invar alloys of various compositions (Fe65Ni35-xCux, x=0, 0.2, 0.6, 1, 1.4 and 1.8) were synthesized via chemical reduction route. These alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM) techniques. The XRD analysis revealed the formation of face centered cubic (fcc) structure. The lattice parameter and the crystallite size of the investigated alloys were calculated and the line broadening indicated the nano-crystallites size of alloy powder. The particle size was estimated from SEM and it decreases by the incorporation of Cu and found to be in the range of 24-40 nm. The addition of Cu in these alloys appreciably enhances the saturation magnetization and it increases from 99 to 123 emu/g. Electrical conductivity has been improved with Cu addition. The thermal conductivity was calculated using the Wiedemann-Franz law.

  13. Density and water content of nanoscale solid C–S–H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage

    International Nuclear Information System (INIS)

    Thomas, Jeffrey J.; Allen, Andrew J.; Jennings, Hamlin M.

    2012-01-01

    Alkali-activated slag (AAS) paste was analyzed using small-angle neutron scattering (SANS). The scattering response indicates that the microstructure consists of a uniform matrix of hydration product with a high surface area studded with unhydrated cores of slag particles. In contrast with portland cement paste, no surface fractal scattering regime was detected, and elevated temperature curing (at 60 °C) had no detectable effect on the microstructure at any length scale studied. The specific surface area of the AAS pastes is about 25% higher than that of a portland cement paste cured under the same conditions. The composition and mass density of the nanoscale solid C–S–H phase formed in the AAS paste was determined using a previously developed neutron scattering method, in conjunction with a hydration model. The result ((CaO) 0.99 –SiO 2 –(Al 2 O 3 ) 0.06 –(H 2 O) 0.97 , d = (2.73 ± 0.02) g/cm 3 ) is significantly lower in calcium and in water as compared to portland cement or pure tricalcium silicate paste. These values were used to calculate the chemical shrinkage that would result from complete hydration of the AAS paste. The result, (12.2 ± 1.5) cm 3 of volumetric shrinkage per 100 g of unhydrated cement, is about twice the amount of chemical shrinkage exhibited by normal cement pastes.

  14. Nanoscale flexoelectricity.

    Science.gov (United States)

    Nguyen, Thanh D; Mao, Sheng; Yeh, Yao-Wen; Purohit, Prashant K; McAlpine, Michael C

    2013-02-20

    Electromechanical effects are ubiquitous in biological and materials systems. Understanding the fundamentals of these coupling phenomena is critical to devising next-generation electromechanical transducers. Piezoelectricity has been studied in detail, in both the bulk and at mesoscopic scales. Recently, an increasing amount of attention has been paid to flexoelectricity: electrical polarization induced by a strain gradient. While piezoelectricity requires crystalline structures with no inversion symmetry, flexoelectricity does not carry this requirement, since the effect is caused by inhomogeneous strains. Flexoelectricity explains many interesting electromechanical behaviors in hard crystalline materials and underpins core mechanoelectric transduction phenomena in soft biomaterials. Most excitingly, flexoelectricity is a size-dependent effect which becomes more significant in nanoscale systems. With increasing interest in nanoscale and nano-bio hybrid materials, flexoelectricity will continue to gain prominence. This Review summarizes work in this area. First, methods to amplify or manipulate the flexoelectric effect to enhance material properties will be investigated, particularly at nanometer scales. Next, the nature and history of these effects in soft biomaterials will be explored. Finally, some theoretical interpretations for the effect will be presented. Overall, flexoelectricity represents an exciting phenomenon which is expected to become more considerable as materials continue to shrink. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nanoscale Hydrophobic Recovery: A Chemical Force Microscopy Study of UV/Ozone-Treated Cross-Linked Poly(dimethylsiloxane)

    NARCIS (Netherlands)

    Hillborg, Henrik; Tomczak, N.; Oláh, A.; Schönherr, Holger; Vancso, Gyula J.

    2004-01-01

    Chemical force microscopy (CFM) in water was used to map the surface hydrophobicity of UV/ozone-treated poly(dimethylsiloxane) (PDMS; Sylgard 184) as a function of the storage/recovery time. In addition to CFM pull-off force mapping, we applied indentation mapping to probe the changes in the

  16. Molecular level control of nanoscale composition and morphology: Toward photocatalytic nanocomposites for solar-to-chemical energy conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ruberu, Thanthrige P. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Understanding the factors influencing nanocrystal formation is a challenge yet to be realized. In comparison to the large number of studies on nanocrystal synthesis and their applications, the number of studies on the effect of the precursor chemistry on nanocrystal composition and shape remains low. Although photochemical fabrication of metalsemiconductor nano-heterostructures is reported in literature, control over the free particle formation and the site of metal deposition have not been achieved. Moreover, utilization of metal- semiconductor nano-heterostructures in photocatalytic reactions other than water splitting is hardly explored. In this thesis, we studied the effect of chalcogenide precursor reactivity on the composition, morphology and the axial anisotropy of cadmiumchalcogenide nanocrystals. We also investigated the influence of the irradiation wavelength in synthesizing metal-semiconductor nano-heterostructures. Finally, we showed that metal semiconductor nano-heterostructures can be used as a photocatalyst for alcohol dehydrogenation reactions. We explored the pathways for the formation of Pt and Pd nanoparticles on CdS and CdS{sub 0.4}Se{sub 0.6} nanorods. This study revealed that the wavelength of irradiation is critical to control free-standing vs. bound metal (Pt and Pd) nanoparticles to semiconductor. Additionally, we observed that metal photodeposition occurs on specific segments of axially anisotropic, compositionally graded CdS0.4Se0.6 nanorods due to the band-gap differential between their nano-domains. We used semiconductor-metal heterostructures for sunlightdriven dehydrogenation and hydrogenolysis of benzyl alcohol. Heterostructure composition dictates activity (turnovers) and product distribution. A few metal (Pt, Pd) islands on the semiconductor surface significantly enhance activity and selectivity and also greatly stabilize the semiconductor against photoinduced etching and degradation.

  17. Nanoscale Architectures for Energy Applications

    Science.gov (United States)

    Wong, Stanislaus

    2009-03-01

    interior of these aggregates are vacuous with a diameter range of 100 to 200 nm. We have demonstrated that these assemblies are useful for example as active photocatalysts for the degradation of synthetic Procion Red dye under UV light illumination. In a third set of experiments, a size- and shape-dependent morphological transformation was demonstrated during the hydrothermal soft chemical transformation, in neutral solution, of titanate nanostructures into their anatase titania counterparts. Our results indicate that as-synthesized titania nanostructures possessed higher photocatalytic activity than the commercial titania precursors from whence they were derived.

  18. Quantum dot nanoscale heterostructures for solar energy conversion.

    Science.gov (United States)

    Selinsky, Rachel S; Ding, Qi; Faber, Matthew S; Wright, John C; Jin, Song

    2013-04-07

    Quantum dot nanoscale semiconductor heterostructures (QDHs) are a class of materials potentially useful for integration into solar energy conversion devices. However, realizing the potential of these heterostructured systems requires the ability to identify and synthesize heterostructures with suitably designed materials, controlled size and morphology of each component, and structural control over their shared interface. In this review, we will present the case for the utility and advantages of chemically synthesized QDHs for solar energy conversion, beginning with an overview of various methods of heterostructured material synthesis and a survey of heretofore reported materials systems. The fundamental charge transfer properties of the resulting materials combinations and their basic design principles will be outlined. Finally, we will discuss representative solar photovoltaic and photoelectrochemical devices employing QDHs (including quantum dot sensitized solar cells, or QDSSCs) and examine how QDH synthesis and design impacts their performance.

  19. Chemically Engraving Semiconductor Nanowires: Using Three-Dimensional Nanoscale Morphology to Encode Functionality from the Bottom Up.

    Science.gov (United States)

    Christesen, Joseph D; Pinion, Christopher W; Hill, David J; Kim, Seokhyoung; Cahoon, James F

    2016-02-18

    The patterning of semiconductors with nanometer-scale precision is a cornerstone of modern technology. Top-down methods, ranging from photolithography to focused-ion beam milling, are typically used to fabricate complex nanostructures. In this Perspective, we discuss an alternative bottom-up method to encode similar high-resolution morphology in semiconductor nanowires (NWs). This process, termed ENGRAVE for "Encoded Nanowire GRowth and Appearance through VLS and Etching", combines fast modulation of nanowire composition during vapor-liquid-solid (VLS) growth with composition-dependent wet-chemical etching. This method produces cylindrically symmetric structures in which the diameter is modulated on a sub-10 nm axial length scale. The process can produce patterns that range from periodic, centrosymmetric to nonperiodic, asymmetric structures, including gratings, fractals, tapers, ratchets, sinusoids, nanogaps, and nanodots. We discuss the prospect for the ENGRAVE process to become a complementary method of lithographic-like patterning that encodes unique morphologies and physical properties in semiconductors for a range of technologies.

  20. Nanoscale chemical and mechanical characterization of thin films:sum frequency generation (SFG) vibrational spectroscopy at buriedinterfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kweskin, Sasha Joseph [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Sum frequency generation (SFG) surface vibrational spectroscopy was used to characterize interfaces pertinent to current surface engineering applications, such as thin film polymers and novel catalysts. An array of advanced surface science techniques like scanning probe microscopy (SPM), x-ray photoelectron spectroscopy (XPS), gas chromatography (GC) and electron microscopy were used to obtain experimental measurements complementary to SFG data elucidating polymer and catalyst surface composition, surface structure, and surface mechanical behavior. Experiments reported in this dissertation concentrate on three fundamental questions: (1) How does the interfacial molecular structure differ from that of the bulk in real world applications? (2) How do differences in chemical environment affect interface composition or conformation? (3) How do these changes correlate to properties such as mechanical or catalytic performance? The density, surface energy and bonding at a solid interface dramatically alter the polymer configuration, physics and mechanical properties such as surface glass transition, adhesion and hardness. The enhanced sensitivity of SFG at the buried interface is applied to three systems: a series of acrylates under compression, the compositions and segregation behavior of binary polymer polyolefin blends, and the changes in surface structure of a hydrogel as a function of hydration. In addition, a catalytically active thin film of polymer coated nanoparticles is investigated to evaluate the efficacy of SFG to provide in situ information for catalytic reactions involving small mass adsorption and/or product development. Through the use of SFG, in situ total internal reflection (TIR) was used to increase the sensitivity of SFG and provide the necessary specificity to investigate interfaces of thin polymer films and nanostructures previously considered unfeasible. The dynamic nature of thin film surfaces is examined and it is found that the non

  1. Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method

    Science.gov (United States)

    Lassoued, Abdelmajid; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah

    Hematite (α-Fe2O3) nanoparticles were synthesized via a simple chemical precipitation method. The impact of varying the concentration of precursor on the crystalline phase, size and morphology of α-Fe2O3 products was explored. The characteristic of the synthesized hematite nanoparticles were evaluated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR) spectroscopy, Raman spectroscopy, Differential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA), Ultraviolet-Visible (UV-Vis) analysis and Photoluminescence (PL). XRD data revealed a rhombohedral (hexagonal) structure with the space group R-3c in all samples. Uniform spherical like morphology was confirmed by TEM and SEM. The result revealed that the particle sizes were varied between 21 and 82 nm and that the increase in precursor concentration (FeCl3, 6H2O) is accompanied by an increase in the particle size of 21 nm for pure α-Fe2O3 synthesized with [Fe3+] = 0.05 M at 82 nm for pure α-Fe2O3 synthesized with [Fe3+] = 0.4 M. FT-IR confirms the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we have synthesized pure hematite but also to identify their phonon modes. The thermal behavior of compound was studied by using TGA/DTA results: The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. Besides, the optical investigation revealed that samples have an optical gap of about 2.1 eV and that this value varies as a function of the precursor concentration.

  2. Structure and morphology of spinel MFe2O4 (M=Fe, Co, Ni) nanoparticles chemically synthesized from heterometallic complexes.

    Science.gov (United States)

    Naidek, Karine Priscila; Bianconi, Flavia; da Rocha, Tulio Costa Rizuti; Zanchet, Daniela; Bonacin, Juliano Alves; Novak, Miguel Alexandre; Vaz, Maria das Graças Fialho; Winnischofer, Herbert

    2011-06-01

    We synthesized magnetic spinel ferrites from trimetallic single-source precursors. Fe(II), Co(II), and Ni(II) ferrite nanoparticles in the range of 9-25 nm were synthesized by solvothermal decomposition of trimetallic acetate complex precursors in benzyl ether in the presence of oleic acid and oleylamine, using 1,2-dodecanediol as the reducing agent. For comparison, spinel ferrite nanoparticles were synthesized by stoichiometric mixtures of metal acetate or acetylacetonate salts. The nanoparticles (NP) were characterized by TEM, DLS, powder XRD, and Raman spectroscopy; and their magnetic properties were characterized by ZFC-FC and M(H) measurements. The ferrite-NP were more homogeneous and had a narrower size distribution when trimetallic complexes were used as precursors. As a consequence, the magnetic properties of these ferrite-NP are closer to the aimed room temperature superparamagnetic behavior, than are those of other ferrites obtained by a mixture of salts. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Importance of chemical binding type between As and iron-oxide on bioaccessibility in soil: Test with synthesized two line ferrihydrite

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seulki [Seoul Center, Korea Basic Science Institute, 6-7, Inchon-ro 22-gil, Seongbuk-gu, Seoul 02855 (Korea, Republic of); Yang, Kyung [Division of Public Infrastructure Assessment, Environmental Assessment Group, Korea Environmental Institute, Sejong 30147 (Korea, Republic of); Jho, Eun Hea [Department of Environmental Science, Hankuk University of Foreign Studies, 81 Oedae-ro, Mohyeonmyeon, Cheoin-gu, Yongin-si, Gyeonggi-do 17035 (Korea, Republic of); Nam, Kyoungphile, E-mail: kpnam@snu.ac.kr [Department of Civil and Environmental Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826 (Korea, Republic of)

    2017-05-15

    Highlights: • Arsenic (As)-adsorbed and As-coprecipiated two-line ferrihydrites were synthesized. • Bioaccessibility was closely related to chemical binding type of As in Fe oxide. • Chemical binding type needs to be considered to characterize the risk of As in soil. - Abstract: Bioaccessible concentrations of As associated with Fe oxide as different chemical binding types were determined in soils using the in vitro Physiologically Based Extraction Test (PBET). When compared to the five-step sequential extraction data, most of the As extracted by in vitro PBET originated from the amorphous Fe oxide-bound fraction, and more importantly, the bioaccessibility of As ranged from 0 to 58.8% in 24 soil samples. Two batches of ferrihydrite were synthesized separately. For one batch, As was adsorbed onto the ferrihydrite after synthesis; for the other one, As was added while synthesizing ferrihydrite to co-precipitate. The bioaccessible concentration of As determined by in vitro PBET of the former was 415 mg of As/kg of ferrihydrite and that of the latter was 67 mg of As/kg of ferrihydrite. X-ray photoelectron spectra (XPS) analysis indicated that As–O–Fe bonds were evident in As-associated ferrihydrite sample and especially, As was found within the Fe oxide lattice in the co-precipitated sample. Our data suggest that binding type between As and Fe oxide should be considered when determining the bioaccessibility of As in soil, which, in turn, greatly influences the realistic risk of As present in soil.

  4. Effect of Ag on structural, optical and luminescence properties of ZnS nanoparticles synthesized by microwave-assisted chemical route

    Science.gov (United States)

    Patel, Kamakshi; Deshpande, M. P.; Chaki, S. H.

    2017-05-01

    Silver (Ag)-doped (0, 5, 10 and 15%) ZnS nanoparticles are synthesized by microwave-assisted chemical route using polyvinylpyrrolidone (PVP). We study the compositional, structural, optical and luminescence properties by energy-dispersive analysis of X-rays (EDAX), transmission electron microscopy (TEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy and photoluminescence (PL) spectroscopy, respectively. Synthesized Ag-doped ZnS nanoparticles do not possess any impurity as seen from EDAX spectra. TEM images show particles to be in spherical shape with agglomeration, and corresponding selected area electron diffraction (SAED) pattern showed that they are polycrystalline in nature. Allowed LO and TO modes corresponding to cubic phase for all the samples are observed in Raman spectra. FTIR spectroscopy is used to study the interaction between PVP and as-synthesized nanoparticles. Blue shift can be seen in pure and Ag-doped ZnS nanoparticles compared to bulk ZnS as seen from absorption spectra. Green emission is observed in PL spectra due to Ag doping without showing any quenching behavior.

  5. A simple chemical route to synthesize the umangite phase of copper selenide (Cu3Se2) thin film at room temperature

    Science.gov (United States)

    Palve, Balasaheb M.; Jadkar, Sandesh R.; Pathan, Habib M.

    2017-06-01

    Copper selenide (Cu3Se2) thin films have been synthesized with Se as the precursor in aqueous solution by chemical bath deposition technique at room temperature. We have investigated the influence of the growth time ranging from 30 to 90 min on structural, optical and electrical properties of Cu3Se2 thin films. The as-grown film at 60 min exhibits a tetragonal structure and is (101) oriented. The maximum value of crystal size D = 55 nm is attained for Cu3Se2 films grown at 60 min. The Raman spectrum reveals a pronounced peak at 259 cm-1, which is assigned to vibrational (stretching) modes from the covalent Se-Se bonds. The optical band gap energy is 1.91 to 2.01 eV with growth time increased from 30 to 90 min. The scanning electron microscopy (SEM) study reveals that the grains are uniform and spread over the entire surface of the substrate of the film at 60 min. The Hall effect study reveals that the film exhibits p-type conductivity. The synthesized film showed good absorbance in the visible region which signifies that synthesized Cu3Se2 films can be suitable as a sensitized material in semiconductor sensitized solar cells.

  6. Control of the shape and size of iron oxide (α-Fe2O3 nanoparticles synthesized through the chemical precipitation method

    Directory of Open Access Journals (Sweden)

    Abdelmajid Lassoued

    Full Text Available Hematite (α-Fe2O3 nanoparticles were synthesized via a simple chemical precipitation method. The impact of varying the concentration of precursor on the crystalline phase, size and morphology of α-Fe2O3 products was explored. The characteristic of the synthesized hematite nanoparticles were evaluated by X-ray diffraction (XRD, Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, Fourier Transform Infra-Red (FT-IR spectroscopy, Raman spectroscopy, Differential Thermal Analysis (DTA, Thermo Gravimetric Analysis (TGA, Ultraviolet–Visible (UV–Vis analysis and Photoluminescence (PL. XRD data revealed a rhombohedral (hexagonal structure with the space group R-3c in all samples. Uniform spherical like morphology was confirmed by TEM and SEM. The result revealed that the particle sizes were varied between 21 and 82 nm and that the increase in precursor concentration (FeCl3, 6H2O is accompanied by an increase in the particle size of 21 nm for pure α-Fe2O3 synthesized with [Fe3+] = 0.05 M at 82 nm for pure α-Fe2O3 synthesized with [Fe3+] = 0.4 M. FT-IR confirms the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we have synthesized pure hematite but also to identify their phonon modes. The thermal behavior of compound was studied by using TGA/DTA results: The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. Besides, the optical investigation revealed that samples have an optical gap of about 2.1 eV and that this value varies as a function of the precursor concentration. Keywords: Nanoparticles, Hematite (α-Fe2O3, Precipitation, Precursor, Size, Band gap

  7. Study of chemically synthesized ZnO nano particles under a bio template using radioactive ion beam

    CERN Multimedia

    This is a project proposal to study nano sized semiconductor ZnO system, useful in biology and medicinal purposes, using radioactive ion beam from ISOLDE. Doping of the nano particles with Cu, Cd and Ga ions (in their variable valancy states) are expected to impart changes in the electrical structure and properties in the said system under study. The morphological changes, chemical environment, micro structure, electrical and optical properties of the nano size particles of ZnO system (developed under a bio template of folic acid) after the interaction with radioactive ion beam will be studied. The provision of perturbed angular correlation (PAC) study with respect to the changes in chemical environment, where ever possible will be attempted.

  8. Structural, chemical and optical evaluation of Cu-doped ZnO nanoparticles synthesized by an aqueous solution method

    Energy Technology Data Exchange (ETDEWEB)

    Iribarren, A., E-mail: augusto@imre.oc.uh.cu [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, Vedado, Plaza, La Habana 10400 (Cuba); Hernández-Rodríguez, E. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, Vedado, Plaza, La Habana 10400 (Cuba); Maqueira, L. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, Vedado, Plaza, La Habana 10400 (Cuba); Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza, La Habana 10400 (Cuba)

    2014-12-15

    Highlights: • Cu-doped ZnO nanoparticles obtained by chemical synthesis. • Substitutional or interstitial Cu into ZnO lead specific structural, chemical, and optical changes. • Incorporation efficiency of Cu atoms in ZnO as a function of the Cu concentration in the precursor dissolution. - Abstract: In this work a study of ZnO and Cu-doped ZnO nanoparticles obtained by chemical synthesis in aqueous media was carried out. Structural analysis gave the dominant presence of wurtzite ZnO phase forming a solid solution Zn{sub 1−x}Cu{sub x}O. For high Cu doping CuO phase is also present. For low Cu concentration the lattice shrinks due to Cu atoms substitute Zn atoms. For high Cu concentration the lattice enlarges due to predominance of interstitial Cu. From elemental analysis we determined and analyzed the incorporation efficiency of Cu atoms in Zn{sub 1−x}Cu{sub x}O as a function of the Cu concentration in the precursor dissolution. Combining structural and chemical results we described the Cu/Zn precursor concentrations r{sub w} in which the solid solution of Cu in ZnO is predominant. In the region located at r{sub w} ≈ 0.2–0.3 it is no longer valid. For Cu/Zn precursor concentration r{sub w} > 0.3 interstitial Cu dominates, and some amount of copper oxide appears. As the Cu concentration increases, the effective size of nanoparticles decreases. Photoluminescence (PL) measurements of the Cu-doped ZnO nanoparticles were carried out and analyzed.

  9. Dynamics at the nanoscale

    International Nuclear Information System (INIS)

    Stoneham, A.M.; Gavartin, J.L.

    2007-01-01

    However fascinating structures may be at the nanoscale, time-dependent behaviour at the nanoscale has far greater importance. Some of the dynamics is random, with fluctuations controlling rate processes and making thermal ratchets possible. Some of the dynamics causes the transfer of energy, of signals, or of charge. Such transfers are especially efficiently controlled in biological systems. Other dynamical processes occur when we wish to control the nanoscale, e.g., to avoid local failures of gate dielectrics, or to manipulate structures by electronic excitation, to use spin manipulation in quantum information processing. Our prime purpose is to make clear the enormous range and variety of time-dependent nanoscale phenomena

  10. Nanoscale thermal probing

    Directory of Open Access Journals (Sweden)

    Yanan Yue

    2012-03-01

    Full Text Available Nanoscale novel devices have raised the demand for nanoscale thermal characterization that is critical for evaluating the device performance and durability. Achieving nanoscale spatial resolution and high accuracy in temperature measurement is very challenging due to the limitation of measurement pathways. In this review, we discuss four methodologies currently developed in nanoscale surface imaging and temperature measurement. To overcome the restriction of the conventional methods, the scanning thermal microscopy technique is widely used. From the perspective of measuring target, the optical feature size method can be applied by using either Raman or fluorescence thermometry. The near-field optical method that measures nanoscale temperature by focusing the optical field to a nano-sized region provides a non-contact and non-destructive way for nanoscale thermal probing. Although the resistance thermometry based on nano-sized thermal sensors is possible for nanoscale thermal probing, significant effort is still needed to reduce the size of the current sensors by using advanced fabrication techniques. At the same time, the development of nanoscale imaging techniques, such as fluorescence imaging, provides a great potential solution to resolve the nanoscale thermal probing problem.

  11. A lucrative chemical processing of bamboo leaf biomass to synthesize biocompatible amorphous silica nanoparticles of biomedical importance

    Science.gov (United States)

    Rangaraj, Suriyaprabha; Venkatachalam, Rajendran

    2017-06-01

    Synthesis of silica nanoparticles from natural resources/waste via cost effective route is presently one of the anticipating strategies for extensive applications. This study reports the low-cost indigenous production of silica nanoparticles from the leftover of bamboo (leaf biomass) through thermal combustion and alkaline extraction, and examination of physico-chemical properties and yield percentage using comprehensive characterization tools. The outcome of primed silica powder exhibits amorphous particles (average size: 25 nm) with high surface area (428 m2 g-1) and spherical morphology. Despite the yield percentage of silica nanoparticles from bamboo leave ash is 50.2%, which is less than rice husk ask resources (62.1%), the bamboo waste is only an inexpensive resource yielding high purity (99%). Synthesis of silica nanoparticles from natural resources/waste with the help of lucrative route is at present times one of the anticipating strategies for extensive applications. In vitro study on animal cell lines (MG-63) shows non-toxic nature of silica nanoparticles up to 125 µg mL-1. Hence, this study highlights the feasibility for the mass production of silica nanoparticles from bamboo leave waste rather using chemical precursor of silica for drug delivery and other medical applications.

  12. Whole ceramic-like microreactors from inorganic polymers for high temperature or/and high pressure chemical syntheses.

    Science.gov (United States)

    Ren, Wurong; Perumal, Jayakumar; Wang, Jun; Wang, Hao; Sharma, Siddharth; Kim, Dong-Pyo

    2014-02-21

    Two types of whole ceramic-like microreactors were fabricated from inorganic polymers, polysilsesquioxane (POSS) and polyvinylsilazane (PVSZ), that were embedded with either perfluoroalkoxy (PFA) tube or polystyrene (PS) film templates, and subsequently the templates were removed by physical removal (PFA tube) or thermal decomposition (PS). A POSS derived ceramic-like microreactor with a 10 cm long serpentine channel was obtained by an additional "selective blocking of microchannel" step and subsequent annealing at 300 °C for 1 h, while a PVSZ derived ceramic-like microreactor with a 14 cm long channel was yielded by a co-firing process of the PVSZ-PS composite at 500 °C for 2 h that led to complete decomposition of the film template leaving a microchannel behind. The obtained whole ceramic-like microfluidic devices revealed excellent chemical and thermal stabilities in various solvents, and they were able to demonstrate unique chemical performance at high temperature or/and high pressure conditions such as Michaelis-Arbuzov rearrangement at 150-170 °C, Wolff-Kishner reduction at 200 °C, synthesis of super-paramagnetic Fe3O4 nanoparticles at 320 °C and isomerisation of allyloxybenzene to 2-allylphenol (250 °C and 400 psi). These economic ceramic-like microreactors fabricated by a facile non-lithographic method displayed excellent utility under challenging conditions that is superior to any plastic microreactors and comparable to glass and metal microreactors with high cost.

  13. New Method to Synthesize Highly Active and Durable Chemically Ordered fct-PtCo Cathode Catalyst for PEMFCs.

    Science.gov (United States)

    Jung, Won Suk; Popov, Branko N

    2017-07-19

    In the bottom-up synthesis strategy performed in this study, the Co-catalyzed pyrolysis of chelate-complex and activated carbon black at high temperatures triggers the graphitization reaction which introduces Co particles in the N-doped graphitic carbon matrix and immobilizes N-modified active sites for the oxygen reduction reaction (ORR) on the carbon surface. In this study, the Co particles encapsulated within the N-doped graphitic carbon shell diffuse up to the Pt surface under the polymer protective layer and forms a chemically ordered face-centered tetragonal (fct) Pt-Co catalyst PtCo/CCCS catalyst as evidenced by structural and compositional studies. The fct-structured PtCo/CCCS at low-Pt loading (0.1 mg Pt cm -2 ) shows 6% higher power density than that of the state-of-the-art commercial Pt/C catalyst. After the MEA durability test of 30 000 potential cycles, the performance loss of the catalyst is negligible. The electrochemical surface area loss is less than 40%, while that of commercial Pt/C is nearly 80%. After the accelerated stress test, the uniform catalyst distribution is retained and the mean particle size increases approximate 1 nm. The results obtained in this study indicated that highly stable compositional and structural properties of chemically ordered PtCo/CCCS catalyst contribute to its exceptional catalyst durability.

  14. Using mathematical models to understand the effect of nanoscale roughness on protein adsorption for improving medical devices

    Directory of Open Access Journals (Sweden)

    Ercan B

    2013-09-01

    Full Text Available Batur Ercan,1 Dongwoo Khang,2 Joseph Carpenter,3 Thomas J Webster1 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2School of Materials Science and Engineering and Center for PRC and RIGET, Gyeongsang National University, Jinju, South Korea; 3School of Medicine, Stanford University, Stanford, CA, USA Abstract: Surface roughness and energy significantly influence protein adsorption on to biomaterials, which, in turn, controls select cellular adhesion to determine the success and longevity of an implant. To understand these relationships at a fundamental level, a model was originally proposed by Khang et al to correlate nanoscale surface properties (specifically, nanoscale roughness and energy to protein adsorption, which explained the greater cellular responses on nanostructured surfaces commonly reported in the literature today. To test this model for different surfaces from what was previously used to develop that model, in this study we synthesized highly ordered poly(lactic-co-glycolic acid surfaces of identical chemistry but altered nanoscale surface roughness and energy using poly(dimethylsiloxane molds of polystyrene beads. Fibronectin and collagen type IV adsorption studies showed a linear adsorption behavior as the surface nanoroughness increased. This supported the general trends observed by Khang et al. However, when fitting such data to the mathematical model established by Khang et al, a strong correlation did not result. Thus, this study demonstrated that the equation proposed by Khang et al to predict protein adsorption should be modified to accommodate for additional nanoscale surface property contributions (ie, surface charge to make the model more accurate. In summary, results from this study provided an important step in developing future mathematical models that can correlate surface properties (such as nanoscale roughness and surface energy to initial protein adsorption events important to

  15. Monodisperse and 1D Cross-Linked Multi-branched Cu @ Ni Core-Shell Particles Synthesized by Chemical Reduction

    Science.gov (United States)

    Hu, Hailong; Zhang, Dian; Yu, Weiming; Sugawara, Katsuyasu; Guo, Tailiang

    2014-07-01

    We report on a two-step wet chemical route for producing Cu@Ni core-shell particles with multiple needle-like branches on the surface. Using the usual synthesis process, urchin-like Ni shells were formed on the surface of spherical Cu cores and monodisperse particles were obtained. Under the direction of a static magnetic field, one-dimensional, well-aligned Cu@Ni particles were assembled through cross-linking the branched Ni shells. The monodisperse Cu@Ni particles show stable and uniform field electron emission, having a low turn-on field of 3.3 V/ μm and a large current density of 1 mA/cm2 under an applied field of about 5.33 V/ μm.

  16. Enhancement of electrical properties due to Cr3+ substitution in Co-ferrite nanoparticles synthesized by two chemical techniques

    Science.gov (United States)

    Pervaiz, Erum; Gul, I. H.

    2012-11-01

    Nanocrystalline cobalt ferrites with nominal composition CoCrxFe2-xO4 ranging from x=0.0 to 0.5 with step increment of 0.25 were prepared by sol-gel auto combustion and chemical co-precipitation techniques. A comparative study of structural, electrical and magnetic properties of these ferrites has been measured using different characterization techniques. Structural and micro-structural studies were measured using X-ray diffraction, Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy and atomic force microscopy. Crystallite sizes of the series are within the range of 12-29±2 nm. Lattice parameters decrease by increasing Cr3+ concentration. FTIR confirms the presence of two lattice absorption bands. DC electrical resistivity increases to a value of ˜1010 Ω-cm with increase in Cr3+ concentration, but the most significant increase is in samples prepared by sol-gel combustion. Dielectric properties have been measured as a function of frequency at room temperature. Dielectric loss decreases to 0.1037 and 0.0108 at 5 MHz for chemical co-precipitation and sol-gel combustion, respectively. Impedance measurements further helped in analyzing the electrical properties and to separate the grain and grain boundary resistance effects using a complex impedance analysis. Magnetic parameters were studied using a vibrating sample magnetometer in the applied field of 10 kOe. The saturation magnetization decreased from 63 to 10.8 emu/gm with increase in Cr3+ concentration.

  17. Effects of Ni content on nanocrystalline Fe–Co–Ni ternary alloys synthesized by a chemical reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Chokprasombat, Komkrich, E-mail: komkrich28@gmail.com [Department of Physics, Faculty of Science, Thaksin University, Phatthalung 93210 Thailand (Thailand); Pinitsoontorn, Supree [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand (Thailand); Maensiri, Santi [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 Thailand (Thailand)

    2016-05-01

    Magnetic properties of Fe–Co–Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe{sub 50}Co{sub 50−x}Ni{sub x} nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe{sub 50}Ni{sub 50} nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe–Co–Ni alloys could be adjusted by varying the Ni content. - Highlights: • We prepared nanocrystalline Fe–Co–Ni alloys by a novel chemical reduction process. • Elemental compositions could be well controlled by the molar ratio of metal sources. • Particle size and magnetic properties clearly depended on the Ni contents. • Fe{sub 50}Co{sub 10}Ni{sub 40} exhibited high saturation magnetization of 126.3 emu/g.

  18. Influence of antioxidants synthesized by plants on physico-chemical and microbiological evolution of Callovo-Oxfordian clay material

    International Nuclear Information System (INIS)

    Ubersfeld, Dimitri

    2016-01-01

    This study is a part of the deep disposal site development for radioactive waste in Meuse-Haute Marne (France), most specifically on the bio-physico-chemical conversion of sedimentary clay rocks (Callovo- Oxfordian, COx), excavated and stored on surface in the form of heap. During the experimental and operational phases, several million cubic meters of argillite will be excavated. Argillite stored in the open air will be exposed to meteoritic alterations, oxidizing conditions of surface and colonized biologically (plants, bacteria, fungi). The aim of the thesis is to study the impact of naturally derived antioxidants from revegetation of heap with antioxidant-producing plants on the physical, chemical or microbial weathering processes of argillite. This work was designed to (i) identify suitable naturally derived antioxidants and the plants to produce them (ii) assess the antioxidant inhibitory effects on weathering and leaching COx metals in the laboratory, (iv) field test selected plants on the heap, (iii) follow in situ physicochemical and microbiological evolution of the argillite heap planted with antioxidant producing plants. In the laboratory, percolating model antioxidants of Lamiaceae (linalool, thymol, carvacrol) through a packed column of argillite showed variable water weathering/leaching rate depending on the metal elements present; very low for aluminum (<1 o/oo), between 1-3% for other metals (Ca, Mg, Fe...) and reach more than 60% for sodium. With thymol at 20 mg/l for 3 months, it was found that there are a decrease in sulfur leached amount and the metal elements from the sulfides (Fe, As) and carbonates (Ca, Sr) and inhibition of bacterial and fungal microflora growths. However, intake of artificial root exudates in columns stimulates microbial growth, improves the availability of aluminum, iron and provides sequestration of calcium. Among the tested plants, lavender and lavandin were selected. Two successive plantation tests were carried out in

  19. Magnetic response of polycrystalline YBaCo{sub 4}O{sub 7+δ} synthesized through the physical and chemical route: The role of phase inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Vallejos, E. [Universidad de Nariño, Centro de Materiales Avanzados, Torobajo, Pasto (Colombia); Galeano, V.; Gómez, L.; Izquierdo, J.L.; Montoya, J.F. [Universidad Nacional de Colombia, Campus Medellín, Departamento de Física, Laboratorio de Materiales Cerámicos y Vítreos, A.A. 568 Medellín (Colombia); Mera, J.; Córdoba, C. [Universidad de Nariño, Centro de Materiales Avanzados, Torobajo, Pasto (Colombia); Gómez, A. [Universidad Nacional de Colombia, Campus Medellín, Facultad de Minas, Laboratorio de caracterización de materiales, A.A. 568 Medellín (Colombia); Paucar, C. [Universidad Nacional de Colombia, Campus Medellín, Departamento de Física, Laboratorio de Materiales Cerámicos y Vítreos, A.A. 568 Medellín (Colombia); Morán, O., E-mail: omoranc@unal.edu.co [Universidad Nacional de Colombia, Campus Medellín, Departamento de Física, Laboratorio de Materiales Cerámicos y Vítreos, A.A. 568 Medellín (Colombia)

    2014-06-01

    definitive interpretation of the in-field behavior from magnetization data alone is difficult because of the unknown role of the yttrium ion, the results achieved suggest that the magnetic behavior observed in members of the R-114 family is not necessarily linked to the moment of the rare-earth ion, as in case of YBaCo{sub 4}O{sub 7+δ}, since the yttrium ion is not magnetic. Beyond this important finding, the experimental results reported in the present paper demonstrate that the tested chemical route is suitable for synthesizing complex, single-phase oxides, such as the YBaCo{sub 4}O{sub 7+δ} cobaltate. The success in synthesizing high-purity YBaCo{sub 4}O{sub 7+δ} allows one to subtract parasitic effects from the intrinsic magnetic behavior of this challenging system. - Highlights: • Polycrystalline YBaCo{sub 4}O{sub 7} is synthesized by physical and chemical route. • XRD patterns show reflections of a pure hexagonal structure. • SQUID magnetometry suggests presence of phase impurities in samples by solid state reaction. • Transition into a long-range ordered antiferromagnetic state at ∼80 K is observed for samples by chemical method. • M(H)-curves at 70 K shows field-induced effects manifested in the appearance of a ferromagnetic component.

  20. Magnetic response of polycrystalline YBaCo4O7+δ synthesized through the physical and chemical route: The role of phase inhomogeneities

    International Nuclear Information System (INIS)

    Vallejos, E.; Galeano, V.; Gómez, L.; Izquierdo, J.L.; Montoya, J.F.; Mera, J.; Córdoba, C.; Gómez, A.; Paucar, C.; Morán, O.

    2014-01-01

    -field behavior from magnetization data alone is difficult because of the unknown role of the yttrium ion, the results achieved suggest that the magnetic behavior observed in members of the R-114 family is not necessarily linked to the moment of the rare-earth ion, as in case of YBaCo 4 O 7+δ , since the yttrium ion is not magnetic. Beyond this important finding, the experimental results reported in the present paper demonstrate that the tested chemical route is suitable for synthesizing complex, single-phase oxides, such as the YBaCo 4 O 7+δ cobaltate. The success in synthesizing high-purity YBaCo 4 O 7+δ allows one to subtract parasitic effects from the intrinsic magnetic behavior of this challenging system. - Highlights: • Polycrystalline YBaCo 4 O 7 is synthesized by physical and chemical route. • XRD patterns show reflections of a pure hexagonal structure. • SQUID magnetometry suggests presence of phase impurities in samples by solid state reaction. • Transition into a long-range ordered antiferromagnetic state at ∼80 K is observed for samples by chemical method. • M(H)-curves at 70 K shows field-induced effects manifested in the appearance of a ferromagnetic component

  1. Simplified recovery process of Ralstonia solanacearum-synthesized polyhydroxyalkanoates via chemical extraction complemented by liquid-liquid phase separation

    Directory of Open Access Journals (Sweden)

    Karine L. Macagnan

    Full Text Available Poly (3-hydroxybutyrate (P(3HB is the most studied thermoplastic biopolymer belonging to the polyhydroxyalkanoate (PHA family, the main features of which include rapid biodegradability and biocompatibility. The bioplastic recovery process is an important step during production and can directly influence the characteristics of PHAs. However, more efficient methods for the production of P(3HB are necessary to make it economically viable. The aim of the present study was to improve the standard, chloroform-based, extraction step for the recovery of P(3HB. The polymer was produced using a Ralstonia solanacearum strain. The following parameters were improved in the recovery process: heating time, separation method (filtration or liquid-liquid phase separation, biomass state (fresh or dry cell concentrate and the solvent:biomass ratio. By improving the chemical extraction of P(3HB we recovered 98% of the cumulative polymer and reduced the heating time by 75%. Furthermore, we improved the separation process and developed an extraction solution that was faster and more economical.

  2. Profiling of cyclic hexadepsipeptides roseotoxins synthesized in vitro and in vivo: a combined tandem mass spectrometry and quantum chemical study.

    Science.gov (United States)

    Jegorov, Alexandr; Paizs, Béla; Zabka, Martin; Kuzma, Marek; Havlícek, Vladimír; Giannakopulos, Anastassios E; Derrick, Peter J

    2003-01-01

    High-performance liquid chromatography and tandem mass spectrometry (HPLC/MS/MS) was used for the detection of cyclic hexadepsipeptides roseotoxins produced by Trichothecium roseum. Roseotoxins were found in both submerged standard cultivation on CzapekDox medium and in vivo cultivation extract obtained from an apple. Roseotoxin chromatographic profiles from these two experiments were compared. Product-ion collision-induced dissociation (CID) spectra obtained on an ion trap (electrospray ionisation, ESI) were used for the identification of natural roseotoxins A, B, C and of minor destruxins A and B. The dissociation behavior of roseotoxins is discussed in terms of a fragmentation scheme proposed for describing the dissociation pathways of cyclic peptides. This scheme involves opening of the cyclopeptide ring via formation of oxazolone derivatives and fragmentation of the resulting linear species, which have a free N-terminus and an oxazolone ring at the C-terminus. Some aspects of this fragmentation scheme are underlined by modeling the dissociation channels of roseotoxin A using quantum chemical calculations. The structures of roseotoxin A and destruxin B were verified by nuclear magnetic resonance (NMR) spectroscopy. Structures of three new minor natural roseotoxins [Val(4)]RosA, [MeLxx(4)]RosA and [MeLxx(4)]RosB were deduced by ion cyclotron resonance Fourier transform mass spectrometry (ICR-FT-MS) and ion trap tandem mass spectrometry by examining the pre-separated roseotoxin fraction.

  3. Investigation of non-linear optical properties of CdS/PS polymer nanocomposite synthesized by chemical route

    Science.gov (United States)

    Tripathi, S. K.; Kaur, Ramneek; Jyoti

    2015-10-01

    Cadmium Sulfide (CdS) nanoparticles play an important role in non-linear optoelectronic devices. CdS/Polystyrene(PS) nanocomposite has been prepared by chemical ex-situ route and characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet-visible (UV-vis) and Photoluminescence (PL) spectroscopy. XRD spectra of CdS/PS nanocomposite reveals the cubic phase of CdS nanoparticles with average crystallite size ~2.54 nm. The vibrational band corresponding to Cd-S bond has been observed at 406.57 cm-1 in FTIR spectra of CdS/PS nanocomposite along the typical styrene bonds. Quantum confinement effect in the CdS/PS nanocomposite has been confirmed from the UV-vis spectra. In PL emission spectra, in addition to band to band transition emission, the green and yellow bands have been observed due to the interstitial sulfur and cadmium defect states respectively. Z-scan technique has been utilized to study the non-linear optical properties of the CdS/PS nanocomposite. The value of non-linear absorption coefficient (β) and non-linear refractive index (n2) has been calculated. The large value of third order non-linear susceptibility is due to the quantum confinement effect plus the thermal lensing effect produced across the sample.

  4. Mechanism of high growth rate for diamond-like carbon films synthesized by helicon wave plasma chemical vapor deposition

    Science.gov (United States)

    Peiyu, JI; Jun, YU; Tianyuan, HUANG; Chenggang, JIN; Yan, YANG; Lanjian, ZHUGE; Xuemei, WU

    2018-02-01

    A high growth rate fabrication of diamond-like carbon (DLC) films at room temperature was achieved by helicon wave plasma chemical vapor deposition (HWP-CVD) using Ar/CH4 gas mixtures. The microstructure and morphology of the films were characterized by Raman spectroscopy and scanning electron microscopy. The diagnosis of plasma excited by a helicon wave was measured by optical emission spectroscopy and a Langmuir probe. The mechanism of high growth rate fabrication for DLC films by HWP-CVD has been discussed. The growth rate of the DLC films reaches a maximum value of 54 μm h‑1 at the CH4 flow rate of 85 sccm, which is attributed to the higher plasma density during the helicon wave plasma discharge. The CH and H α radicals play an important role in the growth of DLC films. The results show that the H α radicals are beneficial to the formation and stabilization of C=C bond from sp2 to sp3.

