WorldWideScience

Sample records for chemically responsive nanoporous

  1. Single-Molecule Sensing with Nanopore Confinement: from Chemical Reactions to Biological Interactions.

    Science.gov (United States)

    Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao

    2018-03-25

    The nanopore can generate an electrochemical confinement for single-molecule sensing which help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this concept, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method

    Science.gov (United States)

    Van Toan, Nguyen; Inomata, Naoki; Toda, Masaya; Ono, Takahito

    2018-05-01

    In this work, we report a simple and low-cost way to create nanopores that can be employed for various applications in nanofluidics. Nano sized Ag particles in the range from 1 to 20 nm are formed on a silicon substrate with a de-wetting method. Then the silicon nanopores with an approximate 15 nm average diameter and 200 μm height are successfully produced by the metal-assisted chemical etching method. In addition, electrically driven ion transport in the nanopores is demonstrated for nanofluidic applications. Ion transport through the nanopores is observed and could be controlled by an application of a gating voltage to the nanopores.

  3. Biomimetic glass nanopores employing aptamer gates responsive to a small molecule†

    Science.gov (United States)

    Abelow, Alexis E.; Schepelina, Olga; White, Ryan J.; Vallée-Bélisle, Alexis

    2011-01-01

    We report the preparation of 20 and 65 nm radii glass nanopores whose surface is modified with DNA aptamers controlling the molecular transport through the nanopores in response to small molecule binding. PMID:20865192

  4. Effects of Confinement on Chemical Reaction Equilibrium in Nanoporous Materials

    Czech Academy of Sciences Publication Activity Database

    Smith, W.R.; Lísal, Martin; Brennan, J.K.

    2006-01-01

    Roč. 3984, - (2006), s. 743-751 ISSN 0302-9743 R&D Projects: GA ČR(CZ) GA203/05/0725; GA AV ČR 1ET400720507 Grant - others:NRCC(CA) OGP 1041 Institutional research plan: CEZ:AV0Z40720504 Keywords : nanoporous materials * chemical reaction equilibrium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.402, year: 2005

  5. Controllable Shrinking of Glass Capillary Nanopores Down to sub-10 nm by Wet-Chemical Silanization for Signal-Enhanced DNA Translocation.

    Science.gov (United States)

    Xu, Xiaolong; Li, Chuanping; Zhou, Ya; Jin, Yongdong

    2017-10-27

    Diameter is a major concern for nanopore based sensing. However, directly pulling glass capillary nanopore with diameter down to sub-10 nm is very difficult. So, post treatment is sometimes necessary. Herein, we demonstrate a facile and effective wet-chemical method to shrink the diameter of glass capillary nanopore from several tens of nanometers to sub-10 nm by disodium silicate hydrolysis. Its benefits for DNA translocation are investigated. The shrinking of glass capillary nanopore not only slows down DNA translocation, but also enhances DNA translocation signal and signal-to-noise ratio significantly (102.9 for 6.4 nm glass nanopore, superior than 15 for a 3 nm silicon nitride nanopore). It also affects DNA translocation behaviors, making the approach and glass capillary nanopore platform promising for DNA translocation studies.

  6. Sealing-free fast-response paraffin/nanoporous gold hybrid actuator

    Science.gov (United States)

    Ye, Xing-Long; Jin, Hai-Jun

    2017-09-01

    Paraffin-based actuators can deliver large actuation strokes and high actuation stress, but often suffer from a low response rate and leaking problems. Here, we report a new paraffin/metal hybrid actuator, which was fabricated by infiltrating nanoporous gold with paraffin. It exhibits a fast actuation rate owing to the high thermal conductivity of the inter-connected metal phase, and requires no external sealing because liquid paraffin can be well confined in nanoscale channels, due to the large capillarity. We found that in this hybrid actuator, the stress generated by actuation is negligibly small when the characteristic size of the nanoporous gold (L) is above ˜70 nm, and increases dramatically with a decreasing size when L paraffin wax—the paraffin in smaller pores can sustain larger tensile stress, and thus the contraction of paraffin during cooling can be translated into larger compression stress and strain energy in a metal framework, leading to a larger actuation stress and energy. We also demonstrate that complex actuation motions can be achieved by incorporating hierarchical-structured nanoporous metal with paraffin.

  7. Nanoporous thermosetting polymers.

    Science.gov (United States)

    Raman, Vijay I; Palmese, Giuseppe R

    2005-02-15

    Potential applications of nanoporous thermosetting polymers include polyelectrolytes in fuel cells, separation membranes, adsorption media, and sensors. Design of nanoporous polymers for such applications entails controlling permeability by tailoring pore size, structure, and interface chemistry. Nanoporous thermosetting polymers are often synthesized via free radical mechanisms using solvents that phase separate during polymerization. In this work, a novel technique for the synthesis of nanoporous thermosets is presented that is based on the reactive encapsulation of an inert solvent using step-growth cross-linking polymerization without micro/macroscopic phase separation. The criteria for selecting such a monomer-polymer-solvent system are discussed based on FTIR analysis, observed micro/macroscopic phase separation, and thermodynamics of swelling. Investigation of resulting network pore structures by scanning electron microscopy (SEM) and small-angle X-ray scattering following extraction and supercritical drying using carbon dioxide showed that nanoporous polymeric materials with pore sizes ranging from 1 to 50 nm can be synthesized by varying the solvent content. The differences in the porous morphology of these materials compared to more common free radically polymerized analogues that exhibit phase separation were evident from SEM imaging. Furthermore, it was demonstrated that the chemical activity of the nanoporous materials obtained by our method could be tailored by grafting appropriate functional groups at the pore interface.

  8. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays.

    Science.gov (United States)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm(-2), which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  9. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays

    Science.gov (United States)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Objective. Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Approach. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. Main results. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm-2, which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Significance. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  10. Free-standing thermo-responsive nanoporous membranes from high molecular weight PS-PNIPAM block copolymers synthesized via RAFT polymerization

    NARCIS (Netherlands)

    Cetintas, Merve; de Grooth, Joris; Hofman, Anton H.; van der Kooij, Hanne M.; Loos, Katja; de Vos, Wiebe Matthijs; Kamperman, Marleen

    2017-01-01

    The incorporation of stimuli-responsive pores in nanoporous membranes is a promising approach to facilitate the cleaning process of the membranes. Here we present fully reversible thermo-responsive nanoporous membranes fabricated by self-assembly and non-solvent induced phase separation (SNIPS) of

  11. Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu–Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei027@gmail.com [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Chen, Xi; Zou, Lijie; Yao, Yao; Lin, Yaojun; Shen, Qiang [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, CA 92697 (United States); Zhang, Lianmeng, E-mail: lmzhang@whut.edu.cn [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2016-04-13

    We report on a study of the influence of microstructure on the mechanical behavior of bulk nanoporous Cu fabricated by chemical de-alloying of Cu{sub 50}Al{sub 50}, Cu{sub 40}Al{sub 60}, Cu{sub 33}Al{sub 67} and Cu{sub 30}Al{sub 70} (at%) alloys. The precursor Cu–Al alloys were fabricated using arc melting and bulk nanoporous Cu was obtained by subsequent de-alloying of Cu–Al alloys in 20 wt% NaOH aqueous solution at a temperature of 65 °C. We studied the microstructure of the precursor Cu–Al alloys, as well as that of the as de-alloyed bulk nanoporous Cu, using X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Moreover, the compressive strength of bulk nanoporous Cu was measured and the relationship between microstructure and mechanical properties was studied. Our results show that the microstructure of bulk nanoporous Cu is characterized by bi-continuous interpenetrating ligament-channels with a ligament size of 130±20 nm (for Cu{sub 50}Al{sub 50}), 170±20 nm (for Cu{sub 40}Al{sub 60}) and 160±10 nm (for Cu{sub 33}Al{sub 67}). Interestingly the microstructure of de-alloyed Cu{sub 30}Al{sub 70} is bimodal with nanopores (100's nm) and interspersed featureless regions a few microns in size. The compressive strength increased with decreasing volume fraction of porosity; as porosity increased 56.3±2% to 73.9±2%, the compressive strength decreased from 17.18±1 MPa to 2.71±0.5 MPa.

  12. Solid-State Nanopore

    Directory of Open Access Journals (Sweden)

    Zhishan Yuan

    2018-02-01

    Full Text Available Abstract Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: “top-down” etching technology and “bottom-up” shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  13. Rapid and Sensitive Detection of Bacteria Response to Antibiotics Using Nanoporous Membrane and Graphene Quantum Dot (GQDs-Based Electrochemical Biosensors

    Directory of Open Access Journals (Sweden)

    Weiwei Ye

    2017-05-01

    Full Text Available The wide abuse of antibiotics has accelerated bacterial multiresistance, which means there is a need to develop tools for rapid detection and characterization of bacterial response to antibiotics in the management of infections. In the study, an electrochemical biosensor based on nanoporous alumina membrane and graphene quantum dots (GQDs was developed for bacterial response to antibiotics detection. Anti-Salmonella antibody was conjugated with amino-modified GQDs by glutaraldehyde and immobilized on silanized nanoporous alumina membranes for Salmonella bacteria capture. The impedance signals across nanoporous membranes could monitor the capture of bacteria on nanoporous membranes as well as bacterial response to antibiotics. This nanoporous membrane and GQD-based electrochemical biosensor achieved rapid detection of bacterial response to antibiotics within 30 min, and the detection limit could reach the pM level. It was capable of investigating the response of bacteria exposed to antibiotics much more rapidly and conveniently than traditional tools. The capability of studying the dynamic effects of antibiotics on bacteria has potential applications in the field of monitoring disease therapy, detecting comprehensive food safety hazards and even life in hostile environment.

  14. Recent Advances in Nanoporous Membranes for Water Purification

    Directory of Open Access Journals (Sweden)

    Zhuqing Wang

    2018-01-01

    Full Text Available Nanoporous materials exhibit wide applications in the fields of electrocatalysis, nanodevice fabrication, energy, and environmental science, as well as analytical science. In this review, we present a summary of recent studies on nanoporous membranes for water purification application. The types and fabrication strategies of various nanoporous membranes are first introduced, and then the fabricated nanoporous membranes for removing various water pollutants, such as salt, metallic ions, anions, nanoparticles, organic chemicals, and biological substrates, are demonstrated and discussed. This work will be valuable for readers to understand the design and fabrication of various nanoporous membranes, and their potential purification mechanisms towards different water pollutants. In addition, it will be helpful for developing new nanoporous materials for quick, economic, and high-performance water purification.

  15. Optical characterization of nanoporous AAO sensor substrate

    Science.gov (United States)

    Kassu, Aschalew; Farley, Carlton W.; Sharma, Anup

    2014-05-01

    Nanoporous anodic aluminum oxide (AAO) has been investigated as an ideal and cost-effective chemical and biosensing platform. In this paper, we report the optical properties of periodic 100 micron thick nanoporous anodic alumina membranes with uniform and high density cylindrical pores penetrating the entire thickness of the substrate, ranging in size from 18 nm to 150 nm in diameter and pore periods from 44 nm to 243 nm. The surface geometry of the top and bottom surface of each membrane is studied using atomic force microscopy. The optical properties including transmittance, reflectance, and absorbance spectra on both sides of each substrate are studied and found to be symmetrical. It is observed that, as the pore size increases, the peak resonance intensity in transmittance decreases and in absorbance increases. The effects of the pore sizes on the optical properties of the bare nanoporous membranes and the benefit of using arrays of nanohole arrays with varying hole size and periodicity as a chemical sensing platform is also discussed. To characterize the optical sensing technique, transmittance and reflectance measurements of various concentrations of a standard chemical adsorbed on the bare nanoporous substrates are investigated. The preliminary results presented here show variation in transmittance and reflectance spectra with the concentration of the chemical used or the amount of the material adsorbed on the surface of the substrate.

  16. Nanoporous-carbon adsorbers for chemical microsensors.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Siegal, Michael P.; Staton, Alan W.; Provencio, Paula Polyak; Yelton, William Graham

    2004-11-01

    Chemical microsensors rely on partitioning of airborne chemicals into films to collect and measure trace quantities of hazardous vapors. Polymer sensor coatings used today are typically slow to respond and difficult to apply reproducibly. The objective of this project was to produce a durable sensor coating material based on graphitic nanoporous-carbon (NPC), a new material first studied at Sandia, for collection and detection of volatile organic compounds (VOC), toxic industrial chemicals (TIC), chemical warfare agents (CWA) and nuclear processing precursors (NPP). Preliminary studies using NPC films on exploratory surface-acoustic-wave (SAW) devices and as a {micro}ChemLab membrane preconcentrator suggested that NPC may outperform existing, irreproducible coatings for SAW sensor and {micro}ChemLab preconcentrator applications. Success of this project will provide a strategic advantage to the development of a robust, manufacturable, highly-sensitive chemical microsensor for public health, industrial, and national security needs. We use pulsed-laser deposition to grow NPC films at room-temperature with negligible residual stress, and hence, can be deposited onto nearly any substrate material to any thickness. Controlled deposition yields reproducible NPC density, morphology, and porosity, without any discernable variation in surface chemistry. NPC coatings > 20 {micro}m thick with density < 5% that of graphite have been demonstrated. NPC can be 'doped' with nearly any metal during growth to provide further enhancements in analyte detection and selectivity. Optimized NPC-coated SAW devices were compared directly to commonly-used polymer coated SAWs for sensitivity to a variety of VOC, TIC, CWA and NPP. In every analyte, NPC outperforms each polymer coating by multiple orders-of-magnitude in detection sensitivity, with improvements ranging from 103 to 108 times greater detection sensitivity! NPC-coated SAW sensors appear capable of detecting most analytes

  17. Morphological, Chemical Surface, and Diffusive Transport Characterizations of a Nanoporous Alumina Membrane

    Directory of Open Access Journals (Sweden)

    María I. Vázquez

    2015-12-01

    Full Text Available Synthesis of a nanoporous alumina membrane (NPAM by the two-step anodization method and its morphological and chemical surface characterization by analyzing Scanning Electron Microscopy (SEM micrographs and X-Ray Photoelectron Spectroscopy (XPS spectra is reported. Influence of electrical and diffusive effects on the NaCl transport across the membrane nanopores is determined from salt diffusion measurements performed with a wide range of NaCl concentrations, which allows the estimation of characteristic electrochemical membrane parameters such as the NaCl diffusion coefficient and the concentration of fixed charges in the membrane, by using an appropriated model and the membrane geometrical parameters (porosity and pore length. These results indicate a reduction of ~70% in the value of the NaCl diffusion coefficient through the membrane pores with respect to solution. The transport number of ions in the membrane pores (Na+ and Cl−, respectively were determined from concentration potential measurements, and the effect of concentration-polarization at the membrane surfaces was also considered by comparing concentration potential values obtained with stirred solutions (550 rpm and without stirring. From both kinds of results, a value higher than 0.05 M NaCl for the feed solution seems to be necessary to neglect the contribution of electrical interactions in the diffusive transport.

  18. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals.

    Science.gov (United States)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-21

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.

  19. Chemical Reaction Equilibrium in Nanoporous Materials: NO Dimerization Reaction in Carbon Slit Nanopores

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Brennan, J.K.; Smith, W.R.

    2006-01-01

    Roč. 124, č. 6 (2006), s. 64712.1-64712.14 ISSN 0021-9606 R&D Projects: GA ČR(CZ) GA203/05/0725; GA AV ČR(CZ) 1ET400720507; GA AV ČR(CZ) 1ET400720409 Institutional research plan: CEZ:AV0Z40720504 Keywords : nanopore * NO dimerization * reaction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.166, year: 2006

  20. An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry.

    NARCIS (Netherlands)

    Soskine, Mikhael; Biesemans, Annemie; Moeyaert, Benjamien; Cheley, Stephen; Bayley, Hagan; Maglia, Giovanni

    Nanopores have been used in label-free single-molecule studies, including investigations of chemical reactions, nucleic acid analysis, and applications in sensing. Biological nanopores generally perform better than artificial nanopores as sensors, but they have disadvantages including a fixed

  1. Molecular sieving through a graphene nanopore: non-equilibrium molecular dynamics simulation

    Institute of Scientific and Technical Information of China (English)

    Chengzhen Sun; Bofeng Bai

    2017-01-01

    Two-dimensional graphene nanopores have shown great promise as ultra-permeable molecular sieves based on their size-sieving effects.We design a nitrogen/hydrogen modified graphene nanopore and conduct a transient non-equilibrium molecular dynamics simulation on its molecular sieving effects.The distinct time-varying molecular crossing numbers show that this special nanopore can efficiently sieve CO2 and H2S molecules from CH4 molecules with high selectivity.By analyzing the molecular structure and pore functionalization-related molecular orientation and permeable zone in the nanopore,density distribution in the molecular adsorption layer on the graphene surface,as well as other features,the molecular sieving mechanisms of graphene nanopores are revealed.Finally,several implications on the design of highly-efficient graphene nanopores,especially for determining the porosity and chemical functionalization,as gas separation membranes are summarized based on the identified phenomena and mechanisms.

  2. Nanoporous Glasses for Nuclear Waste Containment

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2016-01-01

    Full Text Available Research is in progress to incorporate nuclear waste in new matrices with high structural stability, resistance to thermal shock, and high chemical durability. Interactions with water are important for materials used as a containment matrix for the radio nuclides. It is indispensable to improve their chemical durability to limit the possible release of radioactive chemical species, if the glass structure is attacked by corrosion. By associating high structural stability and high chemical durability, silica glass optimizes the properties of a suitable host matrix. According to an easy sintering stage, nanoporous glasses such as xerogels, aerogels, and composite gels are alternative ways to synthesize silica glass at relatively low temperatures (≈1,000–1,200°C. Nuclear wastes exist as aqueous salt solutions and we propose using the open pore structure of the nanoporous glass to enable migration of the solution throughout the solid volume. The loaded material is then sintered, thereby trapping the radioactive chemical species. The structure of the sintered materials (glass ceramics is that of nanocomposites: actinide phases (~100 nm embedded in a vitreous silica matrix. Our results showed a large improvement in the chemical durability of glass ceramic over conventional nuclear glass.

  3. Microtome Sliced Block Copolymers and Nanoporous Polymers as Masks for Nanolithography

    DEFF Research Database (Denmark)

    Shvets, Violetta; Schulte, Lars; Ndoni, Sokol

    2014-01-01

    Introduction. Block copolymers self-assembling properties are commonly used for creation of very fine nanostructures [1]. Goal of our project is to test new methods of the block-copolymer lithography mask preparation: macroscopic pieces of block-copolymers or nanoporous polymers with cross...... PDMS can be chemically etched from the PB matrix by tetrabutylammonium fluoride in tetrahydrofuran and macroscopic nanoporous PB piece is obtained. Both block-copolymer piece and nanoporous polymer piece were sliced with cryomicrotome perpendicular to the axis of cylinder alignment and flakes...... of etching patterns appear only under the certain parts of thick flakes and are not continuous. Although flakes from block copolymer are thinner and more uniform in thickness than flakes from nanoporous polymer, quality of patterns under nanoporous flakes appeared to be better than under block copolymer...

  4. Nanoporous gold microelectrode prepared from potential modulated electrochemical alloying–dealloying in ionic liquid

    International Nuclear Information System (INIS)

    Jiang, Junhua; Wang, Xinying; Zhang, Lei

    2013-01-01

    Highlights: • A green chemistry method for producing nanoporous gold microelectrode was studied. • An ionic liquid plating bath was utilized for electrochemical alloying–dealloying. • Nanostructures of gold surface layers can be tuned by modulating potential. • Nanoporous gold microelectrode has high surface area and merit of a microelectrode. • Nitrite oxidation and reduction on nanoporous gold microelectrode were studied. -- Abstract: Nanoporous gold (NPG) microelectrodes with high surface area and open pore network were successfully prepared by applying modulated potential to a polycrystalline Au-disk microelectrode in ionic liquid electrolyte containing ZnCl 2 at elevated temperature. During cathodic process, Zn is electrodeposited and interacted with Au microdisk substrate to form a AuZn alloy phase. During subsequent anodic process, Zn is selectively dissolved from the alloy phase, leading to the formation of a NPG layer which can grow with repetitive potential modulation. Scanning-electron microscope and energy dispersive X-ray microscope measurements show that the NPG microelectrodes possessing nanoporous structures can be tuned via potential modulation, and chemically contain a small amount of Zn whose presence has no obvious influence on electrochemical responses of the electrodes. Steady-state and cyclic voltammetric studies suggest that the NPG microelectrodes have high surface area and keep diffusional properties of a microelectrode. Electrochemical nitrite reduction and oxidation are studied as model reactions to demonstrate potential applications of the NPG microelectrodes in electrocatalysis and electroanalysis. These facts suggest that the potential-modulated electrochemical alloying/dealloying in ionic liquid electrolyte offers a convenient green-chemistry method for the preparation of nanoporous microelectrodes

  5. Influence of Nanopore Shapes on Thermal Conductivity of Two-Dimensional Nanoporous Material.

    Science.gov (United States)

    Huang, Cong-Liang; Huang, Zun; Lin, Zi-Zhen; Feng, Yan-Hui; Zhang, Xin-Xin; Wang, Ge

    2016-12-01

    The influence of nanopore shapes on the electronic thermal conductivity (ETC) was studied in this paper. It turns out that with same porosity, the ETC will be quite different for different nanopore shapes, caused by the different channel width for different nanopore shapes. With same channel width, the influence of different nanopore shapes can be approximately omitted if the nanopore is small enough (smaller than 0.5 times EMFP in this paper). The ETC anisotropy was discovered for triangle nanopores at a large porosity with a large nanopore size, while there is a similar ETC for small pore size. It confirmed that the structure difference for small pore size may not be seen by electrons in their moving.

  6. Structural evolution in nanoporous anodic aluminium oxide

    International Nuclear Information System (INIS)

    Rocca, Emmanuel; Vantelon, Delphine; Reguer, Solenn; Mirambet, François

    2012-01-01

    Nanoporous and self-organized layers of aluminium alloys are used in many applications as membranes, templates for nanometric objects or corrosion protection for aluminium alloys. The use of this nanometric structure widely remains empirical, especially in the case of very small pores ( 4 into AlO 6 cluster and a partial release of sulphate ions are an important chemical transformation of the amorphous structure. This structural transformation defines the chemistry (pH and surface charge) inside the nanopores, the ageing behaviour and the possible incorporation or diffusion of chemical species in the nanostructure. Highlights: ► Investigations of local chemical environment of aluminium atoms in anodic aluminium oxide. ► The oxide structure is constituted by 2/3 of aluminium in tetrahedral coordination 1/3 in octahedral coordination. ► In contact with water, AlO 4 clusters are transformed into AlO 6 cluster and the aluminium sulphate bonds are hydrolysed. ► These transformations induce a pH decrease inside the nanostructure.

  7. Detection of urea-induced internal denaturation of dsDNA using solid-state nanopores.

    Science.gov (United States)

    Singer, Alon; Kuhn, Heiko; Frank-Kamenetskii, Maxim; Meller, Amit

    2010-11-17

    The ability to detect and measure dsDNA thermal fluctuations is of immense importance in understanding the underlying mechanisms responsible for transcription and replication regulation. We describe here the ability of solid-state nanopores to detect sub-nanometer changes in DNA structure as a result of chemically enhanced thermal fluctuations. In this study, we investigate the subtle changes in the mean effective diameter of a dsDNA molecule with 3-5 nm solid-state nanopores as a function of urea concentration and the DNA's AT content. Our studies reveal an increase in the mean effective diameter of a DNA molecule of approximately 0.6 nm at 8.7 M urea. In agreement with the mechanism of DNA local denaturation, we observe a sigmoid dependence of these effects on urea concentration. We find that the translocation times in urea are markedly slower than would be expected if the dynamics were governed primarily by viscous effects. Furthermore, we find that the sensitivity of the nanopore is sufficient to statistically differentiate between DNA molecules of nearly identical lengths differing only in sequence and AT content when placed in 3.5 M urea. Our results demonstrate that nanopores can detect subtle structural changes and are thus a valuable tool for detecting differences in biomolecules' environment.

  8. Detection of urea-induced internal denaturation of dsDNA using solid-state nanopores

    International Nuclear Information System (INIS)

    Singer, Alon; Kuhn, Heiko; Frank-Kamenetskii, Maxim; Meller, Amit

    2010-01-01

    The ability to detect and measure dsDNA thermal fluctuations is of immense importance in understanding the underlying mechanisms responsible for transcription and replication regulation. We describe here the ability of solid-state nanopores to detect sub-nanometer changes in DNA structure as a result of chemically enhanced thermal fluctuations. In this study, we investigate the subtle changes in the mean effective diameter of a dsDNA molecule with 3-5 nm solid-state nanopores as a function of urea concentration and the DNA's AT content. Our studies reveal an increase in the mean effective diameter of a DNA molecule of approximately 0.6 nm at 8.7 M urea. In agreement with the mechanism of DNA local denaturation, we observe a sigmoid dependence of these effects on urea concentration. We find that the translocation times in urea are markedly slower than would be expected if the dynamics were governed primarily by viscous effects. Furthermore, we find that the sensitivity of the nanopore is sufficient to statistically differentiate between DNA molecules of nearly identical lengths differing only in sequence and AT content when placed in 3.5 M urea. Our results demonstrate that nanopores can detect subtle structural changes and are thus a valuable tool for detecting differences in biomolecules' environment.

  9. Controlling Ionic Transport for Device Design in Synthetic Nanopores

    Science.gov (United States)

    Kalman, Eric Boyd

    Polymer nanopores present a number of behaviors not seen in microscale systems, such as ion current rectification, ionic selectivity, size exclusion and potential dependent ion concentrations in and near the pore. The existence of these effects stems from the small size of nanopores with respect to the characteristic length scales of surface interactions at the interface between the nanopore surface and the solution within it. The large surface-to-volume ratio due to the nanoscale geometry of a nanopore, as well as similarity in scale between geometry and interaction demands the solution interact with the nanopore walls. As surfaces in solution almost always carry residual charge, these surface forces are primarily the electrostatic interactions between the charge groups on the pore surface and the ions in solution. These interactions may be used by the experimentalist to control ionic transport through synthetic nanopores, and use them as a template for the construction of devices. In this research, we present our work on creating a number of ionic analogs to seminal electronic devices, specifically diodes, and transistors, by controlling ionic transport through the electrostatic interactions between a single synthetic nanopore and ions. Control is achieved by "doping" the effective charge carrier concentration in specific regions of the nanopore through manipulation of the pore's surface charge. This manipulation occurs through two mechanisms: chemical modification of the surface charge and electrostatic manipulation of the local internal nanopore potential using a gate electrode. Additionally, the innate selectivity of the charged nanopores walls allows for the separation of charges in solution. This well-known effect, which spawns measureable quantities, the streaming potential and current, has been used to create nanoscale water desalination membranes. We attempt to create a device using membranes with large nanopore densities for the desalination of water

  10. Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.

    Science.gov (United States)

    Shankla, Manish; Aksimentiev, Aleksei

    2017-04-20

    Modulation of ionic current flowing through nanoscale pores is one of the fundamental biological processes. Inspired by nature, nanopores in synthetic solid-state membranes are being developed to enable rapid analysis of biological macromolecules and to serve as elements of nanofludic circuits. Here, we theoretically investigate ion and water transport through a graphene-insulator-graphene membrane containing a single, electrolyte-filled nanopore. By means of all-atom molecular dynamics simulations, we show that the charge state of such a graphene nanopore capacitor can regulate both the selectivity and the magnitude of the nanopore ionic current. At a fixed transmembrane bias, the ionic current can be switched from being carried by an equal mixture of cations and anions to being carried almost exclusively by either cationic or anionic species, depending on the sign of the charge assigned to both plates of the capacitor. Assigning the plates of the capacitor opposite sign charges can either increase the nanopore current or reduce it substantially, depending on the polarity of the bias driving the transmembrane current. Facilitated by the changes of the nanopore surface charge, such ionic current modulations are found to occur despite the physical dimensions of the nanopore being an order of magnitude larger than the screening length of the electrolyte. The ionic current rectification is accompanied by a pronounced electro-osmotic effect that can transport neutral molecules such as proteins and drugs across the solid-state membrane and thereby serve as an interface between electronic and chemical signals.

  11. Silicon deposition in nanopores using a liquid precursor

    Science.gov (United States)

    Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya

    2016-11-01

    Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.

  12. Catalyst Design Using Nanoporous Iron for the Chemical Vapor Deposition Synthesis of Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Tarek M. Abdel-Fattah

    2013-01-01

    Full Text Available Single-walled carbon nanotubes (SWNTs have been synthesized via a novel chemical vapor deposition (CVD approach utilizing nanoporous, iron-supported catalysts. Stable aqueous dispersions of the CVD-grown nanotubes using an anionic surfactant were also obtained. The properties of the as-produced SWNTs were characterized through atomic force microscopy and Raman spectroscopy and compared with purified SWNTs produced via the high-pressure CO (HiPCO method as a reference, and the nanotubes were observed with greater lengths than those of similarly processed HiPCO SWNTs.

  13. Single molecule transistor based nanopore for the detection of nicotine

    Energy Technology Data Exchange (ETDEWEB)

    Ray, S. J., E-mail: ray.sjr@gmail.com [Institute of Materials Science, Technical University of Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany)

    2014-12-28

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  14. Single molecule transistor based nanopore for the detection of nicotine

    Science.gov (United States)

    Ray, S. J.

    2014-12-01

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  15. Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Hoa

    2015-01-01

    Full Text Available Development and/or design of new materials and/or structures for effective gas sensor applications with fast response and high sensitivity, selectivity, and stability are very important issues in the gas sensor technology. This critical review introduces our recent progress in the development of meso-/nanoporous semiconducting metal oxides and their applications to gas sensors. First, the basic concepts of resistive gas sensors and the recent synthesis of meso-/nanoporous metal oxides for gas sensor applications are introduced. The advantages of meso-/nanoporous metal oxides are also presented, taking into account the crystallinity and ordered/disordered porous structures. Second, the synthesis methods of meso-/nanoporous metal oxides including the soft-template, hard-template, and temple-free methods are introduced, in which the advantages and disadvantages of each synthetic method are figured out. Third, the applications of meso-/nanoporous metal oxides as gas sensors are presented. The gas nanosensors are designed based on meso-/nanoporous metal oxides for effective detection of toxic gases. The sensitivity, selectivity, and stability of the meso-/nanoporous gas nanosensors are also discussed. Finally, some conclusions and an outlook are presented.

  16. Preparation and Hydrogen Absorption/Desorption of Nanoporous Palladium Thin Films

    Directory of Open Access Journals (Sweden)

    Wen-Chung Li

    2009-12-01

    Full Text Available Nanoporous Pd (np-Pd was prepared by co-sputtering Pd-Ni alloy films onto Si substrates, followed by chemical dealloying with sulfuric acid. X-ray diffractometry and chemical analysis were used to track the extent of dealloying. The np-Pd structure was changed from particle-like to sponge-like by diluting the sulfuric acid etchant. Using suitable precursor alloy composition and dealloying conditions, np-Pd films were prepared with uniform and open sponge-like structures, with interconnected ligaments and no cracks, yielding a large amount of surface area for reactions with hydrogen. Np-Pd films exhibited shorter response time for hydrogen absorption/desorption than dense Pd films, showing promise for hydrogen sensing.

  17. Sustained, Controlled and Stimuli-Responsive Drug Release Systems Based on Nanoporous Anodic Alumina with Layer-by-Layer Polyelectrolyte

    Science.gov (United States)

    Porta-i-Batalla, Maria; Eckstein, Chris; Xifré-Pérez, Elisabet; Formentín, Pilar; Ferré-Borrull, J.; Marsal, Lluis F.

    2016-08-01

    Controlled drug delivery systems are an encouraging solution to some drug disadvantages such as reduced solubility, deprived biodistribution, tissue damage, fast breakdown of the drug, cytotoxicity, or side effects. Self-ordered nanoporous anodic alumina is an auspicious material for drug delivery due to its biocompatibility, stability, and controllable pore geometry. Its use in drug delivery applications has been explored in several fields, including therapeutic devices for bone and dental tissue engineering, coronary stent implants, and carriers for transplanted cells. In this work, we have created and analyzed a stimuli-responsive drug delivery system based on layer-by-layer pH-responsive polyelectrolyte and nanoporous anodic alumina. The results demonstrate that it is possible to control the drug release using a polyelectrolyte multilayer coating that will act as a gate.

  18. Negative differential electrolyte resistance in a solid-state nanopore resulting from electroosmotic flow bistability.

    Science.gov (United States)

    Luo, Long; Holden, Deric A; White, Henry S

    2014-03-25

    A solid-state nanopore separating two aqueous solutions containing different concentrations of KCl is demonstrated to exhibit negative differential resistance (NDR) when a constant pressure is applied across the nanopore. NDR refers to a decrease in electrical current when the voltage applied across the nanopore is increased. NDR results from the interdependence of solution flow (electroosmotic and pressure-engendered) with the distributions of K+ and Cl- within the nanopore. A switch from a high-conductivity state to a low-conductivity state occurs over a very narrow voltage window (flow, yielding a true bistability in fluid flow and electrical current at a critical applied voltage, i.e., the NDR "switching potential". Solution pH and Ca2+ were separately employed as chemical stimuli to investigate the dependence of the NDR on the surface charge density. The NDR switching potential is remarkably sensitive to the surface charge density, and thus to pH and the presence of Ca2+, suggesting possible applications in chemical sensing.

  19. High-density nanopore array for selective biomolecule transport.

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kamlesh D.

    2011-11-01

    Development of sophisticated tools capable of manipulating molecules at their own length scale enables new methods for chemical synthesis and detection. Although nanoscale devices have been developed to perform individual tasks, little work has been done on developing a truly scalable platform: a system that combines multiple components for sequential processing, as well as simultaneously processing and identifying the millions of potential species that may be present in a biological sample. The development of a scalable micro-nanofluidic device is limited in part by the ability to combine different materials (polymers, metals, semiconductors) onto a single chip, and the challenges with locally controlling the chemical, electrical, and mechanical properties within a micro or nanochannel. We have developed a unique construct known as a molecular gate: a multilayered polymer based device that combines microscale fluid channels with nanofluidic interconnects. Molecular gates have been demonstrated to selectively transport molecules between channels based on size or charge. In order to fully utilize these structures, we need to develop methods to actively control transport and identify species inside a nanopore. While previous work has been limited to creating electrical connections off-channel or metallizing the entire nanopore wall, we now have the ability to create multiple, separate conductive connections at the interior surface of a nanopore. These interior electrodes will be used for direct sensing of biological molecules, probing the electrical potential and charge distribution at the surface, and to actively turn on and off electrically driven transport of molecules through nanopores.

  20. Nanoporous silica membranes with high hydrothermal stability

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Magnacca, Giualiana; Yue, Yuanzheng

    to improve the stability of nanoporous silica structure. This work is a quantitative study on the impact of type and concentration of transition metal ions on the microporous structure and stability of amorphous silica-based membranes, which provides information on how to design chemical compositions...

  1. Sodium Dodecyl Sulfate (SDS)-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    DEFF Research Database (Denmark)

    Li, Li; Molin, Søren; Yang, Liang

    2013-01-01

    -b-polydimethylsiloxane (1,2-PB-b-PDMS) block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS) was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment...

  2. Engineering of highly ordered TiO2 nanopore arrays by anodization

    Science.gov (United States)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  3. Mechanical Properties of Nanoporous Au: From Empirical Evidence to Phenomenological Modeling

    Directory of Open Access Journals (Sweden)

    Giorgio Pia

    2015-09-01

    Full Text Available The present work focuses on the development of a theoretical model aimed at relating the mechanical properties of nanoporous metals to the bending response of thick ligaments. The model describes the structure of nanoporous metal foams in terms of an idealized regular lattice of massive cubic nodes and thick ligaments with square cross-sections. Following a general introduction to the subject, model predictions are compared with Young’s modulus and the yield strength of nanoporous Au foams determined experimentally and available in literature. It is shown that the model provides a quantitative description of the elastic and plastic deformation behavior of nanoporous metals, reproducing to a satisfactory extent the experimental Young’s modulus and yield strength values of nanoporous Au.

  4. Stepwise Nanopore Evolution in One-Dimensional Nanostructures

    KAUST Repository

    Choi, Jang Wook

    2010-04-14

    We report that established simple lithium (Li) ion battery cycles can be used to produce nanopores inside various useful one-dimensional (1D) nanostructures such as zinc oxide, silicon, and silver nanowires. Moreover, porosities of these 1D nanomaterials can be controlled in a stepwise manner by the number of Li-battery cycles. Subsequent pore characterization at the end of each cycle allows us to obtain detailed snapshots of the distinct pore evolution properties in each material due to their different atomic diffusion rates and types of chemical bonds. Also, this stepwise characterization led us to the first observation of pore size increases during cycling, which can be interpreted as a similar phenomenon to Ostwald ripening in analogous nanoparticle cases. Finally, we take advantage of the unique combination of nanoporosity and 1D materials and demonstrate nanoporous silicon nanowires (poSiNWs) as excellent supercapacitor (SC) electrodes in high power operations compared to existing devices with activated carbon. © 2010 American Chemical Society.

  5. 1/f noise in graphene nanopores

    International Nuclear Information System (INIS)

    Heerema, S J; Schneider, G F; Rozemuller, M; Vicarelli, L; Zandbergen, H W; Dekker, C

    2015-01-01

    Graphene nanopores are receiving great attention due to their atomically thin membranes and intrinsic electrical properties that appear greatly beneficial for biosensing and DNA sequencing. Here, we present an extensive study of the low-frequency 1/f noise in the ionic current through graphene nanopores and compare it to noise levels in silicon nitride pore currents. We find that the 1/f noise magnitude is very high for graphene nanopores: typically two orders of magnitude higher than for silicon nitride pores. This is a drawback as it significantly lowers the signal-to-noise ratio in DNA translocation experiments. We evaluate possible explanations for these exceptionally high noise levels in graphene pores. From examining the noise for pores of different diameters and at various salt concentrations, we find that in contrast to silicon nitride pores, the 1/f noise in graphene pores does not follow Hooge’s relation. In addition, from studying the dependence on the buffer pH, we show that the increased noise cannot be explained by charge fluctuations of chemical groups on the pore rim. Finally, we compare single and bilayer graphene to few-layer and multi-layer graphene and boron nitride (h-BN), and we find that the noise reduces with layer thickness for both materials, which suggests that mechanical fluctuations may be the underlying cause of the high 1/f noise levels in monolayer graphene nanopore devices. (paper)

  6. Nonfaradaic nanoporous electrochemistry for conductometry at high electrolyte concentration.

    Science.gov (United States)

    Bae, Je Hyun; Kang, Chung Mu; Choi, Hyoungseon; Kim, Beom Jin; Jang, Woohyuk; Lim, Sung Yul; Kim, Hee Chan; Chung, Taek Dong

    2015-02-17

    Nanoporous electrified surfaces create a unique nonfaradaic electrochemical behavior that is sensitively influenced by pore size, morphology, ionic strength, and electric field modulation. Here, we report the contributions of ion concentration and applied ac frequency to the electrode impedance through an electrical double layer overlap and ion transport along the nanopores. Nanoporous Pt with uniform pore size and geometry (L2-ePt) responded more sensitively to conductivity changes in aqueous solutions than Pt black with poor uniformity despite similar real surface areas and enabled the previously difficult quantitative conductometry measurements at high electrolyte concentrations. The nanopores of L2-ePt were more effective in reducing the electrode impedance and exhibited superior linear responses to not only flat Pt but also Pt black, leading to successful conductometric detection in ion chromatography without ion suppressors and at high ionic strengths.

  7. Formation and evolution of nanoporous bimetallic Ag-Cu alloy by electrochemically dealloying Mg-(Ag-Cu)-Y metallic glass

    International Nuclear Information System (INIS)

    Li, Ran; Wu, Na; Liu, Jijuan; Jin, Yu; Chen, Xiao-Bo; Zhang, Tao

    2017-01-01

    Highlights: • Uniform nanoporous Ag-Cu alloy was fabricated by dealloying Mg-based metallic glass. • The nanoporous structure was built up with numerous Ag-Cu ligaments. • The nanoporous ligaments show two-stage coarsening behavior with dealloying time. • The formation and evolution mechanisms of the nanoporous structure were clarified. • It could provide new guidance to the synthesis of nanoporous multi-component alloys. - Abstract: A three-dimensional nanoporous bimetallic Ag-Cu alloy with uniform chemical composition has been fabricated by dealloying Mg_6_5Ag_1_2_._5Cu_1_2_._5Y_1_0 metallic glass in dilute (0.04 M) H_2SO_4 aqueous solution under free-corrosion conditions. The nanoporous Ag-Cu evolves through two distinct stages. First, ligaments of the nanoporous structure, consisting of supersaturated Ag(Cu) solid solution with a constant Ag/Cu mole ratio of 1:1, are yielded. Second, with excessive immersion, some Cu atoms separate from the metastable nanoporous matrix and form spherical Cu particles on the sample surface. Formation and evolution mechanisms of the nanoporous structure are proposed.

  8. Multistep Current Signal in Protein Translocation through Graphene Nanopores

    KAUST Repository

    Bonome, Emma Letizia

    2015-05-07

    © 2015 American Chemical Society. In nanopore sensing experiments, the properties of molecules are probed by the variation of ionic currents flowing through the nanopore. In this context, the electronic properties and the single-layer thickness of graphene constitute a major advantage for molecule characterization. Here we analyze the translocation pathway of the thioredoxin protein across a graphene nanopore, and the related ionic currents, by integrating two nonequilibrium molecular dynamics methods with a bioinformatic structural analysis. To obtain a qualitative picture of the translocation process and to identify salient features we performed unsupervised structural clustering on translocation conformations. This allowed us to identify some specific and robust translocation intermediates, characterized by significantly different ionic current flows. We found that the ion current strictly anticorrelates with the amount of pore occupancy by thioredoxin residues, providing a putative explanation of the multilevel current scenario observed in recently published translocation experiments.

  9. Nanoporous cerium oxide thin film for glucose biosensor.

    Science.gov (United States)

    Saha, Shibu; Arya, Sunil K; Singh, S P; Sreenivas, K; Malhotra, B D; Gupta, Vinay

    2009-03-15

    Nanoporous cerium oxide (CeO(2)) thin film deposited onto platinum (Pt) coated glass plate using pulsed laser deposition (PLD) has been utilized for immobilization of glucose oxidase (GOx). Atomic force microscopy studies reveal the formation of nanoporous surface morphology of CeO(2) thin film. Response studies carried out using differential pulsed voltammetry (DPV) and optical measurements show that the GOx/CeO(2)/Pt bio-electrode shows linearity in the range of 25-300 mg/dl of glucose concentration. The low value of Michaelis-Menten constant (1.01 mM) indicates enhanced enzyme affinity of GOx to glucose. The observed results show promising application of the nanoporous CeO(2) thin film for glucose sensing application without any surface functionalization or mediator.

  10. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  11. Highly sensitive detection using microring resonator and nanopores

    Science.gov (United States)

    Bougot-Robin, K.; Hoste, J. W.; Le Thomas, N.; Bienstman, P.; Edel, J. B.

    2016-04-01

    One of the most significant challenges facing physical and biological scientists is the accurate detection and identification of single molecules in free-solution environments. The ability to perform such sensitive and selective measurements opens new avenues for a large number of applications in biological, medical and chemical analysis, where small sample volumes and low analyte concentrations are the norm. Access to information at the single or few molecules scale is rendered possible by a fine combination of recent advances in technologies. We propose a novel detection method that combines highly sensitive label-free resonant sensing obtained with high-Q microcavities and position control in nanoscale pores (nanopores). In addition to be label-free and highly sensitive, our technique is immobilization free and does not rely on surface biochemistry to bind probes on a chip. This is a significant advantage, both in term of biology uncertainties and fewer biological preparation steps. Through combination of high-Q photonic structures with translocation through nanopore at the end of a pipette, or through a solid-state membrane, we believe significant advances can be achieved in the field of biosensing. Silicon microrings are highly advantageous in term of sensitivity, multiplexing, and microfabrication and are chosen for this study. In term of nanopores, we both consider nanopore at the end of a nanopipette, with the pore being approach from the pipette with nanoprecise mechanical control. Alternatively, solid state nanopores can be fabricated through a membrane, supporting the ring. Both configuration are discussed in this paper, in term of implementation and sensitivity.

  12. Sodium Dodecyl Sulfate (SDS-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    Directory of Open Access Journals (Sweden)

    Sokol Ndoni

    2013-02-01

    Full Text Available Biofilms cause extensive damage to industrial settings. Thus, it is important to improve the existing techniques and develop new strategies to prevent bacterial biofilm formation. In the present study, we have prepared nanoporous polymer films from a self-assembled 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment in short-term (3 h and significantly reduce biofilm formation in long-term (1 week by gram-negative bacterium Escherichia coli. Tuning the thickness or surface morphology of the nanoporous polymer films allowed to extent the anti-biofilm capability.

  13. Ion current rectification, limiting and overlimiting conductances in nanopores.

    Directory of Open Access Journals (Sweden)

    Liesbeth van Oeffelen

    Full Text Available Previous reports on Poisson-Nernst-Planck (PNP simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  14. Nanofluidic Device with Embedded Nanopore

    Science.gov (United States)

    Zhang, Yuning; Reisner, Walter

    2014-03-01

    Nanofluidic based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with nanpore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a nanopore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can detect - using fluorescent microscopy - successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. We also show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore until a certain voltage bias is added.

  15. Hydrophilic nanoporous materials

    DEFF Research Database (Denmark)

    2010-01-01

    The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.05, the ......The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.......05, the method comprising the steps of: (a) preparing a precursor material comprising at least one polymeric component and having a first phase and a second phase; (b) removal of at least a part of the first phase of the precursor material prepared in step (a) so as to leave behind a nanoporous material...... of the polymer matrix; (c) irradiating at least a part of said nanoporous material with light of a wave length of in the range of 250-400 nm (or 200-700 nm) in the presence of oxygen and/or ozone. Corresponding hydrophilic nanoporous materials are also disclosed. L...

  16. Nanopore formation on Au coated pyramid under electron beam irradiations (plasmonic nanopore on pyramid

    Directory of Open Access Journals (Sweden)

    Seong Soo Choi

    2016-03-01

    Full Text Available There have been tremendous interests about the single molecule analysis using a sold-state nanopore. The solid-state nanopore can be fabricated either by drilling technique, or diffusion technique by using electron beam irradiations. The solid-state SiN nanopore device with electrical detection technique recently fabricated, however, the solid-state Au nanopore with optical detection technique can be better utilized as the next generation single molecule sensor. In this report, the nanometer size openings with its size less than 10 nm on the diffused membrane on the 200 nm Au pyramid were fabricated by using field emission scanning electron microscopy (FESEM electron beam irradiations, transmission electron microscopy (TEM, etc. After the sample was being kept under a room environment for several months, several Au (111 clusters with ~6 nm diameter formed via Ostwald ripening are observed using a high resolution TEM imaging. The nanopore with Au nanoclusters on the diffused membrane can be utilized as an optical nanopore device. Keywords: Electron beam irradiation, Surface diffusion, Carbon contamination, Au cluster, Ostwald ripening

  17. Fluid Behavior and Fluid-Solid Interactions in Nanoporous Media

    Science.gov (United States)

    Xu, H.

    2015-12-01

    Although shale oil/gas production in the US has increased exponentially, the low energy recovery is a daunting problem needed to be solved for its sustainability and continued growth, especially in light of the recent oil/gas price decline. This is apparently related to the small porosity (a few to a few hundred nm) and low permeability (10-16-10-20 m2) of tight shale formations. The fundamental question lies in the anomalous behavior of fluids in nanopores due to confinement effects, which, however, remains poorly understood. In this study, we combined experimental characterization and observations, particularly using small-angle neutron scattering (SANS), with pore-scale modeling using lattice Boltzmann method (LBM), to examine the fluid behavior and fluid-solid interactions in nanopores at reservoir conditions. Experimentally, we characterized the compositions and microstructures of a shale sample from Wolfcamp, Texas, using a variety of analytical techniques. Our analyses reveal that the shale sample is made of organic-matter (OM)-lean and OM-rich layers that exhibit different chemical and mineral compositions, and microstructural characteristics. Using the hydrostatic pressure system and gas-mixing setup we developed, in-situ SANS measurements were conducted at pressures up to 20 kpsi on shale samples imbibed with water or water-methane solutions. The obtained results indicate that capillary effect plays a significant role in fluid-nanopore interactions and the associated changes in nanopore structures vary with pore size and pressure. Computationally, we performed LBM modeling to simulate the flow behavior of methane in kerogen nanoporous structure. The correction factor, which is the ratio of apparent permeability to intrinsic permeability, was calculated. Our results show that the correction factor is always greater than one (non-continuum/non-Darcy effects) and increases with decreasing nanopore size, intrinsic permeability and pressure. Hence, the

  18. Fine-tuning the feature size of nanoporous silver

    NARCIS (Netherlands)

    Detsi, Eric; Vukovic, Zorica; Punzhin, Sergey; Bronsveld, Paul M.; Onck, Patrick R.; De Hosson, Jeff Th M.

    2012-01-01

    We show that the characteristic ligament size of nanoporous Ag synthesized by chemical dissolution of Al from Ag-Al alloys can be tuned from the current submicrometer size (similar to 100-500 nm) down to a much smaller length scale (similar to 30-60 nm). This is achieved by suppressing the formation

  19. Nanopore sensors for DNA analysis

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Venkatesan, B.M.; Shim, Jeong

    2012-01-01

    Solid-state nanopore sensors are promising devices for single DNA molecule detection and sequencing. This paper presents a review of our work on solid-state nanopores performed over the last decade. In particular, here we discuss atomic-layer-deposited (ALD)-based, graphene-based, and functionali......Solid-state nanopore sensors are promising devices for single DNA molecule detection and sequencing. This paper presents a review of our work on solid-state nanopores performed over the last decade. In particular, here we discuss atomic-layer-deposited (ALD)-based, graphene...