  5. Photoluminescence and magnetic properties of Fe-doped ZnS nano-particles synthesized by chemical co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Nie Eryong; Liu Donglai; Zhang Yunsen; Bai Xue; Yi Liang; Jin Yong; Jiao Zhifeng [School of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Sun Xiaosong, E-mail: sunxs@scu.edu.cn [School of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China)

    2011-08-15

    This paper is focusing on the synthesis of Zn{sub 1-x}Fe{sub x}S nano-particles with x = 0, 0.1 and 0.2 by chemical co-precipitation method, the prepared of which are characterized by XRD, EDS, TEM, PL, magnetization versus field behavior and M-T curve. In the XRD patterns, Zn{sub 1-x}Fe{sub x}S nano-particles are shown of cubic zinc blende structure, and the broadening diffraction peaks consistent with the small-size characteristic of nano-materials. The diameter of nano-particles is between 3.3 and 5.5 nm according to the HR-TEM images. The EDS data confirm the existence of Fe ions in Fe-doped ZnS nanoparticles. There we found that Fe-doping did not import new energy bands or defect states, but reduced the intensity of PL peaks. The magnetization versus field behaviors were illustrated by the M-H curves at both 5 K and 300 K, respectively, where no remanence or coercive force was observed. This phenomenon indicates that the Zn{sub 1-x}Fe{sub x}S (x = 0.1) nano-particles are superparamagnetic. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves further reveal that the blocking temperature (T{sub B}) of the superparamagnetic behavior might be below 5 K.

  6. A comparative study with biologically and chemically synthesized nZVI: applications in Cr (VI) removal and ecotoxicity assessment using indigenous microorganisms from chromium-contaminated site.

    Science.gov (United States)

    Ravikumar, K V G; Kumar, Deepak; Rajeshwari, A; Madhu, G M; Mrudula, P; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2016-02-01

    In the present communication, we report a comparative study of Cr (VI) removal using biologically synthesized nano zero valent iron (BS-nZVI) and chemically synthesized nZVI (CS-nZVI), both immobilized in calcium alginate beads. The parameters like initial Cr (VI) concentration, nZVI concentration, and the contact time for Cr (VI) removal were optimized based on Box-Behnken design (BBD) by response surface modeling at a constant pH 7. Under the optimized conditions (concentration of nZVI = 1000 mg L(-1), contact time = ∼ 80 min, and initial concentration of Cr (VI) = 10 mg L(-1)), the Cr (VI) removal by the immobilized BS-nZVI and CS-nZVI alginate beads was 80.04 and 81.08 %, respectively. The adsorption of Cr (VI) onto the surface of alginate beads was confirmed by scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM-EDX), Fourier transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) analysis. The applicability of the process using both the sorbents was successfully test medium Cr (VI) spiked environmental water samples. In order to assess the ecotoxic effects of nZVI, the decline in cell viability, generation of intracellular reactive oxygen species (ROS), cell membrane damage, and biouptake was studied at 1000 mg L(-1) concentration, with five indigenous bacterial isolates from chromium-contaminated lake sediments and their consortium.

  7. Amorphous silicon-carbon nanospheres synthesized by chemical vapor deposition using cheap methyltrichlorosilane as improved anode materials for Li-ion batteries.

    Science.gov (United States)

    Zhang, Zailei; Zhang, Meiju; Wang, Yanhong; Tan, Qiangqiang; Lv, Xiao; Zhong, Ziyi; Li, Hong; Su, Fabing

    2013-06-21

    We report the preparation and characterization of amorphous silicon-carbon (Si-C) nanospheres as anode materials in Li-ion batteries. These nanospheres were synthesized by a chemical vapor deposition at 900 °C using methyltrichlorosilane (CH3SiCl3) as both the Si and C precursor, which is a cheap byproduct in the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption, thermal gravimetric analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was found that the synthesized Si-C nanospheres composed of amorphous C (about 60 wt%) and Si (about 40 wt%) had a diameter of 400-600 nm and a surface area of 43.8 m(2) g(-1). Their charge capacities were 483.6, 331.7, 298.6, 180.6, and 344.2 mA h g(-1) at 50, 200, 500, 1000, and 50 mA g(-1) after 50 cycles, higher than that of the commercial graphite anode. The Si-C amorphous structure could absorb a large volume change of Si during Li insertion and extraction reactions and hinder the cracking or crumbling of the electrode, thus resulting in the improved reversible capacity and cycling stability. The work opens a new way to fabricate low cost Si-C anode materials for Li-ion batteries.

  8. Highly sensitive ;turn-on; fluorescent chemical sensor for trace analysis of Cr3 + using electro-synthesized poly(N-(9-fluorenylmethoxycarbonyl)-L-histidine)

    Science.gov (United States)

    Zhang, Hui; Zhang, Ge; Xu, Jingkun; Wen, Yangping; Ming, Shouli; Zhang, Jie; Ding, Wanchuan

    2018-02-01

    Trivalent chromium (Cr3 +) can cause severely environment pollution, declining quality of edible agro-products in plants and animals, and human diseases. Poly(N-(9-fluorenylmethoxycarbonyl)-L-histidine) (PFLH) synthesized by the direct electro-polymerization of its corresponding commercially available monomer in both boron trifluoride diethyl etherate and dichloromethane mixed system. The ;turn-on; type fluorescent sensor based on PFLH displayed high sensitivity and selectivity for Cr3 + detecting. The structure of PFLH was rationally proved by 1H NMR spectra, FT-IR spectra, quantum chemical calculations, and its optical properties were characterized. The electro-synthesized PFLH exhibited a ;turn-on; fluorescent response towards Cr3 +, which was employed as a sensing platform for the ;turn-on; fluorescent analysis of Cr3 + in a wide linear range from 5.1 nM to 25 μM with a low limit of detection as low as 1.7 nM. The possible mechanism of fluorescent ;turn-on; sensor based on PFLH for Cr3 + was proposed. The sensor displayed high sensitivity, good selectivity, satisfactory practicability, suggesting that PFLH has potential fluorescent application for ;turn-on; sensing Cr3 + in agricultural environments and edible agro-products of plants and animals.

  9. The Chemically Synthesized Ageladine A-Derivative LysoGlow84 Stains Lysosomes in Viable Mammalian Brain Cells and Specific Structures in the Marine Flatworm Macrostomum lignano

    Directory of Open Access Journals (Sweden)

    Thorsten Mordhorst

    2015-02-01

    Full Text Available Based on the chemical structure and the known chemical synthesis of the marine sponge alkaloid ageladine A, we synthesized the ageladine A-derivative 4-(naphthalene-2-yl-1H-imidazo[4,5-c]pyridine trifluoroacetate (LysoGlow84. The two-step synthesis started with the Pictet-Spengler reaction of histamine and naphthalene-2-carbaldehyde to a tetrahydropyridine intermediate, which was dehydrogenated with activated manganese (IV oxide to LysoGlow84. Structure and purity of the synthesized LysoGlow84 were confirmed by NMR spectroscopy and mass spectrometry. The fluorescence intensity emitted by LysoGlow84 depended strongly on the pH of the solvent with highest fluorescence intensity recorded at pH 4. The fluorescence maximum (at 315 nm excitation was observed at 440 nm. Biocompatibility of LysoGlow84 was investigated using cultured rat brain astrocytes and the marine flatworm Macrostomum lignano. Exposure of the astrocytes for up to 6 h to micromolar concentrations of LysoGlow84 did not compromise cell viability, as demonstrated by several viability assays, but revealed a promising property of this compound for staining of cellular vesicles. Conventional fluorescence microscopy as well as confocal scanning microscopy of LysoGlow84-treated astrocytes revealed co-localization of LysoGlow84 fluorescence with that of LysoTracker® Red DND-99. LysoGlow84 stained unclear structures in Macrostomum lignano, which were identified as lysosomes by co-staining with LysoTracker. Strong fluorescence staining by LysoGlow84 was further observed around the worms’ anterior gut and the female genital pore which were not counterstained by LysoTracker Red. Thus, LysoGlow84 is a new promising dye that stains lysosomes and other acidic compartments in cultured cells and in worms.

  10. The chemically synthesized ageladine A-derivative LysoGlow84 stains lysosomes in viable mammalian brain cells and specific structures in the marine flatworm Macrostomum lignano.

    Science.gov (United States)

    Mordhorst, Thorsten; Awal, Sushil; Jordan, Sebastian; Petters, Charlotte; Sartoris, Linda; Dringen, Ralf; Bickmeyer, Ulf

    2015-02-11

    Based on the chemical structure and the known chemical synthesis of the marine sponge alkaloid ageladine A, we synthesized the ageladine A-derivative 4-(naphthalene-2-yl)-1H-imidazo[4,5-c]pyridine trifluoroacetate (LysoGlow84). The two-step synthesis started with the Pictet-Spengler reaction of histamine and naphthalene-2-carbaldehyde to a tetrahydropyridine intermediate, which was dehydrogenated with activated manganese (IV) oxide to LysoGlow84. Structure and purity of the synthesized LysoGlow84 were confirmed by NMR spectroscopy and mass spectrometry. The fluorescence intensity emitted by LysoGlow84 depended strongly on the pH of the solvent with highest fluorescence intensity recorded at pH 4. The fluorescence maximum (at 315 nm excitation) was observed at 440 nm. Biocompatibility of LysoGlow84 was investigated using cultured rat brain astrocytes and the marine flatworm Macrostomum lignano. Exposure of the astrocytes for up to 6 h to micromolar concentrations of LysoGlow84 did not compromise cell viability, as demonstrated by several viability assays, but revealed a promising property of this compound for staining of cellular vesicles. Conventional fluorescence microscopy as well as confocal scanning microscopy of LysoGlow84-treated astrocytes revealed co-localization of LysoGlow84 fluorescence with that of LysoTracker® Red DND-99. LysoGlow84 stained unclear structures in Macrostomum lignano, which were identified as lysosomes by co-staining with LysoTracker. Strong fluorescence staining by LysoGlow84 was further observed around the worms' anterior gut and the female genital pore which were not counterstained by LysoTracker Red. Thus, LysoGlow84 is a new promising dye that stains lysosomes and other acidic compartments in cultured cells and in worms.

  11. From surface to intracellular non-invasive nanoscale study of living cells impairments

    Energy Technology Data Exchange (ETDEWEB)

    Ewald, Dr. Maxime [University of Bourgogne, 21078 Dijon, France.; Tetard, Laurene [ORNL; Elie-Caille, Dr. Cecile [Institut FEMTO-ST UMR CNRS 6174, University Franche-Comté, 25044 Besancon, France; Nicod, Laurence [University of Franche-Comte, Laboratoire de Biologie Cellulaire; Passian, Ali [ORNL; Bourillot, Dr. Eric [University of Bourgogne, 21078 Dijon, France.; Lesniewska, Prof. Eric [University of Bourgogne, 21078 Dijon, France.

    2014-01-01

    Among the enduring challenges in nanoscience, subsurface characterization of live cells holds major stakes. Developments in nanometrology for soft matter thriving on the sensitivity and high resolution benefits of atomic force microscopy have enabled detection of subsurface structures at the nanoscale (1,2,3). However, measurements in liquid environments remain complex (4,5,6,7), in particular in the subsurface domain. Here we introduce liquid-Mode Synthesizing Atomic Force Microscopy (l-MSAFM) to study both the inner structures and the chemically induced intracellular impairments of living cells. Specifically, we visualize the intracellular stress effects of glyphosate on living keratinocytes skin cells. This new approach for living cell nanoscale imaging, l-MSAFM, in their physiological environment or in presence of a chemical stress agent confirmed the loss of inner structures induced by glyphosate. The ability to monitor the cell's inner response to external stimuli, non-destructively and in real time, has the potential to unveil critical nanoscale mechanisms of life science.

  12. From surface to intracellular non-invasive nanoscale study of living cells impairments

    Science.gov (United States)

    Ewald, M.; Tetard, L.; Elie-Caille, C.; Nicod, L.; Passian, A.; Bourillot, E.; Lesniewska, E.

    2014-07-01

    Among the enduring challenges in nanoscience, subsurface characterization of living cells holds major stakes. Developments in nanometrology for soft matter thriving on the sensitivity and high resolution benefits of atomic force microscopy have enabled detection of subsurface structures at the nanoscale. However, measurements in liquid environments remain complex, in particular in the subsurface domain. Here we introduce liquid-mode synthesizing atomic force microscopy (l-MSAFM) to study both the inner structures and the chemically induced intracellular impairments of living cells. Specifically, we visualize the intracellular stress effects of glyphosate on living keratinocytes skin cells. This new approach, l-MSAFM, for nanoscale imaging of living cell in their physiological environment or in presence of a chemical stress agent could resolve the loss of inner structures induced by glyphosate, the main component of a well-known pesticide (RoundUp™). This firsthand ability to monitor the cell’s inner response to external stimuli non-destructively and in liquid, has the potential to unveil critical nanoscale mechanisms of life science.

  13. Surface Chemistry in Nanoscale Materials

    Science.gov (United States)

    Biener, Jürgen; Wittstock, Arne; Baumann, Theodore F.; Weissmüller, Jörg; Bäumer, Marcus; Hamza, Alex V.

    2009-01-01

    Although surfaces or, more precisely, the surface atomic and electronic structure, determine the way materials interact with their environment, the influence of surface chemistry on the bulk of the material is generally considered to be small. However, in the case of high surface area materials such as nanoporous solids, surface properties can start to dominate the overall material behavior. This allows one to create new materials with physical and chemical properties that are no longer determined by the bulk material, but by their nanoscale architectures. Here, we discuss several examples, ranging from nanoporous gold to surface engineered carbon aerogels that demonstrate the tuneability of nanoporous solids for sustainable energy applications.

  14. Surface Chemistry in Nanoscale Materials

    Directory of Open Access Journals (Sweden)

    Alex V. Hamza

    2009-12-01

    Full Text Available Although surfaces or, more precisely, the surface atomic and electronic structure, determine the way materials interact with their environment, the influence of surface chemistry on the bulk of the material is generally considered to be small. However, in the case of high surface area materials such as nanoporous solids, surface properties can start to dominate the overall material behavior. This allows one to create new materials with physical and chemical properties that are no longer determined by the bulk material, but by their nanoscale architectures. Here, we discuss several examples, ranging from nanoporous gold to surface engineered carbon aerogels that demonstrate the tuneability of nanoporous solids for sustainable energy applications.

  15. Bio-Conjugates for Nanoscale Applications

    DEFF Research Database (Denmark)

    Villadsen, Klaus

    Bio-conjugates for Nanoscale Applications is the title of this thesis, which covers three different projects in chemical bio-conjugation research, namely synthesis and applications of: Lipidated fluorescent peptides, carbohydrate oxime-azide linkers and N-aryl O-R2 oxyamine derivatives. Lipidated...

  16. Spintronics in nanoscale devices

    CERN Document Server

    Hedin, Eric R

    2013-01-01

    By exploiting the novel properties of quantum dots and nanoscale Aharonov-Bohm rings together with the electronic and magnetic properties of various semiconductor materials and graphene, researchers have conducted numerous theoretical and computational modeling studies and experimental tests that show promising behavior for spintronics applications. Spin polarization and spin-filtering capabilities and the ability to manipulate the electron spin state through external magnetic or electric fields have demonstrated the promise of workable nanoscale devices for computing and memory applications.

  17. Preparation and characterization of a novel bioactive bone cement: glass based nanoscale hydroxyapatite bone cement.

    Science.gov (United States)

    Fu, Qiang; Zhou, Nai; Huang, Wenhai; Wang, Deping; Zhang, Liying; Li, Haifeng

    2004-12-01

    A novel type of glass-based nanoscale hydorxypatite (HAP) bioactive bone cement (designed as GBNHAPC) was synthesized by adding nanoscale hydroxyapatite (HAP) crystalline (20-40 nm), into the self-setting glass-based bone cement (GBC). The inhibition rate of nanoscale HAP and micron HAP on osteosarcoma U2-OS cells was examined. The effects of nanoscale HAP on the crystal phase, microstructure and compressive strength of GBNHAPC were studied respectively. It was concluded that nanoscale HAP could inhibit the cell proliferation, while micron HAP could not, and that nanoscale HAP could be dispersed in the cement evenly and the morphology did not change significantly after a longer immersion time. XRD and FTIR results show nanoscale HAP did not affect the setting reaction of the cement. Furthermore, GBNHAPC had a higher compressive strength (92 MPa) than GBC. It was believed that GBNHAPC might be a desirable biomaterial that could not only fill bone defects but also inhibit cancer cell growth.

  18. Effect of processing parameters on microstructure of MoS2 ultra-thin films synthesized by chemical vapor deposition method

    Directory of Open Access Journals (Sweden)

    Yang Song

    2015-06-01

    Full Text Available MoS2 ultra-thin layers are synthesized using a chemical vapor deposition method based on the sulfurization of molybdenum trioxide (MoO3. The ultra-thin layers are characterized by X-ray diffraction (XRD, photoluminescence (PL spectroscopy and atomic force microscope (AFM. Based on our experimental results, all the processing parameters, such as the tilt angle of substrate, applied voltage, heating time and the weight of source materials have effect on the microstructures of the layers. In this paper, the effects of such processing parameters on the crystal structures and morphologies of the as-grown layers are studied. It is found that the film obtained with the tilt angle of 0.06° is more uniform. A larger applied voltage is preferred to the growth of MoS2 thin films at a certain heating time. In order to obtain the ultra-thin layers of MoS2, the weight of 0.003 g of source materials is preferred. Under our optimal experimental conditions, the surface of the film is smooth and composed of many uniformly distributed and aggregated particles, and the ultra-thin MoS2 atomic layers (1∼10 layers covers an area of more than 2 mm×2 mm.

  19. Influence of Codoping on the Optical Properties of ZnO Thin Films Synthesized on Glass Substrate by Chemical Bath Deposition Method

    Directory of Open Access Journals (Sweden)

    G. Shanmuganathan

    2014-01-01

    Full Text Available Fe and K simultaneously doped ZnO thin films Zn0.99 K0.01 (Fex O (x=1, 2, 3, and 4% were synthesized by chemical bath deposition method. The XRD investigation reveals that all the doped ZnO thin films are in hexagonal wurtzite crystal structure without impurity phases. With increase in Fe concentration, the growth of thin films along c axis is evident from the XRD which indicates the increase in intensity along (002 direction. The same is visible from the surface morphology which shows the formation of hexagonal structure for higher Fe concentration. The topography shows gradual variation with Fe incorporation. The optical energy band gap obtained from the transmittance spectrum decreases from 3.42 to 3.06 eV with increase in Fe concentration indicating the red shift and this trend is consistent with the earlier experimental results. The UV emission is centered around 3.59 eV. The optical constants such as refractive index, extinction coefficient, and absorption coefficient which are essential for the optoelectronic applications were also determined.

  20. The Effect of Polyvinylpyrrolidone on the Optical Properties of the Ni-Doped ZnS Nanocrystalline Thin Films Synthesized by Chemical Method

    Directory of Open Access Journals (Sweden)

    Tran Minh Thi

    2012-01-01

    Full Text Available We report the optical properties of polyvinyl-pyrrolidone (PVP and the influence of PVP concentration on the photoluminescence spectra of the PVP (PL coated ZnS : Ni nanocrystalline thin films synthesized by the wet chemical method and spin-coating. PL spectra of samples were clearly showed that the 520 nm luminescence peak position of samples remains unchanged, but their peak intensity changes with PVP concentration. The PVP polymer is emissive with peak maximum at 394 nm with the exciting wavelength of 325 nm. The photoluminescence exciting (PLE spectrum of PVP recorded at 394 nm emission shows peak maximum at 332 nm. This excitation band is attributed to the electronic transitions in PVP molecular orbitals. The absorption edges of the PVP-coated ZnS : Ni0.3% samples that were shifted towards shorter wavelength with increasing of PVP concentration can be explained by the absorption of PVP in range of 350 nm to 400 nm. While the PVP coating does not affect the microstructure of ZnS : Ni nanomaterial, the analyzed results of the PL, PLE, and time-resolved PL spectra and luminescence decay curves of the PVP and PVP-coated ZnS : Ni samples allow to explain the energy transition process from surface PVP molecules to the Ni2+ centers that occurs via hot ZnS.

  1. Comparative study of synthesized silver and gold nanoparticles ...

    Indian Academy of Sciences (India)

    Nanotechnology is an emerging field in science and technology, which can be applied to synthesize new materials at the nanoscale level. The present investigation aimed at comparing the synthesis, characterization andin vitro anticancer efficacy of synthesized silver and gold nanoparticles using leaves extract of Bauhinia ...

  2. Sensing at the nanoscale

    Science.gov (United States)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    label-free detection of DNA at concentrations as low as 1-10 fM, a sensitivity comparable to the best signal amplification-assisted electrochemical sensors reported [12]. In another study actin-conjugated gold and silver nanorods are used to detect ATP, a common indicator of cell viability [13]. They show how aggregation induced by ATP-induced polymerization of the G-actin gives rise to a measurable change in the plasmon resonance absorbance of the nanorods. A review of the use of fluorescent silica nanoparticles for biomedical applications is provided by researchers at Dublin City University in Ireland [14]. The first scanning tunnelling microscope in the early 1980s and subsequent scanning probe developments brought the world of nanoscale structures into view in a manner that gorged the imaginations of scientists and the public. New ways of probing structures at this scale revealed a wealth of curious properties that triggered a surge of research activity in nanotechnology, now a multibillion dollar industry. One good turn deserves another and in fact nanostructures provide the perfect tools for the type of sensing and imaging applications that brought such widespread research interest to nanotechnology. This special issue highlights just how broad and innovative the range of sensing nanotechnologies has grown. References [1] Zappa D, Comini E and Sberveglieri G 2013 Thermally-oxidized zinc oxide nanowires chemical sensors Nanotechnology 24 444008 [2] Kemmler J A, Pokhrel S, Mädler L, Weimar U and Barsan N 2013 Flame spray pyrolysis for sensing at the nanoscale Nanotechnology 24 442001 [3] Bache M et al 2013 Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology Nanotechnology 24 444011 [4] Hu C-F, Wang J-Y, Liu Y-C, Tsai M-H and Fang W 2013 Development of 3D carbon nanotubes interdigitated finger electrodes on polymer substrate for flexible capacitive sensor application Nanotechnology 24 444006 [5] Neumann C, Volk C, Engels S and

  3. The effect of Ce3+ on structure, morphology and optical properties of flower-like ZnO synthesized using the chemical bath method

    International Nuclear Information System (INIS)

    Koao, L.F.; Dejene, F.B.; Swart, H.C.; Botha, J.R.

    2013-01-01

    Ce 3+ doped ZnO flower-like structures were synthesized by the chemical bath deposition method (CBD). The influence of Ce 3+ as a dopant on the crystallization, surface morphology, optical and luminescent properties of ZnO flowers-like structures were investigated. The X-ray diffraction (XRD) spectra of the ZnO:Ce 3+ nanostructures correspond to the various planes of a single hexagonal ZnO phase for the lower Ce concentration samples. The estimated grain sizes calculated using the XRD spectra were found to be in order of 42±2 nm. The grain size was found to be not dependent on the concentration of the Ce 3+ ions used up to 3 mol% of Ce. Scanning Auger electron microscopy and scanning electron micrographs indicate that the addition of Ce 3+ influence the morphology of the samples. The flower-like structures obtained for the undoped and low concentration Ce doped ZnO changed into a mixed structure with the emergence of pyramid shapes for higher concentration Ce doped samples. The solid undoped and low concentration Ce doped powder showed good optical properties with a high reflectance in the visible regions. The properties, however, diminished at higher Ce concentration. The band gap energies decreased linearly with concentration from 3.0±0.1 to 2.4±0.3 eV for ZnO:0 mol% Ce 3+ up to ZnO:10 mol% Ce 3+ . Under 248 nm excitation, the undoped and low concentration Ce doped ZnO flower-like rods exhibited a green emission, peaking at about 559 nm. The higher Ce concentration (0.3 mol% and above) was emitted at 436 and 503 nm due to the Ce transitions. The intensity of these emission spectra of the ZnO:Ce 3+ decreased with the addition of more Ce 3+ ions. -- Highlights: • Ce 3+ doped ZnO flower-like structures were synthesized by CBD. • Flower-like hexagonal ZnO:Ce 3+ nanostructures were obtained for undoped and low mol% Ce. • ZnO changed into a mixed structure with emergence of pyramid shapes for higher mol% Ce. • Good optical properties with a high reflectance

  4. The effect of Ce{sup 3+} on structure, morphology and optical properties of flower-like ZnO synthesized using the chemical bath method

    Energy Technology Data Exchange (ETDEWEB)

    Koao, L.F. [Department of Physics, University of the Free State, Qwaqwa Campus, Private Bag X13, Phuthaditjhaba 9866 (South Africa); Dejene, F.B., E-mail: dejenebf@qwa.ufs.ac.za [Department of Physics, University of the Free State, Qwaqwa Campus, Private Bag X13, Phuthaditjhaba 9866 (South Africa); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Botha, J.R. [Physics Department, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2013-11-15

    Ce{sup 3+} doped ZnO flower-like structures were synthesized by the chemical bath deposition method (CBD). The influence of Ce{sup 3+} as a dopant on the crystallization, surface morphology, optical and luminescent properties of ZnO flowers-like structures were investigated. The X-ray diffraction (XRD) spectra of the ZnO:Ce{sup 3+}nanostructures correspond to the various planes of a single hexagonal ZnO phase for the lower Ce concentration samples. The estimated grain sizes calculated using the XRD spectra were found to be in order of 42±2 nm. The grain size was found to be not dependent on the concentration of the Ce{sup 3+} ions used up to 3 mol% of Ce. Scanning Auger electron microscopy and scanning electron micrographs indicate that the addition of Ce{sup 3+} influence the morphology of the samples. The flower-like structures obtained for the undoped and low concentration Ce doped ZnO changed into a mixed structure with the emergence of pyramid shapes for higher concentration Ce doped samples. The solid undoped and low concentration Ce doped powder showed good optical properties with a high reflectance in the visible regions. The properties, however, diminished at higher Ce concentration. The band gap energies decreased linearly with concentration from 3.0±0.1 to 2.4±0.3 eV for ZnO:0 mol% Ce{sup 3+} up to ZnO:10 mol% Ce{sup 3+}. Under 248 nm excitation, the undoped and low concentration Ce doped ZnO flower-like rods exhibited a green emission, peaking at about 559 nm. The higher Ce concentration (0.3 mol% and above) was emitted at 436 and 503 nm due to the Ce transitions. The intensity of these emission spectra of the ZnO:Ce{sup 3+} decreased with the addition of more Ce{sup 3+} ions. -- Highlights: • Ce{sup 3+} doped ZnO flower-like structures were synthesized by CBD. • Flower-like hexagonal ZnO:Ce{sup 3+}nanostructures were obtained for undoped and low mol% Ce. • ZnO changed into a mixed structure with emergence of pyramid shapes for higher mol% Ce

  5. Nanoscale grain growth behaviour of CoAl intermetallic synthesized ...

    Indian Academy of Sciences (India)

    Administrator

    initial grain size and the grain-growth exponent, respec- tively. K is a constant that satisfies the following equation. (Kambara et al 2000; Thein et al 2006; Ren et al 2008):. 0 exp. ,. Q. K K. RT. −. ⎛. ⎞. = ⎜. ⎟. ⎝. ⎠. (2) where Q is the activation energy required for grain growth and K0, R and T are constant, gas constant and.

  6. Nanoscale grain growth behaviour of CoAl intermetallic synthesized ...

    Indian Academy of Sciences (India)

    Administrator

    Lee J, Zhou F, Chung K H, Kim N J and Lavernia E J 2001. Metall. Mater. Trans. 32 3109. Liu F, Yang G, Wang H, Chen Z and Zhou Y 2006 Thermo- chim. Acta 443 212. Liu K W and Mucklich F 2001 Acta Mater. 49 395. Mousavi T, Karimzadeh F and Abbasi M H 2008 Mater. Sci. Eng. 487 46. Nakamura R and Iijima Y 2005 ...

  7. Nanoscale Fluid Flows in the Vicinity of Patterned Surfaces

    Science.gov (United States)

    Cieplak, Marek; Koplik, Joel; Banavar, Jayanth R.

    2006-03-01

    Molecular dynamics simulations of dense and rarefied fluids comprising small chain molecules in chemically patterned nanochannels predict a novel switching from Poiseuille to plug flow along the channel. We also demonstrate behavior akin to the lotus effect for a nanodrop on a chemically patterned substrate. Our results show that one can control and exploit the behavior of fluids at the nanoscale using chemical patterning.

  8. Enhanced nanoscale friction on fluorinated graphene.

    Science.gov (United States)

    Kwon, Sangku; Ko, Jae-Hyeon; Jeon, Ki-Joon; Kim, Yong-Hyun; Park, Jeong Young

    2012-12-12

    Atomically thin graphene is an ideal model system for studying nanoscale friction due to its intrinsic two-dimensional (2D) anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro- and nanomechanical devices. Here, we report unexpectedly enhanced nanoscale friction on chemically modified graphene and a relevant theoretical analysis associated with flexural phonons. Ultrahigh vacuum friction force microscopy measurements show that nanoscale friction on the graphene surface increases by a factor of 6 after fluorination of the surface, while the adhesion force is slightly reduced. Density functional theory calculations show that the out-of-plane bending stiffness of graphene increases up to 4-fold after fluorination. Thus, the less compliant F-graphene exhibits more friction. This indicates that the mechanics of tip-to-graphene nanoscale friction would be characteristically different from that of conventional solid-on-solid contact and would be dominated by the out-of-plane bending stiffness of the chemically modified graphene. We propose that damping via flexural phonons could be a main source for frictional energy dissipation in 2D systems such as graphene.

  9. Programmed assembly of nanoscale structures using peptoids.

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jianhua (University of the Pacific, Stockton, CA); Russell, Scott (California State University, Stanislaus, Turlock, CA); Morishetti, Kiran (University of the Pacific, Stockton, CA); Robinson, David B.; Zuckermann, Ronald N. (Lawrence Berkeley National Laboratory, Berkeley, CA); Buffleben, George M.; Hjelm, Rex P. (Los Alamos National Laboratory, Los Alamos, NM); Kent, Michael Stuart (Sandia National Laboratories, Albuquerque, NM)

    2011-02-01

    Sequence-specific polymers are the basis of the most promising approaches to bottom-up programmed assembly of nanoscale materials. Examples include artificial peptides and nucleic acids. Another class is oligo(N-functional glycine)s, also known as peptoids, which permit greater sidegroup diversity and conformational control, and can be easier to synthesize and purify. We have developed a set of peptoids that can be used to make inorganic nanoparticles more compatible with biological sequence-specific polymers so that they can be incorporated into nucleic acid or other biologically based nanostructures. Peptoids offer degrees of modularity, versatility, and predictability that equal or exceed other sequence-specific polymers, allowing for rational design of oligomers for a specific purpose. This degree of control will be essential to the development of arbitrarily designed nanoscale structures.

  10. Properties of nanoscale metal hydrides.

    Science.gov (United States)

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption.

  11. Correlation between thermal fatigue and thermomechanical properties during the oxidation of multilayered TiSiN nanocomposite coatings synthesized by a hybrid physical/chemical vapour deposition process

    International Nuclear Information System (INIS)

    Mege-Revil, A.; Steyer, P.; Cardinal, S.; Thollet, G.; Esnouf, C.; Jacquot, P.; Stauder, B.

    2010-01-01

    TiSiN and TiSiAlN coatings were deposited on M2 steel by a hybrid physical/chemical vapour deposition process. SiH 4 was used as precursor for Si, while metals were brought by arc evaporation. This hybrid process allowed us to control the silicon enrichment along the coating thickness. Both films were synthesized applying a serrated silane partial pressure during deposition, leading to a multilayered structure with a 700 nm period. X-ray diffraction analyses showed only TiN peaks, whose width revealed a mean grain size below 10 nm. The multilayer structure and the nanometric size of the grains in layers containing a high Si content were observed by cross-section microscopy in transmission mode. Mechanical properties were improved compared to both TiN and SiN x references, in relation to the nanocomposite microstructure of layers enriched in silicon. The oxidation behaviour was assessed by thermogravimetric analyses. The oxidation resistance was studied in isothermal, dynamic as well as cycling (10-cycle runs 25-800-25 o C) conditions. The multilayered nanocomposite TiSiN film exhibited a high durability in terms of mechanical and oxidation behaviours. Thermal cycling experiments revealed its high resistance which seems to result from a synergy between the shield effect of the SiN x network - that would limit the oxidation process - and the intrinsic 'deformability' of TiN layers - that would withstand the volume modifications of the substrate due to temperature variations. A further addition of aluminium, without significantly affecting the mechanical properties, contributes to the improvement of the oxidation resistance thanks to the formation of the expected outer refractory alumina layer.

  12. Effect of different oxidants on polyaniline/single walled carbon nanotubes composites synthesized via ultrasonically initiated in-situ chemical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Gull, Nafisa, E-mail: gullchemist@gmail.com [Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 (Pakistan); Khan, Shahzad Maqsood, E-mail: shahzadkhan81@hotmail.com [Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 (Pakistan); Islam, Atif; Zia, Saba; Shafiq, Muhammad; Sabir, Aneela; Munawar, Muhammad Azeem [Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 (Pakistan); Butt, Muhammad Taqi Zahid [College of Engineering and Emerging Technologies, University of the Punjab, Lahore, 54590 (Pakistan); Jamil, Tahir [Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 (Pakistan)

    2016-04-01

    This study is aimed at investigating the effect of different oxidants on properties of polyaniline/single walled carbon nanotubes (PANI/SWCNT) composites and scrutinizing a suitable oxidant to improve the properties of composites. PANI/SWCNT composites were fabricated via ultrasonically initiated in-situ chemical polymerization technique using four different oxidants; hydrogen peroxide (H{sub 2}O{sub 2}), ammonium peroxidisulphate ((NH{sub 4}){sub 2}S{sub 2}O{sub 8}), potassium dichromate (K{sub 2}Cr{sub 2}O{sub 7}) and potassium iodate (KIO{sub 3}). Percent yield (97%), molecular weight (45532 g mol{sup −1}) and electrical conductivity (0.835 S cm{sup −1}) were found maximum for composite prepared in the presence of H{sub 2}O{sub 2}. Structural confirmation of PANI and charge transfer complex formation between PANI and SWCNT were confirmed by fourier transform infrared spectroscopy, UV–visible spectroscopy and X-ray diffraction spectroscopy. Thermogravimetric analysis verified that the PANI/SWCNT composite synthesized using H{sub 2}O{sub 2} had maximum thermal stability with least thermal degradation (∼28%). Minimal thermal transitions of the composite were also observed for same composite by differential scanning calorimetry. Scanning electron microscopic images of PANI/SWCNT composites revealed that SWCNT were properly dispersed in PANI matrix when H{sub 2}O{sub 2} was used. Above results provide the valuable suggestion that; H{sub 2}O{sub 2} is a promising oxidant to enhance structural, thermal, electrical and microscopic properties of composites. - Highlights: • Ultrasonically initiated in-situ chemical polymerization protocol was devised for synthesis of PANI/SWCNT composites. • SEM micrographs of PANI/SWCNT-1 showed uniform dispersed structure. • Better thermal stability and conductivity was evidenced for H{sub 2}O{sub 2} based PANI/SWCNT composite. • π–π interaction between PANI and SWCNT is confirmed by FTIR and UV

  13. Electromagnetic modelling of Raman enhancement from nanoscale substrates: a route to estimation of the magnitude of the chemical enhancement mechanism in SERS.

    Science.gov (United States)

    Brown, Richard J C; Wang, Jian; Tantra, Ratna; Yardley, Rachel E; Milton, Martin J T

    2006-01-01

    Despite widespread use for more than two decades, the SERS phenomenon has defied accurate physical and chemical explanation. The relative contributions from electronic and chemical mechanisms are difficult to quantify and are often not reproduced under nominally similar experimental conditions. This work has used electromagnetic modelling to predict the Raman enhancement expected from three configurations: metal nanoparticles, structured metal surfaces, and sharp metal tips interacting with metal surfaces. In each case, parameters such as artefact size, artefact separation and incident radiation wavelength have been varied and the resulting electromagnetic field modelled. This has yielded an electromagnetic description of these configurations with predictions of the maximum expected Raman enhancement, and hence a prediction of the optimum substrate configuration for the SERS process. When combined with experimental observations of the dependence of Raman enhancement with changing ionic strength, the modelling results have allowed a novel estimate of the size of the chemical enhancement mechanism to be produced.

  14. Bioinspired, functional nanoscale materials

    Science.gov (United States)

    Jun, In-Kook

    Functional nanomaterials in nature exhibit many unique functions and optical and mechanical properties. Examples of this include the dry adhesion of a gecko's foot, the reduced drag on a shark's skin, the high strength and toughness of nacre, and the superhydrophobic self-cleaning of a lotus leaf. This dissertation is devoted to creating unique and enhanced properties by mimicking such functional materials. We have developed a novel self-pumping membrane, which does not require an applied voltage. The self-pumping membrane harvests chemical energy from a surrounding fluid and uses it for accelerated mass transport across the membrane. A device such as this has promising applications in implantable or remotely operating autonomous devices and membrane-based purification systems. Reproducible and highly active surface enhanced Raman scattering (SERS) substrates were developed using a bottom-up self-assembly technology. With their high sensitivity and good reproducibility, the developed nanostructures (gold nanoparticle and nanohole arrays) as SERS substrates are very promising for applications such as ultra-sensitive detectors for chemicals and reproducible sensors for chemical and biological molecules. Binary colloidal crystals were created using a simple, fast, and scalable spin-coating technology. Although further investigation of the procedure is needed to improve the ordering of particles in the individual layers, the developed assembly technology has a promising outlook in applications such as optical integrated circuits and high-speed optical computing. Inorganic-organic nanocomposites were realized by assembling synthesized gibbsite nanoplatelets using the electrophoretic deposition and infiltration of a monomer followed by polymerization. Via surface modifications of gibbsite nanoplatelets, nanocomposites were further reinforced with covalent linkages between the inorganic platelets and organic matrix.

  15. Ion Discrimination by Nanoscale Design

    Science.gov (United States)

    Rempe, Susan; Rogers, David

    2013-03-01

    Proteins that form membrane-spanning channels excel at discriminating between molecules on the basis of subtle structural and chemical differences. For example, some channels distinguish between water and ions; others between Na+ (sodium) and K+ (potassium) despite identical charges and only sub-Angstrom differences in size. If we could understand these structure/function relationships, we could potentially harness biological design principles in robust nanoscale devices that mimic biological function for efficient separations. Using ab initio molecular simulations, we have interrogated the link between channel structure and selective transport, both in cellular channels and polymer membranes. Our results emphasize the surprisingly important role of the environment that surrounds ion-binding sites, as well as the coordination chemistry of the binding site for raising or lowering the free energy barrier to transport in both systems. Support for Sandia Laboratory Research & Development Program is gratefully acknowledged.

  16. Fatigue behavior of Ti–6Al–4V alloy in saline solution with the surface modified at a micro- and nanoscale by chemical treatment

    International Nuclear Information System (INIS)

    Claros, Cesar Adolfo Escobar; Oliveira, Diego Pedreira; Campanelli, Leonardo Contri; Pereira da Silva, Paulo Sergio Carvalho; Bolfarini, Claudemiro

    2016-01-01

    This work evaluated the influence of the surface modification using acid etching combined with alkaline treatment on the fatigue strength of Ti–6Al–4V ELI alloy. The topography developed by chemical surface treatments (CST) was examined by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Increased roughness and effective surface area were investigated and compared with the Ti–6Al–4V samples without modification. Surface composition was analyzed by energy dispersive X-ray spectroscopy (EDS). Axial fatigue resistance of polished and modified surfaces was determined by stepwise load increase tests and staircase test method. Light microscopy and SEM were employed to examine the fracture surface of the tested specimens. According to the results, a similar fatigue behavior was found and a negligible difference in the fatigue crack nucleation was observed for the Ti–6Al–4V with CST in comparison to the samples without treatment. - Highlights: • Fatigue behavior of Ti–6Al–4V with the surface modified by chemical treatments • The topography developed did not induce differences in the fatigue resistance. • Untreated and chemically treated surfaces presented fractographic similarities.

  17. Nanoscale geochemical and geomechanical characterization of organic matter in shale.

    Science.gov (United States)

    Yang, Jing; Hatcherian, Javin; Hackley, Paul C; Pomerantz, Andrew E

    2017-12-19

    Solid organic matter (OM) plays an essential role in the generation, migration, storage, and production of hydrocarbons from economically important shale rock formations. Electron microscopy images have documented spatial heterogeneity in the porosity of OM at nanoscale, and bulk spectroscopy measurements have documented large variation in the chemical composition of OM during petroleum generation. However, information regarding the heterogeneity of OM chemical composition at the nanoscale has been lacking. Here we demonstrate the first application of atomic force microscopy-based infrared spectroscopy (AFM-IR) to measure the chemical and mechanical heterogeneity of OM in shale at the nanoscale, orders of magnitude finer than achievable by traditional chemical imaging tools such as infrared microscopy. We present a combination of optical microscopy and AFM-IR imaging to characterize OM heterogeneity in an artificially matured series of New Albany Shales. The results document the evolution of individual organic macerals with maturation, providing a microscopic picture of the heterogeneous process of petroleum generation.

  18. Nanoscale Vacuum Channel Transistor.

    Science.gov (United States)

    Han, Jin-Woo; Moon, Dong-Il; Meyyappan, M

    2017-04-12

    Vacuum tubes that sparked the electronics era had given way to semiconductor transistors. Despite their faster operation and better immunity to noise and radiation compared to the transistors, the vacuum device technology became extinct due to the high power consumption, integration difficulties, and short lifetime of the vacuum tubes. We combine the best of vacuum tubes and modern silicon nanofabrication technology here. The surround gate nanoscale vacuum channel transistor consists of sharp source and drain electrodes separated by sub-50 nm vacuum channel with a source to gate distance of 10 nm. This transistor performs at a low voltage (3 microamperes). The nanoscale vacuum channel transistor can be a possible alternative to semiconductor transistors beyond Moore's law.

  19. Ellipsometry at the nanoscale

    CERN Document Server

    Hingerl, Kurt

    2013-01-01

    This book presents and introduces ellipsometry in nanoscience and nanotechnology making a bridge between the classical and nanoscale optical behaviour of materials. It delineates the role of the non-destructive and non-invasive optical diagnostics of ellipsometry in improving science and technology of nanomaterials and related processes by illustrating its exploitation, ranging from fundamental studies of the physics and chemistry of nanostructures to the ultimate goal of turnkey manufacturing control. This book is written for a broad readership: materials scientists, researchers, engineers, as well as students and nanotechnology operators who want to deepen their knowledge about both basics and applications of ellipsometry to nanoscale phenomena. It starts as a general introduction for people curious to enter the fields of ellipsometry and polarimetry applied to nanomaterials and progresses to articles by experts on specific fields that span from plasmonics, optics, to semiconductors and flexible electronics...

  20. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nanoscale Chemical Characterization of Solid-State Microbattery Stacks by Means of Auger Spectroscopy and Ion-Milling Cross Section Preparation.

    Science.gov (United States)

    Uhart, A; Ledeuil, J B; Pecquenard, B; Le Cras, F; Proust, M; Martinez, H

    2017-09-27

    The current sustained demand for "smart" and connected devices has created a need for more miniaturized power sources, hence for microbatteries. Lithium-ion or "lithium-free" all-solid-state thin-film batteries are adapted solutions to this issue. The capability to carry out spatially resolved chemical analysis is fundamental for the understanding of the operation in an all-solid-state microbattery. Classically cumbersome and not straightforward techniques as TEM/STEM/EELS and FIB preparation methods could be used to address this issue. The challenge in this work is to make the characterization of Li-based material possible by coupling ion-milling cross section preparation method and AES techniques to characterize the behavior of a LiCoO 2 positive electrode in an all solid state microbattery. The surface chemistry of LiCoO 2 has been studied before and after LiPON deposition. Modifications of the chemical environments characteristic of the positive electrode have been reported at different steps of the electrochemical process. An original qualitative and a semiquantitative analysis has been used in this work with the peak deconvolution method based on real, certified reference spectra to better understand the lithiation/delithiation process. This original coupling has demonstrated that a full study of the pristine, cycled, and post mortem positive electrode in a microbattery is also possible. The ion-milling preparation method allows access to a large area, and the resolution of Auger analysis is highly resolved in energy to separate the lithium and the cobalt signals in an accurate way.