  20. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    Science.gov (United States)

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    , we develop an integrated current measurement system and an accurate data processing method for nanopore sensing. The unique geometric structure of a biological nanopore offers a distinct advantage as a nanosensor for single-molecule sensing. The construction of the pore entrance is responsible for capturing the target molecule, while the lumen region determines the translocation process of the single molecule. Since the capture of the target molecule is predominantly diffusion-limited, it is expected that the capture ability of the nanopore toward the target analyte could be effectively enhanced by site-directed mutations of key amino acids with desirable groups. Additionally, changing the side chains inside the wall of the biological nanopore could optimize the geometry of the pore and realize an optimal interaction between the single-molecule interface and the analyte. These improvements would allow for high spatial and current resolution of nanopore sensors, which would ensure the possibility of dynamic study of single biomolecules, including their metastable conformations, charge distributions, and interactions. In the future, data analysis with powerful algorithms will make it possible to automatically and statistically extract detailed information while an analyte translocates through the pore. We conclude that these improvements could have tremendous potential applications for nanopore sensing in the near future.

  1. Effect of TiO{sub 2} nanoporous size on cell viability

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Elisa Marchezini; Weitzel, Ana Paula dos Reis; Rosario, Camila Jaques; Duarte, Larissa Mara Batista; Martins, Maximiliano Delany, E-mail: elisamarch@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-07-01

    Full text: Titanium play an important role in the manufacturing of dental implants. The oxide layer naturally formed on the surface of a titanium device provides biocompatible characteristics, which significantly supports the osseointegration process. It has been supported that a nanostructured TiO{sub 2} surface affects positively the adhesion and proliferation of osteoblasts [1]. A widely technique used for obtaining nanoporous titania is anodizing (or anodic oxidation), which is a non-spontaneous reaction induced by a source of electric current, typically using a solution containing HF [1]. TiO{sub 2} pore diameter can be well controlled in a broad range by adjusting the potentiostatic voltage. J. Park et al. have investigated the development of mesenchymal stem cells on a TiO{sub 2} nanoporous surface and reported a direct relation between the cellular responses with the pore diameter, in the range of 15 - 100 nm [2]. The objective of this work was to investigate deeply the influence of TiO{sub 2} pore diameter in cell viability. Titanium surfaces were anodized by using an electrochemical cell under constant agitation, controlled temperature, and different applied voltages in order to produce different pore diameter, in the nanosize range 15-100 nm. Then, cell proliferation, differentiation, adhesion and viability were investigated in vitro [3]. Surface morphology and chemical composition of the surface treated Ti samples were investigated by SEM, EDS and XPS. The results confirmed the production of a uniform layer of nanoporous TiO{sub 2} with different average porous diameter. The details of sample preparation and the results of cell response tests are going to be presented. [1] S. Minagar et al., Acta Biomat. 8 (2012) 2875; M. Kulkarni et al., Nanotechnology 26 (2015) 062002. [2] J. Park et al., Nano Letters 7 (2007) 1686. [3] G. G. Genchi et al., RSC Adv. 6 (2016) 18502. (author)

  2. Expanding the functionality and applications of nanopore sensors

    Science.gov (United States)

    Venta, Kimberly E.

    Nanopore sensors have developed into powerful tools for single-molecule studies since their inception two decades ago. Nanopore sensors function as nanoscale Coulter counters, by monitoring ionic current modulations as particles pass through a nanopore. While nanopore sensors can be used to study any nanoscale particle, their most notable application is as a low cost, fast alternative to current DNA sequencing technologies. In recent years, signifcant progress has been made toward the goal of nanopore-based DNA sequencing, which requires an ambitious combination of a low-noise and high-bandwidth nanopore measurement system and spatial resolution. In this dissertation, nanopore sensors in thin membranes are developed to improve dimensional resolution, and these membranes are used in parallel with a high-bandwidth amplfier. Using this nanopore sensor system, the signals of three DNA homopolymers are differentiated for the first time in solid-state nanopores. The nanopore noise is also reduced through the addition of a layer of SU8, a spin-on polymer, to the supporting chip structure. By increasing the temporal and spatial resolution of nanopore sensors, studies of shorter molecules are now possible. Nanopore sensors are beginning to be used for the study and characterization of nanoparticles. Nanoparticles have found many uses from biomedical imaging to next-generation solar cells. However, further insights into the formation and characterization of nanoparticles would aid in developing improved synthesis methods leading to more effective and customizable nanoparticles. This dissertation presents two methods of employing nanopore sensors to benet nanoparticle characterization and fabrication. Nanopores were used to study the formation of individual nanoparticles and serve as nanoparticle growth templates that could be exploited to create custom nanoparticle arrays. Additionally, nanopore sensors were used to characterize the surface charge density of anisotropic

  3. Nanoindentation and micro-compression testing of nanoporous gold

    Energy Technology Data Exchange (ETDEWEB)

    Epler, Eike; Volkert, Cynthia A. [Institut fuer Materialphysik, Georg-August-Universitaet Goettingen (Germany); Balk, T. John [Department of Chemical and Materials Engineering, University of Kentucky (United States)

    2009-07-01

    Recent studies on materials such as nanoporous Au have shown that the strength of open-cell foams can be increased at a fixed porosity by decreasing the foam length scale (ligament diameter and length). This effect is attributed to the difficulty of activating dislocations in sub-micron crystal volumes. If high strength nanoporous materials are to be used to advantage in technical applications, the details of the parameters determining their strength need to be understood. In this study, the mechanical response of nanoporous Au fabricated by electrochemical dissolution from a Au-Ag alloy, is investigated by indentation using a cube corner tip as well as by micro-compression testing of columns fabricated by focused ion beam machining. The tests reveal a significant time-dependence or creep behavior in the 30% relative density foam that is not observed in fully dense gold. The origins of this effect will be probed by varying the length scale of the foam. In addition, a large scatter in mechanical behavior, particularly in the elastic response, is observed from position to position and sample to sample, which is attributed to small variations in the open cell structure.

  4. Threading DNA through nanopores for biosensing applications

    International Nuclear Information System (INIS)

    Fyta, Maria

    2015-01-01

    This review outlines the recent achievements in the field of nanopore research. Nanopores are typically used in single-molecule experiments and are believed to have a high potential to realize an ultra-fast and very cheap genome sequencer. Here, the various types of nanopore materials, ranging from biological to 2D nanopores are discussed together with their advantages and disadvantages. These nanopores can utilize different protocols to read out the DNA nucleobases. Although, the first nanopore devices have reached the market, many still have issues which do not allow a full realization of a nanopore sequencer able to sequence the human genome in about a day. Ways to control the DNA, its dynamics and speed as the biomolecule translocates the nanopore in order to increase the signal-to-noise ratio in the reading-out process are examined in this review. Finally, the advantages, as well as the drawbacks in distinguishing the DNA nucleotides, i.e., the genetic information, are presented in view of their importance in the field of nanopore sequencing. (topical review)

  5. Engineering of Surface Chemistry for Enhanced Sensitivity in Nanoporous Interferometric Sensing Platforms.

    Science.gov (United States)

    Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel

    2017-03-15

    We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au 3+ ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.

  6. Noise and its reduction in graphene based nanopore devices

    International Nuclear Information System (INIS)

    Kumar, Ashvani; Park, Kyeong-Beom; Kim, Hyun-Mi; Kim, Ki-Bum

    2013-01-01

    Ionic current fluctuations in graphene nanopore devices are a ubiquitous phenomenon and are responsible for degraded spatial and temporal resolution. Here, we descriptively investigate the impact of different substrate materials (Si and quartz) and membrane thicknesses on noise characteristics of graphene nanopore devices. To mitigate the membrane fluctuations and pin-hole defects, a SiN x membrane is transferred onto the substrate and a pore of approximately 70 nm in diameter is perforated prior to the graphene transfer. Comprehensive noise study reveals that the few layer graphene transferred onto the quartz substrate possesses low noise level and higher signal to noise ratio as compared to single layer graphene, without deteriorating the spatial resolution. The findings here point to improvement of graphene based nanopore devices for exciting opportunities in future single-molecule genomic screening devices. (paper)

  7. Track-etched nanopores in spin-coated polycarbonate films applied as sputtering mask

    International Nuclear Information System (INIS)

    Nix, A.-K.; Gehrke, H.-G.; Krauser, J.; Trautmann, C.; Weidinger, A.; Hofsaess, H.

    2009-01-01

    Thin polycarbonate films were spin-coated on silicon substrates and subsequently irradiated with 1-GeV U ions. The ion tracks in the polymer layer were chemically etched yielding nanopores of about 40 nm diameter. In a second process, the nanoporous polymer film acted as mask for structuring the Si substrate underneath. Sputtering with 5-keV Xe ions produced surface craters of depth ∼150 nm and diameter ∼80 nm. This arrangement can be used for the fabrication of track-based nanostructures with self-aligned apertures.

  8. Fabrication of beta-PVDF membranes by track etching and specific functionalization of nano-pores

    International Nuclear Information System (INIS)

    Cuscito, O.

    2008-01-01

    Poly(vinylidene fluoride)(β-PVDF) nano-porous membranes were made by chemical revealing of tracks induced from swift heavy ions irradiation. Pore opening and radii can be varied in a controllable manner with the etching time. nano-pores size in nano-meter scale (from 12 nm to 50 nm) appears to be linearly dependent to the etching time. It was then necessary to adapt the characterization tools to these membranes. Consequently, we resorted to the use of structural analysis methods (Scanning Electron Microscopy, Small Angle Neutron Scattering) and developed evaluation methods of the membranes transport properties like gas permeation and ionic diffusion. Results obtained confirm the pores opening (break through) and the hydrophobicity of material, which we have modified with hydrophilic molecules. In this precise case, the grafting of acrylic acid was initiated by the radicals still remains after track-etching (called radio-grafting). This key result was obtained by a study of Electron Paramagnetic Resonance. The labelling of introduced chemical functionalities with fluorescent probes was a very effective mean to visualize very few amounts of molecules by confocal microscopy. The radio-grafting was found specifically localized inside etched tracks. The protocol offers the possibility to create a double functionality, the one localized inside the nano-pores and the other on the surface of membranes. The modification of radio-grafting parameters (the acrylic acid concentration, solvent nature, use of transfer agent) and the chemical properties of the nano-pore walls have a direct incidence on the transport properties. (author) [fr

  9. A nanoporous gold membrane for sensing applications

    Directory of Open Access Journals (Sweden)

    Swe Zin Oo

    2016-03-01

    Full Text Available Design and fabrication of three-dimensionally structured, gold membranes containing hexagonally close-packed microcavities with nanopores in the base, are described. Our aim is to create a nanoporous structure with localized enhancement of the fluorescence or Raman scattering at, and in the nanopore when excited with light of approximately 600 nm, with a view to provide sensitive detection of biomolecules. A range of geometries of the nanopore integrated into hexagonally close-packed assemblies of gold micro-cavities was first evaluated theoretically. The optimal size and shape of the nanopore in a single microcavity were then considered to provide the highest localized plasmon enhancement (of fluorescence or Raman scattering at the very center of the nanopore for a bioanalyte traversing through. The optimized design was established to be a 1200 nm diameter cavity of 600 nm depth with a 50 nm square nanopore with rounded corners in the base. A gold 3D-structured membrane containing these sized microcavities with the integrated nanopore was successfully fabricated and ‘proof of concept’ Raman scattering experiments are described. Keywords: Nanopore, Polymer sphere, Gold membrane, Plasmons, Sensing, SERS

  10. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu; Hsiao, Vincent; Zheng, Yue Bing; Huang, Tony Jun

    2012-01-01

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  11. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu

    2012-05-02

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  12. Fabrication of nanopores in multi-layered silicon-based membranes using focused electron beam induced etching with XeF_2 gas

    International Nuclear Information System (INIS)

    Liebes-Peer, Yael; Bandalo, Vedran; Sökmen, Ünsal; Tornow, Marc; Ashkenasy, Nurit

    2016-01-01

    The emergent technology of using nanopores for stochastic sensing of biomolecules introduces a demand for the development of simple fabrication methodologies of nanopores in solid state membranes. This process becomes particularly challenging when membranes of composite layer architecture are involved. To overcome this challenge we have employed a focused electron beam induced chemical etching process. We present here the fabrication of nanopores in silicon-on-insulator based membranes in a single step process. In this process, chemical etching of the membrane materials by XeF_2 gas is locally accelerated by an electron beam, resulting in local etching, with a top membrane oxide layer preventing delocalized etching of the silicon underneath. Nanopores with a funnel or conical, 3-dimensional (3D) shape can be fabricated, depending on the duration of exposure to XeF_2, and their diameter is dominated by the time of exposure to the electron beam. The demonstrated ability to form high-aspect ratio nanopores in comparably thick, multi-layered silicon based membranes allows for an easy integration into current silicon process technology and hence is attractive for implementation in biosensing lab-on-chip fabrication technologies. (author)

  13. Enhanced microcontact printing of proteins on nanoporous silica surface

    Energy Technology Data Exchange (ETDEWEB)

    Blinka, Ellen; Hu Ye; Gopal, Ashwini; Hoshino, Kazunori; Lin, Kevin; Zhang, John X J [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78758 (United States); Loeffler, Kathryn; Liu Xuewu; Ferrari, Mauro, E-mail: John.Zhang@engr.utexas.edu [Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Service, Houston, TX 77031 (United States)

    2010-10-15

    We demonstrate porous silica surface modification, combined with microcontact printing, as an effective method for enhanced protein patterning and adsorption on arbitrary surfaces. Compared to conventional chemical treatments, this approach offers scalability and long-term device stability without requiring complex chemical activation. Two chemical surface treatments using functionalization with the commonly used 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) were compared with the nanoporous silica surface on the basis of protein adsorption. The deposited thickness and uniformity of porous silica films were evaluated for fluorescein isothiocyanate (FITC)-labeled rabbit immunoglobulin G (R-IgG) protein printed onto the substrates via patterned polydimethlysiloxane (PDMS) stamps. A more complete transfer of proteins was observed on porous silica substrates compared to chemically functionalized substrates. A comparison of different pore sizes (4-6 nm) and porous silica thicknesses (96-200 nm) indicates that porous silica with 4 nm diameter, 57% porosity and a thickness of 96 nm provided a suitable environment for complete transfer of R-IgG proteins. Both fluorescence microscopy and atomic force microscopy (AFM) were used for protein layer characterizations. A porous silica layer is biocompatible, providing a favorable transfer medium with minimal damage to the proteins. A patterned immunoassay microchip was developed to demonstrate the retained protein function after printing on nanoporous surfaces, which enables printable and robust immunoassay detection for point-of-care applications.

  14. Nanoporous metals for advanced energy technologies

    CERN Document Server

    Ding, Yi

    2016-01-01

    This book covers the state-of-the-art research in nanoporous metals for potential applications in advanced energy fields, including proton exchange membrane fuel cells, Li batteries (Li ion, Li-S, and Li-O2), and supercapacitors. The related structural design and performance of nanoporous metals as well as possible mechanisms and challenges are fully addressed. The formation mechanisms of nanoporous metals during dealloying, the microstructures of nanoporous metals and characterization methods, as well as miscrostructural regulation of nanoporous metals through alloy design of precursors and surface diffusion control are also covered in detail. This is an ideal book for researchers, engineers, graduate students, and government/industry officers who are in charge of R&D investments and strategy related to energy technologies.

  15. On the specific surface area of nanoporous materials

    NARCIS (Netherlands)

    Detsi, E.; De Jong, E.; Zinchenko, A.; Vukovic, Z.; Vukovic, I.; Punzhin, S.; Loos, K.; ten Brinke, G.; De Raedt, H. A.; Onck, P. R.; De Hosson, J. T. M.

    2011-01-01

    A proper quantification of the specific surface area of nanoporous materials is necessary for a better understanding of the properties that are affected by the high surface-area-to-volume ratio of nanoporous metals, nanoporous polymers and nanoporous ceramics. In this paper we derive an analytical

  16. Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors

    Directory of Open Access Journals (Sweden)

    Abel Santos

    2014-05-01

    Full Text Available Nanoporous anodic alumina (NAA has become one of the most promising nanomaterials in optical biosensing as a result of its unique physical and chemical properties. Many studies have demonstrated the outstanding capabilities of NAA for developing optical biosensors in combination with different optical techniques. These results reveal that NAA is a promising alternative to other widely explored nanoporous platforms, such as porous silicon. This review is aimed at reporting on the recent advances and current stage of development of NAA-based optical biosensing devices. The different optical detection techniques, principles and concepts are described in detail along with relevant examples of optical biosensing devices using NAA sensing platforms. Furthermore, we summarise the performance of these devices and provide a future perspective on this promising research field.

  17. Responsivity Dependent Anodization Current Density of Nanoporous Silicon Based MSM Photodetector

    Directory of Open Access Journals (Sweden)

    Batool Eneaze B. Al-Jumaili

    2016-01-01

    Full Text Available Achieving a cheap and ultrafast metal-semiconductor-metal (MSM photodetector (PD for very high-speed communications is ever-demanding. We report the influence of anodization current density variation on the response of nanoporous silicon (NPSi based MSM PD with platinum (Pt contact electrodes. Such NPSi samples are grown from n-type Si (100 wafer using photoelectrochemical etching with three different anodization current densities. FESEM images of as-prepared samples revealed the existence of discrete pores with spherical and square-like shapes. XRD pattern displayed the growth of nanocrystals with (311 lattice orientation. The nanocrystallite sizes obtained using Scherrer formula are found to be between 20.8 nm and 28.6 nm. The observed rectifying behavior in the I-V characteristics is ascribed to the Pt/PSi/n-Si Schottky barrier formation, where the barrier height at the Pt/PSi interface is estimated to be 0.69 eV. Furthermore, this Pt/PSi/Pt MSM PD achieved maximum responsivity of 0.17 A/W and quantum efficiency as much as 39.3%. The photoresponse of this NPSi based MSM PD demonstrated excellent repeatability, fast response, and enhanced saturation current with increasing anodization current density.

  18. Synthesis of nanoporous carbons from mixtures of coal tar pitch and furfural and their application as electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, B.; Tsyntsarski, B.; Budinova, T.; Petrov, N.; Ania, C.O.; Parra, J.B.; Mladenov, M.; Tzvetkov, P.

    2010-11-15

    Synthetic nanoporous carbons are prepared by polymerization of mixtures containing coal tar pitch and furfural in different proportions, followed by carbonization of obtained solid product and steam activation of the carbonizate. The chemical composition of the initial mixture significantly affects the physicochemical properties (surface area, pore structure, electro resistance and amount of oxygen-containing groups on the surface) of the obtained materials. The incorporation of oxygen in the precursor mixture by means of furfural, has a strong influence in the synthetic step; increasing the furfural content facilitates the formation of a solid product characterized by a large oxygen content. Moreover, the solid product is more reactive towards activation as the furfural content increases, giving rise to nanoporous carbons with large surface areas and unique chemical features (high density of oxygen functionalities of basic nature). These nanoporous carbons have been investigated as electrodes in electrochemical applications. (author)

  19. Monitoring tetracycline through a solid-state nanopore sensor

    Science.gov (United States)

    Zhang, Yuechuan; Chen, Yanling; Fu, Yongqi; Ying, Cuifeng; Feng, Yanxiao; Huang, Qimeng; Wang, Chao; Pei, De-Sheng; Wang, Deqiang

    2016-06-01

    Antibiotics as emerging environmental contaminants, are widely used in both human and veterinary medicines. A solid-state nanopore sensing method is reported in this article to detect Tetracycline, which is based on Tet-off and Tet-on systems. rtTA (reverse tetracycline-controlled trans-activator) and TRE (Tetracycline Responsive Element) could bind each other under the action of Tetracycline to form one complex. When the complex passes through nanopores with 8 ~ 9 nanometers in diameter, we could detect the concentrations of Tet from 2 ng/mL to 2000 ng/mL. According to the Logistic model, we could define three growth zones of Tetracycline for rtTA and TRE. The slow growth zone is 0-39.5 ng/mL. The rapid growth zone is 39.5-529.7 ng/mL. The saturated zone is > 529.7 ng/mL. Compared to the previous methods, the nanopore sensor could detect and quantify these different kinds of molecule at the single-molecule level.

  20. Ultra-Thin Solid-State Nanopores: Fabrication and Applications

    Science.gov (United States)

    Kuan, Aaron Tzeyang

    Solid-state nanopores are a nanofluidic platform with unique advantages for single-molecule analysis and filtration applications. However, significant improvements in device performance and scalable fabrication methods are needed to make nanopore devices competitive with existing technologies. This dissertation investigates the potential advantages of ultra-thin nanopores in which the thickness of the membrane is significantly smaller than the nanopore diameter. Novel, scalable fabrication methods were first developed and then utilized to examine device performance for water filtration and single molecule sensing applications. Fabrication of nanometer-thin pores in silicon nitride membranes was achieved using a feedback-controlled ion beam method in which ion sputtering is arrested upon detection of the first few ions that drill through the membrane. Performing fabrication at liquid nitrogen temperatures prevents surface atom rearrangements that have previously complicated similar processes. A novel cross-sectional imaging method was also developed to allow careful examination of the full nanopore geometry. Atomically-thin graphene nanopores were fabricated via an electrical pulse method in which sub-microsecond electrical pulses applied across a graphene membrane in electrolyte solution are used to create a defect in the membrane and controllably enlarge it into a nanopore. This method dramatically increases the accuracy and reliability of graphene nanopore production, allowing consistent production of single nanopores down to subnanometer sizes. In filtration applications in which nanopores are used to selectively restrict the passage of dissolved contaminants, ultra-thin nanopores minimize the flow resistance, increasing throughput and energy-efficiency. The ability of graphene nanopores to separate different ions was characterized via ionic conductance and reversal potential measurements. Graphene nanopores were observed to conduct cations preferentially over

  1. Parametric study of thin film evaporation from nanoporous membranes

    Science.gov (United States)

    Wilke, Kyle L.; Barabadi, Banafsheh; Lu, Zhengmao; Zhang, TieJun; Wang, Evelyn N.

    2017-10-01

    The performance and lifetime of advanced electronics are often dictated by the ability to dissipate heat generated within the device. Thin film evaporation from nanoporous membranes is a promising thermal management approach, which reduces the thermal transport distance across the liquid film while also providing passive capillary pumping of liquid to the evaporating interface. In this work, we investigated the dependence of thin film evaporation from nanoporous membranes on a variety of geometric parameters. Anodic aluminum oxide membranes were used as experimental templates, where pore radii of 28-75 nm, porosities of 0.1-0.35, and meniscus locations down to 1 μm within the pore were tested. We demonstrated different heat transfer regimes and observed more than an order of magnitude increase in dissipated heat flux by operating in the pore-level evaporation regime. The pore diameter had little effect on pore-level evaporation performance due to the negligible conduction resistance from the pore wall to the evaporating interface. The dissipated heat flux scaled with porosity as the evaporative area increased. Furthermore, moving the meniscus as little as 1 μm into the pore decreased the dissipated heat flux by more than a factor of two due to the added resistance to vapor escaping the pore. The experimental results elucidate thin film evaporation from nanopores and confirm findings of recent modeling efforts. This work also provides guidance for the design of future thin film evaporation devices for advanced thermal management. Furthermore, evaporation from nanopores is relevant to water purification, chemical separations, microfluidics, and natural processes such as transpiration.

  2. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2007-09-30

    The objective of this project is to synthesize nanocrystals of highly acidic zeolite Y nanoclusters, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates, and evaluate the 'zeolite Y/Nanoporous host' composites as catalysts for the upgrading of heavy petroleum feedstocks. In comparison to conventionally-used zeolite Y catalysts of micron size particles, the nanocrystals (< 100 nm particle size) which contain shorter path lengths, are expected to allow faster diffusion of large hydrocarbon substrates and the catalysis products within and out of the zeolite's channels and cages (<1 nm size). This is expected to significantly reduce deactivation of the catalyst and to prolong their period of reactivity. Encapsulating zeolite Y nanocrystals within the nanoporous materials is expected to protect its external surfaces and pore entrances from being blocked by large hydrocarbon substrates, since these substrates will initially be converted to small molecules by the nanoporous host (a catalyst in its own right). The project consisted of four major tasks as follows: (1) synthesis of the nanoparticles of zeolite Y (of various chemical compositions) using various techniques such as the addition of organic additives to conventional zeolite Y synthesis mixtures to suppress zeolite Y crystal growth; (2) synthesis of nanoporous silicate host materials of up to 30 nm pore diameter, using poly (alkylene oxide) copolymers which when removed will yield a mesoporous material; (3) synthesis of zeolite Y/Nanoporous Host composite materials as potential catalysts; and (4) evaluation of the catalyst for the upgrading of heavy petroleum feedstocks.

  3. Nanopores formed by DNA origami: a review.

    Science.gov (United States)

    Bell, Nicholas A W; Keyser, Ulrich F

    2014-10-01

    Nanopores have emerged over the past two decades to become an important technique in single molecule experimental physics and biomolecule sensing. Recently DNA nanotechnology, in particular DNA origami, has been used for the formation of nanopores in insulating materials. DNA origami is a very attractive technique for the formation of nanopores since it enables the construction of 3D shapes with precise control over geometry and surface functionality. DNA origami has been applied to nanopore research by forming hybrid architectures with solid state nanopores and by direct insertion into lipid bilayers. This review discusses recent experimental work in this area and provides an outlook for future avenues and challenges. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Polyhedral oligomeric silsequioxane monolayer as a nanoporous interlayer for preparation of low-k dielectric films

    International Nuclear Information System (INIS)

    Liu, Y-L; Liu, C-S; Cho, C-I; Hwu, M-J

    2007-01-01

    Polyhedral oligomeric silsequioxane (POSS) monomer was fixed to a silicon surface by reacting octakis(glycidyldimethylsiloxy)octasilsesquioxane (OG-POSS) with the OH-terminated silicon surface in the presence of tin (II) chloride. The POSS cage layer then served as a nanoporous interlayer to reduce the dielectric constants of polyimide films on silicon surfaces. The chemical structure and surface morphology of OG-POSS modified silicon surfaces were characterized with XPS. With the introduction of a POSS nanopored interlayer, the dielectric constants of polyimide films were reduced

  5. Eco-friendly synthesis for MCM-41 nanoporous materials using the non-reacted reagents in mother liquor.

    Science.gov (United States)

    Ng, Eng-Poh; Goh, Jia-Yi; Ling, Tau Chuan; Mukti, Rino R

    2013-03-04

    Nanoporous materials such as Mobil composite material number 41 (MCM-41) are attractive for applications such as catalysis, adsorption, supports, and carriers. Green synthesis of MCM-41 is particularly appealing because the chemical reagents are useful and valuable. We report on the eco-friendly synthesis of MCM-41 nanoporous materials via multi-cycle approach by re-using the non-reacted reagents in supernatant as mother liquor after separating the solid product. This approach was achieved via minimal requirement of chemical compensation where additional fresh reactants were added into the mother liquor followed by pH adjustment after each cycle of synthesis. The solid product of each successive batch was collected and characterized while the non-reacted reagents in supernatant can be recovered and re-used to produce subsequent cycle of MCM-41. The multi-cycle synthesis is demonstrated up to three times in this research. This approach suggests a low cost and eco-friendly synthesis of nanoporous material since less waste is discarded after the product has been collected, and in addition, product yield can be maintained at the high level.

  6. Recent advances in nanopore-based nucleic acid analysis and sequencing

    International Nuclear Information System (INIS)

    Shi, Jidong; Fang, Ying; Hou, Junfeng

    2016-01-01

    Nanopore-based sequencing platforms are transforming the field of genomic science. This review (containing 116 references) highlights some recent progress on nanopore-based nucleic acid analysis and sequencing. These studies are classified into three categories, biological, solid-state, and hybrid nanopores, according to their nanoporous materials. We begin with a brief description of the translocation-based detection mechanism of nanopores. Next, specific examples are given in nanopore-based nucleic acid analysis and sequencing, with an emphasis on identifying strategies that can improve the resolution of nanopores. This review concludes with a discussion of future research directions that will advance the practical applications of nanopore technology. (author)

  7. Mathematical modeling and simulation of nanopore blocking by precipitation

    KAUST Repository

    Wolfram, M-T

    2010-10-29

    High surface charges of polymer pore walls and applied electric fields can lead to the formation and subsequent dissolution of precipitates in nanopores. These precipitates block the pore, leading to current fluctuations. We present an extended Poisson-Nernst-Planck system which includes chemical reactions of precipitation and dissolution. We discuss the mathematical modeling and present 2D numerical simulations. © 2010 IOP Publishing Ltd.

  8. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  9. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  10. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    Science.gov (United States)

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  11. A Humidity Sensor Based on Nb-doped Nanoporous TiO2 Thin Film

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2011-11-01

    Full Text Available The humidity sensing properties of the sensor fabricated from Nb-doped nanoporous TiO2 by screen-printing on the alumina substrate with Ag-Pd interdigital electrodes have been investigated. The nanoporous thin film has been prepared by sol-gel technique. The product has been characterized by X-ray diffraction and scanning electron microscopy to analyze the structure and its morphology. It is found that the impedance of this sensor changes more than four orders of magnitude in the relative humidity (RH range of 11–95 % at 25 °C. The response and recovery time of the sensor are about 19 and 25 s, respectively, during the RH variation from 11 to 95 %. The sensor shows high humidity sensitivity, rapid response and recovery, prominent stability, good repeatability and narrow hysteresis loop. These results indicate that Nb-doped nanoporous TiO2 thin films have a great potential for humidity sensing applications in room temperature operations.

  12. Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties.

    Science.gov (United States)

    Ali, Mubarak; Ahmed, Ishtiaq; Ramirez, Patricio; Nasir, Saima; Cervera, Javier; Niemeyer, Christof M; Ensinger, Wolfgang

    2016-04-28

    We demonstrate experimentally and theoretically a nanofluidic fluoride sensing device based on a single conical pore functionalized with "caged" fluorescein moieties. The nanopore functionalization is based on an amine-terminated fluorescein whose phenolic hydroxyl groups are protected with tert-butyldiphenylsilyl (TBDPS) moieties. The protected fluorescein (Fcn-TBDPS-NH2) molecules are then immobilized on the nanopore surface via carbodiimide coupling chemistry. Exposure to fluoride ions removes the uncharged TBDPS moieties due to the fluoride-promoted cleavage of the silicon-oxygen bond, leading to the generation of negatively charged groups on the fluorescein moieties immobilized onto the pore surface. The asymmetrical distribution of these groups along the conical nanopore leads to the electrical rectification observed in the current-voltage (I-V) curve. On the contrary, other halides and anions are not able to induce any significant ionic rectification in the asymmetric pore. In each case, the success of the chemical functionalization and deprotection reactions is monitored through the changes observed in the I-V curves before and after the specified reaction step. The theoretical results based on the Nernst-Planck and Poisson equations further demonstrate the validity of an experimental approach to fluoride-induced modulation of nanopore current rectification behaviour.

  13. Length-dependent corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni-Ti-O nanopores anodically grown on biomedical NiTi alloy.

    Science.gov (United States)

    Hang, Ruiqiang; Liu, Yanlian; Bai, Long; Zhang, Xiangyu; Huang, Xiaobo; Jia, Husheng; Tang, Bin

    2018-08-01

    In the present work, nickel-titanium-oxygen nanopores with different length (0.55-114 μm) were anodically grown on nearly equiatomic nickel-titanium (NiTi) alloy. Length-dependent corrosion behavior, nickel ion (Ni 2+ ) release, cytocompatibility, and antibacterial ability were investigated by electrochemical, analytical chemistry, and biological methods. The results show constructing nanoporous structure on the NiTi alloy improve its corrosion resistance. However, the anodized samples release more Ni 2+ than that of the bare NiTi alloy, suggesting chemical dissolution of the nanopores rather than electrochemical corrosion governs the Ni 2+ release. In addition, the Ni 2+ release amount increases with nanopore length. The anodized samples show good cytocompatibility when the nanopore length is covers the one (1-11 μm) that the nanopores showing favorable antibacterial ability. Consequently, the nanopores with length in the range of 1-11 μm are promising as coatings of biomedical NiTi alloy for anti-infection, drug delivery, and other desirable applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Controlling the role of nanopore morphology in capillary condensation.

    Science.gov (United States)

    Casanova, Fèlix; Chiang, Casey E; Ruminski, Anne M; Sailor, Michael J; Schuller, Ivan K

    2012-05-01

    The effect of pore morphology on capillary condensation and evaporation in nanoporous silicon is studied experimentally. A variety of cooperative and local effects are observed in tailored nanopores with well-defined regions by directly probing gas adsorption in each region using optical interferometry. All observations are ascribed to the ability of the nanopore region to access the gas reservoir directly and the nucleation of liquid bridges at local heterogeneities within the nanopore region. These assumptions, consistent with recent simulations, can be extended to any real nanoporous system.

  15. Influences of ultrasonic irradiation on the morphology and structure of nanoporous Co nanoparticles during chemical dealloying

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-12-01

    Full Text Available The Co-61.8 wt% Al nanoparticles of 45 nm were prepared by hydrogen plasma-metal reaction (HPMR method. The nanoparticles display core shell structure with Al13Co4 and CoAl core and aluminum oxide shell (about 2 nm. Under ultrasonic irradiation, nanoporous fcc-Co nanoparticles were produced successfully by chemically dealloying the Co-Al nanoparticles at room temperature, whereas, without ultrasonic irradiation CoAl phase could hardly react with sodium hydroxide solution. At 323 K the Co-Al nanoparticles could be dealloyed to fcc-Co and hcp-Co phases even without ultrasonic irradiation. The surface area of the dealloyed nanoparticles under ultrasonic irradiation was larger than that of the dealloyed sample without ultrasonic irradiation at the same temperature. It is believed that the microjet and shock-wave induced by ultrasonic irradiation give rise to particles size reduction, interparticle collision and surface cleaning, and accelerate the dealloying process and the phase transformation.

  16. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.

    Science.gov (United States)

    Barati Farimani, Amir; Dibaeinia, Payam; Aluru, Narayana R

    2017-01-11

    DNA origami nanostructures can be used to functionalize solid-state nanopores for single molecule studies. In this study, we characterized a nanopore in a DNA origami-graphene heterostructure for DNA detection. The DNA origami nanopore is functionalized with a specific nucleotide type at the edge of the pore. Using extensive molecular dynamics (MD) simulations, we computed and analyzed the ionic conductivity of nanopores in heterostructures carpeted with one or two layers of DNA origami on graphene. We demonstrate that a nanopore in DNA origami-graphene gives rise to distinguishable dwell times for the four DNA base types, whereas for a nanopore in bare graphene, the dwell time is almost the same for all types of bases. The specific interactions (hydrogen bonds) between DNA origami and the translocating DNA strand yield different residence times and ionic currents. We also conclude that the speed of DNA translocation decreases due to the friction between the dangling bases at the pore mouth and the sequencing DNA strands.

  17. Synthesis and characterization of ruthenium-decorated nanoporous platinum materials

    International Nuclear Information System (INIS)

    Peng Xinsheng; Koczkur, Kallum; Chen, Aicheng

    2007-01-01

    We report on the synthesis of novel three-dimensional nanoporous Pt-Ru bimetallic networks by decorating nanoporous Pt networks with Ru using a hydrothermally assisted precipitating process. Scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) were used to characterize the morphology and the composition of the nanoporous Pt-Ru networks formed. X-ray diffraction analysis confirmed that, after protected annealing treatment, Pt-Ru bimetallic material was formed. The electrocatalytic activity of the synthesized nanoporous Pt-Ru networks was characterized using electrochemical oxidation of methanol as a probe. The electrocatalytic activity of the nanoporous Pt networks significantly increases with the increments of decorated Ru and reaches the highest value with 41% of Ru. The peak current of methanol oxidation on the nanoporous Pt-Ru(41%) bimetallic networks is over 180% higher than that on the nanoporous Pt networks without Ru decoration. This is very desirable for fuel cell development and electrochemical sensor design

  18. Enhanced piezoelectric output of NiO/nanoporous GaN by suppression of internal carrier screening

    Science.gov (United States)

    Waseem, Aadil; Jeong, Dae Kyung; Johar, Muhammad Ali; Kang, Jin-Ho; Ha, Jun-Seok; Key Lee, June; Ryu, Sang-Wan

    2018-06-01

    The efficiency of piezoelectric nanogenerators (PNGs) significantly depends on the free carrier concentration of semiconductors. In the presence of a mechanical stress, piezoelectric charges are generated at both ends of the PNG, which are rapidly screened by the free carriers. The screening effect rapidly decreases the piezoelectric output within fractions of a second. In this study, the piezoelectric outputs of bulk- and nanoporous GaN-based heterojunction PNGs are compared. GaN thin films were epitaxially grown on sapphire substrates using metal organic chemical vapor deposition. Nanoporous GaN was fabricated using electrochemical etching, depleted of free carriers owing to the surface Fermi-level pinning. A highly resistive NiO thin film was deposited on bulk- and nanoporous GaN using radio frequency magnetron sputter. The NiO/nanoporous GaN PNG (NPNG) under a periodic compressive stress of 4 MPa exhibited an output voltage and current of 0.32 V and 1.48 μA cm‑2, respectively. The output voltage and current of the NiO/thin film-GaN PNG (TPNG) were three and five times smaller than those of the NPNG, respectively. Therefore, the high-resistivity of NiO and nanoporous GaN depleted by the Fermi-level pinning are advantageous and provide a better piezoelectric performance of the NPNG, compared with that of the TPNG.

  19. Gyroid nanoporous scaffold for conductive polymers

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Schulte, Lars; Zhang, Weimin

    2011-01-01

    Conductive nanoporous polymers with interconnected large surface area have been prepared by depositing polypyrrole onto nanocavity walls of nanoporous 1,2-polybutadiene films with gyroid morphology. Vapor phase polymerization of pyrrole was used to generate ultrathin films and prevent pore blocking...

  20. Hysteretic characteristics of 1/λ⁴ scattering of light during adsorption and desorption of water in porous Vycor glass with nanopores.

    Science.gov (United States)

    Ogawa, Shigeo; Nakamura, Jiro

    2013-10-01

    Porous Vycor glass with nanopores is transparent in the visible region and is often used in colorimetric chemical sensing when impregnated with selectively reacting reagents. However, it has some disadvantages in sensing, since changes in the humidity of ambient air strongly affect its transmission. In this work, by combining a humidity-controlled thermostatic chamber and an ultraviolet-visible and near-infrared spectrophotometer through fiber optics, we analyzed the effect of increasing and decreasing humidity in the ambient air on the transparency change of the nanoporous glass. The transparency response in the visible region to changes in humidity is analyzed to correlate the turbidity response of the glass with the amount of water in it. The turbidity is found to be dependent on the inverse fourth power of the wavelength (1/λ⁴), which implies that Rayleigh-type scattering takes place for both adsorption and desorption of water. We show that measures of the extent of the optical inhomogeneity that causes the scattering, such as the effective radius of scatterers and their number density, exhibit a pronounced hysteretic characteristic for the imbibition and drainage of water, while the absorption inherent to imbibed water also shows another type of hysteresis that is quite similar to the sorption isotherms of water. On the basis of the above observations, we show that the transitory white turbidity of nanoporous glasses during changes in humidity can be consistently interpreted and quantitatively analyzed by a simple Rayleigh scattering mechanism.

  1. Side-gated ultrathin-channel nanopore FET sensors

    International Nuclear Information System (INIS)

    Yanagi, Itaru; Haga, Takanobu; Ando, Masahiko; Yamamoto, Jiro; Mine, Toshiyuki; Ishida, Takeshi; Hatano, Toshiyuki; Akahori, Rena; Yokoi, Takahide; Anazawa, Takashi; Oura, Takeshi

    2016-01-01

    A side-gated, ultrathin-channel nanopore FET (SGNAFET) is proposed for fast and label-free DNA sequencing. The concept of the SGNAFET comprises the detection of changes in the channel current during DNA translocation through a nanopore and identifying the four types of nucleotides as a result of these changes. To achieve this goal, both p- and n-type SGNAFETs with a channel thicknesses of 2 or 4 nm were fabricated, and the stable transistor operation of both SGNAFETs in air, water, and a KCl buffer solution were confirmed. In addition, synchronized current changes were observed between the ionic current through the nanopore and the SGNAFET’s drain current during DNA translocation through the nanopore. (paper)

  2. Observation and analysis of the Coulter effect through carbon nanotube and graphene nanopores.

    Science.gov (United States)

    Agrawal, Kumar Varoon; Drahushuk, Lee W; Strano, Michael S

    2016-02-13

    Carbon nanotubes (CNTs) and graphene are the rolled and flat analogues of graphitic carbon, respectively, with hexagonal crystalline lattices, and show exceptional molecular transport properties. The empirical study of a single isolated nanopore requires, as evidence, the observation of stochastic, telegraphic noise from a blocking molecule commensurate in size with the pore. This standard is used ubiquitously in patch clamp studies of single, isolated biological ion channels and a wide range of inorganic, synthetic nanopores. In this work, we show that observation and study of stochastic fluctuations for carbon nanopores, both CNTs and graphene-based, enable precision characterization of pore properties that is otherwise unattainable. In the case of voltage clamp measurements of long (0.5-1 mm) CNTs between 0.9 and 2.2 nm in diameter, Coulter blocking of cationic species reveals the complex structuring of the fluid phase for confined water in this diameter range. In the case of graphene, we have pioneered the study and the analysis of stochastic fluctuations in gas transport from a pressurized, graphene-covered micro-well compartment that reveal switching between different values of the membrane permeance attributed to chemical rearrangements of individual graphene pores. This analysis remains the only way to study such single isolated graphene nanopores under these realistic transport conditions of pore rearrangements, in keeping with the thesis of this work. In summary, observation and analysis of Coulter blocking or stochastic fluctuations of permeating flux is an invaluable tool to understand graphene and graphitic nanopores including CNTs. © 2015 The Author(s).

  3. Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids

    Science.gov (United States)

    Aramesh, M.; Shimoni, O.; Fox, K.; Karle, T. J.; Lohrmann, A.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated alumina membrane. The few nanometer-thick, yet perfect and continuous DLC-coating confers the chemical stability and biocompatibility of the sensor, allowing its direct application in biological conditions. The selective detection is based on complementary hybridization of a fluorescently-tagged circulating cancer oncomarker (a 21-mer nucleic acid) with covalently immobilized DNA on the surface of the membrane. The captured DNAs are detected in the nanoporous structure of the sensor using confocal scanning laser microscopy. The flow-through membrane sensor demonstrates broad-range sensitivity, spanning from 1015 molecules per cm2 down to single molecules, which is several orders of magnitude improvement compared to the flat DNA microarrays. Our study suggests that these flow-through type nanoporous sensors represent a new powerful platform for large volume sampling and ultrasensitive detection of different chemical biomarkers.Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated

  4. Raman light scattering in nanoporous carbon obtained from carbides of silicon and titanium

    International Nuclear Information System (INIS)

    Danishevskij, A.M.; Smorgonskaya, Eh.A.; Gordeev, S.K.; Grechinskaya, A.V.

    2001-01-01

    The Raman spectra in nanoporous carbon obtained through the chemical reaction from the polycrystal α-SiC and TiC are studied. It is shown that the spectra have a multicomponent character differentiating the considered group of materials from graphites and disordered carbon structures. The series of low-frequency modes is registered. The anisotropy and dispersion effects are identified. The results testify to the cluster structure of nanoporous carbon and dimensional quantization of electron and vibrational spectra in the carbon nanoclusters. The fine fragments of curved or fractures graphed sheets are the basic structural elements of nanoclusters in the porous skeleton. The presence of fragments close by structure to the tense cubic or hexagonal diamond is also notes [ru

  5. Fabrication and characterization of a solid-state nanopore with self-aligned carbon nanoelectrodes for molecular detection

    International Nuclear Information System (INIS)

    Spinney, Patrick S; Collins, Scott D; Smith, Rosemary L; Howitt, David G

    2012-01-01

    Stochastic molecular sensors based on resistive pulse nanopore modalities are envisioned as facile DNA sequencers. However, recent advances in nanotechnology fabrication have highlighted promising alternative detection mechanisms with higher sensitivity and potential single-base resolution. In this paper we present the novel self-aligned fabrication of a solid-state nanopore device with integrated transverse graphene-like carbon nanoelectrodes for polyelectrolyte molecular detection. The electrochemical transduction mechanism is characterized and found to result primarily from thermionic emission between the two transverse electrodes. Response of the nanopore to Lambda dsDNA and short (16-mer) ssDNA is demonstrated and distinguished. (paper)

  6. Nanoporous magnesium aluminometasilicate tablets for precise, controlled, and continuous dosing of chemical reagents and catalysts

    DEFF Research Database (Denmark)

    Ruhland, T.; Nielsen, S.D.; Holm, P.

    2007-01-01

    Mechanically robust tablets of nanoporous magnesium aluminometasilicate with high surface area and porosity can be loaded with a variety of organic and inorganic reagents and catalysts. The scope of this novel dosing methodology is demonstrated through the evaluation of 14 diverse organic reactions...

  7. Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency

    Science.gov (United States)

    Sahmani, S.; Aghdam, M. M.

    2018-03-01

    A wide range of biological applications such as drug delivery, biosensors and hemodialysis can be provided by nanoporous biomaterials due to their uniform pore size as well as considerable pore density. In the current study, the size dependency in the nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials is anticipated. To accomplish this end, a refined truncated cube is introduced to model the lattice structure of nanoporous biomaterial. Accordingly, analytical expressions for the mechanical properties of material are derived as functions of pore size. After that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear Duffing type equation of motion is constructed. The Galerkin technique together with the multiple time-scales method is employed to obtain the nonlocal strain gradient frequency-response and amplitude-response related to the nonlinear primary resonance of a micro/nano-beam made of the nanoporous biomaterial with different pore sizes. It is indicated that the nonlocality causes to decrease the response amplitudes associated with the both bifurcation points of the jump phenomenon, while the strain gradient size dependency causes to increase them. Also, it is found that increasing the pore size leads to enhance the nonlinearity, so the maximum deflection of response occurs at higher excitation frequency.

  8. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  9. Investigation of bioactivity and cell effects of nano-porous sol–gel derived bioactive glass film

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhijun, E-mail: mokuu@zju.edu.cn [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 (China); Ji, Huijiao [College of Life Science, Zhejiang University, Hangzhou, 310028 (China); Hu, Xiaomeng [School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 (China); Teng, Yu [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 (China); Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli [College of Life Science, Zhejiang University, Hangzhou, 310028 (China); Chen, Weibo [School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 (China); Qiu, Jianrong, E-mail: qjr@scut.edu.cn [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 (China); Zhang, Ming, E-mail: zhangming201201@126.com [College of Life Science, Zhejiang University, Hangzhou, 310028 (China)

    2013-11-01

    In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol–gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

  10. Investigation of bioactivity and cell effects of nano-porous sol-gel derived bioactive glass film

    Science.gov (United States)

    Ma, Zhijun; Ji, Huijiao; Hu, Xiaomeng; Teng, Yu; Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli; Chen, Weibo; Qiu, Jianrong; Zhang, Ming

    2013-11-01

    In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol-gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

  11. Synthesis of ordered large-scale ZnO nanopore arrays

    International Nuclear Information System (INIS)

    Ding, G.Q.; Shen, W.Z.; Zheng, M.J.; Fan, D.H.

    2006-01-01

    An effective approach is demonstrated for growing ordered large-scale ZnO nanopore arrays through radio-frequency magnetron sputtering deposition on porous alumina membranes (PAMs). The realization of highly ordered hexagonal ZnO nanopore arrays benefits from the unique properties of ZnO (hexagonal structure, polar surfaces, and preferable growth directions) and PAMs (controllable hexagonal nanopores and localized negative charges). Further evidence has been shown through the effects of nanorod size and thermal treatment of PAMs on the yielded morphology of ZnO nanopore arrays. This approach opens the possibility of creating regular semiconducting nanopore arrays for the application of filters, sensors, and templates

  12. Polyelectrolyte layer-by-layer deposition in cylindrical nanopores.

    Science.gov (United States)

    Lazzara, Thomas D; Lau, K H Aaron; Abou-Kandil, Ahmed I; Caminade, Anne-Marie; Majoral, Jean-Pierre; Knoll, Wolfgang

    2010-07-27

    Layer-by-layer (LbL) deposition of polyelectrolytes within nanopores in terms of the pore size and the ionic strength was experimentally studied. Anodic aluminum oxide (AAO) membranes, which have aligned, cylindrical, nonintersecting pores, were used as a model nanoporous system. Furthermore, the AAO membranes were also employed as planar optical waveguides to enable in situ monitoring of the LbL process within the nanopores by optical waveguide spectroscopy (OWS). Structurally well-defined N,N-disubstituted hydrazine phosphorus-containing dendrimers of the fourth generation, with peripherally charged groups and diameters of approximately 7 nm, were used as the model polyelectrolytes. The pore diameter of the AAO was varied between 30-116 nm and the ionic strength was varied over 3 orders of magnitude. The dependence of the deposited layer thickness on ionic strength within the nanopores is found to be significantly stronger than LbL deposition on a planar surface. Furthermore, deposition within the nanopores can become inhibited even if the pore diameter is much larger than the diameter of the G4-polyelectrolyte, or if the screening length is insignificant relative to the dendrimer diameter at high ionic strengths. Our results will aid in the template preparation of polyelectrolyte multilayer nanotubes, and our experimental approach may be useful for investigating theories regarding the partitioning of nano-objects within nanopores where electrostatic interactions are dominant. Furthermore, we show that the enhanced ionic strength dependence of polyelectrolyte transport within the nanopores can be used to selectively deposit a LbL multilayer atop a nanoporous substrate.

  13. Biomimetic Mineralization of Gold Nanoclusters as Multifunctional Thin Films for Glass Nanopore Modification, Characterization, and Sensing.