  2. Nanoscale Electronic Devices

    Science.gov (United States)

    Jing, Xiaoye

    Continuous downscaling in microelectronics has pushed conventional CMOS technology to its physical limits, while Moore's Law has correctly predicted the trend for decades, each step forward is accompanied with unprecedented technological difficulties and near-exponential increase in cost. At the same time, however, demands for low-power, low-cost and high-speed devices have never diminished, instead, even more stringent requirements have been imposed on device performances. It is therefore crucial to explore alternative materials and device architectures in order to alleviate the pressure caused by downscaling. To this end, we investigated two different approaches: (1) InSb nanowire based field effect transistors (NWFETs) and (2) single walled carbon nanotube (SWCNT) -- peptide nucleic acid (PNA) --SWCNT conjugate. Two types of InSb nanowires were synthesized by template-assisted electrochemistry and chemical vapor deposition (CVD) respectively. In both cases, NWFETs were fabricated by electron beam lithography (EBL) and crystallinity was confirmed by transmission electron microscopy (TEM) and selected area diffraction (SAD) patterns. For electrochemistry nanowire, ambipolar conduction was observed with strong p-type conduction, the effect of thermal annealing on the conductivity was analyzed, a NWFET model that took into consideration the underlapped region in top-gated NWFET was proposed. Hole mobility in the channel was calculated to be 292.84 cm2V-1s -1 with a density of 1.5x1017/cm3. For CVD nanowire, the diameter was below 40nm with an average of 20nm. Vapor-liquid-solid (VLS) process was speculated to be the mechanism responsible for nanowire growth. The efficient gate control was manifested by high ION/I OFF ratio which was on the order of 106 and a small inverse subthreshold slope (functionalized single walled carbon nanotubes to synthesize the conjugate and characterized its electrical properties. Negative differential resistance (NDR) was observed

  3. Nanoscale thermal transport

    Science.gov (United States)

    Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Merlin, Roberto; Phillpot, Simon R.

    2003-01-01

    Rapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid-solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime—experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The

  4. Nanoscale Polysulfides Reactors Achieved by Chemical Au-S Interaction: Improving the Performance of Li-S Batteries on the Electrode Level.

    Science.gov (United States)

    Fan, Chao-Ying; Xiao, Pin; Li, Huan-Huan; Wang, Hai-Feng; Zhang, Lin-Lin; Sun, Hai-Zhu; Wu, Xing-Long; Xie, Hai-Ming; Zhang, Jing-Ping

    2015-12-23

    In this work, the chemical interaction of cathode and lithium polysulfides (LiPSs), which is a more targeted approach for completely preventing the shuttle of LiPSs in lithium-sulfur (Li-S) batteries, has been established on the electrode level. Through simply posttreating the ordinary sulfur cathode in atmospheric environment just for several minutes, the Au nanoparticles (Au NPs) were well-decorated on/in the surface and pores of the electrode composed of commercial acetylene black (CB) and sulfur powder. The Au NPs can covalently stabilize the sulfur/LiPSs, which is advantageous for restricting the shuttle effect. Moreover, the LiPSs reservoirs of Au NPs with high conductivity can significantly control the deposition of the trapped LiPSs, contributing to the uniform distribution of sulfur species upon charging/discharging. The slight modification of the cathode with <3 wt % Au NPs has favorably prospered the cycle capacity and stability of Li-S batteries. Moreover, this cathode exhibited an excellent anti-self-discharge ability. The slight decoration for the ordinary electrode, which can be easily accessed in the industrial process, provides a facile strategy for improving the performance of commercial carbon-based Li-S batteries toward practical application.

  5. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  6. Structure sensitivity and nanoscale effects in electrocatalysis

    Science.gov (United States)

    Koper, Marc T. M.

    2011-05-01

    This review discusses the role of the detailed nanoscale structure of catalytic surfaces on the activity of various electrocatalytic reactions of importance for fuel cells, hydrogen production, and other environmentally important catalytic reactions, such as carbon monoxide oxidation, methanol and ethanol oxidation, ammonia oxidation, nitric oxide reduction, hydrogen evolution, and oxygen reduction. Specifically, results and insights obtained from surface-science single-crystal-based model experiments are linked to experiments on well-defined shape-controlled nanoparticles. A classification of structure sensitive effects in electrocatalysis is suggested, based both on empirical grounds and on quantum-chemical viz. thermochemical considerations. The mutual relation between the two classification schemes is also discussed. The review underscores the relevance of single-crystal modeling of nanoscale effects in catalysis, and points to the special role of two kinds of active sites for electrocatalysis on nanoparticulate surfaces: (i) steps and defects in (111) terraces or facets, and (ii) long-range (100) terraces or facets.

  7. Spectral analysis, structural elucidation, and evaluation of both nonlinear optical properties and chemical reactivity of a newly synthesized ethyl-3,5-dimethyl-4-[(toluenesulfonyl)-hydrazonomethyl]-1H-pyrrole-2-carboxylate through experimental studies and quantum chemical calculations

    Science.gov (United States)

    Singh, R. N.; Rawat, Poonam

    2013-12-01

    As part of study of hydrazide-hydrazones, we have synthesized ethyl-3,5-dimethyl-4-[(toluenesulfonyl)-hydrazonomethyl]-1H-pyrrole-2-carboxylate (EDTHMPC) and characterized by elemental analysis, FT-IR, UV-Vis, 1H, 13C NMR and Mass spectroscopy. The structure, spectral and thermodynamic parameters of EDTHMPC were quantum chemically calculated performing density functional level theory (DFT) with B3LYP functional and 6-31G (d,p) basis set. Electrophilic charge transfer (ECT) values of interacting molecules indicate that charge flows from p-toluene sulphonyl-hydrazide to ethyl-3,5-dimethyl-4-formyl-1H-pyrrole-2-carboxylate confirming the formation of product by nucleophilic attack. The calculated and experimental wavenumbers analysis confirms the formation of dimer. The calculated changes in thermodynamic quantities during dimer formation in gaseous phase have the negative values for ΔH, ΔG (kcal/mol) and ΔS (cal/mol-K) indicating that the dimer formation is exothermic and will proceed only at low temperature. The strength and nature of hydrogen bonding and weak interactions in dimer have been analyzed by 'Quantum theory of atoms in molecules' (QTAIM) and found to be five types of interactions in which three types are (C⋯N, CH⋯O and CH⋯HC) intramolecular and two types are (CO⋯HN and CH⋯OC) intermolecular. The calculated binding energy of dimer using DFT and QTAIM theory are 14.32 and 15.41 kcal/mol, respectively. The β0 value for monomer is calculated as 11.54 x 10-30 esu indicating microscopic nonlinear optical (NLO) behavior with non-zero values.

  8. Flexoelectricity in Nanoscale Ferroelectrics

    Science.gov (United States)

    Catalan, Gustau

    2012-02-01

    All ferroelectrics are piezoelectric and thus have an intrinsic coupling between polarization and strain. There exists an additional electromechanical coupling, however, between polarization and strain gradients. Strain gradients are intrinsically vectorial fields and, therefore, they can in principle be used to modify both the orientation and the sign of the polarization, thanks to the coupling known as flexoelectricity. Flexoelectricity is possible even in paraelectric materials, but is generally stronger in ferroelectrics on account of their high permittivity (the flexoelectric coefficient is proportional to the dielectric constant). Moreover, strain gradients can be large at the nanoscale due to the smallness of the relaxation length and, accordingly, strong flexoelectric effects can be expected in nanoscale ferroelectrics. In this talk we will present two recent results that highlight the above features. In the first part, I will show how polarization tilting can be achieved in a nominally tetragonal ferroelectric (PbTiO3) thanks to the internal flexoelectric fields generated in nano-twinned epitaxial thin films. Flexoelectricity thus offers a purely physical means of achieving rotated polarizations, which are thought to be useful for enhanced piezoelectricity. In the second part, we will show how the large strain gradients generated by pushing the sharp tip of an atomic force microscope against the surface of a thin ferroelectric film can be used to actively switch its polarity by 180^o. This enables a new concept for ``multiferroic'' memory operation in which the memory bits are written mechanically and read electrically.

  9. Nanoscale relaxation oscillator

    Science.gov (United States)

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  10. Optically stimulated luminescence of ZnO obtained by thermal treatment of ZnS chemically synthesized; Luminiscencia opticamente estimulada de ZnO obtenido por tratamiento termico de ZnS sintetizado quimicamente

    Energy Technology Data Exchange (ETDEWEB)

    Cruz V, C.; Burruel I, S.E.; Orante B, V.R.; Grijalva M, H.; Perez S, R.; Bernal, R. [Universidad de Sonora, A.P. 130, Hermosillo (Mexico)

    2005-07-01

    In this work, we report the optically stimulated luminescence (OSL) dosimetry of new nano phosphors of ZnO obtained by thermal annealing of chemically synthesized ZnS powder. The synthesized ZnS nano powder was compressed in order to form pellet shaped pellets, which were afterwards subjected to a thermal annealing at 700 C during 24 h under air atmosphere. X-ray diffraction (XRD) patterns and energy-disperse X-ray Spectrometry (EDS) analyses confirmed the transformation of ZnS to ZnO. Samples were exposed to several doses of beta radiation up to 600 Gy, and the optically stimulated luminescence with 470 nm wavelength light was recorded as a function of dose. The intensity of the OSL signal increases by increasing dose, for what it is concluded that these new phosphor materials are suitable to be used in optically stimulated luminescence dosimetry. (Author)

  11. Rocket Science at the Nanoscale.

    Science.gov (United States)

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  12. Nanoscale Electrochemical Sensing and Processing in Microreactors.

    Science.gov (United States)

    Odijk, Mathieu; van den Berg, Albert

    2018-03-08

    In this review, we summarize recent advances in nanoscale electrochemistry, including the use of nanoparticles, carbon nanomaterials, and nanowires. Exciting developments are reported for nanoscale redox cycling devices, which can chemically amplify signal readout. We also discuss promising high-frequency techniques such as nanocapacitive CMOS sensor arrays or heterodyning. In addition, we review electrochemical microreactors for use in (drug) synthesis, biocatalysis, water treatment, or to electrochemically degrade urea for use in a portable artificial kidney. Electrochemical microreactors are also used in combination with mass spectrometry, e.g., to study the mimicry of drug metabolism or to allow electrochemical protein digestion. The review concludes with an outlook on future perspectives in both nanoscale electrochemical sensing and electrochemical microreactors. For sensors, we see a future in wearables and the Internet of things. In microreactors, a future goal is to monitor the electrochemical conversions more precisely or ultimately in situ by combining other spectroscopic techniques. Expected final online publication date for the Annual Review of Analytical Chemistry Volume 11 is June 12, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  13. Inhibition Effects of a Synthesized Novel 4-Aminoantipyrine Derivative on the Corrosion of Mild Steel in Hydrochloric Acid Solution together with Quantum Chemical Studies

    Directory of Open Access Journals (Sweden)

    Abu Bakar Mohamad

    2013-06-01

    Full Text Available 1,5-Dimethyl-4-((2-methylbenzylideneamino-2-phenyl-1H-pyrazol-3(2H-one (DMPO was synthesized to be evaluated as a corrosion inhibitor. The corrosion inhibitory effects of DMPO on mild steel in 1.0 M HCl were investigated using electrochemical impedance spectroscopy (EIS, potentiodynamic polarization, open circuit potential (OCP and electrochemical frequency modulation (EFM. The results showed that DMPO inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration. Changes in the impedance parameters suggested an adsorption of DMPO onto the mild steel surface, leading to the formation of protective films. The novel synthesized corrosion inhibitor was characterized using UV-Vis, FT-IR and NMR spectral analyses. Electronic properties such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively and dipole moment (μ were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in the EHOMO values but with a decrease in the ELUMO value.

  14. A Nanoscale Tale

    Science.gov (United States)

    Serrano, Elba

    2008-10-01

    Experimentalists constantly seek to overcome technical limitations. This is especially true in the world of biophysics, where the drive to study molecular targets such as ion channels, a type of membrane transport protein, has resulted in methodological breakthroughs that have merited the Nobel Prize (Hodgkin and Huxley, 1963; Neher and Sakmann, 1991). In this presentation I will explain how nanoscale phenomena that are essential for sensory perception underlie the ability of dancers, gymnasts, and musicians to excel at their artistic endeavors. I will describe how our investigations of sensory mechanotransduction and the quest for improved signal amplification inspired a scientific journey that has culminated in an exciting new line of collaborative NIH-funded research with nanomaterials (quantum dots). I will conclude with a general discussion of how training in physics offers an ideal foundation for interdisciplinary research in health related fields, such as those that deal with neuroscience and disorders of the nervous system.

  15. Chemical characterization of Xanthan biopolymers synthesized by Xanthomonas campestris pv pruni strains; Caracterizacao quimica de biopolimeros sintetizados por Xanthomonas campestris pv pruni

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Angelita da S.; Vendruscolo, Claire T.; Furlan, Ligia [Universidade Federal de Pelotas, RS (Brazil). Centro de Biotecnologia]. E-mail: angelita@ufpel.tche.br; claire@ufpel.tche.br; ligia@ufpel.tche.br; Galland, Griselda [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Qumica

    2001-07-01

    In this work we describe the characterisation of Xanthan biopolymers synthesized by two Xanthomonas campestris pv pruni strains, in aerobic fermentation. By chromatography on TLC we could notice the presence of Mannose monomer in higher proportion in the 82 strain with relation to the another ones. The viscosity results showed the temperature dependence. The 06 and 82 strains had their viscosity increased whereas for the 87 strain we could observe a reduction with temperature increasing. The {sup 13}C NMR spectrum of 87 strain showed the characteristic signals at approximately 92.8, 70.4 and 61.4 ppm, attributed to C1, C4 and C6 from glucose monomer, with higher intensity. (author)

  16. Synergy Effects in the Chemical Synthesis and Extensions of Multicomponent Reactions (MCRs)-The Low Energy Way to Ultra-Short Syntheses of Tailor-Made Molecules.

    Science.gov (United States)

    Eckert, Heiner

    2017-02-25

    Several novel methods, catalysts and reagents have been developed to improve organic synthesis. Synergistic effects between reactions, reagents and catalysts can lead to minor heats of reaction and occur as an inherent result of multicomponent reactions (MCRs) and their extensions. They enable syntheses to be performed at a low energy level and the number of synthesis steps to be drastically reduced in comparison with 'classical' two-component reactions, fulfilling the rules of Green Chemistry . The very high potential for variability, diversity and complexity of MCRs additionally generates an extremely diverse range of products, thus bringing us closer to the aim of being able to produce tailor-made and extremely low-cost materials, drugs and compound libraries.

  17. Catalysis at the nanoscale may change selectivity.

    Science.gov (United States)

    Costentin, Cyrille; Savéant, Jean-Michel

    2016-10-18

    Among the many virtues ascribed to catalytic nanoparticles, the prospect that the passage from the macro- to the nanoscale may change product selectivity attracts increasing attention. To date, why such effects may exist lacks explanation. Guided by recent experimental reports, we propose that the effects may result from the coupling between the chemical steps in which the reactant, intermediates, and products are involved and transport of these species toward the catalytic surface. Considering as a thought experiment the competitive formation of hydrogen and formate upon reduction of hydrogenocarbonate ions on metals like palladium or platinum, a model is developed that allows one to identify the governing parameters and predict the effect of nanoscaling on selectivity. The model leads to a master equation relating product selectivity and thickness of the diffusion layer. The latter parameter varies considerably upon passing from the macro- to the nanoscale, thus predicting considerable variations of product selectivity. These are subtle effects in the sense that the same mechanism might exhibit a reverse variation of the selectivity if the set of parameter values were different. An expression is given that allows one to predict the direction of the effect. There has been a tendency to assign the catalytic effects of nanoscaling to chemical reactivity changes of the active surface. Such factors might be important in some circumstances. We, however, insist on the likely role of short-distance transport on product selectivity, which could have been thought, at first sight, as the exclusive domain of chemical factors.

  18. Fabrication of solar cells based on Cu2ZnSnS4 prepared from Cu2SnS3 synthesized using a novel chemical procedure

    Science.gov (United States)

    Correa, John M.; Becerra, Raúl A.; Ramírez, Asdrubal A.; Gordillo, Gerardo

    2016-11-01

    Solar cells based on kesterite-type Cu2ZnSnS4 (CZTS) thin films were fabricated using a chemical route to prepare the CZTS films, consisting in sequential deposition of Cu2SnS3 (CTS) and ZnS thin films followed by annealing at 550 °C in nitrogen atmosphere. The CTS compound was prepared in a one-step process using a novel chemical procedure consisting of simultaneous precipitation of Cu2S and SnS2 performed by diffusion membranes assisted CBD (chemical bath deposition) technique. Diffusion membranes were used to optimize the kinetic growth through a moderate control of release of metal ions into the work solution. As the conditions for the formation in one step of the Cu2SnS3 compound have not yet been reported in literature, special emphasis was put on finding the parameters that allow growing the Cu2SnS3 thin films by simultaneous precipitation of Cu2S and SnS2. For that, we propose a methodology that includes numerical solution of the equilibrium equations that were established through a study of the chemical equilibrium of the system SnCl2, Na3C6H5O7·2H2O, CuCl2 and Na2S2O3·5H2O. The formation of thin films of CTS and CZTS free of secondary phases grown with a stoichiometry close to that corresponding to the Cu2SnS3 and Cu2ZnSnS4 phases, was verified through measurements of X-ray diffraction (XRD) and Raman spectroscopy. Solar cell with an efficiency of 4.2%, short circuit current of 16.2 mA/cm2 and open-circuit voltage of 0.49 V was obtained.

  19. Fabrication of solar cells based on Cu2ZnSnS4 prepared from Cu2SnS3 synthesized using a novel chemical procedure

    Directory of Open Access Journals (Sweden)

    Correa John M.

    2016-01-01

    Full Text Available Solar cells based on kesterite-type Cu2ZnSnS4 (CZTS thin films were fabricated using a chemical route to prepare the CZTS films, consisting in sequential deposition of Cu2SnS3 (CTS and ZnS thin films followed by annealing at 550 °C in nitrogen atmosphere. The CTS compound was prepared in a one-step process using a novel chemical procedure consisting of simultaneous precipitation of Cu2S and SnS2 performed by diffusion membranes assisted CBD (chemical bath deposition technique. Diffusion membranes were used to optimize the kinetic growth through a moderate control of release of metal ions into the work solution. As the conditions for the formation in one step of the Cu2SnS3 compound have not yet been reported in literature, special emphasis was put on finding the parameters that allow growing the Cu2SnS3 thin films by simultaneous precipitation of Cu2S and SnS2. For that, we propose a methodology that includes numerical solution of the equilibrium equations that were established through a study of the chemical equilibrium of the system SnCl2, Na3C6H5O7·2H2O, CuCl2 and Na2S2O3·5H2O. The formation of thin films of CTS and CZTS free of secondary phases grown with a stoichiometry close to that corresponding to the Cu2SnS3 and Cu2ZnSnS4 phases, was verified through measurements of X-ray diffraction (XRD and Raman spectroscopy. Solar cell with an efficiency of 4.2%, short circuit current of 16.2 mA/cm2 and open-circuit voltage of 0.49 V was obtained.

  20. Nanoscale friction and wear maps.

    Science.gov (United States)

    Tambe, Nikhil S; Bhushan, Bharat

    2008-04-28

    Friction and wear are part and parcel of all walks of life, and for interfaces that are in close or near contact, tribology and mechanics are supremely important. They can critically influence the efficient functioning of devices and components. Nanoscale friction force follows a complex nonlinear dependence on multiple, often interdependent, interfacial and material properties. Various studies indicate that nanoscale devices may behave in ways that cannot be predicted from their larger counterparts. Nanoscale friction and wear mapping can help identify some 'sweet spots' that would give ultralow friction and near-zero wear. Mapping nanoscale friction and wear as a function of operating conditions and interface properties is a valuable tool and has the potential to impact the very way in which we design and select materials for nanotechnology applications.

  1. Synthesis and characterization of nanoscale polymer films grafted to metal surfaces

    Science.gov (United States)

    Galabura, Yuriy

    the Si/SiO2/Au microprinted electrodes. The polymer layers insulated under normal ambient conditions can display a significant increase in conductivity as the environment changes. Namely, we demonstrate that the in-plane electrical conductivity of the grafted polymer layers grafted to Au and SiO2 surfaces can be changed by at least two orders of magnitude upon exposure to water or organic solvent vapors. The conductive properties of all the grafted polymer films under study are also significantly enhanced with temperature increase. The observed phenomenon makes possible the chemical design of polymer nanoscale layers with reduced or enhanced sensitivity to anticipated changes in environmental conditions. Finally, we show that the observed effects can be used in a micron-sized conductometric-transducing scheme for the detection of volatile organic solvents. This research also includes the study of nanoscale-level actuation with grafted polymer films and polymer/gold nanoparticles systems-grafted composites. First, we investigate the nanoscale-level actuation with polymer films. To this end, we use "grafting to" approach to synthesize PGMA thin polymer film (80-200 nm). Then, film is swollen in a good solvent and freeze-dried until the solvent is sublimated, thereby creating grafted polymer nanofoam that exhibits shape memory properties. We demonstrate nanoscale actuation using the developed system. In addition, we show that the modification of the PGMA nanofoam with low molecular weight polystyrene allows response tuning of the porous polymer film. Furthermore, we incorporate gold nanoparticles (5 nm) into a thin PGMA layer (80 nm) to fabricate a PGMA/gold nanoparticles grafted composite film. The PGMA/gold nanoparticles grafted nanofoam is synthesized following the same procedure developed for the fabrication of the PGMA nanofoam. We demonstrate the shape-memory properties and nanoscale-level actuation of the developed system. Moreover, we investigate the change in

  2. Piezoelectric and opto-electrical properties of silver-doped ZnO nanorods synthesized by low temperature aqueous chemical method

    Directory of Open Access Journals (Sweden)

    E. S. Nour

    2015-07-01

    Full Text Available In this paper, we have synthesized Zn1−xAgxO (x = 0, 0.03, 0.06, and 0.09 nanorods (NRs via the hydrothermal method at low temperature on silicon substrate. The characterization and comparison between the different Zn1−xAgxO samples, indicated that an increasing Ag concentration from x = 0 to a maximum of x = 0.09; All samples show a preferred orientation of (002 direction with no observable change of morphology. As the quantity of the Ag dopant was changed, the transmittances, as well as the optical band gap were decreased. X-ray photoelectron spectroscopy data clearly indicate the presence of Ag in ZnO crystal lattice. A nanoindentation-based technique was used to measure the effective piezo-response of different concentrations of Ag for both direct and converse effects. The value of the piezoelectric coefficient (d33 as well as the piezo potential generated from the ZnO NRs and Zn1−xAgxO NRs was found to decrease with the increase of Ag fraction. The finding in this investigation reveals that Ag doped ZnO is not suitable for piezoelectric energy harvesting devices.

  3. Characterization, non-isothermal decomposition kinetics and photocatalytic water splitting of green chemically synthesized polyoxoanions of molybdenum containing phosphorus as hetero atom

    International Nuclear Information System (INIS)

    D’Cruz, Bessy; Samuel, Jadu; George, Leena

    2014-01-01

    Highlights: • CPM nanorods were synthesized by applying the principles of green chemistry. • The isoconversional method was used to analyze the effective activation energy. • The appropriate reaction models of the two decomposition stages were determined. • Photocatalytic water splitting was investigated in the presence of platinum co-catalyst. - Abstract: In here, the green synthesis and thermal characterization of a novel polyoxoanions of molybdenum containing phosphorus as hetero atom are reported. The composition and morphology of the nanorods were established by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and inductively coupled plasma atomic emission spectroscopic (ICP-AES) techniques. Thermal properties of the nanoparticles were investigated by non-isothermal analysis under nitrogen atmosphere. The values activation energy of each stage of thermal decomposition for all heating rates was calculated by Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunnose (KAS) methods. Invariant kinetic parameter (IKP) method and master plot method were also used to evaluate the kinetic parameters and mechanism for the thermal decomposition of cetylpyridinium phosphomolybdate (CPM). Photocatalytic water oxidation mechanism using CPM catalyst in the presence of platinum (Pt) co-catalyst enhances the H 2 evolution and was found to be 1.514 mmol/g/h

  4. Turning Waste Chemicals into Wealth—A New Approach To Synthesize Efficient Cathode Material for an Li–O 2 Battery

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Ying; Wu, Feng (Beijing Inst. Tech.)

    2017-03-20

    An Li–O2 battery requires the oxygen-breathing cathode to be highly electronically conductive, rapidly oxygen diffusive, structurally stable, and often times electrocatalytically active. Catalyst-decorated porous carbonaceous materials are the chosen air cathode in this regard. Alternatively, biomass-derived carbonaceous materials possess great ability to remove heavy and toxic metal ions from waste, forming a metal-adsorbed porous carbonaceous material. The similar structure between the air cathode and the metal-adsorbed biomass-derived carbon nicely bridges these two irrelevant areas. In this study, we investigated the electrochemical activity of a biochar material Ag-ESB directly synthesized from ethanol sludge residue in a rechargeable aprotic Li–O2 battery. Ag ions were adsorbed from sewage and became Ag nanoparticles with uniform coverage on the biochar surface. The as-prepared material exhibits good electrochemical behavior in battery testing, especially toward the battery efficiency and cyclability. This study provides the possibility of synthetically efficient cathode material by reusing “waste” such as biofuel sludge residue. It is an economically and environmentally friendly approach both for an energy-storage system and for waste recycling.

  5. Turning Waste Chemicals into Wealth-A New Approach To Synthesize Efficient Cathode Material for an Li-O2 Battery.

    Science.gov (United States)

    Yao, Ying; Wu, Feng

    2017-09-20

    An Li-O 2 battery requires the oxygen-breathing cathode to be highly electronically conductive, rapidly oxygen diffusive, structurally stable, and often times electrocatalytically active. Catalyst-decorated porous carbonaceous materials are the chosen air cathode in this regard. Alternatively, biomass-derived carbonaceous materials possess great ability to remove heavy and toxic metal ions from waste, forming a metal-adsorbed porous carbonaceous material. The similar structure between the air cathode and the metal-adsorbed biomass-derived carbon nicely bridges these two irrelevant areas. In this study, we investigated the electrochemical activity of a biochar material Ag-ESB directly synthesized from ethanol sludge residue in a rechargeable aprotic Li-O 2 battery. Ag ions were adsorbed from sewage and became Ag nanoparticles with uniform coverage on the biochar surface. The as-prepared material exhibits good electrochemical behavior in battery testing, especially toward the battery efficiency and cyclability. This study provides the possibility of synthetically efficient cathode material by reusing "waste" such as biofuel sludge residue. It is an economically and environmentally friendly approach both for an energy-storage system and for waste recycling.

  6. Nanoscale technology in biological systems

    CERN Document Server

    Greco, Ralph S; Smith, R Lane

    2004-01-01

    Reviewing recent accomplishments in the field of nanobiology Nanoscale Technology in Biological Systems introduces the application of nanoscale matrices to human biology. It focuses on the applications of nanotechnology fabrication to biomedical devices and discusses new physical methods for cell isolation and manipulation and intracellular communication at the molecular level. It also explores the application of nanobiology to cardiovascular diseases, oncology, transplantation, and a range of related disciplines. This book build a strong background in nanotechnology and nanobiology ideal for

  7. Structure and magnetic properties of Zn1-xCoxO single-crystalline nanorods synthesized by a wet chemical method

    International Nuclear Information System (INIS)

    Wang Hao; Wang, H B; Yang, F J; Chen, Y; Zhang, C; Yang, C P; Li, Q; Wong, S P

    2006-01-01

    A novel approach for the synthesis of cobalt-doped ZnO single-crystalline nanorods based on a wet chemical reaction has been developed. The as-doped ZnO nanorods have a length between 0.3 and 0.6 μm and a diameter between 30 and 60 nm. Structure and composition analyses indicate that the cobalt is incorporated into the ZnO lattice, forming a solid solution without any precipitation. Magnetic property measurements reveal that there is room-temperature ferromagnetism in the Zn 1-x Co x O nanorods with T c higher than 300 K

  8. Nanoscale waveguiding methods

    Directory of Open Access Journals (Sweden)

    Wang Chia-Jean

    2007-01-01

    Full Text Available AbstractWhile 32 nm lithography technology is on the horizon for integrated circuit (IC fabrication, matching the pace for miniaturization with optics has been hampered by the diffraction limit. However, development of nanoscale components and guiding methods is burgeoning through advances in fabrication techniques and materials processing. As waveguiding presents the fundamental issue and cornerstone for ultra-high density photonic ICs, we examine the current state of methods in the field. Namely, plasmonic, metal slot and negative dielectric based waveguides as well as a few sub-micrometer techniques such as nanoribbons, high-index contrast and photonic crystals waveguides are investigated in terms of construction, transmission, and limitations. Furthermore, we discuss in detail quantum dot (QD arrays as a gain-enabled and flexible means to transmit energy through straight paths and sharp bends. Modeling, fabrication and test results are provided and show that the QD waveguide may be effective as an alternate means to transfer light on sub-diffraction dimensions.

  9. Microstructural Investigation, Raman and Magnetic Studies on Chemically Synthesized Nanocrystalline Ni-Doped Gadolinium Oxide (Gd1.90Ni0.10O3- δ )

    Science.gov (United States)

    Sarkar, B. J.; Mandal, J.; Dalal, M.; Bandyopadhyay, A.; Satpati, B.; Chakrabarti, P. K.

    2018-03-01

    Nanocrystalline Ni-doped gadolinium oxide (Gd1.90Ni0.10O3- δ , GNO) is synthesized by co-precipitation method. The as-prepared sample is annealed in vacuum at 700°C for 6 h. Analyses of the x-ray diffractogram by Rietveld refinement method, transmission electron microscopy and Raman spectroscopy of GNO recorded at room temperature confirmed the pure crystallographic phase and complete substitution of Ni-ions in Gd2O3 lattice. Magnetization ( M) as a function of temperature ( T) and magnetic field ( H) is measured by a superconducting quantum interference device magnetometer, which suggests the presence of ferromagnetic/antiferromagnetic phases together with a paramagnetic phase. From the M-T curve it can be shown that the ferromagnetic phase dominates over para-/antiferromagnetic phases in the temperature range of 300-100 K, but from 100 K to 50 K, the antiferromagnetic phase dominates over ferro-/paramagnetic phases. Hysteresis loops recorded at different temperatures indicate the presence of weak ferro-/antiferromagnetism, which dominates in the low field region (˜ 4000 Oe), above which magnetization increases linearly. The sharp increase of magnetization in M-T curve observed in the temperature range of 50-5 K confirms the presence of dominating ferromagnetic plus paramagnetic phase over antiferromagnetic part. For the first time a combined formula generated from three-dimensional (3D) spin wave model and Johnston formula is proposed to analyze the coexistence of different magnetic phases in different temperature ranges. Interestingly, the combined formula successfully explains the co-existence of different magnetic phases along with their contribution at different temperatures. The onset of ferromagnetism in Gd1.90Ni0.10O3- δ is explained by oxygen vacancy mediated F-centre exchange (FCE) coupling mechanism.

  10. LPG sensor based on complete inorganic n-Bi2S3-p-CuSCN heterojunction synthesized by a simple chemical route

    Science.gov (United States)

    Ladhe, R. D.; Baviskar, P. K.; Tan, W. W.; Zhang, J. B.; Lokhande, C. D.; Sankapal, B. R.

    2010-06-01

    An effective and versatile room temperature soft chemical route was employed to deposit n-Bi2S3 films followed by p-CuSCN films onto fluorine doped tin oxide (FTO) coated glass substrates. Well optimized preparative parameters led to the formation of a good heterojunction between the n-Bi2S3 and p-CuSCN films without any post-annealing treatment. An interconnected microflake of CuSCN on to the nanocrystalline Bi2S3 film enables a high porous structure in the top layer. The device was completed by ensuring silver as a front and FTO as a back ohmic contact, and exposed to sense the liquefied petroleum gas (LPG) at room temperature (27 °C). The upper porous structure allowed enough room for the gas species to adsorb and de-adsorb easily at the interface. The device exhibited more than 70% response at 1370 ppm of LPG, and the process suggests the possibility to develop a room temperature LPG sensing device with a low cost chemical method.

  11. Facilitation of Nanoscale Thermal Transport by Hydrogen Bonds

    OpenAIRE

    Zhang, Lin

    2017-01-01

    Thermal transport performance at the nanoscale and/or of biomaterials is essential to the success of many new technologies including nanoelectronics, biomedical devices, and various nanocomposites. Due to complicated microstructures and chemical bonding, thermal transport process in these materials has not been well understood yet. In terms of chemical bonding, it is well known that the strength of atomic bonding can significantly affect thermal transport across materials or across interfaces...

  12. The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase--a means of separating amino acids for synthesizing biobased chemicals.

    Science.gov (United States)

    Teng, Yinglai; Scott, Elinor L; Sanders, Johan P M

    2014-01-01

    Amino acids (AAs) derived from hydrolysis of protein rest streams are interesting feedstocks for the chemical industry due to their functionality. However, separation of AAs is required before they can be used for further applications. Electrodialysis may be applied to separate AAs, but its efficiency is limited when separating AAs with similar isoelectric points. To aid the separation, specific conversion of an AA to a useful product with different charge behavior to the remaining compounds is desired. Here the separation of L-aspartic acid (Asp) and L-glutamic acid (Glu) was studied. L-Glutamate α-decarboxylase (GAD, Type I, EC 4.1.1.15) was applied to specifically convert Glu into γ-aminobutyric acid (GABA). GABA has a different charge behavior from Asp therefore allowing a potential separation by electrodialysis. Competitive inhibition and reduced operational stability caused by Asp could be eliminated by maintaining a sufficiently high concentration of Glu. Immobilization of GAD does not reduce the enzyme's initial activity. However, the operational stability was slightly reduced. An initial study on the reaction operating in a continuous mode was performed using a column reactor packed with immobilized GAD. As the reaction mixture was only passed once through the reactor, the conversion of Glu was lower than expected. To complete the conversion of Glu, the stream containing Asp and unreacted Glu might be recirculated back to the reactor after GABA has been removed. Overall, the reaction by GAD is specific to Glu and can be applied to aid the electrodialysis separation of Asp and Glu. © 2014 American Institute of Chemical Engineers.

  13. First report on soapnut extract-mediated synthesis of sulphur-substituted nanoscale NdFeB permanent magnets and their characterization

    Science.gov (United States)

    Jayapala Rao, G. V. S.; Prasad, T. N. V. K. V.; Shameer, Syed; Arun, T.; Purnachandra Rao, M.

    2017-10-01

    Biosynthesis of nanoscale materials has its own advantages over other physical and chemical methods. Using soapnut extract as reducing and stabilizing agent for the synthesis of inorganic nanoscale materials is novel and has not been exploited to its potential so far. Herein, we report for the first time on the effects of sulphur substitution on soapnut extract-mediated synthesis of nanoscale NdFeB (S-NdFeB) permanent magnetic powders (Nd 15%, Fe 77.5%, B 7.5% and S with molar ratios: 0.1, 0.2, 0.3, 0.4, and 0.5). To synthesize, a 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the as-prepared nanoscale S-NdFeB magnetic materials was done using the techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS for size and zeta potential measurements) and vibrating sample magnetometer (VSM)-hysteresis loop studies. The results revealed that particles were highly stable (with a negative zeta potential of 25.7 mV) with irregular and spherical shape (with measured hydrodynamic diameter 6.7 and 63.5 nm). The tetragonal structures of the formed powders were revealed by XRD micrographs. Hysteresis loop studies clearly indicate the effect of S concentration on the enhanced magnetization of the materials.

  14. TiO2/PbS/ZnS heterostructure for panchromatic quantum dot sensitized solar cells synthesized by wet chemical route

    Science.gov (United States)

    Bhat, T. S.; Mali, S. S.; Sheikh, A. D.; Korade, S. D.; Pawar, K. K.; Hong, C. K.; Kim, J. H.; Patil, P. S.

    2017-11-01

    So far we developed the efficient photoelectrodes which can harness the UV as well as the visible regime of the solar spectrum effectively. In order to exploit a maximum portion of solar spectrum, it is necessary to study the synergistic effect of a photoelectrode comprising UV and visible radiations absorbing materials. Present research work highlights the efforts to study the synchronized effect of TiO2 and PbS on the power conversion efficiency of quantum dot sensitized solar cell (QDSSC). A cascade structure of TiO2/PbS/ZnS QDSSC is achieved to enhance the photoconversion efficiency of TiO2/PbS system by incorporating a surface passivation layer of ZnS which avoids the recombination of charge carriers. A QDSSC is fabricated using a simple and cost-effective technique such as hydrothermally grown TiO2 nanorod arrays decorated with PbS and ZnS using successive ionic layer adsorption and reaction (SILAR) method. Synthesized electrode materials are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), High resolution-transmission electron microscopy (TEM), STEM-EDS mapping, optical and solar cell performances. Phase formation of TiO2, PbS and ZnS get confirmed from the XPS study. FE-SEM images of the photoelectrode show uniform coverage of PbS QDs onto the TiO2 nanorods which increases with increasing number of SILAR cycles. The ZnS layer not only improves the charge transport but also reduces the photocorrosion of lead chalcogenides in the presence of a liquid electrolyte. Finally, the photoelectrochemical (PEC) study is carried out using an optimized photoanode comprising TiO2/PbS/ZnS assembly. Under AM 1.5G illumination the TiO2/PbS/ZnS QDSSC photoelectrode shows 4.08 mA/cm2 short circuit current density in a polysulfide electrolyte which is higher than that of a bare TiO2 nanorod array.

  15. Structural, Magnetic, and Electronic Properties of Mixed Spinel NiFe2-xCrxO4Nanoparticles Synthesized by Chemical Combustion.

    Science.gov (United States)

    Lyubutin, Igor S; Lin, Chun-Rong; Starchikov, Sergey S; Baskakov, Arseniy O; Gervits, Natalia E; Funtov, Konstantin O; Tseng, Yaw-Teng; Lee, Wen-Jen; Shih, Kun-Yauh; Lee, Jiann-Shing

    2017-10-16

    A series of nickel-chromium-ferrite NiFe 2-x Cr x O 4 (with x = 1.25) nanoparticles (NPs) with a cubic spinel structure and with size d ranging from 1.6 to 47.7 nm was synthesized by the solution combustion method. A dual structure of all phonon modes revealed in Raman spectra is associated with metal cations of different types present in the spinel lattice sites. Mössbauer spectra of small NPs exhibit superparamagnetic behavior. However, the transition into the paramagnetic state occurs at a temperature that is unusually high for small particles (T N is about 240 K in the d = 4.5 nm NPs). The larger NPs with d > 20 nm do not exhibit superparamagnetic properties up to the Neel temperature. From the magnetic and Mössbauer data, the cation occupation of the tetrahedral (A) and octahedral [B] sites was determined (Fe 0.75 Ni 0.25 )[Ni 0.75 Cr 1.25 ]O 4 . The saturation magnetization M S in the largest NPs is about (0.98-0.95) μ B , which is more than twice higher the value in bulk ferrite (Fe)[CrNi]O 4 . At low temperatures the total magnetic moment of the ferrite coincides with the direction of the B-sublattice moment. In the NPs with d > 20 nm, the compensation of the magnetic moments of A- and B-sublattices was revealed at about T com = 360-365 K. This value significantly exceeds the point T com in bulk ferrites NiFe x Cr 2-x O 4 (about 315 K) with the similar Cr concentration. However, in the smaller NPs NiFe 0.75 Cr 1.25 O 4 with d ≤ 11.7 nm, the compensation effect does not occur. The magnetic anomalies are explained in terms of highly frustrated magnetic ordering in the B sublattice, which appears due to the competition of AFM and FM exchange interactions and results in a canted magnetic structure.

  16. Designing pseudocubic perovskites with enhanced nanoscale polarization

    Energy Technology Data Exchange (ETDEWEB)

    Levin, I. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; Laws, W. J. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; Wang, D. [Department of Materials Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom; Reaney, I. M. [Department of Materials Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom

    2017-11-20

    A crystal-chemical framework has been proposed for the design of pseudocubic perovskites with nanoscale ferroelectric order, and its applicability has been demonstrated using a series of representative solid solutions that combined ferroelectric (K0.5Bi0.5TiO3, BaTiO3, and PbTiO3) and antiferroelectric (Nd-substituted BiFeO3) end members. The pseudocubic structures obtained in these systems exhibited distortions that were coherent on a scale ranging from sub-nanometer to tens of nanometers, but, in all cases, the macroscopic distortion remained unresolvable even if using high-resolution X-ray powder diffraction. Different coherence lengths for the local atomic displacements account for the distinctly different dielectric, ferroelectric, and electromechanical properties exhibited by the samples. The guidelines identified provide a rationale for chemically tuning the coherence length to obtain the desired functional response.

  17. Detecting nanoscale vibrations as signature of life.

    Science.gov (United States)

    Kasas, Sandor; Ruggeri, Francesco Simone; Benadiba, Carine; Maillard, Caroline; Stupar, Petar; Tournu, Hélène; Dietler, Giovanni; Longo, Giovanni

    2015-01-13

    The existence of life in extreme conditions, in particular in extraterrestrial environments, is certainly one of the most intriguing scientific questions of our time. In this report, we demonstrate the use of an innovative nanoscale motion sensor in life-searching experiments in Earth-bound and interplanetary missions. This technique exploits the sensitivity of nanomechanical oscillators to transduce the small fluctuations that characterize living systems. The intensity of such movements is an indication of the viability of living specimens and conveys information related to their metabolic activity. Here, we show that the nanomotion detector can assess the viability of a vast range of biological specimens and that it could be the perfect complement to conventional chemical life-detection assays. Indeed, by combining chemical and dynamical measurements, we could achieve an unprecedented depth in the characterization of life in extreme and extraterrestrial environments.

  18. Effect of deposition temperature on the structural, morphological and optical band gap of lead selenide thin films synthesized by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hone, Fekadu Gashaw, E-mail: fekeye@gmail.com [Hawassa University, Department of Physics, Hawassa (Ethiopia); Ampong, Francis Kofi [Kwame Nkrumah University of Science and Technology, Department of Physics, Kumasi (Ghana)

    2016-11-01

    Lead selenide (PbSe) nanocrystalline thin films have been deposited on silica glass substrates by the chemical bath deposition technique. The samples were deposited at the bath temperatures of 60, 75 and 90 °C respectively and characterized by a variety of techniques. The XRD results revealed that the PbSe thin film deposited at 60 °C was amorphous in nature. Films deposited at higher temperatures exhibited sharp and intense diffraction peaks, indicating an improvement in crystallinety. The deposition temperature also had a strong influence on the preferred orientation of the crystallites as well as other structural parameters such as microstrain and dislocation density. From the SEM study it was observed that film deposited at 90 °C had well defined crystallites, uniformly distributed over the entire surface of the substrate. The EDAX study confirmed that the samples deposited at the higher temperature had a better stoichiometric ratio. The optical band gap varied from 2.26 eV to 1.13 eV with increasing deposition temperature. - Highlights: • The crystallinety of the films improved as the deposition temperature increased. • The deposition temperature strongly influenced the preferred orientations. • Microstrain and dislocation density are decreased linearly with deposition temperature. • Band gap decreased from 2.26 eV to 1.13 eV as the deposition temperature increased.

  19. Influence of percentage anatase/rutile TiO{sub 2} in the photocatalytic efficiency synthesized chemically; Influencia do percentual de fase anatase/rutilo na eficiencia fotocatalitica do TiO{sub 2} sintetizado quimicamente

    Energy Technology Data Exchange (ETDEWEB)

    Montanhera, M.A.; Pereira, E.A.; Paula, F.R., E-mail: m.montanhera@gmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Faculdade de Engenharia. Departamento de Fisica e Quimica; Spada, E.R. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica

    2016-07-01

    Titanium dioxide (TiO{sub 2}) has been widely studied, having a great interest focused on its photocatalytic property. In this work, the TiO{sub 2} was obtained by an alternate route little explored in the literature consists of adding titanium oxisulfato and hydrogen peroxide in aqueous solution. After decanting, washing and drying the precipitate obtained was thermally treated at different temperatures for obtaining different percentages of rutile phase. The purpose of this research was to evaluate the phase mixture influence in the photocatalytic efficiency of the synthesized material by the new chemical route. The samples were characterized by X-ray diffraction, and subjected to tests for photocatalytic degradation of rhodamine B dye. The results showed that there is an increase in the photocatalytic efficiency for the samples containing a small rutile percentage compared with samples containing pure anatase phase. (author)

  20. Nanoscale Synthesis and Characterization Laboratory Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, A V

    2008-04-07

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The NSCL is delivering on its mission providing Laboratory programs with scientific solutions through the use of nanoscale synthesis and characterization. While this annual report summarizes 2007 activities, we have focused on nanoporous materials, advanced high strength, nanostructured metals, novel 3-dimensional lithography and characterization at the nanoscale for the past 3 years. In these three years we have synthesized the first monolithic nanoporous metal foams with less than 10% relative density; we have produced ultrasmooth nanocrystalline diamond inertial confinement fusion capsules; we have synthesized 3-dimensional graded density structures from full density to 5% relative density using nanolithography; and we have established ultrasmall angle x-ray scattering as a non-destructive tool to determine the structure on the sub 300nm scale. The NSCL also has a mission to recruit and to train personnel for Lab programs. The NSCL continues to attract talented scientists to the Laboratory. Andrew Detor from Massachusetts Institute of Technology, Sutapa Ghosal from the University of California, Irvine, Xiang Ying Wang from Shanghai Institute of Technology, and Arne Wittstock from University of Bremen joined the NSCL this year. The NSCL is pursuing four science and technology themes: nanoporous materials, advanced nanocrystalline materials, novel three-dimensional nanofabrication technologies, and nondestructive characterization at the mesoscale. The NSCL is also pursuing building new facilities for science and technology such as nanorobotics and atomic layer deposition.