    Science.gov (United States)

    Cao, Sumei; Ding, Shushu; Liu, Yingzi; Zhu, Anwei; Shi, Guoyue

    2017-08-01

    Hurdles of nanopore modification and characterization restrain the development of glass capillary-based nanopore sensing platforms. In this article, a simple but effective biomimetic mineralization method was developed to decorate glass nanopore with a thin film of bovine serum albumin-protected Au nanocluster (BSA-Au NC). The BSA-Au NC film emitted a strong red fluorescence whereby nondestructive characterization of Au film decorated at the inner surface of glass nanopore can be facilely achieved by a fluorescence microscopy. Besides, the BSA molecules played dual roles in the fabrication of functionalized Au thin film in glass nanopore: they not only directed the synthesis of fluorescent Au thin film but also provided binding sites for recognition, thus achieving synthesis-modification integration. This occurred due to the ionized carboxyl groups (-COO - ) of a BSA coating layer on Au NCs which can interacted with arginine (Arg) via guanidinium groups. The added Arg selectively led to the change in the charge and ionic current of BSA-Au NC film-decorated glass nanopore. Such ionic current responses can be used for quantifying Arg with a detection limit down to 1 fM, which was more sensitive than that of previous sensing systems. Together, the designed method exhibited great promise in providing a facile and controllable solution for glass nanopore modification, characterization, and sensing.

  14. UV Defined Nanoporous Liquid Core Waveguides

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Gopalakrishnan, Nimi; Ndoni, Sokol

    2011-01-01

    Nanoporous liquid core waveguides, where both core and cladding are made from the same material, are presented. The nanoporous polymer used is intrinsically hydrophobic, but selective UV exposure enables it to infiltrate with an aqueous solution, thus raising the refractive index from 1.26 to 1...

  15. Optical reflectance studies of highly specular anisotropic nanoporous (111) InP membrane

    International Nuclear Information System (INIS)

    Steele, J A; Lewis, R A; Sirbu, L; Enachi, M; Tiginyanu, I M; Skuratov, V A

    2015-01-01

    High-precision optical angular reflectance measurements are reported for a specular anisotropic nanoporous (111) InP membrane prepared by doping-assisted wet-electrochemical etching. The membrane surface morphology was investigated using scanning electron microscope imaging and revealed a quasi-uniform and self-organized nanoporous network consisting of semiconductor ‘islands’ in the sub-wavelength regime. The optical response of the nanoporous InP surface was studied at 405 nm (740 THz; UV), 633 nm (474 THz; VIS) and 1064 nm (282 THz; NIR), and exhibited a retention of basic macro-dielectric properties. Refractive index determinations demonstrate an optical anisotropy for the membrane which is strongly dependent on the wavelength of incident light, and exhibits an interesting inversion (positive anisotropy to negative) between 405 and 633 nm. The inversion of optical anisotropy is attributed to a strongly reduced ‘metallic’ behaviour in the membrane when subject to above-bandgap illumination. For the simplest case of sub-bandgap incident irradiation, the optical properties of the nanoporous InP sample are analysed in terms of an effective refractive index n eff and compared to effective media approximations. (invited article)

  16. Nanoparticle mechanics: deformation detection via nanopore resistive pulse sensing

    Science.gov (United States)

    Darvish, Armin; Goyal, Gaurav; Aneja, Rachna; Sundaram, Ramalingam V. K.; Lee, Kidan; Ahn, Chi Won; Kim, Ki-Bum; Vlahovska, Petia M.; Kim, Min Jun

    2016-07-01

    Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various liposomes inside nanopores. We observed a significant difference in resistive pulse characteristics between soft liposomes and rigid polystyrene nanoparticles especially at higher applied voltages. We used theoretical simulations to demonstrate that the difference can be explained by shape deformation of liposomes as they translocate through the nanopores. Comparing our results with the findings from electrodeformation experiments, we demonstrated that the rigidity of liposomes can be qualitatively compared using resistive pulse characteristics. This application of nanopores can provide new opportunities to study the mechanics at the nanoscale, to investigate properties of great value in fundamental biophysics and cellular mechanobiology, such as virus deformability and fusogenicity, and in applied sciences for designing novel drug/gene delivery systems.Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various

  17. Determination by Small-angle X-ray Scattering of Pore Size Distribution in Nanoporous Track-etched Polycarbonate Membranes

    Science.gov (United States)

    Jonas, A. M.; Legras, R.; Ferain, E.

    1998-03-01

    Nanoporous track-etched membranes with narrow pore size distributions and average pore size diameters tunable from 100 to 1000 Åare produced by the chemical etching of latent tracks in polymer films after irradiation by a beam of accelerated heavy ions. Nanoporous membranes are used for highly demanding filtration purposes, or as templates to obtain metallic or polymeric nanowires (L. Piraux et al., Nucl. Instr. Meth. Phys. Res. 1997, B131, 357). Such applications call for developments in nanopore size characterization techniques. In this respect, we report on the characterization by small-angle X-ray scattering (SAXS) of nanopore size distribution (nPSD) in polycarbonate track-etched membranes. The obtention of nPSD requires inverting an ill-conditioned inhomogeneous equation. We present different numerical routes to overcome the amplification of experimental errors in the resulting solutions, including a regularization technique allowing to obtain the nPSD without a priori knowledge of its shape. The effect of deviations from cylindrical pore shape on the resulting distributions are analyzed. Finally, SAXS results are compared to results obtained by electron microscopy and conductometry.

  18. Plasmonic resonance of colloidal silver in nanoporous matrix

    International Nuclear Information System (INIS)

    Andreeva, O V; Saitov, S V; Andreeva, N V; Sidorov, A I

    2014-01-01

    The object of the study in this paper – silver nanoporous silicate matrix with pore size less than 20 nm. Colloidal silver particles with volume concentration about 10 −4 are formed within free volume of pores of silicate matrix by chemical method. Changes in the attenuation spectra of the investigated object during changing of the refractive index of free volume of pores from 1.0 to 1.5 are reviewed. Comparison of the obtained experimental data with the results of calculations was carried out

  19. Nanoporous-carbon films for microsensor preconcentrators

    Science.gov (United States)

    Siegal, M. P.; Overmyer, D. L.; Kottenstette, R. J.; Tallant, D. R.; Yelton, W. G.

    2002-05-01

    Nanoporous-carbon (NPC) films are grown using physical processes such as low-power pulsed-laser deposition with attenuation of the ablated carbon species kinetic energy attained by using an inert background gas. With room-temperature growth and negligible residual stress, NPC can coat nearly any substrate to any desired thickness. Control of the deposition energetics yields precise morphology, density, and hence, porosity, with no discernable variation in chemical bonding. We produce NPC films 8 μm thick with density <0.2 g/cm3. The well-controlled porosity, i.e., available surface area, is demonstrated by using films with different thicknesses as a preconcentrator for a nerve-gas simulant.

  20. Chemical reactivity of self-organized alumina nanopores in aqueous medium

    International Nuclear Information System (INIS)

    Rocca, E.; Vantelon, D.; Gehin, A.; Augros, M.; Viola, A.

    2011-01-01

    This work is devoted to the characterization of the structure and chemistry of small self-organized nanopores of aluminum oxide in aqueous medium (diameter 4 /AlO 6 clusters is proposed to describe the amorphous oxide constituting the walls of the nanostructure. X-ray absorption near edge spectroscopy measurements, electrokinetic measurements and O 18 tracer experiments bring to light the structural changes and the specific diffusion mechanism in the nanometer network. Immersion in boiling water induces both the transformation of AlO 4 to AlO 6 clusters and the release of sulfate species by hydrolysis. Water molecules rapidly diffuse in the nanostructure, but ion diffusion is selective because of surface positive charges and overlap of the surface electric field in very small pores.

  1. Wettability transition induced transformation and entrapment of polymer nanostructures in cylindrical nanopores.

    Science.gov (United States)

    Feng, Xunda; Mei, Shilin; Jin, Zhaoxia

    2011-12-06

    We apply the concept of wettability transition to manipulate the morphology and entrapment of polymer nanostructures inside cylindrical nanopores of anodic aluminum oxide (AAO) membranes. When AAO/polystyrene (PS) hybrids, i.e., AAO/PS nanorods or AAO/PS nanotubes, are immersed into a polyethylene glycol (PEG) reservoir above the glass transition temperature of PS, a wettability transition from wetting to nonwetting of PS can be triggered due to the invasion of the more wettable PEG melt. The wettability transition enables us to develop a nondestructive method to entrap hemispherically capped nanorods inside nanopores. Moreover, we can obtain single nanorods with the desired aspect ratio by further dissolving the AAO template, in contrast to the drawbacks of nonuniformity or destructiveness from the conventional ultrasonication method. In the case of AAO/PS nanotubes, the wettability transition induced dewetting of PS nanotube walls results in the disconnection and entrapment of nonwetting PS domains (i.e., nanospheres, nanocapsules, or capped nanorods). Moreover, PEG is then washed to recover the pristine wettability of PS on the alumina surface; further annealing of the PS nanospheres inside AAO nanopores under vacuum can generate some unique nanostructures, particularly semicylindrical nanorods. © 2011 American Chemical Society

  2. Optical and structural characterisation of epitaxial nanoporous GaN grown by CVD.

    Science.gov (United States)

    Mena, Josué; Carvajal, Joan J; Martínez, Oscar; Jiménez, Juan; Zubialevich, Vitaly Z; Parbrook, Peter J; Diaz, Francesc; Aguiló, Magdalena

    2017-09-15

    In this paper we study the optical properties of nanoporous gallium nitride (GaN) epitaxial layers grown by chemical vapour deposition on non-porous GaN substrates, using photoluminescence, cathodoluminescence, and resonant Raman scattering, and correlate them with the structural characteristic of these films. We pay special attention to the analysis of the residual strain of the layers and the influence of the porosity in the light extraction. The nanoporous GaN epitaxial layers are under tensile strain, although the strain is progressively reduced as the deposition time and the thickness of the porous layer increases, becoming nearly strain free for a thickness of 1.7 μm. The analysis of the experimental data point to the existence of vacancy complexes as the main source of the tensile strain.

  3. Nanopore wall-liquid interaction under scope of molecular dynamics study: Review

    Science.gov (United States)

    Tsukanov, A. A.; Psakhie, S. G.

    2017-12-01

    The present review is devoted to the analysis of recent molecular dynamics based on the numerical studies of molecular aspects of solid-fluid interaction in nanoscale channels. Nanopore wall-liquid interaction plays the crucial role in such processes as gas separation, water desalination, liquids decontamination, hydrocarbons and water transport in nano-fractured geological formations. Molecular dynamics simulation is one of the most suitable tools to study molecular level effects occurred in such multicomponent systems. The nanopores are classified by their geometry to four groups: nanopore in nanosheet, nanotube-like pore, slit-shaped nanopore and soft-matter nanopore. The review is focused on the functionalized nanopores in boron nitride nanosheets as novel selective membranes and on the slit-shaped nanopores formed by minerals.

  4. The controlled fabrication of nanopores by focused electron-beam-induced etching

    International Nuclear Information System (INIS)

    Yemini, M; Ashkenasy, N; Hadad, B; Goldner, A; Liebes, Y

    2009-01-01

    The fabrication of nanometric holes within thin silicon-based membranes is of great importance for various nanotechnology applications. The preparation of such holes with accurate control over their size and shape is, thus, gaining a lot of interest. In this work we demonstrate the use of a focused electron-beam-induced etching (FEBIE) process as a promising tool for the fabrication of such nanopores in silicon nitride membranes and study the process parameters. The reduction of silicon nitride by the electron beam followed by chemical etching of the residual elemental silicon results in a linear dependence of pore diameter on electron beam exposure time, enabling accurate control of nanopore size in the range of 17-200 nm in diameter. An optimal pressure of 5.3 x 10 -6 Torr for the production of smaller pores with faster process rates, as a result of mass transport effects, was found. The pore formation process is also shown to be dependent on the details of the pulsed process cycle, which control the rate of the pore extension, and its minimal and maximal size. Our results suggest that the FEBIE process may play a key role in the fabrication of nanopores for future devices both in sensing and nano-electronics applications.

  5. A Hybrid Semi-Digital Transimpedance Amplifier With Noise Cancellation Technique for Nanopore-Based DNA Sequencing.

    Science.gov (United States)

    Hsu, Chung-Lun; Jiang, Haowei; Venkatesh, A G; Hall, Drew A

    2015-10-01

    Over the past two decades, nanopores have been a promising technology for next generation deoxyribonucleic acid (DNA) sequencing. Here, we present a hybrid semi-digital transimpedance amplifier (HSD-TIA) to sense the minute current signatures introduced by single-stranded DNA (ssDNA) translocating through a nanopore, while discharging the baseline current using a semi-digital feedback loop. The amplifier achieves fast settling by adaptively tuning a DC compensation current when a step input is detected. A noise cancellation technique reduces the total input-referred current noise caused by the parasitic input capacitance. Measurement results show the performance of the amplifier with 31.6 M Ω mid-band gain, 950 kHz bandwidth, and 8.5 fA/ √Hz input-referred current noise, a 2× noise reduction due to the noise cancellation technique. The settling response is demonstrated by observing the insertion of a protein nanopore in a lipid bilayer. Using the nanopore, the HSD-TIA was able to measure ssDNA translocation events.

  6. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Xia Re; Li Xide; Feng Xiqiao; Qin Qinghua; Liu Jianlin

    2011-01-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  7. Surface effects on the mechanical properties of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Xia Re [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Li Xide; Feng Xiqiao [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Qin Qinghua [School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Liu Jianlin, E-mail: fengxq@tsinghua.edu.cn [Department of Engineering Mechanics, China University of Petroleum, Qingdao 266555 (China)

    2011-07-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  8. Hydrophilic nanoporous polystyrenes and 1,2-polybutadienes

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Vigild, Martin Etchells

    2008-01-01

    Nanoporous polymers from ordered block copolymers having hydrophilic cavity surfaces were successfully prepared by two methodologies: ' 1. Nanoporous polystyrenes fromPtBA-b-PS diblock or PDMS-b-PtBA-b-PS triblock copolymer precursors by atom transfer radical polymerization (ATRP), or combination...... of living anionic polymerization~ and ATRP r~spectively. The one, PtBA block, can be modified to the hydrophilic PAA, where the dther, polydimethysiloxane (PDMS) block, can be fully degraded. Deprotection of the tert-butyl groups in PtBA and the selective etching of PDMS· chains were accomplished...... by applying HF or TFA in one step. Thus both the di- and triblock copolymers after such a treatment resulted. in nanoporous polystyrenes with hexagonal cavities of different nanosizes (6-11 nm, Figure 1). 2. Nanoporous I,2-polybutadienes (I,2-PB) by grafting various acrylic monomers onto the pore. surfaces...

  9. Nanopore Electrochemistry: A Nexus for Molecular Control of Electron Transfer Reactions

    Science.gov (United States)

    2018-01-01

    Pore-based structures occur widely in living organisms. Ion channels embedded in cell membranes, for example, provide pathways, where electron and proton transfer are coupled to the exchange of vital molecules. Learning from mother nature, a recent surge in activity has focused on artificial nanopore architectures to effect electrochemical transformations not accessible in larger structures. Here, we highlight these exciting advances. Starting with a brief overview of nanopore electrodes, including the early history and development of nanopore sensing based on nanopore-confined electrochemistry, we address the core concepts and special characteristics of nanopores in electron transfer. We describe nanopore-based electrochemical sensing and processing, discuss performance limits and challenges, and conclude with an outlook for next-generation nanopore electrode sensing platforms and the opportunities they present. PMID:29392173

  10. Nanopore Electrochemistry: A Nexus for Molecular Control of Electron Transfer Reactions

    Directory of Open Access Journals (Sweden)

    Kaiyu Fu

    2018-01-01

    Full Text Available Pore-based structures occur widely in living organisms. Ion channels embedded in cell membranes, for example, provide pathways, where electron and proton transfer are coupled to the exchange of vital molecules. Learning from mother nature, a recent surge in activity has focused on artificial nanopore architectures to effect electrochemical transformations not accessible in larger structures. Here, we highlight these exciting advances. Starting with a brief overview of nanopore electrodes, including the early history and development of nanopore sensing based on nanopore-confined electrochemistry, we address the core concepts and special characteristics of nanopores in electron transfer. We describe nanopore-based electrochemical sensing and processing, discuss performance limits and challenges, and conclude with an outlook for next-generation nanopore electrode sensing platforms and the opportunities they present.

  11. Combined HRTEM and PEELS analysis of nanoporous and amorphous carbon

    International Nuclear Information System (INIS)

    Peng, J.L.; Fan, X. D.; Bursill, L.A.

    1997-01-01

    Both the mass density (1.37 kgm/m 3 ) and sp 2 +sp 3 bonding fraction (0.15) were determined for an unusual nanoporous amorphous carbon consisting of curved single graphitic sheets. A combination of high-resolution transmission electron microscopy (HRTEM) and parallel electron energy loss spectroscopy (PEELS) was used. The values of these two parameters provide important constraints for the determination of the structure of this relatively low density variety of nanoporous carbon. The results are relevant also in the search for negatively-curved Schwarzite-related carbon structures. New date are also presented for highly-oriented pyrollytic graphite (HOPG), chemically vapour deposited (CVD) diamond, C 60 , glassy carbon (GC) and evaporated amorphous carbon (EAC); these are compared with the results for NAC. Kramers-Kronig analysis (KKA) of the low-loss PEELS data shows that the band gaps of both NAC and EAC are collapsed relative to that of CVD diamond. 18 refs., 2 tabs., 3 figs

  12. Combined HRTEM and PEELS analysis of nanoporous and amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Peng, J.L.; Fan, X. D.; Bursill, L.A.

    1997-06-01

    Both the mass density (1.37 kgm/m{sup 3}) and sp{sup 2}+sp{sup 3} bonding fraction (0.15) were determined for an unusual nanoporous amorphous carbon consisting of curved single graphitic sheets. A combination of high-resolution transmission electron microscopy (HRTEM) and parallel electron energy loss spectroscopy (PEELS) was used. The values of these two parameters provide important constraints for the determination of the structure of this relatively low density variety of nanoporous carbon. The results are relevant also in the search for negatively-curved Schwarzite-related carbon structures. New date are also presented for highly-oriented pyrollytic graphite (HOPG), chemically vapour deposited (CVD) diamond, C{sub 60}, glassy carbon (GC) and evaporated amorphous carbon (EAC); these are compared with the results for NAC. Kramers-Kronig analysis (KKA) of the low-loss PEELS data shows that the band gaps of both NAC and EAC are collapsed relative to that of CVD diamond. 18 refs., 2 tabs., 3 figs.

  13. Nanoporous polymer liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Christiansen, Mads Brøkner; Ndoni, Sokol

    2010-01-01

    We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented.......We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented....

  14. The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation

    Science.gov (United States)

    Roth, Caleb C.

    Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry

  15. Streaming current magnetic fields in a charged nanopore

    Science.gov (United States)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-01-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques. PMID:27833119

  16. Understanding improved osteoblast behavior on select nanoporous anodic alumina

    Directory of Open Access Journals (Sweden)

    Ni S

    2014-07-01

    Full Text Available Siyu Ni,1 Changyan Li,1 Shirong Ni,2 Ting Chen,1 Thomas J Webster3,4 1College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China; 2Department of Pathophysiology, Wenzhou Medical University, Wenzhou, People’s Republic of China; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA; 4Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: The aim of this study was to prepare different sized porous anodic alumina (PAA and examine preosteoblast (MC3T3-E1 attachment and proliferation on such nanoporous surfaces. In this study, PAA with tunable pore sizes (25 nm, 50 nm, and 75 nm were fabricated by a two-step anodizing procedure in oxalic acid. The surface morphology and elemental composition of PAA were characterized by field emission scanning electron microscopy and X-ray photoelectron spectroscopy analysis. The nanopore arrays on all of the PAA samples were highly regular. X-ray photoelectron spectroscopy analysis suggested that the chemistry of PAA and flat aluminum surfaces were similar. However, contact angles were significantly greater on all of the PAA compared to flat aluminum substrates, which consequently altered protein adsorption profiles. The attachment and proliferation of preosteoblasts were determined for up to 7 days in culture using field emission scanning electron microscopy and a Cell Counting Kit-8. Results showed that nanoporous surfaces did not enhance initial preosteoblast attachment, whereas preosteoblast proliferation dramatically increased when the PAA pore size was either 50 nm or 75 nm compared to all other samples (P<0.05. Thus, this study showed that one can alter surface energy of aluminum by modifying surface nano-roughness alone (and not changing chemistry through an anodization process to improve osteoblast density, and, thus, should be

  17. Nanolock-Nanopore Facilitated Digital Diagnostics of Cancer Driver Mutation in Tumor Tissue.

    Science.gov (United States)

    Wang, Yong; Tian, Kai; Shi, Ruicheng; Gu, Amy; Pennella, Michael; Alberts, Lindsey; Gates, Kent S; Li, Guangfu; Fan, Hongxin; Wang, Michael X; Gu, Li-Qun

    2017-07-28

    Cancer driver mutations are clinically significant biomarkers. In precision medicine, accurate detection of these oncogenic changes in patients would enable early diagnostics of cancer, individually tailored targeted therapy, and precise monitoring of treatment response. Here we investigated a novel nanolock-nanopore method for single-molecule detection of a serine/threonine protein kinase gene BRAF V600E mutation in tumor tissues of thyroid cancer patients. The method lies in a noncovalent, mutation sequence-specific nanolock. We found that the nanolock formed on the mutant allele/probe duplex can separate the duplex dehybridization procedure into two sequential steps in the nanopore. Remarkably, this stepwise unzipping kinetics can produce a unique nanopore electric marker, with which a single DNA molecule of the cancer mutant allele can be unmistakably identified in various backgrounds of the normal wild-type allele. The single-molecule sensitivity for mutant allele enables both binary diagnostics and quantitative analysis of mutation occurrence. In the current configuration, the method can detect the BRAF V600E mutant DNA lower than 1% in the tumor tissues. The nanolock-nanopore method can be adapted to detect a broad spectrum of both transversion and transition DNA mutations, with applications from diagnostics to targeted therapy.

  18. Electronic conductance model in constricted MoS{sub 2} with nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, Aditya [Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801 (United States); Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Leburton, Jean-Pierre, E-mail: jleburto@illinois.edu [Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801 (United States); Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois, Urbana, Illinois 61801 (United States)

    2016-02-01

    We describe a self-consistent model for electronic transport in a molybdenum di-sulphide (MoS{sub 2}) layer containing a nanopore in a constricted geometry. Our approach is based on a semi-classical thermionic Poisson-Boltzmann technique using a two-valley model within the effective mass approximation to investigate perturbations caused by the nanopore on the electronic current. In particular, we show that the effect of the nanopore on the conductance is reduced as the nanopore is moved from the center to the layer edges. Our model is applied to the detection of DNA translocating through the nanopore, which reveals current features similar to those as predicted in nanopore graphene layers.

  19. UV patterned nanoporous solid-liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Sagar, Kaushal Shashikant; Christiansen, Mads Brøkner

    2010-01-01

    Nanoporous Solid-Liquid core waveguides were prepared by UV induced surface modification of hydrophobic nanoporous polymers. With this method, the index contrast (delta n = 0.20) is a result of selective water infiltration. The waveguide core is defined by UV light, rendering the exposed part...

  20. Nanopore sensors : From hybrid to abiotic systems

    NARCIS (Netherlands)

    Kocer, Armagan; Tauk, Lara; Dejardin, Philippe

    2012-01-01

    The use of nanopores of well controlled geometry for sensing molecules in solution is reviewed. Focus is concentrated especially on synthetic track-etch pores in polymer foils and on biological nanopores, i.e. ion channels. After a brief section about multipore sensors, specific attention is

  1. Nanoporous polymeric nanofibers based on selectively etched PS-b-PDMS block copolymers.

    Science.gov (United States)

    Demirel, Gokcen B; Buyukserin, Fatih; Morris, Michael A; Demirel, Gokhan

    2012-01-01

    One-dimensional nanoporous polymeric nanofibers have been fabricated within an anodic aluminum oxide (AAO) membrane by a facile approach based on selective etching of poly(dimethylsiloxane) (PDMS) domains in polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS) block copolymers that had been formed within the AAO template. It was observed that prior to etching, the well-ordered PS-b-PDMS nanofibers are solid and do not have any porosity. The postetched PS nanofibers, on the other hand, had a highly porous structure having about 20-50 nm pore size. The nanoporous polymeric fibers were also employed as a drug carrier for the native, continuous, and pulsatile drug release using Rhodamine B (RB) as a model drug. These studies showed that enhanced drug release and tunable drug dosage can be achieved by using ultrasound irradiation. © 2011 American Chemical Society

  2. Cavitation and pore blocking in nanoporous glasses.

    Science.gov (United States)

    Reichenbach, C; Kalies, G; Enke, D; Klank, D

    2011-09-06

    In gas adsorption studies, porous glasses are frequently referred to as model materials for highly disordered mesopore systems. Numerous works suggest that an accurate interpretation of physisorption isotherms requires a complete understanding of network effects upon adsorption and desorption, respectively. The present article deals with nitrogen and argon adsorption at different temperatures (77 and 87 K) performed on a series of novel nanoporous glasses (NPG) with different mean pore widths. NPG samples contain smaller mesopores and significantly higher microporosity than porous Vycor glass or controlled pore glass. Since the mean pore width of NPG can be tuned sensitively, the evolution of adsorption characteristics with respect to a broadening pore network can be investigated starting from the narrowest nanopore width. With an increasing mean pore width, a H2-type hysteresis develops gradually which finally transforms into a H1-type. In this connection, a transition from a cavitation-induced desorption toward desorption controlled by pore blocking can be observed. Furthermore, we find concrete hints for a pore size dependence of the relative pressure of cavitation in highly disordered pore systems. By comparing nitrogen and argon adsorption, a comprehensive insight into adsorption mechanisms in novel disordered materials is provided. © 2011 American Chemical Society

  3. Influence of nanopore surface charge and magnesium ion on polyadenosine translocation

    International Nuclear Information System (INIS)

    Lepoitevin, Mathilde; Bechelany, Mikhael; Janot, Jean-Marc; Balme, Sebastien; Coulon, Pierre Eugène; Cambedouzou, Julien

    2015-01-01

    We investigate the influence of a nanopore surface state and the addition of Mg 2+ on poly-adenosine translocation. To do so, two kinds of nanopores with a low aspect ratio (diameter ∼3–5 nm, length 30 nm) were tailored: the first one with a negative charge surface and the second one uncharged. It was shown that the velocity and the energy barrier strongly depend on the nanopore surface. Typically if the nanopore and polyA exhibit a similar charge, the macromolecule velocity increases and its global energy barrier of entrance in the nanopore decreases, as opposed to the non-charged nanopore. Moreover, the addition of a divalent chelating cation induces an increase of energy barrier of entrance, as expected. However, for a negative nanopore, this effect is counterbalanced by the inversion of the surface charge induced by the adsorption of divalent cations. (paper)

  4. Confident methods for the evaluation of the hydrogen content in nanoporous carbon microfibers

    Science.gov (United States)

    Culebras, Mario; Madroñero, Antonio; Cantarero, Andres; Amo, José Maria; Domingo, Concepción; López, Antonio

    2012-10-01

    Nanoporous carbon microfibers were grown by chemical vapor deposition in the vapor-liquid solid mode using different fluid hydrocarbons as precursors in different proportions. The as-grown samples were further treated in argon and hydrogen atmospheres at different pressure conditions and annealed at several temperatures in order to deduce the best conditions for the incorporation and re-incorporation of hydrogen into the microfibers through the nanopores. Since there are some discrepancies in the results on the hydrogen content obtained under vacuum conditions, in this work, we have measured the hydrogen content in the microfibers using several analytical methods in ambient conditions: surface tension, mass density, and Raman measurements. A discussion on the validity of the results obtained through the correlation between them is the purpose of the present work.

  5. Granular activated carbon with grafted nanoporous polymer enhances nanoscale zero-valent iron impregnation and water contaminant removal

    DEFF Research Database (Denmark)

    Mines, Paul D.; Uthuppu, Basil; Thirion, Damien

    2018-01-01

    Granular activated carbon was customized with a chemical grafting procedure of a nanoporous polymeric network for the purpose of nanoscale zero-valent iron impregnation and subsequent water contaminant remediation. Characterization of the prepared composite material revealed that not only was the...

  6. Polarization-induced local pore-wall functionalization for biosensing: from micropore to nanopore.

    Science.gov (United States)

    Liu, Jie; Pham, Pascale; Haguet, Vincent; Sauter-Starace, Fabien; Leroy, Loïc; Roget, André; Descamps, Emeline; Bouchet, Aurélie; Buhot, Arnaud; Mailley, Pascal; Livache, Thierry

    2012-04-03

    The use of biological-probe-modified solid-state pores in biosensing is currently hindered by difficulties in pore-wall functionalization. The surface to be functionalized is small and difficult to target and is usually chemically similar to the bulk membrane. Herein, we demonstrate the contactless electrofunctionalization (CLEF) approach and its mechanism. This technique enables the one-step local functionalization of the single pore wall fabricated in a silica-covered silicon membrane. CLEF is induced by polarization of the pore membrane in an electric field and requires a sandwich-like composition and a conducting or semiconducting core for the pore membrane. The defects in the silica layer of the micropore wall enable the creation of an electric pathway through the silica layer, which allows electrochemical reactions to take place locally on the pore wall. The pore diameter is not a limiting factor for local wall modification using CLEF. Nanopores with a diameter of 200 nm fabricated in a silicon membrane and covered with native silica layer have been successfully functionalized with this method, and localized pore-wall modification was obtained. Furthermore, through proof-of-concept experiments using ODN-modified nanopores, we show that functionalized nanopores are suitable for translocation-based biosensing.

  7. Gassmann Theory Applies to Nanoporous Media

    Science.gov (United States)

    Gor, Gennady Y.; Gurevich, Boris

    2018-01-01

    Recent progress in extraction of unconventional hydrocarbon resources has ignited the interest in the studies of nanoporous media. Since many thermodynamic and mechanical properties of nanoscale solids and fluids differ from the analogous bulk materials, it is not obvious whether wave propagation in nanoporous media can be described using the same framework as in macroporous media. Here we test the validity of Gassmann equation using two published sets of ultrasonic measurements for a model nanoporous medium, Vycor glass, saturated with two different fluids, argon, and n-hexane. Predictions of the Gassmann theory depend on the bulk and shear moduli of the dry samples, which are known from ultrasonic measurements and the bulk moduli of the solid and fluid constituents. The solid bulk modulus can be estimated from adsorption-induced deformation or from elastic effective medium theory. The fluid modulus can be calculated according to the Tait-Murnaghan equation at the solvation pressure in the pore. Substitution of these parameters into the Gassmann equation provides predictions consistent with measured data. Our findings set up a theoretical framework for investigation of fluid-saturated nanoporous media using ultrasonic elastic wave propagation.

  8. Nanopore fabricated in pyramidal HfO2 film by dielectric breakdown method

    Science.gov (United States)

    Wang, Yifan; Chen, Qi; Deng, Tao; Liu, Zewen

    2017-10-01

    The dielectric breakdown method provides an innovative solution to fabricate solid-state nanopores on insulating films. A nanopore generation event via this method is considered to be caused by random charged traps (i.e., structural defects) and high electric fields in the membrane. Thus, the position and number of nanopores on planar films prepared by the dielectric breakdown method is hard to control. In this paper, we propose to fabricate nanopores on pyramidal HfO2 films (10-nm and 15-nm-thick) to improve the ability to control the location and number during the fabrication process. Since the electric field intensity gets enhanced at the corners of the pyramid-shaped film, the probability of nanopore occurrence at vertex and edge areas increases. This priority of appearance provides us chance to control the location and number of nanopores by monitoring a sudden irreversible discrete increase in current. The experimental results showed that the probability of nanopore occurrence decreases in an order from the vertex area, the edge area to the side face area. The sizes of nanopores ranging from 30 nm to 10 nm were obtained. Nanopores fabricated on the pyramid-shaped HfO2 film also showed an obvious ion current rectification characteristic, which might improve the nanopore performance as a biomolecule sequencing platform.

  9. Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.

    Science.gov (United States)

    Kant, Krishna; Yu, Jingxian; Priest, Craig; Shapter, Joe G; Losic, Dusan

    2014-03-07

    Knowledge about electrochemical and electrical properties of nanopore structures and the influence of pore dimensions on these properties is important for the development of nanopore biosensing devices. The aim of this study was to explore the influence of nanopore dimensions (diameter and length) on biosensing performance using non-faradic electrochemical impedance spectroscopy (EIS). Nanoporous alumina membranes (NPAMs) prepared by self-ordered electrochemical anodization of aluminium were used as model nanopore sensing platforms. NPAMs with different pore diameters (25-65 nm) and lengths (4-18 μm) were prepared and the internal pore surface chemistry was modified by covalently attaching streptavidin and biotin. The performance of this antibody nanopore biosensing platform was evaluated using various concentrations of biotin as a model analyte. EIS measurements of pore resistivity and conductivity were carried out for pores with different diameters and lengths. The results showed that smaller pore dimensions of 25 nm and pore lengths up to 10 μm provide better biosensing performance.

  10. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing.

    Directory of Open Access Journals (Sweden)

    Jayesh A Bafna

    Full Text Available We show low-cost fabrication and characterization of borosilicate glass nanopores for single molecule sensing. Nanopores with diameters of ~100 nm were fabricated in borosilicate glass capillaries using laser assisted glass puller. We further achieve controlled reduction and nanometer-size control in pore diameter by sculpting them under constant electron beam exposure. We successfully fabricate pore diameters down to 6 nm. We next show electrical characterization and low-noise behavior of these borosilicate nanopores and compare their taper geometries. We show, for the first time, a comprehensive characterization of glass nanopore conductance across six-orders of magnitude (1M-1μM of salt conditions, highlighting the role of buffer conditions. Finally, we demonstrate single molecule sensing capabilities of these devices with real-time translocation experiments of individual λ-DNA molecules. We observe distinct current blockage signatures of linear as well as folded DNA molecules as they undergo voltage-driven translocation through the glass nanopores. We find increased signal to noise for single molecule detection for higher trans-nanopore driving voltages. We propose these nanopores will expand the realm of applications for nanopore platform.

  11. Polycaprolactone Thin-Film Micro- and Nanoporous Cell-Encapsulation Devices.

    Science.gov (United States)

    Nyitray, Crystal E; Chang, Ryan; Faleo, Gaetano; Lance, Kevin D; Bernards, Daniel A; Tang, Qizhi; Desai, Tejal A

    2015-06-23

    Cell-encapsulating devices can play an important role in advancing the types of tissue available for transplantation and further improving transplant success rates. To have an effective device, encapsulated cells must remain viable, respond to external stimulus, and be protected from immune responses, and the device itself must elicit a minimal foreign body response. To address these challenges, we developed a micro- and a nanoporous thin-film cell encapsulation device from polycaprolactone (PCL), a material previously used in FDA-approved biomedical devices. The thin-film device construct allows long-term bioluminescent transfer imaging, which can be used for monitoring cell viability and device tracking. The ability to tune the microporous and nanoporous membrane allows selective protection from immune cell invasion and cytokine-mediated cell death in vitro, all while maintaining typical cell function, as demonstrated by encapsulated cells' insulin production in response to glucose stimulation. To demonstrate the ability to track, visualize, and monitor the viability of cells encapsulated in implanted thin-film devices, we encapsulated and implanted luciferase-positive MIN6 cells in allogeneic mouse models for up to 90 days. Lack of foreign body response in combination with rapid neovascularization around the device shows promise in using this technology for cell encapsulation. These devices can help elucidate the metrics required for cell encapsulation success and direct future immune-isolation therapies.

  12. Information Dynamics of a Nonlinear Stochastic Nanopore System

    Directory of Open Access Journals (Sweden)

    Claire Gilpin

    2018-03-01

    Full Text Available Nanopores have become a subject of interest in the scientific community due to their potential uses in nanometer-scale laboratory and research applications, including infectious disease diagnostics and DNA sequencing. Additionally, they display behavioral similarity to molecular and cellular scale physiological processes. Recent advances in information theory have made it possible to probe the information dynamics of nonlinear stochastic dynamical systems, such as autonomously fluctuating nanopore systems, which has enhanced our understanding of the physical systems they model. We present the results of local (LER and specific entropy rate (SER computations from a simulation study of an autonomously fluctuating nanopore system. We learn that both metrics show increases that correspond to fluctuations in the nanopore current, indicating fundamental changes in information generation surrounding these fluctuations.

  13. Study of polymer molecules and conformations with a nanopore

    Science.gov (United States)

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2010-12-07

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  14. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  15. Nanoporous Pirani sensor based on anodic aluminum oxide

    Science.gov (United States)

    Jeon, Gwang-Jae; Kim, Woo Young; Shim, Hyun Bin; Lee, Hee Chul

    2016-09-01

    A nanoporous Pirani sensor based on anodic aluminum oxide (AAO) is proposed, and the quantitative relationship between the performance of the sensor and the porosity of the AAO membrane is characterized with a theoretical model. The proposed Pirani sensor is composed of a metallic resistor on a suspended nanoporous membrane, which simultaneously serves as the sensing area and the supporting structure. The AAO membrane has numerous vertically-tufted nanopores, resulting in a lower measurable pressure limit due to both the increased effective sensing area and the decreased effective thermal loss through the supporting structure. Additionally, the suspended AAO membrane structure, with its outer periphery anchored to the substrate, known as a closed-type design, is demonstrated using nanopores of AAO as an etch hole without a bulk micromachining process used on the substrate. In a CMOS-compatible process, a 200 μm × 200 μm nanoporous Pirani sensor with porosity of 25% was capable of measuring the pressure from 0.1 mTorr to 760 Torr. With adjustment of the porosity of the AAO, the measurable range could be extended toward lower pressures of more than one decade compared to a non-porous membrane with an identical footprint.

  16. DNA and ion transport through solid-state nanopores

    NARCIS (Netherlands)

    Smeets, R.M.M.

    2008-01-01

    This thesis describes experimental work on a novel type of devices capable of detecting single-(bio)molecules; nanometer-sized pores, or nanopores. Individual nanopores are placed in between two electrolyte-filled liquid compartments and (bio)molecules are electrophoretically driven through them.

  17. On the anodic aluminium oxide refractive index of nanoporous templates

    International Nuclear Information System (INIS)

    Hierro-Rodriguez, A; Rocha-Rodrigues, P; Araujo, J P; Valdés-Bango, F; Alameda, J M; Teixeira, J M; Jorge, P A S; Santos, J L; Guerreiro, A

    2015-01-01

    In the present study, we have determined the intrinsic refractive index of anodic aluminium oxide, which is originated by the formation of nanoporous alumina templates. Different templates have been fabricated by the conventional two-step anodization procedure in oxalic acid. Their porosities were modified by chemical wet etching allowing the tuning of their effective refractive indexes (air-filled nanopores  +  anodic aluminium oxide). By standard spectroscopic light transmission measurements, the effective refractive index for each different template was extracted in the VIS–NIR region. The determination of the intrinsic anodic aluminium oxide refractive index was performed by using the Maxwell–Garnett homogenization theory. The results are coincident for all the fabricated samples. The obtained refractive index (∼1.55) is quite lower (∼22%) than the commonly used Al 2 O 3 handbook value (∼1.75), showing that the amorphous nature of the anodic oxide structure strongly conditions its optical properties. This difference is critical for the correct design and modeling of optical plasmonic metamaterials based on anodic aluminium oxide nanoporous templates. (paper)

  18. Energy absorption behaviors of nanoporous materials functionalized (NMF) liquids

    OpenAIRE

    Kim, Tae Wan

    2011-01-01

    For many decades, people have been actively investigating high-performance energy absorption materials, so as to develop lightweight and small-sized protective and damping devices, such as blast mitigation helmets, vehicle armors, etc. Recently, the high energy absorption efficiency of nanoporous materials functionalized (NMF) liquids has drawn considerable attention. A NMF liquid is usually a liquid suspension of nanoporous particles with large nanopore surface areas (100 - 2,000 m²/g). The ...

  19. Nanopore biosensors for detection of proteins and nucleic acids

    NARCIS (Netherlands)

    Maglia, Giovanni; Soskine, Mikhael

    2014-01-01

    Described herein are nanopore biosensors based on a modified cytolysin protein. The nanopore biosensors accommodate macromoiecules including proteins and nucleic acids, and may additionally comprise ligands with selective binding properties.

  20. Ion selection of charge-modified large nanopores in a graphene sheet

    Science.gov (United States)

    Zhao, Shijun; Xue, Jianming; Kang, Wei

    2013-09-01

    Water desalination becomes an increasingly important approach for clean water supply to meet the rapidly growing demand of population boost, industrialization, and urbanization. The main challenge in current desalination technologies lies in the reduction of energy consumption and economic costs. Here, we propose to use charged nanopores drilled in a graphene sheet as ion exchange membranes to promote the efficiency and capacity of desalination systems. Using molecular dynamics simulations, we investigate the selective ion transport behavior of electric-field-driven KCl electrolyte solution through charge modified graphene nanopores. Our results reveal that the presence of negative charges at the edge of graphene nanopore can remarkably impede the passage of Cl- while enhance the transport of K+, which is an indication of ion selectivity for electrolytes. We further demonstrate that this selectivity is dependent on the pore size and total charge number assigned at the nanopore edge. By adjusting the nanopore diameter and electric charge on the graphene nanopore, a nearly complete rejection of Cl- can be realized. The electrical resistance of nanoporous graphene, which is a key parameter to evaluate the performance of ion exchange membranes, is found two orders of magnitude lower than commercially used membranes. Our results thus suggest that graphene nanopores are promising candidates to be used in electrodialysis technology for water desalinations with a high permselectivity.

  1. Flow-through pretreatment of lignocellulosic biomass with inorganic nanoporous membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bhave, Ramesh R.; Lynd, Lee; Shao, Xiongjun

    2018-04-03

    A process for the pretreatment of lignocellulosic biomass is provided. The process generally includes flowing water through a pretreatment reactor containing a bed of particulate ligno-cellulosic biomass to produce a pressurized, high-temperature hydrolyzate exit stream, separating solubilized compounds from the hydrolyzate exit stream using an inorganic nanoporous membrane element, fractionating the retentate enriched in solubilized organic components and recycling the permeate to the pretreatment reactor. The pretreatment process provides solubilized organics in concentrated form for the subsequent conversion into biofuels and other chemicals.

  2. Physisorption of SDS in a Hydrocarbon Nanoporous Polymer

    DEFF Research Database (Denmark)

    Li, Li; Wang, Yanwei; Vigild, Martin Etchells

    2010-01-01

    Surface modification of nanoporous 1,2-polybutadiene of pore diameter similar to 15 nm was accomplished by physisorption of sodium dodecyl sulfate (SDS) in water. Loading of the aqueous solution and the accompanying physisorption of SDS into the hydrophobic nanoporous films were investigated in a...

  3. Modeling the self-assembly of ordered nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Peter [Univ. of Massachusetts, Amherst, MA (United States); Auerbach, Scott [Univ. of Massachusetts, Amherst, MA (United States)

    2017-11-13

    This report describes progress on a collaborative project on the multiscale modeling of the assembly processes in the synthesis of nanoporous materials. Such materials are of enormous importance in modern technology with application in the chemical process industries, biomedicine and biotechnology as well as microelectronics. The project focuses on two important classes of materials: i) microporous crystalline materials, such as zeolites, and ii) ordered mesoporous materials. In the first case the pores are part of the crystalline structure, while in the second the structures are amorphous on the atomistic length scale but where surfactant templating gives rise to order on the length scale of 2 - 20 nm. We have developed a modeling framework that encompasses both these kinds of materials. Our models focus on the assembly of corner sharing silica tetrahedra in the presence of structure directing agents. We emphasize a balance between sufficient realism in the models and computational tractibility given the complex many-body phenomena. We use both on-lattice and off-lattice models and the primary computational tools are Monte Carlo simulations with sampling techniques and ensembles appropriate to specific situations. Our modeling approach is the first to capture silica polymerization, nanopore crystallization, and mesopore formation through computer-simulated self assembly.

  4. Nanoporous carbon actuator and methods of use thereof

    Science.gov (United States)

    Biener, Juergen [San Leandro, CA; Baumann, Theodore F [Discovery Bay, CA; Shao, Lihua [Karlsruhe, DE; Weissmueller, Joerg [Stutensee, DE

    2012-07-31

    An electrochemically driveable actuator according to one embodiment includes a nanoporous carbon aerogel composition capable of exhibiting charge-induced reversible strain when wetted by an electrolyte and a voltage is applied thereto. An electrochemically driven actuator according to another embodiment includes a nanoporous carbon aerogel composition wetted by an electrolyte; and a mechanism for causing charge-induced reversible strain of the composition. A method for electrochemically actuating an object according to one embodiment includes causing charge-induced reversible strain of a nanoporous carbon aerogel composition wetted with an electrolyte to actuate the object by the strain.

  5. Evidence for CO2 reactive adsorption on nanoporous S- and N-doped carbon at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bandosz, Teresa J. [City College of New York, NY (United States). Dept. of Chemistry; Seredych, Mykola [City College of New York, NY (United States). Dept. of Chemistry; Rodríguez-Castellón, Enrique [Univ. of Malaga (Spain). Dept. of Inorganic Chemistry; Cheng, Yongqiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division; Daemen, Luke L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division; Ramírez-Cuesta, Anibal J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division

    2015-10-08

    CO2 interactions with nanoporous S- and N-doped polymer-derived carbon and commercial wood-based carbon were investigated in a broad range of conditions. The results showed that during CO2 adsorption nitrogen and sulfur species as well as water were released from the carbon surface as a result of chemical reactions of the surface groups with CO2. Inelastic neutron scattering experiments provided the unprecedented ability to characterize very small amounts of CO2 and H2O and revealed for the first time their physical/chemical status in the confined space of nanoporous carbons. The results obtained suggest that the reactivity of the carbon surface should be considered when CO2 storage media are chosen and when CO2 is used as a probe to determine the microporosity of carbon materials.

  6. 2D nanoporous membrane for cation removal from water: Effects of ionic valence, membrane hydrophobicity, and pore size

    Science.gov (United States)

    Köhler, Mateus Henrique; Bordin, José Rafael; Barbosa, Marcia C.

    2018-06-01

    Using molecular dynamic simulations, we show that single-layers of molybdenum disulfide (MoS2) and graphene can effectively reject ions and allow high water permeability. Solutions of water and three cations with different valencies (Na+, Zn2+, and Fe3+) were investigated in the presence of the two types of membranes, and the results indicate a high dependence of the ion rejection on the cation charge. The associative characteristic of ferric chloride leads to a high rate of ion rejection by both nanopores, while the monovalent sodium chloride induces lower rejection rates. Particularly, MoS2 shows 100% of Fe3+ rejection for all pore sizes and applied pressures. On the other hand, the water permeation does not vary with the cation valence, having dependence only with the nanopore geometric and chemical characteristics. This study helps us to understand the fluid transport through a nanoporous membrane, essential for the development of new technologies for the removal of pollutants from water.

  7. Theoretical and experimental studies on ionic currents in nanopore-based biosensors.

    Science.gov (United States)

    Liu, Lei; Li, Chu; Ma, Jian; Wu, Yingdong; Ni, Zhonghua; Chen, Yunfei

    2014-12-01

    Novel generation of analytical technology based on nanopores has provided possibilities to fabricate nanofluidic devices for low-cost DNA sequencing or rapid biosensing. In this paper, a simplified model was suggested to describe DNA molecule's translocation through a nanopore, and the internal potential, ion concentration, ionic flowing speed and ionic current in nanopores with different sizes were theoretically calculated and discussed on the basis of Poisson-Boltzmann equation, Navier-Stokes equation and Nernst-Planck equation by considering several important parameters, such as the applied voltage, the thickness and the electric potential distributions in nanopores. In this way, the basic ionic currents, the modulated ionic currents and the current drops induced by translocation were obtained, and the size effects of the nanopores were carefully compared and discussed based on the calculated results and experimental data, which indicated that nanopores with a size of 10 nm or so are more advantageous to achieve high quality ionic current signals in DNA sensing.

  8. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  9. Synthesis and electrochemical study of Pt-based nanoporous materials

    International Nuclear Information System (INIS)

    Wang Jingpeng; Holt-Hindle, Peter; MacDonald, Duncan; Thomas, Dan F.; Chen Aicheng

    2008-01-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells

  10. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Chen Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)], E-mail: aicheng.chen@lakeheadu.ca

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells.0.

  11. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan; Chen, Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells. (author)

  12. ELECTROCHEMICAL PROPERTIES OF NANOPOROUS CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    P.Nigu

    2002-01-01

    Full Text Available Electrical double layer and electrochemical characteristics at the nanoporous carbon | (C2H54NBF4 + acetonitrile interface have been studied by the cyclic voltammetry and impedance spectroscopy methods. The value of zero charge potential (0.23 V vs. SCE in H2O, the region of ideal polarizability and other characteristics have been established. Analysis of complex plane plots shows that the nanoporous carbon | x M (C2H54NBF4 + acetonitrile interface can be simulated by the equivalent circuit, in which the two parallel conduction parts in the solid and liquid phases are interconnected by the double layer capacitance in parallel with the complex admittance of hindered reaction of the charge transfer process. The values of the characteristic frequency depend on the electrolyte concentration and on the electrode potential, i.e. on the nature of ions adsorbed at the surface of nanoporous carbon electrode.

  13. Optimized nanoporous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Paul V. (University of Illinois at Urbana-Champaign, Urbana, IL); Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J. (North Carolina State University, Raleigh, NC); Pierson, Bonnie E. (North Carolina State University, Raleigh, NC); Gittard, Shaun D. (North Carolina State University, Raleigh, NC); Robinson, David B.; Ham, Sung-Kyoung (Korea Basic Science Institute, Gangneung, South Korea); Chae, Weon-Sik (Korea Basic Science Institute, Gangneung, South Korea); Gough, Dara V. (University of Illinois at Urbana-Champaign, Urbana, IL); Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  14. Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode and metal ion functionalized nanoporous gold-chitosan.