  1. Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties.

    Science.gov (United States)

    Coker, Victoria S; Telling, Neil D; van der Laan, Gerrit; Pattrick, Richard A D; Pearce, Carolyn I; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E P; Lloyd, Jonathan R

    2009-07-28

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe(2)O(4)) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of ∼10(6) erg cm(-3) can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies.

  2. Nanoscale phase change memory materials.

    Science.gov (United States)

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  3. Chemistry at the Nanoscale

    Indian Academy of Sciences (India)

    Traditionally the kinetics of a chemical reaction has been stud- ied as a set of coupled ordinary differential equations. The law of mass action, a tried and tested principle for reactions involving macroscopic quantities of reactants, gives rise to de- terministic equations in which the variables are species con- centrations.

  4. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    Science.gov (United States)

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  5. Visualizing copper assisted graphene growth in nanoscale

    Science.gov (United States)

    Rosmi, Mohamad Saufi; Yusop, Mohd Zamri; Kalita, Golap; Yaakob, Yazid; Takahashi, Chisato; Tanemura, Masaki

    2014-01-01

    Control synthesis of high quality large-area graphene on transition metals (TMs) by chemical vapor deposition (CVD) is the most fascinating approach for practical device applications. Interaction of carbon atoms and TMs is quite critical to obtain graphene with precise layer number, crystal size and structure. Here, we reveal a solid phase reaction process to achieve Cu assisted graphene growth in nanoscale by in-situ transmission electron microscope (TEM). Significant structural transformation of amorphous carbon nanofiber (CNF) coated with Cu is observed with an applied potential in a two probe system. The coated Cu particle recrystallize and agglomerate toward the cathode with applied potential due to joule heating and large thermal gradient. Consequently, the amorphous carbon start crystallizing and forming sp2 hybridized carbon to form graphene sheet from the tip of Cu surface. We observed structural deformation and breaking of the graphene nanoribbon with a higher applied potential, attributing to saturated current flow and induced Joule heating. The observed graphene formation in nanoscale by the in-situ TEM process can be significant to understand carbon atoms and Cu interaction. PMID:25523645

  6. PREFACE: Nanoscale science and technology

    Science.gov (United States)

    Bellucci, Stefano

    2008-11-01

    , nanopowders) were discussed. Ab initio simulations on the atomic and electronic structure of single-walled BN nanotubes and nanoarches were illustrated by Yu F Zhukovskii. M B Muradov talked about nanoparticles of cadmium selenide and cadmium sulfide, which yield one of the perspective materials for application to solar cell elements, high-speed computing systems, catalyses and biomarkers in medicine. In the presentation, the process of transformation of nanoparticles cadmium of sulfide to nanoparticles of cadmium selenide by an ionic exchange from solutions of electrolytes was considered. The size of particles was controlled by the quantity of growth cycles. After manufacturing, the structures were investigated by atomic force microscope (AFM). Structures CdS:polymer transformed into CdSe:polymer with the help of ion-exchange. For the realization of the process of ionic exchange, solutions were prepared containing bivalent ions of selenium as follows: NaBH4 and Se in a weight parity 2:1 added in water 4NaBH4+2Se+7H2O→2NaHSe+Na2B4O7+14H2 In the prepared solution nanostructures CdS:polymer were immersed. Time of endurance was 2 h. After an ionic exchange the obtained structures were investigated by means of EDAX on a chemical composition. Results of analyses have shown that atoms of sulfur are completely replaced by selenium. The band gap of nanoparticles in comparison with initial samples is displaced in the long-wave area. It is connected with the fact that the width of the band gap of bulk crystals CdSe (1.74 eV) is smaller than the band gap of CdS (2.42 eV). Optical microscopy with spatial resolution beyond the diffraction limit obtained by using near field techniques was the subject of S Prato's talk. Scanning near field optical microscopy (SNOM) has developed into a powerful tool to investigate local optical properties that depend on heterogeneity of materials at nanoscale and to study nanoenvironment of biosystems. Crucial topics in SNOM are: force sensitivity and

  7. Nanoscale organic ferroelectric resistive switches

    NARCIS (Netherlands)

    Khikhlovskyi, V.; Wang, R.; Breemen, A.J.J.M. van; Gelinck, G.H.; Janssen, R.A.J.; Kemerink, M.

    2014-01-01

    Organic ferroelectric resistive switches function by grace of nanoscale phase separation in a blend of a semiconducting and a ferroelectric polymer that is sandwiched between metallic electrodes. In this work, various scanning probe techniques are combined with numerical modeling to unravel their

  8. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  9. Probing and tuning the size, morphology, chemistry and structure of nanoscale cerium oxide

    Science.gov (United States)

    Kuchibhatla, Satyanarayana Vnt

    Cerium oxide (ceria)-based materials in the nanoscale regime are of significant fundamental and technological interest. Nanoceria in pure and doped forms has current and potential use in solid oxide fuel cells, catalysis, UV-screening, chemical mechanical planarization, oxygen sensors, and bio-medical applications. The characteristic feature of Ce to switch between the +3 and +4 oxidation states renders oxygen buffering capability to ceria. The ease of this transformation was expected to be enhanced in the nanoceria. In most the practical scenarios, it is necessary to have a stable suspension of ceria nanoparticles (CNPs) over longer periods of time. However, the existing literature is confined to short term studies pertaining to synthesis and property evaluation. Having understood the need for a comprehensive understanding of the CNP suspensions, this dissertation is primarily aimed at understanding the behavior of CNPs in various chemical and physical environments. We have synthesized CNPs in the absence of any surfactants at room temperature and studied the aging characteristics. After gaining some understanding about the behavior of this functional oxide, the synthesis environment and aging temperature were varied, and their affects were carefully analyzed using various materials analysis techniques such as high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis), and X-ray photoelectron spectroscopy (XPS). When the CNPs were aged at room temperature in as-synthesized condition, they were observed to spontaneously assemble and evolve as fractal superoctahedral structures. The reasons for this unique polycrystalline morphology were attributed to the symmetry driven assembly of the individual truncated octahedral and octahedral seed of the ceria. HRTEM and Fast Fourier Transform (FFT) analyses were used to explain the agglomeration behavior and evolution of the octahedral morphology. Some of the observations were supported by

  10. Evaluation of chemical stability, thermal expansion coefficient, and electrical properties of solid state and wet-chemical synthesized Y and Mn-codoped CeO2 for solid oxide fuel cells

    Science.gov (United States)

    Handal, Hala T.; Thangadurai, Venkataraman

    2013-12-01

    Chemical stability and high electrical conductivity under the operating conditions of solid oxide fuel cell (SOFC) are considered as the momentum for innovating solid electrolytes and electrodes. In this paper, we report synthesis, structure, chemical stability and electrical conductivity of novel co-doped Ce0.9-xY0.1MnxO2-δ (x = 0-15 mol%) (CYMO). X-ray diffraction of Mn and Y-doped CeO2 shows the formation of fluorite-type structure with a space group Fm-3m. A few weak peaks corresponding to a tetragonal Mn3O4 phase has been detected in some samples. Solubility of Mn in ceria is explained by considering the influence of the ionic radius, the crystal structure and its electronic structure. Thermal analysis shows dissimilarity between the reduction behavior of Ce0.9Mn0.1O2-δ and Ce0.9-xY0.1MnxO2-δ. Ce0.8Y0.1Mn0.1O2-δ exhibited the highest conductivity of ∼6 × 10-2 S cm-1 and 0.15 S cm-1 at 700 °C in air and H2, respectively. Surface studies have confirmed the formation of S species upon exposure to 30 ppm H2S in H2 and a mechanism for S poisoning is presented.

  11. Formation of hollow nanocrystals through the nanoscale kirkendall effect

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yadong; Rioux, Robert M.; Erdonmez, Can K.; Hughes, Steven; Somorjai, Gabor A.; Alivisatos, A. Paul

    2004-03-11

    We demonstrate that hollow nanocrystals can be synthesized through a mechanism analogous to the Kirkendall Effect, in which pores form due to the difference in diffusion rates between two components in a diffusion couple. Cobalt nanocrystals are chosen as a primary example to show that their reaction in solution with oxygen, sulfur or selenium leads to the formation of hollow nanocrystals of the resulting oxide and chalcogenides. This process provides a general route to the synthesis of hollow nanostructures of large numbers of compounds. A simple extension of this process yields platinum-cobalt oxide yolk-shell nanostructures which may serve as nanoscale reactors in catalytic applications.

  12. Enhanced Biogas Production from Nanoscale Zero Valent Iron-Amended Anaerobic Bioreactors.

    Science.gov (United States)

    Carpenter, Alexis Wells; Laughton, Stephanie N; Wiesner, Mark R

    2015-08-01

    Addition of nanoscale zero valent iron (NZVI) to anaerobic batch reactors to enhance methanogenic activity is described. Two NZVI systems were tested: a commercially available NZVI (cNZVI) slurry and a freshly synthesized NZVI (sNZVI) suspension that was prepared immediately before addition to the reactors. In both systems, the addition of NZVI increased pH and decreased oxidation/reduction potential compared with unamended control reactors. Biodegradation of a model brewery wastewater was enhanced as indicated by an increase in chemical oxygen demand removal with both sNZVI and cNZVI amendments at all concentrations tested (1.25-5.0 g Fe/L). Methane production increased for all NZVI-amended bioreactors, with a maximum increase of 28% achieved on the addition of 2.5 and 5.0 g/L cNZVI. Addition of bulk zero-valent iron resulted in only a 5% increase in methane, indicating the advantage of using the nanoscale particles. NZVI amendments further improved produced biogas by decreasing the amount of CO 2 released from the bioreactor by approximately 58%. Overall, addition of cNZVI proved more beneficial than the sNZVI at equal iron concentrations, due to decreased colloidal stability and larger effective particle size of sNZVI. Although some have reported cytotoxicity of NZVI to anaerobic microorganisms, work presented here suggests that NZVI of a certain particle size and reactivity can serve as an amendment to anaerobic digesters to enhance degradation and increase the value of the produced biogas, yielding a more energy-efficient anaerobic method for wastewater treatment.

  13. Spectral analysis, structural elucidation and evaluation of chemical reactivity of synthesized ethyl-4-[(2-cyano-acetyl)-hydrazonomethyl]-3,5-dimethyl-1H-pyrrole-2-carboxylate through experimental studies and quantum chemical calculations

    Science.gov (United States)

    Rawat, P.; Singh, R. N.

    2014-09-01

    This paper describes the synthesis, spectral analysis, structural elucidation and chemical reactivity of pyrrole hydrazide-hydrazone: ethyl-4-[(2-cyano-acetyl)-hydrazonomethyl]-3,5-dimethyl-1H-pyrrole-2-carboxylate (ECAHDPC). The 1H, 13C NMR isotropic chemical shifts and electronic absorption spectra have been calculated by GIAO and TD-DFT methods, respectively, and corroborate well with experimental data. The NH proton of the hydrazide-hydrazones (lbond2 Cdbnd NNHCO) frame appears as singlet at δ = 11.69 ppm due to delocalization of nitrogen lone pair with carbonyl group and its proton involvement in intramolecular H-bonding. The calculated wavenumbers of dimer are in good agreement with the experimental results and confirm that the stable conformer forms dimer by hydrogen bonding interactions between pyrrolic NH and carbonyl Cdbnd O group of ester giving red shift and resonance assisted hydrogen bonding. The binding energy of intermolecular interaction is found to be 10.19 kcal/mol after basis set superposition error correction. QTAIM calculations confirm the existence of intermolecular conventional hydrogen bond (Nsbnd H⋯O), intra and intermolecular non-conventional hydrogen bond (Csbnd H⋯O) and intramolecular interaction (C⋯N). The NBO analysis has been performed to evaluate charge transfer and delocalization of electron density. The static first hyperpolarizability (β0) of monomer has been found to be 6.59 × 10-30 esu. The maximum value of reactivity descriptors (fk+, sk+, ωk+) at C(9) indicate that this site is more susceptible to nucleophilic attack, favoring for the formation of heterocyclic compounds.

  14. Nanoscale Molecules Under Thermodynamic Control:" Digestive Ripening" or " Nanomachining"

    Energy Technology Data Exchange (ETDEWEB)

    Klabunde, Kenneth J. [Kansas State Univ., Manhattan, KS (United States)

    2015-06-04

    Overall Research Goals and Specific Objectives: Nanoscale materials are becoming ubiquitous in science and engineering, and are found widely in nature. However, their formation processes and uniquely high chemical reactivities are not understood well, indeed are often mysterious. Over recent years, a number of research teams have described nanoparticle synthesis, and aging, thermal treatment, or etching times have been mentioned. We have used the terms “digestive ripening” and “nanomachining” and have suggested that thermodynamics plays an important part in the size adjustment to monodisperse arrays being formed. Since there is scant theoretical understanding of digestive ripening, the overall goal in our research is to learn what experimental parameters (ligand used, temperature, solvent, time) are most important, how to control nanoparticle size and shape after initial crude nanoparticles have been synthesized, and gain better understanding of the chemical mechanism details. Specific objectives for the past twentynine months since the grant began have been to (1) Secure and train personnel;as of 2011, a postdoc Deepa Jose, female from the Indian Institute of Science in Bangalore, India; Yijun Sun, a second year graduate student, female from China; and Jessica Changstrom, female from the USA, GK12 fellow (program for enhancing teaching ability) are actively carrying out research. (2) Find out what happens to sulfur bound hydrogen of thiol when it interacts with gold nanoparticles. Our findings are discussed in detail later. (3) Determine the effect of particle size, shape, and temperature on dodecyl thiol assited digestive ripening of gold nanoparticles. See our discussions later. (4) To understand in detail the ligand interaction in molecular clusters and nanoparticles (5) Determine the effect of chain length of amines on Au nanoparticle size under digestive ripening conditions (carbon chain length varied from 4-18). (6) Determine the catalytic activity

  15. Nanoscale strontium titanate photocatalysts for overall water splitting.

    Science.gov (United States)

    Townsend, Troy K; Browning, Nigel D; Osterloh, Frank E

    2012-08-28

    SrTiO(3) (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the material, although the process is less effective at the nanoscale. To reach these conclusions, Bulk STO, 30 ± 5 nm STO, and 6.5 ± 1 nm STO were synthesized by three different methods, their crystal structures verified with XRD and their morphology observed with HRTEM before and after NiO deposition. In connection with NiO, all samples split water into stoichiometric mixtures of H(2) and O(2), but the activity is decreasing from 28 μmol H(2) g(-1) h(-1) (bulk STO), to 19.4 μmol H(2) g(-1) h(-1) (30 nm STO), and 3.0 μmol H(2) g(-1) h(-1) (6.5 nm STO). The reasons for this decrease are an increase of the water oxidation overpotential for the smaller particles and reduced light absorption due to a quantum size effect. Overall, these findings establish the first nanoscale titanate photocatalyst for overall water splitting.

  16. Field Effect Transistor in Nanoscale

    Science.gov (United States)

    2017-04-26

    significant alteration in transport behaviour of these molecular junctions. 15. SUBJECT TERMS Theory , Nanoscale, Field Effect Transistor (FET), Devices...Density Functional Theory (DFT), Non-equilibrium Green Function 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES     13...Keep in mind the amount of funding you received relative to the amount of effort you put into the report. References: 1. J. R. Heath and M

  17. Technological Convergence from the Nanoscale

    Science.gov (United States)

    Bainbridge, William

    A series of scientific conferences and book-length publications predict that nanoscience will have its greatest impact through the convergence of four fields where research progress and engineering applications are expected to be especially significant. These are the so-called NBIC fields of nanotechnology, biotechnology, information technology, and new technologies based on cognitive science. This chapter is a first sociological reconnaissance of the convergenist movement in science and technology, based on the unity of nature at the nanoscale.

  18. Design of a nanoscale silicon laser

    Science.gov (United States)

    Jaiswal, S. L.; Simpson, J. T.; Withrow, S. P.; White, C. W.; Norris, P. M.

    The recent observation of optical gain from silicon nanocrystals embedded in SiO2 opens an opportunity to develop a nanoscale silicon-based laser. However, the challenge remains to design and develop a laser architecture using CMOS-compatible materials. In this paper we present two designs for a waveguide laser in which silicon nanocrystals embedded in SiO2 are used as the optical gain media. One design employs a SiO2 membrane containing encapsulated Si nanocrystals. Preliminary calculations given here show that a highly resonant laser cavity can be produced in a SiO2 membrane using sub-wavelength structures. This photonic crystal architecture, used to guide and contain the light, can be combined with a gain medium of optically active Si nanocrystals synthesized in the SiO2 membrane using ion implantation/thermal annealing to produce a Si-based laser. The laser cavity dimensions can be matched to the near-infrared wavelengths where optical gain has been observed from Si nanocrystals. The second design utilizes silicon nanocrystals embedded in a distributed-feedback laser cavity fabricated in SiO2. Lasing action over a broad wavelength range centered at 770 nm should be possible in both of these configurations.

  19. Nanolithography using nanoscale ridge apertures

    Science.gov (United States)

    Wang, Liang

    There is a continuous effort to develop techniques for nanoscale feature definition below the diffraction limit. Nanolithography has been a key technique because of its precision and cost effective. A sub-wavelength hole in an opaque screen can be used to provide a small light source with the optical resolution beyond the diffraction limit in the near field. However, a nanometer-sized hole in circular or square shapes is plagued by low transmission and poor contrast. This drawback limits the nanoscale apertures from being employed in nanolithography applications. Ridge apertures in C, H and bowtie shapes, on the other hand, have been numerically and experimentally demonstrated to show the ability of achieving both enhanced light transmission and sub-wavelength optical resolution down to nanometer domain benefiting from the existence of waveguide propagation mode confined in the gap between the ridges. In this report, the detailed field distributions in contact nanolithography are analyzed using finite difference time domain (FDTD) simulations. It was found that the high imaging contrast, which is necessary for successful lithography, is achieved close to the mask exit plane and decays quickly with the increase of the distance from the mask exit plane. Simulations are also performed for comparable regular shaped apertures and different shape bowtie apertures. Design rules are proposed to optimize the bowtie aperture for producing a sub-wavelength, high transmission field with high imaging contrast. High resolution contact nanolithography was carried on a home constructed lithography setup. It has been experimentally demonstrated that nanoscale bowtie and C apertures can be used for contact lithography to achieve nanometer scale resolution due to its intrinsic advantages of achieving enhanced optical transmission and concentrating light far beyond the diffraction limit. It also has shown the advantages of bowtie and C apertures over conventional apertures in both

  20. Designing nanoscale constructs from atomic thin sheets of graphene, boron nitride and gold nanoparticles for advanced material applications

    Science.gov (United States)

    Jasuja, Kabeer

    2011-12-01

    Nanoscale materials invite immense interest from diverse scientific disciplines as these provide access to precisely understand the physical world at their most fundamental atomic level. In concert with this aim of enhancing our understanding of the fundamental behavior at nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles (GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which drive this research are: incorporating mobility in nanoparticle based single-electron junction constructs, developing effective strategies to functionalize graphene with nano-forms of metal, and exfoliating ultrathin sheets of Boron Nitride. Gold nanoparticle based electronic constructs can achieve a new degree of operational freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-electromechanical construct by incorporating elastic polymer molecules between GNPs to form 2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues to maneuver nano components and store energy at nano-scale. Graphene is the first isolated nanomaterial that displays single-atom thickness. It exhibits quantum confinement that enables it to possess a unique combination of fascinating electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely significant to enable its incorporation into applications of interest. We demonstrated the ability of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively studied to understand the effect and nature of GNPs

  1. Nanoscale Rheology and Anisotropic Diffusion Using Single Gold Nanorod Probes

    Science.gov (United States)

    Molaei, Mehdi; Atefi, Ehsan; Crocker, John C.

    2018-03-01

    The complex rotational and translational Brownian motion of anisotropic particles depends on their shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods. We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a powerful tool for probing nanoscale dynamics and structure in a range of soft materials.

  2. Synthesis, fabrication, and spectroscopy of nano-scale photonic noble metal materials

    Science.gov (United States)

    Egusa, Shunji

    Nanometer is an interesting scale for physicists, chemists, and materials scientists, in a sense that it lies between the macroscopic and the atomic scales. In this regime, materials exhibit distinct physical and chemical properties that are clearly different from those of atoms or macroscopic bulk. This thesis is concerned about both physics and chemistry of noble metal nano-structures. Novel chemical syntheses and physical fabrications of various noble metal nano-structures, and the development of spectroscopic techniques for nano-structures are presented. Scanning microscopy/spectroscopy techniques inherently perturbs the true optical responses of the nano-structures. However, by using scanning tunneling microscope (STM) tip as the nanometer-confined excitation source of surface plasmons in the samples, and subsequently collecting the signals in the Fourier space, it is shown that the tip-perturbed part of the signals can be deconvoluted. As a result, the collected signal in this approach is the pure response of the sample. Coherent light is employed to study the optical response of nano-structures, in order to avoid complication from tip-perturbation as discussed above. White-light super-continuum excites the nano-structure, the monolayer of Au nanoparticles self-assembled on silicon nitride membrane substrates. The coherent excitation reveals asymmetric surface plasmon resonance in the nano-structures. One of the most important issues in nano-scale science is to gain control over the shape, size, and assembly of nanoparticles. A novel method is developed to chemically synthesize ligand-passivated atomic noble metal clusters in solution phase. The method, named thermal decomposition method, enables facile yet robust synthesis of fluorescent atomic clusters. Thus synthesized atomic clusters are very stable, and show behaviors of quantum dots. A novel and versatile approach for creation of nanoparticle arrays is developed. This method is different from the

  3. The electrochemical properties of LaNi5 electrodes doped with multi-walled carbon nanotubes synthesized by chemical vapor deposition and treated at different temperatures in a nitrogen atmosphere

    International Nuclear Information System (INIS)

    Yi Shuangping; Zhang Haiyan; Zhang Guoqin; Hu Shoule; Pei Lei; Yin Jianfen

    2006-01-01

    The electrochemical properties of LaNi 5 electrodes doped with multi-walled carbon nanotubes (MWNTs) treated at different temperatures in a nitrogen atmosphere were investigated. The MWNTs were synthesized by chemical vapor deposition (CVD). The purified carbon nanotubes (CNTs) were annealed during 1.5 h in a nitrogen atmosphere at different temperatures. A three-electrode system was applied. The CNTs-LaNi 5 electrodes were prepared by mixing CNTs and LaNi 5 in a weight ratio of 1:10, and used as the working electrode; Ni(OH) 2 /NiOOH worked as the counter electrode and Hg/HgO as the reference electrode. A 6 mol/L KOH solution acted as the electrolyte. MWNTs annealed at different temperatures in a nitrogen atmosphere showed large differences in the electrochemical hydrogen storage capability under the same testing condition. The CNTs-LaNi 5 electrodes with 20-40 nm diameter CNTs heated at 800 deg. C in nitrogen proved to have the best electrochemical hydrogen storage capacity, with a discharging capacity of 519.1 mAh/g and a corresponding discharging plateau voltage of 1.18 V, at a 200 mA/g charge current density and a 60 Ma/g discharge current density with a 0.2 V discharge voltage limit. From 500 to 800 deg. C, the higher the annealing temperature,the better the electrochemical hydrogen storage property. However, CNTs-LaNi 5 electrodes with 20-40 nm diameter CNTs heated at 900 deg. C in nitrogen have a lower capacity of 476.2 mAh/g under the same testing condition. This shows that the annealing temperature of CNTs is an important factor that influences their electrochemical hydrogen storage performance

  4. Quantum Transport Simulations of Nanoscale Materials

    KAUST Repository

    Obodo, Tobechukwu Joshua

    2016-01-07

    Nanoscale materials have many potential advantages because of their quantum confinement, cost and producibility by low-temperature chemical methods. Advancement of theoretical methods as well as the availability of modern high-performance supercomputers allow us to control and exploit their microscopic properties at the atomic scale, hence making it possible to design novel nanoscale molecular devices with interesting features (e.g switches, rectifiers, negative differential conductance, and high magnetoresistance). In this thesis, state-of-the-art theoretical calculations have been performed for the quantum transport properties of nano-structured materials within the framework of Density Functional Theory (DFT) and the Nonequilibrium Green\\'s Function (NEGF) formalism. The switching behavior of a dithiolated phenylene-vinylene oligomer sandwiched between Au(111) electrodes is investigated. The molecule presents a configurational bistability, which can be exploited in constructing molecular memories, switches, and sensors. We find that protonation of the terminating thiol groups is at the origin of the change in conductance. H bonding at the thiol group weakens the S-Au bond, and thus lowers the conductance. Our results allow us to re-interpret the experimental data originally attributing the conductance reduction to H dissociation. Also examined is current-induced migration of atoms in nanoscale devices that plays an important role for device operation and breakdown. We studied the migration of adatoms and defects in graphene and carbon nanotubes under finite bias. We demonstrate that current-induced forces within DFT are non-conservative, which so far has only been shown for model systems, and can lower migration barrier heights. Further, we investigated the quantum transport behavior of an experimentally observed diblock molecule by varying the amounts of phenyl (donor) and pyrimidinyl (acceptor) rings under finite bias. We show that a tandem configuration of

  5. Syntheses, molecular and crystalline architectures, and ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 4. Syntheses, molecular and crystalline architectures, and luminescence behaviour of terephthalate bridged heptacoordinated dinuclear lead(II) complexes containing a pentadentate N-donor Schiff base. Subhasis Roy Somnath Choubey Sumitava Khan ...

  6. Nanoscale alterations of corneocytes indicate skin disease

    DEFF Research Database (Denmark)

    Franz, J; Beutel, M; Gevers, K

    2016-01-01

    , we extended the phenotypic perspective down to the nanoscale. METHODS: Corneocyte samples were obtained non-invasively by a standard tape stripping procedure from 21 indviduals. Scanning electron (SEM) and atomic force microcopy (AFM) were used to record nanoscale topography. Circular nano...

  7. Exposure and Health Effects Review of Engineered Nanoscale Cerium and Cerium Dioxide Associated with its Use as a Fuel Additive - NOW IN PRINT IN THE JOURNAL

    Science.gov (United States)

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels that are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (Ce02) has recently gained a wide range of applications which includes coatin...

  8. Nanoscale SIMS analysis: the next generation in local analysis

    International Nuclear Information System (INIS)

    Nojima, M.; Tomiyasu, B.; Kanda, Y.; Owari, M.; Nihei, Y.

    2003-01-01

    Secondary ion mass spectrometry (SIMS) provides very sensitive chemical and elemental information. Nanoscale SIMS analysis is, however, very difficult to carry out by conventional methods, mainly because of the primary beam diameter and vibrations. In our work, we used the latest technology for focused ion beam (FIB) formation, which realizes nanoscale beam diameter. Our detection system (Mattauch-Herzog type mass-analyzer and 120-channel parallel detector) realizes highly sensitive parallel-mass-detection with parallel counting units. In order to minimize the influence of vibrations, the sample was mounted on the end cap of FIB column directly. Under this condition, the ion induced secondary electron image of a vacuum-evaporated Au film on a carbon plate was obtained without the influence of vibrations. The beam profile and a secondary ion image of the IC pattern was obtained using same geometry. The lateral resolution was estimated to be 30 nm at worst. As a result, simultaneous multi-elemental measurements on nanoscale dimension became possible

  9. Characteristics for electrochemical machining with nanoscale voltage pulses.

    Science.gov (United States)

    Lee, E S; Back, S Y; Lee, J T

    2009-06-01

    Electrochemical machining has traditionally been used in highly specialized fields, such as those of the aerospace and defense industries. It is now increasingly being applied in other industries, where parts with difficult-to-cut material, complex geometry and tribology, and devices of nanoscale and microscale are required. Electric characteristic plays a principal function role in and chemical characteristic plays an assistant function role in electrochemical machining. Therefore, essential parameters in electrochemical machining can be described current density, machining time, inter-electrode gap size, electrolyte, electrode shape etc. Electrochemical machining provides an economical and effective method for machining high strength, high tension and heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. The application of nanoscale voltage pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with sub-micrometer precision. In this study, micro probe are developed by electrochemical etching and micro holes are manufactured using these micro probe as tool electrodes. Micro holes and microgroove can be accurately achieved by using nanoscale voltages pulses.

  10. Heat transfer across the interface between nanoscale solids and gas.

    Science.gov (United States)

    Cheng, Chun; Fan, Wen; Cao, Jinbo; Ryu, Sang-Gil; Ji, Jie; Grigoropoulos, Costas P; Wu, Junqiao

    2011-12-27

    When solid materials and devices scale down in size, heat transfer from the active region to the gas environment becomes increasingly significant. We show that the heat transfer coefficient across the solid-gas interface behaves very differently when the size of the solid is reduced to the nanoscale, such as that of a single nanowire. Unlike for macroscopic solids, the coefficient is strongly pressure dependent above ∼10 Torr, and at lower pressures it is much higher than predictions of the kinetic gas theory. The heat transfer coefficient was measured between a single, free-standing VO(2) nanowire and surrounding air using laser thermography, where the temperature distribution along the VO(2) nanowire was determined by imaging its domain structure of metal-insulator phase transition. The one-dimensional domain structure along the nanowire results from the balance between heat generation by the focused laser and heat dissipation to the substrate as well as to the surrounding gas, and thus serves as a nanoscale power-meter and thermometer. We quantified the heat loss rate across the nanowire-air interface, and found that it dominates over all other heat dissipation channels for small-diameter nanowires near ambient pressure. As the heat transfer across the solid-gas interface is nearly independent of the chemical identity of the solid, the results reveal a general scaling relationship for gaseous heat dissipation from nanostructures of all solid materials, which is applicable to nanoscale electronic and thermal devices exposed to gaseous environments.

  11. Interlocked by nanoscale sculpturing: pure aluminum copper contacts (Conference Presentation)

    Science.gov (United States)

    Gerngross-Baytekin, Melike; Gerngross, Mark Daniel; Carstensen, Jürgen; Adelung, Rainer

    2017-06-01

    Connecting metals reliable with different corrosion potential is a well-known challenge. An extreme example are copper aluminum contacts. Galvanic corrosion occurs if the two different metals are in contact with each other and an electrolyte, the aluminum becomes susceptible to corrosion under current flow. Usually, antioxidant pastes containing metals are employed but create difficulties e.g. for fatigue resistant power electronic connections. The recently described process of nanoscale sculpturing [1] offers an alternative. Usually, if the surface of metals like aluminium are prepared they are just arbitrary cuts through the bulk. There is no optimization of the surface grain structure towards stability at all. Neither the crystalline facets in the grains are in their most stable orientation nor is the protective oxide shell the most stable one. The nanoscale sculpturing approach is carving out the most stable grains and planes by chemical or electrochemical treatment. The decisive trick is that the chemistry is targeting towards the instable oxide and not the metal. Aluminium sample surfaces including alloys like AA575 exhibit afterwards single crystalline surface facets covered with nanoscale stable oxide films. Galvanically deposited copper forms extremely reliable interlocked connections on top, even allowing for soldering on top of their surface.

  12. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2010-07-27

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  13. Nanoscale cryptography: opportunities and challenges.

    Science.gov (United States)

    Masoumi, Massoud; Shi, Weidong; Xu, Lei

    2015-01-01

    While most of the electronics industry is dependent on the ever-decreasing size of lithographic transistors, this scaling cannot continue indefinitely. To improve the performance of the integrated circuits, new emerging and paradigms are needed. In recent years, nanoelectronics has become one of the most important and exciting forefront in science and engineering. It shows a great promise for providing us in the near future with many breakthroughs that change the direction of technological advances in a wide range of applications. In this paper, we discuss the contribution that nanotechnology may offer to the evolution of cryptographic hardware and embedded systems and demonstrate how nanoscale devices can be used for constructing security primitives. Using a custom set of design automation tools, it is demonstrated that relative to a conventional 45-nm CMOS system, performance gains can be obtained up to two orders of magnitude reduction in area and up to 50 % improvement in speed.

  14. Nanoscale biophysics of the cell

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2018-01-01

    Macroscopic cellular structures and functions are generally investigated using biological and biochemical approaches. But these methods are no longer adequate when one needs to penetrate deep into the small-scale structures and understand their functions. The cell is found to hold various physical structures, molecular machines, and processes that require physical and mathematical approaches to understand and indeed manipulate them. Disorders in general cellular compartments, perturbations in single molecular structures, drug distribution therein, and target specific drug-binding, etc. are mostly physical phenomena. This book will show how biophysics has revolutionized our way of addressing the science and technology of nanoscale structures of cells, and also describes the potential for manipulating the events that occur in them.

  15. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  16. Nanocomposite Coatings Codeposited with Nanoparticles Using Aerosol-Assisted Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Xianghui Hou

    2013-01-01

    Full Text Available Incorporating nanoscale materials into suitable matrices is an effective route to produce nanocomposites with unique properties for practical applications. Due to the flexibility in precursor atomization and delivery, aerosol-assisted chemical vapour deposition (AACVD process is a promising way to synthesize desired nanocomposite coatings incorporating with preformed nanoscale materials. The presence of nanoscale materials in AACVD process would significantly influence deposition mechanism and thus affect microstructure and properties of the nanocomposites. In the present work, inorganic fullerene-like tungsten disulfide (IF-WS2 has been codeposited with Cr2O3 coatings using AACVD. In order to understand the codeposition process for the nanocomposite coatings, chemical reactions of the precursor and the deposition mechanism have been studied. The correlation between microstructure of the nanocomposite coatings and the codeposition mechanism in the AACVD process has been investigated. The heterogeneous reaction on the surface of IF-WS2 nanoparticles, before reaching the substrate surface, is the key feature of the codeposition in the AACVD process. The agglomeration of nanoparticles in the nanocomposite coatings is also discussed.

  17. Explaining Synthesized Software

    Science.gov (United States)

    VanBaalen, Jeffrey; Robinson, Peter; Lowry, Michael; Pressburger, Thomas; Lau, Sonie (Technical Monitor)

    1998-01-01

    Motivated by NASA's need for high-assurance software, NASA Ames' Amphion project has developed a generic program generation system based on deductive synthesis. Amphion has a number of advantages, such as the ability to develop a new synthesis system simply by writing a declarative domain theory. However, as a practical matter, the validation of the domain theory for such a system is problematic because the link between generated programs and the domain theory is complex. As a result, when generated programs do not behave as expected, it is difficult to isolate the cause, whether it be an incorrect problem specification or an error in the domain theory. This paper describes a tool we are developing that provides formal traceability between specifications and generated code for deductive synthesis systems. It is based on extensive instrumentation of the refutation-based theorem prover used to synthesize programs. It takes augmented proof structures and abstracts them to provide explanations of the relation between a specification, a domain theory, and synthesized code. In generating these explanations, the tool exploits the structure of Amphion domain theories, so the end user is not confronted with the intricacies of raw proof traces. This tool is crucial for the validation of domain theories as well as being important in everyday use of the code synthesis system. It plays an important role in validation because when generated programs exhibit incorrect behavior, it provides the links that can be traced to identify errors in specifications or domain theory. It plays an important role in the everyday use of the synthesis system by explaining to users what parts of a specification or of the domain theory contribute to what pieces of a generated program. Comments are inserted into the synthesized code that document these explanations.

  18. Bismuth onion thin film in situ grown on silicon wafer synthesized through a hydrothermal approach

    International Nuclear Information System (INIS)

    Zhao Yue; Liu Hong; Liu Jin; Hu Chenguo; Wang Jiyang

    2010-01-01

    Bismuth onion structured nanospheres with the same structure as carbon onions have been synthesized and observed. The nanospheres were synthesized through a hydrothermal method using bismuth hydroxide and silicon wafer as reactants. By controlling the heating temperature, heating time, and the pressure, nanoscale bismuth spheres can be in situ synthesized on silicon wafer, and forms a bismuth onion film on the substrate. The electronic property of the films was investigated. A formation mechanism of the formation of bismuth onions and the onion film has been proposed on the basis of experimental observations.

  19. Widely tunable THz synthesizer

    Science.gov (United States)

    Hindle, F.; Mouret, G.; Eliet, S.; Guinet, M.; Cuisset, A.; Bocquet, R.; Yasui, T.; Rovera, D.

    2011-09-01

    The generation of cw-THz radiation by photomixing is particularly suited to the high resolution spectroscopy of gases; nevertheless, until recently, it has suffered from a lack of frequency metrology. Frequency combs are a powerful tool that can transfer microwave frequency standards to optical frequencies and a single comb has permitted accurate (10-8) THz frequency synthesis with a limited tuning range. A THz synthesizer composed of three extended cavity laser diodes phase locked to a frequency comb has been constructed and its utility for high resolution gas phase spectroscopy demonstrated. The third laser diode allows a larger tuning range of up to 300 MHz to be achieved without the need for large frequency excursions, while the frequency comb provides a versatile link to be established from any traceable microwave frequency standard. The use of a single frequency comb as a reference for all of the cw-lasers eliminates the dependency of synthesized frequency on the carrier envelope offset frequency. This greatly simplifies the frequency comb stabilization requirements and leads to a reduced instrument complexity.

  20. Contributions of nanoscale roughness to anomalous colloid retention and stability behavior

    Science.gov (United States)

    All natural surfaces exhibit nanoscale roughness (NR) and chemical heterogeneity (CH) to some extent. Expressions were developed to determine the mean interaction energy between a colloid and a solid-water interface (SWI), as well as for colloid-colloid interactions, when both surfaces contain binar...

  1. Towards Nanoscale Biomedical Devices in Medicine

    DEFF Research Database (Denmark)

    Parracino, A.; Gajula, G.P.; di Gennaro, A.K.

    2011-01-01

    Medical interest in nanotechnology originates from a belief that nanoscale therapeutic devices can be constructed and directed towards its target inside the human body. Such nanodevices can be engineered by coupling superparamagnetic nanoparticle to biomedically active proteins. We hereby report ...

  2. Nanoscale Vacuum Electronics: Back to the Future?

    Data.gov (United States)

    National Aeronautics and Space Administration — This CIF project developed nanoscale vacuum devices for potential radiation-immune electronics ideal for space applications. Vacuum is superior to any semiconductor...

  3. Development of Nanoscale Ceramics for Advanced Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Leffler; Joseph Helble

    1999-09-30

    Bulk structures of unstabilized ZrO{sub 2-x}, with x in the range of 0 {<=} x {<=} 0.44, at ambient pressure have been found to exist in three different structures. (monoclinic, tetragonal and cubic.). At ambient temperature and elevated pressures above 3.5 GPa, unstabilized zirconia at these same compositions is found as a fourth phase, the orthorhombic phase. Work done in this project has demonstrated that nanoscale zirconia particles containing the orthorhombic phase in addition to amorphous material can be produced through solgel methods. Extensive characterization of this material including recent high temperature x-ray diffraction work has indicated that the structure of the synthesized zirconia appears to be linked to the oxygen vacancy population in the material, and that water appears to be a critical factor in determining the type of material formed during synthesis. These results suggest that surface energy alone is not the controlling factor in determining crystal phase.

  4. Magnetic Properties of Molecular and Nanoscale Magnets

    OpenAIRE

    Krupskaya, Yulia

    2011-01-01

    The idea of miniaturizing devices down to the nanoscale where quantum ffeffects become relevant demands a detailed understanding of the interplay between classical and quantum properties. Therefore, characterization of newly produced nanoscale materials is a very important part of the research in this fifield. Studying structural and magnetic properties of nano- and molecular magnets and the interplay between these properties reveals new interesting effects and suggests ways to control and op...

  5. High-performance planar nanoscale dielectric capacitors

    OpenAIRE

    Ciraci, S.; Özçelik, V. Ongun

    2016-01-01

    We propose a model for planar nanoscale dielectric capacitor consisting of a single layer, insulating hexagonal boron nitride (BN) stripe placed between two metallic graphene stripes, all forming commensurately a single atomic plane. First-principles density functional calculations on these nanoscale capacitors for different levels of charging and different widths of graphene - BN stripes mark high gravimetric capacitance values, which are comparable to those of supercapacitors made from othe...

  6. Method for synthesizing HMX

    Science.gov (United States)

    McGuire, Raymond R.; Coon, Clifford L.; Harrar, Jackson E.; Pearson, Richard K.

    1984-01-01

    A method and apparatus for electrochemically synthesizing N.sub.2 O.sub.5 cludes oxidizing a solution of N.sub.2 O.sub.4 /HNO.sub.3 at an anode, while maintaining a controlled potential between the N.sub.2 O.sub.4 /HNO.sub.3 solution and the anode. A potential of about 1.35 to 2.0 V vs. SCE is preferred, while a potential of about 1.80 V vs. SCE is most preferred. Thereafter, the N.sub.2 O.sub.5 is reacted with either 1.5-diacetyl-3,7-dinitro-1,3,5,7-tetraazacyclooctane (DADN) or 1,3,5,7-tetraacetyl-1,3,5,7-tetraazacyclooctane (TAT) to form cyclotetramethylenetetraamine (HMX).

  7. Nanoscale Device Properties of Tellurium-based Chalcogenide Compounds

    Science.gov (United States)

    Dahal, Bishnu R.

    The great progress achieved in miniaturization of microelectronic devices has now reached a distinct bottleneck, as devices are starting to approach the fundamental fabrication and performance limit. Even if a major breakthrough is made in the fabrication process, these scaled down electronic devices will not function properly since the quantum effects can no longer be neglected in the nanoscale regime. Advances in nanotechnology and new materials are driving novel technologies for future device applications. Current microelectronic devices have the smallest feature size, around 10 nm, and the industry is planning to switch away from silicon technology in the near future. The new technology will be fundamentally different. There are several leading technologies based on spintronics, tunneling transistors, and the newly discovered 2-dimensional material systems. All of these technologies are at the research level, and are far from ready for use in making devices in large volumes. This dissertation will focus on a very promising material system, Te-based chalcogenides, which have potential applications in spintronics, thermoelectricity and topological insulators that can lead to low-power-consumption electronics. Very recently it was predicted and experimentally observed that the spin-orbit interaction in certain materials can lead to a new electronic state called topological insulating phase. The topological insulator, like an ordinary insulator, has a bulk energy gap separating the highest occupied electronic band from the lowest empty band. However, the surface states in the case of a three-dimensional or edge states in a two-dimensional topological insulator allow electrons to conduct at the surface, due to the topological character of the bulk wavefunctions. These conducting states are protected by time-reversal symmetry, and cannot be eliminated by defects or chemical passivation. The edge/surface states satisfy Dirac dispersion relations, and hence the physics

  8. Design and Characterization of Liquidlike POSS-Based Hybrid Nanomaterials Synthesized via Ionic Bonding and Their Interactions with CO 2

    KAUST Repository

    Petit, Camille

    2013-10-01

    Liquidlike nanoparticle organic hybrid materials (NOHMs) were designed and synthesized by ionic grafting of polymer chains onto nanoscale silica units called polyhedral oligomeric silsesquioxane (POSS). The properties of these POSS-based NOHMs relevant to CO2 capture, in particular thermal stability, swelling, viscosity, as well as their interactions with CO 2, were investigated using thermogravimetric analyses, differential scanning calorimetry, and NMR and ATR FT-IR spectroscopies. The results indicate that POSS units significantly enhance the thermal stability of the hybrid materials, and their porous nature also contributes to the overall CO 2 capture capacity of NOHMs. The viscosity of the synthesized NOHMs was comparable to those reported for ionic liquids, and rapidly decreased as the temperature increased. The sorption of CO2 in POSS-based NOHMs also reduced their viscosities. The swelling behavior of POSS-based NOHMs was similar to that of previously studied nanoparticle-based NOHMs, and this generally resulted in less volume increase in NOHMs compared to their corresponding polymers for the same amount of CO2 loading. © 2013 American Chemical Society.

  9. Molecular Photovoltaics in Nanoscale Dimension

    Directory of Open Access Journals (Sweden)

    Andrei V. Pakoulev

    2011-01-01

    Full Text Available This review focuses on the intrinsic charge transport in organic photovoltaic (PVC devices and field-effect transistors (SAM-OFETs fabricated by vapor phase molecular self-assembly (VP-SAM method. The dynamics of charge transport are determined and used to clarify a transport mechanism. The 1,4,5,8-naphthalene-tetracarboxylic diphenylimide (NTCDI SAM devices provide a useful tool to study the fundamentals of polaronic transport at organic surfaces and to discuss the performance of organic photovoltaic devices in nanoscale. Time-resolved photovoltaic studies allow us to separate the charge annihilation kinetics in the conductive NTCDI channel from the overall charge kinetic in a SAM-OFET device. It has been demonstrated that tuning of the type of conductivity in NTCDI SAM-OFET devices is possible by changing Si substrate doping. Our study of the polaron charge transfer in organic materials proposes that a cation-radical exchange (redox mechanism is the major transport mechanism in the studied SAM-PVC devices. The role and contribution of the transport through delocalized states of redox active surface molecular aggregates of NTCDI are exposed and investigated. This example of technological development is used to highlight the significance of future technological development of nanotechnologies and to appreciate a structure-property paradigm in organic nanostructures.

  10. Molecular photovoltaics in nanoscale dimension.

    Science.gov (United States)

    Burtman, Vladimir; Zelichonok, Alexander; Pakoulev, Andrei V

    2011-01-05

    This review focuses on the intrinsic charge transport in organic photovoltaic (PVC) devices and field-effect transistors (SAM-OFETs) fabricated by vapor phase molecular self-assembly (VP-SAM) method. The dynamics of charge transport are determined and used to clarify a transport mechanism. The 1,4,5,8-naphthalene-tetracarboxylic diphenylimide (NTCDI) SAM devices provide a useful tool to study the fundamentals of polaronic transport at organic surfaces and to discuss the performance of organic photovoltaic devices in nanoscale. Time-resolved photovoltaic studies allow us to separate the charge annihilation kinetics in the conductive NTCDI channel from the overall charge kinetic in a SAM-OFET device. It has been demonstrated that tuning of the type of conductivity in NTCDI SAM-OFET devices is possible by changing Si substrate doping. Our study of the polaron charge transfer in organic materials proposes that a cation-radical exchange (redox) mechanism is the major transport mechanism in the studied SAM-PVC devices. The role and contribution of the transport through delocalized states of redox active surface molecular aggregates of NTCDI are exposed and investigated. This example of technological development is used to highlight the significance of future technological development of nanotechnologies and to appreciate a structure-property paradigm in organic nanostructures.

  11. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    Science.gov (United States)

    Habuchi, Satoshi

    2014-01-01

    Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology. PMID:25152893

  12. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    KAUST Repository

    Habuchi, Satoshi

    2014-06-12

    Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology.

  13. Synthesizing Novel Anthraquinone Natural Product-Like Compounds to Investigate Protein-Ligand Interactions in Both an in Vitro and in Vivo Assay: An Integrated Research-Based Third-Year Chemical Biology Laboratory Course

    Science.gov (United States)

    McKenzie, Nancy; McNulty, James; McLeod, David; McFadden, Meghan; Balachandran, Naresh

    2012-01-01

    A new undergraduate program in chemical biology was launched in 2008 to provide a unique learning experience for those students interested in this interdisciplinary science. An innovative undergraduate chemical biology laboratory course at the third-year level was developed as a key component of the curriculum. The laboratory course introduces…

  14. First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique

    Science.gov (United States)

    Deepa, Manchala; Sudhakar, Palagiri; Nagamadhuri, Kandula Venkata; Balakrishna Reddy, Kota; Giridhara Krishna, Thimmavajjula; Prasad, Tollamadugu Naga Venkata Krishna Vara

    2015-06-01

    Nanoscale materials, whose size typically falls below 100 nm, exhibit novel chemical, physical and biological properties which are different from their bulk counterparts. In the present investigation, we demonstrated that nanoscale calcium oxide particles (n-CaO) could transport through phloem tissue of groundnut unlike the corresponding bulk materials. n-CaO particles are prepared using sol-gel method. The size of the as prepared n-CaO measured (69.9 nm) using transmission electron microscopic technique (TEM). Results of the hydroponics experiment using solution culture technique revealed that foliar application of n-CaO at different concentrations (10, 50, 100, 500, 1,000 ppm) on groundnut plants confirmed the entry of calcium into leaves and stems through phloem compared to bulk source of calcium sprayed (CaO and CaNO3). After spraying of n-CaO, calcium content in roots, shoots and leaves significantly increased. Based on visual scoring of calcium deficiency correction and calcium content in plant parts, we may establish the fact that nanoscale calcium oxide particles (size 69.9 nm) could move through phloem tissue in groundnut. This is the first report on phloem transport of nanoscale calcium oxide particles in plants and this result points to the use of nanoscale calcium oxide particles as calcium source to the plants through foliar application, agricultural crops in particular, as bulk calcium application through foliar nutrition is restricted due to its non-mobility in phloem.

  15. Nanoscale ferroelectrics and multiferroics key processes and characterization issues, and nanoscale effects

    CERN Document Server

    Alguero, Miguel

    2016-01-01

    This book reviews the key issues in processing and characterization of nanoscale ferroelectrics and multiferroics, and provides a comprehensive description of their properties, with an emphasis in differentiating size effects of extrinsic ones like boundary or interface effects. Recently described nanoscale novel phenomena are also addressed. Organized into three parts it addresses key issues in processing (nanostructuring), characterization (of the nanostructured materials) and nanoscale effects. Taking full advantage of the synergies between nanoscale ferroelectrics and multiferroics, it covers materials nanostructured at all levels, from ceramic technologies like ferroelectric nanopowders, bulk nanostructured ceramics and thick films, and magnetoelectric nanocomposites, to thin films, either polycrystalline layer heterostructures or epitaxial systems, and to nanoscale free standing objects with specific geometries, such as nanowires and tubes at different levels of development. The book is developed from t...

  16. Attosecond physics at the nanoscale.

    Science.gov (United States)

    Ciappina, M F; Pérez-Hernández, J A; Landsman, A S; Okell, W A; Zherebtsov, S; Förg, B; Schötz, J; Seiffert, L; Fennel, T; Shaaran, T; Zimmermann, T; Chacón, A; Guichard, R; Zaïr, A; Tisch, J W G; Marangos, J P; Witting, T; Braun, A; Maier, S A; Roso, L; Krüger, M; Hommelhoff, P; Kling, M F; Krausz, F; Lewenstein, M

    2017-05-01

    Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond  =  1 as  =  10 -18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is  ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the

  17. Synthesizing labeled compounds

    International Nuclear Information System (INIS)

    London, R.E.; Matwiyoff, N.A.; Unkefer, C.J.; Walker, T.E.

    1983-01-01

    A metabolic study is presented of the chemical reactions provided by isotopic labeling and NMR spectroscopy. Synthesis of 13 C-labeled D-glucose, a 6-carbon sugar, involves adding a labeled nitrile group to the 5-carbon sugar D-arabinose by reaction with labeled hydrogen cyanide. The product of this reaction is then reduced and hydrolyzed to a mixture of the labeled sugars. The two sugars are separated by absorption chromotography. The synthesis of 13 C-labeled L-tyrosine, an amino acid, is also presented

  18. Nanoscale hierarchical optical interactions for secure information

    Directory of Open Access Journals (Sweden)

    Tate Naoya

    2016-12-01

    Full Text Available There is increasing demand for novel physical security that can differentiate between real and false specific artifact that have been added to bank bills, certifications, and other vouchers. The most simple and effective method for improving the security level is to scale down the elemental structures so that they cannot be duplicated by attackers. While there is a paradox that the achieved fabrication resolution by a defender can also be realized by an attacker, further improvement in security is possible by the functional fusion of artifact metrics and nanophotonics. The fundamental advantages of this concept are the high-level clone resistance and individuality of nanoscale artifacts, which are based on the super-resolution fabrication and nanoscale hierarchical structure of optical near-field interactions, respectively. In this paper, the basis for the fabrication of nanoscale artifacts by utilizing random phenomena is described, and a quantitative evaluation of the security level is presented. An experimental demonstration using a nano-/macro-hierarchical hologram is presented to demonstrate the fundamental procedure for retrieving nanoscale features as hidden information. Finally, the concept and a simple demonstration of non-scanning probe microscopy are described as a practical application of the retrieval and authentication of nanoscale artifact metrics.

  19. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Nanoscale thermal imaging of dissipation in quantum systems.

    Science.gov (United States)

    Halbertal, D; Cuppens, J; Shalom, M Ben; Embon, L; Shadmi, N; Anahory, Y; Naren, H R; Sarkar, J; Uri, A; Ronen, Y; Myasoedov, Y; Levitov, L S; Joselevich, E; Geim, A K; Zeldov, E

    2016-11-17

    Energy dissipation is a fundamental process governing the dynamics of physical, chemical and biological systems. It is also one of the main characteristics that distinguish quantum from classical phenomena. In particular, in condensed matter physics, scattering mechanisms, loss of quantum information or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Yet the microscopic behaviour of a system is usually not formulated in terms of dissipation because energy dissipation is not a readily measurable quantity on the micrometre scale. Although nanoscale thermometry has gained much recent interest, existing thermal imaging methods are not sensitive enough for the study of quantum systems and are also unsuitable for the low-temperature operation that is required. Here we report a nano-thermometer based on a superconducting quantum interference device with a diameter of less than 50 nanometres that resides at the apex of a sharp pipette: it provides scanning cryogenic thermal sensing that is four orders of magnitude more sensitive than previous devices-below 1 μK Hz -1/2 . This non-contact, non-invasive thermometry allows thermal imaging of very low intensity, nanoscale energy dissipation down to the fundamental Landauer limit of 40 femtowatts for continuous readout of a single qubit at one gigahertz at 4.2 kelvin. These advances enable the observation of changes in dissipation due to single-electron charging of individual quantum dots in carbon nanotubes. They also reveal a dissipation mechanism attributable to resonant localized states in graphene encapsulated within hexagonal boron nitride, opening the door to direct thermal imaging of nanoscale dissipation processes in quantum matter.

  1. Micro- and nano-scale hollow TiO2 fibers by coaxial electrospinning: Preparation and gas sensing

    International Nuclear Information System (INIS)

    Zhang Jin; Choi, Sun-Woo; Kim, Sang Sub

    2011-01-01

    We report the preparation of micro- and nano-scale hollow TiO 2 fibers using a coaxial electrospinning technique and their gas sensing properties in terms of CO. The diameter of hollow TiO 2 fibers can be controlled from 200 nm to several micrometers by changing the viscosity of electrospinning solutions. Lower viscosities produce slim hollow nanofibers. In contrast, fat hollow microfibers are obtained in the case of higher viscosities. A simple mathematical expression is presented to predict the change in diameter of hollow TiO 2 fibers as a function of viscosity. The successful control over the diameter of hollow TiO 2 fibers is expected to bring extensive applications. To test a potential use of hollow TiO 2 fibers in chemical gas sensors, their sensing properties to CO are investigated at room temperature. - Graphical abstract: Microstructures of as-prepared and calcined hollow TiO 2 fibers prepared by the electrospinning technique with a coaxial needle. Dynamic response at various CO concentrations for the sensor fabricated with the hollow TiO 2 fibers. Highlights: → Hollow TiO 2 fibers were synthesized using a coaxial electrospinning technique. → Their diameter can be controlled by changing the viscosity of electrospinning solutions. → Lower viscosities produce slim hollow nanofibers. → In contrast, fat hollow microfibers are obtained in the case of higher viscosities. → Successful control over the diameter of hollow TiO 2 fibers will bring extensive applications.

  2. Pulsed laser processing of electronic materials in micro/nanoscale

    Science.gov (United States)

    Hwang, David Jen

    2005-08-01

    a first approach. As another useful application of NSOM based laser processing, the pyrolytic NSOM laser chemical vapor deposition (LCVD) of silicon dots on crystalline silicon wafer by the decomposition of SiH4 has been demonstrated. Nanosecond laser pulses of visible wavelength were coupled through NSOM fiber probe in order to obtain sub-100nm synthesized features with various laser pulse energies. Polymer based photolithography and ablation lithography was performed by both objective lens and NSOM probe schemes. Femtosecond laser pulses generated features of high aspect ratio and sub-diffraction limit size due to non-linear beam propagation and MPA process. Development of ultra-thin film process is essential for NSOM probe based processing. Photosensitive dendritic surface monolayer films were successfully tested in order to fabricate both ablative (negative) and self-assembled (positive) features using objective lens focused femtosecond laser pulses of 400 nm wavelength. (Abstract shortened by UMI.)

  3. Techniques and instruments used for real-time analysis of atmospheric nanoscale molecular clusters: A review

    Directory of Open Access Journals (Sweden)

    Xue Li

    2015-11-01

    Full Text Available The extremely high concentrations of PM2.5 (particulate matter with an aerodynamic meter ≤ 2.5 μm during severe and persistent haze events in China have been closely related to the formation of secondary aerosols (SA. New particle formation (NPF is the critical initial step of SA formation. New particles are commonly formed from gas-phase precursors (e.g., SO2, volatile organic compounds via nucleation and initial growth, in which molecular clusters with a mobility diameter smaller than 3 nm (hereafter referred to nanoscale molecular clusters will be involved throughout the whole process. Recently, significant breakthroughs have been obtained on NPF studies, which are mostly attributed to the technical development in the real-time analysis of size-resolved number concentration and chemical composition of nanoscale molecular clusters. Regarding the detection of size-resolved number concentrations of nanoscale molecular clusters, both methods and instruments have been well built up; practical application in laboratory-scale experiments and field measurements have also been successfully demonstrated. In contrast, real-time analysis of chemical composition of nanoscale molecular clusters has still encountered the great challenges caused by the complex organic compositions of the clusters, and improvement of present analytical strategies is urgently required. The better understanding in NPF will not only benefit the atmospheric modeling and climate predictions but also the source control of SA.

  4. Nanoscale Bonding between Human Bone and Titanium Surfaces: Osseohybridization

    Directory of Open Access Journals (Sweden)

    Jun-Sik Kim

    2015-01-01

    Full Text Available Until now, the chemical bonding between titanium and bone has been examined only through a few mechanical detachment tests. Therefore, in this study, a sandblasted and acid-etched titanium mini-implant was removed from a human patient after 2 months of placement in order to identify the chemical integration mechanism for nanoscale osseointegration of titanium implants. To prepare a transmission electron microscopy (TEM specimen, the natural state was preserved as much as possible by cryofixation and scanning electron microscope/focused ion beam (SEM-FIB milling without any chemical treatment. High-resolution TEM (HRTEM, energy dispersive X-ray spectroscopy (EDS, and scanning TEM (STEM/electron energy loss spectroscopic analysis (EELS were used to investigate the chemical composition and structure at the interface between the titanium and bone tissue. HRTEM and EDS data showed evidence of crystalline hydroxyapatite and intermixing of bone with the oxide layer of the implant. The STEM/EELS experiment provided particularly interesting results: carbon existed in polysaccharides, calcium and phosphorus existed as tricalcium phosphate (TCP, and titanium existed as oxidized titanium. In addition, the oxygen energy loss near edge structures (ELNESs showed a possibility of the presence of CaTiO3. These STEM/EELS results can be explained by structures either with or without a chemical reaction layer. The possible existence of the osseohybridization area and the form of the carbon suggest that reconsideration of the standard definition of osseointegration is necessary.

  5. Atomic nanoscale technology in the nuclear industry

    CERN Document Server

    Woo, Taeho

    2011-01-01

    Developments at the nanoscale are leading to new possibilities and challenges for nuclear applications in areas ranging from medicine to international commerce to atomic power production/waste treatment. Progress in nanotech is helping the nuclear industry slash the cost of energy production. It also continues to improve application reliability and safety measures, which remain a critical concern, especially since the reactor disasters in Japan. Exploring the new wide-ranging landscape of nuclear function, Atomic Nanoscale Technology in the Nuclear Industry details the breakthroughs in nanosca

  6. Nanoscale phase-change materials and devices

    Science.gov (United States)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-06-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced.

  7. Nanoscale phase-change materials and devices

    International Nuclear Information System (INIS)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-01-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced. (topical review)

  8. Design Optimization of Radionuclide Nano-Scale Batteries

    International Nuclear Information System (INIS)

    Schoenfeld, D.W.; Tulenko, J.S.; Wang, J.; Smith, B.

    2004-01-01

    Radioisotopes have been used for power sources in heart pacemakers and space applications dating back to the 50's. Two key properties of radioisotope power sources are high energy density and long half-life compared to chemical batteries. The tritium battery used in heart pacemakers exceeds 500 mW--hr, and is being evaluated by the University of Florida for feasibility as a MEMS (MicroElectroMechanical Systems) power source. Conversion of radioisotope sources into electrical power within the constraints of nano-scale dimensions requires cutting-edge technologies and novel approaches. Some advances evolving in the III-V and II-IV semiconductor families have led to a broader consideration of radioisotopes rather free of radiation damage limitations. Their properties can lead to novel battery configurations designed to convert externally located emissions from a highly radioactive environment. This paper presents results for the analytical computational assisted design and modeling of semiconductor prototype nano-scale radioisotope nuclear batteries from MCNP and EGS programs. The analysis evaluated proposed designs and was used to guide the selection of appropriate geometries, material properties, and specific activities to attain power requirements for the MEMS batteries. Plans utilizing high specific activity radioisotopes were assessed in the investigation of designs employing multiple conversion cells and graded junctions with varying band gap properties. Voltage increases sought by serial combination of VOC s are proposed to overcome some of the limitations of a low power density. The power density is directly dependent on the total active areas

  9. Enzymatic synthesizing of phytosterol oleic esters.

    Science.gov (United States)

    Pan, Xinxin; Chen, Biqiang; Wang, Juan; Zhang, Xinzhi; Zhul, Biyun; Tan, Tianwei

    2012-09-01

    A method of synthesizing the phytosterol esters from oleic acid and sterols was studied, using immobilized lipase Candida sp. 99-125 as catalyst. Molar ratio (oleic acid/phytosterols), temperature, reaction period, organic solvents, catalyst, and silica-gel drier were optimized, and the result showed that 93.4% of the sterols had been esterified under the optimal synthetic condition: the molar ratio of oleic acid/phytosterol is 1:1 in 10 mL iso-octane, immobilized lipase (w, 140% of the sterols), incubated in an orbital shaker (200 rpm) at a temperature of 45 °C for 24 h. The immobilized lipase could be reused for at least 13 times with limited loss of esterification activity. The conversion still maintained up to 86.6%. Hence, this developed process for synthesizing phytosterol esters could be considered as simple and low-energy consumption compared to existing chemical processes.

  10. Preface: Friction at the nanoscale

    Science.gov (United States)

    Fusc, Claudio; Smith, Roger; Urbakh, Michael; Vanossi, Andrea

    2008-09-01

    Interfacial friction is one of the oldest problems in physics and chemistry, and certainly one of the most important from a practical point of view. Everyday operations on a broad range of scales, from nanometer and up, depend upon the smooth and satisfactory functioning of countless tribological systems. Friction imposes serious constraints and limitations on the performance and lifetime of micro-machines and, undoubtedly, will impose even more severe constraints on the emerging technology of nano-machines. Standard lubrication techniques used for large objects are expected to be less effective in the nano-world. Novel methods for control and manipulation are therefore needed. What has been missing is a molecular level understanding of processes occurring between and close to interacting surfaces to help understand, and later manipulate friction. Friction is intimately related to both adhesion and wear, and all three require an understanding of highly non-equilibrium processes occurring at the molecular level to determine what happens at the macroscopic level. Due to its practical importance and the relevance to basic scientific questions there has been major increase in activity in the study of interfacial friction on the microscopic level during the last decade. Intriguing structural and dynamical features have been observed experimentally. These observations have motivated theoretical efforts, both numerical and analytical. This special issue focusses primarily on discussion of microscopic mechanisms of friction and adhesion at the nanoscale level. The contributions cover many important aspects of frictional behaviour, including the origin of stick-slip motion, the dependence of measured forces on the material properties, effects of thermal fluctuations, surface roughness and instabilities in boundary lubricants on both static and kinetic friction. An important problem that has been raised in this issue, and which has still to be resolved, concerns the

  11. Digestive Ripening: A Fine Chemical Machining Process on the Nanoscale.

    Science.gov (United States)

    Shimpi, Jayesh R; Sidhaye, Deepti S; Prasad, Bhagavatula L V

    2017-09-26

    A comprehensive overview of the process of digestive ripening that is known to convert polydisperse nanocrystals to monodisperse ones is presented. Apart from highlighting the role of organic molecules (ligands) in achieving size control, the roles of other parameters such as the nanocrystal-ligand binding strength and the temperature at which the reaction is carried out in accomplishing size control are also delineated. The generality of the procedure is illustrated by providing examples of how it is used to prepare monodisperse nanocrystals of different metals, alloy systems, and ultrasmall nanocrystals and also to narrow the size distribution in complex binary and ternary nanocrystal systems. Finally, the current status as far as the theoretical understanding of how size control is being achieved by digestive ripening is laid out, emphasizing at the same time the necessity to undertake more systematic studies to completely realize the full potential of this practically very useful procedure.

  12. Photochemically Synthesized Polyimides

    Science.gov (United States)

    Meador, Michael A.; Tyson, Daniel S.

    2008-01-01

    of solvents is optional: The synthesis can be performed using the neat monomer or the monomer mixed with one or more solvent(s) in dilute or concentrated solution. The solubility of the monomer and the physical and chemical properties of the final polymer can be tailored through selection of the spacer group.

  13. Traceable nanoscale measurement at NML-SIRIM

    International Nuclear Information System (INIS)

    Dahlan, Ahmad M.; Abdul Hapip, A. I.

    2012-01-01

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  14. Traceable nanoscale measurement at NML-SIRIM

    Science.gov (United States)

    Dahlan, Ahmad M.; Abdul Hapip, A. I.

    2012-06-01

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  15. Dynamic structural disorder in supported nanoscale catalysts

    International Nuclear Information System (INIS)

    Rehr, J. J.; Vila, F. D.

    2014-01-01

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale

  16. Nanoscale science and nanotechnology education in Africa ...

    African Journals Online (AJOL)

    Nanoscale science and nanotechnology is a rapidly growing and multidisciplinary field with its footing in chemistry, physics, molecular biology and engineering. It has led to breakthroughs in energy, environmental science, agriculture, biotechnology and several others. it is also capable of making a positive and significant ...

  17. Anomalous freezing behavior of nanoscale liposomes

    DEFF Research Database (Denmark)

    Spangler, E. J.; Kumar, P. B. S.; Laradji, M.

    2012-01-01

    The effect of the finite size of one-component liposomes on their phase behavior is investigated via simulations of an implicit-solvent model of self-assembled lipid bilayers. We found that the high curvature of nanoscale liposomes has a significant effect on their freezing behavior. While...

  18. Selective nanoscale growth of lattice mismatched materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Chang; Brueck, Steven R. J.

    2017-06-20

    Exemplary embodiments provide materials and methods of forming high-quality semiconductor devices using lattice-mismatched materials. In one embodiment, a composite film including one or more substantially-single-particle-thick nanoparticle layers can be deposited over a substrate as a nanoscale selective growth mask for epitaxially growing lattice-mismatched materials over the substrate.

  19. Nanoscale thermal transport: Theoretical method and application

    Science.gov (United States)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  20. Force modulation for enhanced nanoscale electrical sensing

    NARCIS (Netherlands)

    Koelmans, W.W.; Sebastian, A.; Abelmann, Leon; Despont, M.; Pozidis, H.

    2011-01-01

    Scanning probe microscopy employing conductive probes is a powerful tool for the investigation and modification of electrical properties at the nanoscale. Application areas include semiconductor metrology, probe-based data storage and materials research. Conductive probes can also be used to emulate

  1. Nanoscale temperature sensing using the Seebeck effect

    NARCIS (Netherlands)

    Bakker, F. L.; Flipse, J.; van Wees, B. J.

    2012-01-01

    We experimentally study the effect of Joule heating on the electron temperature in metallic nanoscale devices and compare the results with a diffusive 3D finite element model. The temperature is probed using four thermocouples located at different distances from the heater. A good quantitative

  2. Traceable nanoscale measurement at NML-SIRIM

    Energy Technology Data Exchange (ETDEWEB)

    Dahlan, Ahmad M.; Abdul Hapip, A. I. [National Metrology Laboratory SIRIM Berhad (NML-SIRIM), Lot PT 4803, Bandar Baru Salak Tinggi, 43900 Sepang (Malaysia)

    2012-06-29

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  3. Micelles Based on Biodegradable Poly(L-glutamic acid)-b-Polylactide with Paramagnetic Gd Ions Chelated to the Shell Layer as a Potential Nanoscale MRI-Visible Delivery System

    OpenAIRE

    Zhang, Guodong; Zhang, Rui; Wen, Xiaoxia; Li, Li; Li, Chun

    2007-01-01

    There is much interest in the development of nanoscale drug delivery system with MRI visibility to optimize the delivery efficiency and therapeutic efficacy under image guidance. Here we report on the successful fabrication of nanoscale micelles based on biodegradable poly(L-glutamic acid)-b-polylactide (PG-b-PLA) block copolymer with paramagnetic Gd3+ ions chelated to their shell. (PG-b-PLA) was synthesized by sequential polymerization reactions: anionic polymerization of L-lactide followed ...

  4. Nanoscale hotspots due to nonequilibrium thermal transport

    International Nuclear Information System (INIS)

    Sinha, Sanjiv; Goodson, Kenneth E.

    2004-01-01

    Recent experimental and modeling efforts have been directed towards the issue of temperature localization and hotspot formation in the vicinity of nanoscale heat generating devices. The nonequilibrium transport conditions which develop around these nanoscale devices results in elevated temperatures near the heat source which can not be predicted by continuum diffusion theory. Efforts to determine the severity of this temperature localization phenomena in silicon devices near and above room temperature are of technological importance to the development of microelectronics and other nanotechnologies. In this work, we have developed a new modeling tool in order to explore the magnitude of the additional thermal resistance which forms around nanoscale hotspots from temperatures of 100-1000K. The models are based on a two fluid approximation in which thermal energy is transferred between ''stationary'' optical phonons and fast propagating acoustic phonon modes. The results of the model have shown excellent agreement with experimental results of localized hotspots in silicon at lower temperatures. The model predicts that the effect of added thermal resistance due to the nonequilibrium phonon distribution is greatest at lower temperatures, but is maintained out to temperatures of 1000K. The resistance predicted by the numerical code can be easily integrated with continuum models in order to predict the temperature distribution around nanoscale heat sources with improved accuracy. Additional research efforts also focused on the measurements of the thermal resistance of silicon thin films at higher temperatures, with a focus on polycrystalline silicon. This work was intended to provide much needed experimental data on the thermal transport properties for micro and nanoscale devices built with this material. Initial experiments have shown that the exposure of polycrystalline silicon to high temperatures may induce recrystallization and radically increase the thermal

  5. Integrated nanoscale silicon sensors using top-down fabrication

    Science.gov (United States)

    Elibol, O. H.; Morisette, D.; Akin, D.; Denton, J. P.; Bashir, R.

    2003-12-01

    Semiconductor device-based sensing of chemical and biological entities has been demonstrated through the use of micro- and nanoscale field-effect devices and close variants. Although carbon nanotubes and silicon nanowires have been demonstrated as single molecule biosensors, the fabrication methods that have been used for creating these devices are typically not compatible with modern semiconductor manufacturing techniques and their large scale integration is problematic. These shortcomings are addressed by recent advancements in microelectronic fabrication techniques which resulted in the realization of nanowire-like structures. Here we report a method to fabricate silicon nanowires at precise locations using such techniques. Our method allows for the realization of truly integrated sensors capable of production of dense arrays. Sensitivity of these devices to changes in the ambient gas composition is also shown.

  6. Simultaneous topographical, electrical and optical microscopy of optoelectronic devices at the nanoscale

    KAUST Repository

    Kumar, Naresh

    2017-01-12

    Novel optoelectronic devices rely on complex nanomaterial systems where the nanoscale morphology and local chemical composition are critical to performance. However, the lack of analytical techniques that can directly probe these structure-property relationships at the nanoscale presents a major obstacle to device development. In this work, we present a novel method for non-destructive, simultaneous mapping of the morphology, chemical composition and photoelectrical properties with <20 nm spatial resolution by combining plasmonic optical signal enhancement with electrical-mode scanning probe microscopy. We demonstrate that this combined approach offers subsurface sensitivity that can be exploited to provide molecular information with a nanoscale resolution in all three spatial dimensions. By applying the technique to an organic solar cell device, we show that the inferred surface and subsurface composition distribution correlates strongly with the local photocurrent generation and explains macroscopic device performance. For instance, the direct measurement of fullerene phase purity can distinguish between high purity aggregates that lead to poor performance and lower purity aggregates (fullerene intercalated with polymer) that result in strong photocurrent generation and collection. We show that the reliable determination of the structure-property relationship at the nanoscale can remove ambiguity from macroscopic device data and support the identification of the best routes for device optimisation. The multi-parameter measurement approach demonstrated herein is expected to play a significant role in guiding the rational design of nanomaterial-based optoelectronic devices, by opening a new realm of possibilities for advanced investigation via the combination of nanoscale optical spectroscopy with a whole range of scanning probe microscopy modes.

  7. Nanoscale surface modification for enhanced biosensing a journey toward better glucose monitoring

    CERN Document Server

    Zhang, Guigen

    2015-01-01

    This book gives a comprehensive overview of electrochemical-based biosensors and their crucial components. Practical examples are given throughout the text to illustrate how the performance of electrochemical-based biosensors can be improved by nanoscale surface modification and how an optimal design can be achieved. All essential aspects of biosensors are considered, including electrode functionalization, efficiency of the mass transport of reactive species, and long term durability and functionality of the sensor. This book also: ·       Explains how the performance of an electrochemical-based biosensor can be improved by nanoscale surface modification ·       Gives readers the tools to evaluate and improve the performance of a biosensor with a multidisciplinary approach that considers electrical, electrostatic, electrochemical, chemical, and biochemical events ·       Links the performance of a sensor to the various governing physical and chemical principles so readers can fully unders...

  8. A zoom into the nanoscale texture of secondary cell walls.

    Science.gov (United States)

    Keplinger, Tobias; Konnerth, Johannes; Aguié-Béghin, Véronique; Rüggeberg, Markus; Gierlinger, Notburga; Burgert, Ingo

    2014-01-10

    Besides classical utilization of wood and paper, lignocellulosic biomass has become increasingly important with regard to biorefinery, biofuel production and novel biomaterials. For these new applications the macromolecular assembly of cell walls is of utmost importance and therefore further insights into the arrangement of the molecules on the nanolevel have to be gained. Cell wall recalcitrance against enzymatic degradation is one of the key issues, since an efficient degradation of lignocellulosic plant material is probably the most crucial step in plant conversion to energy. A limiting factor for in-depth analysis is that high resolution characterization techniques provide structural but hardly chemical information (e.g. Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM)), while chemical characterization leads to a disassembly of the cell wall components or does not reach the required nanoscale resolution (Fourier Tranform Infrared Spectroscopy (FT-IR), Raman Spectroscopy). Here we use for the first time Scanning Near-Field Optical Microscopy (SNOM in reflection mode) on secondary plant cell walls and reveal a segmented circumferential nanostructure. This pattern in the 100 nm range was found in the secondary cell walls of a softwood (spruce), a hardwood (beech) and a grass (bamboo) and is thus concluded to be consistent among various plant species. As the nanostructural pattern is not visible in classical AFM height and phase images it is proven that the contrast is not due to changes in surfaces topography, but due to differences in the molecular structure. Comparative analysis of model substances of casted cellulose nanocrystals and spin coated lignin indicate, that the SNOM signal is clearly influenced by changes in lignin distribution or composition. Therefore and based on the known interaction of lignin and visible light (e.g. fluorescence and resonance effects), we assume the elucidated nanoscale structure to reflect variations in

  9. SYNTHESES, SPECTROSCOPIC AND MAGNETIC PROPERTIES ...

    African Journals Online (AJOL)

    Preferred Customer

    SYNTHESES, SPECTROSCOPIC AND MAGNETIC PROPERTIES OF. POLYSTYRENE-ANCHORED COORDINATION COMPOUNDS OF. THIAZOLIDINONE. Dinesh Kumar1, Amit Kumar2* and Durga Dass3. 1Department of Chemistry, National Institute of Technology, Kurukshetra 136119, Haryana,. India. 2Department of ...

  10. Fully automated parallel oligonucleotide synthesizer

    Czech Academy of Sciences Publication Activity Database

    Lebl, M.; Burger, Ch.; Ellman, B.; Heiner, D.; Ibrahim, G.; Jones, A.; Nibbe, M.; Thompson, J.; Mudra, Petr; Pokorný, Vít; Poncar, Pavel; Ženíšek, Karel

    2001-01-01

    Roč. 66, č. 8 (2001), s. 1299-1314 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z4055905 Keywords : automated oligonucleotide synthesizer Subject RIV: CC - Organic Chemistry Impact factor: 0.778, year: 2001

  11. Department of Energy Nanoscale Science Research Centers: Approach to Nanomaterial ES&H

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-05-12

    The following non-mandatory guidance is intended for the Nanoscale Science Research Centers (NSRCs) funded by the Basic Energy Sciences program office under the U.S. Department of Energy's Office of Science. It describes practices thought appropriate to the management of environmental, safety and health (ES&H) concerns associated with laboratory-scale operations involving the design, synthesis, or characterization of engineered nanomaterials, In general, it is intended to apply to precursors, intermediates, and wastes used during, or resulting from synthesizing such nanomaterials. In general, it is not intended to apply to materials for which an occupational exposure limit has been established.

  12. Magnesioferrite synthesized from magnesian-magnetites

    Directory of Open Access Journals (Sweden)

    Marcelo Hidemassa Anami

    2014-02-01

    Full Text Available Magnesioferrite is an important mineral due to its use in different scientific fields and by the fact that the soil through the action of weathering, can be a source of nutrients essential for plant development by the fact that in the soil. Its use in pure form or associated with other minerals is only possible through the synthesis in laboratory conditions. This study aimed to synthesize magnesioferrite and hematite from magnesian-magnetite by a co-precipitation procedure. The methodology used is an adaptation of the method of synthesis of pure magnetite, partially replacing the soluble salts of iron with soluble magnesium salts in the proportion of 30.0 mol% of Fe for Mg. The characterization of the synthetic minerals used x-rays diffraction, total chemical analysis and mass specific magnetic susceptibility. The results showed that besides the magnesian-magnetite an unprecedented muskoxita was synthesized, which upon annealing was converted to magnesioferrite and hematite and in the proportion of 93.1% and 6.9% respectively. The isomorphous substitution of Fe for Mg enhanced the thermal stability of the ferrimagnetic mineral synthesized.

  13. New insights into the mixing of gold and copper in a nanoparticle from a structural study of Au-Cu nanoalloys synthesized via a wet chemistry method and pulsed laser deposition.

    Science.gov (United States)

    Prunier, Hélène; Nelayah, Jaysen; Ricolleau, Christian; Wang, Guillaume; Nowak, Sophie; Lamic-Humblot, Anne-Félicie; Alloyeau, Damien

    2015-11-14

    Gold-copper nanoparticles (Au-Cu NPs) were elaborated by both chemical (polyol reduction method) and physical (laser deposition) routes. The size, composition and crystal structure of these bimetallic nanoalloys were then characterized by aberration corrected transmission electron microscopy (TEM). Using a one-pot polyol method, Au-Cu nanocubes (NCs) with nominal compositions Au3Cu and AuCu3 were synthesized. The size and composition of the NCs were tuned by varying the amount and the ratio of Au(iii) and Cu(ii) ions used as metallic precursors in the reaction. While the particle shape and size were well-controlled, single particle X-ray spectroscopy showed that, irrespective of the targeted compositions, the Cu content in all NCs was about 11-12 at%, i.e. in both samples, the real composition was different from the nominal one. This was ascribed to an incomplete alloying of the two constituent metals of the alloy in the cubes due to different reduction kinetics of the two metallic precursors. To shed light on the alloying of gold and copper at the nanoscale, Au-Cu NPs with targeted compositions Au3Cu and AuCu3 were deposited on amorphous carbon by laser ablation of two monometallic sources, and their structural properties were studied by TEM. These studies show that Au-Cu nanoalloys were synthesized in both samples and that the complete mixing of Au and Cu atoms achieved with this synthesis technique led to the production of Au-Cu NPs with well-controlled compositions. These results constitute a first but major step towards a complete understanding of the details of kinetics and thermodynamics determining the mixing of gold and copper atoms at the nanoscale. Such an understanding is essential for producing Au-Cu bimetallic nanoalloys with well-defined structural properties via wet chemical synthesis.

  14. Nanoscale Protection Layers To Mitigate Degradation in High-Energy Electrochemical Energy Storage Systems.

    Science.gov (United States)

    Lin, Chuan-Fu; Qi, Yue; Gregorczyk, Keith; Lee, Sang Bok; Rubloff, Gary W

    2018-01-16

    interface for ion insertion and extraction, (2) providing mechanical constraints to maintain structural integrity and robust electronic and ionic conduction pathways, and (3) introducing spatial confinements on the electrode material matrix to alter the phase transformation (delaying the occurrence of the conversion reaction) upon Li insertion, which results in superior electrode performance, excellent capacity retention, and improved reversibility. Taken together, these examples portray a valuable role for thin protection layers synthesized over electrode surfaces, both for their benefit to cycle stability and for revealing insights into degradation and mitigation mechanisms. Furthermore, they underscore the impact of complex electrochemical behavior at nanoscale materials and nanostructure interfaces in modulating the behavior of energy storage devices at the mesoscale and macroscale.

  15. Chemically crosslinked nanogels of PEGylated poly ethyleneimine (L-histidine substituted) synthesized via metal ion coordinated self-assembly for delivery of methotrexate: Cytocompatibility, cellular delivery and antitumor activity in resistant cells

    Energy Technology Data Exchange (ETDEWEB)

    Abolmaali, Samira Sadat, E-mail: s.abolmaali@gmail.com [Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz 71345 (Iran, Islamic Republic of); Tamaddon, Ali Mohammad, E-mail: amtamadon@gmail.com [Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345 (Iran, Islamic Republic of); Mohammadi, Samaneh, E-mail: samaneh.mohammadi1986@gmail.com [Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345 (Iran, Islamic Republic of); Amoozgar, Zohreh, E-mail: zohreh_amoozgar@dfci.harvard.edu [Department of Cancer Immunology and Aids, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115 (United States); Dinarvand, Rasoul, E-mail: dinarvand@tums.ac.ir [Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174 (Iran, Islamic Republic of)

    2016-05-01

    Self-assembled nanogels were engineered by forming Zn{sup 2+}-coordinated micellar templates of PEGylated poly ethyleneimine (PEG-g-PEI), chemical crosslinking and subsequent removal of the metal ion. Creation of stable micellar templates is a crucial step for preparing the nanogels. To this aim, imidazole moieties were introduced to the polymer by Fmoc-L-histidine using carbodiimide chemistry. It was hypothesized the nanogels loaded with methotrexate (MTX), a chemotherapeutic agent, circumvent impaired carrier activity in HepG2 cells (MTX-resistant hepatocellular carcinoma). So, the nanogels were post-loaded with MTX and characterized by {sup 1}H-NMR, FTIR, dynamic light scattering-zeta potential, atomic force microscopy, and drug release experiments. Cellular uptake and the antitumor activity of MTX-loaded nanogels were investigated by flow cytometry and MTT assay. Discrete, spherical and uniform nanogels, with sizes about 77–83 nm and a relatively high drug loading (54 ± 4% w/w), showed a low polydispersity and neutral surface charges. The MTX-loaded nanogels, unlike empty nanogels, lowered viability of HepG2 cells; the nanogels demonstrated cell-cycle arrest and apoptosis comparably higher than MTX as free drug that was shown to be through i) cellular uptake of the nanogels by clathrin-mediated transport and ii) endosomolytic activity of the nanogels in HepG2 cells. These findings indicate the potential antitumor application of this preparation, which has to be investigated in-vivo. - Highlights: • Nanogel synthesis through chemical crosslinking of the transition metal ion coordinated polymer self-assembly • An enhanced cytocompatibility if compared to unmodified polymer • A noticeable endocytic cellular internalization and endosomolytic activity • A specific antitumor cytotoxicity, cell cycle arrest and apoptosis in resistant tumor cells.

  16. Tube Formation in Nanoscale Materials

    Directory of Open Access Journals (Sweden)

    Yan Chenglin

    2008-01-01

    Full Text Available Abstract The formation of tubular nanostructures normally requires layered, anisotropic, or pseudo-layered crystal structures, while inorganic compounds typically do not possess such structures, inorganic nanotubes thus have been a hot topic in the past decade. In this article, we review recent research activities on nanotubes fabrication and focus on three novel synthetic strategies for generating nanotubes from inorganic materials that do not have a layered structure. Specifically, thermal oxidation method based on gas–solid reaction to porous CuO nanotubes has been successfully established, semiconductor ZnS and Nb2O5nanotubes have been prepared by employing sacrificial template strategy based on liquid–solid reaction, and an in situ template method has been developed for the preparation of ZnO taper tubes through a chemical etching reaction. We have described the nanotube formation processes and illustrated the detailed key factors during their growth. The proposed mechanisms are presented for nanotube fabrication and the important pioneering studies are discussed on the rational design and fabrication of functional materials with tubular structures. It is the intention of this contribution to provide a brief account of these research activities.

  17. Tube Formation in Nanoscale Materials.

    Science.gov (United States)

    Yan, Chenglin; Liu, Jun; Liu, Fei; Wu, Junshu; Gao, Kun; Xue, Dongfeng

    2008-12-01

    The formation of tubular nanostructures normally requires layered, anisotropic, or pseudo-layered crystal structures, while inorganic compounds typically do not possess such structures, inorganic nanotubes thus have been a hot topic in the past decade. In this article, we review recent research activities on nanotubes fabrication and focus on three novel synthetic strategies for generating nanotubes from inorganic materials that do not have a layered structure. Specifically, thermal oxidation method based on gas-solid reaction to porous CuO nanotubes has been successfully established, semiconductor ZnS and Nb(2)O(5) nanotubes have been prepared by employing sacrificial template strategy based on liquid-solid reaction, and an in situ template method has been developed for the preparation of ZnO taper tubes through a chemical etching reaction. We have described the nanotube formation processes and illustrated the detailed key factors during their growth. The proposed mechanisms are presented for nanotube fabrication and the important pioneering studies are discussed on the rational design and fabrication of functional materials with tubular structures. It is the intention of this contribution to provide a brief account of these research activities.

  18. Anomalous electrical conductivity of nanoscale colloidal suspensions.

    Science.gov (United States)

    Chakraborty, Suman; Padhy, Sourav

    2008-10-28

    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  19. Scanning nanoscale multiprobes for conductivity measurements

    DEFF Research Database (Denmark)

    Bøggild, Peter; Hansen, Torben Mikael; Kuhn, Oliver

    2000-01-01

    We report fabrication and measurements with two- and four-point probes with nanoscale dimensions, for high spatial resolution conductivity measurements on surfaces and thin films. By combination of conventional microfabrication and additive three-dimensional nanolithography, we have obtained...... electrode spacings down to 200 nm. At the tips of four silicon oxide microcantilevers, narrow carbon tips are grown in converging directions and subsequently coated with a conducting layer. The probe is placed in contact with a conducting surface, whereby the electrode resistance can be determined....... The nanoelectrodes withstand considerable contact force before breaking. The probe offers a unique possibility to position the voltage sensors, as well as the source and drain electrodes in areas of nanoscale dimensions. ©2000 American Institute of Physics....