    Science.gov (United States)

    Li, Weiping; Li, Long; Li, Meng; Yu, Jinghua; Ge, Shenguang; Yan, Mei; Song, Xianrang

    2013-10-25

    A simple and sensitive 3D microfluidic origami multiplex electrochemical immunodevice was developed for the first time using a novel nanoporous silver modified paper working electrode as a sensor platform and different metal ion functionalized nanoporous gold-chitosan as a tracer.

  15. Electrokinetic transport of nanoparticles to opening of nanopores on cell membrane during electroporation

    Energy Technology Data Exchange (ETDEWEB)

    Movahed, Saeid [University of Toronto, Department of Chemistry (Canada); Li Dongqing, E-mail: dongqing@mme.uwaterloo.ca [University of Waterloo, Department of Mechanical and Mechatronics Engineering (Canada)

    2013-04-15

    Nanoparticle transport to the opening of the single nanopore created on the cell membrane during the electroporation is studied. First, the permeabilization of a single cell located in a microchannel is investigated. When the nanopores are created, the transport of the nanoparticles from the surrounding liquid to the opening of one of the created nanopores is examined. It was found that the negatively charged nanoparticles preferably move into the nanopores from the side of the cell membrane that faces the negative electrode. Opposite to the electro-osmotic flow effect, the electrophoretic force tends to draw the negatively charged nanoparticles into the opening of the nanopores. The effect of the Brownian force is negligible in comparison with the electro-osmosis and the electrophoresis. Smaller nanoparticles with stronger surface charge transport more easily to the opening of the nanopores. Positively charged nanoparticles preferably enter the nanopores from the side of the cell membrane that faces the positive electrode. On this side, both the electrophoretic and the electro-osmotic forces are in the same directions and contribute to bring the positively charged particles into the nanopores.

  16. Physical Model for Rapid and Accurate Determination of Nanopore Size via Conductance Measurement.

    Science.gov (United States)

    Wen, Chenyu; Zhang, Zhen; Zhang, Shi-Li

    2017-10-27

    Nanopores have been explored for various biochemical and nanoparticle analyses, primarily via characterizing the ionic current through the pores. At present, however, size determination for solid-state nanopores is experimentally tedious and theoretically unaccountable. Here, we establish a physical model by introducing an effective transport length, L eff , that measures, for a symmetric nanopore, twice the distance from the center of the nanopore where the electric field is the highest to the point along the nanopore axis where the electric field falls to e -1 of this maximum. By [Formula: see text], a simple expression S 0 = f (G, σ, h, β) is derived to algebraically correlate minimum nanopore cross-section area S 0 to nanopore conductance G, electrolyte conductivity σ, and membrane thickness h with β to denote pore shape that is determined by the pore fabrication technique. The model agrees excellently with experimental results for nanopores in graphene, single-layer MoS 2 , and ultrathin SiN x films. The generality of the model is verified by applying it to micrometer-size pores.

  17. Electro-osmotic flow through nanopores in thin and ultrathin membranes

    Science.gov (United States)

    Melnikov, Dmitriy V.; Hulings, Zachery K.; Gracheva, Maria E.

    2017-06-01

    We theoretically study how the electro-osmotic fluid velocity in a charged cylindrical nanopore in a thin solid state membrane depends on the pore's geometry, membrane charge, and electrolyte concentration. We find that when the pore's length is comparable to its diameter, the velocity profile develops a concave shape with a minimum along the pore axis unlike the situation in very long nanopores with a maximum velocity along the central pore axis. This effect is attributed to the induced pressure along the nanopore axis due to the fluid flow expansion and contraction near the exit or entrance to the pore and to the reduction of electric field inside the nanopore. The induced pressure is maximal when the pore's length is about equal to its diameter while decreasing for both longer and shorter nanopores. A model for the fluid velocity incorporating these effects is developed and shown to be in a good agreement with numerically computed results.

  18. Dynamic crack propagation through nanoporous media

    Science.gov (United States)

    Nguyen, Thao; Wilkerson, Justin

    2015-06-01

    The deformation and failure of nanoporous metals may be considerably different than that of more traditional bulk porous metals. The length scales in traditional bulk porous metals are typically large enough for classic plasticity and buckling to be operative. However, the extremely small length scales associated with nanoporous metals may inhibit classic plasticity mechanisms. Here, we motivate an alternative nanovoid growth mechanism mediated by dislocation emission. Following an approach similar to Lubarda and co-workers, we make use of stability arguments applied to the analytic solutions of the elastic interactions of dislocations and voids to derive a simple stress-based criterion for emission activation. We then propose a dynamic nanovoid growth law that is motivated by the kinetics of dislocation emission. The resulting failure model is implemented into a commercial finite element software to simulate dynamic crack growth. The simulations reveal that crack propagation through a nanoporous media proceeds at somewhat faster velocities than through the more traditional bulk porous metal.

  19. Silicon-on-insulator based nanopore cavity arrays for lipid membrane investigation.

    Science.gov (United States)

    Buchholz, K; Tinazli, A; Kleefen, A; Dorfner, D; Pedone, D; Rant, U; Tampé, R; Abstreiter, G; Tornow, M

    2008-11-05

    We present the fabrication and characterization of nanopore microcavities for the investigation of transport processes in suspended lipid membranes. The cavities are situated below the surface of silicon-on-insulator (SOI) substrates. Single cavities and large area arrays were prepared using high resolution electron-beam lithography in combination with reactive ion etching (RIE) and wet chemical sacrificial underetching. The locally separated compartments have a circular shape and allow the enclosure of picoliter volume aqueous solutions. They are sealed at their top by a 250 nm thin Si membrane featuring pores with diameters from 2 µm down to 220 nm. The Si surface exhibits excellent smoothness and homogeneity as verified by AFM analysis. As biophysical test system we deposited lipid membranes by vesicle fusion, and demonstrated their fluid-like properties by fluorescence recovery after photobleaching. As clearly indicated by AFM measurements in aqueous buffer solution, intact lipid membranes successfully spanned the pores. The nanopore cavity arrays have potential applications in diagnostics and pharmaceutical research on transmembrane proteins.

  20. Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope

    Science.gov (United States)

    Qian, Hui; Egerton, Ray F.

    2017-11-01

    Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.

  1. Nanoporous aerogel as a bacteria repelling hygienic material for healthcare environment.

    Science.gov (United States)

    Oh, Jun Kyun; Kohli, Nandita; Zhang, Yuanzhong; Min, Younjin; Jayaraman, Arul; Cisneros-Zevallos, Luis; Akbulut, Mustafa

    2016-02-26

    Healthcare-associated infections (HAIs) caused by pathogenic bacteria are a worldwide problem and responsible for numerous cases of morbidity and mortality. Exogenous cross-contamination is one of the main mechanisms contributing to such infections. This work investigates the potential of hydrophobically modified nanoporous silica aerogel as an antiadhesive hygienic material that can inhibit exogenous bacterial contamination. Nanoporous silica aerogels were synthesized via sol-gel polymerization of tetraethyl orthosilicate and hydrophobized using trimethylsilyl chloride. Bacterial adhesion characteristics were evaluated via dip-inoculation in suspensions of Gram-negative Escherichia coli O157:H7 and Gram-positive Staphylococcus aureus. The attachment of E. coli O157:H7 and S. aureus to hydrophobic nanoporous silica aerogel (HNSA) was found to be significantly lower than that to hydrophilic and hydrophobic nonporous silica materials: 99.91% (E. coli O157:H7) and 99.93% (S. aureus) reduction in comparison to hydrophilic nonporous silica, and 82.95% (E. coli O157:H7) and 84.90% (S. aureus) reduction in comparison to hydrophobic nonporous silica. These results suggest that the use of HNSA as surfaces that come into contact with bacterial pathogens in the healthcare environment can improve bacterial hygiene, and therefore may reduce the rate of HAIs.

  2. Nanoporous aerogel as a bacteria repelling hygienic material for healthcare environment

    International Nuclear Information System (INIS)

    Oh, Jun Kyun; Akbulut, Mustafa; Kohli, Nandita; Jayaraman, Arul; Zhang, Yuanzhong; Min, Younjin; Cisneros-Zevallos, Luis

    2016-01-01

    Healthcare-associated infections (HAIs) caused by pathogenic bacteria are a worldwide problem and responsible for numerous cases of morbidity and mortality. Exogenous cross-contamination is one of the main mechanisms contributing to such infections. This work investigates the potential of hydrophobically modified nanoporous silica aerogel as an antiadhesive hygienic material that can inhibit exogenous bacterial contamination. Nanoporous silica aerogels were synthesized via sol–gel polymerization of tetraethyl orthosilicate and hydrophobized using trimethylsilyl chloride. Bacterial adhesion characteristics were evaluated via dip-inoculation in suspensions of Gram-negative Escherichia coli O157:H7 and Gram-positive Staphylococcus aureus. The attachment of E. coli O157:H7 and S. aureus to hydrophobic nanoporous silica aerogel (HNSA) was found to be significantly lower than that to hydrophilic and hydrophobic nonporous silica materials: 99.91% (E. coli O157:H7) and 99.93% (S. aureus) reduction in comparison to hydrophilic nonporous silica, and 82.95% (E. coli O157:H7) and 84.90% (S. aureus) reduction in comparison to hydrophobic nonporous silica. These results suggest that the use of HNSA as surfaces that come into contact with bacterial pathogens in the healthcare environment can improve bacterial hygiene, and therefore may reduce the rate of HAIs. (paper)

  3. Plasmonic devices and sensors built from ordered nanoporous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Benjamin W.; Kobayashi, Yoji (University of California, Berkeley); Houk, Ronald J. T.; Allendorf, Mark D.; Long, Jeffrey R. (University of California, Berkeley); Robertson, Ian M. (University of Illinois Urbana-Champaign, Urbana, IL); House, Stephen D. (University of Illinois Urbana-Champaign, Urbana, IL); Graham, Dennis D. (University of Illinois Urbana-Champaign, Urbana, IL); Talin, Albert Alec (National Institute of Standards & Technology, Gaithersburg, MD); Chang, Noel N. (University of Illinois Urbana-Champaign, Urbana, IL); El Gabaly Marquez, Farid

    2009-09-01

    The objective of this project is to lay the foundation for using ordered nanoporous materials known as metal-organic frameworks (MOFs) to create devices and sensors whose properties are determined by the dimensions of the MOF lattice. Our hypothesis is that because of the very short (tens of angstroms) distances between pores within the unit cell of these materials, enhanced electro-optical properties will be obtained when the nanopores are infiltrated to create nanoclusters of metals and other materials. Synthetic methods used to produce metal nanoparticles in disordered templates or in solution typically lead to a distribution of particle sizes. In addition, creation of the smallest clusters, with sizes of a few to tens of atoms, remains very challenging. Nanoporous metal-organic frameworks (MOFs) are a promising solution to these problems, since their long-range crystalline order creates completely uniform pore sizes with potential for both steric and chemical stabilization. We report results of synthetic efforts. First, we describe a systematic investigation of silver nanocluster formation within MOFs using three representative MOF templates. The as-synthesized clusters are spectroscopically consistent with dimensions {le} 1 nm, with a significant fraction existing as Ag{sub 3} clusters, as shown by electron paramagnetic resonance. Importantly, we show conclusively that very rapid TEM-induced MOF degradation leads to agglomeration and stable, easily imaged particles, explaining prior reports of particles larger than MOF pores. These results solve an important riddle concerning MOF-based templates and suggest that heterostructures composed of highly uniform arrays of nanoparticles within MOFs are feasible. Second, a preliminary study of methods to incorporate fulleride (K{sub 3}C{sub 60}) guest molecules within MOF pores that will impart electrical conductivity is described.

  4. Theoretical analysis of selectivity mechanisms in molecular transport through channels and nanopores

    International Nuclear Information System (INIS)

    Agah, Shaghayegh; Pasquali, Matteo; Kolomeisky, Anatoly B.

    2015-01-01

    Selectivity is one of the most fundamental concepts in natural sciences, and it is also critically important in various technological, industrial, and medical applications. Although there are many experimental methods that allow to separate molecules, frequently they are expensive and not efficient. Recently, a new method of separation of chemical mixtures based on utilization of channels and nanopores has been proposed and successfully tested in several systems. However, mechanisms of selectivity in the molecular transport during the translocation are still not well understood. Here, we develop a simple theoretical approach to explain the origin of selectivity in molecular fluxes through channels. Our method utilizes discrete-state stochastic models that take into account all relevant chemical transitions and can be solved analytically. More specifically, we analyze channels with one and two binding sites employed for separating mixtures of two types of molecules. The effects of the symmetry and the strength of the molecular-pore interactions are examined. It is found that for one-site binding channels, the differences in the strength of interactions for two species drive the separation. At the same time, in more realistic two-site systems, the symmetry of interaction potential becomes also important. The most efficient separation is predicted when the specific binding site is located near the entrance to the nanopore. In addition, the selectivity is higher for large entrance rates into the channel. It is also found that the molecular transport is more selective for repulsive interactions than for attractive interactions. The physical-chemical origin of the observed phenomena is discussed

  5. Electrically tunable solid-state silicon nanopore ion filter

    Directory of Open Access Journals (Sweden)

    Gracheva Maria

    2006-01-01

    Full Text Available AbstractWe show that a nanopore in a silicon membrane connected to a voltage source can be used as an electrically tunable ion filter. By applying a voltage between the heavily doped semiconductor and the electrolyte, it is possible to invert the ion population inside the nanopore and vary the conductance for both cations and anions in order to achieve selective conduction of ions even in the presence of significant surface charges in the membrane. Our model based on the solution of the Poisson equation and linear transport theory indicates that in narrow nanopores substantial gain can be achieved by controlling electrically the width of the charge double layer.

  6. Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography

    International Nuclear Information System (INIS)

    Woldering, Leon A; Tjerkstra, R Willem; Vos, Willem L; Jansen, Henri V; Setija, Irwan D

    2008-01-01

    We report on the fabrication of periodic arrays of deep nanopores with high aspect ratios in crystalline silicon. The radii and pitches of the pores were defined in a chromium mask by means of deep UV scan and step technology. The pores were etched with a reactive ion etching process with SF 6 , optimized for the formation of deep nanopores. We have realized structures with pitches between 440 and 750 nm, pore diameters between 310 and 515 nm, and depth to diameter aspect ratios up to 16. To the best of our knowledge, this is the highest aspect ratio ever reported for arrays of nanopores in silicon made with a reactive ion etching process. Our experimental results show that the etching rate of the nanopores is aspect-ratio-dependent, and is mostly influenced by the angular distribution of the etching ions. Furthermore we show both experimentally and theoretically that, for sub-micrometer structures, reducing the sidewall erosion is the best way to maximize the aspect ratio of the pores. Our structures have potential applications in chemical sensors, in the control of liquid wetting of surfaces, and as capacitors in high-frequency electronics. We demonstrate by means of optical reflectivity that our high-quality structures are very well suited as photonic crystals. Since the process studied is compatible with existing CMOS semiconductor fabrication, it allows for the incorporation of the etched arrays in silicon chips

  7. Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality.

    Science.gov (United States)

    Fujita, Takeshi

    2017-01-01

    Nanoporous metals prepared via dealloying or selective leaching of solid solution alloys and compounds represent an emerging class of materials. They possess a three-dimensional (3D) structure of randomly interpenetrating ligaments/nanopores with sizes between 5 nm and several tens of micrometers, which can be tuned by varying their preparation conditions (such as dealloying time and temperature) or additional thermal coarsening. As compared to other nanostructured materials, nanoporous metals have many advantages, including their bicontinuous structure, tunable pore sizes, bulk form, good electrical conductivity, and high structural stability. Therefore, nanoporous metals represent ideal 3D materials with versatile functionality, which can be utilized in various fields. In this review, we describe the recent applications of nanoporous metals in molecular detection, catalysis, 3D graphene synthesis, hierarchical pore formation, and additive manufacturing (3D printing) together with our own achievements in these areas. Finally, we discuss possible ways of realizing the ultimate 3D functionality beyond the scope of nanoporous metals.

  8. In-Situ TEM Study of a Nanoporous Ni–Co Catalyst Used for the Dry Reforming of Methane

    Directory of Open Access Journals (Sweden)

    Takeshi Fujita

    2017-10-01

    Full Text Available We performed in-situ transmission electron microscopy (TEM on a dealloyed nanoporous NiCo catalyst used for the dry reforming of methane (DRM to investigate the origin of the catalytic activity and structural durability. The in-situ observations and local chemical analysis indicated that the DRM induced chemical demixing of Ni and Co accompanied by grain refinement, implying possible “synergic effects” in a general bimetallic NiCo catalyst when used for the DRM.

  9. Synthesis of self-detached nanoporous titanium-based metal oxide

    International Nuclear Information System (INIS)

    Hu, F.; Wen, Y.; Chan, K.C.; Yue, T.M.; Zhou, Y.Z.; Zhu, S.L.; Yang, X.J.

    2015-01-01

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO 3 . The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO 2 (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm 2 , a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC

  10. Synthesis of self-detached nanoporous titanium-based metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hu, F. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Wen, Y. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Chan, K.C., E-mail: mfkcchan@inet.polyu.edu.hk [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Yue, T.M. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Zhou, Y.Z. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Zhu, S.L.; Yang, X.J. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2015-09-15

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO{sub 3}. The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO{sub 2} (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm{sup 2}, a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC.

  11. Capacitance-Power-Hysteresis Trilemma in Nanoporous Supercapacitors

    OpenAIRE

    Lee, Alpha A; Vella, Dominic; Goriely, Alain; Kondrat, Svyatoslav

    2015-01-01

    Nanoporous supercapacitors are an important player in the field of energy storage that fill the gap between dielectric capacitors and batteries. The key challenge in the development of supercapacitors is the perceived trade-off between capacitance and power delivery. Current efforts to boost the capacitance of nanoporous supercapacitors focus on reducing the pore size so that they can only accommodate a single layer of ions. However, this tight packing compromises the charging dynamics and he...

  12. Antibacterial hemostatic dressings with nanoporous bioglass containing silver

    Directory of Open Access Journals (Sweden)

    Hu G

    2012-05-01

    Full Text Available Gangfeng Hu,1 Luwei Xiao,2 Peijian Tong,2 Dawei Bi,1 Hui Wang,1 Haitao Ma,1 Gang Zhu,1 Hui Liu21The First People’s Hospital of Xiaoshan, Hangzhou, China; 2Zhejiang Traditional Chinese Medical University, Hangzhou, ChinaAbstract: Nanoporous bioglass containing silver (n-BGS was fabricated using the sol-gel method, with cetyltrimethyl ammonium bromide as template. The results showed that n-BGS with nanoporous structure had a surface area of 467 m2/g and a pore size of around 6 nm, and exhibited a significantly higher water absorption rate compared with BGS without nanopores. The n-BGS containing small amounts of silver (Ag had a slight effect on its surface area. The n-BGS containing 0.02 wt% Ag, without cytotoxicity, had a good antibacterial effect on Escherichia coli, and its antibacterial rate reached 99% in 12 hours. The n-BGS’s clotting ability significantly decreased prothrombin time (PT and activated partial thromboplastin time (APTT, indicating n-BGS with a higher surface area could significantly promote blood clotting (by decreasing clotting time compared with BGS without nanopores. Effective hemostasis was achieved in skin injury models, and bleeding time was reduced. It is suggested that n-BGS could be a good dressing, with antibacterial and hemostatic properties, which might shorten wound bleeding time and control hemorrhage.Keywords: antibacterial, bioglass, cytotoxicity, dressing, hemostasis, nanopore, silver

  13. Effects of pore design on mechanical properties of nanoporous silicon

    International Nuclear Information System (INIS)

    Winter, Nicholas; Becton, Matthew; Zhang, Liuyang; Wang, Xianqiao

    2017-01-01

    Nanoporous silicon has been emerging as a powerful building block for next-generation sensors, catalysts, transistors, and tissue scaffolds. The capability to design novel devices with desired mechanical properties is paramount to their reliability and serviceability. In order to bring further resolution to the highly variable mechanical characteristics of nanoporous silicon, here we perform molecular dynamics simulations to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling laws versus the features of interior ligaments. Results show that pore shape and pattern dictate stress accumulation inside the designed structure, leading to the corresponding failure signature, such as stretching-dominated, bending-dominated, or stochastic failure signatures, in nanoporous silicon. The nanostructure of the material is also seen to drive or mute size effects such as “smaller is stronger” and “smaller is ductile”. This investigation provides useful insight into the behavior of nanoporous silicon and how one might leverage its promising applications. - Graphical abstract: Molecular dynamics simulations are performed to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling trends versus the features of interior ligaments.

  14. Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application.

    Science.gov (United States)

    Zhou, Xiaocao; Zhao, Haibo; Fu, Zhibing; Qu, Jing; Zhong, Minglong; Yang, Xi; Yi, Yong; Wang, Chaoyang

    2018-06-01

    Nanoporous metals with considerable specific surface areas and hierarchical pore structures exhibit promising applications in the field of hydrogen storage, electrocatalysis, and fuel cells. In this manuscript, a facile method is demonstrated for fabricating nanoporous Ni with a high surface area by using SiO₂ aerogel as a template, i.e., electroless plating of Ni into an SiO₂ aerogel template followed by removal of the template at moderate conditions. The effects of the prepared conditions, including the electroless plating time, temperature of the structure, and the magnetism of nanoporous Ni are investigated in detail. The resultant optimum nanoporous Ni with a special 3D flower-like structure exhibited a high specific surface area of about 120.5 m²/g. The special nanoporous Ni exhibited a promising prospect in the field of hydrogen storage, with a hydrogen capacity of 0.45 wt % on 4.5 MPa at room temperature.

  15. Understanding focused ion beam guided anodic alumina nanopore development

    International Nuclear Information System (INIS)

    Chen Bo; Lu, Kathy; Tian Zhipeng

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → We study the effect of FIB patterning on pore evolution during anodization. → FIB patterned concaves with 1.5 nm depth can effectively guide nanopore growth. → The edge effect of FIB guided patterns causes nanopores to bend. → Anodization window is enlarged to 50-80 V for 150 nm interpore distance hexagonal arrays. - Abstract: Focused ion beam (FIB) patterning in combination with anodization has shown great promise in creating unique pore patterns. This work is aimed to understand the effect of the FIB patterned sites in guiding anodized pore development. Highly ordered porous anodic alumina has been created with the guidance of FIB created patterns on electropolished aluminum followed by oxalic acid anodization. Shallow concaves created by the FIB with only 1.5 nm depth can effectively guide the growth of ordered nanopore patterns. With the guidance of the FIB pattern, the anodization rate is much faster and the nanopore growth direction bends at the boundary of the FIB patterned and un-patterned regions. FIB patterning also enlarges the anodization window; ordered nanopore arrays with 150 nm interpore distances can be produced under an applied potential from 50 V to 80 V. The fundamental understanding of these unique processes is discussed.

  16. High quality self-separated GaN crystal grown on a novel nanoporous template by HVPE.

    Science.gov (United States)

    Huo, Qin; Shao, Yongliang; Wu, Yongzhong; Zhang, Baoguo; Hu, Haixiao; Hao, Xiaopeng

    2018-02-16

    In this study, a novel nanoporous template was obtained by a two-step etching process from MOCVD-GaN/Al 2 O 3 (MGA) with electrochemical etching sequentially followed by chemical wet etching. The twice-etched MOCVD-GaN/Al 2 O 3 (TEMGA) templates were utilized to grow GaN crystals by hydride vapor phase epitaxy (HVPE) method. The GaN crystals were separated spontaneously from the TEMGA template with the assistance of voids formed by the etched nanopores. Several techniques were utilized to characterize the quality of the free-standing GaN crystals obtained from the TEMGA template. Results showed that the quality of the as-obtained GaN crystals was improved obviously compared with those grown on the MGA. This convenient technique can be applied to grow high-quality free-standing GaN crystals.

  17. DNA damage due to perfluorooctane sulfonate based on nano-gold embedded in nano-porous poly-pyrrole film

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Liping, E-mail: lipinglu@bjut.edu.cn; Xu, Laihui; Kang, Tianfang; Cheng, Shuiyuan

    2013-11-01

    DNA damage induced from perfluorooctane sulfonate (PFOS) was further developed on a nano-porous bionic interface. The interface was formed by assembling DNA on nano-gold particles which were embedded in a nano-porous overoxidized polypyrrole film (OPPy). Atomic force microscopy, scanning electron microscope and electrochemical investigations indicate that OPPy can be treated to form nano-pore structures. DNA damage due to PFOS was proved using electrochemistry and X-ray photoelectron spectroscopy (XPS) and was investigated by detecting differential pulse voltammetry (DPV) response of methylene blue (MB) which was used as electro-active indicator in the system. The current of MB attenuates obviously after incubation of DNA in PFOS. Moreover, electrochemical impedance spectroscopy (EIS) demonstrates that PFOS weakens DNA charge transport. The tentative binding ratio of PFOS: DNA base pair was obtained by analyzing XPS data of this system.

  18. Molecular-Level Simulations of Chemical Reaction Equilibrium and Diffusion in Slit and Cylindrical Nanopores: Model Dimerisation Reactions

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Předota, Milan; Brennan, J.K.

    2013-01-01

    Roč. 39, č. 13 (2013), s. 1103-1120 ISSN 0892-7022 R&D Projects: GA ČR GA13-09914S Grant - others:GA ČR(CZ) GA13-08651S Institutional support: RVO:67985858 Keywords : molecular dynamics * reaction ensemble Monte Carlo * slit and cylindrical nanopores Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.119, year: 2013

  19. On the stability of surface-confined nanoporous molecular networks

    Energy Technology Data Exchange (ETDEWEB)

    Ghijsens, Elke; Adisoejoso, Jinne, E-mail: Jinne.adisoejoso@chem.kuleuven.be, E-mail: tobe@chem.es.osaka-u.ac.jp, E-mail: Steven.DeFeyter@chem.kuleuven.be; Van Gorp, Hans; Destoop, Iris; Ivasenko, Oleksandr; Van der Auweraer, Mark; De Feyter, Steven, E-mail: Jinne.adisoejoso@chem.kuleuven.be, E-mail: tobe@chem.es.osaka-u.ac.jp, E-mail: Steven.DeFeyter@chem.kuleuven.be [Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven—University of Leuven, Celestijnenlaan 200 F, B-3001 Leuven (Belgium); Noguchi, Aya; Tahara, Kazukuni; Tobe, Yoshito, E-mail: Jinne.adisoejoso@chem.kuleuven.be, E-mail: tobe@chem.es.osaka-u.ac.jp, E-mail: Steven.DeFeyter@chem.kuleuven.be [Graduate School of Engineering Science, Division of Frontier Materials Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)

    2015-03-14

    Self-assembly of molecular building blocks into two-dimensional nanoporous networks has been a topic of broad interest for many years. However, various factors govern the specific outcome of the self-assembly process, and understanding and controlling these are key to successful creation. In this work, the self-assembly of two alkylated dehydrobenzo[12]annulene building blocks was compared at the liquid-solid interface. It turned out that only a small chemical modification within the building blocks resulted in enhanced domain sizes and stability of the porous packing relative to the dense linear packing. Applying a thermodynamic model for phase transition revealed some key aspects for network formation.

  20. Direct laser writing for nanoporous liquid core laser sensors

    DEFF Research Database (Denmark)

    Grossmann, Tobias; Christiansen, Mads Brøkner; Peterson, Jeffrey

    2012-01-01

    We report the fabrication of nanoporous liquid core lasers via direct laser writing based on two-photon absorption in combination with thiolene-chemistry. As gain medium Rhodamine 6G was embedded in the nanoporous polybutadiene matrix. The lasing devices with thresholds of 19 µJ/mm2 were measured...

  1. Gate modulation of proton transport in a nanopore.

    Science.gov (United States)

    Mei, Lanju; Yeh, Li-Hsien; Qian, Shizhi

    2016-03-14

    Proton transport in confined spaces plays a crucial role in many biological processes as well as in modern technological applications, such as fuel cells. To achieve active control of proton conductance, we investigate for the first time the gate modulation of proton transport in a pH-regulated nanopore by a multi-ion model. The model takes into account surface protonation/deprotonation reactions, surface curvature, electroosmotic flow, Stern layer, and electric double layer overlap. The proposed model is validated by good agreement with the existing experimental data on nanopore conductance with and without a gate voltage. The results show that the modulation of proton transport in a nanopore depends on the concentration of the background salt and solution pH. Without background salt, the gated nanopore exhibits an interesting ambipolar conductance behavior when pH is close to the isoelectric point of the dielectric pore material, and the net ionic and proton conductance can be actively regulated with a gate voltage as low as 1 V. The higher the background salt concentration, the lower is the performance of the gate control on the proton transport.

  2. Study of preparation and surface morphology of self-ordered nanoporous alumina

    International Nuclear Information System (INIS)

    Rodrigues, Elisa Marchezini; Martins, Maximiliano Delany; Silva, Ronald Arreguy

    2013-01-01

    Nanoporous alumina is a typical material that exhibits self-ordered nanochannels spontaneously organized in hexagonal shape. Produced by anodizing of metallic aluminum, it has been used as a template for production of materials at the nanoscale. This work aimed to study the preparation of nanoporous alumina by anodic anodizing of metallic aluminum substrates. The nanoporous alumina was prepared following the methodology proposed by Masuda and Fukuda (1995), a two-step method consisting of anodizing the aluminum sample in the potentiostatic mode, removing the layer of aluminum oxide (alumina) formed and then repeat the anodization process under the same conditions as the first anodization. This method produces nanoporous alumina with narrow pore diameter distribution and well-ordered structure. (author)

  3. Morphology dependent field emission characteristics of ZnS/silicon nanoporous pillar array

    Science.gov (United States)

    Wang, Ling Li; Zhao, Cheng Zhou; Kang, Li Ping; Liu, De Wei; Zhao, Hui Chun; Hao, Shan Peng; Zhang, Yuan Kai; Chen, Zhen Ping; Li, Xin Jian

    2016-10-01

    Through depositing zinc sulphide (ZnS) nanoparticals on silicon nanoporous pillar array (Si-NPA) and crater-shaped silicon nanoporous pillar array (c-Si-NPA) by chemical bath deposition (CBD) method, ZnS/Si-NPA and c-ZnS/Si-NPA were prepared and the field emission (FE) properties of them were investigated. The turn-on electric fields of were 3.8 V/mm for ZnS/Si-NPA and 5.0 V/mm for c-ZnS/Si-NPA, respectively. The lower turn-on electric fields of ZnS/Si-NPA than that of c-ZnS/Si-NPA were attributed to the different electric distribution of the field emitters causing by the different surface morphology of the two samples, which was further demonstrated via the simulated results by finite element modeling. The FN curves for the ZnS/Si-NPA showed two-slope behavior. All the results indicate that the morphology play an important role in the FE properties and designing an appropriate top morphology for the emitter is a very efficient way to improve the FE performance.

  4. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Zhengyuan [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Zachman, Michael J. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Choudhury, Snehashis [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Wei, Shuya [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Ma, Lin [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Yang, Yuan [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden CO 80401 USA; Kourkoutis, Lena F. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca NY 14853 USA; Archer, Lynden A. [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm-2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  5. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    KAUST Repository

    Tu, Zhengyuan

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm−2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  6. Structure of poly(di-n-hexylsilane) in nanoporous materials

    International Nuclear Information System (INIS)

    Korotkova, I.; Sakhno, T.; Drobit'ko, I.; Sakhno, Yu.; Ostapenko, N.

    2010-01-01

    Graphical abstract: On the basis of theoretical calculations using TD/CEP-31G method we found and interpreted the complexation mechanism of poly(di-n-hexylsilane) incorporated in nanoporous materials. - Abstract: In this work the effects of solvent polarity and conformation changing on the electronic characteristics of poly(di-n-hexylsilane) incorporated in the nanoporous materials are calculated. The dependence of energy levels of electronic-excited states of investigated compounds is analyzed as a function of the Si-Si-Si-Si twist angle and length of Si-Si and Si-C bonds. The possibility of complex formation between silicon atom of polymer and oxygen ions of nanoporous materials is shown.

  7. Self-ordered, controlled structure nanoporous membranes using constant current anodization.

    Science.gov (United States)

    Lee, Kwan; Tang, Yun; Ouyang, Min

    2008-12-01

    We report a constant current (CC) based anodization technique to fabricate and control structure of mechanically stable anodic aluminum oxide (AAO) membranes with a long-range ordered hexagonal nanopore pattern. For the first time we show that interpore distance (Dint) of a self-ordered nanopore feature can be continuously tuned over a broad range with CC anodization and is uniquely defined by the conductivity of sulfuric acid as electrolyte. We further demonstrate that this technique can offer new degrees of freedom for engineering planar nanopore structures by fine tailoring the CC based anodization process. Our results not only facilitate further understanding of self-ordering mechanism of alumina membranes but also provide a fast, simple (without requirement of prepatterning or preoxide layer), and flexible methodology for controlling complex nanoporous structures, thus offering promising practical applications in nanotechnology.

  8. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications

    Science.gov (United States)

    Pauline, S. Anne; Rajendran, N.

    2014-01-01

    Niobium oxide was synthesized by sol-gel methodology and a crystalline, nanoporous and adherent coating of Nb2O5 was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb2O5 coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb2O5 coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb2O5 coating conferred bioactivity and enhanced corrosion resistance on 316L SS.

  9. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pauline, S. Anne; Rajendran, N., E-mail: nrajendran@annauniv.edu

    2014-01-30

    Niobium oxide was synthesized by sol–gel methodology and a crystalline, nanoporous and adherent coating of Nb{sub 2}O{sub 5} was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb{sub 2}O{sub 5} coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb{sub 2}O{sub 5} coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb{sub 2}O{sub 5} coating conferred bioactivity and enhanced corrosion resistance on 316L SS.

  10. Gradient and alternating diameter nanopore templates by focused ion beam guided anodization

    International Nuclear Information System (INIS)

    Chen Bo; Lu, Kathy; Tian Zhipeng

    2010-01-01

    Ordered arrays of anodic alumina nanopores with uniform pore diameters have been fabricated by self-organized anodization of aluminum. However, gradient or alternating diameter nanopore arrays with designed interpore distances have not been possible. In this study, focused ion beam lithography is used to fabricate hexagonally arranged concaves with different diameters in designed arrangements on aluminum surfaces. The patterns are then used to guide the further growth of alumina nanopores in the subsequent oxalic acid anodization. Gradient and alternating nanopore arrangements have been attained by FIB patterning guided oxalic acid anodization. The fundamental understanding of the process is discussed.

  11. Synthesis and characterization of pure strontium apatite particles and nanoporous scaffold prepared by dextrose-templated method

    Science.gov (United States)

    Ma, Xiaoyu; Liu, Yongjia; Zhu, Bangshang

    2018-02-01

    Strontium shows an increasing interest on bone formation and bone resorption prevention. Here, pure apatite strontium (Ap-SrOH) [Sr5(PO4)3(OH), strontium hydroxyapatite] particles were prepared by the precipitation method using Sr(NO3)2 · 6H2O and (NH4)2HPO4 as reagents. Scanning electron microscope, transmission electron microscope combined with electron diffraction, X-ray diffraction, Fourier transform infrared spectra (FTIR), variable temperature FTIR and thermo gravimetric analysis were employed to evaluate the crystalline structure, chemical composition, and thermal stability of the Ap-SrOH particles. The results show that phase pure Ap-SrOH particles were prepared by wet precipitation. The obtained Ap-SrOH particles are single crystal in phase structure, they have hexagonal fusiform shape, and their size is about 30-180 nm in diameter, and 0.4-2.5 μm in length. The cell MTT assay evaluations indicate that Ap-SrOH particles have very low cytotoxicity. Furthermore, nanoporous Ap-SrOH scaffolds were synthesized by anhydrous dextrose template method. After mixed 5-10 wt% of anhydrous dextrose with Ap-SrOH particles, pressed into discs, and sintered in microwave muffle furnace at 600 °C, the scaffolds with both nanoporous and nanotopography were formed. Cell culture of MC3T3-E1 osteoblasts in vitro show cells grow well on nanoporous Ap-SrOH scaffold. Therefore, Ap-SrOH particles and their nanoporous scaffolds are promising biomaterials for bone repairing and bone disease (e.g. osteoporosis) healing.

  12. Fabrication and Optimization of a Nanoporous Platinum Electrode and a Non-enzymatic Glucose Micro-sensor on Silicon

    Directory of Open Access Journals (Sweden)

    Younghun Kim

    2008-10-01

    Full Text Available In this paper, optimal conditions for fabrication of nanoporous platinum (Pt were investigated in order to use it as a sensitive sensing electrode for silicon CMOS integrable non-enzymatic glucose micro-sensor applications. Applied charges, voltages, and temperatures were varied during the electroplating of Pt into the formed nonionic surfactant C16EO8 nano-scaled molds in order to fabricate nanoporous Pt electrodes with large surface roughness factor (RF, uniformity, and reproducibility. The fabricated nanoporous Pt electrodes were characterized using atomic force microscopy (AFM and electrochemical cyclic voltammograms. Optimal electroplating conditions were determined to be an applied charge of 35 mC/mm2, a voltage of -0.12 V, and a temperature of 25 °C, respectively. The optimized nanoporous Pt electrode had an electrochemical RF of 375 and excellent reproducibility. The optimized nanoporous Pt electrode was applied to fabricate non-enzymatic glucose micro-sensor with three electrode systems. The fabricated sensor had a size of 3 mm x 3 mm, air gap of 10 µm, working electrode (WE area of 4.4 mm2, and sensitivity of 37.5 µA•L/mmol•cm2. In addition, it showed large detection range from 0.05 to 30 mmolL-1 and stable recovery responsive to the step changes in glucose concentration.

  13. Resolved single-molecule detection of individual species within a mixture of anti-biotin antibodies using an engineered monomeric nanopore.

    Science.gov (United States)

    Fahie, Monifa; Chisholm, Christina; Chen, Min

    2015-02-24

    Oligomeric protein nanopores with rigid structures have been engineered for the purpose of sensing a wide range of analytes including small molecules and biological species such as proteins and DNA. We chose a monomeric β-barrel porin, OmpG, as the platform from which to derive the nanopore sensor. OmpG is decorated with seven flexible loops that move dynamically to create a distinct gating pattern when ionic current passes through the pore. Biotin was chemically tethered to the most flexible one of these loops. The gating characteristic of the loop's movement in and out of the porin was substantially altered by analyte protein binding. The gating characteristics of the pore with bound targets were remarkably sensitive to molecular identity, even providing the ability to distinguish between homologues within an antibody mixture. A total of five gating parameters were analyzed for each analyte to create a unique fingerprint for each biotin-binding protein. Our exploitation of gating noise as a molecular identifier may allow more sophisticated sensor design, while OmpG's monomeric structure greatly simplifies nanopore production.

  14. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes

    Science.gov (United States)

    Verschueren, Daniel V.; Yang, Wayne; Dekker, Cees

    2018-04-01

    We report a simple and scalable technique for the fabrication of nanopore arrays on freestanding SiN and graphene membranes based on electron-beam lithography and reactive ion etching. By controlling the dose of the single-shot electron-beam exposure, circular nanopores of any size down to 16 nm in diameter can be fabricated in both materials at high accuracy and precision. We demonstrate the sensing capabilities of these nanopores by translocating dsDNA through pores fabricated using this method, and find signal-to-noise characteristics on par with transmission-electron-microscope-drilled nanopores. This versatile lithography-based approach allows for the high-throughput manufacturing of nanopores and can in principle be used on any substrate, in particular membranes made out of transferable two-dimensional materials.

  15. Nanoporous carbon tunable resistor/transistor and methods of production thereof

    Science.gov (United States)

    Biener, Juergen; Baumann, Theodore F; Dasgupta, Subho; Hahn, Horst

    2014-04-22

    In one embodiment, a tunable resistor/transistor includes a porous material that is electrically coupled between a source electrode and a drain electrode, wherein the porous material acts as an active channel, an electrolyte solution saturating the active channel, the electrolyte solution being adapted for altering an electrical resistance of the active channel based on an applied electrochemical potential, wherein the active channel comprises nanoporous carbon arranged in a three-dimensional structure. In another embodiment, a method for forming the tunable resistor/transistor includes forming a source electrode, forming a drain electrode, and forming a monolithic nanoporous carbon material that acts as an active channel and selectively couples the source electrode to the drain electrode electrically. In any embodiment, the electrolyte solution saturating the nanoporous carbon active channel is adapted for altering an electrical resistance of the nanoporous carbon active channel based on an applied electrochemical potential.

  16. Water desalination with a single-layer MoS2 nanopore

    Science.gov (United States)

    Heiranian, Mohammad; Farimani, Amir Barati; Aluru, Narayana R.

    2015-10-01

    Efficient desalination of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60 Å2. Water flux is found to be two to five orders of magnitude greater than that of other known nanoporous membranes. Pore chemistry is shown to play a significant role in modulating the water flux. Pores with only molybdenum atoms on their edges lead to higher fluxes, which are ~70% greater than that of graphene nanopores. These observations are explained by permeation coefficients, energy barriers, water density and velocity distributions in the pores.

  17. Recent progress in molecular simulation of nanoporous graphene membranes for gas separation

    Science.gov (United States)

    Fatemi, S. Mahmood; Baniasadi, Aminreza; Moradi, Mahrokh

    2017-07-01

    If an ideal membrane for gas separation is to be obtained, the following three characteristics should be considered: the membrane should be as thin as possible, be mechanically robust, and have welldefined pore sizes. These features will maximize its solvent flux, preserve it from fracture, and guarantee its selectivity. Graphene is made up of a hexagonal honeycomb lattice of carbon atoms with sp 2 hybridization state forming a one-atom-thick sheet of graphite. Following conversion of the honeycomb lattices into nanopores with a specific geometry and size, a nanoporous graphene membrane that offers high efficiency as a separation membrane because of the ultrafast molecular permeation rate as a result of its one-atom thickness is obtained. Applications of nanoporous graphene membranes for gas separation have been receiving remarkably increasing attention because nanoporous graphene membranes show promising results in this area. This review focuses on the recent advances in nanoporous graphene membranes for applications in gas separation, with a major emphasis on theoretical works. The attractive properties of nanoporous graphene membranes introduce make them appropriate candidates for gas separation and gas molecular-sieving processes in nanoscale dimensions.

  18. Solid-state nanopores for scanning single molecules and mimicking biology

    NARCIS (Netherlands)

    Kowalczyk, S.W.

    2011-01-01

    Solid-state nanopores, nanometer-size holes in a thin synthetic membrane, are a versatile tool for the detection and manipulation of charged biomolecules. This thesis describes mostly experimental work on DNA translocation through solid-state nanopores, which we study at the single-molecule level.

  19. Ion transport in sub-5-nm graphene nanopores

    International Nuclear Information System (INIS)

    Suk, Myung E.; Aluru, N. R.

    2014-01-01

    Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors

  20. Stochastic nanopore sensors for the detection of terrorist agents: Current status and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Liu Aihua; Zhao Qitao [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065 (United States); Guan Xiyun, E-mail: xguan@uta.edu [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065 (United States)

    2010-08-24

    Nanopore stochastic sensor works by monitoring the ionic current modulations induced by the passage of analytes of interest through a single pore, which can be obtained from a biological ion channel by self-assembly or artificially fabricated in a solid-state membrane. In this minireview, we overview the use of biological nanopores and artificial nanopores for the detection of terrorist agents including explosives, organophosphorus nerve agents, nitrogen mustards, organoarsenic compounds, toxins, and viruses. We also discuss the current challenge in the development of deployable nanopore sensors for real-world applications.

  1. Detection of DNA hybridizations using solid-state nanopores

    International Nuclear Information System (INIS)

    Balagurusamy, Venkat S K; Weinger, Paul; Sean Ling, Xinsheng

    2010-01-01

    We report an experimental study of using DNA translocation through solid-state nanopores to detect the sequential arrangement of two double-stranded 12-mer hybridization segments on a single-stranded DNA molecule. The sample DNA is a trimer molecule formed by hybridizing three single-stranded oligonucleotides. A polystyrene bead is attached to the end of the trimer DNA, providing a mechanism in slowing down the translocation and suppressing the thermal diffusion, thereby allowing the detection of short features of DNA by standard patch-clamp electronics. The electrical signature of the translocation of a trimer molecule through a nanopore has been identified successfully in the temporal traces of ionic current. The results reported here represent the first successful attempt in using a solid-state nanopore as an ionic scanning device in resolving individual hybridization segments (or 'probes') on a DNA molecule.

  2. Detection of DNA hybridizations using solid-state nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Balagurusamy, Venkat S K; Weinger, Paul; Sean Ling, Xinsheng, E-mail: Xinsheng_Ling@brown.edu [Department of Physics, Brown University, Providence, RI 02912 (United States)

    2010-08-20

    We report an experimental study of using DNA translocation through solid-state nanopores to detect the sequential arrangement of two double-stranded 12-mer hybridization segments on a single-stranded DNA molecule. The sample DNA is a trimer molecule formed by hybridizing three single-stranded oligonucleotides. A polystyrene bead is attached to the end of the trimer DNA, providing a mechanism in slowing down the translocation and suppressing the thermal diffusion, thereby allowing the detection of short features of DNA by standard patch-clamp electronics. The electrical signature of the translocation of a trimer molecule through a nanopore has been identified successfully in the temporal traces of ionic current. The results reported here represent the first successful attempt in using a solid-state nanopore as an ionic scanning device in resolving individual hybridization segments (or 'probes') on a DNA molecule.

  3. Electrochemically etched nanoporous silicon membrane for separation of biological molecules in mixture

    Science.gov (United States)

    Burham, Norhafizah; Azlan Hamzah, Azrul; Yunas, Jumril; Yeop Majlis, Burhanuddin

    2017-07-01

    This paper presents a technique for separating biological molecules in mixture using nanoporous silicon membrane. Nanopores were formed using electrochemical etching process (ECE) by etching a prefabricated silicon membrane in hydrofluoric acid (HF) and ethanol, and then directly bonding it with PDMS to form a complete filtration system for separating biological molecules. Tygon S3™ tubings were used as fluid interconnection between PDMS molds and silicon membrane during testing. Electrochemical etching parameters were manipulated to control pore structure and size. In this work, nanopores with sizes of less than 50 nm, embedded on top of columnar structures have been fabricated using high current densities and variable HF concentrations. Zinc oxide was diluted with deionized (DI) water and mixed with biological molecules and non-biological particles, namely protein standard, serum albumin and sodium chloride. Zinc oxide particles were trapped on the nanoporous silicon surface, while biological molecules of sizes up to 12 nm penetrated the nanoporous silicon membrane. The filtered particles were inspected using a Zetasizer Nano SP for particle size measurement and count. The Zetasizer Nano SP results revealed that more than 95% of the biological molecules in the mixture were filtered out by the nanoporous silicon membrane. The nanoporous silicon membrane fabricated in this work is integratable into bio-MEMS and Lab-on-Chip components to separate two or more types of biomolecules at once. The membrane is especially useful for the development of artificial kidney.

  4. Protein sequencing via nanopore based devices: a nanofluidics perspective

    Science.gov (United States)

    Chinappi, Mauro; Cecconi, Fabio

    2018-05-01

    Proteins perform a huge number of central functions in living organisms, thus all the new techniques allowing their precise, fast and accurate characterization at single-molecule level certainly represent a burst in proteomics with important biomedical impact. In this review, we describe the recent progresses in the developing of nanopore based devices for protein sequencing. We start with a critical analysis of the main technical requirements for nanopore protein sequencing, summarizing some ideas and methodologies that have recently appeared in the literature. In the last sections, we focus on the physical modelling of the transport phenomena occurring in nanopore based devices. The multiscale nature of the problem is discussed and, in this respect, some of the main possible computational approaches are illustrated.

  5. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  6. Nanochannel Device with Embedded Nanopore: a New Approach for Single-Molecule DNA Analysis and Manipulation

    Science.gov (United States)

    Zhang, Yuning; Reisner, Walter

    2013-03-01

    Nanopore and nanochannel based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with embedded pore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a pore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can optically detect successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. In particular, we show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore, suggesting that the pore could be used as a nanoscale window through which to interrogate a nanochannel extended DNA molecule. Furthermore, electrical measurements through the nanopore are performed, indicating that DNA sensing is feasible using the nanochannel-nanopore device.

  7. Buckling Causes Nonlinear Dynamics of Filamentous Viruses Driven through Nanopores.

    Science.gov (United States)

    McMullen, Angus; de Haan, Hendrick W; Tang, Jay X; Stein, Derek

    2018-02-16

    Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled virus stalls and this reduces the total viscous drag force. We present a scaling theory that connects the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.

  8. Nanoporous Activated Carbon Derived from Rice Husk for High Performance Supercapacitor

    Directory of Open Access Journals (Sweden)

    Huaxing Xu

    2014-01-01

    Full Text Available Nanoporous activated carbon material was produced from the waste rice husks (RHs by precarbonizing RHs and activating with KOH. The morphology, structure, and specific surface area were investigated. The nanoporous carbon has the average pore size of 2.2 nm and high specific area of 2523.4 m2 g−1. The specific capacitance of the nanoporous carbon is calculated to be 250 F g−1 at the current density of 1 A g−1 and remains 80% for 198 F g−1 at the current density of 20 A g−1. The nanoporous carbon electrode exhibits long-term cycle life and could keep stable capacitance till 10,000 cycles. The consistently high specific capacitance, rate capacity, and long-term cycle life ability makes it a potential candidate as electrode material for supercapacitor.