  20. Nanoscale molecularly imprinted polymers and method thereof

    Science.gov (United States)

    Hart, Bradley R [Brentwood, CA; Talley, Chad E [Brentwood, CA

    2008-06-10

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  1. Nanoscale thermal transport. II. 2003–2012

    International Nuclear Information System (INIS)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-01-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ∼1 nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and

  2. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  3. Fourth International Conference on Nanoscale Magnetism

    CERN Document Server

    Aktas, Bekir; Advances in Nanoscale Magnetism

    2009-01-01

    The book aims to provide an overview of recent progress in the understanding of magnetic properties in nanoscale through recent results of various theoretical and experimental investigations. The papers describe a wide range of physical aspects, together with theoretical and experimental methods. It is of central interest to researchers and specialists in magnetism and magnetic materials science, both in academic and industrial research, as well as advanced students.

  4. Infochemistry Information Processing at the Nanoscale

    CERN Document Server

    Szacilowski, Konrad

    2012-01-01

    Infochemistry: Information Processing at the Nanoscale, defines a new field of science, and describes the processes, systems and devices at the interface between chemistry and information sciences. The book is devoted to the application of molecular species and nanostructures to advanced information processing. It includes the design and synthesis of suitable materials and nanostructures, their characterization, and finally applications of molecular species and nanostructures for information storage and processing purposes. Divided into twelve chapters; the first three chapters serve as an int

  5. DOE - BES Nanoscale Science Research Centers (NSRCs)

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, Cathy Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  6. Nanoscale structure dynamics within electrocatalytic materials

    OpenAIRE

    Bentley, Cameron Luke; Kang, Minkyung; Unwin, Patrick R.

    2017-01-01

    Electrochemical interfaces used for sensing, (electro)catalysis, and energy storage are usually nanostructured to expose particular surface sites, but probing the intrinsic activity of these sites is often beyond current experimental capability. Herein, it is demonstrated how a simple meniscus imaging probe of just 30 nm in size can be deployed for direct electrochemical and topographical imaging of electrocatalytic materials at the nanoscale. Spatially resolved topographical and electrochemi...

  7. Granular activated carbon with grafted nanoporous polymer enhances nanoscale zero-valent iron impregnation and water contaminant removal

    DEFF Research Database (Denmark)

    Mines, Paul D.; Uthuppu, Basil; Thirion, Damien

    2018-01-01

    Granular activated carbon was customized with a chemical grafting procedure of a nanoporous polymeric network for the purpose of nanoscale zero-valent iron impregnation and subsequent water contaminant remediation. Characterization of the prepared composite material revealed that not only...... water contaminants, nitrobenzene and nitrate, the composite material exploited the qualities of both the activated carbon and the polymeric network to work together in a synergistic manner. In that the increased protection from oxidation allowed for increased reactivity of the nanoscale zero-valent iron...

  8. Static electric field enhancement in nanoscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, Bruno, E-mail: bruno.lepetit@irsamc.ups-tlse.fr; Lemoine, Didier, E-mail: didier.lemoine@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Márquez-Mijares, Maykel, E-mail: mmarquez@instec.cu [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Avenida Salvador Allende 1110, Quinta de los Molinos, La Habana (Cuba)

    2016-08-28

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  9. Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation.

    Science.gov (United States)

    Cha, Hyeongyun; Wu, Alex; Kim, Moon-Kyung; Saigusa, Kosuke; Liu, Aihua; Miljkovic, Nenad

    2017-12-13

    Water vapor condensation on hydrophobic surfaces has received much attention due to its ability to rapidly shed water droplets and enhance heat transfer, anti-icing, water harvesting, energy harvesting, and self-cleaning performance. However, the mechanism of heterogeneous nucleation on hydrophobic surfaces remains poorly understood and is attributed to defects in the hydrophobic coating exposing the high surface energy substrate. Here, we observe the formation of high surface energy nanoscale agglomerates on hydrophobic coatings after condensation/evaporation cycles in ambient conditions. To investigate the deposition dynamics, we studied the nanoscale agglomerates as a function of condensation/evaporation cycles via optical and field emission scanning electron microscopy (FESEM), microgoniometric contact angle measurements, nucleation statistics, and energy dispersive X-ray spectroscopy (EDS). The FESEM and EDS results indicated that the nanoscale agglomerates stem from absorption of sulfuric acid based aerosol particles inside the droplet and adsorption of volatile organic compounds such as methanethiol (CH 3 SH), dimethyl disulfide (CH 3 SSCH), and dimethyl trisulfide (CH 3 SSSCH 3 ) on the liquid-vapor interface during water vapor condensation, which act as preferential sites for heterogeneous nucleation after evaporation. The insights gained from this study elucidate fundamental aspects governing the behavior of both short- and long-term heterogeneous nucleation on hydrophobic surfaces, suggest previously unexplored microfabrication and air purification techniques, and present insights into the challenges facing the development of durable dropwise condensing surfaces.

  10. Geometric rectification for nanoscale vibrational energy harvesting

    Science.gov (United States)

    Bustos-Marún, Raúl A.

    2018-02-01

    In this work, we present a mechanism that, based on quantum-mechanical principles, allows one to recover kinetic energy at the nanoscale. Our premise is that very small mechanical excitations, such as those arising from sound waves propagating through a nanoscale system or similar phenomena, can be quite generally converted into useful electrical work by applying the same principles behind conventional adiabatic quantum pumping. The proposal is potentially useful for nanoscale vibrational energy harvesting where it can have several advantages. The most important one is that it avoids the use of classical rectification mechanisms as it is based on what we call geometric rectification. We show that this geometric rectification results from applying appropriate but quite general initial conditions to damped harmonic systems coupled to electronic reservoirs. We analyze an analytically solvable example consisting of a wire suspended over permanent charges where we find the condition for maximizing the pumped charge. We also studied the effects of coupling the system to a capacitor including the effect of current-induced forces and analyzing the steady-state voltage of operation. Finally, we show how quantum effects can be used to boost the performance of the proposed device.

  11. Nanoscale piezoelectric vibration energy harvester design

    Science.gov (United States)

    Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin

    2017-09-01

    Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  12. Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH

    Directory of Open Access Journals (Sweden)

    Mohd Zobir Hussein

    2014-11-01

    Full Text Available Multi-walled carbon nanotubes (MWCNTs were prepared via chemical vapor deposition (CVD using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs. Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.

  13. Formation and yield of multi-walled carbon nanotubes synthesized via chemical vapour deposition routes using different metal-based catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH.

    Science.gov (United States)

    Hussein, Mohd Zobir; Jaafar, Adila Mohamad; Yahaya, Asmah Hj; Masarudin, Mas Jaffri; Zainal, Zulkarnain

    2014-11-05

    Multi-walled carbon nanotubes (MWCNTs) were prepared via chemical vapor deposition (CVD) using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs). Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.

  14. Extensive Characterization of Oxide-Coated Colloidal Gold Nanoparticles Synthesized by Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Romuald Intartaglia

    2016-09-01

    Full Text Available Colloidal gold nanoparticles are a widespread nanomaterial with many potential applications, but their aggregation in suspension is a critical issue which is usually prevented by organic surfactants. This solution has some drawbacks, such as material contamination and modifications of its functional properties. The gold nanoparticles presented in this work have been synthesized by ultra-fast laser ablation in liquid, which addresses the above issues by overcoating the metal nanoparticles with an oxide layer. The main focus of the work is in the characterization of the oxidized gold nanoparticles, which were made first in solution by means of dynamic light scattering and optical spectroscopy, and then in dried form by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and finally by surface potential measurements with atomic force microscopy. The light scattering assessed the nanoscale size of the formed particles and provided insight in their stability. The nanoparticles’ size was confirmed by direct imaging in transmission electron microscopy, and their crystalline nature was disclosed by X-ray diffraction. The X-ray photoelectron spectroscopy showed measurements compatible with the presence of surface oxide, which was confirmed by the surface potential measurements, which are the novel point of the present work. In conclusion, the method of laser ablation in liquid for the synthesis of gold nanoparticles has been presented, and the advantage of this physical approach, consisting of coating the nanoparticles in situ with gold oxide which provides the required morphological and chemical stability without organic surfactants, has been confirmed by using scanning Kelvin probe microscopy for the first time.

  15. Extensive Characterization of Oxide-Coated Colloidal Gold Nanoparticles Synthesized by Laser Ablation in Liquid

    Science.gov (United States)

    Intartaglia, Romuald; Rodio, Marina; Abdellatif, Mohamed; Prato, Mirko; Salerno, Marco

    2016-01-01

    Colloidal gold nanoparticles are a widespread nanomaterial with many potential applications, but their aggregation in suspension is a critical issue which is usually prevented by organic surfactants. This solution has some drawbacks, such as material contamination and modifications of its functional properties. The gold nanoparticles presented in this work have been synthesized by ultra-fast laser ablation in liquid, which addresses the above issues by overcoating the metal nanoparticles with an oxide layer. The main focus of the work is in the characterization of the oxidized gold nanoparticles, which were made first in solution by means of dynamic light scattering and optical spectroscopy, and then in dried form by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and finally by surface potential measurements with atomic force microscopy. The light scattering assessed the nanoscale size of the formed particles and provided insight in their stability. The nanoparticles’ size was confirmed by direct imaging in transmission electron microscopy, and their crystalline nature was disclosed by X-ray diffraction. The X-ray photoelectron spectroscopy showed measurements compatible with the presence of surface oxide, which was confirmed by the surface potential measurements, which are the novel point of the present work. In conclusion, the method of laser ablation in liquid for the synthesis of gold nanoparticles has been presented, and the advantage of this physical approach, consisting of coating the nanoparticles in situ with gold oxide which provides the required morphological and chemical stability without organic surfactants, has been confirmed by using scanning Kelvin probe microscopy for the first time. PMID:28773897

  16. Information Retrieval for Ecological Syntheses

    Science.gov (United States)

    Bayliss, Helen R.; Beyer, Fiona R.

    2015-01-01

    Research syntheses are increasingly being conducted within the fields of ecology and environmental management. Information retrieval is crucial in any synthesis in identifying data for inclusion whilst potentially reducing biases in the dataset gathered, yet the nature of ecological information provides several challenges when compared with…

  17. Syntheses, characterization and crystal structures of potassium and ...

    Indian Academy of Sciences (India)

    Syntheses, characterization and crystal structures of potassium and barium complexes of a Schiff base ligand with different anions. Bhavesh Parmar Kamal Kumar Bisht Pratyush Maiti Parimal Paul Eringathodi Suresh. Special issue on Chemical Crystallography Volume 126 Issue 5 September 2014 pp 1373-1384 ...

  18. Syntheses, structures and properties of two dinuclear mercury (II ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 3. Syntheses, structures and properties of two dinuclear mercury(II) iodide compounds containing tetradentate tripodal amine/pentadentate N-donor Schiff base: Control of molecular and crystalline architectures by varying ligand matrices. Subhasis Roy ...

  19. Syntheses, structures and properties of two coordination polymers of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 12. Syntheses, structures and properties of two coordination polymers of Cadmium(II) pseudohalide containing an in situ generated bidentate Schiff base: Control of dimensionality by varying pseudohalides. REGULAR ARTICLE Volume 129 Issue 12 ...

  20. Analytical method to determine flexoelectric coupling coefficient at nanoscale

    Science.gov (United States)

    Zhou, Hao; Pei, Yongmao; Hong, Jiawang; Fang, Daining

    2016-03-01

    Flexoelectricity is defined as the coupling between the strain gradient and polarization, which is expected to be remarkable at nanoscale. However, measuring the flexoelectricity at nanoscale is challenging. In the present work, an analytical method for measuring the flexoelectric coupling coefficient based on nanocompression technique is proposed. It is found that the flexoelectricity can induce stiffness softening of the dielectric nano-cone-frustum. This phenomenon becomes more significant when the sample size decreases or the half cone angle increases. This method avoids measuring the electric polarization or current at nanoscale with dynamical loading, which can be beneficial to the flexoelectric measurement at nanoscale and design of flexoelectric nanodevices.

  1. Environmental, Health, and Safety Research Needs for Engineered Nanoscale Materials

    National Research Council Canada - National Science Library

    Alderson, Norris; Alexander, Catherine; Merzbacher, Celia; Chernicoff, William; Middendorf, Paul; Beck, Nancy; Chow, Flora; Poster, Dianne; Danello, Mary Ann; Barrera, Enriqueta

    2006-01-01

    ...) research and information needs related to understanding and management of potential risks of engineered nanoscale materials that may be used, for example, in commercial or consumer products, medical...

  2. Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale.

    Science.gov (United States)

    Mo, Jingyi; Prévost, Sylvain F; Blowes, Liisa M; Egertová, Michaela; Terrill, Nicholas J; Wang, Wen; Elphick, Maurice R; Gupta, Himadri S

    2016-10-18

    The mutable collagenous tissue (MCT) of echinoderms (e.g., sea cucumbers and starfish) is a remarkable example of a biological material that has the unique attribute, among collagenous tissues, of being able to rapidly change its stiffness and extensibility under neural control. However, the mechanisms of MCT have not been characterized at the nanoscale. Using synchrotron small-angle X-ray diffraction to probe time-dependent changes in fibrillar structure during in situ tensile testing of sea cucumber dermis, we investigate the ultrastructural mechanics of MCT by measuring fibril strain at different chemically induced mechanical states. By measuring a variable interfibrillar stiffness (E IF ), the mechanism of mutability at the nanoscale can be demonstrated directly. A model of stiffness modulation via enhanced fibrillar recruitment is developed to explain the biophysical mechanisms of MCT. Understanding the mechanisms of MCT quantitatively may have applications in development of new types of mechanically tunable biomaterials.

  3. Force-detected nanoscale absorption spectroscopy in water at room temperature using an optical trap

    Science.gov (United States)

    Parobek, Alexander; Black, Jacob W.; Kamenetska, Maria; Ganim, Ziad

    2018-04-01

    Measuring absorption spectra of single molecules presents a fundamental challenge for standard transmission-based instruments because of the inherently low signal relative to the large background of the excitation source. Here we demonstrate a new approach for performing absorption spectroscopy in solution using a force measurement to read out optical excitation at the nanoscale. The photoinduced force between model chromophores and an optically trapped gold nanoshell has been measured in water at room temperature. This photoinduced force is characterized as a function of wavelength to yield the force spectrum, which is shown to be correlated to the absorption spectrum for four model systems. The instrument constructed for these measurements combines an optical tweezer with frequency domain absorption spectroscopy over the 400-800 nm range. These measurements provide proof-of-principle experiments for force-detected nanoscale spectroscopies that operate under ambient chemical conditions.

  4. Nanostructural and magnetic studies of virtually monodispersed NiFe2O4 nanocrystals synthesized by a liquid–solid-solution assisted hydrothermal route

    International Nuclear Information System (INIS)

    Li Xinghua; Tan Guoguo; Chen Wei; Zhou Baofan; Xue Desheng; Peng Yong; Li, Fashen; Mellors, Nigel J.

    2012-01-01

    This study presents a comprehensively and systematically structural, chemical and magnetic characterization of ∼9.5 nm virtually monodispersed nickel ferrite (NiFe 2 O 4 ) nanoparticles prepared using a modified liquid–solid-solution (LSS) assisted hydrothermal method. Lattice-resolution scanning transmission electron microscope (STEM) and converged beam electron diffraction pattern (CBED) techniques are adapted to characterize the detailed spatial morphology and crystal structure of individual NiFe 2 O 4 particles at nano scale for the first time. It is found that each NiFe 2 O 4 nanoparticle is single crystal with an fcc structure. The morphology investigation reveals that the prepared NiFe 2 O 4 nanoparticles of which the surfaces are decorated by oleic acid are dispersed individually in hexane. The chemical composition of nickel ferrite nanoparticles is measured to be 1:2 atomic ratio of Ni:Fe, indicating a pure NiFe 2 O 4 composition. Magnetic measurements reveal that the as-synthesized nanocrystals displayed superparamagnetic behavior at room temperature and were ferromagnetic at 10 K. The nanoscale characterization and magnetic investigation of monodispersed NiFe 2 O 4 nanoparticles should be significant for its potential applications in the field of biomedicine and magnetic fluid using them as magnetic materials.

  5. Inelastic transport theory for nanoscale systems

    DEFF Research Database (Denmark)

    Frederiksen, Thomas

    2007-01-01

    This thesis describes theoretical and numerical investigations of inelastic scat- tering and energy dissipation in electron transport through nanoscale sys- tems. A computational scheme, based on a combination of density functional theory (DFT) and nonequilibrium Green’s functions (NEGF), has been...... the conductance. The methods have been applied to a number of specific systems, includ- ing monatomic gold chains, atomic point contacts, and metal-molecule-metal configurations. These studies have clarified the inelastic effects in the elec- tron transport and characterized the vibrational modes that couple...

  6. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy.

    Science.gov (United States)

    Tenne, D A; Bruchhausen, A; Lanzillotti-Kimura, N D; Fainstein, A; Katiyar, R S; Cantarero, A; Soukiassian, A; Vaithyanathan, V; Haeni, J H; Tian, W; Schlom, D G; Choi, K J; Kim, D M; Eom, C B; Sun, H P; Pan, X Q; Li, Y L; Chen, L Q; Jia, Q X; Nakhmanson, S M; Rabe, K M; Xi, X X

    2006-09-15

    We demonstrated that ultraviolet Raman spectroscopy is an effective technique to measure the transition temperature (Tc) in ferroelectric ultrathin films and superlattices. We showed that one-unit-cell-thick BaTiO3 layers in BaTiO3/SrTiO3 superlattices are not only ferroelectric (with Tc as high as 250 kelvin) but also polarize the quantum paraelectric SrTiO3 layers adjacent to them. Tc was tuned by approximately 500 kelvin by varying the thicknesses of the BaTiO3 and SrTiO3 layers, revealing the essential roles of electrical and mechanical boundary conditions for nanoscale ferroelectricity.

  7. Micro- and nanoscale phenomena in tribology

    CERN Document Server

    Chung, Yip-Wah

    2011-01-01

    Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study.After discussing the

  8. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji

    2011-04-21

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  9. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than

  10. Recent Advances in Chemoenzymatic Peptide Syntheses

    Directory of Open Access Journals (Sweden)

    Kenjiro Yazawa

    2014-09-01

    Full Text Available Chemoenzymatic peptide synthesis is the hydrolase-catalyzed stereoselective formation of peptide bonds. It is a clean and mild procedure, unlike conventional chemical synthesis, which involves complicated and laborious protection-deprotection procedures and harsh reaction conditions. The chemoenzymatic approach has been utilized for several decades because determining the optimal conditions for conventional synthesis is often time-consuming. The synthesis of poly- and oligopeptides comprising various amino acids longer than a dipeptide continues to pose a challenge owing to the lack of knowledge about enzymatic mechanisms and owing to difficulty in optimizing the pH, temperature, and other reaction conditions. These drawbacks limit the applications of the chemoenzymatic approach. Recently, a variety of enzymes and substrates produced using recombinant techniques, substrate mimetics, and optimal reaction conditions (e.g., frozen aqueous media and ionic liquids have broadened the scope of chemoenzymatic peptide syntheses. In this review, we highlight the recent advances in the chemoenzymatic syntheses of various peptides and their use in developing new materials and biomedical applications.

  11. Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles.

    Science.gov (United States)

    Chen, Xi; Yao, Xiaoyan; Yu, Chunna; Su, Xiaomei; Shen, Chaofeng; Chen, Chen; Huang, Ronglang; Xu, Xinhua

    2014-04-01

    Soil pollution by polychlorinated biphenyls (PCBs) arising from the crude disposal and recycling of electronic and electrical waste (e-waste) is a serious issue, and effective remediation technologies are urgently needed. Nanoscale zerovalent iron (nZVI) and bimetallic systems have been shown to promote successfully the destruction of halogenated organic compounds. In the present study, nZVI and Pd/Fe bimetallic nanoparticles synthesized by chemical deposition were used to remove 2,2',4,4',5,5'-hexachlorobiphenyl from deionized water, and then applied to PCBs contaminated soil collected from an e-waste recycling area. The results indicated that the hydrodechlorination of 2,2',4,4',5,5'-hexachlorobiphenyl by nZVI and Pd/Fe bimetallic nanoparticles followed pseudo-first-order kinetics and Pd loading was beneficial to the hydrodechlorination process. It was also found that the removal efficiencies of PCBs from soil achieved using Pd/Fe bimetallic nanoparticles were higher than that achieved using nZVI and that PCBs degradation might be affected by the soil properties. Finally, the potential challenges of nZVI application to in situ remediation were explored.

  12. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  13. Enhanced solid-state order and field-effect hole mobility through control of nanoscale polymer aggregation

    KAUST Repository

    Chen, Mark S.

    2013-12-26

    Efficient charge carrier transport in organic field-effect transistors (OFETs) often requires thin films that display long-range order and close π-π packing that is oriented in-plane with the substrate. Although some polymers have achieved high field-effect mobility with such solid-state properties, there are currently few general strategies for controlling the orientation of π-stacking within polymer films. In order to probe structural effects on polymer-packing alignment, furan-containing diketopyrrolopyrrole (DPP) polymers with similar optoelectronic properties were synthesized with either linear hexadecyl or branched 2-butyloctyl side chains. Differences in polymer solubility were observed and attributed to variation in side-chain shape and polymer backbone curvature. Averaged field-effect hole mobilities of the polymers range from 0.19 to 1.82 cm2/V·s, where PDPP3F-C16 is the least soluble polymer and provides the highest maximum mobility of 2.25 cm2/V·s. Analysis of the films by AFM and GIXD reveal that less soluble polymers with linear side chains exhibit larger crystalline domains, pack considerably more closely, and align with a greater preference for in-plane π-π packing. Characterization of the polymer solutions prior to spin-coating shows a correlation between early onset nanoscale aggregation and the formation of films with highly oriented in-plane π-stacking. This effect is further observed when nonsolvent is added to PDPP3F-BO solutions to induce aggregation, which results in films with increased nanostructural order, in-plane π-π orientation, and field-effect hole mobilities. Since nearly all π-conjugated materials may be coaxed to aggregate, this strategy for enhancing solid-state properties and OFET performance has applicability to a wide variety of organic electronic materials. © 2013 American Chemical Society.

  14. Cadmium immobilization in river sediment using stabilized nanoscale zero-valent iron with enhanced transport by polysaccharide coating.

    Science.gov (United States)

    Huang, Danlian; Hu, Zhengxun; Peng, Zhiwei; Zeng, Guangming; Chen, Guomin; Zhang, Chen; Cheng, Min; Wan, Jia; Wang, Xi; Qin, Xiang

    2018-03-15

    Proper management of metal-contaminated sediment plays a key role in sediment recovery and reuse. This study synthesized two kinds of stabilized nanoscale zero-valent iron (nZVI) with starch (S-nZVI) and carboxymethyl cellulose (C-nZVI) for the in situ immobilization of Cd(II) in river sediment and investigated their transport in porous media. Experimental data showed that when the sediment sample was treated with C-nZVI for 56 days at a dosage ranging from 5 to 10 mg/g-sediment as Fe 0 , the TCLP (toxicity characteristic leaching procedure) leachability of Cd(II) in the sediment decreased by 93.75-96.43%, and the PBET (physiologically-based extraction test) bioaccessibility of Cd(II) decreased by 22.79-71.32%. Additionally, the acid soluble fraction of Cd(II) was partially transformed to a residual fraction, resulting in a 32.4-33.1% decrease of acid soluble Cd(II) and a 125.4-205.6% increase of the residual-Cd(II) fraction. Surface complexation with iron oxyhydroxide minerals might be the main mechanism of Cd(II) immobilization in sediment. Column experiments indicate that starch or carboxymethyl cellulose (CMC) could extend the travel distance of nZVI, but inherent site physical and chemical heterogeneities still posed challenges for nanoparticle transport. Over all, this study verifies the effectiveness of stabilized nZVI for Cd(II) immobilization in sediment and discusses the potential immobilization mechanism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Catalytic method for synthesizing hydrocarbons

    Science.gov (United States)

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.

  16. Preparation of Nano-Scale Biopolymer Extracted from Coconut Residue and Its Performance as Drag Reducing Agent (DRA

    Directory of Open Access Journals (Sweden)

    Hasan Muhammad Luqman Bin

    2017-01-01

    Full Text Available Drag or frictional force is defined as force that acts opposite to the object’s relative motion through a fluid which then will cause frictional pressure loss in the pipeline. Drag Reducing Agent (DRA is used to solve this issue and most of the DRAs are synthetic polymers but has some environmental issues. Therefore for this study, biopolymer known as Coconut Residue (CR is selected as the candidate to replace synthetic polymers DRA. The objective of this study is to evaluate the effectiveness of Nano-scale biopolymer DRA on the application of water injection system. Carboxymethyl cellulose (CMC is extracted by synthesizing the cellulose extracted from CR under the alkali-catalyzed reaction using monochloroacetic acid. The synthesize process is held in controlled condition whereby the concentration of NaOH is kept at 60%wt, 60 °C temperature and the reaction time is 4 hours. For every 25 g of dried CR used, the mass of synthesized CMC yield is at an average of 23.8 g. The synthesized CMC is then grinded in controlled parameters using the ball milling machine to get the Nano-scale size. The particle size obtained from this is 43.32 Nm which is in range of Nano size. This study proved that Nano-size CMC has higher percentage of drag reduction (%DR and flow increase (%FI if compared to normal-size CMC when tested in high and low flow rate; 44% to 48% increase in %DR and %FI when tested in low flow rate, and 16% to 18% increase in %DR and %FI when tested in high flow rate. The success of this research shows that Nano-scale DRA can be considered to be used to have better performance in reducing drag.

  17. Solid phase syntheses of oligoureas

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, K.; Linthicum, D.S.; Russell, D.H.; Shin, H.; Shitangkoon, A.; Totani, R.; Zhang, A.J.; Ibarzo, J. [Texas A& M Univ., College Station, TX (United States)

    1997-02-19

    Isocyanates 7 were formed from monoprotected diamines 3 or 6, which in turn can be easily prepared from commercially available N-BOC- or N-FMOC-protected amino acid derivatives. Isocyanates 7, formed in situ, could be coupled directly to a solid support functionalized with amine groups or to amino acids anchored on resins using CH{sub 2}Cl{sub 2} as solvent and an 11 h coupling time at 25 {degree}C. Such couplings afforded peptidomimetics with an N-phthaloyl group at the N-terminus. The optimal conditions identified for removal of the N-phthaloyl group were to use 60% hydrazine in DMF for 1-3 h. Several sequences of amino acids coupled to ureas (`peptidic ureas`) and of sequential urea units (`oligoureas`) were prepared via solid phase syntheses and isolated by HPLC. Partition coefficients were measured for two of these peptidomimetics, and their water solubilities were found to be similar to the corresponding peptides. A small library of 160 analogues of the YGGFL-amide sequence was prepared via Houghten`s tea bag methodology. This library was tested for binding to the anti-{beta}-endorphin monoclonal antibody. Overall, this paper describes methodology for solid phase syntheses of oligourea derivatives with side chains corresponding to some of the protein amino acids. The chemistry involved is ideal for high-throughput syntheses and screening operations. 51 refs., 3 figs., 2 tabs.

  18. Chemical Sensors Based on Molecularly Imprinted Sol-Gel Materials †

    Science.gov (United States)

    Mujahid, Adnan; Lieberzeit, Peter A.; Dickert, Franz L.

    2010-01-01

    The sol-gel technique is earning the worldwide attention of researchers in the field of material science, due to its versatility in synthesizing inorganic ceramic materials at mild conditions. High purity, homogeneity, controlled porosity, stable temperature and nanoscale structuring are the most remarkable features offered by this method for generating highly sensitive and selective matrices to incorporate analyte molecules. The crafting of sol-gel sensors through molecular imprinting has put great influence on the development of innovative chemical sensors, which can be seen from the growing number of publications in this field. The review provides a brief overview of sol-gel sensor applications, and discusses the contribution of molecular imprinting in exploring the new world of sensors.

  19. Improving Neural Recording Technology at the Nanoscale

    Science.gov (United States)

    Ferguson, John Eric

    Neural recording electrodes are widely used to study normal brain function (e.g., learning, memory, and sensation) and abnormal brain function (e.g., epilepsy, addiction, and depression) and to interface with the nervous system for neuroprosthetics. With a deep understanding of the electrode interface at the nanoscale and the use of novel nanofabrication processes, neural recording electrodes can be designed that surpass previous limits and enable new applications. In this thesis, I will discuss three projects. In the first project, we created an ultralow-impedance electrode coating by controlling the nanoscale texture of electrode surfaces. In the second project, we developed a novel nanowire electrode for long-term intracellular recordings. In the third project, we created a means of wirelessly communicating with ultra-miniature, implantable neural recording devices. The techniques developed for these projects offer significant improvements in the quality of neural recordings. They can also open the door to new types of experiments and medical devices, which can lead to a better understanding of the brain and can enable novel and improved tools for clinical applications.

  20. Nanoscale Science and Engineering in Romania

    International Nuclear Information System (INIS)

    Dascalu, Dan; Topa, Vladimir; Kleps, Irina

    2001-01-01

    In spite of difficult working conditions and with very low financial support, many groups from Romania are involved in emerging fields, such as the nanoscale science and technology. Until the last years, this activity was developed without a central coordination and without many interactions between these research groups. In the year 2000, some of the institutes and universities active in the nanotechnology field in Romania founded the MICRONANOTECH network. The aim of this paper is to emphasize the main activities and results of the Romanian groups working in this novel domain. Most of the groups are deal with the nanomaterial technology and only few of them have activities in nanostructure science and engineering, in new concepts and device modeling and technology. This paper describes the nanotechnology research development in two of the most significant institutes from Romania: Centre for Nanotechnologies from National Institute for Research and Development in Microtehnologies (IMT-Bucharest) and from National Institute for Research and Development in Materials Physics (INCD-FM), Magurele. The Romanian research results in nanotechnology field were presented in numerous papers presented in international conferences or published in national and international journals. They are also presented in patents, international awards and fellowships. The research effort and financial support are outlined. Some future trends of the Romanian nanoscale science and technology research are also described

  1. Recombinant protein-based nanoscale biomemory devices.

    Science.gov (United States)

    Yagati, A K; Min, J; Choi, J W

    2014-01-01

    Biomolecular computing devices that are based on the properties of biomolecular activities offer a unique possibility for constructing new computing structures. A new concept of using various biomolecules has been proposed in order to develop a protein-based memory device that is capable of switching physical properties when electrical input signals are applied to perform memory switching. To clarify the proposed concept, redox protein is immobilized on Au nanoelectrodes to catalyze reversible reactions of redox-active molecules, which is controlled electrochemically and reversibly converted between its ON/OFF states. In this review, we summarize recent research towards developing nanoscale biomemory devices including design, synthesis, fabrication, and functionalization based on the proposed concept. At first we analyze the memory function properties of the proposed device at bulk material level and then explain the WORM (write-once-read-many times) nature of the device, later we extend the analysis to multi-bit and multi-level storage functions, and then we focus the developments in nanoscale biomemory devices based on the electron transport of redox molecules to the underlying Au patterned surface. The developed device operates at very low voltages and has good stability and excellent reversibility, proving to be a promising platform for future memory devices.

  2. Computer simulations for the nano-scale

    International Nuclear Information System (INIS)

    Stich, I.

    2007-01-01

    A review of methods for computations for the nano-scale is presented. The paper should provide a convenient starting point into computations for the nano-scale as well as a more in depth presentation for those already working in the field of atomic/molecular-scale modeling. The argument is divided in chapters covering the methods for description of the (i) electrons, (ii) ions, and (iii) techniques for efficient solving of the underlying equations. A fairly broad view is taken covering the Hartree-Fock approximation, density functional techniques and quantum Monte-Carlo techniques for electrons. The customary quantum chemistry methods, such as post Hartree-Fock techniques, are only briefly mentioned. Description of both classical and quantum ions is presented. The techniques cover Ehrenfest, Born-Oppenheimer, and Car-Parrinello dynamics. The strong and weak points of both principal and technical nature are analyzed. In the second part we introduce a number of applications to demonstrate the different approximations and techniques introduced in the first part. They cover a wide range of applications such as non-simple liquids, surfaces, molecule-surface interactions, applications in nano technology, etc. These more in depth presentations, while certainly not exhaustive, should provide information on technical aspects of the simulations, typical parameters used, and ways of analysis of the huge amounts of data generated in these large-scale supercomputer simulations. (author)

  3. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in ...

    Science.gov (United States)

    EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as part of a process to identify and prioritize research to inform future assessments of the potential ecological and health implications of these materials. Two specific applications of nanoscale titanium dioxide (nano-TiO2) are considered: (1) as an agent for removing arsenic from drinking water; and (2) as an active ingredient in topical sunscreen. These case studies are organized around a comprehensive environmental assessment (CEA) framework that combines a product life cycle perspective with the risk assessment paradigm. They are intended to help identify what may need to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. These “case studies” do not represent completed or even preliminary assessments, nor are they intended to serve as a basis for risk management decisions in the near term on these specific uses of nano TiO2. Rather, the intent is to use this document in developing the scientific and technical information needed for future assessment efforts.

  4. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    Science.gov (United States)

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  5. Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray. This report represents a case study of engineered nanoscale silver (nano-Ag), focusing on the specific example of nano-Ag as possibly used in disinfectant spr...

  6. Tuning functional properties: From nanoscale building blocks to ...

    Indian Academy of Sciences (India)

    ous nanoscale building blocks, metal and semiconductor nanoparticles and carbon nanotubes have gained much attention and a brief summary of their functional properties is discussed. Further- more, the functional properties of nanomaterials can be fine-tuned by a stepwise integration of these nanoscale building blocks ...

  7. Frontier in nanoscale flows fractional calculus and analytical methods

    CERN Document Server

    Lewis, Roland; Liu, Hong-yan

    2014-01-01

    This ebook covers the basic properties of nanoscale flows, and various analytical and numerical methods for nanoscale flows and environmental flows. This ebook is a good reference not only for audience of the journal, but also for various communities in mathematics, nanotechnology and environmental science.

  8. Three-dimensional coherent x-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution.

    Science.gov (United States)

    Jiang, Huaidong; Xu, Rui; Chen, Chien-Chun; Yang, Wenge; Fan, Jiadong; Tao, Xutang; Song, Changyong; Kohmura, Yoshiki; Xiao, Tiqiao; Wang, Yong; Fei, Yingwei; Ishikawa, Tetsuya; Mao, Wendy L; Miao, Jianwei

    2013-05-17

    We report quantitative 3D coherent x-ray diffraction imaging of a molten Fe-rich alloy and crystalline olivine sample, synthesized at 6 GPa and 1800 °C, with nanoscale resolution. The 3D mass density map is determined and the 3D distribution of the Fe-rich and Fe-S phases in the olivine-Fe-S sample is observed. Our results indicate that the Fe-rich melt exhibits varied 3D shapes and sizes in the olivine matrix. This work has potential for not only improving our understanding of the complex interactions between Fe-rich core-forming melts and mantle silicate phases but also paves the way for quantitative 3D imaging of materials at nanoscale resolution under extreme pressures and temperatures.

  9. Characterization of chemically synthesized CdS nanoparticles

    Indian Academy of Sciences (India)

    Abstract. II–VI semiconductor nanoparticles are presently of great interest for their practical applications such as zero-dimensional quantum confined materials and for their applications in optoelectronics and photonics. The optical properties get modified dra- matically due to the confinement of charge carriers within the ...

  10. Comparative studies of chemically synthesized and RF plasma ...

    Indian Academy of Sciences (India)

    Transmission and reflectance spectra were studied for measuring optical constants like absorption coefficient (α), extinction coefficient (K), optical band gap (Eg), Urbach energy (Ee), and ... and storage, as organic diodes, etc. ... A stabilized voltage of 1.5 V was applied across the sample and the resultant current was.

  11. Comparative studies of chemically synthesized and RF plasma ...

    Indian Academy of Sciences (India)

    UV–visible, XRD and FTIR techniques. The DC-conductivity was measured at 410 K, which ... like toluene, chloroform, xylene, m-cresol etc. [13,14]. In order to obtain additional insight into ... terized by DC conductivity, UV–visible, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) spectroscopy. 2.

  12. Characterization of chemically synthesized CdS nanoparticles

    Indian Academy of Sciences (India)

    II–VI semiconductor nanoparticles are presently of great interest for their practical applications such as zero-dimensional quantum confined materials and for their applications in optoelectronics and photonics. The optical properties get modified dramatically due to the confinement of charge carriers within the nanoparticles.

  13. Comparative studies of chemically synthesized and RF plasma ...

    Indian Academy of Sciences (India)

    Author Affiliations. Shama Islam1 G B V S Lakshmi2 M Zulfequar1 M Husain1 Azher M Siddiqui1. Department of Physics, Jamia Millia Islamia, New Delhi 110 025, India; Material Science Group, Inter University Accelerator Centre, New Delhi 110 067, India ...

  14. Thermophysical properties study of micro/nanoscale materials

    Science.gov (United States)

    Feng, Xuhui

    Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for understanding of the energy conversion and thermal management. To better investigate micro/nanoscale materials and characterize the thermal transport, pulse laser-assisted thermal relaxation 2 (PLTR2) and transient electrothermal (TET) are both employed to determine thermal property of various forms of materials, including thin films and nanowires. As conducting polymer, Poly(3-hexylthiophene) (P3HT) thin film is studied to understand its thermal properties variation with P3HT weight percentage. 4 P3HT solutions of different weight percentages are compounded to fabricate thin films using spin-coating technique. Experimental results indicate that weight percentage exhibits impact on thermophysical properties. When percentage changes from 2% to 7%, thermal conductivity varies from 1.29 to 1.67 W/m·K and thermal diffusivity decreases from 10-6 to 5×10-7 m2/s. Moreover, PLTR2 technique is applied to characterize the three-dimensional anisotropic thermal properties in spin-coated P3HT thin films. Raman spectra verify that the thin films embrace partially orientated P3HT molecular chains, leading to anisotropic thermal transport. Among all three directions, lowest thermal property is observed along out-of-plane direction. For in-plane characterization, anisotropic ratio is around 2 to 3, indicating that the orientation of the molecular chains has strong impact on the thermal transport along different directions. Titanium dioxide (TiO2) thin film is synthesized by electrospinning features porous structure composed by TiO2 nanowires with random orientations. The porous structure caused significant degradation of thermal properties. Effective thermal diffusivity, conductivity, and density of the films are 1.35˜3.52 × 10-6 m2/s, 0.06˜0.36 W/m·K, and

  15. EDITORIAL: Quantum science and technology at the nanoscale Quantum science and technology at the nanoscale

    Science.gov (United States)

    Demming, Anna

    2010-07-01

    The development of quantum theory was an archetypal scientific revolution in early twentieth-century physics. In many ways, the probabilities and uncertainties that replaced the ubiquitous application of classical mechanics may have seemed a violent assault on logic and reason. 'Something unknown is doing we don't know what-that is what our theory amounts to,' Sir Arthur Eddington famously remarked, adding, 'It does not sound a particularly illuminating theory. I have read something like it elsewhere: the slithy toves, did gyre and gimble in the wabe' [1]. Today, quantum mechanics no longer seems a dark art best confined to the boundaries of physics and philosophy. Scanning probe micrographs have captured actual images of quantum-mechanical interference patterns [2], and familiarity has made the claims of quantum theory more palatable. An understanding of quantum effects is essential for nanoscale science and technology research. This special issue on quantum science and technology at the nanoscale collates some of the latest research that is extending the boundaries of our knowledge and understanding in the field. Quantum phenomena have become particularly significant in attempts to further reduce the size of electronic devices, the trend widely referred to as Moore's law. In this issue, researchers in Switzerland report results from transport studies on graphene. The researchers investigate the conductance variance in systems with superconducting contacts [3]. Also in this issue, researchers in Germany calculate the effects of spin-orbit coupling in a molecular dimer and predict nonlinear transport. They also explain how ferromagnetic electrodes can be used to probe these interactions [4]. Our understanding of spin and the ability to manipulate it has advanced greatly since the notion of spin was first proposed. However, it remains the case that little is known about local coherent fluctuations of spin polarizations, the scale on which they occur, how they are

  16. Method of synthesizing tungsten nanoparticles

    Science.gov (United States)

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  17. Hierarchical Canopy Dynamics of Electrolyte-Doped Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2013-12-23

    Nanoscale ionic materials (NIMs) are organic-inorganic hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counterions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used nuclear magnetic resonance relaxation and pulsed-field gradient NMR to probe local and collective canopy dynamics in NIMs based on 18-nm silica NPs with a covalently bound anionic corona, neutralized by amine-terminated ethylene oxide/propylene oxide block copolymers. The NMR relaxation studies show that the nanosecond-scale canopy dynamics depend on the degree of neutralization, the canopy radius of gyration, and crowding at the ionically modified NP surface. Two canopy populations are observed in the diffusion experiments, demonstrating that one fraction of the canopy is bound to the NP surface on the time scale (milliseconds) of the diffusion experiment and is surrounded by a more mobile layer of canopy that is unable to access the surface due to molecular crowding. The introduction of electrolyte ions (Na+ or Mg2+) screens the canopy-corona electrostatic interactions, resulting in a reduced bulk viscosity and faster canopy exchange. The magnitude of the screening effect depends upon ion concentration and valence, providing a simple route for tuning the macroscopic properties of NIMs. © 2013 American Chemical Society.

  18. Local Lithiation via Nanobattery Probes: Battery Interfaces at the Nanoscale

    Science.gov (United States)

    Larson, Jonathan; Talin, Alec; Pearse, Alexander; Reutt-Robey, Janice

    Greater knowledge of interfacial charge/mass transport processes in battery materials - especially as a function of lithiation - is essential to understand and overcome materials limitations in performance. Increased use of nanostructured and/or nanoscale electrodes in energy storage systems, calls for research tools that allow for direct, local probes of materials interfaces and inhomogeneity. Here we present a new approach to measure local interfacial structure, electronics, and electrochemical properties as a function of local chemical changes, like lithiation. Building upon our laboratory's recent success in developing scanning probe techniques for energy storage science, we introduce novel probes layered with nanothin, functional energy-storage materials. We perform in situ measurements of the electronic properties of oxide-clad probes, via electron tunneling spectroscopy, determining effective electron transport gaps. We then utilize these probes as fine Li sources and as nanobattery probes for local cycling against a silicon anode substrate. Post lithiation, conventional in-situ STM and SEM reveal local physical changes in the cycled Si(111) anode surface. U.S. DOE, Energy Frontier Research Center; DESC0001160.

  19. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    International Nuclear Information System (INIS)

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  20. Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors

    Science.gov (United States)

    Biyikli, Necmi; Haider, Ali

    2017-09-01

    In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.

  1. Nanoscale surface characterization using laser interference microscopy

    Science.gov (United States)

    Ignatyev, Pavel S.; Skrynnik, Andrey A.; Melnik, Yury A.

    2018-03-01

    Nanoscale surface characterization is one of the most significant parts of modern materials development and application. The modern microscopes are expensive and complicated tools, and its use for industrial tasks is limited due to laborious sample preparation, measurement procedures, and low operation speed. The laser modulation interference microscopy method (MIM) for real-time quantitative and qualitative analysis of glass, metals, ceramics, and various coatings has a spatial resolution of 0.1 nm for vertical and up to 100 nm for lateral. It is proposed as an alternative to traditional scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods. It is demonstrated that in the cases of roughness metrology for super smooth (Ra >1 nm) surfaces the application of a laser interference microscopy techniques is more optimal than conventional SEM and AFM. The comparison of semiconductor test structure for lateral dimensions measurements obtained with SEM and AFM and white light interferometer also demonstrates the advantages of MIM technique.

  2. Preface: Charge transport in nanoscale junctions

    Science.gov (United States)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    Understanding the fundamentals of nanoscale charge transfer is pivotal for designing future nano-electronic devices. Such devices could be based on individual or groups of molecular bridges, nanotubes, nanoparticles, biomolecules and other 'active' components, mimicking wire, diode and transistor functions. These have operated in various environments including vacuum, air and condensed matter, in two- or three-electrode configurations, at ultra-low and room temperatures. Interest in charge transport in ultra-small device components has a long history and can be dated back to Aviram and Ratner's letter in 1974 (Chem. Phys. Lett. 29 277-83). So why is there a necessity for a special issue on this subject? The area has reached some degree of maturity, and even subtle geometric effects in the nanojunction and noise features can now be resolved and rationalized based on existing theoretical concepts. One purpose of this special issue is thus to showcase various aspects of nanoscale and single-molecule charge transport from experimental and theoretical perspectives. The main principles have 'crystallized' in our minds, but there is still a long way to go before true single-molecule electronics can be implemented. Major obstacles include the stability of electronic nanojunctions, reliable operation at room temperature, speed of operation and, last but not least, integration into large networks. A gradual transition from traditional silicon-based electronics to devices involving a single (or a few) molecule(s) therefore appears to be more viable from technologic and economic perspectives than a 'quantum leap'. As research in this area progresses, new applications emerge, e.g. with a view to characterizing interfacial charge transfer at the single-molecule level in general. For example, electrochemical experiments with individual enzyme molecules demonstrate that catalytic processes can be studied with nanometre resolution, offering a route towards optimizing biosensors at

  3. Energy Conversion at Micro and Nanoscale

    International Nuclear Information System (INIS)

    Gammaitoni, Luca

    2014-01-01

    Energy management is considered a task of strategic importance in contemporary society. It is a common fact that the most successful economies of the planet are the economies that can transform and use large quantities of energy. In this talk we will discuss the role of energy with specific attention to the processes that happens at micro and nanoscale. The description of energy conversion processes at these scales requires approaches that go way beyond the standard equilibrium termodynamics of macroscopic systems. In this talk we will address from a fundamental point of view the physics of the dissipation of energy and will focus our attention to the energy transformation processes that take place in the modern micro and nano information and communication devices

  4. Nanoscale Particle Motion in Attractive Polymer Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Senses, Erkan; Narayanan, Suresh; Mao, Yimin; Faraone, Antonio

    2017-12-01

    Using x-ray photon correlation spectroscopy, we examined slow nanoscale motion of silica nanoparticles individually dispersed in entangled poly (ethylene oxide) melt at particle volume fractions up to 42 %. The nanoparticles, therefore, serve as both fillers for the resulting attractive polymer nanocomposites and probes for the network dynamics therein. The results show that the particle relaxation closely follows the mechanical reinforcement in the nanocomposites only at the intermediate concentrations below the critical value for the chain confinement. Quite unexpectedly, the relaxation time of the particles does not further slowdown at higher volume fractions- when all chains are practically on the nanoparticle interface- and decouples from the elastic modulus of the nanocomposites that further increases orders of magnitude.

  5. Quantum Nonlinear Optics in Optomechanical Nanoscale Waveguides.

    Science.gov (United States)

    Zoubi, Hashem; Hammerer, Klemens

    2017-09-22

    We show that strong nonlinearities at the few photon level can be achieved in optomechanical nanoscale waveguides. We consider the propagation of photons in cm-scale one-dimensional nanophotonic structures where stimulated Brillouin scattering (SBS) is strongly enhanced by radiation pressure coupling. We introduce a configuration that allows slowing down photons by several orders of magnitude via SBS from sound waves using two pump fields. Slowly propagating photons can then experience strong nonlinear interactions through virtual off-resonant exchange of dispersionless phonons. As a benchmark we identify requirements for achieving a large cross-phase modulation among two counterpropagating photons applicable for photonic quantum gates. Our results indicate that strongly nonlinear quantum optics is possible in continuum optomechanical systems realized in nanophotonic structures.

  6. Nanoscale device physics science and engineering fundamentals

    CERN Document Server

    Tiwari, Sandip

    2017-01-01

    Nanoscale devices are distinguishable from the larger microscale devices in their specific dependence on physical phenomena and effects that are central to their operation. The size change manifests itself through changes in importance of the phenomena and effects that become dominant and the changes in scale of underlying energetics and response. Examples of these include classical effects such as single electron effects, quantum effects such as the states accessible as well as their properties; ensemble effects ranging from consequences of the laws of numbers to changes in properties arising from different magnitudes of the inter-actions, and others. These interactions, with the limits placed on size, make not just electronic, but also magnetic, optical and mechanical behavior interesting, important and useful. Connecting these properties to the behavior of devices is the focus of this textbook. Description of the book series: This collection of four textbooks in the Electroscience series span the undergrad...

  7. Nanoscale Particle Motion in Attractive Polymer Nanocomposites

    Science.gov (United States)

    Senses, Erkan; Narayanan, Suresh; Mao, Yimin; Faraone, Antonio

    2017-12-01

    Using x-ray photon correlation spectroscopy, we examined the slow nanoscale motion of silica nanoparticles individually dispersed in an entangled poly (ethylene oxide) melt at particle volume fractions up to 42%. The nanoparticles, therefore, serve as both fillers for the resulting attractive polymer nanocomposites and probes for the network dynamics therein. The results show that the particle relaxation closely follows the mechanical reinforcement in the nanocomposites only at the intermediate concentrations below the critical value for the chain confinement. Quite unexpectedly, the relaxation time of the particles does not further slow down at higher volume fractions—when all chains are practically on the nanoparticle interface—and decouples from the elastic modulus of the nanocomposites that further increases orders of magnitude.

  8. Control of friction at the nanoscale

    Science.gov (United States)

    Barhen, Jacob; Braiman, Yehuda Y.; Protopopescu, Vladimir

    2010-04-06

    Methods and apparatus are described for control of friction at the nanoscale. A method of controlling frictional dynamics of a plurality of particles using non-Lipschitzian control includes determining an attribute of the plurality of particles; calculating an attribute deviation by subtracting the attribute of the plurality of particles from a target attribute; calculating a non-Lipschitzian feedback control term by raising the attribute deviation to a fractionary power .xi.=(2m+1)/(2n+1) where n=1, 2, 3 . . . and m=0, 1, 2, 3 . . . , with m strictly less than n and then multiplying by a control amplitude; and imposing the non-Lipschitzian feedback control term globally on each of the plurality of particles; imposing causes a subsequent magnitude of the attribute deviation to be reduced.

  9. Self-healing at the nanoscale

    Science.gov (United States)

    Amendola, Vincenzo; Meneghetti, Moreno

    2009-09-01

    The design of self-healing materials is a very important but challenging topic in nanotechnology. Self-healing strategies, also inspired by natural processes, allow the fabrication of auto-repairing systems, and in recent years, materials engineering at the nanoscale has allowed further advances in this emerging field. In this mini review, we recall some interesting self-healing systems found in natural processes and others created by man-made activity with special emphasis on the role played in this field by nanostructures. Finally, the self-healing of gold nanoparticles during laser irradiation is considered in more detail since it is a rare example of a functional nanomaterial with self-repairing properties.

  10. System reduction for nanoscale IC design

    CERN Document Server

    2017-01-01

    This book describes the computational challenges posed by the progression toward nanoscale electronic devices and increasingly short design cycles in the microelectronics industry, and proposes methods of model reduction which facilitate circuit and device simulation for specific tasks in the design cycle. The goal is to develop and compare methods for system reduction in the design of high dimensional nanoelectronic ICs, and to test these methods in the practice of semiconductor development. Six chapters describe the challenges for numerical simulation of nanoelectronic circuits and suggest model reduction methods for constituting equations. These include linear and nonlinear differential equations tailored to circuit equations and drift diffusion equations for semiconductor devices. The performance of these methods is illustrated with numerical experiments using real-world data. Readers will benefit from an up-to-date overview of the latest model reduction methods in computational nanoelectronics.

  11. Nanoscale spin sensing in artificial cell membranes

    International Nuclear Information System (INIS)

    Simpson David

    2014-01-01

    The use of the nitrogen-vacancy (NV) centre in diamond as a single spin sensor or magnetometer has attracted considerable interest in recent years because of its unique combination of sensitivity, nanoscale resolution, and optical initialisation and readout at room temperature. Nanodiamonds in particular hold great promise as an optical magnetometer probe for bio applications. In this work we employ nanodiamonds containing single NV spins to detect freely diffusing Mn2+ ions by detecting changes in the transverse relaxation time (T2) of the single spin probe. We also report the detection of gadolinium spin labels present in an artificial cell membrane by measuring changes in the longitudinal relaxation time (T1) of the probe. (author)

  12. Comparison on Bactericidal and Cytotoxic Effect of Silver Nanoparticles Synthesized by Different Methods

    Science.gov (United States)

    Mala, R.; Celsia, A. S. Ruby; Malathi Devi, S.; Geerthika, S.

    2017-08-01

    Biologically synthesized silver nanoparticle are biocompatible for medical applications. The present work is aimed to synthesize silver nanoparticle using the fruit pulp of Tamarindusindica and to evaluate its antibacterial and anticancer activity against lung cancercell lines. Antibacterial activity was assessed by well diffusion method. Cytotoxicity was evaluated using MTT assay. GC-MS of fruit pulp extract showed the presence of levoglucosenone, n-hexadecanoic acid, 9,12-octadecadienoic acid etc. Antioxidant activity of the fruit pulp was determined by DPPH assay, hydrogen peroxide scavenging assay and lipid peroxidation. The size of biologically synthesized silver nanoparticle varied from 50 nm to 76 nm. It was 59 nm to 98 nm for chemically synthesized silver nanoparticle. Biologically synthesized silver nanoparticle showed 26 mm inhibition zone against E. coli and chemically synthesized silver nanoparticle showed 20 mm. Antioxidant activity of fruit extract by DPPH showed 84 % reduction. The IC 50 of biologically synthesized silver nanoparticle against lung cancer cell lines was 48 µg/ml. It was 95 µg/ml for chemically synthesized silver nanoparticle. The increased activity of biologically synthesized silver nanoparticle was due to its smaller size, stability and the bioactive compounds capping the silver nanoparticle extracted from the fruit extract.

  13. Thermal stability of nanoscale metallic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, A.S., E-mail: sofia.ramos@dem.uc.pt [CEMUC, Departamento de Engenharia Mecânica, Universidade de Coimbra, 3030-788 Coimbra (Portugal); Cavaleiro, A.J.; Vieira, M.T. [CEMUC, Departamento de Engenharia Mecânica, Universidade de Coimbra, 3030-788 Coimbra (Portugal); Morgiel, J. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Cracow (Poland); Safran, G. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, H-1121 Budapest (Hungary)

    2014-11-28

    Metallic nanolayered thin films/foils, in particular Ni/Al multilayers, have been used to promote joining. The objective of this work is to evaluate the thermal stability of nanoscale metallic multilayers with potential for joining applications. Multilayers thin films with low (Ti/Al and Ni/Ti), medium (Ni/Al) and high (Pd/Al) enthalpies of exothermic reaction were prepared by dual cathode magnetron sputtering. Their thermal stability was studied by: i) differential scanning calorimetry combined with X-ray diffraction (XRD), ii) in-situ XRD using cobalt radiation, and iii) in-situ transmission electron microscopy. It was possible to detect traces of intermetallic or amorphous phases in the as-deposited short period (bilayer thickness) multilayers, except for the Ti/Al films where no reaction products that might be formed during deposition were identified. For short periods (below 20 nm) the equilibrium phases are directly achieved upon annealing, whereas for higher periods intermediate trialuminide phases are present for Ti/Al and Ni/Al multilayers. The formation of B2-NiTi from Ni/Ti multilayers occurs without the formation of intermediate phases. On the contrary, for the Pd–Al system the formation of intermediate phases was never avoided. The viability of nanoscale multilayers as “filler” materials for joining macro or microparts/devices was demonstrated. - Highlights: • Me1 and Me2 (Me—metal) alternated nanolayers deposited by magnetron sputtering • Reactive Me1/Me2 multilayer thin films with nanometric modulation period • By heat treatment the films always evolve to the equilibrium intermetallic phase. • For some Me1–Me2 systems and periods, the formation of intermediate phases occurs. • Me1/Me2 multilayer thin films can be used as filler materials to enhance joining.

  14. Stochastic behavior of nanoscale dielectric wall buckling.

    Science.gov (United States)

    Friedman, Lawrence H; Levin, Igor; Cook, Robert F

    2016-03-01

    The random buckling patterns of nanoscale dielectric walls are analyzed using a nonlinear multi-scale stochastic method that combines experimental measurements with simulations. The dielectric walls, approximately 200 nm tall and 20 nm wide, consist of compliant, low dielectric constant (low- k ) fins capped with stiff, compressively stressed TiN lines that provide the driving force for buckling. The deflections of the buckled lines exhibit sinusoidal pseudoperiodicity with amplitude fluctuation and phase decorrelation arising from stochastic variations in wall geometry, properties, and stress state at length scales shorter than the characteristic deflection wavelength of about 1000 nm. The buckling patterns are analyzed and modeled at two length scales: a longer scale (up to 5000 nm) that treats randomness as a longer-scale measurable quantity, and a shorter-scale (down to 20 nm) that treats buckling as a deterministic phenomenon. Statistical simulation is used to join the two length scales. Through this approach, the buckling model is validated and material properties and stress states are inferred. In particular, the stress state of TiN lines in three different systems is determined, along with the elastic moduli of low- k fins and the amplitudes of the small-scale random fluctuations in wall properties-all in the as-processed state. The important case of stochastic effects giving rise to buckling in a deterministically sub-critical buckling state is demonstrated. The nonlinear multiscale stochastic analysis provides guidance for design of low- k structures with acceptable buckling behavior and serves as a template for how randomness that is common to nanoscale phenomena might be measured and analyzed in other contexts.

  15. Deformation mechanisms in nanoscale single crystalline electroplated copper pillars

    Science.gov (United States)

    Jennings, Andrew T.

    Scientific research in nanotechnology has enabled advances in a diverse range of applications, such as: electronics, chemical sensing, and cancer treatment. In order to transition these nanotechnology-driven innovations out of the laboratory and into real-world applications, the resilience and mechanical reliability of nanoscale structures must be well understood in order to preserve functionality under real-world operating environments. Understanding the mechanical properties of nanoscale materials is especially important because several authors have shown that single crystalline metal pillars produced through focused-ion-beam milling have unique properties when the pillar diameter, D, approaches nanotechnology-relevant dimensions. The strength, sigma, of these pillars is size-dependent and is well described through a power-law relation showing that smaller is stronger: sigma∝D-n , where n is the exponent and is found to be 0.5≤n≤1.0 in face-centered-cubic metals. In this work, the fundamental deformation mechanisms governing the size-dependent mechanical properties are investigated through uniaxial compression and tension tests of electroplated single crystalline copper pillars with diameters between 75 nm and 1000 nm. At larger pillar diameters, D >125 nm, these copper pillars are shown to obey a similar size-dependent regime, demonstrating that the "smaller is stronger" phenomenon is a function of the pillar microstructure, as opposed to the fabrication route. Furthermore, the dominant dislocation mechanism in this size-dependent regime is shown to be the result of single-arm, or spiral, sources. At smaller pillar diameters, D≤125 nm, a strain-rate-dependent mechanism transition is observed through both the size-strength relation and also quantitative, experimental measures of the activation volume. This new deformation regime is characterized by a size-independent strength and is governed by surface dislocation nucleation, a thermally activated

  16. Characterization of molecule and particle transport through nanoscale conduits

    Science.gov (United States)

    Alibakhshi, Mohammad Amin

    Nanofluidic devices have been of great interest due to their applications in variety of fields, including energy conversion and storage, water desalination, biological and chemical separations, and lab-on-a-chip devices. Although these applications cross the boundaries of many different disciplines, they all share the demand for understanding transport in nanoscale conduits. In this thesis, different elusive aspects of molecule and particle transport through nanofluidic conduits are investigated, including liquid and ion transport in nanochannels, diffusion- and reaction-governed enzyme transport in nanofluidic channels, and finally translocation of nanobeads through nanopores. Liquid or solvent transport through nanoconfinements is an essential yet barely characterized component of any nanofluidic systems. In the first chapter, water transport through single hydrophilic nanochannels with heights down to 7 nm is experimentally investigated using a new measurement technique. This technique has been developed based on the capillary flow and a novel hybrid nanochannel design and is capable of characterizing flow in both single nanoconduits as well as nanoporous media. The presence of a 0.7 nm thick hydration layer on hydrophilic surfaces and its effect on increasing the hydraulic resistance of the nanochannels is verified. Next, ion transport in a new class of nanofluidic rectifiers is theoretically and experimentally investigated. These so called nanofluidic diodes are nanochannels with asymmetric geometries which preferentially allow ion transport in one direction. A nondimensional number as a function of electrolyte concentration, nanochannel dimensions, and surface charge is derived that summarizes the rectification behavior of this system. In the fourth chapter, diffusion- and reaction-governed enzyme transport in nanofluidic channels is studied and the theoretical background necessary for understanding enzymatic activity in nanofluidic channels is presented. A

  17. Synthesizing Earth's geochemical data for hydrogeochemical analysis

    Science.gov (United States)

    Brantley, S. L.; Kubicki, J.; Miller, D.; Richter, D.; Giles, L.; Mitra, P.

    2007-12-01

    For over 200 years, geochemical, microbiological, and chemical data have been collected to describe the evolution of the surface earth. Many of these measurements are data showing variations in time or in space. To forward predict hydrologic response to changing tectonic, climatic, or anthropogenic forcings requires synthesis of these data and utilization in hydrogeochemical models. Increasingly, scientists are attempting to synthesize such data in order to make predictions for new regions or for future time periods. However, to make such complex geochemical data accessible requires development of sophisticated cyberinfrastructures that both invite uploading as well as usage of data. Two such cyberinfrastructure (CI) initiatives are currently developing, one to invite and promote the use of environmental kinetics data (laboratory time course data) through ChemxSeer, and the other to invite and promote the use of spatially indexed geochemical data for the Earth's Critical Zone through CZEN.org. The vision of these CI initiatives is to provide cyber-enhanced portals that encourage domain scientists to upload their data before publication (in private cyberspace), and to make these data eventually publicly accessible (after an embargo period). If the CI can be made to provide services to the domain specialist - e.g. to provide data analysis services or data comparison services - we envision that scientists will upload data. In addition, the CI can promote the use and comparison of datasets across disciplines. For example, the CI can facilitate the use of spatially indexed geochemical data by scientists more accustomed to dealing with time-course data for hydrologic flow, and can provide user-friendly interfaces with CI established to facilitate the use of hydrologic data. Examples of the usage of synthesized data to predict soil development over the last 13ky and its effects on active hydrological flow boundaries in surficial systems will be discussed for i) a N

  18. Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy

    DEFF Research Database (Denmark)

    Gilbert, B.; Frandsen, Cathrine; Maxey, E.R.

    2009-01-01

    Chemical and photochemical processes at semiconductor surfaces are highly influenced by the size of the band gap, and ability to control the band gap by particle size in nanomaterials is part of their promise. The combination of soft x-ray absorption and emission spectroscopies provides band......-edge to reveal band-edge electronic structure of bulk and nanoscale hematite. Good agreement is found between the hematite band gap derived from optical spectroscopy and the energy separation of the first inflection points in the x-ray absorption and emission onset regions. By applying this method to two sizes...

  19. Biominerals at the nanoscale: transmission electron microscopy methods for studying the special properties of biominerals

    DEFF Research Database (Denmark)

    Posfai, Mihaly; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2013-01-01

    textures, and magnetic properties of biominerals at the nanoscale. In this chapter, we review the state of the art in the application of TEM techniques to the study of these properties, both in biomineral crystals and at the inorganic-organic interface. Examples are taken primarily from studies of magnetic...... fields. In order to fulfill their roles in organisms, biominerals have strictly controlled physical and chemical properties. Transmission electron microscopy (TEM) is ideally suited for the study of the structures, arrangements, compositions, morphologies, crystallographic orientations, crystallographic...

  20. The Architectural Designs of a Nanoscale Computing Model

    Directory of Open Access Journals (Sweden)

    Mary M. Eshaghian-Wilner

    2004-08-01

    Full Text Available A generic nanoscale computing model is presented in this paper. The model consists of a collection of fully interconnected nanoscale computing modules, where each module is a cube of cells made out of quantum dots, spins, or molecules. The cells dynamically switch between two states by quantum interactions among their neighbors in all three dimensions. This paper includes a brief introduction to the field of nanotechnology from a computing point of view and presents a set of preliminary architectural designs for fabricating the nanoscale model studied.

  1. Nanoscale Structure of Self-Assembling Hybrid Materials of Inorganic and Electronically Active Organic Phases

    Energy Technology Data Exchange (ETDEWEB)

    Sofos, M.; Goswami, D.A. Stone D.K.; Okasinski, J.S.; Jin, H.; Bedzyk, M.J.; Stupp, S.I. (NWU)

    2008-10-06

    Hybrid materials with nanoscale structure that incorporates inorganic and organic phases with electronic properties offer potential in an extensive functional space that includes photovoltaics, light emission, and sensing. This work describes the nanoscale structure of model hybrid materials with phases of silica and electronically active bola-amphiphile assemblies containing either oligo(p-phenylene vinylene) or oligo(thiophene) segments. The hybrid materials studied here were synthesized by evaporation-induced self-assembly and characterized by X-ray scattering techniques. Grazing-incidence X-ray scattering studies of these materials revealed the formation of two-dimensional hexagonally packed cylindrical micelles of the organic molecules with diameters between 3.1 and 3.6 nm and cylindrical axes parallel to the surface. During the self-assembly process at low pH, the cylindrical aggregates of conjugated molecules become surrounded by silica giving rise to a hybrid structure with long-range order. Specular X-ray reflectivity confirmed the long-range periodicity of the hybrid films within a specific range of molar ratios of tetraethyl orthosilicate to cationic amphiphile. We did not observe any long-range ordering in fully organic analogues unless quaternary ammonium groups were replaced by tertiary amines. These observations suggest that charge screening in these biscationic conjugated molecules by the mineral phase is a key factor in the evolution of long range order in the self-assembling hybrids.

  2. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi

    2014-11-11

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  3. Nanoscale Test Strips for Multiplexed Blood Analysis, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of our nanoscale test strips, or nanostrips, is to provide rapid, low-cost, powerful multiplexed analyses in a diminutive form so that whole body health...

  4. Light Emission and Energy Transfer in Nanoscale Semiconductor Photonic Devices

    National Research Council Canada - National Science Library

    Kolbas, Robert

    1997-01-01

    The overall objective of this experimental program is to control the light emission properties and energy transfer mechanisms in nanoscale semiconductor structures in order to realize new or improved photonic devices...

  5. Democratization of Nanoscale Imaging and Sensing Tools Using Photonics.

    Science.gov (United States)

    McLeod, Euan; Wei, Qingshan; Ozcan, Aydogan

    2015-07-07

    Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future.

  6. Quantum dynamics in nanoscale magnets in dissipative environments

    NARCIS (Netherlands)

    Miyashita, S; Saito, K; Kobayashi, H.; de Raedt, H.A.

    2000-01-01

    In discrete energy structure of nanoscale magnets, nonadiabatic transitions at avoided level crossings lead to fundamental processes of dynamics of magnetizations. The thermal environment causes dissipative effects on these processes. In this paper we review the features of the nonadiabatic

  7. Nanoscale Test Strips for Multiplexed Blood Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of our nanoscale test strips, or nanostrips, is to provide rapid, low-cost, powerful multiplexed analyses in a diminutive form so that whole body health...

  8. Defined nanoscale chemistry influences delivery of peptido-toxins for cancer therapy.

    Directory of Open Access Journals (Sweden)

    Santosh K Misra

    Full Text Available We present an in-silico-to-in-vitro approach to develop well-defined, self-assembled, rigid-cored polymeric (Polybee nano-architecture for controlled delivery of a key component of bee venom, melittin. A competitive formulation with lipid-encapsulated (Lipobee rigid cored micelle is also synthesized. In a series of sequential experiments, we show how nanoscale chemistry influences the delivery of venom toxins for cancer regression and help evade systemic disintegrity and cellular noxiousness. A relatively weaker association of melittin in the case of lipid-based nanoparticles is compared to the polymeric particles revealed by energy minimization and docking studies, which are supported by biophysical studies. For the first time, the authors' experiment results indicate that melittin can play a significant role in DNA association-dissociation processes, which may be a plausible route for their anticancer activity.

  9. Reductive Degradation of Perfluorinated Compounds in Water using Mg-aminoclay coated Nanoscale Zero Valent Iron

    DEFF Research Database (Denmark)

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus

    2015-01-01

    Perfluorinated Compounds (PFCs) are extremely persistent micropollutants that are detected worldwide. We studied the removal of PFCs (perfluorooctanoic acid; PFOA, perfluorononanoic acid; PFNA, perfluorodecanoic acid; PFDA and perfluorooctane sulfonate; PFOS) from water by different types...... of nanoscale zero-valent iron (nZVI). Batch experiments showed that an iron dose of 1 g•L-1 in the form of Mg-aminoclay (MgAC) coated nZVI, at an initial pH of 3.0 effectively removed 38 % to 96 % of individual PFCs. An increasing order of removal efficiency was observed of PFOA < PFNA < PFOS ≈ PFDA....... Compared to this, PFCs removal was less than 27 % using a commercial air stabilized nZVI or freshly synthesized uncoated nZVI, under the same experimental conditions. The effectiveness of PFCs removal by MgAC coated nZVI was further investigated at various initial pH, nZVI dosage, temperature and age...

  10. Synthese de champs sonores adaptative

    Science.gov (United States)

    Gauthier, Philippe-Aubert

    La reproduction de champs acoustiques est une approche physique au probleme technologique de la spatialisation sonore. Cette these concerne l'aspect physique de la reproduction de champs acoustiques. L'objectif principal est l'amelioration de la reproduction de champs acoustiques par "synthese de champs acoustiques" ("Wave Field Synthesis", WFS), une approche connue, basee sur des hypotheses de champ libre, a l'aide du controle actif par l'ajout de capteurs de l'erreur de reproduction et d'une boucle fermee. Un premier chapitre technique (chapitre 4) expose les resultats d'appreciation objective de la WFS par simulations et mesures experimentales. L'effet indesirable de la salle de reproduction sur les qualites objectives de la WFS fut illustre. Une premiere question de recherche fut ensuite abordee (chapitre 5), a savoir s'il est possible de reproduire des champs progressifs en salle dans un paradigme physique de controle actif: cette possibilite fut prouvee. L'approche technique privilegiee, "synthese de champs adaptative" ("Adaptive Wave Field Synthesis" [AWFS]), fut definie, puis simulee (chapitre 6). Cette approche d'AWFS comporte une originalite en controle actif et en reproduction de champs acoustiques: la fonction cout quadratique representant la minimisation des erreurs de reproduction inclut une regularisation de Tikhonov avec solution a priori qui vient de la WFS. L'etude de l'AWFS a l'aide de la decomposition en valeurs singulieres (chapitre 7) a permis de comprendre les mecanismes propres a l'AWFS. C'est la deuxieme principale originalite de la these. L'algorithme FXLMS (LMS et reference filtree) est modifie pour l'AWFS (chapitre 8). Le decouplage du systeme par decomposition en valeurs singulieres est illustre dans le domaine du traitement de signal et l'AWFS basee sur le controle independant des modes de rayonnement est simulee (chapitre 8). Ce qui constitue la troisieme originalite principale de cette these. Ces simulations du traitement de signal

  11. Chemical systems, chemical contiguity and the emergence of life

    DEFF Research Database (Denmark)

    Kee, Terrence P.; Monnard, Pierre Alain

    2017-01-01

    to complex chemical systems over specific isolated functional apparatuses. We will summarize the recent advances in system chemistry and show that chemical systems in the geochemical context imply a form of chemical contiguity in the syntheses of the various molecules that precede modern biomolecules....

  12. Quantum Materials at the Nanoscale - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Stephen Lance [Univ. of Illinois, Urbana, IL (United States). Dept. of Physics

    2016-01-11

    The central aim of the Quantum Materials at the Nanoscale (QMN) cluster was to understand and control collective behavior involving the interplay of spins, orbitals, and charges, which governs many scientifically interesting and technologically important phenomena in numerous complex materials. Because these phenomena involve various competing interactions, and influence properties on many different length and energy scales in complex materials, tackling this important area of study motivated a collaborative effort that combined the diverse capabilities of QMN cluster experimentalists, the essential theoretical analysis provided by QMN cluster theorists, and the outstanding facilities and staff of the FSMRL. During the funding period 2007-2014, the DOE cluster grant for the Quantum Materials at the Nanoscale (QMN) cluster supported, at various times, 15 different faculty members (14 in Physics and 1 in Materials Science and Engineering), 7 postdoctoral research associates, and 57 physics and materials science PhD students. 41 of these PhD students have since graduated and have gone on to a variety of advanced technical positions at universities, industries, and national labs: 25 obtained postdoctoral positions at universities (14), industrial labs (2 at IBM), DOE national facilities (3 at Argonne National Laboratory, 1 at Brookhaven National Lab, 1 at Lawrence Berkeley National Lab, and 1 at Sandia National Lab), and other federal facilities (2 at NIST); 13 took various industrial positions, including positions at Intel (5), Quantum Design (1), Lasque Industries (1), Amazon (1), Bloomberg (1), and J.P. Morgan (1). Thus, the QMN grant provided the essential support for training a large number of technically advanced personnel who have now entered key national facilities, industries, and institutions. Additionally, during the period 2007-2015, the QMN cluster produced 159 publications (see pages 14-23), including 23 papers published in Physical Review Letters; 16

  13. Nanoscale Investigation of New Fe-Based Superconductors

    Science.gov (United States)

    2012-10-15

    12-10-2012 4. TITLE AND SUBTITLE Nanoscale Investigation of New Iron - Based Superconductors 5a. CONTRACT NUMBER FA23861114054 5b. GRANT NUMBER 5c...Final Report for AOARD Grant 114054 “Nanoscale Investigation of New Fe- based Superconductors ” Date: October 15, 2012 Name of Principal...particles [5]. These results indicate that interesting phenomena may happen in iron chalcogenide superconductors when their size goes to nanometer

  14. WDM Nanoscale Laser Diodes for Si Photonic Interconnects

    Science.gov (United States)

    2016-07-25

    formed on silicon platforms, such as SiN on SiO2, or other materials. The VCSEL also has key features needed for high speed, including low thermal...mounting on silicon . The nanoscale VCSELs can achieve small optical modes and present a compact laser diode that is also robust. In this work we have used...Report Title The goal of this work has been to develop nanoscale VCSELs for integration into various optical systems, including for mounting on silicon

  15. Nanoscale tissue engineering: spatial control over cell-materials interactions

    International Nuclear Information System (INIS)

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G; Khademhosseini, Ali; Jabbari, Esmaiel

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness these interactions through nanoscale biomaterials engineering in order to study and direct cellular behavior. Here, we review two- and three-dimensional (2- and 3D) nanoscale tissue engineering technologies, and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffold technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D. However, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and that can control the temporal changes in the cellular microenvironment. (topical review)

  16. Nanoscale tissue engineering: spatial control over cell-materials interactions

    Science.gov (United States)

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G.; Jabbari, Esmaiel; Khademhosseini, Ali

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness the interactions through nanoscale biomaterials engineering in order to study and direct cellular behaviors. Here, we review the nanoscale tissue engineering technologies for both two- and three-dimensional studies (2- and 3D), and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffolds technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D, however, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and the temporal changes in cellular microenvironment. PMID:21451238

  17. Nanotechnology for chemical engineers

    CERN Document Server

    Salaheldeen Elnashaie, Said; Hashemipour Rafsanjani, Hassan

    2015-01-01

    The book describes the basic principles of transforming nano-technology into nano-engineering with a particular focus on chemical engineering fundamentals. This book provides vital information about differences between descriptive technology and quantitative engineering for students as well as working professionals in various fields of nanotechnology. Besides chemical engineering principles, the fundamentals of nanotechnology are also covered along with detailed explanation of several specific nanoscale processes from chemical engineering point of view. This information is presented in form of practical examples and case studies that help the engineers and researchers to integrate the processes which can meet the commercial production. It is worth mentioning here that, the main challenge in nanostructure and nanodevices production is nowadays related to the economic point of view. The uniqueness of this book is a balance between important insights into the synthetic methods of nano-structures and nanomaterial...

  18. Peptide assembly for nanoscale control of materials

    Science.gov (United States)

    Pochan, Darrin

    2011-03-01

    Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic, charged synthetic molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic interactions; in addition to more traditional self-assembling molecular attributes such as amphiphilicty, to define hierarchical material structure and consequent properties. Design strategies for materials self-assembly based on small (less than 24 amino acids) beta-hairpin peptides will be discussed. Self-assembly of the peptides is predicated on an intramolecular folding event caused by desired solution properties. Importantly, kinetics of self-assembly can be tuned in order to control gelation time. The final gel behaves as a shear thinning, but immediately rehealing, solid that is potentially useful for cell injection therapies. The morphological, and viscoelastic properties of these peptide hydrogels will be discussed. In addition, slight changes in peptide primary sequence can have drastic effects on the self-assembled morphology. Additional sequences will be discussed that do not form hydrogels but rather form nanoscale templates for inorganic material assembly.

  19. Isolation of nanoscale exosomes using viscoelastic effect

    Science.gov (United States)

    Hu, Guoqing; Liu, Chao

    2017-11-01

    Exosomes, molecular cargos secreted by almost all mammalian cells, are considered as promising biomarkers to identify many diseases including cancers. However, the small size of exosomes (30-200 nm) poses serious challenges on their isolation from the complex media containing a variety of extracellular vesicles (EVs) of different sizes, especially in small sample volumes. Here we develop a viscoelasticity-based microfluidic system to directly separate exosomes from cell culture media or serum in a continuous, size-dependent, and label-free manner. Using a small amount of biocompatible polymer as the additive into the media to control the viscoelastic forces exerted on EVs, we are able to achieve a high separation purity (>90%) and recovery (>80%) of exosomes. The size cutoff in viscoelasticity-based microfluidics can be easily controlled using different PEO concentrations. Based on this size-dependent viscoelastic separation strategy, we envision the handling of diverse nanoscale objects, such as gold nanoparticles, DNA origami structures, and quantum dots. This work was supported financially by National Natural Science Foundation of China (11572334, 91543125).

  20. Photothermoelastic contrast in nanoscale infrared spectroscopy

    Science.gov (United States)

    Morozovska, Anna N.; Eliseev, Eugene A.; Borodinov, Nikolay; Ovchinnikova, Olga S.; Morozovsky, Nicholas V.; Kalinin, Sergei V.

    2018-01-01

    The contrast formation mechanism in nanoscale Infrared (IR) Spectroscopy is analyzed. The temperature distribution and elastic displacement across the illuminated T-shape boundary between two materials with different IR-radiation absorption coefficients and thermo-physical and elastic properties located on a rigid substrate are calculated self-consistently for different frequencies f ˜ (1 kHz-1 MHz) of IR-radiation modulation (fully coupled problem). Analytical expressions for the temperature and displacement profiles across the "thermo-elastic step" are derived in the decoupling approximation for f = 0 ("static limit"), and conditions for approximation validity at low frequencies of IR-modulation are established. The step height was found to be thickness-independent for thick layers and proportional to the square of the thickness for very thin films. The theoretical results will be of potential interest for applications in the scanning thermo-ionic and thermal infrared microscopies for relatively long sample thermalization times and possibly for photothermal induced resonance microscopy using optomechanical probes.

  1. Non-resonant Nanoscale Extreme Light Confinement

    Energy Technology Data Exchange (ETDEWEB)

    Subramania, Ganapathi Subramanian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huber, Dale L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    A wide spectrum of photonics activities Sandia is engaged in such as solid state lighting, photovoltaics, infrared imaging and sensing, quantum sources, rely on nanoscale or ultrasubwavelength light-matter interactions (LMI). The fundamental understanding in confining electromagnetic power and enhancing electric fields into ever smaller volumes is key to creating next generation devices for these programs. The prevailing view is that a resonant interaction (e.g. in microcavities or surface-plasmon polaritions) is necessary to achieve the necessary light confinement for absorption or emission enhancement. Here we propose new paradigm that is non-resonant and therefore broadband and can achieve light confinement and field enhancement in extremely small areas [~(λ/500)^2 ]. The proposal is based on a theoretical work[1] performed at Sandia. The paradigm structure consists of a periodic arrangement of connected small and large rectangular slits etched into a metal film named double-groove (DG) structure. The degree of electric field enhancement and power confinement can be controlled by the geometry of the structure. The key operational principle is attributed to quasistatic response of the metal electrons to the incoming electromagnetic field that enables non-resonant broadband behavior. For this exploratory LDRD we have fabricated some test double groove structures to enable verification of quasistatic electronic response in the mid IR through IR optical spectroscopy. We have addressed some processing challenges in DG structure fabrication to enable future design of complex sensor and detector geometries that can utilize its non-resonant field enhancement capabilities.].

  2. Nanoscale solid-state cooling: a review

    Science.gov (United States)

    Ziabari, Amirkoushyar; Zebarjadi, Mona; Vashaee, Daryoosh; Shakouri, Ali

    2016-09-01

    The recent developments in nanoscale solid-state cooling are reviewed. This includes both theoretical and experimental studies of different physical concepts, as well as nanostructured material design and device configurations. We primarily focus on thermoelectric, thermionic and thermo-magnetic coolers. Particular emphasis is given to the concepts based on metal-semiconductor superlattices, graded materials, non-equilibrium thermoelectric devices, Thomson coolers, and photon assisted Peltier coolers as promising methods for efficient solid-state cooling. Thermomagnetic effects such as magneto-Peltier and Nernst-Ettingshausen cooling are briefly described and recent advances and future trends in these areas are reviewed. The ongoing progress in solid-state cooling concepts such as spin-calorimetrics, electrocalorics, non-equilibrium/nonlinear Peltier devices, superconducting junctions and two-dimensional materials are also elucidated and practical achievements are reviewed. We explain the thermoreflectance thermal imaging microscopy and the transient Harman method as two unique techniques developed for characterization of thermoelectric microrefrigerators. The future prospects for solid-state cooling are briefly summarized.

  3. Nanomaterial Case Studies: Nanoscale Titanium Dioxide ...

    Science.gov (United States)

    This draft document presents two case studies of nanoscale titanium dioxide (nano-TiO2) used (1) to remove arsenic from drinking water and (2) as an active ingredient in topical sunscreen. The draft case studies are organized around a comprehensive environmental assessment approach that combines a product life cycle framework with the risk assessment paradigm. The document does not draw conclusions about potential risks. Rather, the case studies are intended to help identify what needs to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. This draft document is part of a process that will inform the development of EPA’s research strategy to support nanomaterial risk assessments. The complex properties of various nanomaterials make evaluating them in the abstract or with generalizations difficult if not impossible. Thus, this document focuses on two specific uses of nano-TiO2, as a drinking water treatment and as topical sunscreen. These case studies do not represent completed or even preliminary assessments; rather, they present the structure for identifying and prioritizing research needed to support future assessments.

  4. Surface Effects on Nanoscale Gas Flows

    Science.gov (United States)

    Beskok, Ali; Barisik, Murat

    2010-11-01

    3D MD simulations of linear Couette flow of argon gas confined within nano-scale channels are performed in the slip, transition and free molecular flow regimes. The velocity and density profiles show deviations from the kinetic theory based predictions in the near wall region that typically extends three molecular diameters (s) from each surface. Utilizing the Irwin-Kirkwood theorem, stress tensor components for argon gas confined in nano-channels are investigated. Outside the 3s region, three normal stress components are identical, and equal to pressure predicted using the ideal gas law, while the shear stress is a constant. Within the 3s region, the normal stresses become anisotropic and the shear stress shows deviations from its bulk value due to the surface virial effects. Utilizing the kinetic theory and MD predicted shear stress values, the tangential momentum accommodation coefficient for argon gas interacting with FCC structured walls (100) plane facing the fluid is calculated to be 0.75; this value is independent of the Knudsen number. Results show emergence of the 3s region as an additional characteristic length scale in nano-confined gas flows.

  5. Nanoscale Test Strips for Multiplexed Blood Analysis

    Science.gov (United States)

    Chan, Eugene

    2015-01-01

    A critical component of the DNA Medicine Institute's Reusable Handheld Electrolyte and Lab Technology for Humans (rHEALTH) sensor are nanoscale test strips, or nanostrips, that enable multiplexed blood analysis. Nanostrips are conceptually similar to the standard urinalysis test strip, but the strips are shrunk down a billionfold to the microscale. Each nanostrip can have several sensor pads that fluoresce in response to different targets in a sample. The strips carry identification tags that permit differentiation of a specific panel from hundreds of other nanostrip panels during a single measurement session. In Phase I of the project, the company fabricated, tested, and demonstrated functional parathyroid hormone and vitamin D nanostrips for bone metabolism, and thrombin aptamer and immunoglobulin G antibody nanostrips. In Phase II, numerous nanostrips were developed to address key space flight-based medical needs: assessment of bone metabolism, immune response, cardiac status, liver metabolism, and lipid profiles. This unique approach holds genuine promise for space-based portable biodiagnostics and for point-of-care (POC) health monitoring and diagnostics here on Earth.

  6. Personalized Nanomedicine: A Revolution at the Nanoscale.

    Science.gov (United States)

    Fornaguera, Cristina; García-Celma, Maria José

    2017-10-12

    Nanomedicine is an interdisciplinary research field that results from the application of nanotechnology to medicine and has the potential to significantly improve some current treatments. Specifically, in the field of personalized medicine, it is expected to have a great impact in the near future due to its multiple advantages, namely its versatility to adapt a drug to a cohort of patients. In the present review, the properties and requirements of pharmaceutical dosage forms at the nanoscale, so-called nanomedicines, are been highlighted. An overview of the main current nanomedicines in pre-clinical and clinical development is presented, detailing the challenges to the personalization of these therapies. Next, the process of development of novel nanomedicines is described, from their design in research labs to their arrival on the market, including considerations for the design of nanomedicines adapted to the requirements of the market to achieve safe, effective, and quality products. Finally, attention is given to the point of view of the pharmaceutical industry, including regulation issues applied to the specific case of personalized medicine. The authors expect this review to be a useful overview of the current state of the art of nanomedicine research and industrial production, and the future opportunities of personalized medicine in the upcoming years. The authors encourage the development and marketing of novel personalized nanomedicines.

  7. Personalized Nanomedicine: A Revolution at the Nanoscale

    Science.gov (United States)

    García-Celma, Maria José

    2017-01-01

    Nanomedicine is an interdisciplinary research field that results from the application of nanotechnology to medicine and has the potential to significantly improve some current treatments. Specifically, in the field of personalized medicine, it is expected to have a great impact in the near future due to its multiple advantages, namely its versatility to adapt a drug to a cohort of patients. In the present review, the properties and requirements of pharmaceutical dosage forms at the nanoscale, so-called nanomedicines, are been highlighted. An overview of the main current nanomedicines in pre-clinical and clinical development is presented, detailing the challenges to the personalization of these therapies. Next, the process of development of novel nanomedicines is described, from their design in research labs to their arrival on the market, including considerations for the design of nanomedicines adapted to the requirements of the market to achieve safe, effective, and quality products. Finally, attention is given to the point of view of the pharmaceutical industry, including regulation issues applied to the specific case of personalized medicine. The authors expect this review to be a useful overview of the current state of the art of nanomedicine research and industrial production, and the future opportunities of personalized medicine in the upcoming years. The authors encourage the development and marketing of novel personalized nanomedicines. PMID:29023366

  8. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique.

    Science.gov (United States)

    Katzenmeyer, Aaron M; Aksyuk, Vladimir; Centrone, Andrea

    2013-02-19

    Photothermal induced resonance (PTIR) is a new technique which combines the chemical specificity of infrared (IR) spectroscopy with the lateral resolution of atomic force microscopy (AFM). PTIR requires a pulsed tunable laser for sample excitation and an AFM tip to measure the sample expansion induced by light absorption. The limited tunability of commonly available laser sources constrains the application of the PTIR technique to a portion of the IR spectrum. In this work, a broadly tunable pulsed laser relying on a difference frequency generation scheme in a GaSe crystal to emit light tunable from 1.55 μm to 16 μm (from 6450 cm(-1) to 625 cm(-1)) was interfaced with a commercial PTIR instrument. The result is a materials characterization platform capable of chemical imaging, in registry with atomic force images, with a spatial resolution that notably surpasses the light diffraction limit throughout the entire mid-IR spectral range. PTIR nanoscale spectra and images allow the identification of compositionally and optically similar yet distinct materials; organic, inorganic, and composite samples can be studied with this nanoscale analog of infrared spectroscopy, suggesting broad applicability. Additionally, we compare the results obtained with the two tunable lasers, which have different pulse lengths, to experimentally assess the recently developed theory of PTIR signal generation.

  9. Degradation of bromothymol blue by 'greener' nano-scale zero-valent iron synthesized using tea polyphenols

    Science.gov (United States)

    A green single-step synthesis of iron nanoparticles using tea (Camellia sinensis) polyphenols is described that uses no added surfactants/polymers as a capping or reducing agents. The expeditious reaction between polyphenols and ferric nitrate occurs within few minutes at room te...