  9. A patch-clamp ASIC for nanopore-based DNA analysis.

    Science.gov (United States)

    Kim, Jungsuk; Maitra, Raj; Pedrotti, Kenneth D; Dunbar, William B

    2013-06-01

    In this paper, a fully integrated high-sensitivity patch-clamp system is proposed for single-molecule deoxyribonucleic acid (DNA) analysis using a nanopore sensor. This system is composed of two main blocks for amplification and compensation. The amplification block is composed of three stages: 1) a headstage, 2) a voltage-gain difference amplifier, and 3) a track-and-hold circuit, that amplify a minute ionic current variation sensed by the nanopore while the compensation block avoids the headstage saturation caused by the input parasitic capacitances during sensing. By employing design techniques novel for this application, such as an instrumentation--amplifier topology and a compensation switch, we minimize the deleterious effects of the input-offset voltage and the input parasitic capacitances while attaining hardware simplicity. This system is fabricated in a 0.35 μm 4M2P CMOS process and is demonstrated using an α-hemolysin protein nanopore for detection of individual molecules of single-stranded DNA that pass through the 1.5 nm-diameter pore. In future work, the refined system will functionalize single and multiple solid-state nanopores formed in integrated microfluidic devices for advanced DNA analysis, in scientific and diagnostic applications.

  10. Alumina plate containing photosystem I reaction center complex oriented inside plate-penetrating silica nanopores.

    Science.gov (United States)

    Kamidaki, Chihiro; Kondo, Toru; Noji, Tomoyasu; Itoh, Tetsuji; Yamaguchi, Akira; Itoh, Shigeru

    2013-08-22

    The photosynthetic photosystem I reaction center complex (PSI-RC), which has a molecular diameter of 21 nm with 100 pigments, was incorporated into silica nanopores with a 100-nm diameter that penetrates an alumina plate of 60-μm thickness to make up an inorganic-biological hybrid photocell. PSI-RCs, purified from a thermophilic cyanobacterium, were stable inside the nanopores and rapidly photoreduced a mediator dye methyl viologen. The reduced dye was more stable inside nanopores suggesting the decrease of dissolved oxygen. The analysis by a cryogenic electron spin paramagnetic resonance indicated the oriented arrangement of RCs inside the 100-nm nanopores, with their surface parallel to the silica wall and perpendicular to the plane of the alumina plate. PSI RC complex in the semicrystalline orientation inside silica nanopores can be a new type of light energy conversion unit to supply strong reducing power selectively to other molecules inside or outside nanopores.

  11. Controlled release of astaxanthin from nanoporous silicified-phospholipids assembled boron nitride complex for cosmetic applications

    Science.gov (United States)

    Lee, Hye Sun; Sung, Dae Kyung; Kim, Sung Hyun; Choi, Won Il; Hwang, Ee Tag; Choi, Doo Jin; Chang, Jeong Ho

    2017-12-01

    Nanoporous silicified-phospholipids assembled boron nitride (nSPLs@BN) powder was prepared and demonstrated for use in controlled release of anti-oxidant astaxanthin (AX) as a cosmetic application. The nanoporous silicified phospholipids (nSPLs) were obtained by the silicification with tetraethyl orthosilicate (TEOS) of the hydrophilic region of phospholipid bilayers. This process involved the co-assembly of chemically active phospholipid bilayers within the porous silica matrix. In addition, nSPLs@BN was characterized using several analytical techniques and tested to assess their efficiency as drug delivery systems. We calculated the maximum release amounts as a function of time and various pH. The release rate of AX from the nSPLs@BN for the initial 24 h was 10.7 μmol/(h mg) at pH 7.4. Furthermore, we determined the antioxidant activity (KD) for the released AX with DPPH (1,1-diphenyl-2-picryl-hydrazyl) radical and the result was 34.6%.

  12. Colorimetric sensor array for determination and identification of toxic industrial chemicals.

    Science.gov (United States)

    Feng, Liang; Musto, Christopher J; Kemling, Jonathan W; Lim, Sung H; Zhong, Wenxuan; Suslick, Kenneth S

    2010-11-15

    A low-cost yet highly sensitive colorimetric sensor array for the detection and identification of toxic industrial chemicals (TICs) has been developed. The sensor consists of a disposable array of cross-responsive nanoporous pigments whose colors are changed by diverse chemical interactions with analytes. Clear differentiation among 20 different TICs has been easily achieved at both their IDLH (immediately dangerous to life or health) concentration within 2 min of exposure and PEL (permissible exposure limit) concentration within 5 min of exposure with no errors or misclassifications. Detection limits are generally well below the PEL (in most cases below 5% of PEL) and are typically in the low ppb range. The colorimetric sensor array is not responsive to changes in humidity or temperature over a substantial range. The printed arrays show excellent batch to batch reproducibility and long shelf life (greater than 3 months).

  13. Gas adsorption and capillary condensation in nanoporous alumina films

    Energy Technology Data Exchange (ETDEWEB)

    Casanova, Felix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Schuller, Ivan K [Physics Department, University of California-San Diego, La Jolla, CA 92093 (United States); Ruminski, Anne M; Sailor, Michael J [Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093 (United States)], E-mail: casanova@physics.ucsd.edu

    2008-08-06

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.

  14. Gas adsorption and capillary condensation in nanoporous alumina films

    International Nuclear Information System (INIS)

    Casanova, Felix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Schuller, Ivan K; Ruminski, Anne M; Sailor, Michael J

    2008-01-01

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation

  15. Gas adsorption and capillary condensation in nanoporous alumina films.

    Science.gov (United States)

    Casanova, Fèlix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Ruminski, Anne M; Sailor, Michael J; Schuller, Ivan K

    2008-08-06

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.

  16. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Guinovart, Tomàs [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Crespo, Gastón A. [Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva (Switzerland); Rius, F. Xavier [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Andrade, Francisco J., E-mail: franciscojavier.andrade@urv.cat [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain)

    2014-04-01

    Highlights: • A disposable solid-contact reference electrode for potentiometry is presented. • The device shows unsensitivity to most ions, redox potential and light. • Low-cost and good stability, ideal to build disposable potentiometric sensors. • Nanopores formed in the membrane control the flux of ions with the solution. Abstract: A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec⁻¹ over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90 ± 33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided.

  17. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements

    International Nuclear Information System (INIS)

    Guinovart, Tomàs; Crespo, Gastón A.; Rius, F. Xavier; Andrade, Francisco J.

    2014-01-01

    Highlights: • A disposable solid-contact reference electrode for potentiometry is presented. • The device shows unsensitivity to most ions, redox potential and light. • Low-cost and good stability, ideal to build disposable potentiometric sensors. • Nanopores formed in the membrane control the flux of ions with the solution. - Abstract: A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec −1 ) over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90 ± 33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided

  18. Nanotopography effects on astrocyte attachment to nanoporous gold surfaces.

    Science.gov (United States)

    Kurtulus, Ozge; Seker, Erkin

    2012-01-01

    Nanoporous gold, synthesized by a self-assembly process, is a new biomaterial with desirable attributes, including tunable nanotopography, drug delivery potential, electrical conductivity, and compatibility with conventional microfabrication techniques. This study reports on the effect of nanotopography in guiding cellular attachment on nanoporous gold surfaces. While the changes in topography do not affect adherent cell density, average cell area displays a non-monotonic dependence on nanotopography.

  19. Probe DNA-Cisplatin Interaction with Solid-State Nanopores

    Science.gov (United States)

    Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration

    2014-03-01

    Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.

  20. Basic evaluation of typical nanoporous silica nanoparticles in being drug carrier: Structure, wettability and hemolysis.

    Science.gov (United States)

    Li, Jing; Guo, Yingyu

    2017-04-01

    Herein, the present work devoted to study the basic capacity of nanoporous silica nanoparticles in being drug carrier that covered structure, wettability and hemolysis so as to provide crucial evaluation. Typical nanoporous silica nanoparticles that consist of nanoporous silica nanoparticles (NSN), amino modified nanoporous silica nanoparticles (amino-NSN), carboxyl modified nanoporous silica nanoparticles (carboxyl-NSN) and hierachical nanoporous silica nanoparticles (hierachical-NSN) were studied. The results showed that their wettability and hemolysis were closely related to structure and surface modification. Basically, wettability became stronger as the amount of OH on the surface of NSN was higher. Both large nanopores and surface modification can reduce the wettability of NSN. Furthermore, NSN series were safe to be used when they circulated into the blood in low concentration, while if high concentration can not be avoided during administration, high porosity or amino modification of NSN were safer to be considered. It is believed that the basic evaluation of NSN can make contribution in providing scientific instruction for designing drug loaded NSN systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes.

    Science.gov (United States)

    Yanagi, Itaru; Akahori, Rena; Aoki, Mayu; Harada, Kunio; Takeda, Ken-Ichi

    2016-08-16

    Integration of solid-state nanopores and multichannel detection of signals from each nanopore are effective measures for realizing high-throughput nanopore sensors. In the present study, we demonstrated fabrication of Si3N4 membrane arrays and the simultaneous measurement of ionic currents through two nanopores formed in two adjacent membranes. Membranes with thicknesses as low as 6.4 nm and small nanopores with diameters of less than 2 nm could be fabricated using the poly-Si sacrificial-layer process and multilevel pulse-voltage injection. Using the fabricated nanopore membranes, we successfully achieved simultaneous detection of clear ionic-current blockades when single-stranded short homopolymers (poly(dA)60) passed through two nanopores. In addition, we investigated the signal crosstalk and leakage current among separated chambers. When two nanopores were isolated on the front surface of the membrane, there was no signal crosstalk or leakage current between the chambers. However, when two nanopores were isolated on the backside of the Si substrate, signal crosstalk and leakage current were observed owing to high-capacitance coupling between the chambers and electrolysis of water on the surface of the Si substrate. The signal crosstalk and leakage current could be suppressed by oxidizing the exposed Si surface in the membrane chip. Finally, the observed ionic-current blockade when poly(dA)60 passed through the nanopore in the oxidized chip was approximately half of that observed in the non-oxidized chip.

  2. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth.

    Science.gov (United States)

    Wang, Haoran; Wang, Xueju; Xia, Shuman; Chew, Huck Beng

    2015-09-14

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of LixSi electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si-Si bonds, while subsequent failure is still brittle-like with the breaking of Si-Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li-Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the LixSi alloys leads to significant strain recovery.

  3. BIOLOGICAL NANOPORES FOR BIOPOLYMER SENSING AND SEQUENCING BASED ON FRAC ACTINOPORIN

    NARCIS (Netherlands)

    Maglia, Giovanni; Wloka, Carsten; Mutter, Natalie Lisa; Soskine, Misha; Huang, Gang

    2018-01-01

    The invention relates generally to the field of nanopores and the use thereof in various applications, such as analysis of biopolymer s and macromolecules, typically by making electrical measurements during translocation through a nanopores. Provided is a system comprising a funnel- shaped

  4. Nanoporous biomaterials for uremic toxin adsorption in artificial kidney systems: A review.

    Science.gov (United States)

    Cheah, Wee-Keat; Ishikawa, Kunio; Othman, Radzali; Yeoh, Fei-Yee

    2017-07-01

    Hemodialysis, one of the earliest artificial kidney systems, removes uremic toxins via diffusion through a semipermeable porous membrane into the dialysate fluid. Miniaturization of the present hemodialysis system into a portable and wearable device to maintain continuous removal of uremic toxins would require that the amount of dialysate used within a closed-system is greatly reduced. Diffused uremic toxins within a closed-system dialysate need to be removed to maintain the optimum concentration gradient for continuous uremic toxin removal by the dialyzer. In this dialysate regenerative system, adsorption of uremic toxins by nanoporous biomaterials is essential. Throughout the years of artificial kidney development, activated carbon has been identified as a potential adsorbent for uremic toxins. Adsorption of uremic toxins necessitates nanoporous biomaterials, especially activated carbon. Nanoporous biomaterials are also utilized in hemoperfusion for uremic toxin removal. Further miniaturization of artificial kidney system and improvements on uremic toxin adsorption capacity would require high performance nanoporous biomaterials which possess not only higher surface area, controlled pore size, but also designed architecture or structure and surface functional groups. This article reviews on various nanoporous biomaterials used in current artificial kidney systems and several emerging nanoporous biomaterials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1232-1240, 2017. © 2016 Wiley Periodicals, Inc.

  5. Computational and experimental study of nanoporous membranes for water desalination and decontamination.

    Energy Technology Data Exchange (ETDEWEB)

    Hickner, Michael A. (Penn State University, University Park, PA); Chinn, Douglas Alan (Sandia National Laboratories, Albuquerque, NM); Adalsteinsson, Helgi; Long, Kevin R. (Texas Tech University, Lubbock, TX); Kent, Michael Stuart (Sandia National Laboratories, Albuquerque, NM); Debusschere, Bert J.; Zendejas, Frank J.; Tran, Huu M.; Najm, Habib N.; Simmons, Blake Alexander

    2008-11-01

    Fundamentals of ion transport in nanopores were studied through a joint experimental and computational effort. The study evaluated both nanoporous polymer membranes and track-etched nanoporous polycarbonate membranes. The track-etched membranes provide a geometrically well characterized platform, while the polymer membranes are more closely related to ion exchange systems currently deployed in RO and ED applications. The experimental effort explored transport properties of the different membrane materials. Poly(aniline) membranes showed that flux could be controlled by templating with molecules of defined size. Track-etched polycarbonate membranes were modified using oxygen plasma treatments, UV-ozone exposure, and UV-ozone with thermal grafting, providing an avenue to functionalized membranes, increased wettability, and improved surface characteristic lifetimes. The modeling effort resulted in a novel multiphysics multiscale simulation model for field-driven transport in nanopores. This model was applied to a parametric study of the effects of pore charge and field strength on ion transport and charge exclusion in a nanopore representative of a track-etched polycarbonate membrane. The goal of this research was to uncover the factors that control the flux of ions through a nanoporous material and to develop tools and capabilities for further studies. Continuation studies will build toward more specific applications, such as polymers with attached sulfonate groups, and complex modeling methods and geometries.

  6. A nanoporous alumina microelectrode array for functional cell–chip coupling

    International Nuclear Information System (INIS)

    Wesche, Manuel; Hüske, Martin; Yakushenko, Alexey; Brüggemann, Dorothea; Mayer, Dirk; Offenhäusser, Andreas; Wolfrum, Bernhard

    2012-01-01

    The design of electrode interfaces has a strong impact on cell-based bioelectronic applications. We present a new type of microelectrode array chip featuring a nanoporous alumina interface. The chip is fabricated in a combination of top-down and bottom-up processes using state-of-the-art clean room technology and self-assembled generation of nanopores by aluminum anodization. The electrode characteristics are investigated in phosphate buffered saline as well as under cell culture conditions. We show that the modified microelectrodes exhibit decreased impedance compared to planar microelectrodes, which is caused by a nanostructuring effect of the underlying gold during anodization. The stability and biocompatibility of the device are demonstrated by measuring action potentials from cardiomyocyte-like cells growing on top of the chip. Cross sections of the cell–surface interface reveal that the cell membrane seals the nanoporous alumina layer without bending into the sub-50 nm apertures. The nanoporous microelectrode array device may be used as a platform for combining extracellular recording of cell activity with stimulating topographical cues. (paper)

  7. Nanoporous ionic organic networks: from synthesis to materials applications

    OpenAIRE

    Sun, Jian-Ke; Antonietti, Markus; Yuan, Jiayin

    2016-01-01

    The past decade has witnessed rapid progress in the synthesis of nanoporous organic networks or polymer frameworks for various potential applications. Generally speaking, functionalization of porous networks to add extra properties and enhance materials performance could be achieved either during the pore formation (thus a concurrent approach) or by post-synthetic modification (a sequential approach). Nanoporous organic networks which include ion pairs bound in a covalent manner are of specia...

  8. Microscopic properties of nanopore water from its time-dependent dielectric response

    International Nuclear Information System (INIS)

    Koefinger, Juergen; Dellago, Christoph

    2010-01-01

    We present a simple kinetic model for the orientational dynamics of a chain of hydrogen-bonded molecules due to the diffusion of orientational defects. We derive an event-driven algorithm which allows us to do kinetic simulations for chains from nanoscopic to macroscopic lengths, spanning huge orders of magnitude in time. Our simulations and analytical calculations show that nanopore water exhibits Debye behavior arising from the diffusive dynamics of orientational defects. For the limits of short and long chains we derive analytical expressions for the relaxation times which allow to extract the diffusion constant, the effective interaction, and the excitation energy of these defects from dielectric spectroscopy experiments. We also discuss the possibility to use such experiments to detect if the two possible kinds of orientational defects differ in excitation energy and diffusion constant.

  9. A novel input-parasitic compensation technique for a nanopore-based CMOS DNA detection sensor

    Science.gov (United States)

    Kim, Jungsuk

    2016-12-01

    This paper presents a novel input-parasitic compensation (IPC) technique for a nanopore-based complementary metal-oxide-semiconductor (CMOS) DNA detection sensor. A resistive-feedback transimpedance amplifier is typically adopted as the headstage of a DNA detection sensor to amplify the minute ionic currents generated from a nanopore and convert them to a readable voltage range for digitization. But, parasitic capacitances arising from the headstage input and the nanopore often cause headstage saturation during nanopore sensing, thereby resulting in significant DNA data loss. To compensate for the unwanted saturation, in this work, we propose an area-efficient and automated IPC technique, customized for a low-noise DNA detection sensor, fabricated using a 0.35- μm CMOS process; we demonstrated this prototype in a benchtop test using an α-hemolysin ( α-HL) protein nanopore.

  10. Simulation of a model nanopore sensor: Ion competition underlies device behavior

    Science.gov (United States)

    Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső

    2017-12-01

    We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.

  11. Nanoporous Microneedle Arrays Effectively Induce Antibody Responses against Diphtheria and Tetanus Toxoid

    Science.gov (United States)

    de Groot, Anne Marit; Platteel, Anouk C. M.; Kuijt, Nico; van Kooten, Peter J. S.; Vos, Pieter Jan; Sijts, Alice J. A. M.; van der Maaden, Koen

    2017-01-01

    The skin is immunologically very potent because of the high number of antigen-presenting cells in the dermis and epidermis, and is therefore considered to be very suitable for vaccination. However, the skin’s physical barrier, the stratum corneum, prevents foreign substances, including vaccines, from entering the skin. Microneedles, which are needle-like structures with dimensions in the micrometer range, form a relatively new approach to circumvent the stratum corneum, allowing for minimally invasive and pain-free vaccination. In this study, we tested ceramic nanoporous microneedle arrays (npMNAs), representing a novel microneedle-based drug delivery technology, for their ability to deliver the subunit vaccines diphtheria toxoid (DT) and tetanus toxoid (TT) intradermally. First, the piercing ability of the ceramic (alumina) npMNAs, which contained over 100 microneedles per array, a length of 475 µm, and an average pore size of 80 nm, was evaluated in mouse skin. Then, the hydrodynamic diameters of DT and TT and the loading of DT, TT, and imiquimod into, and subsequent release from the npMNAs were assessed in vitro. It was shown that DT and TT were successfully loaded into the tips of the ceramic nanoporous microneedles, and by using near-infrared fluorescently labeled antigens, we found that DT and TT were released following piercing of the antigen-loaded npMNAs into ex vivo murine skin. Finally, the application of DT- and TT-loaded npMNAs onto mouse skin in vivo led to the induction of antigen-specific antibodies, with titers similar to those obtained upon subcutaneous immunization with a similar dose. In conclusion, we show for the first time, the potential of npMNAs for intradermal (ID) immunization with subunit vaccines, which opens possibilities for future ID vaccination designs. PMID:29375544

  12. Nanoporous Microneedle Arrays Effectively Induce Antibody Responses against Diphtheria and Tetanus Toxoid.

    Science.gov (United States)

    de Groot, Anne Marit; Platteel, Anouk C M; Kuijt, Nico; van Kooten, Peter J S; Vos, Pieter Jan; Sijts, Alice J A M; van der Maaden, Koen

    2017-01-01

    The skin is immunologically very potent because of the high number of antigen-presenting cells in the dermis and epidermis, and is therefore considered to be very suitable for vaccination. However, the skin's physical barrier, the stratum corneum, prevents foreign substances, including vaccines, from entering the skin. Microneedles, which are needle-like structures with dimensions in the micrometer range, form a relatively new approach to circumvent the stratum corneum, allowing for minimally invasive and pain-free vaccination. In this study, we tested ceramic nanoporous microneedle arrays (npMNAs), representing a novel microneedle-based drug delivery technology, for their ability to deliver the subunit vaccines diphtheria toxoid (DT) and tetanus toxoid (TT) intradermally. First, the piercing ability of the ceramic (alumina) npMNAs, which contained over 100 microneedles per array, a length of 475 µm, and an average pore size of 80 nm, was evaluated in mouse skin. Then, the hydrodynamic diameters of DT and TT and the loading of DT, TT, and imiquimod into, and subsequent release from the npMNAs were assessed in vitro . It was shown that DT and TT were successfully loaded into the tips of the ceramic nanoporous microneedles, and by using near-infrared fluorescently labeled antigens, we found that DT and TT were released following piercing of the antigen-loaded npMNAs into ex vivo murine skin. Finally, the application of DT- and TT-loaded npMNAs onto mouse skin in vivo led to the induction of antigen-specific antibodies, with titers similar to those obtained upon subcutaneous immunization with a similar dose. In conclusion, we show for the first time, the potential of npMNAs for intradermal (ID) immunization with subunit vaccines, which opens possibilities for future ID vaccination designs.

  13. Nanoporous Microneedle Arrays Effectively Induce Antibody Responses against Diphtheria and Tetanus Toxoid

    Directory of Open Access Journals (Sweden)

    Anne Marit de Groot

    2017-12-01

    Full Text Available The skin is immunologically very potent because of the high number of antigen-presenting cells in the dermis and epidermis, and is therefore considered to be very suitable for vaccination. However, the skin’s physical barrier, the stratum corneum, prevents foreign substances, including vaccines, from entering the skin. Microneedles, which are needle-like structures with dimensions in the micrometer range, form a relatively new approach to circumvent the stratum corneum, allowing for minimally invasive and pain-free vaccination. In this study, we tested ceramic nanoporous microneedle arrays (npMNAs, representing a novel microneedle-based drug delivery technology, for their ability to deliver the subunit vaccines diphtheria toxoid (DT and tetanus toxoid (TT intradermally. First, the piercing ability of the ceramic (alumina npMNAs, which contained over 100 microneedles per array, a length of 475 µm, and an average pore size of 80 nm, was evaluated in mouse skin. Then, the hydrodynamic diameters of DT and TT and the loading of DT, TT, and imiquimod into, and subsequent release from the npMNAs were assessed in vitro. It was shown that DT and TT were successfully loaded into the tips of the ceramic nanoporous microneedles, and by using near-infrared fluorescently labeled antigens, we found that DT and TT were released following piercing of the antigen-loaded npMNAs into ex vivo murine skin. Finally, the application of DT- and TT-loaded npMNAs onto mouse skin in vivo led to the induction of antigen-specific antibodies, with titers similar to those obtained upon subcutaneous immunization with a similar dose. In conclusion, we show for the first time, the potential of npMNAs for intradermal (ID immunization with subunit vaccines, which opens possibilities for future ID vaccination designs.

  14. Protein Nanopore-Based Discrimination between Selected Neutral Amino Acids from Polypeptides.

    Science.gov (United States)

    Asandei, Alina; Rossini, Aldo E; Chinappi, Mauro; Park, Yoonkyung; Luchian, Tudor

    2017-12-19

    Nanopore probing of biological polymers has the potential to achieve single-molecule sequencing at low cost, high throughput, portability, and minimal sample preparation and apparatus. In this article, we explore the possibility of discrimination between neutral amino acid residues from the primary structure of 30 amino acids long, engineered peptides, through the analysis of single-molecule ionic current fluctuations accompanying their slowed-down translocation across the wild type α-hemolysin (α-HL) nanopore, and molecular dynamics simulations. We found that the transient presence inside the α-HL of alanine or tryptophan residues from the primary sequence of engineered peptides results in distinct features of the ionic current fluctuation pattern associated with the peptide reversibly blocking the nanopore. We propose that α-HL sensitivity to the molecular exclusion at the most constricted region mediates ionic current blockade events correlated with the volumes that are occluded by at least three alanine or tryptophan residues, and provides the specificity needed to discriminate between groups of neutral amino acids. Further, we find that the pattern of current fluctuations depends on the orientation of the threaded amino acid residues, suggestive of a conformational anisotropy of the ensemble of conformations of the peptide on the restricted nanopore region, related to its relative axial orientation inside the nanopore.

  15. Nanoporous Zeolite Thin Film-Based Fiber Intrinsic Fabry-Perot Interferometric Sensor for Detection of Dissolved Organics in Water

    Directory of Open Access Journals (Sweden)

    Hai Xiao

    2006-08-01

    Full Text Available A fiber optic intrinsic Fabry-Perot interferometric (IFPI chemical sensor wasdeveloped by fine-polishing a thin layer of polycrystalline nanoporous MFI zeolitesynthesized on the cleaved endface of a single mode fiber. The sensor operated bymonitoring the optical thickness changes of the zeolite thin film caused by the adsorption oforganic molecules into the zeolite channels. The optical thickness of the zeolite thin filmwas measured by white light interferometry. Using methanol, 2-propanol, and toluene as themodel chemicals, it was demonstrated that the zeolite IPFI sensor could detect dissolvedorganics in water with high sensitivity.

  16. Nanoporous zinc oxide films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Ghimpu, L.; Lupan, O.; Popescu, L.; Tiginyanu, I.M.

    2011-01-01

    In this paper we demonstrate an inexpensive approach for the fabrication of nanoporous zinc oxide films by using magnetron sputtering. Study of the structural properties proves the crystallographic perfection of porous nanostructures and the possibility of its controlling by adjusting the technological parameters in the growth process. The XRD pattern of nanoporous ZnO films exhibits high intensity of the peaks relative to the background signal which is indicative of the ZnO hexagonal phase and a good crystallinity of the samples grown by magnetron sputtering.

  17. Synthesis of a nanoporous molecularly imprinted polymers for dibutyl Phthalate extracted from Trichoderma Harzianum

    Directory of Open Access Journals (Sweden)

    Maede Shahiri Tabarestani

    2016-07-01

    Full Text Available In this study, molecularly imprinted polymers were synthesized for dibutyl phthalate as a bioactive chemical compound with antifungal activity which produced by Trichoderma Harzianum (JX1738521. The molecularly imprinted polymers were synthesized via precipitation polymerization method from methacrylic acid, dibutyl phthalate and trimetylolpropantrimethacrylate as a functional monomer, template and cross-linker, respectively. After removal of the template by the eluent from the MIPs, the leached nanoparticles of the MIPs had a good binding capacity as equal 830 mg/g. The polymer particles have been evaluated by field emission scan electron microscopy and Brunauer–Emmett–Teller  techniques. The excellent specific surface area in the molecularly imprinted polymers as equal to 690.301 m2/g comparatively to non-imprinted polymers (ca. 89.894 m2/g, confirms that the nanoporous MIPs were synthesized, successfully. The results indicated that the nanoporous MIPs can be used in solid phase extraction. This is a novel method for separation of the bioactive compounds from fungi secondary metabolites in biological control.

  18. Warming up human body by nanoporous metallized polyethylene textile.

    Science.gov (United States)

    Cai, Lili; Song, Alex Y; Wu, Peilin; Hsu, Po-Chun; Peng, Yucan; Chen, Jun; Liu, Chong; Catrysse, Peter B; Liu, Yayuan; Yang, Ankun; Zhou, Chenxing; Zhou, Chenyu; Fan, Shanhui; Cui, Yi

    2017-09-19

    Space heating accounts for the largest energy end-use of buildings that imposes significant burden on the society. The energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, we demonstrate a nanophotonic structure textile with tailored infrared (IR) property for passive personal heating using nanoporous metallized polyethylene. By constructing an IR-reflective layer on an IR-transparent layer with embedded nanopores, the nanoporous metallized polyethylene textile achieves a minimal IR emissivity (10.1%) on the outer surface that effectively suppresses heat radiation loss without sacrificing wearing comfort. This enables 7.1 °C decrease of the set-point compared to normal textile, greatly outperforming other radiative heating textiles by more than 3 °C. This large set-point expansion can save more than 35% of building heating energy in a cost-effective way, and ultimately contribute to the relief of global energy and climate issues.Energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, the authors show a nanophotonic structure textile with tailored infrared property for passive personal heating using nanoporous metallized polyethylene.

  19. Hydrogen storage in nanoporous carbon materials: myth and facts.

    Science.gov (United States)

    Kowalczyk, Piotr; Hołyst, Robert; Terrones, Mauricio; Terrones, Humberto

    2007-04-21

    We used Grand canonical Monte Carlo simulation to model the hydrogen storage in the primitive, gyroid, diamond, and quasi-periodic icosahedral nanoporous carbon materials and in carbon nanotubes. We found that none of the investigated nanoporous carbon materials satisfy the US Department of Energy goal of volumetric density and mass storage for automotive application (6 wt% and 45 kg H(2) m(-3)) at considered storage condition. Our calculations indicate that quasi-periodic icosahedral nanoporous carbon material can reach the 6 wt% at 3.8 MPa and 77 K, but the volumetric density does not exceed 24 kg H(2) m(-3). The bundle of single-walled carbon nanotubes can store only up to 4.5 wt%, but with high volumetric density of 42 kg H(2) m(-3). All investigated nanoporous carbon materials are not effective against compression above 20 MPa at 77 K because the adsorbed density approaches the density of the bulk fluid. It follows from this work that geometry of carbon surfaces can enhance the storage capacity only to a limited extent. Only a combination of the most effective structure with appropriate additives (metals) can provide an efficient storage medium for hydrogen in the quest for a source of "clean" energy.

  20. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth

    International Nuclear Information System (INIS)

    Wang, Haoran; Chew, Huck Beng; Wang, Xueju; Xia, Shuman

    2015-01-01

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of Li x Si electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si–Si bonds, while subsequent failure is still brittle-like with the breaking of Si–Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li–Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the Li x Si alloys leads to significant strain recovery

  1. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haoran; Chew, Huck Beng, E-mail: hbchew@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wang, Xueju; Xia, Shuman [Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-09-14

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of Li{sub x}Si electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si–Si bonds, while subsequent failure is still brittle-like with the breaking of Si–Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li–Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the Li{sub x}Si alloys leads to significant strain recovery.

  2. Comparative study of the anchorage and the catalytic properties of nanoporous TiO2 films modified with ruthenium (II) and rhenium (I) carbonyl complexes

    Science.gov (United States)

    Oyarzún, Diego P.; Chardon-Noblat, Sylvie; Linarez Pérez, Omar E.; López Teijelo, Manuel; Zúñiga, César; Zarate, Ximena; Shott, Eduardo; Carreño, Alexander; Arratia-Perez, Ramiro

    2018-02-01

    In this article we study the anchoring of cis-[Ru(bpyC4pyr)(CO)2(CH3CN)2]2+, cis-[Ru(bpy)2(CO)2]2+ and cis-[Ru(bpyac)(CO)2Cl2], onto nanoporous TiO2 employing electropolymerization, electrostatic interaction and chemical bonding. Also, the [Re(bpyac)(CO)3Cl] rhenium(I) complex for chemical anchorage was analyzed. The characterization of TiO2/Ru(II) and TiO2/Re(I) nanocomposite films was performed by field emission scanning electron microscopy (FESEM), electron dispersive X-ray spectroscopy (EDS) and Raman spectroscopy. In addition, for the more stable nanocomposites obtained, the catalytic properties (solar energy conversion and CO2 reduction) were evaluated. The efficiency improvement in redox process derived from the (photo)electrochemical evidence indicates that modified nanoporous TiO2 structures enhance the rate of charge transfer reactions.

  3. Interconnected V2O5 nanoporous network for high-performance supercapacitors.

    Science.gov (United States)

    Saravanakumar, B; Purushothaman, Kamatchi K; Muralidharan, G

    2012-09-26

    Vanadium pentoxide (V(2)O(5)) has attracted attention for supercapcitor applications because of its extensive multifunctional properties. In the present study, V(2)O(5) nanoporous network was synthesized via simple capping-agent-assisted precipitation technique and it is further annealed at different temperatures. The effect of annealing temperature on the morphology, electrochemical and structural properties, and stability upon oxidation-reduction cycling has been analyzed for supercapacitor application. We achieved highest specific capacitance of 316 F g(-1) for interconnected V(2)O(5) nanoporous network. This interconnected nanoporous network creates facile nanochannels for ion diffusion and facilitates the easy accessibility of ions. Moreover, after six hundred consecutive cycling processes the specific capacitance has changed only by 24%. A simple cost-effective preparation technique of V(2)O(5) nanoporous network with excellent capacitive behavior, energy density, and stability encourages its possible commercial exploitation for the development of high-performance supercapacitors.

  4. Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques.

    Science.gov (United States)

    Bhattarai, Jay K; Neupane, Dharmendra; Nepal, Bishal; Mikhaylov, Vasilii; Demchenko, Alexei V; Stine, Keith J

    2018-03-16

    Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing.

  5. Formation of three-dimensional nano-porous silver films and application toward electrochemical detection of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Junpeng [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian, Xiufang, E-mail: xfbian@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Niu, Yuchao [Department of Materials Science and Engineering, Shandong Jianzhu University, Fengming Road, Lingang Development Zone, Jinan 250101 (China); Bai, Yanwen; Xiao, Xinxin; Yang, Chuncheng; Yang, Jianfei; Yang, Jinyue [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2013-11-15

    By using the chemically dealloying method, three-dimensional nano-porous silver films (3-D NPSFs) are fabricated into a novel sensor for detecting hydrogen peroxide. The precursor films are prepared by high vacuum magnetron co-sputtering. High-resolution transmission electron microscope (HRTEM) and scanning electron microscope (SEM) are taken to investigate the structure and the micro morphology of the precursor films and nano-porous films. We find that the precursor films are composed of glassy matrix and nanocrystallines. After dealloying, the films exhibit a combination of homogenously distributed pores and silver filaments, and exhibit an open, three dimensional bicontinuous interpenetrating ligament–channel structure. Thickness and morphology of the films can be easily controlled by the sputtering time and alloy composition of the precursor films, respectively. In addition, NPSFs show a good linear responding for the concentration of hydrogen peroxide in phosphate buffered solutions, which indicates NPSFs could be a promising electrochemical material for hydrogen peroxide detection.

  6. VOPcPhO:P3HT composite micro-structures with nano-porous surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Azmer, Mohamad Izzat [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ahmad, Zubair, E-mail: zubairtarar@qu.edu.qa [Center for Advanced Materials (CAM), Qatar University, P. O. Box 2713, Doha (Qatar); Sulaiman, Khaulah, E-mail: khaulah@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Touati, Farid [Department of Electrical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha (Qatar); Bawazeer, Tahani M. [Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah (Saudi Arabia); Alsoufi, Mohammad S. [Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah (Saudi Arabia)

    2017-03-31

    Highlights: • VOPcPhO:P3HT micro-structures with nano-porous surface morphology have been formed. • Multidimensional structures have been formed by electro-spraying technique. • The electro-sprayed films are very promising for the humidity sensors. - Abstract: In this paper, composite micro-structures of Vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine) (VOPcPhO) and Poly (3-hexylthiophene-2,5-diyl) (P3HT) complex with nano-porous surface morphology have been developed by electro-spraying technique. The structural and morphological characteristics of the VOPcPhO:P3HT composite films have been studied by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The multidimensional VOPcPhO:P3HT micro-structures formed by electro-spraying with nano-porous surface morphology are very promising for the humidity sensors due to the pore sizes in the range of micro to nano-meters scale. The performance of the VOPcPhO:P3HT electro-sprayed sensor is superior in term of sensitivity, hysteresis and response/recovery times as compared to the spin-coated one. The electro-sprayed humidity sensor exhibits ∼3 times and 0.19 times lower hysteresis in capacitive and resistive mode, respectively, as compared to the spin-coated humidity sensor.

  7. Catalytic pyrolysis of Laminaria japonica over nanoporous catalysts using Py-GC/MS

    Directory of Open Access Journals (Sweden)

    Jeon Jong-Ki

    2011-01-01

    Full Text Available Abstract The catalytic pyrolysis of Laminaria japonica was carried out over a hierarchical meso-MFI zeolite (Meso-MFI and nanoporous Al-MCM-48 using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS. The effect of the catalyst type on the product distribution and chemical composition of the bio-oil was examined using Py-GC/MS. The Meso-MFI exhibited a higher activity in deoxygenation and aromatization during the catalytic pyrolysis of L. japonica. Meanwhile, the catalytic activity of Al-MCM-48 was lower than that of Meso-MFI due to its weak acidity.

  8. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance.

    Science.gov (United States)

    Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi

    2014-09-17

    Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.

  9. Nonsymmetric gas transfer phenomena in nanoporous media

    International Nuclear Information System (INIS)

    Kurchatov, I.M.

    2011-01-01

    The regularities of nonsymmetric gas (nitrogen, helium, hydrogen, carbon dioxide) transfer in nanoporous materials are investigated. The effects of anisotropy and hysteresis of permeability in nanoporous media with pore gradient and porosity in objects of various nature are found out. The following objects are studied: polyethylene terephthalate track membranes with asymmetric pore form, commercial polyvinyl trimethylsilane gas-separation membranes with continuous distribution of pores over the membrane thickness and porous composite membranes (born nitride, silicon carbide, aluminium oxide) prepared by self-propagating high-temperature synthesis with abrupt change of pore dimensions over the thickness. The possible mechanisms of nonsymmetric gas transfer effects are under consideration [ru

  10. Fluid-mechanic model for fabrication of nanoporous fibers by electrospinning

    OpenAIRE

    Fan Chengxu; Sun Zhaoyang; Xu Lan

    2017-01-01

    A charged jet in the electrospinning process for fabrication of nanoporous fibers is studied theoretically. A fluid-mechanic model considering solvent evaporation is established to research the effect of solvent evaporation on nanopore structure formation. The model gives a powerful tool to offering in-depth physical under-standing and controlling over electrospinning parameters such as voltage, flow rate, and solvent evaporation rate.

  11. Coarsening by network restructuring in model nanoporous gold

    International Nuclear Information System (INIS)

    Kolluri, Kedarnath; Demkowicz, Michael J.

    2011-01-01

    Using atomistic modeling, we show that restructuring of the network of interconnected ligaments causes coarsening in a model of nanoporous gold. The restructuring arises from the collapse of some ligaments onto neighboring ones and is enabled by localized plasticity at ligaments and nodes. This mechanism may explain the occurrence of enclosed voids and reduction in volume in nanoporous metals during their synthesis. An expression is developed for the critical ligament radius below which coarsening by network restructuring may occur spontaneously, setting a lower limit to the ligament dimensions of nanofoams.

  12. Detecting a single molecule using a micropore-nanopore hybrid chip.

    Science.gov (United States)

    Liu, Lei; Zhu, Lizhong; Ni, Zhonghua; Chen, Yunfei

    2013-11-21

    Nanopore-based DNA sequencing and biomolecule sensing have attracted more and more attention. In this work, novel sensing devices were built on the basis of the chips containing nanopore arrays in polycarbonate (PC) membranes and micropores in Si3N4 films. Using the integrated chips, the transmembrane ionic current induced by biomolecule's translocation was recorded and analyzed, which suggested that the detected current did not change linearly as commonly expected with increasing biomolecule concentration. On the other hand, detailed translocation information (such as translocation gesture) was also extracted from the discrete current blockages in basic current curves. These results indicated that the nanofluidic device based on the chips integrated by micropores and nanopores possessed comparative potentials in biomolecule sensing.

  13. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication

    Science.gov (United States)

    Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan

    2015-08-01

    Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.

  14. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection

    Science.gov (United States)

    Deng, Yunsheng; Huang, Qimeng; Zhao, Yue; Zhou, Daming; Ying, Cuifeng; Wang, Deqiang

    2017-01-01

    We report a scalable method to fabricate high-quality graphene nanopores for biomolecule detection using a helium ion microscope (HIM). HIM milling shows promising capabilities for precisely controlling the size and shape, and may allow for the potential production of nanopores at wafer scale. Nanopores could be fabricated at different sizes ranging from 5 to 30 nm in diameter in few minutes. Compared with the current solid-state nanopore fabrication techniques, e.g. transmission electron microscopy, HIM is fast. Furthermore, we investigated the exposure-time dependence of graphene nanopore formation: the rate of pore expansion did not follow a simple linear relationship with exposure time, but a fast expansion rate at short exposure time and a slow rate at long exposure time. In addition, we performed biomolecule detection with our patterned graphene nanopore. The ionic current signals induced by 20-base single-stranded DNA homopolymers could be used as a basis for homopolymer differentiation. However, the charge interaction of homopolymer chains with graphene nanopores, and the conformations of homopolymer chains need to be further considered to improve the accuracy of discrimination.

  15. Electro-elastoviscous response of polyaniline functionalized nano-porous zeolite based colloidal dispersions.

    Science.gov (United States)

    Chattopadhyay, Ankur; Rani, Poonam; Srivastava, Rajendra; Dhar, Purbarun

    2018-06-01

    The present article discusses the typical influence of grafted conducting polymers in the mesoscale pores of dielectric particles on the static and dynamic electrorheology and electro-viscoelastic behavior of corresponding colloids. Nanocrystalline meso-nanoporous zeolite has been prepared by chemical synthesis and subsequently polyaniline (PANI) coating has been implemented. Electrorheological (ER) suspensions have been formed by dispersing the nanoparticles in silicone oil and their viscoelastic behaviors are examined to understand the nature of such complex colloidal systems under electric fields. PANI-Zeolite ER fluids demonstrate higher static electroviscous effects and yield stress potential than untreated Zeolite, typically studied in literature. Transient electro-viscous characterizations show a stable and negligible hysteresis behavior when both the fluids are exposed to constant as well as time varying electric field intensities. Further oscillatory shear experiments of frequency and strain sweeps exhibit predominant elastic behavior in case of Zeolite based ER suspensions as compared to PANI systems. Detailed investigations reveal Zeolite based ER suspensions display enhanced relative yielding as well as electro-viscoelastic stability than the PANI-Zeolite. The steady state viscous behaviors are scaled against the non-dimensional Mason number to model the system behavior for both fluids. Experimental data of flow behaviors of both the ER fluids are compared with semi-classical models and it is found that the CCJ model possesses a closer proximity than traditional Bingham model, thereby revealing the fluids to be generic pseudo-linear fluids. The present article reveals that while the PANI based fluids are typically hailed superior in literature, it is only restricted to steady shear utilities. In case of dynamic and oscillatory systems, the traditional Zeolite based fluids exhibit superior ER caliber. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Nanoporous Polymeric Grating-Based Optical Biosensors (Preprint)

    National Research Council Canada - National Science Library

    Hsiao, Vincent K; Waldeisen, John R; Lloyd, Pamela F; Bunning, Timothy J; Huang, Tony J

    2007-01-01

    .... The fabrication process of the nanoporous polymeric grating involves holographic interference patterning and a functionalized pre-polymer syrup that facilitates the immobilization of biomolecules...

  17. Interfacial Engineering of Nanoporous Architectures in Ga2O3 Film toward Self-Aligned Tubular Nanostructure with an Enhanced Photocatalytic Activity on Water Splitting.

    Science.gov (United States)

    Shrestha, Nabeen K; Bui, Hoa Thi; Lee, Taegweon; Noh, Yong-Young

    2018-04-17

    The present work demonstrates the formation of self-aligned nanoporous architecture of gallium oxide by anodization of gallium metal film controlled at -15 °C in aqueous electrolyte consisting of phosphoric acid. SEM examination of the anodized film reveals that by adding ethylene glycol to the electrolyte and optimizing the ratio of phosphoric acid and water, chemical etching at the oxide/electrolyte interfaces can be controlled, leading to the formation of aligned nanotubular oxide structures with closed bottom. XPS analysis confirms the chemical composition of the oxide film as Ga 2 O 3 . Further, XRD and SAED examination reveals that the as-synthesized nanotubular structure is amorphous, and can be crystallized to β-Ga 2 O 3 phase by annealing the film at 600 °C. The nanotubular structured film, when used as photoanode for photoelectrochemical splitting of water, achieved a higher photocurrent of about two folds than that of the nanoporous film, demonstrating the rewarding effect of the nanotubular structure. In addition, the work also demonstrates the formation of highly organized nonporous Ga 2 O 3 structure on a nonconducting glass substrate coated with thin film of Ga-metal, highlighting that the current approach can be extended for the formation of self-organized nanoporous Ga 2 O 3 thin film even on nonconducting flexible substrates.

  18. Mechanisms of water infiltration into conical hydrophobic nanopores.

    Science.gov (United States)

    Liu, Ling; Zhao, Jianbing; Yin, Chun-Yang; Culligan, Patricia J; Chen, Xi

    2009-08-14

    Fluid channels with inclined solid walls (e.g. cone- and slit-shaped pores) have wide and promising applications in micro- and nano-engineering and science. In this paper, we use molecular dynamics (MD) simulations to investigate the mechanisms of water infiltration (adsorption) into cone-shaped nanopores made of a hydrophobic graphene sheet. When the apex angle is relatively small, an external pressure is required to initiate infiltration and the pressure should keep increasing in order to further advance the water front inside the nanopore. By enlarging the apex angle, the pressure required for sustaining infiltration can be effectively lowered. When the apex angle is sufficiently large, under ambient condition water can spontaneously infiltrate to a certain depth of the nanopore, after which an external pressure is still required to infiltrate more water molecules. The unusual involvement of both spontaneous and pressure-assisted infiltration mechanisms in the case of blunt nanocones, as well as other unique nanofluid characteristics, is explained by the Young's relation enriched with the size effects of surface tension and contact angle in the nanoscale confinement.

  19. Fluid-mechanic model for fabrication of nanoporous fibers by electrospinning

    Directory of Open Access Journals (Sweden)

    Fan Chengxu

    2017-01-01

    Full Text Available A charged jet in the electrospinning process for fabrication of nanoporous fibers is studied theoretically. A fluid-mechanic model considering solvent evaporation is established to research the effect of solvent evaporation on nanopore structure formation. The model gives a powerful tool to offering in-depth physical under-standing and controlling over electrospinning parameters such as voltage, flow rate, and solvent evaporation rate.

  20. A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis

    Science.gov (United States)

    Zeng, Yachao; Guo, Xiaoqian; Shao, Zhigang; Yu, Hongmei; Song, Wei; Wang, Zhiqiang; Zhang, Hongjie; Yi, Baolian

    2017-02-01

    A cost-effective nanoporous ultrathin film (NPUF) electrode based on nanoporous gold (NPG)/IrO2 composite has been constructed for proton exchange membrane (PEM) water electrolysis. The electrode was fabricated by integrating IrO2 nanoparticles into NPG through a facile dealloying and thermal decomposition method. The NPUF electrode is featured in its 3D interconnected nanoporosity and ultrathin thickness. The nanoporous ultrathin architecture is binder-free and beneficial for improving electrochemical active surface area, enhancing mass transport and facilitating releasing of oxygen produced during water electrolysis. Serving as anode, a single cell performance of 1.728 V (@ 2 A cm-2) has been achieved by NPUF electrode with a loading of IrO2 and Au at 86.43 and 100.0 μg cm-2 respectively, the electrolysis voltage is 58 mV lower than that of conventional electrode with an Ir loading an order of magnitude higher. The electrolysis voltage kept relatively constant up to 300 h (@250 mA cm-2) during the course of durability test, manifesting that NPUF electrode is promising for gas evolution.

  1. Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers.

    Science.gov (United States)

    Cao, Xinwang; Wang, Xianfeng; Ding, Bin; Yu, Jianyong; Sun, Gang

    2013-02-15

    Cellulose nanowhiskers as a kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Herein, for the first time, a novel controllable fabrication of spider-web-like nanoporous networks based on jute cellulose nanowhiskers (JCNs) deposited on the electrospun (ES) nanofibrous membrane by simple directly immersion-drying method is reported. Jute cellulose nanowhiskers were extracted from jute fibers with a high yield (over 80%) via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization. The morphology of JCNs nanoporous networks/ES nanofibrous membrane architecture, including coverage rate, pore-width and layer-by-layer packing structure of the nanoporous networks, can be finely controlled by regulating the JCNs dispersions properties and drying conditions. The versatile nanoporous network composites based on jute cellulose nanowhiskers with ultrathin diameters (3-10 nm) and nanofibrous membrane supports with diameters of 100-300 nm, would be particularly useful for filter applications. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  2. Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage

    International Nuclear Information System (INIS)

    Rashidi, Ali Morad; Kazemi, Davood; Izadi, Nosrat; Pourkhalil, Mahnaz; Jorsaraei, Abbas; Lotfi, Roghayeh; Ganji, Enseyeh

    2016-01-01

    Nanoporous activated carbons, as adsorbent for CO 2 storage, were prepared from walnut shells via two chemical processes including phosphoric acid treatment and KOH activation at high temperature. Specific surface area and porosities were controlled by KOH concentration and activation temperature. The obtained adsorbents were characterized by N2 adsorption at 77.3 K. Their carbon dioxide adsorption capacities were measured at different pressures at 290 K by using volumetric adsorption equipment. The KOH-treated nanoporous carbons typically led to the production of high specific surface areas and high micropore volumes and showed better performance for CO 2 adsorptions. The maximum experimental value for adsorption capacity happened when pressure increased from 5 to 10 bar (1.861- 2.873mmol·g -1 ). It was found that in order to improve the highest capacity of CO 2 adsorption for KOH-modified carbon (9.830-18.208mmol·g -1 ), a KOH: C weight ratio of 3.5 and activation temperature of 973 K were more suitable for pore development and micro-mesopore volume enhancement.

  3. Influence of defects on the ordering degree of nanopores made from anodic aluminum oxide

    International Nuclear Information System (INIS)

    Yu Wenhui; Fei Guangtao; Chen Xiaomeng; Xue Fanghong; Xu Xijin

    2006-01-01

    Anodic aluminum oxide (AAO) templates with highly ordered nanoporous structure were fabricated by means of the electrochemical anodization under the constant anodic voltage and electrolyte temperature. The dependence of the ordering degree of nanopores on the point defects, dislocation configuration and grain boundary of aluminum is qualitatively analyzed. Experiment results show that the size of the ordered region of nanopores depends strongly on the point defects, dislocation cell configuration

  4. Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography

    International Nuclear Information System (INIS)

    Janssen, Xander J A; Jonsson, Magnus P; Plesa, Calin; Soni, Gautam V; Dekker, Cees; Dekker, Nynke H

    2012-01-01

    In recent years, the concept of nanopore sensing has matured from a proof-of-principle method to a widespread, versatile technique for the study of biomolecular properties and interactions. While traditional nanopore devices based on a nanopore in a single layer membrane supported on a silicon chip can be rapidly fabricated using standard microfabrication methods, chips with additional insulating layers beyond the membrane region can provide significantly lower noise levels, but at the expense of requiring more costly and time-consuming fabrication steps. Here we present a novel fabrication protocol that overcomes this issue by enabling rapid and reproducible manufacturing of low-noise membranes for nanopore experiments. The fabrication protocol, termed trans-chip illumination lithography, is based on illuminating a membrane-containing wafer from its backside such that a photoresist (applied on the wafer’s top side) is exposed exclusively in the membrane regions. Trans-chip illumination lithography permits the local modification of membrane regions and hence the fabrication of nanopore chips containing locally patterned insulating layers. This is achieved while maintaining a well-defined area containing a single thin membrane for nanopore drilling. The trans-chip illumination lithography method achieves this without relying on separate masks, thereby eliminating time-consuming alignment steps as well as the need for a mask aligner. Using the presented approach, we demonstrate rapid and reproducible fabrication of nanopore chips that contain small (12 μm × 12 μm) free-standing silicon nitride membranes surrounded by insulating layers. The electrical noise characteristics of these nanopore chips are shown to be superior to those of simpler designs without insulating layers and comparable in quality to more complex designs that are more challenging to fabricate. (paper)

  5. Instrumentation for low noise nanopore-based ionic current recording under laser illumination

    Science.gov (United States)

    Roelen, Zachary; Bustamante, José A.; Carlsen, Autumn; Baker-Murray, Aidan; Tabard-Cossa, Vincent

    2018-01-01

    We describe a nanopore-based optofluidic instrument capable of performing low-noise ionic current recordings of individual biomolecules under laser illumination. In such systems, simultaneous optical measurements generally introduce significant parasitic noise in the electrical signal, which can severely reduce the instrument sensitivity, critically hindering the monitoring of single-molecule events in the ionic current traces. Here, we present design rules and describe simple adjustments to the experimental setup to mitigate the different noise sources encountered when integrating optical components to an electrical nanopore system. In particular, we address the contributions to the electrical noise spectra from illuminating the nanopore during ionic current recording and mitigate those effects through control of the illumination source and the use of a PDMS layer on the SiNx membrane. We demonstrate the effectiveness of our noise minimization strategies by showing the detection of DNA translocation events during membrane illumination with a signal-to-noise ratio of ˜10 at 10 kHz bandwidth. The instrumental guidelines for noise minimization that we report are applicable to a wide range of nanopore-based optofluidic systems and offer the possibility of enhancing the quality of synchronous optical and electrical signals obtained during single-molecule nanopore-based analysis.

  6. Mechanical stability of heat-treated nanoporous anodic alumina subjected to repetitive mechanical deformation

    Science.gov (United States)

    Bankova, A.; Videkov, V.; Tzaneva, B.; Mitov, M.

    2018-03-01

    We report studies on the mechanical response and deformation behavior of heat-treated nanoporous anodic alumina using a micro-balance test and experimental test equipment especially designed for this purpose. AAO samples were characterized mechanically by a three-point bending test using a micro-analytical balance. The deformation behavior was studied by repetitive mechanical bending of the AAO membranes using an electronically controlled system. The nanoporous AAO structures were prepared electrochemically from Al sheet substrates using a two-step anodizing technique in oxalic acid followed by heat treatment at 700 °C in air. The morphological study of the aluminum oxide layer after the mechanical tests and mechanical deformation was conducted using scanning electron and optical microscopy, respectively. The experimental results showed that the techniques proposed are simple and accurate; they could, therefore, be combined to constitute a method for mechanical stability assessment of nanostructured AAO films, which are important structural components in the design of MEMS devices and sensors.

  7. Transport behavior of water molecules through two-dimensional nanopores

    International Nuclear Information System (INIS)

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-01-01

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules

  8. Effect of various de-anodizing techniques on the surface stability of non-colored and colored nanoporous AAO films in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Ahmed M. [Chemical Engineering & Pilot Plant Department, National Research Centre, Dokki, Giza (Egypt); Shehata, Omnia S. [Physical Chemistry Department, National Research Centre, Dokki, Giza (Egypt); Heakal, Fakiha El-Taib, E-mail: fakihaheakal@yahoo.com [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2015-12-30

    Highlights: • Three de-anodization methods were used during two-step fabrication of nanoporous AAO. • Electrolytic etching (EE), chemical etching with H{sub 3}PO{sub 4} (PE) or NaOH (HE) were adopted. • After the second anodizing step, HE film was the thinnest as compared to EE and HE. • Stability order of nanoporous AAO films in 0.5 M HCl solution was: PE > EE > HE. • For the colored films by electrodeposited Cu atoms, the order was: HE > EE > PE. - Abstract: Anodic aluminum oxide (AAO) is well known as an important nanostructured material, and a useful template in the fabrication of nanostructures. Nanoporous anodic alumina (PAA) with high open porosity was prepared by adopting three de-anodizing regimes following the first anodizing step and preceding the second one. The de-anodizing methods include electrolytic etching (EE) and chemical etching using either phosphoric acid (PE) or sodium hydroxide (HE) solutions. Three of the obtained AAO samples were black colored by electrodeposition of copper nanoparticles in their pores. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques were used to characterize the electrochemical performance of the two sets of the prepared samples. In general, the data obtained in aggressive aerated 0.5 M HCl solution demonstrated dissimilar behavior for the three prepared samples despite that the second anodizing step was the same for all of them. The data indicated that the resistance and thickness of the inner barrier part of nano-PAA film, are the main controlling factors determining its stability. On the other hand, coloring the film decreased its stability due to the galvanic effect. The difference in the electrochemical behavior of the three colored samples was discussed based on the difference in both the pore size and thickness of the outer porous part of PAA film as supported by SEM, TEM and cross-sectional micrographs. These results can thus contribute for better engineering

  9. Electronic thermal conductivity of 2-dimensional circular-pore metallic nanoporous materials

    International Nuclear Information System (INIS)

    Huang, Cong-Liang; Lin, Zi-Zhen; Luo, Dan-Chen; Huang, Zun

    2016-01-01

    The electronic thermal conductivity (ETC) of 2-dimensional circular-pore metallic nanoporous material (MNM) was studied here for its possible applications in thermal cloaks. A simulation method based on the free-electron-gas model was applied here without considering the quantum effects. For the MNM with circular nanopores, there is an appropriate nanopore size for thermal conductivity tuning, while a linear relationship exists for this size between the ETC and the porosity. The appropriate nanopore diameter size will be about one times that of the electron mean free path. The ETC difference along different directions would be less than 10%, which is valuable when estimating possible errors, because the nanoscale-material direction could not be controlled during its application. Like nanoparticles, the ETC increases with increasing pore size (diameter for nanoparticles) while the porosity was fixed, until the pore size reaches about four times that of electron mean free path, at which point the ETC plateaus. The specular coefficient on the surface will significantly impact the ETC, especially for a high-porosity MNM. The ETC can be decreased by 30% with a tuning specular coefficient. - Highlights: • For metallic nanoporous materials, there is an appropriate pore size for thermal conductivity tuning. • ETC increases with increasing pore size until pore size reaches about four times EMFP. • The ETC difference between different directions will be less than 10%. • The ETC can be decreased by 30% with tuning specular coefficient.

  10. Ordered arrays of nanoporous gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2012-09-01

    Full Text Available A combination of a “top-down” approach (substrate-conformal imprint lithography and two “bottom-up” approaches (dewetting and dealloying enables fabrication of perfectly ordered 2-dimensional arrays of nanoporous gold nanoparticles. The dewetting of Au/Ag bilayers on the periodically prepatterned substrates leads to the interdiffusion of Au and Ag and the formation of an array of Au–Ag alloy nanoparticles. The array of alloy nanoparticles is transformed into an array of nanoporous gold nanoparticles by a following dealloying step. Large areas of this new type of material arrangement can be realized with this technique. In addition, this technique allows for the control of particle size, particle spacing, and ligament size (or pore size by varying the period of the structure, total metal layer thickness, and the thickness ratio of the as-deposited bilayers.

  11. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?

    International Nuclear Information System (INIS)

    Lian, Cheng; University of California, Riverside, CA; Liu, Honglai; Henderson, Douglas; Wu, Jianzhong

    2016-01-01

    The ionophobicity effect of nanoporous electrodes on the capacitance and the energy storage capacity of nonaqueous-electrolyte supercapacitors is studied by means of the classical density functional theory (DFT). It has been hypothesized that ionophobic nanopores may create obstacles in charging, but they store energy much more efficiently than ionophilic pores. In this paper, we find that, for both ionic liquids and organic electrolytes, an ionophobic pore exhibits a charging behavior different from that of an ionophilic pore, and that the capacitance–voltage curve changes from a bell shape to a two-hump camel shape when the pore ionophobicity increases. For electric-double-layer capacitors containing organic electrolytes, an increase in the ionophobicity of the nanopores leads to a higher capacity for energy storage. Without taking into account the effects of background screening, the DFT predicts that an ionophobic pore containing an ionic liquid does not enhance the supercapacitor performance within the practical voltage ranges. However, by using an effective dielectric constant to account for ion polarizability, the DFT predicts that, like an organic electrolyte, an ionophobic pore with an ionic liquid is also able to increase the energy stored when the electrode voltage is beyond a certain value. We find that the critical voltage for an enhanced capacitance in an ionic liquid is larger than that in an organic electrolyte. Finally, our theoretical predictions provide further understanding of how chemical modification of porous electrodes affects the performance of supercapacitors.

  12. Nanopores creation in boron and nitrogen doped polycrystalline graphene: A molecular dynamics study

    Science.gov (United States)

    Izadifar, Mohammadreza; Abadi, Rouzbeh; Nezhad Shirazi, Ali Hossein; Alajlan, Naif; Rabczuk, Timon

    2018-05-01

    In the present paper, molecular dynamic simulations have been conducted to investigate the nanopores creation on 10% of boron and nitrogen doped polycrystalline graphene by silicon and diamond nanoclusters. Two types of nanoclusters based on silicon and diamond are used to investigate their effect for the fabrication of nanopores. Therefore, three different diameter sizes of the clusters with five kinetic energies of 10, 50, 100, 300 and 500 eV/atom at four different locations in boron or nitrogen doped polycrystalline graphene nanosheets have been perused. We also study the effect of 3% and 6% of boron doped polycrystalline graphene with the best outcome from 10% of doping. Our results reveal that the diamond cluster with diameter of 2 and 2.5 nm fabricates the largest nanopore areas on boron and nitrogen doped polycrystalline graphene, respectively. Furthermore, the kinetic energies of 10 and 50 eV/atom can not fabricate nanopores in some cases for silicon and diamond clusters on boron doped polycrystalline graphene nanosheets. On the other hand, silicon and diamond clusters fabricate nanopores for all locations and all tested energies on nitrogen doped polycrystalline graphene. The area sizes of nanopores fabricated by silicon and diamond clusters with diameter of 2 and 2.5 nm are close to the actual area size of the related clusters for the kinetic energy of 300 eV/atom in all locations on boron doped polycrystalline graphene. The maximum area and the average maximum area of nanopores are fabricated by the kinetic energy of 500 eV/atom inside the grain boundary at the center of the nanosheet and in the corner of nanosheet with diameters of 2 and 3 nm for silicon and diamond clusters on boron and nitrogen doped polycrystalline graphene.

  13. Capillary condensation and evaporation in alumina nanopores with controlled modulations.

    Science.gov (United States)

    Bruschi, Lorenzo; Mistura, Giampaolo; Liu, Lifeng; Lee, Woo; Gösele, Ulrich; Coasne, Benoit

    2010-07-20

    Capillary condensation in nanoporous anodic aluminum oxide presenting not interconnected pores with controlled modulations is studied using adsorption experiments and molecular simulations. Both the experimental and simulation data show that capillary condensation and evaporation are driven by the smallest size of the nanopore (constriction). The adsorption isotherms for the open and closed pores are almost identical if constrictions are added to the system. The latter result implies that the type of pore ending does not matter in modulated pores. Thus, the presence of hysteresis loops observed in adsorption isotherms measured in straight nanopores with closed bottom ends can be explained in terms of geometrical inhomogeneities along the pore axis. More generally, these results provide a general picture of capillary condensation and evaporation in constricted or modulated pores that can be used for the interpretation of adsorption in disordered porous materials.

  14. Electrochemistry at the edge of a single graphene layer in a nanopore

    DEFF Research Database (Denmark)

    Banerjee, Sutanuka; Shim, Jeong; Rivera, J.

    2013-01-01

    We study the electrochemistry of single layer graphene edges using a nanopore-based structure consisting of stacked graphene and AlO dielectric layers. Nanopores, with diameters ranging from 5 to 20 nm, are formed by an electron beam sculpting process on the stacked layers. This leads to a unique...

  15. Co-delivery of ibuprofen and gentamicin from nanoporous anodic titanium dioxide layers.

    Science.gov (United States)

    Pawlik, Anna; Jarosz, Magdalena; Syrek, Karolina; Sulka, Grzegorz D

    2017-04-01

    Although single-drug therapy may prove insufficient in treating bacterial infections or inflammation after orthopaedic surgeries, complex therapy (using both an antibiotic and an anti-inflammatory drug) is thought to address the problem. Among drug delivery systems (DDSs) with prolonged drug release profiles, nanoporous anodic titanium dioxide (ATO) layers on Ti foil are very promising. In the discussed research, ATO samples were synthesized via a three-step anodization process in an ethylene glycol-based electrolyte with fluoride ions. The third step lasted 2, 5 and 10min in order to obtain different thicknesses of nanoporous layers. Annealing the as-prepared amorphous layers at the temperature of 400°C led to obtaining the anatase phase. In this study, water-insoluble ibuprofen and water-soluble gentamicin were used as model drugs. Three different drug loading procedures were applied. The desorption-desorption-diffusion (DDD) model of the drug release was fitted to the experimental data. The effects of crystalline structure, depth of TiO 2 nanopores and loading procedure on the drug release profiles were examined. The duration of the drug release process can be easily altered by changing the drug loading sequence. Water-soluble gentamicin is released for a long period of time if gentamicin is loaded in ATO as the first drug. Additionally, deeper nanopores and anatase phase suppress the initial burst release of drugs. These results confirm that factors such as morphological and crystalline structure of ATO layers, and the procedure of drug loading inside nanopores, allow to alter the drug release performance of nanoporous ATO layers. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    OpenAIRE

    Yunqi Li; Bishnu Prasad Bastakoti; Yusuke Yamauchi

    2016-01-01

    This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially p...

  17. Modified MIS-structure based on nanoporous silicon with enhanced sensitivity to the hydrogen containing gases

    Energy Technology Data Exchange (ETDEWEB)

    Gorbanyuk, T.; Evtukh, A.; Litovchenko, V.; Solntsev, V. [Institute of Semiconductor Physics, Kiev (Ukraine)

    2008-07-01

    The gas sensitivity of metal-insulator-semiconductor (MIS)-structures based on nanoporous silicon with active electrodes from palladium/tungsten oxide composite has been studied. It was found that the using of palladium/tungsten oxide composite (instead of thin palladium film) leads to enhanced sensitivity of MIS structures to hydrogen sulphide in air. The mechanism of this phenomenon has been established. The enhanced H{sub 2}S sensitivity is explained in the following way. The microparticles of tungsten trioxide inside palladium matrix stimulate the dissociation of hydrogen sulphide molecules, and hydrogen atoms and/or protons flow down to palladium surface, are absorbed by palladium volume, diffuse to palladium/oxidized nanoporous silicon interface. Hydrogen atoms adsorbed at the interface are polarized and give rise to a dipole layer. As a result, the voltage shift of the capacity-voltage (C-V) curve proportional to the measured gas concentration is observed. The surface microstructure of Pd/WO{sub 3} composite was studied by AFM microscopy. The chemical content of the composite film has been investigated by SIMS. It was found that the composite film on nanoporous silicon surface poses the holes with the size about 0.05 {mu}m, the mean separation between tungsten oxide microparticles is 1-2 {mu}m. It also was found that the using of the additional double layer polymer film (polymer film (phthalocyanine zinc)/semicon-ductor film (cadmium sulphide)) on composite film surface leads to the additional enhancement of the gas sensitivity to hydrogen sulphide. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. High-temperature nanoporous ceramic monolith prepared from a polymeric bicontinuous microemulsion template.

    Science.gov (United States)

    Jones, Brad H; Lodge, Timothy P

    2009-02-11

    Nanoporous ceramic with a unique pore structure was derived from an all-hydrocarbon polymeric bicontinuous microemulsion (BmuE). The BmuE was designed to allow facile removal of one phase, resulting in a nanoporous polymer monolith with BmuE-like structure. The pores were filled with a commercially available, polymeric precursor to nonoxide, Si-based ceramics. Pyrolysis resulted in a monolith of nanoporous ceramic, stable to at least 1000 degrees C, with a BmuE-like pore structure. The pore structure is disordered and 3-D continuous. Microscopy and gas sorption measurements suggest a well-defined pore size distribution spanning roughly 60-100 nm, sizes previously unattainable through related techniques.

  19. DeepSimulator: a deep simulator for Nanopore sequencing

    KAUST Repository

    Li, Yu

    2017-12-23

    Motivation: Oxford Nanopore sequencing is a rapidly developed sequencing technology in recent years. To keep pace with the explosion of the downstream data analytical tools, a versatile Nanopore sequencing simulator is needed to complement the experimental data as well as to benchmark those newly developed tools. However, all the currently available simulators are based on simple statistics of the produced reads, which have difficulty in capturing the complex nature of the Nanopore sequencing procedure, the main task of which is the generation of raw electrical current signals. Results: Here we propose a deep learning based simulator, DeepSimulator, to mimic the entire pipeline of Nanopore sequencing. Starting from a given reference genome or assembled contigs, we simulate the electrical current signals by a context-dependent deep learning model, followed by a base-calling procedure to yield simulated reads. This workflow mimics the sequencing procedure more naturally. The thorough experiments performed across four species show that the signals generated by our context-dependent model are more similar to the experimentally obtained signals than the ones generated by the official context-independent pore model. In terms of the simulated reads, we provide a parameter interface to users so that they can obtain the reads with different accuracies ranging from 83% to 97%. The reads generated by the default parameter have almost the same properties as the real data. Two case studies demonstrate the application of DeepSimulator to benefit the development of tools in de novo assembly and in low coverage SNP detection. Availability: The software can be accessed freely at: https://github.com/lykaust15/DeepSimulator.

  20. Optical chemical sensors for atmospheric pollutants based on nano porous materials: application to the formaldehyde and the other carbonyl compounds

    International Nuclear Information System (INIS)

    Paolacci, H.

    2006-12-01

    Formaldehyde, a well-identified indoor pollutant, was recently classified as carcinogenic. New regulations for the air quality are expected and therefore there is a need for low-cost sensors, sensitive and selective with a fast response time for the detection of formaldehyde at ppb level. In the present work, we had developed a chemical sensor based on nano-porous matrices doped with Fluoral-P and optical methods of detection. The nano-porous matrices, elaborated via the Sol-Gel process, display nano-pores whose cavity is tailored for the trapping of the targeted pollutant. They provide a first selectivity with the discrimination of the pollutants by their size. A second selectivity is obtained with a molecular probe, Fluoral-P, which reacts specifically with formaldehyde leading to the 3,5- di-acetyl-1,4-dihydro-lutidine (DDL). The kinetics of formation of DDL was studied as function of many parameters such as the concentration of Fluoral-P in the matrix, the pollutant content in gas mixture, the flow rate, the relative humidity of the gas mixtures and interference with other carbonylated compounds. The present chemical sensor can detect, via absorbance measurements, 2 ppb of formaldehyde within 30 min over a O to 60% relative humidity range. Moreover, to detect the total carbonylated compounds, we also explored the potentiality of a chemical sensor using, as a probe molecule, the 2'4-dinitro-phenyl-hydrazine which forms with these compounds the corresponding hydrazones derivatives. A patent was deposited for these two sensors. We have also developed a semi-miniaturized prototype for demonstration, using a flow cell, a miniaturized spectrophotometer, a light source and a lap-top. (author)

  1. Active sieving across driven nanopores for tunable selectivity

    Science.gov (United States)

    Marbach, Sophie; Bocquet, Lydéric

    2017-10-01

    Molecular separation traditionally relies on sieving processes across passive nanoporous membranes. Here we explore theoretically the concept of non-equilibrium active sieving. We investigate a simple model for an active noisy nanopore, where gating—in terms of size or charge—is externally driven at a tunable frequency. Our analytical and numerical results unveil a rich sieving diagram in terms of the forced gating frequency. Unexpectedly, the separation ability is strongly increased as compared to its passive (zero frequency) counterpart. It also points to the possibility of tuning dynamically the osmotic pressure. Active separation outperforms passive sieving and represents a promising avenue for advanced filtration.

  2. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kumaresa P S; Dhawale, Dattatray S; Ariga, Katsuhiko; Vinu, Ajayan [International Center for Materials Nanoarchitectonics (MANA), World Premier International (WPI) Research Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sivakumar, Thiripuranthagan [Department of Chemical Engineering, Anna University, Gundy, Chennai 600025 (India); Aldeyab, Salem S [Department of Chemistry, Petrochemicals Research Chair, Faculty of Science, King Saud University, PO Box 2455 Riyadh 11451 (Saudi Arabia); Zaidi, Javaid S M, E-mail: vinu.ajayan@nims.go.jp [Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2011-08-15

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g{sup -1} at a 20 mV s{sup -1} scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  3. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Science.gov (United States)

    Prasad, Kumaresa P. S.; Dhawale, Dattatray S.; Sivakumar, Thiripuranthagan; Aldeyab, Salem S.; Zaidi, Javaid S. M.; Ariga, Katsuhiko; Vinu, Ajayan

    2011-08-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  4. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Directory of Open Access Journals (Sweden)

    Kumaresa P S Prasad, Dattatray S Dhawale, Thiripuranthagan Sivakumar, Salem S Aldeyab, Javaid S M Zaidi, Katsuhiko Ariga and Ajayan Vinu

    2011-01-01

    Full Text Available We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD, high-resolution scanning electron microscopy (HRSEM and high-resolution transmission electron microscopy (HRTEM. XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  5. Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques

    Directory of Open Access Journals (Sweden)

    Jay K. Bhattarai

    2018-03-01

    Full Text Available Nanoporous gold (np-Au, because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing.

  6. Thermodynamics phase changes of nanopore fluids

    KAUST Repository

    Islam, Akand W.

    2015-07-01

    The van der Waals (vdW) equation (Eq.) is modified to describe thermodynamic of phase behavior of fluids confined in nanopore. Our aim is to compute pressures exerted by the fluid molecules and to investigate how they change due to pore proximity by assuming the pore wall is inert. No additional scaling of model parameters is imposed and original volume and energy parameters are used in the calculations. Our results clearly show the phase changes due to confinement. The critical shifts of temperatures and pressures are in good agreement compared to the laboratory data and molecular simulation. Peng-Robinson (PR) equation-of-state (EOS) has resulted in different effect than the vdW. This work delivers insights into the nature of fluid behavior in extremely low-permeability nanoporous media, especially in the tight shale reservoirs, below the critical temperatures. © 2015 Elsevier B.V.

  7. Thermodynamics phase changes of nanopore fluids

    KAUST Repository

    Islam, Akand W.; Patzek, Tadeusz; Sun, Alexander Y.

    2015-01-01

    The van der Waals (vdW) equation (Eq.) is modified to describe thermodynamic of phase behavior of fluids confined in nanopore. Our aim is to compute pressures exerted by the fluid molecules and to investigate how they change due to pore proximity by assuming the pore wall is inert. No additional scaling of model parameters is imposed and original volume and energy parameters are used in the calculations. Our results clearly show the phase changes due to confinement. The critical shifts of temperatures and pressures are in good agreement compared to the laboratory data and molecular simulation. Peng-Robinson (PR) equation-of-state (EOS) has resulted in different effect than the vdW. This work delivers insights into the nature of fluid behavior in extremely low-permeability nanoporous media, especially in the tight shale reservoirs, below the critical temperatures. © 2015 Elsevier B.V.

  8. Preparation of nanoporous activated carbon and its application as nano adsorbent for CO{sub 2} storage

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, Ali Morad; Kazemi, Davood; Izadi, Nosrat; Pourkhalil, Mahnaz; Jorsaraei, Abbas; Lotfi, Roghayeh [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of); Ganji, Enseyeh [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of)

    2016-02-15

    Nanoporous activated carbons, as adsorbent for CO{sub 2} storage, were prepared from walnut shells via two chemical processes including phosphoric acid treatment and KOH activation at high temperature. Specific surface area and porosities were controlled by KOH concentration and activation temperature. The obtained adsorbents were characterized by N2 adsorption at 77.3 K. Their carbon dioxide adsorption capacities were measured at different pressures at 290 K by using volumetric adsorption equipment. The KOH-treated nanoporous carbons typically led to the production of high specific surface areas and high micropore volumes and showed better performance for CO{sub 2} adsorptions. The maximum experimental value for adsorption capacity happened when pressure increased from 5 to 10 bar (1.861- 2.873mmol·g{sup -1}). It was found that in order to improve the highest capacity of CO{sub 2} adsorption for KOH-modified carbon (9.830-18.208mmol·g{sup -1}), a KOH: C weight ratio of 3.5 and activation temperature of 973 K were more suitable for pore development and micro-mesopore volume enhancement.

  9. Tuneable graphene nanopores for single biomolecule detection.

    Science.gov (United States)

    Al-Dirini, Feras; Mohammed, Mahmood A; Hossain, Md Sharafat; Hossain, Faruque M; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2016-05-21

    Solid-state nanopores are promising candidates for next generation DNA and protein sequencing. However, once fabricated, such devices lack tuneability, which greatly restricts their biosensing capabilities. Here we propose a new class of solid-state graphene-based nanopore devices that exhibit a unique capability of self-tuneability, which is used to control their conductance, tuning it to levels comparable to the changes caused by the translocation of a single biomolecule, and hence, enabling high detection sensitivities. Our presented quantum simulation results suggest that the smallest amino acid, glycine, when present in water and in an aqueous saline solution can be detected with high sensitivity, up to a 90% change in conductance. Our results also suggest that passivating the device with nitrogen, making it an n-type device, greatly enhances its sensitivity, and makes it highly sensitive to not only the translocation of a single biomolecule, but more interestingly to intramolecular electrostatics within the biomolecule. Sensitive detection of the carboxyl group within the glycine molecule, which carries a charge equivalent to a single electron, is achieved with a conductance change that reaches as high as 99% when present in an aqueous saline solution. The presented findings suggest that tuneable graphene nanopores, with their capability of probing intramolecular electrostatics, could pave the way towards a new generation of single biomolecule detection devices.

  10. Thermally and Chemically responsive nanoporous materials for efficient capture of fission product gases.

    Energy Technology Data Exchange (ETDEWEB)

    Stroeve, Pieter; Faller, Roland

    2018-04-24

    The objective of this project was to develop robust, high-efficiency materials for capture of fission product gases such as He, Xe and Kr in scenarios relevant for both reactor fuels and reprocessing operations. The relevant environments are extremely harsh, encompassing temperatures up to 1500 °C, high levels of radiation, as well as potential exposures to highly-reactive chemicals such as nitric acid and organic solvents such as kerosene. The requirement for nanostructured capture materials is driven in part by the very short (few micron) diffusion distances for product gases in nuclear fuel.1-2 We achieved synthesis, characterization and detailed modeling of the materials. Although not all materials reviewed in this report will be feasible for the ultimate goal of integration in nuclear fuel, nevertheless each material studied has particular properties which will enable an optimized material to be efficiently developed and characterized.

  11. Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework.

    Science.gov (United States)

    Salunkhe, Rahul R; Tang, Jing; Kamachi, Yuichiro; Nakato, Teruyuki; Kim, Jung Ho; Yamauchi, Yusuke

    2015-06-23

    Nanoporous carbon and nanoporous cobalt oxide (Co3O4) materials have been selectively prepared from a single metal-organic framework (MOF) (zeolitic imidazolate framework, ZIF-67) by optimizing the annealing conditions. The resulting ZIF-derived carbon possesses highly graphitic walls and a high specific surface area of 350 m(2)·g(-1), while the resulting ZIF-derived nanoporous Co3O4 possesses a high specific surface area of 148 m(2)·g(-1) with much less carbon content (1.7 at%). When nanoporous carbon and nanoporous Co3O4 were tested as electrode materials for supercapacitor application, they showed high capacitance values (272 and 504 F·g(-1), respectively, at a scan rate of 5 mV·s(-1)). To further demonstrate the advantages of our ZIF-derived nanoporous materials, symmetric (SSCs) and asymmetric supercapacitors (ASCs) were also fabricated using nanoporous carbon and nanoporous Co3O4 electrodes. Improved capacitance performance was successfully realized for the ASC (Co3O4//carbon), better than those of the SSCs based on nanoporous carbon and nanoporous Co3O4 materials (i.e., carbon//carbon and Co3O4//Co3O4). The developed ASC with an optimal mass loading can be operated within a wide potential window of 0.0-1.6 V, which leads to a high specific energy of 36 W·h·kg(-1). More interestingly, this ASC also exhibits excellent rate capability (with the highest specific power of 8000 W·kg(-1) at a specific energy of 15 W·h·kg(-1)) combined with long-term stability up to 2000 cycles.

  12. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore

    KAUST Repository

    Di Marino, Daniele

    2015-08-06

    © 2015 American Chemical Society. Nanopore sensing is attracting the attention of a large and varied scientific community. One of the main issues in nanopore sensing is how to associate the measured current signals to specific features of the molecule under investigation. This is particularly relevant when the translocating molecule is a protein and the pore is sufficiently narrow to necessarily involve unfolding of the translocating protein. Recent experimental results characterized the cotranslocational unfolding of Thioredoxin (Trx) passing through an α-hemolisin pore, providing evidence for the existence of a multistep process. In this study we report the results of all-atom molecular dynamics simulations of the same system. Our data indicate that Trx translocation involves two main barriers. The first one is an unfolding barrier associated with a translocation intermediate where the N-terminal region of Trx is stuck at the pore entrance in a conformation that strongly resembles the native one. After the abrupt unfolding of the N-terminal region, the Trx enters the α-hemolisin vestibule. During this stage, the constriction is occupied not only by the translocating residue but also by a hairpin-like structure forming a tangle in the constriction. The second barrier is associated with the disentangling of this region.

  13. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore

    KAUST Repository

    Di Marino, Daniele; Bonome, Emma Letizia; Tramontano, Anna; Chinappi, Mauro

    2015-01-01

    © 2015 American Chemical Society. Nanopore sensing is attracting the attention of a large and varied scientific community. One of the main issues in nanopore sensing is how to associate the measured current signals to specific features of the molecule under investigation. This is particularly relevant when the translocating molecule is a protein and the pore is sufficiently narrow to necessarily involve unfolding of the translocating protein. Recent experimental results characterized the cotranslocational unfolding of Thioredoxin (Trx) passing through an α-hemolisin pore, providing evidence for the existence of a multistep process. In this study we report the results of all-atom molecular dynamics simulations of the same system. Our data indicate that Trx translocation involves two main barriers. The first one is an unfolding barrier associated with a translocation intermediate where the N-terminal region of Trx is stuck at the pore entrance in a conformation that strongly resembles the native one. After the abrupt unfolding of the N-terminal region, the Trx enters the α-hemolisin vestibule. During this stage, the constriction is occupied not only by the translocating residue but also by a hairpin-like structure forming a tangle in the constriction. The second barrier is associated with the disentangling of this region.

  14. Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors.

    Science.gov (United States)

    Yang, Yang; Li, Lei; Ruan, Gedeng; Fei, Huilong; Xiang, Changsheng; Fan, Xiujun; Tour, James M

    2014-09-23

    A three-dimensional nanoporous Ni(OH)2 thin-film was hydrothermally converted from an anodically formed porous layer of nickel fluoride/oxide. The nanoporous Ni(OH)2 thin-films can be used as additive-free electrodes for energy storage. The nanoporous layer delivers a high capacitance of 1765 F g(-1) under three electrode testing. After assembly with porous activated carbon in asymmetric supercapacitor configurations, the devices deliver superior supercapacitive performances with capacitance of 192 F g(-1), energy density of 68 Wh kg(-1), and power density of 44 kW kg(-1). The wide working potential window (up to 1.6 V in 6 M aq KOH) and stable cyclability (∼90% capacitance retention over 10,000 cycles) make the thin-film ideal for practical supercapacitor devices.

  15. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold

    Science.gov (United States)

    Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils

    2016-06-01

    Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.

  16. Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates.

    Science.gov (United States)

    Lee, Hyun Jong; Kim, Dae Nyun; Park, Saemi; Lee, Yeol; Koh, Won-Gun

    2011-03-01

    In this paper, we describe a simple method for fabricating micropatterned nanoporous substrates that are capable of controlling the spatial positioning of mammalian cells. Micropatterned substrates were prepared by fabricating poly(ethylene glycol) (PEG) hydrogel microstructures on alumina membranes with 200 nm nanopores using photolithography. Because hydrogel precursor solution could infiltrate and become crosslinked within the nanopores, the resultant hydrogel micropatterns were firmly anchored on the substrate without the use of adhesion-promoting monolayers, thereby allow tailoring of the surface properties of unpatterned nanoporous areas. For mammalian cell patterning, arrays of microwells of different dimensions were fabricated. These microwells were composed of hydrophilic PEG hydrogel walls surrounding nanoporous bottoms that were modified with cell-adhesive Arg-Gly-Asp (RGD) peptides. Because the PEG hydrogel was non-adhesive towards proteins and cells, cells adhered selectively and remained viable within the RGD-modified nanoporous regions, thereby creating cellular micropatterns. Although the morphology of cell clusters and the number of cells inside one microwell were dependent on the lateral dimension of the microwells, adhered cells that were in direct contact with nanopores were able to penetrate into the nanopores by small extensions (filopodia) for all the different sizes of microwells evaluated. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Evolution of Surface Nanopores in Pressurised Gyrospun Polymeric Microfibers

    Directory of Open Access Journals (Sweden)

    U. Eranka Illangakoon

    2017-10-01

    Full Text Available The selection of a solvent or solvent system and the ensuing polymer–solvent interactions are crucial factors affecting the preparation of fibers with multiple morphologies. A range of poly(methylmethacrylate fibers were prepared by pressurised gyration using acetone, chloroform, N,N-dimethylformamide (DMF, ethyl acetate and dichloromethane as solvents. It was found that microscale fibers with surface nanopores were formed when using chloroform, ethyl acetate and dichloromethane and poreless fibers were formed when using acetone and DMF as the solvent. These observations are explained on the basis of the physical properties of the solvents and mechanisms of pore formation. The formation of porous fibers is caused by many solvent properties such as volatility, solubility parameters, vapour pressure and surface tension. Cross-sectional images show that the nanopores are only on the surface of the fibers and they were not inter-connected. Further, the results show that fibers with desired nanopores (40–400 nm can be prepared by carefully selecting the solvent and applied pressure in the gyration process.

  18. Selective Electrochemical Detection of Epinephrine Using Gold Nanoporous Film

    Directory of Open Access Journals (Sweden)

    Dina M. Fouad

    2016-01-01

    Full Text Available Epinephrine (EP is one of the important catecholamine neurotransmitters that play an important role in the mammalian central nervous system. Therefore, it is necessary to determine the change of its concentrations. Nanoporous materials have wide applications that include catalysis, energy storages, environmental pollution control, wastewater treatment, and sensing applications. These unique properties could be attributable to their high surface area, a large pore volume, and uniform pore sizes. A gold nanoporous layer modified gold electrode was prepared and applied for the selective determination of epinephrine neurotransmitter at low concentration in the presence of several other substances including ascorbic acid (AA and uric acid (UA. The constructed electrode was characterized using scanning electron microscopy and cyclic voltammetry. The resulting electrode showed a selective detection of epinephrine with the interferences of dopamine and uric acid over a wide linear range (from 50 μM to 1 mM. The coverage of gold nanoporous on the surface of gold electrode represents a promising electrochemical sensor with high selectivity and sensitivity.

  19. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Lu Zixing; Zhang Cungang; Liu Qiang; Yang Zhenyu

    2011-01-01

    In this paper, surface effects on the mechanical behaviour of nanoporous materials are investigated using the theory of surface elasticity and Timoshenko beam theory based on the tetrakaidecahedron (or Kelvin) open-cell foam model. Meanwhile, the influence of surface elasticity and residual surface stress on the mechanical properties of nanoporous materials is discussed. In addition, the results derived from the theory of Euler-Bernoulli beam model are also provided for comparison. Theoretical results show that the effective Young's modulus of the nanoporous materials increases as the diameter of the strut decreases, but in contrast Poisson's ratio and the brittle collapse strength decrease with the diameter of the strut. The contribution of shear deformation to surface effects on elastic properties is more significant, while the surface effects on brittle collapse strength are not sensitive to shear deformation, and it can even be neglected. As the strut size increases, the present results can be reduced to the cases without considering surface effects, which verifies the efficiency of the present model to a certain extent.

  20. Nanoporous Cu-C composites based on carbon-nanotube aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Charnvanichborikarn, S.; Shin, S. J.; Worsley, M. A.; Tran, I. C.; Willey, T. M.; van Buuren, T.; Felter, T. E.; Colvin, J. D.; Kucheyev, S. O. [LLNL; (Sandia)

    2013-11-22

    Current synthesis methods of nanoporous Cu–C composites offer limited control of the material composition, structure, and properties, particularly for large Cu loadings of ≳20 wt%. Here, we describe two related approaches to realize novel nanoporous Cu–C composites based on the templating of recently developed carbon-nanotube aerogels (CNT-CAs). Our first approach involves the trapping of Cu nanoparticles while CNT-CAs undergo gelation. This method yields nanofoams with relatively high densities of ≳65 mg cm-3 for Cu loadings of ≳10 wt%. Our second approach overcomes this limitation by filling the pores of undoped CNT-CA monoliths with an aqueous solution of CuSO4 followed by (i) freeze-drying to remove water and (ii) thermal decomposition of CuSO4. With this approach, we demonstrate Cu–C composites with a C matrix density of -25 mg cm-3 and Cu loadings of up to 70 wt%. These versatile methods could be extended to fabricate other nanoporous metal–carbon composite materials geared for specific applications.

  1. Nanoporous ionic organic networks: from synthesis to materials applications.

    Science.gov (United States)

    Sun, Jian-Ke; Antonietti, Markus; Yuan, Jiayin

    2016-11-21

    The past decade has witnessed rapid progress in the synthesis of nanoporous organic networks or polymer frameworks for various potential applications. Generally speaking, functionalization of porous networks to add extra properties and enhance materials performance could be achieved either during the pore formation (thus a concurrent approach) or by post-synthetic modification (a sequential approach). Nanoporous organic networks which include ion pairs bound in a covalent manner are of special importance and possess extreme application profiles. Within these nanoporous ionic organic networks (NIONs), here with a pore size in the range from sub-1 nm to 100 nm, we observe a synergistic coupling of the electrostatic interaction of charges, the nanoconfinement within pores and the addressable functional units in soft matter resulting in a wide variety of functions and applications, above all catalysis, energy storage and conversion, as well as environment-related operations. This review aims to highlight the recent progress in this area, and seeks to raise original perspectives that will stimulate future advancements at both the fundamental and applied level.

  2. Can nanofluidic chemical release enable fast, high resolution neurotransmitter-based neurostimulation?

    Directory of Open Access Journals (Sweden)

    Peter D Jones

    2016-03-01

    Full Text Available Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology — rather than microfluidic — will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission.This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years.

  3. Functional Nanoporous Polymers from Block Copolymer Precursors

    DEFF Research Database (Denmark)

    Guo, Fengxiao

    Abstract Self-assembly of block copolymers provides well-defined morphologies with characteristic length scales in the nanometer range. Nanoporous polymers prepared by selective removal of one block from self-assembled block copolymers offer great technological promise due to their many potential...... functionalities remains a great challenge due to the limitation of available polymer synthesis and the nanoscale confinement of the porous cavities. The main topic of this thesis is to develop methods for fabrication of functional nanoporous polymers from block copolymer precursors. A method has been developed......, where living anionic polymerization and atom transfer radical polymerization (ATRP) are combined to synthesize a polydimethylsiloxane-b-poly(tert-butyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer precursor. By using either anhydrous hydrogen fluoride or trifluoroacetic acid, PtBA block...

  4. Deformation behavior of nano-porous polycrystalline silver. Part II: Simulations

    International Nuclear Information System (INIS)

    Zabihzadeh, S.; Cugnoni, J.; Duarte, L.I.; Van Petegem, S.; Van Swygenhoven, H.

    2017-01-01

    Three-dimensional finite element simulations of nano-porous silver structures are performed to understand the correlation between the porous morphology and the mechanical behavior. The nanostructures have been obtained from ptychographic X-ray computed tomography. The simulations allow distinguishing between the interplay and role of the ligament size, the pore morphology and the porosity, and therefore provide a better comprehension of the experimental observations. We show that the proposed model has a predictive character for mechanical behavior of nano-porous silver.

  5. Water desalination with a single-layer MoS2 nanopore

    OpenAIRE

    Heiranian, Mohammad; Farimani, Amir Barati; Aluru, Narayana R.

    2015-01-01

    Efficient desalination of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60??2. Water flux is found to ...

  6. Where bio meets nano: The many uses for nanoporous aluminium oxide in biotechnology

    NARCIS (Netherlands)

    Ingham, C.J.; Maat, ter J.; Vos, de W.M.

    2012-01-01

    Porous aluminum oxide (PAO) is a ceramic formed by an anodization process of pure aluminum that enables the controllable assembly of exceptionally dense and regular nanopores in a planar membrane. As a consequence, PAO has a high porosity, nanopores with high aspect ratio, biocompatibility and the

  7. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    Directory of Open Access Journals (Sweden)

    Jiji Antony

    2006-01-01

    Full Text Available Nanoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7∘C. Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM. The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET process are size-dependent and compared with the calculated data.

  8. Nanoporous spongy graphene: Potential applications for hydrogen adsorption and selective gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Kostoglou, Nikolaos, E-mail: nikolaos.kostoglou@stud.unileoben.ac.at [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus); Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, 8700 Leoben (Austria); Constantinides, Georgios [Research Unit for Nanostructured Materials Systems, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 3036 Lemesos (Cyprus); Charalambopoulou, Georgia; Steriotis, Theodore [National Center for Scientific Research Demokritos, Agia Paraskevi Attikis, 15310 Athens (Greece); Polychronopoulou, Kyriaki [Department of Mechanical Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates); Li, Yuanqing; Liao, Kin [Department of Aerospace Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates); Ryzhkov, Vladislav [Nanotube Production Department, Fibrtec Incorporation, TX, 75551 Atlanta (United States); Mitterer, Christian [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, 8700 Leoben (Austria); Rebholz, Claus, E-mail: claus@ucy.ac.cy [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus)

    2015-12-01

    In the present work, a nanoporous (pore width ~ 0.7 nm) graphene-based sponge-like material with large surface area (~ 350 m{sup 2}/g) was synthesized by wet chemical reduction of graphene oxide in combination with freeze-drying. Surface morphology and elemental composition were studied by scanning and transmission electron microscopy combined with energy dispersive X-ray spectroscopy. Surface chemistry was qualitatively examined by Fourier-transform infrared spectroscopy, while the respective structure was investigated by X-ray diffraction analysis. Textural properties, including Brunauer–Emmet–Teller (BET) surface area, micropore volume and surface area as well as pore size distribution, were deduced from nitrogen gas adsorption/desorption data obtained at 77 K and up to 1 bar. Potential use of the spongy graphene for gas storage and separation applications was preliminarily assessed by low-pressure (0–1 bar) H{sub 2}, CO{sub 2} and CH{sub 4} sorption measurements at different temperatures (77, 273 and 298 K). The adsorption capacities for each gas were evaluated up to ~ 1 bar, the isosteric enthalpies of adsorption for CO{sub 2} (28–33 kJ/mol) and CH{sub 4} (30–38 kJ/mol) were calculated using the Clausius–Clapeyron equation, while the CO{sub 2}/CH{sub 4} gas selectivity (up to 95:1) was estimated using the Ideal Adsorbed Solution Theory (IAST). - Highlights: • Nanoporous sponge produced by chemical reduction of graphene oxide and freeze-drying • Characterization performed using SEM, EDS, TEM, FT-IR, BET and XRD methods • Gas storage performance evaluated towards H{sub 2}, CO{sub 2} and CH{sub 4} adsorption up to 1 bar • CO{sub 2} over CH{sub 4} gas selectivity estimated between 45 and 95 at 273 K using the IAST model.

  9. Nanoporous spongy graphene: Potential applications for hydrogen adsorption and selective gas separation

    International Nuclear Information System (INIS)

    Kostoglou, Nikolaos; Constantinides, Georgios; Charalambopoulou, Georgia; Steriotis, Theodore; Polychronopoulou, Kyriaki; Li, Yuanqing; Liao, Kin; Ryzhkov, Vladislav; Mitterer, Christian; Rebholz, Claus

    2015-01-01

    In the present work, a nanoporous (pore width ~ 0.7 nm) graphene-based sponge-like material with large surface area (~ 350 m"2/g) was synthesized by wet chemical reduction of graphene oxide in combination with freeze-drying. Surface morphology and elemental composition were studied by scanning and transmission electron microscopy combined with energy dispersive X-ray spectroscopy. Surface chemistry was qualitatively examined by Fourier-transform infrared spectroscopy, while the respective structure was investigated by X-ray diffraction analysis. Textural properties, including Brunauer–Emmet–Teller (BET) surface area, micropore volume and surface area as well as pore size distribution, were deduced from nitrogen gas adsorption/desorption data obtained at 77 K and up to 1 bar. Potential use of the spongy graphene for gas storage and separation applications was preliminarily assessed by low-pressure (0–1 bar) H_2, CO_2 and CH_4 sorption measurements at different temperatures (77, 273 and 298 K). The adsorption capacities for each gas were evaluated up to ~ 1 bar, the isosteric enthalpies of adsorption for CO_2 (28–33 kJ/mol) and CH_4 (30–38 kJ/mol) were calculated using the Clausius–Clapeyron equation, while the CO_2/CH_4 gas selectivity (up to 95:1) was estimated using the Ideal Adsorbed Solution Theory (IAST). - Highlights: • Nanoporous sponge produced by chemical reduction of graphene oxide and freeze-drying • Characterization performed using SEM, EDS, TEM, FT-IR, BET and XRD methods • Gas storage performance evaluated towards H_2, CO_2 and CH_4 adsorption up to 1 bar • CO_2 over CH_4 gas selectivity estimated between 45 and 95 at 273 K using the IAST model

  10. Detecting and identifying small molecules in a nanopore flux capacitor

    International Nuclear Information System (INIS)

    Bearden, Samuel; Zhang, Guigen; McClure, Ethan

    2016-01-01

    A new method of molecular detection in a metallic-semiconductor nanopore was developed and evaluated with experimental and computational methods. Measurements were made of the charging potential of the electrical double layer (EDL) capacitance as charge-carrying small molecules translocated the nanopore. Signals in the charging potential were found to be correlated to the physical properties of analyte molecules. From the measured signals, we were able to distinguish molecules with different valence charge or similar valence charge but different size. The relative magnitude of the signals from different analytes was consistent over a wide range of experimental conditions, suggesting that the detected signals are likely due to single molecules. Computational modeling of the nanopore system indicated that the double layer potential signal may be described in terms of disruption of the EDL structure due to the size and charge of the analyte molecule, in agreement with Huckel and Debye’s analysis of the electrical atmosphere of electrolyte solutions. (paper)

  11. Modeling of 1D Anomalous Diffusion in Fractured Nanoporous Media

    Directory of Open Access Journals (Sweden)

    Albinali Ali

    2016-07-01

    Full Text Available Fractured nanoporous reservoirs include multi-scale and discontinuous fractures coupled with a complex nanoporous matrix. Such systems cannot be described by the conventional dual-porosity (or multi-porosity idealizations due to the presence of different flow mechanisms at multiple scales. More detailed modeling approaches, such as Discrete Fracture Network (DFN models, similarly suffer from the extensive data requirements dictated by the intricacy of the flow scales, which eventually deter the utility of these models. This paper discusses the utility and construction of 1D analytical and numerical anomalous diffusion models for heterogeneous, nanoporous media, which is commonly encountered in oil and gas production from tight, unconventional reservoirs with fractured horizontal wells. A fractional form of Darcy’s law, which incorporates the non-local and hereditary nature of flow, is coupled with the classical mass conservation equation to derive a fractional diffusion equation in space and time. Results show excellent agreement with established solutions under asymptotic conditions and are consistent with the physical intuitions.

  12. Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges

    KAUST Repository

    Kim, Wun-gwi

    2013-12-01

    Membranes utilizing nanoporous one-dimensional (1D) and two-dimensional (2D) materials are emerging as attractive candidates for applications in molecular separations and related areas. Such nanotubular and nanolayered materials include carbon nanotubes, metal oxide nanotubes, layered zeolites, porous layered oxides, layered aluminophosphates, and porous graphenes. By virtue of their unique shape, size, and structure, they possess transport properties that are advantageous for membrane and thin film applications. These materials also have very different chemistry from more conventional porous 3D materials, due to the existence of a large, chemically active, external surface area. This feature also necessitates the development of innovative strategies to process these materials into membranes and thin films with high performance. This work provides the first comprehensive review of this emerging area. We first discuss approaches for the synthesis and structural characterization of nanoporous 1D and 2D materials. Thereafter, we elucidate different approaches for fabrication of membranes and thin films from these materials, either as multiphase (composite/hybrid) or single-phase membranes. The influence of surface chemistry and processing techniques on the membrane morphology is highlighted. We then discuss the applications of such membranes in areas relating to molecular transport and separation, e.g. gas and liquid-phase separations, water purification, and ion-conducting membranes. The review concludes with a discussion of the present outlook and some of the key scientific challenges to be addressed on the path to industrially applicable membranes containing nanoporous 1D and 2D materials. © 2013 Elsevier Ltd.