  10. On the emergence of Raman signals characterizing multicenter nanoscale interactions

    Science.gov (United States)

    Williams, Mathew D.; Bradshaw, David S.; Andrews, David L.

    2016-04-01

    Raman scattering is most commonly associated with a change in vibrational state within one molecule, with signals in the corresponding spectrum widely used to identify material structures. When the corresponding theory is developed using quantum electrodynamics, the fundamental scattering process is described by a single photon of one radiation mode being annihilated with the concurrent creation of another photon; the two photon energies differ by an amount corresponding to the transfer of vibrational energy within the system. Here, we consider nanoscale interactions between neighboring molecules to mediate the process, by way of a virtual photon exchange to connect the evolution of the two molecular states. We consider both a single and pair of virtual photon exchanges. Our analysis deploys two realistic assumptions: in each pairwise interaction the two components are considered to be (i) chemically different and (ii) held in a fixed orientation with respect to each other, displaced by an amount equivalent to the near-field region; resulting in higher order dependences on displacement R becoming increasingly significant, and at the limit the short-range R-6 term can even dominate over R-3 dependence. In our investigation one center undergoes a change in vibrational energy; each neighboring molecule returns to the electronic and vibrational state in which it began. For the purposes of providing results, a Stokes transition has been assumed; analogous principles hold for the anti-Stokes counterpart. Experimentally, there is no change to the dependence on the intensity of laser light. However, the various mechanisms presented herein lead to different selection rules applying in each instance. In some cases specifically identifiable mechanisms will be active for a given transition, leading to new and characteristic lines in the Raman spectrum. A thorough investigation of all physically achievable mechanisms will be detailed in this work.

  11. Chemical concepts in pollutant behavior

    National Research Council Canada - National Science Library

    Tinsley, Ian J

    1979-01-01

    .... Unique in approach, the book synthesizes basic ideas from numerous fields of chemistry to solve the question of how a given chemical will distribute in the environment and its potential to be changed...

  12. Using Dynamic Quantum Clustering to Analyze Hierarchically Heterogeneous Samples on the Nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Hume, Allison; /Princeton U. /SLAC

    2012-09-07

    Dynamic Quantum Clustering (DQC) is an unsupervised, high visual data mining technique. DQC was tested as an analysis method for X-ray Absorption Near Edge Structure (XANES) data from the Transmission X-ray Microscopy (TXM) group. The TXM group images hierarchically heterogeneous materials with nanoscale resolution and large field of view. XANES data consists of energy spectra for each pixel of an image. It was determined that DQC successfully identifies structure in data of this type without prior knowledge of the components in the sample. Clusters and sub-clusters clearly reflected features of the spectra that identified chemical component, chemical environment, and density in the image. DQC can also be used in conjunction with the established data analysis technique, which does require knowledge of components present.

  13. Perception of Paralinguistic Traits in Synthesized Voices

    DEFF Research Database (Denmark)

    Baird, Alice Emily; Hasse Jørgensen, Stina; Parada-Cabaleiro, Emilia

    the paralinguistic traits of the synthesized voice. Using a corpus of 13 synthesized voices, constructed from acoustic concatenative speech synthesis, we assessed the response of 23 listeners from differing cultural backgrounds. Evaluating if the perception shifts from the known ground–truths, we asked listeners......Along with the rise of artificial intelligence and the internet-of-things, synthesized voices are now common in daily–life, providing us with guidance, assistance, and even companionship. From formant to concatenative synthesis, the synthesized voice continues to be defined by the same traits we...

  14. Nanoscale Advances in Catalysis and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  15. Controlling mechanical properties of bio-inspired hydrogels by modulating nano-scale, inter-polymeric junctions

    Directory of Open Access Journals (Sweden)

    Seonki Hong

    2014-06-01

    Full Text Available Quinone tanning is a well-characterized biochemical process found in invertebrates, which produce diverse materials from extremely hard tissues to soft water-resistant adhesives. Herein, we report new types of catecholamine PEG derivatives, PEG-NH-catechols that can utilize an expanded spectrum of catecholamine chemistry. The PEGs enable simultaneous participation of amine and catechol in quinone tanning crosslinking. The intermolecular reaction between PEG-NH-catechols forms a dramatic nano-scale junction resulting in enhancement of gelation kinetics and mechanical properties of PEG hydrogels compared to results obtained by using PEGs in the absence of amine groups. Therefore, the study provides new insight into designing new crosslinking chemistry for controlling nano-scale chemical reactions that can broaden unique properties of bulk hydrogels.

  16. Design of Surface Modifications for Nanoscale Sensor Applications

    Directory of Open Access Journals (Sweden)

    Erik Reimhult

    2015-01-01

    Full Text Available Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii. We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges.

  17. Picasso at the Nanoscale: The Art of Using Cutting-Edge Science to Understand Cultural Heritage

    Science.gov (United States)

    Rose, Volker

    2015-03-01

    Scientists are using high-energy X-ray instruments to solve mysteries behind art masterpieces, including artwork by Picasso. Learn how Argonne National Laboratory is working with major art institutions, such as The Art Institute of Chicago and Smithsonian Institute, to unlock groundbreaking information about art, the artist, and our cultural heritage. A deep connection to our past and shared cultural heritage must be preserved to foster a balanced society where all humanity can thrive. This talk will describe analysis of paint materials used by Pablo Picasso at the nanoscale, as only possible at the brightest synchrotron sources. It will highlight how new imaging techniques can reveal the invisible, bringing to light underlying compositions of old masters' paintings. This in turn enables the writing of new art history and provides important material clues that can assist with attribution and authentication. We will explain how the use of new technology can lead to new discoveries, which, in turn, can change the public's and the specialists' perception of great works of art. In collaboration with scientists from The Art Institute of Chicago we have teamed up to study the chemical make up of zinc oxide pigments used in artworks by Pablo Picasso. We will show how highly focused X-ray beams with nanoscale spatial resolution and trace element sensitivity have helped to determine that Picasso has used conventional house paint in some of his paintings. Surprisingly, the study gives also new insights into the pigment material zinc oxide, which has also great potential in a variety of applications such as in spintronics or as transparent electrodes in solar panels. Work at the Advanced Photon Source and the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DEAC02-06CH11357.

  18. Perception of Paralinguistic Traits in Synthesized Voices

    DEFF Research Database (Denmark)

    Baird, Alice Emily; Hasse Jørgensen, Stina; Parada-Cabaleiro, Emilia

    2017-01-01

    Along with the rise of artificial intelligence and the internet-of-things, synthesized voices are now common in daily–life, providing us with guidance, assistance, and even companionship. From formant to concatenative synthesis, the synthesized voice continues to be defined by the same traits we...

  19. Strong nonlinear photonic responses from microbiologically synthesized tellurium nanocomposites

    Science.gov (United States)

    Liao, K.-S.; Wang, Jingyuan; Dias, S.; Dewald, J.; Alley, N.J.; Baesman, S.M.; Oremland, R.S.; Blau, W.J.; Curran, S.A.

    2010-01-01

    A new class of nanomaterials, namely microbiologically-formed nanorods composed of elemental tellurium [Te(0)] that forms unusual nanocomposites when combined with poly(m-phenylenevinylene-co-2,5-dioctoxy-phenylenevinylene) (PmPV) is described. These bio-nanocomposites exhibit excellent broadband optical limiting at 532 and 1064 nm. Nonlinear scattering, originating from the laser induced solvent bubbles and microplasmas, is responsible for this nonlinear behavior. The use of bacterially-formed Te(0) when combined with an organic chemical host (e.g., PmPV) is a new green method of nanoparticle syntheses. This opens the possibilities of using unique, biologically synthesized materials to advance future nanoelectronic and nanophotonic applications. ?? 2009 Elsevier B.V. All rights reserved.

  20. Applications of Magnetosomes Synthesized by Magnetotactic Bacteria in Medicine

    International Nuclear Information System (INIS)

    Alphandéry, Edouard

    2014-01-01

    Magnetotactic bacteria belong to a group of bacteria that synthesize iron oxide nanoparticles covered by biological material that are called magnetosomes. These bacteria use the magnetosomes as a compass to navigate in the direction of the earth’s magnetic field. This compass helps the bacteria to find the optimum conditions for their growth and survival. Here, we review several medical applications of magnetosomes, such as those in magnetic resonance imaging (MRI), magnetic hyperthermia, and drug delivery. Different methods that can be used to prepare the magnetosomes for these applications are described. The toxicity and biodistribution results that have been published are summarized. They show that the magnetosomes can safely be used provided that they are prepared in specific conditions. The advantageous properties of the magnetosomes compared with those of chemically synthesized nanoparticles of similar composition are also highlighted.

  1. Studies on the Alkaloids of the Calycanthaceae and Their Syntheses

    Directory of Open Access Journals (Sweden)

    Jin-Biao Xu

    2015-04-01

    Full Text Available Plants of the Calycanthaceae family, which possesses four genera and about 15 species, are mainly distributed in China, North America and Australia. Chemical studies on the Calycanthaceae have led to the discovery of about 14 alkaloids of different skeletons, including dimeric piperidinoquinoline, dimeric pyrrolidinoindoline and/or trimeric pyrrolidinoindolines, which exhibit significant anti-convulsant, anti-fungal, anti-viral analgesic, anti-tumor, and anti-melanogenesis activities. As some of complex tryptamine-derived alkaloids exhibit promising biological activities, the syntheses of these alkaloids have also been a topic of interest in synthetic chemistry during the last decades. This review will focus on the structures and total syntheses of these alkaloids.

  2. Artificial Neural Network Modeling and Genetic Algorithm Optimization for Cadmium Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO) Composites.

    Science.gov (United States)

    Fan, Mingyi; Li, Tongjun; Hu, Jiwei; Cao, Rensheng; Wei, Xionghui; Shi, Xuedan; Ruan, Wenqian

    2017-05-17

    Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were synthesized in the present study by chemical deposition method and were then characterized by various methods, such as Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The nZVI/rGO composites prepared were utilized for Cd(II) removal from aqueous solutions in batch mode at different initial Cd(II) concentrations, initial pH values, contact times, and operating temperatures. Response surface methodology (RSM) and artificial neural network hybridized with genetic algorithm (ANN-GA) were used for modeling the removal efficiency of Cd(II) and optimizing the four removal process variables. The average values of prediction errors for the RSM and ANN-GA models were 6.47% and 1.08%. Although both models were proven to be reliable in terms of predicting the removal efficiency of Cd(II), the ANN-GA model was found to be more accurate than the RSM model. In addition, experimental data were fitted to the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherms. It was found that the Cd(II) adsorption was best fitted to the Langmuir isotherm. Examination on thermodynamic parameters revealed that the removal process was spontaneous and exothermic in nature. Furthermore, the pseudo-second-order model can better describe the kinetics of Cd(II) removal with a good R² value than the pseudo-first-order model.

  3. Remarkable nanoconfinement effects on chemical equilibrium manifested in nucleotide dimerization and H-D exchange reactions.

    Science.gov (United States)

    Polak, Micha; Rubinovich, Leonid

    2011-10-06

    Nanoconfinement entropic effects on chemical equilibrium involving a small number of molecules, which we term NCECE, are revealed by two widely diverse types of reactions. Employing statistical-mechanical principles, we show how the NCECE effect stabilizes nucleotide dimerization observed within self-assembled molecular cages. Furthermore, the effect provides the basis for dimerization even under an aqueous environment inside the nanocage. Likewise, the NCECE effect is pertinent to a longstanding issue in astrochemistry, namely the extra deuteration commonly observed for molecules reacting on interstellar dust grain surfaces. The origin of the NCECE effect is elucidated by means of the probability distributions of the reaction extent and related variations in the reactant-product mixing entropy. Theoretical modelling beyond our previous preliminary work highlights the role of the nanospace size in addition to that of the nanosystem size, namely the limited amount of molecules in the reaction mixture. Furthermore, the NCECE effect can depend also on the reaction mechanism, and on deviations from stoichiometry. The NCECE effect, leading to enhanced, greatly variable equilibrium "constants", constitutes a unique physical-chemical phenomenon, distinguished from the usual thermodynamical properties of macroscopically large systems. Being significant particularly for weakly exothermic reactions, the effects should stabilize products in other closed nanoscale structures, and thus can have notable implications for the growing nanotechnological utilization of chemical syntheses conducted within confined nanoreactors.

  4. Investigation of nanoscale reinforcement into textile polymers

    Science.gov (United States)

    Khan, Mujibur Rahman

    A dual inclusion strategy for textile polymers has been investigated to increase elastic energy storage capacity of fibers used in high velocity impact applications. Commercial fibers such as Spectra and Dyneema are made from ultra high molecular weight polyethylene (UHMWPE). Dynamic elastic energy of these fibers is still low therefore limiting their wholesale application without a secondary metallic or ceramic component. The idea in this investigation is to develop methodologies so that the elastic energy of polyethylene based fibers can be increased by several folds. This would allow manufacturing of an all-fabric system for high impact applications. The dual inclusion consists of a polymer phase and a nanoscale inorganic phase to polyethylene. The polymer phase was nylon-6 and the inorganic phase was carbon nanotubes (CNTs). Nylon-6 was blended as a minor phase into UHMWPE and was chosen because of its large fracture strain -- almost one order higher than that of UHMWPE. On the other hand, CNTs with their very high strength, modulus, and aspect ratio, contributed to sharing of load and sliding of polymer interfaces as they aligned during extrusion and strain hardening processes. A solution spinning process was developed to produce UHMWPE filaments reinforced with CNTs and nylon-6. The procedure involved dispersing of CNTs into paraffin oil through sonication followed by dissolving polymers into paraffin-CNT solution using a homogenizer. The admixture was fed into a single screw extruder for melt mixing and extrusion through an orifice. The extrudate was rinsed via a hexane bath, stabilized through a heater, and then drawn into a filament winder with controlled stretching. In the next step, the as produced filaments were strain-hardened through repeated loading unloading cycles under tension. Neat and reinforced filaments were characterized through DSC (Differential Scanning Calorimetry), XRD (X-ray Diffraction), Raman Spectroscopy, SEM (Scanning Electron

  5. Nanoscale phenomena in ferroelectric thin films

    Science.gov (United States)

    Ganpule, Chandan S.

    Ferroelectric materials are a subject of intense research as potential candidates for applications in non-volatile ferroelectric random access memories (FeRAM), piezoelectric actuators, infrared detectors, optical switches and as high dielectric constant materials for dynamic random access memories (DRAMs). With current trends in miniaturization, it becomes important that the fundamental aspects of scaling of ferroelectric and piezoelectric properties in these devices be studied thoroughly and their impact on the device reliability assessed. In keeping with this spirit of miniaturization, the dissertation has two broad themes: (a) Scaling of ferroelectric and piezoelectric properties and (b) The key reliability issue of retention loss. The thesis begins with a look at results on scaling studies of focused-ion-beam milled submicron ferroelectric capacitors using a variety of scanning probe characterization tools. The technique of piezoresponse microscopy, which is rapidly becoming an accepted form of domain imaging in ferroelectrics, has been used in this work for another very important application: providing reliable, repeatable and quantitative numbers for the electromechanical properties of submicron structures milled in ferroelectric films. This marriage of FIB and SPM based characterization of electromechanical and electrical properties has proven unbeatable in the last few years to characterize nanostructures qualitatively and quantitatively. The second half of this dissertation focuses on polarization relaxation in FeRAMs. In an attempt to understand the nanoscale origins of back-switching of ferroelectric domains, the time dependent relaxation of remnant polarization in epitaxial lead zirconate titanate (PbZr0.2Ti0.8O 3, PZT) ferroelectric thin films (used as a model system), containing a uniform 2-dimensional grid of 90° domains (c-axis in the plane of the film) has been examined using voltage modulated scanning force microscopy. A novel approach of

  6. Hydrodynamic Modeling of Heat Conduction in Nanoscale Systems.

    Science.gov (United States)

    Dong, Yuan; Guo, Zeng-Yuan

    2015-04-01

    Heat conduction in nanoscale systems has different behavior from bulk materials, which is applied to develop high performance thermoelectric material. The non-trivial behavior is caused by the ballistic-diffusive transport of heat carriers such as phonons. In this paper, we use the thermomass theory and phonon hydrodynamics model to establish a hydrodynamic model for phonon transport. In nanoscale systems, a Poiseuille flow of phonon gas is formed due to the boundary scattering. The thickness of boundary layer is proportional to the mean free paths of phonon. When the boundary layer thickness is comparable with the whole flow region, strong decrease of effective thermal conductivity happens. This method can serve as a fast evaluation method for nanoscale heat conduction.

  7. Nanoscale shape-memory alloys for ultrahigh mechanical damping.

    Science.gov (United States)

    San Juan, Jose; Nó, Maria L; Schuh, Christopher A

    2009-07-01

    Shape memory alloys undergo reversible transformations between two distinct phases in response to changes in temperature or applied stress. The creation and motion of the internal interfaces between these phases during such transformations dissipates energy, making these alloys effective mechanical damping materials. Although it has been shown that reversible phase transformations can occur in nanoscale volumes, it is not known whether these transformations have a sample size dependence. Here, we demonstrate that the two phases responsible for shape memory in Cu-Al-Ni alloys are more stable in nanoscale pillars than they are in the bulk. As a result, the pillars show a damping figure of merit that is substantially higher than any previously reported value for a bulk material, making them attractive for damping applications in nanoscale and microscale devices.

  8. Flexible nanoscale high-performance FinFETs

    KAUST Repository

    Sevilla, Galo T.

    2014-10-28

    With the emergence of the Internet of Things (IoT), flexible high-performance nanoscale electronics are more desired. At the moment, FinFET is the most advanced transistor architecture used in the state-of-the-art microprocessors. Therefore, we show a soft-etch based substrate thinning process to transform silicon-on-insulator (SOI) based nanoscale FinFET into flexible FinFET and then conduct comprehensive electrical characterization under various bending conditions to understand its electrical performance. Our study shows that back-etch based substrate thinning process is gentler than traditional abrasive back-grinding process; it can attain ultraflexibility and the electrical characteristics of the flexible nanoscale FinFET show no performance degradation compared to its rigid bulk counterpart indicating its readiness to be used for flexible high-performance electronics.

  9. Light-matter interaction physics and engineering at the nanoscale

    CERN Document Server

    Weiner, John

    2013-01-01

    This book draws together the essential elements of classical electrodynamics, surface wave physics, plasmonic materials, and circuit theory of electrical engineering to provide insight into the essential physics of nanoscale light-matter interaction and to provide design methodology for practical nanoscale plasmonic devices. A chapter on classical and quantal radiation also highlights the similarities (and differences) between the classical fields of Maxwell's equations and the wave functions of Schrodinger's equation. The aim of this chapter is to provide a semiclassical picture of atomic absorption and emission of radiation, lending credence and physical plausibility to the "rules" of standard wave-mechanical calculations.

  10. Optical generation of intense ultrashort magnetic pulses at the nanoscale

    Science.gov (United States)

    Tsiatmas, Anagnostis; Atmatzakis, Evangelos; Papasimakis, Nikitas; Fedotov, Vassili; Luk'yanchuk, Boris; Zheludev, Nikolay I.; García de Abajo, F. Javier

    2013-11-01

    Generating, controlling and sensing strong magnetic fields at ever shorter time and length scales is important for both fundamental solid-state physics and technological applications such as magnetic data recording. Here, we propose a scheme for producing strong ultrashort magnetic pulses localized at the nanoscale. We show that a bimetallic nanoring illuminated by femtosecond laser pulses responds with transient thermoelectric currents of picosecond duration, which in turn induce Tesla-scale magnetic fields in the ring cavity. Our method provides a practical way of generating intense nanoscale magnetic fields with great potential for materials characterization, terahertz radiation generation and data storage applications.

  11. Multiple simultaneous fabrication of molecular nanowires using nanoscale electrocrystallization

    International Nuclear Information System (INIS)

    Hasegawa, Hiroyuki; Ueda, Rieko; Kubota, Tohru; Mashiko, Shinro

    2006-01-01

    We carried out a multiple simultaneous fabrication based on the nanoscale electrocrystallization to simultaneously construct molecular nanowires at two or more positions. This substrate-independent nanoscale electrocrystallization process enables nanowires fabrication at specific positions using AC. We also succeeded in multiple fabrications only at each gap between the electrode tips. We found that π-stack was formed along the long axis of the nanowires obtained by analyzing the selected-area electron diffraction. We believe this technique has the potential for expansion to the novel low-cost and energy-saving fabrication of high-performance nanodevices

  12. Topology optimization for nano-scale heat transfer

    DEFF Research Database (Denmark)

    Evgrafov, Anton; Maute, Kurt; Yang, Ronggui

    2009-01-01

    We consider the problem of optimal design of nano-scale heat conducting systems using topology optimization techniques. At such small scales the empirical Fourier's law of heat conduction no longer captures the underlying physical phenomena because the mean-free path of the heat carriers, phonons...... in our case, becomes comparable with, or even larger than, the feature sizes of considered material distributions. A more accurate model at nano-scales is given by kinetic theory, which provides a compromise between the inaccurate Fourier's law and precise, but too computationally expensive, atomistic...

  13. 75 FR 14128 - Center for Nanoscale Science and Technology Postdoctoral Researcher and Visiting Fellow...

    Science.gov (United States)

    2010-03-24

    ... (NIST) Center for Nanoscale Science and Technology (CNST) is establishing a financial assistance program... DEPARTMENT OF COMMERCE National Institute of Standards and Technology [Docket Number: 100311136-0140-01] Center for Nanoscale Science and Technology Postdoctoral Researcher and Visiting Fellow...

  14. 77 FR 13159 - Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology...

    Science.gov (United States)

    2012-03-05

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology, National Science and Technology Council Workshop ACTION: Notice of... Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  15. Journal of Chemical Sciences

    Indian Academy of Sciences (India)

    0001195

    Synthetic scaffolds derived from hydrogels can be encoded with physical and chemical cues that provide the ... Syntheses, structures and properties of two coordination polymers of Cadmium(II) pseudohalide ... Two new coordination polymers of Cadmium(II) pseudohalide in combination with in situ generated bidentate ...

  16. Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments.

    Science.gov (United States)

    Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi

    2017-08-09

    Lithium (Li) metal is a high-capacity anode material (3860 mAh g -1 ) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O 2 ), nitrogen (N 2 ), and water vapor (H 2 O). We find that while dry O 2 and N 2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N 2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.

  17. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    Energy Technology Data Exchange (ETDEWEB)

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  18. Nanoscale Control of Molecular Self-Assembly Induced by Plasmonic Hot-Electron Dynamics.

    Science.gov (United States)

    Simoncelli, Sabrina; Li, Yi; Cortés, Emiliano; Maier, Stefan A

    2018-03-27

    Self-assembly processes allow designing and creating complex nanostructures using molecules as building blocks and surfaces as scaffolds. This autonomous driven construction is possible due to a complex thermodynamic balance of molecule-surface interactions. As such, nanoscale guidance and control over this process is hard to achieve. Here we use the highly localized light-to-chemical-energy conversion of plasmonic materials to spatially cleave Au-S bonds on predetermined locations within a single nanoparticle, enabling a high degree of control over this archetypal system for molecular self-assembly. Our method offers nanoscale precision and high-throughput light-induced tailoring of the surface chemistry of individual and packed nanosized metallic structures by simply varying wavelength and polarization of the incident light. Assisted by single-molecule super-resolution fluorescence microscopy, we image, quantify, and shed light onto the plasmon-induced desorption mechanism. Our results point toward localized distribution of hot electrons, contrary to uniformly distributed lattice heating, as the mechanism inducing Au-S bond breaking. We demonstrate that plasmon-induced photodesorption enables subdiffraction and even subparticle multiplexing. Finally, we explore possible routes to further exploit these concepts for the selective positioning of nanomaterials and the sorting and purification of colloidal nanoparticles.

  19. Molecular organization of the nanoscale surface structures of the dragonfly Hemianax papuensis wing epicuticle.

    Directory of Open Access Journals (Sweden)

    Elena P Ivanova

    Full Text Available The molecular organization of the epicuticle (the outermost layer of insect wings is vital in the formation of the nanoscale surface patterns that are responsible for bestowing remarkable functional properties. Using a combination of spectroscopic and chromatographic techniques, including Synchrotron-sourced Fourier-transform infrared microspectroscopy (FTIR, x-ray photoelectron spectroscopy (XPS depth profiling and gas chromatography-mass spectrometry (GCMS, we have identified the chemical components that constitute the nanoscale structures on the surface of the wings of the dragonfly, Hemianax papuensis. The major components were identified to be fatty acids, predominantly hexadecanoic acid and octadecanoic acid, and n-alkanes with even numbered carbon chains ranging from C14 to C30. The data obtained from XPS depth profiling, in conjunction with that obtained from GCMS analyses, enabled the location of particular classes of compounds to different regions within the epicuticle. Hexadecanoic acid was found to be a major component of the outer region of the epicuticle, which forms the surface nanostructures, and was also detected in deeper layers along with octadecanoic acid. Aliphatic compounds were detected throughout the epicuticle, and these appeared to form a third discrete layer that was separate from both the inner and outer epicuticles, which has never previously been reported.

  20. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe.

    Science.gov (United States)

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Lu, Xi; Riedo, Elisa; Meriles, Carlos A

    2015-11-20

    The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps. The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.

  1. Localized Symmetry Breaking for Tuning Thermal Expansion in ScF 3 Nanoscale Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lei [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Qin, Feiyu [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Sanson, Andrea [Department of Physics and Astronomy, University of Padova, Padova I-35131, Italy; Huang, Liang-Feng [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Pan, Zhao [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Li, Qiang [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Sun, Qiang [International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China; Wang, Lu [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Guo, Fangmin [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Aydemir, Umut [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Department of Chemistry, Koc University, Sariyer, Istanbul 34450, Turkey; Ren, Yang [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Sun, Chengjun [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Deng, Jinxia [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Aquilanti, Giuliana [Elettra Sincrotrone Trieste, Basovizza, Trieste I-34149, Italy; Rondinelli, James M. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Chen, Jun [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Xing, Xianran [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China

    2018-03-15

    The local symmetry, beyond the averaged crystallographic structure, tends to bring unu-sual performances. Negative thermal expansion is a peculiar physical property of solids. Here, we report the delicate design of the localized symmetry breaking to achieve the controllable thermal expansion in ScF3 nano-scale frameworks. Intriguingly, an isotropic zero thermal expansion is concurrently engi-neered by localized symmetry breaking, with a remarkably low coefficient of thermal expansion of about +4.0×10-8/K up to 675K. This mechanism is investigated by the joint analysis of atomic pair dis-tribution function of synchrotron X-ray total scattering and extended X-ray absorption fine structure spectra. A localized rhombohedral distortion presumably plays a critical role in stiffening ScF3 nano-scale frameworks and concomitantly suppressing transverse thermal vibrations of fluorine atoms. This physical scenario is also theoretically corroborated by the extinction of phonon modes with negative Grüneisen parameters in the rhombohedral ScF3. The present work opens an untraditional chemical modification to achieve controllable thermal expansion by breaking local symmetries of materials.

  2. Relationship between nanoscale roughness and ion-damaged layer in argon plasma exposed polystyrene films

    Science.gov (United States)

    Bruce, R. L.; Weilnboeck, F.; Lin, T.; Phaneuf, R. J.; Oehrlein, G. S.; Long, B. K.; Willson, C. G.; Vegh, J. J.; Nest, D.; Graves, D. B.

    2010-04-01

    The uncontrolled development of nanoscale roughness during plasma exposure of polymer surfaces is a major issue in the field of semiconductor processing. In this paper, we investigated the question of a possible relationship between the formation of nanoscale roughening and the simultaneous introduction of a nanometer-thick, densified surface layer that is formed on polymers due to plasma damage. Polystyrene films were exposed to an Ar discharge in an inductively coupled plasma reactor with controllable substrate bias and the properties of the modified surface layer were changed by varying the maximum Ar+ ion energy. The modified layer thickness, chemical, and mechanical properties were obtained using real-time in situ ellipsometry, x-ray photoelectron spectroscopy, and modeled using molecular dynamics simulation. The surface roughness after plasma exposure was measured using atomic force microscopy, yielding the equilibrium dominant wavelength λ and amplitude A of surface roughness. The comparison of measured surface roughness wavelength and amplitude data with values of λ and A predicted from elastic buckling theory utilizing the measured properties of the densified surface layer showed excellent agreement both above and below the glass transition temperature of polystyrene. This agreement strongly supports a buckling mechanism of surface roughness formation.

  3. From Lab to Fab: Developing a Nanoscale Delivery Tool for Scalable Nanomanufacturing

    Science.gov (United States)

    Safi, Asmahan A.

    The emergence of nanomaterials with unique properties at the nanoscale over the past two decades carries a capacity to impact society and transform or create new industries ranging from nanoelectronics to nanomedicine. However, a gap in nanomanufacturing technologies has prevented the translation of nanomaterial into real-world commercialized products. Bridging this gap requires a paradigm shift in methods for fabricating structured devices with a nanoscale resolution in a repeatable fashion. This thesis explores the new paradigms for fabricating nanoscale structures devices and systems for high throughput high registration applications. We present a robust and scalable nanoscale delivery platform, the Nanofountain Probe (NFP), for parallel direct-write of functional materials. The design and microfabrication of NFP is presented. The new generation addresses the challenges of throughput, resolution and ink replenishment characterizing tip-based nanomanufacturing. To achieve these goals, optimized probe geometry is integrated to the process along with channel sealing and cantilever bending. The capabilities of the newly fabricated probes are demonstrated through two type of delivery: protein nanopatterning and single cell nanoinjection. The broad applications of the NFP for single cell delivery are investigated. An external microfluidic packaging is developed to enable delivery in liquid environment. The system is integrated to a combined atomic force microscope and inverted fluorescence microscope. Intracellular delivery is demonstrated by injecting a fluorescent dextran into Hela cells in vitro while monitoring the injection forces. Such developments enable in vitro cellular delivery for single cell studies and high throughput gene expression. The nanomanufacturing capabilities of NFPs are explored. Nanofabrication of carbon nanotube-based electronics presents all the manufacturing challenges characterizing of assembling nanomaterials precisely onto devices. The

  4. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.

    Science.gov (United States)

    Sassin, Megan B; Chervin, Christopher N; Rolison, Debra R; Long, Jeffrey W

    2013-05-21

    Transition metal oxides that mix electronic and ionic conductivity are essential active components of many electrochemical charge-storage devices, ranging from primary alkaline cells to more advanced rechargeable Li-ion batteries. In these devices, charge storage occurs via cation-insertion/deinsertion mechanisms in conjunction with the reduction/oxidation of metal sites in the oxide. Batteries that incorporate such metal oxides are typically designed for high specific energy, but not necessarily for high specific power. Electrochemical capacitors (ECs), which are typically composed of symmetric high-surface-area carbon electrodes that store charge via double-layer capacitance, deliver their energy in time scales of seconds, but at much lower specific energy than batteries. The fast, reversible faradaic reactions (typically described as "pseudocapacitance") of particular nanoscale metal oxides (e.g., ruthenium and manganese oxides) provide a strategy for bridging the power/energy performance gap between batteries and conventional ECs. These processes enhance charge-storage capacity to boost specific energy, while maintaining the few-second timescale of the charge-discharge response of carbon-based ECs. In this Account, we describe three examples of redox-based deposition of EC-relevant metal oxides (MnO2, FeOx, and RuO2) and discuss their potential deployment in next-generation ECs that use aqueous electrolytes. To extract the maximum pseudocapacitance functionality of metal oxides, one must carefully consider how they are synthesized and subsequently integrated into practical electrode structures. Expressing the metal oxide in a nanoscale form often enhances electrochemical utilization (maximizing specific capacitance) and facilitates high-rate operation for both charge and discharge. The "wiring" of the metal oxide, in terms of both electron and ion transport, when fabricated into a practical electrode architecture, is also a critical design parameter for

  5. Study of photoconductor polymers synthesized by plasma

    International Nuclear Information System (INIS)

    Enriquez P, M.A.

    2007-01-01

    In this work the photoconductivity in poly thiophene (PTh), poly pyrrole (PPy) and doped poly pyrrole with iodine (PPy/I) is studied, whose structures depend of the intensity of the electric field applied during the synthesis by plasma. The conjugated organic polymers possess double alternated bonds in its chemical structure that its allow the one movement of π electrons through the polymeric chains. The plasma is produced by means of splendor discharges to 13.5 MHz, resistive coupling, at one pressure that oscillates in the interval from 2 to 3x10 -1 mbar, 180 min and powers of 10, 24, 40, 60 , 80 and 100 W. Its were used heteroaromatic polymers like PTh and PPy/I, due to their potential applications in optoelectronics. The influence of the iodine is evaluated as dopant in PPy and it is compared with their similar one without doping in the light absorption/emission processes. The polymers synthesized by plasma can ramify or to intersect due to the energy applied during the synthesis. However, if the polymer intersects, the aromaticity can continue through the polymeric chains. The absorptions obtained by infrared spectroscopy, suggest that the polymer conserves the aromatic structure of the monomer fundamentally with substitutions that indicate inter crossing and partial fragmentation. The structure of most of the polymers spreads to be amorphous because they don't possess any classification. However, the PPy/I and PTh synthesized by this technique present crystalline segments whose intensity diminishes with the power of the discharge. In PTh, the average crystallinity diminishes from 19.8% to 9.9%, and in PPy/I of 15.9% to 13.3% in the interval of 10 to 100 W of power. In this work, however, its were crystalline arrangements in all the studied powers. The classification of the polymeric structure favors the formation of trajectories of transfer of electric loads among the chains, that which influences in the global electric conductivity of the material. In UV

  6. Syntheses, molecular and crystalline architectures, and ...

    Indian Academy of Sciences (India)

    Syntheses, molecular and crystalline architectures, and luminescence behaviour of terephthalate bridged heptacoordinated dinuclear lead(II) complexes containing a pentadentate N-donor Schiff base. SUBHASIS ROYa, SOMNATH CHOUBEYa, SUMITAVA KHANa, KISHALAY BHARa,. PARTHA MITRAb and BARINDRA ...

  7. Synthese en chemotherapeutisch onderzoek van sulfanilamidopyrimidinen

    NARCIS (Netherlands)

    Grevenstuk, Anton Bernard

    1942-01-01

    In order to investigate the influence of substitution in the pyrimidine nucleous on the activity of the three isomeric sulfanilamidopyrimidines (2, 5 and 6), a number of substituted sulfanilamidopyrimidines were synthesized and tested on chemotherapeutic activity. ... Zie: Summary

  8. Recovery of indium ions by nanoscale zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen; Su, Yiming [Tongji University, State Key Laboratory of Pollution Control and Resources Reuse (China); Wen, Zhipan [Wuhan Institute of Technology, School of Chemistry and Environmental Engineering (China); Zhang, Yalei; Zhou, Xuefei, E-mail: zhouxuefei@tongji.edu.cn; Dai, Chaomeng, E-mail: daichaomeng@tongji.edu.cn [Tongji University, State Key Laboratory of Pollution Control and Resources Reuse (China)

    2017-03-15

    Indium and its compounds have plenty of industrial applications and high demand. Therefore, indium recovery from various industrial effluents is necessary. It was sequestered by nanoscale zero-valent iron (nZVI) whose size mainly ranged from 50 to 70 nm. Adsorption kinetics and isotherm, influence of pH, and ionic strength were thoroughly investigated. The reaction process was well fitted to a pseudo second-order model, and the maximum adsorption capacity of In(III) was 390 mg In(III)/g nZVI similar to 385 mg In(III)/g nZVI at 298 K calculated by Langmuir model. The mole ratio of Fe(II) released to In(III) immobilized was 3:2, which implied a special chemical process of co-precipitation combined Fe(OH){sub 2} with In(OH){sub 3}. Transmission electron microscopy with an energy-disperse X-ray (TEM-EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize surface morphology, corrosion products, and valence state of indium precipitate formed on nanoparticles. The structural evolution changed from core-shell structure of iron oxide to sheet structure of co-precipitation, to sphere structure that hydroxide gradually dissolved as the pH decreased, and to cavity structures for the pH continually decreased. Furthermore, below pH 4.7, the In(III) enrichment was inhibited for the limited capacity of co-precipitation. Also, it was found that Ca{sup 2+} and HPO{sub 4}{sup 2−} have more negative influence on In(III) recovery compared with Na{sup +}, NO{sub 3}{sup −}, HCO{sub 3}{sup −}, and SO{sub 4}{sup 2−}. Therefore, the In(III) recovery can be described by a mechanism which consists of adsorption, co-precipitation, and reduction and was over 78% even after 3 cycles. The results confirmed that it was applicable to employ nZVI for In(III) immobilization.

  9. CAMAC programmable-control frequency synthesizer

    International Nuclear Information System (INIS)

    Yumaguzin, T.Kh.; Vyazovkin, D.E.; Nazirov, Eh.P.; Tuktarov, R.F.

    1989-01-01

    Synthesizer allows to set frequency with 0.015% accuracy and to scan it with variable step. Frequency controlled divider with further summing-up of divided frequency with fundamental one is used in synthesizer, and it has allowed to use digit of the input code and to obtain 3-4 MHz frequency range. Variation of operation flowsheet in the other frequency range is possible. K-155 and K-531 series microcircuits were used during development

  10. Raman assisted lightwave synthesized frequency sweeper

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2010-01-01

    We present a Lightwave Synthesized Frequency Sweeper comprising a Raman amplifier for loss compensation. The generated pulse train contains 123 pulses and has a flat signal level as well as a low noise level.......We present a Lightwave Synthesized Frequency Sweeper comprising a Raman amplifier for loss compensation. The generated pulse train contains 123 pulses and has a flat signal level as well as a low noise level....

  11. Psychoacoustic Analysis of Synthesized Jet Noise

    Science.gov (United States)

    Okcu, Selen; Rathsam, Jonathan; Rizzi, Stephen A.

    2013-01-01

    An aircraft noise synthesis capability is being developed so the annoyance caused by proposed aircraft can be assessed during the design stage. To make synthesized signals as realistic as possible, high fidelity simulation is required for source (e.g., engine noise, airframe noise), propagation and receiver effects. This psychoacoustic study tests whether the jet noise component of synthesized aircraft engine noise can be made more realistic using a low frequency oscillator (LFO) technique to simulate fluctuations in level observed in recordings. Jet noise predictions are commonly made in the frequency domain based on models of time-averaged empirical data. The synthesis process involves conversion of the frequency domain prediction into an audible pressure time history. However, because the predictions are time-invariant, the synthesized sound lacks fluctuations observed in recordings. Such fluctuations are hypothesized to be perceptually important. To introduce time-varying characteristics into jet noise synthesis, a method has been developed that modulates measured or predicted 1/3-octave band levels with a (<20Hz) LFO. The LFO characteristics are determined through analysis of laboratory jet noise recordings. For the aft emission angle, results indicate that signals synthesized using a generic LFO are perceived as more similar to recordings than those using no LFO, and signals synthesized with an angle-specific LFO are more similar to recordings than those synthesized with a generic LFO.

  12. Nanoscale experimental study of the morphology of a microcrack in ...

    Indian Academy of Sciences (India)

    A microcrack in a silicon single crystal was experimentally investigated using highresolution transmission electron microscopy (HRTEM). In particular, the numerical Moiré (NM) method was used to visualize the deformations and defects. The lattice structure of the microcrack was carefully observed at the nanoscale. HRTEM ...

  13. Computer simulation of quantum phenomena in nano-scale devices

    NARCIS (Netherlands)

    Raedt, Hans De

    1996-01-01

    This paper reviews the general concepts for building algorithms to solve the time-dependent Schrödinger equation and to discuss ways of turning these concepts into unconditionally stable, accurate and efficient simulation algorithms. Applications to focussed electron emission from nano-scale

  14. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    NARCIS (Netherlands)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-01-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts(1-4). Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon

  15. Recent advances in superhydrophobic nanomaterials and nanoscale systems.

    Science.gov (United States)

    Nagappan, Saravanan; Park, Sung Soo; Ha, Chang-Sik

    2014-02-01

    This review describes the recent advances in the field of superhydrophobic nanomaterials and nanoscale systems. The term superhydrophobic is defined from the surface properties when the surface shows the contact angle (CA) higher than 150 degrees. This could be well known from the lotus effect due to the non-stick and self-cleaning properties of the lotus leaf (LL). We briefly introduced the methods of preparing superhydrophobic surfaces using top-down approaches, bottom-up approaches and a combination of top-down and bottom-up approaches and various ways to prepare superhydrophobic nanomaterials and nanoscale systems using the bio-inspired materials, polymer nanocomposites, metal nanoparticles graphene oxide (GO) and carbon nanotubes (CNTs). We also pointed out the recent applications of the superhydrophobic nanomaterials and nanoscale systems in oil-spill capture and separations, self-cleaning and self-healing systems, bio-medicals, anti-icing and anti-corrosive, electronics, catalysis, textile fabrics and papers etc. The review also highlights the visionary outlook for the future development and use of the superhydrophobic nanomaterials and nanoscale systems for a wide variety of applications.

  16. METHOD FOR FABRICATING NANOSCALE PATTERNS ON A SURFACE

    DEFF Research Database (Denmark)

    2000-01-01

    A novel method to fabricate nanoscale pits on Au(111) surfaces in contact with aqueous solution is claimed. The method uses in situ electrochemical scanning tunnelling microscopy with independent electrochemical substrate and tip potential control and very small bias voltages. This is significantly...

  17. Nanomaterial Case Studies: Nanoscale Titanium Dioxide (External Review Draft)

    Science.gov (United States)

    This draft document presents two case studies of nanoscale titanium dioxide (nano-TiO2) used (1) to remove arsenic from drinking water and (2) as an active ingredient in topical sunscreen. The draft case studies are organized around a comprehensive environmental asses...

  18. Modeling nano-scale grain growth of intermetallics

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The Monte Carlo simulation is utilized to model the nano-scale grain growth of two nano- crystalline materials, Pd81Zr19 and RuAl. In this regard, the relationship between the real time and the time unit of simulation, i.e. Monte Carlo step (MCS), is determined. The results of modeling show that with increasing time ...

  19. Direct Probing of Polarization Charge at Nanoscale Level

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Owoong [Sungkyunkwan Univ., Suwon (Republic of Korea). School of Advanced Materials and Engineering; Seol, Daehee [Sungkyunkwan Univ., Suwon (Republic of Korea). School of Advanced Materials and Engineering; Lee, Dongkyu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Han, Hee [Korea Research Inst. of Standards and Science (KRISS), Daejeon (South Korea); Lindfors-Vrejoiu, Ionela [Univ. of Cologne (Germany). Physics Inst.; Lee, Woo [Korea Research Inst. of Standards and Science (KRISS), Daejeon (South Korea); Jesse, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences; Lee, Ho Nyung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences; Alexe, Marin [Univ. of Warwick, Coventry (United Kingdom). Dept. of Physics; Kim, Yunseok [Sungkyunkwan Univ., Suwon (Republic of Korea). School of Advanced Materials and Engineering

    2017-11-14

    Ferroelectric materials possess spontaneous polarization that can be used for multiple applications. Owing to a long-term development of reducing the sizes of devices, the preparation of ferroelectric materials and devices is entering the nanometer-scale regime. In order to evaluate the ferroelectricity, there is a need to investigate the polarization charge at the nanoscale. Nonetheless, it is generally accepted that the detection of polarization charges using a conventional conductive atomic force microscopy (CAFM) without a top electrode is not feasible because the nanometer-scale radius of an atomic force microscopy (AFM) tip yields a very low signal-to-noise ratio. But, the detection is unrelated to the radius of an AFM tip and, in fact, a matter of the switched area. In this work, the direct probing of the polarization charge at the nanoscale is demonstrated using the positive-up-negative-down method based on the conventional CAFM approach without additional corrections or circuits to reduce the parasitic capacitance. The polarization charge densities of 73.7 and 119.0 µC cm-2 are successfully probed in ferroelectric nanocapacitors and thin films, respectively. The results we obtained show the feasibility of the evaluation of polarization charge at the nanoscale and provide a new guideline for evaluating the ferroelectricity at the nanoscale.

  20. Adsorptive removal of fluoride from water using nanoscale ...

    African Journals Online (AJOL)

    The intraparticle diffusion was not a rate-controlling step for the adsorption process. Thus, the overall study indicates that nano-AlOOH is an efficient defluoridating material. KEY WORDS: Nanoscale AlOOH, Defluoridation, Fluoride removal efficiency, Adsorption capacity, Adsorption kinetics, Adsorption mechanism. Bull.