  13. Nanoporous materials for reducing the over potential of creating hydrogen by water electrolysis

    Science.gov (United States)

    Anderson, Marc A.; Leonard, Kevin C.

    2016-06-14

    Disclosed is an electrolyzer including an electrode including a nanoporous oxide-coated conducting material. Also disclosed is a method of producing a gas through electrolysis by contacting an aqueous solution with an electrode connected to an electrical power source, wherein the electrode includes a nanoporous oxide-coated conducting material.

  14. Swelling, Functionalization, and Structural Changes of the Nanoporous Layered Silicates AMH-3 and MCM-22

    KAUST Repository

    Kim, Wun-gwi

    2011-06-21

    Nanoporous layered silicate materials contain 2D-planar sheets of nanoscopic thickness and ordered porous structure. In comparison to porous 3D-framework materials such as zeolites, they have advantages such as significantly increased surface area and decreased diffusion limitations because the layers can potentially be exfoliated or intercalated into polymers to form nanocomposite materials. These properties are particularly interesting for applications as materials for enhancing molecular selectivity and throughput in composite membranes. In this report, the swelling and surface modification chemistry of two attractive nanoporous layered silicate materials, AMH-3 and MCM-22, were studied. We first describe a method, using long-chain diamines instead of monoamines, for swelling of AMH-3 while preserving its pore structure to a greater extent during the swelling process. Then, we describe a stepwise functionalization method for functionalizing the layer surfaces of AMH-3 and MCM-22 via silane condensation reactions. The covalently attached hydrocarbon chain molecules increased the hydrophobicity of AMH-3 and MCM-22 layer surfaces and therefore allow the possibility of effectively dispersing these materials in polymer matrices for thin film/membrane applications. © 2011 American Chemical Society.

  15. A nanoporous MXene film enables flexible supercapacitors with high energy storage.

    Science.gov (United States)

    Fan, Zhimin; Wang, Youshan; Xie, Zhimin; Xu, Xueqing; Yuan, Yin; Cheng, Zhongjun; Liu, Yuyan

    2018-05-14

    MXene films are attractive for use in advanced supercapacitor electrodes on account of their ultrahigh density and pseudocapacitive charge storage mechanism in sulfuric acid. However, the self-restacking of MXene nanosheets severely affects their rate capability and mass loading. Herein, a free-standing and flexible modified nanoporous MXene film is fabricated by incorporating Fe(OH)3 nanoparticles with diameters of 3-5 nm into MXene films and then dissolving the Fe(OH)3 nanoparticles, followed by low calcination at 200 °C, resulting in highly interconnected nanopore channels that promote efficient ion transport without compromising ultrahigh density. As a result, the modified nanoporous MXene film presents an attractive volumetric capacitance (1142 F cm-3 at 0.5 A g-1) and good rate capability (828 F cm-3 at 20 A g-1). Furthermore, it still displays a high volumetric capacitance of 749 F cm-3 and good flexibility even at a high mass loading of 11.2 mg cm-2. Therefore, this flexible and free-standing nanoporous MXene film is a promising electrode material for flexible, portable and compact storage devices. This study provides an efficient material design for flexible energy storage devices possessing high volumetric capacitance and good rate capability even at a high mass loading.

  16. Hemi-ordered nanoporous carbon electrode material for highly selective determination of nitrite in physiological and environmental systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shenghai; Wu, Hongmin; Wu, Ying; Shi, Hongyan; Feng, Xun; Jiang, Shang; Chen, Jian; Song, Wenbo, E-mail: wbsong@jlu.edu.cn

    2014-08-01

    Hemi-ordered nanoporous carbon (HONC) was obtained from a mesoporous silica template through a nano-replication method using furfuryl alcohol as the carbon source. The structure and morphology of HONC were characterized and analyzed in detail by X-ray diffraction, N{sub 2}-sorption, Raman spectroscopy and transmission electron microscopy. HONC was then demonstrated as active electrode material for selective determination of nitrite in either physiological or environmental system. Well separated oxidation peaks of ascorbic acid, dopamine, uric acid and nitrite were observed in physiological system, and simultaneous discrimination of catechol, hydroquinone, resorcinol and nitrite in environmental system was also accomplished. Distinctly improved performances for selective determination of nitrite (such as significantly fast and sensitive current response with especially high selectivity) coexisted with ascorbic acid, dopamine and uric acid in the physiological system, as well as with catechol, hydroquinone and resorcinol in the environmental system were achieved at HONC electrode material. The excellent discriminating ability and high selectivity for NO{sub 2}{sup −} determination were ascribed to the good electronic conductivity, unique hemi-ordered porous structure, large surface area and large number of edge plane defect sites contained on the surface of nanopore walls of HONC. Results in this work demonstrated that HONC is one of the promising catalytic electrode materials for nitrite sensor fabrication. - Highlights: • Hemi-ordered nanoporous carbon as an active electrode material • Good discriminating ability towards NO{sub 2}{sup −} from physiological or environmental system • Highly selective determination of nitrite with fast and sensitive current response.

  17. Sensing small neurotransmitter-enzyme interaction with nanoporous gated ion-sensitive field effect transistors.

    Science.gov (United States)

    Kisner, Alexandre; Stockmann, Regina; Jansen, Michael; Yegin, Ugur; Offenhäusser, Andreas; Kubota, Lauro Tatsuo; Mourzina, Yulia

    2012-01-15

    Ion-sensitive field effect transistors with gates having a high density of nanopores were fabricated and employed to sense the neurotransmitter dopamine with high selectivity and detectability at micromolar range. The nanoporous structure of the gates was produced by applying a relatively simple anodizing process, which yielded a porous alumina layer with pores exhibiting a mean diameter ranging from 20 to 35 nm. Gate-source voltages of the transistors demonstrated a pH-dependence that was linear over a wide range and could be understood as changes in surface charges during protonation and deprotonation. The large surface area provided by the pores allowed the physical immobilization of tyrosinase, which is an enzyme that oxidizes dopamine, on the gates of the transistors, and thus, changes the acid-base behavior on their surfaces. Concentration-dependent dopamine interacting with immobilized tyrosinase showed a linear dependence into a physiological range of interest for dopamine concentration in the changes of gate-source voltages. In comparison with previous approaches, a response time relatively fast for detecting dopamine was obtained. Additionally, selectivity assays for other neurotransmitters that are abundantly found in the brain were examined. These results demonstrate that the nanoporous structure of ion-sensitive field effect transistors can easily be used to immobilize specific enzyme that can readily and selectively detect small neurotransmitter molecule based on its acid-base interaction with the receptor. Therefore, it could serve as a technology platform for molecular studies of neurotransmitter-enzyme binding and drugs screening. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Origin of the electrophoretic force on DNA in solid-state nanopores

    Science.gov (United States)

    van Dorp, Stijn; Keyser, Ulrich F.; Dekker, Nynke H.; Dekker, Cees; Lemay, Serge G.

    2009-05-01

    Despite gel electrophoresis being one of the main workhorses of molecular biology, the physics of polyelectrolyte electrophoresis in a strongly confined environment remains poorly understood. Theory indicates that forces in electrophoresis result from interplay between ionic screening and hydrodynamics, but these ideas could so far be addressed only indirectly by experiments based on macroscopic porous gels. Here, we provide a first direct experimental test by measuring the electrophoretic force on a single DNA molecule threading through a solid-state nanopore as a function of pore size. The stall force gradually decreases on increasing the nanopore diameter from 6 to 90nm, inconsistent with expectations from simple electrostatics and strikingly demonstrating the influence of the hydrodynamic environment. We model this process by applying the coupled Poisson-Boltzmann and Stokes equations in the nanopore geometry and find good agreement with the experimental results.

  19. FABRICATION OF NANOPOROUS Ni VIA DEALLOYING OF ZINC-NICKEL COATINGS

    OpenAIRE

    Seda , Oturak

    2015-01-01

    Dealloying is a selective leaching of one component in a multicomponent alloy so as to produce a nanoporous structure. In this study, it was aimed to produce nanoporous Ni coating by selective leaching of Zn in a Zn-Ni alloy. To achieve this, first the Zn-Ni alloy was obtained by electrodeposition in a bath containing Zn and Ni salts. Then, dealloying was performed at different concentrations of NaOH solution. Dealloying led to crack formation in the coatings which thus prevented the formatio...

  20. A Scalable Route to Nanoporous Large-Area Atomically Thin Graphene Membranes by Roll-to-Roll Chemical Vapor Deposition and Polymer Support Casting.

    Science.gov (United States)

    Kidambi, Piran R; Mariappan, Dhanushkodi D; Dee, Nicholas T; Vyatskikh, Andrey; Zhang, Sui; Karnik, Rohit; Hart, A John

    2018-03-28

    Scalable, cost-effective synthesis and integration of graphene is imperative to realize large-area applications such as nanoporous atomically thin membranes (NATMs). Here, we report a scalable route to the production of NATMs via high-speed, continuous synthesis of large-area graphene by roll-to-roll chemical vapor deposition (CVD), combined with casting of a hierarchically porous polymer support. To begin, we designed and built a two zone roll-to-roll graphene CVD reactor, which sequentially exposes the moving foil substrate to annealing and growth atmospheres, with a sharp, isothermal transition between the zones. The configurational flexibility of the reactor design allows for a detailed evaluation of key parameters affecting graphene quality and trade-offs to be considered for high-rate roll-to-roll graphene manufacturing. With this system, we achieve synthesis of uniform high-quality monolayer graphene ( I D / I G casting and postprocessing, show size-selective molecular transport with performance comparable to that of membranes made from conventionally synthesized graphene. Therefore, this work establishes the feasibility of a scalable manufacturing process of NATMs, for applications including protein desalting and small-molecule separations.

  1. Enhancing the platinum atomic layer deposition infiltration depth inside anodic alumina nanoporous membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vaish, Amit, E-mail: anv@udel.edu; Krueger, Susan; Dimitriou, Michael; Majkrzak, Charles [National Institute of Standards and Technology (NIST) Center for Neutron Research, Gaithersburg, MD 20899-8313 (United States); Vanderah, David J. [Institute for Bioscience and Biotechnology Research, NIST, Rockville, Maryland 20850 (United States); Chen, Lei, E-mail: lei.chen@nist.gov [NIST Center for Nanoscale Science and Technology, Gaithersburg, Maryland 20899-8313 (United States); Gawrisch, Klaus [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2015-01-15

    Nanoporous platinum membranes can be straightforwardly fabricated by forming a Pt coating inside the nanopores of anodic alumina membranes (AAO) using atomic layer deposition (ALD). However, the high-aspect-ratio of AAO makes Pt ALD very challenging. By tuning the process deposition temperature and precursor exposure time, enhanced infiltration depth along with conformal coating was achieved for Pt ALD inside the AAO templates. Cross-sectional scanning electron microscopy/energy dispersive x-ray spectroscopy and small angle neutron scattering were employed to analyze the Pt coverage and thickness inside the AAO nanopores. Additionally, one application of platinum-coated membrane was demonstrated by creating a high-density protein-functionalized interface.

  2. Nanoporous Cu–Al–Co Alloys for Selective Furfural Hydrodeoxygenation to 2-Methylfuran

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, Gregory S.; Luc, Wesley; Lu, Qi; Zhou, Yang; Vlachos, Dionisios G.; Jiao, Feng (Delaware)

    2017-03-17

    By finding new catalysts for selective and efficient conversion of biomass-derived products to industrially relevant chemicals and fuels, a transition from fossil fuel feedstocks may be achieved. Furfural (C5H4O2) is a platform chemical which may be converted to multiple heterocyclic and ring-opening products, but to date there have been few catalysts which enable selective hydrodeoxygenation to 2-methylfuran (2-MF, C5H6O). Here, we present a self-supported nanoporous Cu–Al–Co ternary alloy catalyst with high furfural HDO activity toward 2-MF, achieving up to 66.0% selectivity and 98.2% overall conversion at 513 K with only a ~5 atomic % Co composition. Some further analysis over multiple temperature conditions and nominal Co concentrations was performed to examine optimal conditions and tune catalyst performance, and operando X-ray absorption spectroscopy experiments were conducted to elucidate the structure of the catalyst in the reaction environment.

  3. Multimodal nanoporous silica nanoparticles functionalized with aminopropyl groups for improving loading and controlled release of doxorubicin hydrochloride.

    Science.gov (United States)

    Wang, Xin; Li, Chang; Fan, Na; Li, Jing; He, Zhonggui; Sun, Jin

    2017-09-01

    The purpose of this study was to develop amino modified multimodal nanoporous silica nanoparticles (M-NSNs-NH 2 ) loaded with doxorubicin hydrochloride (DOX), intended to enhance the drug loading capacity and to achieve controlled release effect. M-NSNs were functionalized with aminopropyl groups through post-synthesis. The contribution of large pore sizes and surface chemical groups on DOX loading and release were systemically studied using transmission electron microscope (TEM), nitrogen adsorption/desorption measurement, Fourier transform infrared spectroscopy (FTIR), zeta potential analysis, X-ray photoelectron spectroscopy (XPS) and ultraviolet spectrophotometer (UV). The results demonstrated that the NSNs were functionalized with aminopropyl successfully and the DOX molecules were adsorbed inside the nanopores by the hydrogen bonding. The release performance indicated that DOX loaded M-NSNs significantly controlled DOX release, furthermore DOX loaded M-NSNs-NH 2 performed slower controlled release, which was mainly attributed to its stronger hydrogen bonding forces. As expected, we developed a novel carrier with high drug loading capacity and controlled release for DOX. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

    Energy Technology Data Exchange (ETDEWEB)

    RamIrez, Patricio [Departament de Fisica Aplicada, Universitat Politecnica de Valencia, E-46022 Valencia (Spain); Apel, Pavel Yu [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie street 6, 141980 Dubna (Russian Federation); Cervera, Javier; Mafe, Salvador [Departament de Fisica de la Terra i Termodinamica, Universitat de Valencia, E-46100 Burjassot (Spain)], E-mail: patraho@fis.upv.es

    2008-08-06

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  5. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

    International Nuclear Information System (INIS)

    RamIrez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafe, Salvador

    2008-01-01

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores

  6. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties.

    Science.gov (United States)

    Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador

    2008-08-06

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  7. Urea impedimetric biosensor based on reactive RF magnetron sputtered zinc oxide nanoporous transducer

    International Nuclear Information System (INIS)

    Mozaffari, Sayed Ahmad; Rahmanian, Reza; Abedi, Mohammad; Amoli, Hossein Salar

    2014-01-01

    Graphical abstract: - Highlights: • Application and optimization of reactive RF magnetron sputtering for homogeneous nanoporous ZnO thin film formation. • Exploiting nanoporous ZnO thin film as a good porous framework with large surface area/volume for having stable immobilized enzyme with minimum loss of activity. • Application of impedimetric assessment for urea biosensing due to its rapidity, sensitivity, and repeatability. - Abstract: Uniform sputtered nanoporous zinc oxide (Nano-ZnO) thin film on the conductive fluorinated-tin oxide (FTO) layer was applied to immobilize urease enzyme (Urs) for urea detection. Highly uniform nanoporous ZnO thin film were obtained by reactive radio frequency (RF) magnetron sputtering system at the optimized instrumental deposition conditions. Characterization of the surface morphology and roughness of ZnO thin film by field emission-scanning electron microscopy (FE-SEM) exhibits cavities of nanoporous film as an effective biosensing area for enzyme immobilization. Step by step monitoring of FTO/Nano-ZnO/Urs biosensor fabrication were performed using electrochemical methods such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Fabricated FTO/Nano-ZnO/Urs biosensor was used for urea determination using EIS experiments. The impedimetric results show high sensitivity for urea detection within 0.83–23.24 mM and limit of detection as 0.40 mM

  8. Low-Cost Chemical-Responsive Adhesive Sensing Chips.

    Science.gov (United States)

    Tan, Weirui; Zhang, Liyuan; Shen, Wei

    2017-12-06

    Chemical-responsive adhesive sensing chip is a new low-cost analytical platform that uses adhesive tape loaded with indicator reagents to detect or quantify the target analytes by directly sticking the tape to the samples of interest. The chemical-responsive adhesive sensing chips can be used with paper to analyze aqueous samples; they can also be used to detect and quantify solid, particulate, and powder analytes. The colorimetric indicators become immediately visible as the contact between the functionalized adhesives and target samples is made. The chemical-responsive adhesive sensing chip expands the capability of paper-based analytical devices to analyze solid, particulate, or powder materials via one-step operation. It is also a simpler alternative way, to the covalent chemical modification of paper, to eliminate indicator leaching from the dipstick-style paper sensors. Chemical-responsive adhesive chips can display analytical results in the form of colorimetric dot patterns, symbols, and texts, enabling clear understanding of assay results by even nonprofessional users. In this work, we demonstrate the analyses of heavy metal salts in silica powder matrix, heavy metal ions in water, and bovine serum albumin in an aqueous solution. The detection is one-step, specific, sensitive, and easy-to-operate.

  9. Effect of ultraviolet illumination and ambient gases on the photoluminescence and electrical properties of nanoporous silicon layer for organic vapor sensor.

    Science.gov (United States)

    Atiwongsangthong, Narin

    2012-08-01

    The purpose of this research, the nanoporous silicon layer were fabricated and investigated the physical properties such as photoluminescence and the electrical properties in order to develop organic vapor sensor by using nanoporous silicon. The Changes in the photoluminescence intensity of nanoporous silicon samples are studied during ultraviolet illumination in various ambient gases such as nitrogen, oxigen and vacuum. In this paper, the nanoporous silicon layer was used as organic vapor adsorption and sensing element. The advantage of this device are simple process compatible in silicon technology and usable in room temperature. The structure of this device consists of nanoporous silicon layer which is formed by anodization of silicon wafer in hydrofluoric acid solution and aluminum electrode which deposited on the top of nanoporous silicon layer by evaporator. The nanoporous silicon sensors were placed in a gas chamber with various organic vapor such as ethanol, methanol and isopropyl alcohol. From studying on electrical characteristics of this device, it is found that the nanoporous silicon layer can detect the different organic vapor. Therefore, the nanoporous silicon is important material for organic vapor sensor and it can develop to other applications about gas sensors in the future.

  10. Grating-coupled surface plasmon resonance gas sensing based on titania anatase nanoporous films

    Science.gov (United States)

    Gazzola, Enrico; Cittadini, Michela; Brigo, Laura; Brusatin, Giovanna; Guglielmi, Massimo; Romanato, Filippo; Martucci, Alessandro

    2015-08-01

    Nanoporous TiO2 anatase film has been investigated as sensitive layer in Surface Plasmon Resonance sensors for the detection of hydrogen and Volatile Organic Compounds, specifically methanol and isopropanol. The sensors consist of a TiO2 nanoporous matrix deposited above a metallic plasmonic grating, which can support propagating Surface Plasmon Polaritons. The spectral position of the plasmonic resonance dip in the reflectance spectra was monitored and correlated to the interaction with the target gases. Reversible blue-shifts of the resonance frequency, up to more than 2 THz, were recorded in response to the exposure to 10000 ppm of H2 in N2 at 300°C. This shift cannot be explained by the mere refractive index variation due to the target gas filling the pores, that is negligible. Reversible red-shifts were instead recorded in response to the exposure to 3000 ppm of methanol or isopropanol at room temperature, of magnitudes up to 14 THz and 9 THz, respectively. In contrast, if the only sensing mechanism was the mere pores filling, the shifts should have been larger during the isopropanol detection. We therefore suggest that other mechanisms intervene in the analyte/matrix interaction, capable to produce an injection of electrons into the sensitive matrix, which in turn induces a decrease of the refractive index.

  11. Non-aqueous nanoporous gold based supercapacitors with high specific energy

    International Nuclear Information System (INIS)

    Hou, Ying; Chen, Luyang; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    In this study, we report that the supercapacitor performance of polypyrrole (PPy) in non-aqueous electrolytes can be dramatically improved by highly conductive nanoporous gold which acts as both the support of active PPy and the current collector of supercapacitors. The excellent electronic conductivity, rich porous structure and large surface area of the nanoporous electrodes give rise to a high specific capacitance and low internal resistance in non-aqueous electrolytes. Combining with a wide working potential window of ~ 2 V, the non-aqueous PPy-based supercapacitors show an extraordinary energy density and power density.

  12. Titanium nitride stamps replicating nanoporous anodic alumina films

    International Nuclear Information System (INIS)

    Navas, D; Sanchez, O; Asenjo, A; Jaafar, M; Baldonedo, J L; Vazquez, M; Hernandez-Velez, M

    2007-01-01

    Fabrication of nanostructured TiN films by magnetron sputtering using nanoporous anodic alumina films (NAAF) as substrates is reported. These hard nanostructured films could be used for pre-patterning aluminium foils and to obtain nanoporous films replicating the starting NAAF over a wide range of pore diameters and spacings. Pre-patterned Al foils are obtained by compression with pressures lower than those previously reported, then a new NAAF can be fabricated by means of only one anodization process. As an example, one of the TiN stamps was used for pre-patterning an Al foil at a pressure of 200 kg cm -2 and then it was anodized in oxalic acid solution obtaining the corresponding replica of the starting NAAF

  13. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.

    Science.gov (United States)

    Guo, Wei; Tian, Ye; Jiang, Lei

    2013-12-17

    Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct

  14. Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-Ion Batteries.

    Science.gov (United States)

    Qiu, Bao; Yin, Chong; Xia, Yonggao; Liu, Zhaoping

    2017-02-01

    As rechargeable Li-ion batteries have expanded their applications into on-board energy storage for electric vehicles, the energy and power must be increased to meet the new demands. Li-rich layered oxides are one of the most promising candidate materials; however, it is very difficult to make them compatible with high volumetric energy density and power density. Here, we develop an innovative approach to synthesize three-dimensional (3D) nanoporous Li-rich layered oxides Li[Li 0.144 Ni 0.136 Co 0.136 Mn 0.544 ]O 2 , directly occurring at deep chemical delithiation with carbon dioxide. It is found that the as-prepared material presents a micrometer-sized spherical structure that is typically composed of interconnected nanosized subunits with narrow distributed pores at 3.6 nm. As a result, this unique 3D micro-/nanostructure not only has a high tap density over 2.20 g cm -3 but also exhibits excellent rate capability (197.6 mA h g -1 at 1250 mA g -1 ) as an electrode. The excellent electrochemical performance is ascribed to the unique nanoporous micro-nanostructures, which facilitates the Li + diffusion and enhances the structural stability of the Li-rich layered cathode materials. Our work offers a comprehensive designing strategy to construct 3D nanoporous Li-rich layered oxides for both high volumetric energy density and power density in Li-ion batteries.

  15. Amphotericin B channels in phospholipid membrane-coated nanoporous silicon surfaces: implications for photovoltaic driving of ions across membranes.

    Science.gov (United States)

    Yilma, Solomon; Liu, Nangou; Samoylov, Alexander; Lo, Ting; Brinker, C Jeffrey; Vodyanoy, Vitaly

    2007-03-15

    The antimycotic agent amphotericin B (AmB) functions by forming complexes with sterols to form ion channels that cause membrane leakage. When AmB and cholesterol mixed at 2:1 ratio were incorporated into phospholipid bilayer membranes formed on the tip of patch pipettes, ion channel current fluctuations with characteristic open and closed states were observed. These channels were also functional in phospholipid membranes formed on nanoporous silicon surfaces. Electrophysiological studies of AmB-cholesterol mixtures that were incorporated into phospholipid membranes formed on the surface of nanoporous (6.5 nm pore diameter) silicon plates revealed large conductance ion channels ( approximately 300 pS) with distinct open and closed states. Currents through the AmB-cholesterol channels on nanoporous silicon surfaces can be driven by voltage applied via conventional electrical circuits or by photovoltaic electrical potential entirely generated when the nanoporous silicon surface is illuminated with a narrow laser beam. Electrical recordings made during laser illumination of AmB-cholesterol containing membrane-coated nanoporous silicon surfaces revealed very large conductance ion channels with distinct open and closed states. Our findings indicate that nanoporous silicon surfaces can serve as mediums for ion-channel-based biosensors. The photovoltaic properties of nanoporous silicon surfaces show great promise for making such biosensors addressable via optical technologies.

  16. Using Synthetic Nanopores for Single-Molecule Analyses: Detecting SNPs, Trapping DNA Molecules, and the Prospects for Sequencing DNA

    Science.gov (United States)

    Dimitrov, Valentin V.

    2009-01-01

    This work focuses on studying properties of DNA molecules and DNA-protein interactions using synthetic nanopores, and it examines the prospects of sequencing DNA using synthetic nanopores. We have developed a method for discriminating between alleles that uses a synthetic nanopore to measure the binding of a restriction enzyme to DNA. There exists…

  17. Membrane separation using nano-pores; Nano poa wo riyoshita makubunri

    Energy Technology Data Exchange (ETDEWEB)

    Manabe, S. [Fukuoka Women`s Univ., Fukuoka (Japan)

    1995-08-01

    The membrane constituted by nano-pore only (NF membrane) is sold on the market recently as the membranes used for the matter separations in addition to the reverse osmosis membrane for changing seawater into fresh water, dialysis membrane used for artificial kidney, ultrafiltration membrane used for the separation and condensation of protein and the micro-filter used for removing microbe. It is possible for the membrane constituted by nano-pore to remove the virus with the size being from 20 to 300 nm. In this paper, the pore structure of NF membrane is explained, and then its application as the membrane for removing virus is described. Especially, it is possible for NF membrane to remove the virus with smallest size (parvovirus, etc.), prion albumen (bovine serum pathogen, etc.) and the special gene such as cancer, and it is further applied to the condensation and refining of virus and genes. The broader application of nano-pore to the control of the transportation of micro-particles in the future is expected. 3 refs., 2 figs.

  18. Nanoporous Membrane Technologies for Pathogen Collection, Separation, and Detection

    National Research Council Canada - National Science Library

    Lee, Sang W; Shang, Hao; Lee, Gil U; Griffin, Matthew T; Fulton, Jack

    2003-01-01

    Partial contents: Nanoporous Membranes, Membrane Chemistries, Characterization of Membrane Chemistries,Protein Fouling, Collector,Gas and Liquid Permeabilities, Membrane Permeabilities in the Presence of Water...

  19. Force fluctuations assist nanopore unzipping of DNA

    International Nuclear Information System (INIS)

    Viasnoff, V; Chiaruttini, N; Muzard, J; Bockelmann, U

    2010-01-01

    We experimentally study the statistical distributions and the voltage dependence of the unzipping time of 45 base-pair-long double-stranded DNA through a nanopore. We then propose a quantitative theoretical description considering the nanopore unzipping process as a random walk of the opening fork through the DNA sequence energy landscape biased by a time-fluctuating force. To achieve quantitative agreement fluctuations need to be correlated over the millisecond range and have an amplitude of order k B T/bp. Significantly slower or faster fluctuations are not appropriate, suggesting that the unzipping process is efficiently enhanced by noise in the kHz range. We further show that the unzipping time of short 15 base-pair hairpins does not always increase with the global stability of the double helix and we theoretically study the role of DNA elasticity on the conversion of the electrical bias into a mechanical unzipping force.

  20. Stability and Catalytic Kinetics of Horseradish Peroxidase Confined in Nanoporous SBA-15

    DEFF Research Database (Denmark)

    Ikemoto, Hediki; Chi, Qijin; Ulstrup, Jens

    2010-01-01

    We have synthesized nanoporous silica, SBA-15 in the 1 m size range with the pore diameter of 7.6 nm. The redox enzyme horseradish peroxidase (HRP) was entrapped in the pores to form nanostructured hybrid materials. The catalytic activity of free and immobilized enzyme was first compared at room...... likely due to different hydrogen bonding of water and increased hydration strength of the protein inside the nanopores....

  1. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    Directory of Open Access Journals (Sweden)

    Yunqi Li

    2016-04-01

    Full Text Available This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially polystyrene-block-poly(2-vinylpyridine-block-poly(ethylene oxide (abbreviated as PS-b-P2VP-b-PEO.

  2. Synthesis and catalytic properties of Pd nanoparticles loaded nanoporous TiO2 material

    International Nuclear Information System (INIS)

    Xu, Wence; Zhu, Shengli; Li, Zhaoyang; Cui, Zhenduo; Yang, Xianjin

    2013-01-01

    In the present work, Pd nanoparticles were loaded on the nanoporous TiO 2 material by a simple chemical deposition. The amount of Pd nanoparticles was determined by the loading times. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and chronoamperometry (CA) methods were used to characterize the surface morphology, composition and electro-catalyst activity of the nanoporous Pd/TiO 2 material. CV and CA results exhibited the excellent methanol electro-oxidation performance of 6 times loaded sample. The effects of methanol concentration, H 2 SO 4 concentration and upper scan limits on the electro-oxidation performance of six times loaded sample were investigated. In the solution with low methanol concentration, electro-oxidation of methanol was influenced by the amount of methanol molecules on Pd active sites. In the solution with high methanol concentration, electro-oxidation of methanol was controlled by intermediates diffusion. With increasing H 2 SO 4 concentration, driving force of methanol oxidation decreased. However, the increase of bisulfate adsorption, the reduction of thermodynamic tendency and solution conductivity would result in the suppression of peak current density. The upper scanning limit had obvious influence on the active sites for the methanol oxidation reaction in the backward scanning stage. The generation of PdO at high potential was undesired for methanol electro–oxidation

  3. Investigating the Nanoporous Structure of Aluminosilicate Geopolymers with Small Angle Scattering and Imaging Techniques

    International Nuclear Information System (INIS)

    Maitland, C.F.; Buckley, C.E.; O'Connor, B.H.; Rowles, M.R.; Hart, R.D.; Gilbert, E.P.; Connolly, J.

    2005-01-01

    Full text: Rowles and O'Connor optimised the compressive strength of a geopolymer produced by sodium silicate-activation of metakaolinite, and found that this material may have a greater compressive strength than ordinary Portland cement. It has been observed that similar metakaolin-based geopolymers have a multiscale structure that consists of partially dissolved metakaolinite embedded in a nanoporous matrix. The characteristics of the nanostructure within this matrix influence the physical properties of the geopolymer. An investigation, using small-angle neutron scattering and imaging techniques, into how the matrix nanostructure varies with chemical composition of the starting material has been undertaken. The results of this investigation will be reported. (authors)

  4. Characterization of nanoporous shales with gas sorption

    Science.gov (United States)

    Joewondo, N.; Prasad, M.

    2017-12-01

    The understanding of the fluid flow in porous media requires the knowledge of the pore system involved. Fluid flow in fine grained shales falls under different regime than transport regime in conventional reservoir due to the different average pore sizes in the two materials; the average pore diameter of conventional sandstones is on the micrometer scale, while of shales can be as small as several nanometers. Mercury intrusion porosimetry is normally used to characterize the pores of conventional reservoir, however with increasingly small pores, the injection pressure required to imbibe the pores becomes infinitely large due to surface tension. Characterization of pores can be expressed by a pore size distribution (PSD) plot, which reflects distribution of pore volume or surface area with respect to pore size. For the case of nanoporous materials, the surface area, which serves as the interface between the rock matrix and fluid, becomes increasingly large and important. Physisorption of gas has been extensively studied as a method of nanoporous solid characterization (particularly for the application of catalysis, metal organic frameworks, etc). The PSD is obtained by matching the experimental result to the calculated theoretical result (using Density Functional Theory (DFT), a quantum mechanics based modelling method for molecular scale interactions). We present the challenges and experimental result of Nitrogen and CO2 gas sorption on shales with various mineralogy and the interpreted PSD obtained by DFT method. Our result shows significant surface area contributed by the nanopores of shales, hence the importance of surface area measurements for the characterization of shales.

  5. Facile chemical synthesis of nanoporous layered δ-MnO{sub 2} thin film for high-performance flexible electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yu; Wang, Jun; Jiang, Xionghua; Zheng, Yanfeng [The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Chen, Zhenxing, E-mail: chenzx65@mail.sysu.edu.cn [The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2013-04-15

    Layered δ-MnO{sub 2} thin films with a three-dimensional nanostructure are successfully fabricated on stainless steel foil substrates for flexible electrochemical capacitors by a facile and effective chemical bath deposition technology from ethanol and potassium permanganate solution at 15 °C. The as-prepared thin films display nanoporous morphology and a water contact angle of 20°. Energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analyses reveal that the thin films are composed of δ-MnO{sub 2}. Electrochemical data demonstrate that the δ-MnO{sub 2} thin film electrodes can deliver a high special capacitance of 447 F/g at 2 mV/s, and provide a good capacitance retention ratio of 87% after 1000 continuous cycles at 10 mV/s in 0.5 M Na{sub 2}SO{sub 4}. Compressive and tensile bending tests show that the as-prepared electrodes can steadily work over a wide range of applied curvatures between −2.5 cm{sup −1} (tension) and 2.5 cm{sup −1} (compression). Only a small decrease in special capacitance (0.9% at a curvature of 2.5 cm{sup −1} under compressive strain, or 1.2% at a curvature of −2.5 cm{sup −1} under tensile strain) is observed even after bending for 200 cycles, indicating the excellent mechanical flexibility and electrochemical stability of the δ-MnO{sub 2} thin film electrodes.

  6. Electrical resistivity of nanoporous gold modified with thiol self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Hakamada, Masataka, E-mail: hakamada.masataka.3x@kyoto-u.ac.jp; Kato, Naoki, E-mail: katou.naoki.75w@st.kyoto-u.ac.jp; Mabuchi, Mamoru, E-mail: mabuchi@energy.kyoto-u.ac.jp

    2016-11-30

    Highlights: • Nanoporous gold is modified with thiol-containing self-assembled monolayers. • The electrical resistivity of the thiol-modified nanoporous gold increases. • The electrical resistivity increases with increasing thiol concentration. • Monolayer tail groups enhance the atmosphere dependence of electrical resistivity. - Abstract: The electrical resistivity of nanoporous gold (NPG) modified with thiol self-assembled monolayers (SAMs) has been measured at 298 K using a four-probe method. We found that the adsorption of thiol SAMs increases the electrical resistivity of NPG by up to 22.2%. Dependence of the electrical resistivity on the atmosphere (air or water) was also observed in SAMs-modified NPG, suggesting that the electronic states of the tail groups affect the electrons of the binding sulfur and adjacent surface gold atoms. The present results suggest that adsorption of thiol molecules can influence the behavior of the conducting electrons in NPG and that modification of NPG with SAMs may be useful for environmental sensing.

  7. Infrared Laser Heating Applied to Nanopore Sensing for DNA Duplex Analysis.

    Science.gov (United States)

    Angevine, Christopher E; Seashols-Williams, Sarah J; Reiner, Joseph E

    2016-03-01

    Temperature studies coupled with resistive-pulse nanopore sensing enable the quantification of a variety of important thermodynamic properties at the single-molecule limit. Previous demonstrations of nanopore sensing with temperature control have utilized bulk chamber heating methodologies. This approach makes it difficult to rapidly change temperatures and enable optical access for other analytical techniques (i.e., single-molecule fluorescence). To address these issues, researchers have explored laser-based methodologies through either direct infrared (IR) absorption or plasmonic assisted heating. In this paper, we demonstrate the use of IR-based direct absorption heating with the DNA sensing capabilities of a biological nanopore. The IR heating enables rapid changes of the temperature in and around an α-hemolysin pore, and we use this to explore melting properties for short (≤50 bp) double-stranded DNA homopolymers. We also demonstrate that the IR heating enables one to measure the percentage of different-sized DNA molecules in a binary mixture.

  8. Directed self-assembly of nanoporous metallic- and bimetallic nanoparticle thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Torsten [Fachbereich Physik, Universitaet Konstanz (Germany); Gindy, Nabil; Fahmi, Amir [Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham (United Kingdom)

    2010-07-01

    Nanoporous thin films attracted considerable interest due to potential applications in optical coatings, catalysis, sensors as well as electronic devices. Recently, such films were prepared by post deposition treatments. The present study is focused on the fabrication of nanoporous thin films via directed self-assembly of hybrid materials. Due to the nature of this process no additional treatments are necessary to develop the pores. Hierarchical nanoporous structures are fabricated directly via deposition of polymer templated Au-nanoparticles onto hydrophilic substrates. These films exhibit two different pore diameters and a total pore density of more than 10{sup 10} holes per cm{sup 2}. Control over the pore size is achieved by changing the molecular weight of the PS-b-P4VP diblock copolymer. Moreover, the porous morphology is used as a template to fabricate bimetallic nanostructured thin films. Such well-defined nanostructures, not only exhibit unique physical properties but also provide control over the hydrophobicity of the coated surfaces.

  9. Pt–Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores

    International Nuclear Information System (INIS)

    Pardon, Gaspard; Gatty, Hithesh K; Stemme, Göran; Wijngaart, Wouter van der; Roxhed, Niclas

    2013-01-01

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al 2 O 3 ) on Pt in nanopores to form a metal–insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al 2 O 3 layer on such a Pt film forms a metal–insulator–electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al 2 O 3 using ALD. (paper)

  10. Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores

    Science.gov (United States)

    Pardon, Gaspard; Gatty, Hithesh K.; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas

    2013-01-01

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al2O3) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al2O3 layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al2O3 using ALD.

  11. Charging dynamics of supercapacitors with narrow cylindrical nanopores

    Science.gov (United States)

    Lee, Alpha A.; Kondrat, Svyatoslav; Oshanin, Gleb; Kornyshev, Alexei A.

    2014-08-01

    We present a coarse-grained, continuum kinetic theory for charging supercapacitors with narrow cylindrical nanopores. The theory reveals that the occupancy of a nonpolarized pore and the energy barrier for ion-ion interdiffusion are the key issues controlling the different regimes of dynamic response. For ‘ionophobic’ pores, where the pore is empty at no applied voltage, charge density advances into the pore via diffusion-like dynamics. The mechanism of charging an ‘ionophilic’ pore is starkly different: for moderate ionophilicities, co-ions are expelled from the pore in a front-like manner, with significant ‘congestion’ at the pore entrance predicted for strong ionophilicity. We thus show that pore ionophilicity is detrimental to the speed of charging/discharging cycles, whereas making pores more ionophobic can substantially accelerate charging and cyclic recharging.

  12. InP nanopore arrays for photoelectrochemical hydrogen generation.

    Science.gov (United States)

    Li, Qiang; Zheng, Maojun; Zhang, Bin; Zhu, Changqing; Wang, Faze; Song, Jingnan; Zhong, Miao; Ma, Li; Shen, Wenzhong

    2016-02-19

    We report a facile and large-scale fabrication of highly ordered one-dimensional (1D) indium phosphide (InP) nanopore arrays (NPs) and their application as photoelectrodes for photoelectrochemical (PEC) hydrogen production. These InP NPs exhibit superior PEC performance due to their excellent light-trapping characteristics, high-quality 1D conducting channels and large surface areas. The photocurrent density of optimized InP NPs is 8.9 times higher than that of planar counterpart at an applied potential of +0.3 V versus RHE under AM 1.5G illumination (100 mW cm(-2)). In addition, the onset potential of InP NPs exhibits 105 mV of cathodic shift relative to planar control. The superior performance of the nanoporous samples is further explained by Mott-Schottky and electrochemical impedance spectroscopy ananlysis.

  13. DNA base-calling from a nanopore using a Viterbi algorithm.

    Science.gov (United States)

    Timp, Winston; Comer, Jeffrey; Aksimentiev, Aleksei

    2012-05-16

    Nanopore-based DNA sequencing is the most promising third-generation sequencing method. It has superior read length, speed, and sample requirements compared with state-of-the-art second-generation methods. However, base-calling still presents substantial difficulty because the resolution of the technique is limited compared with the measured signal/noise ratio. Here we demonstrate a method to decode 3-bp-resolution nanopore electrical measurements into a DNA sequence using a Hidden Markov model. This method shows tremendous potential for accuracy (~98%), even with a poor signal/noise ratio. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Discriminating Bacteria with Optical Sensors Based on Functionalized Nanoporous Xerogels

    Directory of Open Access Journals (Sweden)

    Sabine Crunaire

    2014-06-01

    Full Text Available An innovative and low-cost method is proposed for the detection and discrimination of indole-positive pathogen bacteria. The method allows the non-invasive detection of gaseous indole, released by bacteria, with nanoporous colorimetric sensors. The innovation comes from the use of nanoporous matrices doped with 4-(dimethylamino-cinnamaldehyde, which act as sponges to trap and concentrate the targeted analyte and turn from transparent to dark green, long before the colonies get visible with naked eyes. With such sensors, it was possible to discriminate E. coli from H. alvei, two indole-positive and negative bacteria after seven hours of incubation.

  15. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    Science.gov (United States)

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-06-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  16. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery.

    Science.gov (United States)

    Hu, H W; Tang, G H; Niu, D

    2016-06-07

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  17. Unique Three-Dimensional InP Nanopore Arrays for Improved Photoelectrochemical Hydrogen Production.

    Science.gov (United States)

    Li, Qiang; Zheng, Maojun; Ma, Liguo; Zhong, Miao; Zhu, Changqing; Zhang, Bin; Wang, Faze; Song, Jingnan; Ma, Li; Shen, Wenzhong

    2016-08-31

    Ordered three-dimensional (3D) nanostructure arrays hold promise for high-performance energy harvesting and storage devices. Here, we report the fabrication of InP nanopore arrays (NPs) in unique 3D architectures with excellent light trapping characteristic and large surface areas for use as highly active photoelectrodes in photoelectrochemical (PEC) hydrogen evolution devices. The ordered 3D NPs were scalably synthesized by a facile two-step etching process of (1) anodic etching of InP in neutral 3 M NaCl electrolytes to realize nanoporous structures and (2) wet chemical etching in HCl/H3PO4 (volume ratio of 1:3) solutions for removing the remaining top irregular layer. Importantly, we demonstrated that the use of neutral electrolyte of NaCl instead of other solutions, such as HCl, in anodic etching of InP can significantly passivate the surface states of 3D NPs. As a result, the maximum photoconversion efficiency obtained with ∼15.7 μm thick 3D NPs was 0.95%, which was 7.3 and 1.4 times higher than that of planar and 2D NPs. Electrochemical impedance spectroscopy and photoluminescence analyses further clarified that the improved PEC performance was attributed to the enhanced charge transfer across 3D NPs/electrolyte interfaces, the improved charge separation at 3D NPs/electrolyte junction, and the increased PEC active surface areas with our unique 3D NP arrays.

  18. Optimizing adsorption of blue pigment from wastewater by nano-porous modified Na-bentonite using spectrophotometry based on response surface method

    Science.gov (United States)

    Moradi, Neshat; Salem, Shiva; Salem, Amin

    2018-03-01

    This work highlighted the effective activation of bentonite paste to produce nano-porous powder for removal of cationic dye from wastewater. The effects of activation parameters such as soda and moisture contents, ageing time and temperature were analyzed using response surface methodology (RSM). The significance of independent variables and their interactions were tested by blending the obtained powders with wastewater and then the adsorption was evaluated, spectrophotometrically. The experiments were carried out by preparation of pastes according to response surface methodology and central composite design, which is the standard method, was used to evaluate the effects and interactions of four factors on the treatment efficiency. RSM was demonstrated as an appropriate approach for optimization of alkali activation. The optimal conditions obtained from the desirable responses were 5.0 wt% soda and 45.0 wt% moisture, respectively in which the powder activation was carried out at 150 °C. In order to well understand the role of nano-structured material on dye removal, the adsorbents were characterized through X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and Brunauer-Emmett-Teller surface area measurement. Finally, the analysis clearly demonstrates that the dye removal onto prepared adsorbent is well fitted with Langmuir isotherm compared to the other isotherm models. The low cost of material and facile process support the further development for commercial application purpose.

  19. Non-dissipative energy capture of confined liquid in nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Baoxing; Chen, Xi [Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027 (United States); Lu, Weiyi; Zhao, Cang [Department of Structural Engineering, University of California–San Diego, La Jolla, California 92093-0085 (United States); Qiao, Yu, E-mail: yqiao@ucsd.edu [Department of Structural Engineering, University of California–San Diego, La Jolla, California 92093-0085 (United States); Program of Materials Science and Engineering, University of California–San Diego, La Jolla, CA 92093 (United States)

    2014-05-19

    In the past, energy absorption of protection/damping materials is mainly based on energy dissipation, which causes a fundamental conflict between the requirements of safety/comfort and efficiency. In the current study, a nanofluidic “energy capture” system is reported, which is based on nanoporous materials and nonwetting liquid. Both molecular dynamics simulations and experiments show that as the liquid overcomes the capillary effect and infiltrates into the nanopores, the mechanical energy of a stress wave could be temporarily stored by the confined liquid phase and isolated from the wave energy transmission path. Such a system can work under a relatively low pressure for mitigating high-pressure stress waves, not necessarily involved in any energy dissipation processes.

  20. Non-dissipative energy capture of confined liquid in nanopores

    International Nuclear Information System (INIS)

    Xu, Baoxing; Chen, Xi; Lu, Weiyi; Zhao, Cang; Qiao, Yu

    2014-01-01

    In the past, energy absorption of protection/damping materials is mainly based on energy dissipation, which causes a fundamental conflict between the requirements of safety/comfort and efficiency. In the current study, a nanofluidic “energy capture” system is reported, which is based on nanoporous materials and nonwetting liquid. Both molecular dynamics simulations and experiments show that as the liquid overcomes the capillary effect and infiltrates into the nanopores, the mechanical energy of a stress wave could be temporarily stored by the confined liquid phase and isolated from the wave energy transmission path. Such a system can work under a relatively low pressure for mitigating high-pressure stress waves, not necessarily involved in any energy dissipation processes.

  1. Supercapacitive transport of pharmacologic agents using nanoporous gold electrodes.

    Science.gov (United States)

    Gittard, Shaun D; Pierson, Bonnie E; Ha, Cindy M; Wu, Chung-An Max; Narayan, Roger J; Robinson, David B

    2010-02-01

    In this study, nanoporous gold supercapacitors were produced by electrochemical dealloying of gold-silver alloy. Scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed completion of the dealloying process and generation of a porous gold material with approximately 10 nm diameter pores. Cyclic voltammetry and chronoamperometry of the nanoporous gold electrodes indicated that these materials exhibited supercapacitor behavior. The storage capacity of the electrodes measured by chronoamperometry was approximately 3 mC at 200 mV. Electrochemical storage and voltage-controlled delivery of two model pharmacologic agents, benzylammonium and salicylic acid, was demonstrated. These results suggest that capacitance-based storage and delivery of pharmacologic agents may serve as an alternative to conventional drug delivery methods.

  2. Tuning ligament shape in dealloyed nanoporous tin and the impact of nanoscale morphology on its applications in Na-ion alloy battery anodes

    Science.gov (United States)

    Detsi, Eric; Petrissans, Xavier; Yan, Yan; Cook, John B.; Deng, Ziling; Liang, Yu-Lun; Dunn, Bruce; Tolbert, Sarah H.

    2018-05-01

    Control over the morphology of nanostructured materials is of primary importance in structure-property relationship studies. Although the size of ligaments and pores in dealloyed nanoporous metals can be controlled by thermal and/or (electro)chemical treatments, tuning the shape of those ligaments is much harder. In the present work, we use corroding media with different reactivity to effectively tailor the ligament shape in nanoporous tin (NP-Sn) during dealloying by free corrosion. NP-Sn architectures with nanowire and granular ligament shapes were made by controlling the pH of the corroding solution, and thus the rate of Sn oxidation relative to the etching rate of the sacrificial component. The standard nanowire structure was formed under acidic conditions where oxidation was slow, but a hierarchical granular structure was formed when fusion of the Sn nanocrystals was inhibited by surface oxidation. To demonstrate the advantages of this architectural control, these two materials systems were investigated as electrodes for Na-ion battery anodes. Similar initial Na storage capacities of ˜500 and 550 mAh/g were achieved in the nanowire and granular materials, respectively, but the cycle life of the two materials was quite different. NP-Sn with a granular ligament shape showed enhanced stability with a capacity retention of ˜55 % over 95 cycles at a specific current of 40 mA/g. By contrast, NP-Sn with a nanowire ligament shape showed very fast capacity fading within the first 10 cycles. This work thus demonstrates the dramatic impact of the nanoscale morphology on the electrochemical performance of nanoporous materials and highlights the need for both shape and size control in dealloyed nanoporous metals.

  3. Carbon nanotube-based coatings to induce flow enhancement in hydrophilic nanopores

    DEFF Research Database (Denmark)

    Wagemann, Enrique; Walther, Jens Honore; Zambrano, Harvey

    2016-01-01

    With the emergence of the field of nanofluidics, the transport of water in hydrophilic nanopores has attracted intensive research due to its many promising applications. Experiments and simulations have found that flow resistance in hydrophilic nanochannels is much higher than those in macrochann......With the emergence of the field of nanofluidics, the transport of water in hydrophilic nanopores has attracted intensive research due to its many promising applications. Experiments and simulations have found that flow resistance in hydrophilic nanochannels is much higher than those...

  4. Water flow in carbon-based nanoporous membranes impacted by interactions between hydrated ions and aromatic rings.

    Science.gov (United States)

    Liu, Jian; Shi, Guosheng; Fang, Haiping

    2017-02-24

    Carbon-based nanoporous membranes, such as carbon nanotubes (CNTs), graphene/graphene oxide and graphyne, have shown great potential in water desalination and purification, gas and ion separation, biosensors, and lithium-based batteries, etc. A deep understanding of the interaction between hydrated ions in an aqueous solution and the graphitic surface in systems composed of water, ions and a graphitic surface is essential for applications with carbon-based nanoporous membrane platforms. In this review, we describe the recent progress of the interaction between hydrated ions and aromatic ring structures on the carbon-based surface and its applications in the water flow in a carbon nanotube. We expect that these works can be extended to the understanding of water flow in other nanoporous membranes, such as nanoporous graphene, graphyne and stacked sheets of graphene oxide.

  5. Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores.

    Science.gov (United States)

    Li, Juan; Li, Congshan; Chen, Cheng; Hao, Qingli; Wang, Zhijia; Zhu, Jie; Gao, Xuefeng

    2012-10-24

    We report a facile nanofabrication method, one-step hard anodizing and etching peeling (OS-HA-EP) of aluminum foils followed by multistep mild anodizing and etching pore-widening (MS-MA-EW), for the controllable tailoring of hexagonally packed three-dimensional alumina taper-nanopores. Their profiles can be precisely tailored by the synergistic control of anodizing time, etching time and cyclic times at the MS-MA-EW stage, exemplified by linear cones, whorl-embedded cones, funnels, pencils, parabolas, and trumpets. Meantime, their periods can also be modulated in the range of 70-370 nm by choosing matched anodizing electrolytes (e.g., H(2)C(2)O(4), H(2)SO(4), H(2)C(2)O(4)-H(2)SO(4), and H(2)C(2)O(4)-C(2)H(5)OH mixture) and anodizing voltages at the OS-HA-EP stage. We also demonstrated that the long-range ordering of nanopits and the peak voltage of stable self-ordered HA, which are unachievable in a single H(2)C(2)O(4) electrolyte system, can be effectively tuned by simply adding tiny quantity of H(2)SO(4) and C(2)H(5)OH to keep an appropriate HA current density, respectively. This method of using the combination of simple pure chemical nanofabrication technologies is very facile and efficient in realizing the controllable tailoring of large-area alumina membranes containing self-ordered taper-nanopores. Our work opens a door for exploring the novel physical and chemical properties of different materials of nanotaper arrays.

  6. A Nanoporous Carbon/Exfoliated Graphite Composite For Supercapacitor Electrodes

    Science.gov (United States)

    Rosi, Memoria; Ekaputra, Muhamad P.; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal

    2010-12-01

    Nanoporous carbon was prepared from coconut shells using a simple heating method. The nanoporous carbon is subjected to different treatments: without activation, activation with polyethylene glycol (PEG), and activation with sodium hydroxide (NaOH)-PEG. The exfoliated graphite was synthesized from graphite powder oxidized with zinc acetate (ZnAc) and intercalated with polyvinyl alcohol (PVA) and NaOH. A composite was made by mixing the nanoporous carbon with NaOH-PEG activation, the exfoliated graphite and a binder of PVA solution, grinding the mixture, and annealing it using ultrasonic bath for 1 hour. All of as-synthesized materials were characterized by employing a scanning electron microscope (SEM), a MATLAB's image processing toolbox, and an x-ray diffractometer (XRD). It was confirmed that the composite is crystalline with (002) and (004) orientations. In addition, it was also found that the composite has a high surface area, a high distribution of pore sizes less than 40 nm, and a high porosity (67%). Noting that the pore sizes less than 20 nm are significant for ionic species storage and those in the range of 20 to 40 nm are very accessible for ionic clusters mobility across the pores, the composite is a promising material for the application as supercapacitor electrodes.

  7. Chemical Leasing business models and corporate social responsibility.

    Science.gov (United States)

    Moser, Frank; Jakl, Thomas; Joas, Reihard; Dondi, Francesco

    2014-11-01

    Chemical Leasing is a service-oriented business model that shifts the focus from increasing sales volume of chemicals towards a value-added approach. Recent pilot projects have shown the economic benefits of introducing Chemical Leasing business models in a broad range of sectors. A decade after its introduction, the promotion of Chemical Leasing is still predominantly done by the public sector and international organizations. We show in this paper that awareness-raising activities to disseminate information on this innovative business model mainly focus on the economic benefits. We argue that selling Chemical Leasing business models solely on the grounds of economic and ecological considerations falls short of branding it as a corporate social responsibility initiative, which, for this paper, is defined as a stakeholder-oriented concept that extends beyond the organization's boundaries and is driven by an ethical understanding of the organization's responsibility for the impact of its business activities. For the analysis of Chemical Leasing business models, we introduce two case studies from the water purification and metal degreasing fields, focusing on employees and local communities as two specific stakeholder groups of the company introducing Chemical Leasing. The paper seeks to demonstrate that Chemical Leasing business models can be branded as a corporate social responsibility initiative by outlining the vast potential of Chemical Leasing to improve occupational health and safety and to strengthen the ability of companies to protect the environment from the adverse effects of the chemicals they apply.

  8. Realisation and optical engineering of linear variable bandpass filters in nanoporous anodic alumina photonic crystals.

    Science.gov (United States)

    Sukarno; Law, Cheryl Suwen; Santos, Abel

    2017-06-08

    We present the first realisation of linear variable bandpass filters in nanoporous anodic alumina (NAA-LVBPFs) photonic crystal structures. NAA gradient-index filters (NAA-GIFs) are produced by sinusoidal pulse anodisation and used as photonic crystal platforms to generate NAA-LVBPFs. The anodisation period of NAA-GIFs is modified from 650 to 850 s to systematically tune the characteristic photonic stopband of these photonic crystals across the UV-visible-NIR spectrum. Then, the nanoporous structure of NAA-GIFs is gradually widened along the surface under controlled conditions by wet chemical etching using a dip coating approach aiming to create NAA-LVBPFs with finely engineered optical properties. We demonstrate that the characteristic photonic stopband and the iridescent interferometric colour displayed by these photonic crystals can be tuned with precision across the surface of NAA-LVBPFs by adjusting the fabrication and etching conditions. Here, we envisage for the first time the combination of the anodisation period and etching conditions as a cost-competitive, facile, and versatile nanofabrication approach that enables the generation of a broad range of unique LVBPFs covering the spectral regions. These photonic crystal structures open new opportunities for multiple applications, including adaptive optics, hyperspectral imaging, fluorescence diagnostics, spectroscopy, and sensing.

  9. Capacitance-Power-Hysteresis Trilemma in Nanoporous Supercapacitors

    Directory of Open Access Journals (Sweden)

    Alpha A. Lee

    2016-06-01

    Full Text Available Nanoporous supercapacitors are an important player in the field of energy storage that fill the gap between dielectric capacitors and batteries. The key challenge in the development of supercapacitors is the perceived trade-off between capacitance and power delivery. Current efforts to boost the capacitance of nanoporous supercapacitors focus on reducing the pore size so that they can only accommodate a single layer of ions. However, this tight packing compromises the charging dynamics and hence power density. We show via an analytical theory and Monte Carlo simulations that charging is sensitively dependent on the affinity of ions to the pores, and that high capacitances can be obtained for ionophobic pores of widths significantly larger than the ion diameter. Our theory also predicts that charging can be hysteretic with a significant energy loss per cycle for intermediate ionophilicities. We use these observations to explore the parameter regimes in which a capacitance-power-hysteresis trilemma may be avoided.

  10. Nanoporous Cyclic Brush Polymers for Selective Carbon Dioxide Capture

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed work is to develop advanced synthetic methodologies that afford nanoporous materials with selective uptake affinity towards carbon...

  11. Functional nanostructured platforms for chemical and biological sensing

    Science.gov (United States)

    Létant, S. E.

    2006-05-01

    The central goal of our work is to combine semiconductor nanotechnology and surface functionalization in order to build platforms for the selective detection of bio-organisms ranging in size from bacteria (micron range) down to viruses, as well as for the detection of chemical agents (nanometer range). We will show on three porous silicon platforms how pore geometry and pore wall chemistry can be combined and optimized to capture and detect specific targets. We developed a synthetic route allowing to directly anchor proteins on silicon surfaces and illustrated the relevance of this technique by immobilizing live enzymes onto electrochemically etched luminescent nano-porous silicon. The powerful association of the specific enzymes with the transducing matrix led to a selective hybrid platform for chemical sensing. We also used light-assisted electrochemistry to produce periodic arrays of through pores on pre-patterned silicon membranes with controlled diameters ranging from many microns down to tens of nanometers. We demonstrated the first covalently functionalized silicon membranes and illustrated their selective capture abilities with antibody-coated micro-beads. These engineered membranes are extremely versatile and could be adapted to specifically recognize the external fingerprints (size and coat composition) of target bio-organisms. Finally, we fabricated locally functionalized single nanopores using a combination of focused ion beam drilling and ion beam assisted oxide deposition. We showed how a silicon oxide ring can be grown around a single nanopore and how it can be functionalized with DNA probes to detect single viral-sized beads. The next step for this platform is the detection of whole viruses and bacteria.

  12. Microstructure evolution in nanoporous gold thin films made from sputter-deposited precursors

    International Nuclear Information System (INIS)

    Gwak, Eun-Ji; Kang, Na-Ri; Baek, Un Bong; Lee, Hae Moo; Nahm, Seung Hoon; Kim, Ju-Young

    2013-01-01

    We fabricate almost crack-free 1.5 μm thick nanoporous gold thin films using free-corrosion dealloying and transfer processes from sputter-deposited precursors. By controlling the temperature and the concentration of the nitric acid solution during free-corrosion dealloying, we obtain ligament sizes in nanoporous gold between 22 and 155 nm. We investigate the effects of dissolution rate of Ag atoms, surface diffusivity of Au atoms and formation of Ag oxide on nanoporosity evolution

  13. Oxford Nanopore MinION Sequencing and Genome Assembly

    Directory of Open Access Journals (Sweden)

    Hengyun Lu

    2016-10-01

    Full Text Available The revolution of genome sequencing is continuing after the successful second-generation sequencing (SGS technology. The third-generation sequencing (TGS technology, led by Pacific Biosciences (PacBio, is progressing rapidly, moving from a technology once only capable of providing data for small genome analysis, or for performing targeted screening, to one that promises high quality de novo assembly and structural variation detection for human-sized genomes. In 2014, the MinION, the first commercial sequencer using nanopore technology, was released by Oxford Nanopore Technologies (ONT. MinION identifies DNA bases by measuring the changes in electrical conductivity generated as DNA strands pass through a biological pore. Its portability, affordability, and speed in data production makes it suitable for real-time applications, the release of the long read sequencer MinION has thus generated much excitement and interest in the genomics community. While de novo genome assemblies can be cheaply produced from SGS data, assembly continuity is often relatively poor, due to the limited ability of short reads to handle long repeats. Assembly quality can be greatly improved by using TGS long reads, since repetitive regions can be easily expanded into using longer sequencing lengths, despite having higher error rates at the base level. The potential of nanopore sequencing has been demonstrated by various studies in genome surveillance at locations where rapid and reliable sequencing is needed, but where resources are limited.

  14. Highly efficient human serum filtration with water-soluble nanoporous nanoparticles

    Directory of Open Access Journals (Sweden)

    Antonella Pujia

    2010-11-01

    Full Text Available Antonella Pujia1, Francesco De Angelis1,2, Domenica Scumaci3, Marco Gaspari3, Carlo Liberale1,2, Patrizio Candeloro1, Giovanni Cuda3, Enzo Di Fabrizio1,21BIONEM Laboratory, Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Germaneto (CZ, Italy; 2IIT, Italian Institute of Technology, Genova, Italy; 3Proteomics and Mass Spectrometry Laboratory, Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Germaneto (CZ, ItalyBackground: Human serum has the potential to become the most informative source of novel biomarkers, but its study is very difficult due to the incredible complexity of its molecular composition. We describe a novel tool based on biodegradable nanoporous nanoparticles (NPNPs that allows the harvesting of low-molecular-weight fractions of crude human serum or other biofluids. NPNPs with a diameter of 200 nm and pore size of a few nm were obtained by ultrasonication of nanoporous silicon. When incubated with a solution, the NPNPs harvest only the molecules small enough to be absorbed into the nanopores. Then they can be recovered by centrifugation and dissolved in water, making the harvested molecules available for further analyses.Results: Fluorescence microscopy, gel electrophoresis, and mass spectrometry were used to show the enrichment of low-molecular-weight fraction of serum under physiological conditions, with a cut-off of 13 kDa and an enrichment factor >50.Conclusion: From these findings, we conclude that ability to tune pore size, combined with the availability of hundreds of biomolecule cross-linkers, opens up new perspectives on complex biofluid analysis, discovery of biomarkers, and in situ drug delivery.Keywords: nanoporous silicon, nanoparticle, biomarker discovery, human serum proteomics, harvesting

  15. Structures and mechanisms in clay nanopore trapping of structurally-different fluoroquinolone antimicrobials.

    Science.gov (United States)

    Okaikue-Woodi, Fanny E K; Kelch, Sabrina E; Schmidt, Michael P; Enid Martinez, Carmen; Youngman, Randall E; Aristilde, Ludmilla

    2018-03-01

    Smectite clay nanoparticles are implicated in the retention of antimicrobials within soils and sediments; these clays are also inspected as drug carriers in physiological systems. Cation exchange is considered the primary adsorption mechanism of antimicrobials within smectite nanopores. However, a dual role of acid-base chemistry and adsorptive structures is speculated by recent studies. Using the prototypical smectite clay montmorillonite, we employed a combination of X-ray diffraction (XRD), nuclear magnetic resonance, attenuated total reflectance-Fourier transform infrared spectroscopy, and molecular dynamics simulations to investigate the interlayer nanopore trapping of two structurally-different fluoroquinolone (FQ) antimicrobials with similar acid-base chemistry: ciprofloxacin (a first-generation FQ) and moxifloxacin (a third-generation FQ). Greater sorption at pH 5.0 than at pH 7.0 for both FQs was consistent with cation-exchange of positively-charged species. However, the clay exhibited a near twofold higher sorption capacity for moxifloxacin than for ciprofloxacin. This difference was shown by the XRD data to be accompanied by enhanced trapping of moxifloxacin within the clay interlayers. Using the XRD-determined nanopore sizes, we performed molecular dynamics simulations of thermodynamically-favorable model adsorbates, which revealed that ciprofloxacin was adsorbed parallel to the clay surface but moxifloxacin adopted a tilted conformation across the nanopore. These conformations resulted in more slowly-exchanged than quickly-exchanged Na complexes with ciprofloxacin compared with moxifloxacin. These different Na populations were also captured by 23 Na nuclear magnetic resonance. Furthermore, the simulated adsorbates uncovered different complexation interactions that were corroborated by infrared spectroscopy. Therefore, beyond acid-base chemistry, our findings imply that distinct adsorbate structures control antimicrobial trapping within clay nanopores

  16. Enhanced light output from the nano-patterned InP semiconductor substrate through the nanoporous alumina mask.

    Science.gov (United States)

    Jung, Mi; Kim, Jae Hun; Lee, Seok; Jang, Byung Jin; Lee, Woo Young; Oh, Yoo-Mi; Park, Sun-Woo; Woo, Deokha

    2012-07-01

    A significant enhancement in the light output from nano-patterned InP substrate covered with a nanoporous alumina mask was observed. A uniform nanohole array on an InP semiconductor substrate was fabricated by inductively coupled plasma reactive ion etching (ICP-RIE), using the nanoporous alumina mask as a shadow mask. The light output property of the semiconductor substrate was investigated via photoluminescence (PL) intensity measurement. The InP substrate with a nanohole array showed a more enhanced PL intensity compared with the raw InP substrate without a nanohole structure. After ICP-RIE etching, the light output from the nanoporous InP substrate covered with a nanoporous alumina mask showed fourfold enhanced PL intensity compared with the raw InP substrate. These results can be used as a prospective method for increasing the light output efficiency of optoelectronic devices.

  17. Formation, Characteristics and Electrocatalytic Properties of Nanoporous Metals Formed by Dealloying of Ternary-Noble Alloys

    Science.gov (United States)

    Vega Zuniga, Adrian A.

    Nanoporous metals formed by electrochemical dealloying of silver from Ag-Au-Pt alloys, with 77 at.% silver and platinum contents of 1, 2 and 3 at.%, have been studied. The presence of platinum, which is immobile relative to gold, refine the ligament size and stabilized the nanostructure against coarsening, even under experimental conditions that would be expected to promote coarsening (e.g., exposure to high temperature, longer dealloying times). By adding only 1 at.% Pt to the alloy precursor, the ligament/pore size was reduced by 50% with respect to that in nanoporous gold (NPG), which was formed on a Ag-Au alloy with the same silver content as ternary alloys. A further decrease in the ligament size was observed by increasing the platinum content of the precursor; however, most of the improvement occurred with 1 at.% Pt. The adsorbate-induced surface segregation of platinum was also investigated for these nanoporous metals. By exposing freshly-dealloyed nanostructures to moderate temperatures in the presence of air, platinum segregated to the ligament surface; in contrast, in an inert atmosphere (Ar-H 2), platinum mostly reverted to the bulk of the ligaments. This thermally activated process was thermodynamically driven by the interaction between platinum and oxygen; however, at the desorption temperature of oxygen, platinum de-segregated from the surface. Moreover, the co-segregation of platinum and oxygen hindered the thermal coarsening of the ligaments. Finally, the electrocatalytic abilities of these nanostructures were studied towards methanol and ethanol electro-oxidation, in alkaline and acidic media, showing significantly improved response in comparison to that observed in NPG. The synergistic effect between gold and platinum atoms and the smaller feature size of the nanostructures were directly associated with this behaviour. In alkaline electrolyte, the nanostructure formed on the alloy with 1 at.% Pt showed higher catalytic response than the other two

  18. Versatile gradients of chemistry, bound ligands and nanoparticles on alumina nanopore arrays

    International Nuclear Information System (INIS)

    Michelmore, Andrew; Poh, Zihan; Goreham, Renee V; Short, Robert D; Vasilev, Krasimir; Mierczynska, Agnieszka; Losic, Dusan

    2011-01-01

    Nanoporous alumina (PA) arrays produced by self-ordering growth, using electrochemical anodization, have been extensively explored for potential applications based upon the unique thermal, mechanical and structural properties, and high surface-to-volume ratio of these materials. However, the potential applications and functionality of these materials may be further extended by molecular-level engineering of the surface of the pore rims. In this paper we present a method for the generation of chemical gradients on the surface of PA arrays based upon plasma co-polymerization of two monomers. We further extend these chemical gradients, which are also gradients of surface charge, to those of bound ligands and number density gradients of nanoparticles. The latter represent a highly exotic new class of materials, comprising aligned PA, capped by gold nanoparticles around the rim of the pores. Gradients of chemistry, ligands and nanoparticles generated by our method retain the porous structure of the substrate, which is important in applications that take advantage of the inherent properties of these materials. This method can be readily extended to other porous materials.

  19. Versatile gradients of chemistry, bound ligands and nanoparticles on alumina nanopore arrays

    Energy Technology Data Exchange (ETDEWEB)

    Michelmore, Andrew; Poh, Zihan; Goreham, Renee V; Short, Robert D; Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Adelaide (Australia); Mierczynska, Agnieszka; Losic, Dusan, E-mail: Krasimir.vasilev@unisa.edu.au [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095, Adelaide (Australia)

    2011-10-14

    Nanoporous alumina (PA) arrays produced by self-ordering growth, using electrochemical anodization, have been extensively explored for potential applications based upon the unique thermal, mechanical and structural properties, and high surface-to-volume ratio of these materials. However, the potential applications and functionality of these materials may be further extended by molecular-level engineering of the surface of the pore rims. In this paper we present a method for the generation of chemical gradients on the surface of PA arrays based upon plasma co-polymerization of two monomers. We further extend these chemical gradients, which are also gradients of surface charge, to those of bound ligands and number density gradients of nanoparticles. The latter represent a highly exotic new class of materials, comprising aligned PA, capped by gold nanoparticles around the rim of the pores. Gradients of chemistry, ligands and nanoparticles generated by our method retain the porous structure of the substrate, which is important in applications that take advantage of the inherent properties of these materials. This method can be readily extended to other porous materials.

  20. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides.

    Science.gov (United States)

    Holmes, Matthew R; Shang, Tao; Hawkins, Aaron R; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2010-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO(2) and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide.

  1. High resolution transmission electron microscopic study of nanoporous carbon consisting of curved single graphite sheets

    International Nuclear Information System (INIS)

    Bourgeois, L.N.; Bursill, L.A.

    1997-01-01

    A high resolution transmission electron microscopic study of a nanoporous carbon rich in curved graphite monolayers is presented. Observations of very thin regions. including the effect of tilting the specimen with respect to the electron beam, are reported. The initiation of single sheet material on an oriented graphite substrate is also observed. When combined with image simulations and independent measurements of the density (1.37g cm -3 ) and sp 3 /sp 2 +sp 2 bonding fraction (0.16), these observations suggest that this material is a two phase mixture containing a relatively low density aggregation of essentially capped single shells like squat nanotubes and polyhedra, plus a relatively dense 'amorphous' carbon structure which may be described using a random-Schwarzite model. Some negatively-curved sheets were also identified in the low density phase. Finally, some discussion is offered regarding the growth mechanisms responsible for this nanoporous carbon and its relationship with the structures of amorphous carbons across a broad range of densities, porosities and sp 3 /sp 2 +sp 3 bonding fractions

  2. Impedimetric DNA Biosensor Based on a Nanoporous Alumina Membrane for the Detection of the Specific Oligonucleotide Sequence of Dengue Virus

    Directory of Open Access Journals (Sweden)

    Chee-Seng Toh

    2013-06-01

    Full Text Available A novel and integrated membrane sensing platform for DNA detection is developed based on an anodic aluminum oxide (AAO membrane. Platinum electrodes (~50–100 nm thick are coated directly on both sides of the alumina membrane to eliminate the solution resistance outside the nanopores. The electrochemical impedance technique is employed to monitor the impedance changes within the nanopores upon DNA binding. Pore resistance (Rp linearly increases in response towards the increasing concentration of the target DNA in the range of 1 × 10−12 to 1 × 10−6 M. Moreover, the biosensor selectively differentiates the complementary sequence from single base mismatched (MM-1 strands and non-complementary strands. This study reveals a simple, selective and sensitive method to fabricate a label-free DNA biosensor.

  3. Impedimetric DNA biosensor based on a nanoporous alumina membrane for the detection of the specific oligonucleotide sequence of dengue virus.

    Science.gov (United States)

    Deng, Jiajia; Toh, Chee-Seng

    2013-06-17

    A novel and integrated membrane sensing platform for DNA detection is developed based on an anodic aluminum oxide (AAO) membrane. Platinum electrodes (~50-100 nm thick) are coated directly on both sides of the alumina membrane to eliminate the solution resistance outside the nanopores. The electrochemical impedance technique is employed to monitor the impedance changes within the nanopores upon DNA binding. Pore resistance (Rp) linearly increases in response towards the increasing concentration of the target DNA in the range of 1 × 10⁻¹² to 1 × 10⁻⁶ M. Moreover, the biosensor selectively differentiates the complementary sequence from single base mismatched (MM-1) strands and non-complementary strands. This study reveals a simple, selective and sensitive method to fabricate a label-free DNA biosensor.

  4. Effect of nanoscale flows on the surface structure of nanoporous catalysts.

    Science.gov (United States)

    Montemore, Matthew M; Montessori, Andrea; Succi, Sauro; Barroo, Cédric; Falcucci, Giacomo; Bell, David C; Kaxiras, Efthimios

    2017-06-07

    The surface structure and composition of a multi-component catalyst are critical factors in determining its catalytic performance. The surface composition can depend on the local pressure of the reacting species, leading to the possibility that the flow through a nanoporous catalyst can affect its structure and reactivity. Here, we explore this possibility for oxidation reactions on nanoporous gold, an AgAu bimetallic catalyst. We use microscopy and digital reconstruction to obtain the morphology of a two-dimensional slice of a nanoporous gold sample. Using lattice Boltzmann fluid dynamics simulations along with thermodynamic models based on first-principles total-energy calculations, we show that some sections of this sample have low local O 2 partial pressures when exposed to reaction conditions, which leads to a pure Au surface in these regions, instead of the active bimetallic AgAu phase. We also explore the effect of temperature on the surface structure and find that moderate temperatures (≈300-450 K) should result in the highest intrinsic catalytic performance, in apparent agreement with experimental results.

  5. Nanoporous MnO{sub x} thin-film electrodes synthesized by electrochemical lithiation/delithiation for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui; Lai, Man On; Lu, Li [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)

    2011-02-15

    Nanoporous MnO{sub x} thin-film electrodes are synthesized using a combination of pulsed laser deposition (PLD) and electrochemical lithiation/delithiation methods. A dense Mn{sub 3}O{sub 4} thin-film deposited by PLD can transform into a nanoporous MnO{sub x} thin-film after electrochemical lithiation/delithiation. A nanoporous MnO{sub x} thin-film electrode exhibits significantly improved supercapacitive performance compared with an as-deposited Mn{sub 3}O{sub 4} thin-film electrode. A MnO{sub x} thin-film finally transforms into a MnO{sub 2} thin-film through an electrochemical oxidation process during continuous cyclic voltammetry scanning. (author)

  6. Ordered arrays of polymeric nanopores by using inverse nanostructured PTFE surfaces

    International Nuclear Information System (INIS)

    Martín, Jaime; Martín-González, Marisol; Del Campo, Adolfo; Reinosa, Julián J; Fernández, José Francisco

    2012-01-01

    We present a simple, efficient, and high-throughput methodology for the fabrication of ordered nanoporous polymeric surfaces with areas in the range of cm 2 . The procedure is based on a two-stage replication of a master nanostructured pattern. The process starts with the preparation of an ordered array of poly(tetrafluoroethylene) (PTFE) free-standing nanopillars by wetting self-ordered porous anodic aluminum oxide templates with molten PTFE. The nanopillars are 120 nm in diameter and approximately 350 nm long, while the array extends over cm 2 . The PTFE nanostructuring process induces surface hydrocarbonation of the nanopillars, as revealed by confocal Raman microscopy/spectroscopy, which enhances the wettability of the originally hydrophobic material and facilitates its subsequent use as an inverse pattern. Thus, the PTFE nanostructure is then used as a negative master for the fabrication of macroscopic hexagonal arrays of nanopores composed of biocompatible poly(vinylalcohol). In this particular case, the nanopores are 130–140 nm in diameter and the interpore distance is around 430 nm. Features of such characteristic dimensions are known to be easily recognized by living cells. Moreover, the inverse mold is not destroyed in the pore array demolding process and can be reused for further pore array fabrication. Therefore, the developed method allows the high-throughput production of cm 2 -scale biocompatible nanoporous surfaces that could be interesting as two-dimensional scaffolds for tissue repair or wound healing. Moreover, our approach can be extrapolated to the fabrication of almost any polymer and biopolymer ordered pore array. (paper)

  7. Understanding improved osteoblast behavior on select nanoporous anodic alumina

    Science.gov (United States)

    Ni, Siyu; Li, Changyan; Ni, Shirong; Chen, Ting; Webster, Thomas J

    2014-01-01

    The aim of this study was to prepare different sized porous anodic alumina (PAA) and examine preosteoblast (MC3T3-E1) attachment and proliferation on such nanoporous surfaces. In this study, PAA with tunable pore sizes (25 nm, 50 nm, and 75 nm) were fabricated by a two-step anodizing procedure in oxalic acid. The surface morphology and elemental composition of PAA were characterized by field emission scanning electron microscopy and X-ray photoelectron spectroscopy analysis. The nanopore arrays on all of the PAA samples were highly regular. X-ray photoelectron spectroscopy analysis suggested that the chemistry of PAA and flat aluminum surfaces were similar. However, contact angles were significantly greater on all of the PAA compared to flat aluminum substrates, which consequently altered protein adsorption profiles. The attachment and proliferation of preosteoblasts were determined for up to 7 days in culture using field emission scanning electron microscopy and a Cell Counting Kit-8. Results showed that nanoporous surfaces did not enhance initial preosteoblast attachment, whereas preosteoblast proliferation dramatically increased when the PAA pore size was either 50 nm or 75 nm compared to all other samples (Paluminum by modifying surface nano-roughness alone (and not changing chemistry) through an anodization process to improve osteoblast density, and, thus, should be further studied as a bioactive interface for orthopedic applications. PMID:25045263

  8. Generation of nanopores during desorption of NH3 from Mg(NH3)6Cl2

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Sørensen, Rasmus Zink; Kostova, M.Y.

    2006-01-01

    It is shown that nanopores are formed during desorption of NH3 from Mg(NH3)6Cl2, which has been proposed as a hydrogen storage material. The system of nanopores facilitates the transport of desorbed ammonia away from the interior of large volumes of compacted storage material. DFT calculations sh...

  9. Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L; Lee, W; Huang, Z; Scholz, R; Goesele, U [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany)

    2008-08-20

    The fabrication of a composite membrane of nanoporous gold nanowires and anodic aluminum oxide (AAO) is demonstrated by the electrodeposition of Au-Ag alloy nanowires into an AAO membrane, followed by selective etching of silver from the alloy nanowires. This composite membrane is advantageous for flow-through type catalytic reactions. The morphology evolution of the nanoporous gold nanowires as a function of the diameter of the Au-Ag nanowire 'precursors' is also investigated.

  10. Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane

    International Nuclear Information System (INIS)

    Liu, L; Lee, W; Huang, Z; Scholz, R; Goesele, U

    2008-01-01

    The fabrication of a composite membrane of nanoporous gold nanowires and anodic aluminum oxide (AAO) is demonstrated by the electrodeposition of Au-Ag alloy nanowires into an AAO membrane, followed by selective etching of silver from the alloy nanowires. This composite membrane is advantageous for flow-through type catalytic reactions. The morphology evolution of the nanoporous gold nanowires as a function of the diameter of the Au-Ag nanowire 'precursors' is also investigated

  11. Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane.

    Science.gov (United States)

    Liu, L; Lee, W; Huang, Z; Scholz, R; Gösele, U

    2008-08-20

    The fabrication of a composite membrane of nanoporous gold nanowires and anodic aluminum oxide (AAO) is demonstrated by the electrodeposition of Au-Ag alloy nanowires into an AAO membrane, followed by selective etching of silver from the alloy nanowires. This composite membrane is advantageous for flow-through type catalytic reactions. The morphology evolution of the nanoporous gold nanowires as a function of the diameter of the Au-Ag nanowire 'precursors' is also investigated.

  12. Development and characterization of nanopore system for nano-vesicle analysis

    Science.gov (United States)

    Goyal, Gaurav

    Nano-vesicles have recently attracted a lot of attention in research and medical communities and are very promising next-generation drug delivery vehicles. This is due to their biocompatibility, biodegradability and their ability to protect drug cargo and deliver it to site-specific locations, while maintaining the desired pharmacokinetic profile. The interaction of these drug loaded vesicles with the recipient cells via adsorption, endocytosis or receptor mediated internalization involve significant bending and deformation and is governed by mechanical properties of the nano-vesicles. Currently, the mechanical characteristics of nano-vesicles are left unexplored because of the difficulties associated with vesicle analysis at sub-100 nm length scale. The need for a complete understanding of nano-vesicle interaction with each other and the recipient cells warrants development of an analytical tool capable of mechanical investigation of individual vesicles at sub-100 nm scale. This dissertation presents investigation of nano-vesicle deformability using resistive pulse sensing and solid-state nanopore devices. The dissertation is divided into four chapters. Chapter 1 discusses the motivation, specific aims and presents an overview of nanoparticle characterization techniques, resistive pulse sensing background and principles, techniques for fabricating solid-state nanopores, as well the deformation behavior of giant vesicles when placed in electric field. Chapter 2 is dedicated to understanding of the scientific principles governing transport of sub-100 nm particles in dilute solutions. We investigated the translocation of rigid nanoparticles through nanopores at salt concentrations exosomes derived from human breast cancer cell line. Exosomes also exhibit co-translocational deformation behavior; however, they appear to be less affected by the deforming force inside the nanopore compared to the DOPC liposomes. We believe, the results of this research will bring about a

  13. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media

    Science.gov (United States)

    Huber, Patrick

    2015-03-01

    Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.

  14. Multistep Current Signal in Protein Translocation through Graphene Nanopores

    KAUST Repository

    Bonome, Emma Letizia; Lepore, Rosalba; Raimondo, Domenico; Cecconi, Fabio; Tramontano, Anna; Chinappi, Mauro

    2015-01-01

    of graphene constitute a major advantage for molecule characterization. Here we analyze the translocation pathway of the thioredoxin protein across a graphene nanopore, and the related ionic currents, by integrating two nonequilibrium molecular dynamics

  15. Effects of rotational symmetry breaking in polymer-coated nanopores

    Science.gov (United States)

    Osmanović, D.; Kerr-Winter, M.; Eccleston, R. C.; Hoogenboom, B. W.; Ford, I. J.

    2015-01-01

    The statistical theory of polymers tethered around the inner surface of a cylindrical channel has traditionally employed the assumption that the equilibrium density of the polymers is independent of the azimuthal coordinate. However, simulations have shown that this rotational symmetry can be broken when there are attractive interactions between the polymers. We investigate the phases that emerge in these circumstances, and we quantify the effect of the symmetry assumption on the phase behavior of the system. In the absence of this assumption, one can observe large differences in the equilibrium densities between the rotationally symmetric case and the non-rotationally symmetric case. A simple analytical model is developed that illustrates the driving thermodynamic forces responsible for this symmetry breaking. Our results have implications for the current understanding of the behavior of polymers in cylindrical nanopores.

  16. Effects of rotational symmetry breaking in polymer-coated nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Osmanović, D.; Hoogenboom, B. W.; Ford, I. J. [London Centre for Nanotechnology (LCN) and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Kerr-Winter, M.; Eccleston, R. C. [Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-01-21

    The statistical theory of polymers tethered around the inner surface of a cylindrical channel has traditionally employed the assumption that the equilibrium density of the polymers is independent of the azimuthal coordinate. However, simulations have shown that this rotational symmetry can be broken when there are attractive interactions between the polymers. We investigate the phases that emerge in these circumstances, and we quantify the effect of the symmetry assumption on the phase behavior of the system. In the absence of this assumption, one can observe large differences in the equilibrium densities between the rotationally symmetric case and the non-rotationally symmetric case. A simple analytical model is developed that illustrates the driving thermodynamic forces responsible for this symmetry breaking. Our results have implications for the current understanding of the behavior of polymers in cylindrical nanopores.

  17. CO_2 capture by amine-functionalized nanoporous materials: A review

    International Nuclear Information System (INIS)

    Chen, Chao; Kim, Jun; Ahn, Wha-Seung

    2014-01-01

    Amine-functionalized nanoporous materials can be prepared by the incorporation of diverse organic amine moieties into the pore structures of a range of support materials, such as mesoporous silica and alumina, zeolite, carbon and metal organic frameworks (MOFs), either by direct functionalization or post-synthesis through physical impregnation or grafting. These hybrid materials have great potential for practical applications, such as dry adsorbents for postcombustion CO_2 capture, owing to their high CO_2 capture capacity, high capture selectivity towards CO_2 compared to other gases, and excellent stability. This paper summarizes the preparation methods and CO_2 capture performance based on the equilibrium CO_2 uptake of a range of amine-functionalized nanoporous materials

  18. An accurate and rapid continuous wavelet dynamic time warping algorithm for unbalanced global mapping in nanopore sequencing

    KAUST Repository

    Han, Renmin; Li, Yu; Wang, Sheng; Gao, Xin

    2017-01-01

    Long-reads, point-of-care, and PCR-free are the promises brought by nanopore sequencing. Among various steps in nanopore data analysis, the global mapping between the raw electrical current signal sequence and the expected signal sequence from

  19. Brownian dynamics simulation of a polymer chain in a solid-state nanopore attached to a molecular stop

    Science.gov (United States)

    Wells, Craig; Hulings, Zachery; Melnikov, Dmitriy; Gracheva, Maria

    We study a nanopore inside a silicon dioxide membrane submerged in a KCl solution with a negatively charged polymer chain of varying lengths whose movement is described using Brownian dynamics. The polymer is attached to a molecule with a radius larger than that of the nanopore's which acts as a molecular stop, allowing the chain to thread the nanopore but preventing it from translocating. We found that the polymer chain's variation of movement along the nanopore decreased when increasing applied biases and chain lengths for portions of the chain closest to the molecular stop. The chain displacement within the pore is also compared to a freely translocating polymer where preliminary results show the free polymer having a greater variation in the radial direction. Overall, our preliminary results indicate that the radial direction of the polymer chain is dominated by the confinement in the narrow nanopore with restrictions imposed by the molecular stop and bias playing a lesser role. Understanding the interaction behavior of the polymer chain-stop molecule may lead to methods that decrease movement variation, facilitating an improvement on characterizing and identification of molecules. NSF DMR and CBET Grant No. 1352218.

  20. Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries

    KAUST Repository

    Tu, Zhengyuan; Kambe, Yu; Lu, Yingying; Archer, Lynden A.

    2013-01-01

    A nanoporous composite material that offers the unique combination of high room-temperature ionic conductivity and high mechanical modulus is reported. When used as the separator/electrolyte in lithium batteries employing metallic lithium as anode

  1. Preparation and electrochemical performances of nanoporous/cracked cobalt oxide layer for supercapacitors

    Science.gov (United States)

    Gobal, Fereydoon; Faraji, Masoud

    2014-12-01

    Nanoporous/cracked structures of cobalt oxide (Co3O4) electrodes were successfully fabricated by electroplating of zinc-cobalt onto previously formed TiO2 nanotubes by anodizing of titanium, leaching of zinc in a concentrated alkaline solution and followed by drying and annealing at 400 °C. The structure and morphology of the obtained Co3O4 electrodes were characterized by X-ray diffraction, EDX analysis and scanning electron microscopy. The results showed that the obtained Co3O4 electrodes were composed of the nanoporous/cracked structures with an average pore size of about 100 nm. The electrochemical capacitive behaviors of the nanoporous Co3O4 electrodes were investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 1 M NaOH solution. The electrochemical data demonstrated that the electrodes display good capacitive behavior with a specific capacitance of 430 F g-1 at a current density of 1.0 A g-1 and specific capacitance retention of ca. 80 % after 10 days of being used in electrochemical experiments, indicating to be promising electroactive materials for supercapacitors. Furthermore, in comparison with electrodes prepared by simple cathodic deposition of cobalt onto TiO2 nanotubes(without dealloying procedure), the impedance studies showed improved performances likely due to nanoporous/cracked structures of electrodes fabricated by dealloying of zinc, which provide fast ion and electron transfer routes and large reaction surface area with the ensued fast reaction kinetics.

  2. Analysis of effect of nanoporous alumina substrate coated with polypyrrole nanowire on cell morphology based on AFM topography.

    Science.gov (United States)

    El-Said, Waleed Ahmed; Yea, Cheol-Heon; Jung, Mi; Kim, Hyuncheol; Choi, Jeong-Woo

    2010-05-01

    In this study, in situ electrochemical synthesis of polypyrrole nanowires with nanoporous alumina template was described. The formation of highly ordered porous alumina substrate was demonstrated with Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). In addition, Fourier transform infrared analysis confirmed that polypyrrole (PP) nanowires were synthesized by direct electrochemical oxidation of pyrrole. HeLa cancer cells and HMCF normal cells were immobilized on the polypyrrole nanowires/nanoporous alumina substrates to determine the effects of the substrate on the cell morphology, adhesion and proliferation as well as the biocompatibility of the substrate. Cell adhesion and proliferation were characterized using a standard MTT assay. The effects of the polypyrrole nanowires/nanoporous alumina substrate on the cell morphology were studied by AFM. The nanoporous alumina coated with polypyrrole nanowires was found to exhibit better cell adhesion and proliferation than polystyrene petridish, aluminum foil, 1st anodized and uncoated 2nd anodized alumina substrate. This study showed the potential of the polypyrrole nanowires/nanoporous alumina substrate as biocompatibility electroactive polymer substrate for both healthy and cancer cell cultures applications.

  3. Non-sticky translocation of bio-molecules through Tween 20-coated solid-state nanopores in a wide pH range

    Science.gov (United States)

    Li, Xiaoqing; Hu, Rui; Li, Ji; Tong, Xin; Diao, J. J.; Yu, Dapeng; Zhao, Qing

    2016-10-01

    Nanopore-based sensing technology is considered high-throughput and low-cost for single molecule detection, but solid-state nanopores have suffered from pore clogging issues. A simple Tween 20 coating method is applied to ensure long-term (several hours) non-sticky translocation of various types of bio-molecules through SiN nanopores in a wide pH range (4.0-13.0). We also emphasize the importance of choosing appropriate concentration of Tween 20 coating buffer for desired effect. By coating nanopores with a Tween 20 layer, we are able to differentiate between single-stranded DNA and double-stranded DNA, to identify drift-dominated domain for single-stranded DNA, to estimate BSA volume and to observe the shape of individual nucleosome translocation event without non-specific adsorption. The wide pH endurance from 4.0 to 13.0 and the broad types of detection analytes including nucleic acids, proteins, and biological complexes highlight the great application potential of Tween 20-coated solid-state nanopores.

  4. Synthesis of Dicyclopentadiene Oligomer Over Nanoporous Al-MCM-41 Catalysts.

    Science.gov (United States)

    Park, Eunseo; Kim, Jinhan; Yim, Jin-Heong; Han, Jeongsik; Kwon, Tae Soo; Park, Y K; Jeon, Jong-Ki

    2016-05-01

    One step reaction composed of DCPD oligomerization and DCPD oligomer isomerization was investigated over nanoporous Al-MCM-41 catalysts. The effects of aluminum grafting over MCM-41 on the catalyst characteristics were studied with respect to the synthesis of TCPD isomer. Physical and chemical properties of the catalysts were analyzed by N2 adsorption, temperature-programmed desorption of ammonia, and infrared spectroscopy of adsorbed pyridine. The overall number of acid sites as well as the number of Lewis acid sites increased with increasing of aluminum content over MCM-41. When utilizing MCM-41 and Al-MCM-41 as the catalyst, DCPD oligomerization reaction activity greatly increased compared to the thermal reaction. The highest TCPD isomer selectivity over the Al-MCM-41 catalyst with the highest aluminum content could be ascribed to the largest amount of acid sites. This study showed an increased level of TCPD isomer selectivity by an increasing level of Lewis acid sites through aluminum addition over MCM-41.

  5. Nanoporous niobium nitride (Nb2N) with enhanced electrocatalytic performance for hydrogen evolution

    Science.gov (United States)

    Li, Yan; Zhang, Jianli; Qian, Xingyue; Zhang, Yue; Wang, Yining; Hu, Rudan; Yao, Chao; Zhu, Junwu

    2018-01-01

    The transition metal nitrides (TMNs) with nanoporous structure have shown great promise as potential electrocatalysts for the hydrogen evolution reaction (HER). Herein, self-organized nanoporous Nb2N was first successfully synthesized through the anodization of niobium in mixed oxalic acid/HF electrolyte, followed by a simple annealing treatment in the ammonia atmosphere. Due to the highly ordered nanoporous structure with abundant active sites and the enhanced electrical conductivity, the Nb2N exhibits a high catalytic current (326.3 mA cm-2) and low onset potential (96.3 mV), which is almost 3.9 times and 4.2 times better than that of Nb2O5, respectively. Meanwhile, the Nb2N also presents low Tafel slope (92 mV dec-1), and excellent cycling durability. More importantly, this study will provide more opportunities for designing and fabricating niobium compounds as an innovative HER catalysts.

  6. Nanoporous PdCo Catalyst for Microfuel Cells: Electrodeposition and Dealloying

    Directory of Open Access Journals (Sweden)

    Satoshi Tominaka

    2011-01-01

    Full Text Available PdCo alloy is a promising catalyst for oxygen reduction reaction of direct methanol fuel cells because of its high activity and the tolerance to methanol. We have applied this catalyst in order to realize on-chip fuel cell which is a membraneless design. The novel design made the fuel cells to be flexible and integratable with other microdevices. Here, we summarize our recent research on the synthesis of nanostructured PdCo catalyst by electrochemical methods, which enable us to deposit the alloy onto microelectrodes of the on-chip fuel cells. First, the electrodeposition of PdCo is discussed in detail, and then, dealloying for introducing nanopores into the electrodeposits is described. Finally, electrochemical response and activities are fully discussed.

  7. Broadband Spectroscopy of Nanoporous-Gold Promoter

    Directory of Open Access Journals (Sweden)

    S. K. Nakatani

    2014-02-01

    Full Text Available The efficiency of UV photocatalysis on TiO2 particles was increased by mixing TiO2 particles with nanoporous gold (NPG with pore diameters of 10–40 nm. This means that NPG acts as a promoter in the photocatalytic reaction of TiO2. Broadband spectroscopic results from millimeter wave to ultra violet of NPG membrane are discussed to estimate plasmonic effect on the catalysis.

  8. Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes

    Science.gov (United States)

    Wang, Huanjing; Sun, Xiuxia; Liu, Zonghuai; Lei, Zhibin

    2014-05-01

    Creation of nanopores on graphene planar sheets is of great significance in promoting the kinetic diffusion of electrolyte and enhancing the utilization efficiency of graphene planar sheets. Herein, we developed a facile chemical vapor deposition strategy to prepare highly porous graphene with flake-like MgO as template and ferrocene as the carbon precursor. The graphene layers show a highly porous structure with small mesopores of 4-8 nm, large mesopores of 10-20 nm and additional macropores of 100-200 nm. These nanopores on graphene sheets provide numerous channels for fast ion transport perpendicular to the 2D basal plane, while the good powder conductivity ensures an effective electron propagation within the 2D graphene plane. As a result, a specific capacitance of 303 F g-1, an areal capacitance up to 17.3 μF cm-2 and a nearly tenfold shorter time constant were achieved when compared with those of nonporous and stacked graphene electrodes. The method demonstrated herein would open up an opportunity to prepare porous graphene for a wide applications in energy storage, biosensors, nanoelectronics and catalysis.Creation of nanopores on graphene planar sheets is of great significance in promoting the kinetic diffusion of electrolyte and enhancing the utilization efficiency of graphene planar sheets. Herein, we developed a facile chemical vapor deposition strategy to prepare highly porous graphene with flake-like MgO as template and ferrocene as the carbon precursor. The graphene layers show a highly porous structure with small mesopores of 4-8 nm, large mesopores of 10-20 nm and additional macropores of 100-200 nm. These nanopores on graphene sheets provide numerous channels for fast ion transport perpendicular to the 2D basal plane, while the good powder conductivity ensures an effective electron propagation within the 2D graphene plane. As a result, a specific capacitance of 303 F g-1, an areal capacitance up to 17.3 μF cm-2 and a nearly tenfold shorter time

  9. Enhanced PEC performance of nanoporous Si photoelectrodes by covering HfO2 and TiO2 passivation layers

    Science.gov (United States)

    Xing, Zhuo; Ren, Feng; Wu, Hengyi; Wu, Liang; Wang, Xuening; Wang, Jingli; Wan, Da; Zhang, Guozhen; Jiang, Changzhong

    2017-03-01

    Nanostructured Si as the high efficiency photoelectrode material is hard to keep stable in aqueous for water splitting. Capping a passivation layer on the surface of Si is an effective way of protecting from oxidation. However, it is still not clear in the different mechanisms and effects between insulating oxide materials and oxide semiconductor materials as passivation layers. Here, we compare the passivation effects, the photoelectrochemical (PEC) properties, and the corresponding mechanisms between the HfO2/nanoporous-Si and the TiO2/nanoporous-Si by I-V curves, Motte-schottky (MS) curves, and electrochemical impedance spectroscopy (EIS). Although the saturated photocurrent densities of the TiO2/nanoporous Si are lower than that of the HfO2/nanoporous Si, the former is more stable than the later.

  10. Enhanced PEC performance of nanoporous Si photoelectrodes by covering HfO2 and TiO2 passivation layers.

    Science.gov (United States)

    Xing, Zhuo; Ren, Feng; Wu, Hengyi; Wu, Liang; Wang, Xuening; Wang, Jingli; Wan, Da; Zhang, Guozhen; Jiang, Changzhong

    2017-03-02

    Nanostructured Si as the high efficiency photoelectrode material is hard to keep stable in aqueous for water splitting. Capping a passivation layer on the surface of Si is an effective way of protecting from oxidation. However, it is still not clear in the different mechanisms and effects between insulating oxide materials and oxide semiconductor materials as passivation layers. Here, we compare the passivation effects, the photoelectrochemical (PEC) properties, and the corresponding mechanisms between the HfO 2 /nanoporous-Si and the TiO 2 /nanoporous-Si by I-V curves, Motte-schottky (MS) curves, and electrochemical impedance spectroscopy (EIS). Although the saturated photocurrent densities of the TiO 2 /nanoporous Si are lower than that of the HfO 2 /nanoporous Si, the former is more stable than the later.

  11. The importance of adding EDTA for the nanopore analysis of proteins.

    Science.gov (United States)

    Krasniqi, Besnik; Lee, Jeremy S

    2012-06-01

    Nanopore analysis is a promising technique for studying the conformation of proteins and protein/protein interactions. Two proteins (bacterial thioredoxin and maltose binding protein) were subjected to nanopore analysis with α-hemolysin. Two types of events were observed; bumping events with a blockade current less than -40 pA and intercalation events with blockade currents between -40 pA and -100 pA. In potassium phosphate buffer, pH 7.8, both proteins gave intercalation events but the frequency of these events was significantly reduced in TRIS or HEPES buffers especially in the presence of 0.01 mM divalent metal ions. The frequency of events was restored by the addition of EDTA. For maltose binding protein, the frequency of intercalation events was also decreased in the presence of maltose but not lactose to which it does not bind. It is proposed that the events with large blockade currents represent transient intercalation of a loop or end of the protein into the pore and that divalent metal ions inhibit this process. The results demonstrate that the choice of buffer and the effects of metal ion contamination are important considerations in nanopore analysis.

  12. Configuration of organic dye excimers in nanoporous SiO2 matrices

    International Nuclear Information System (INIS)

    Sorokin, A.V.; Gnap, B.A.; Bespalova, I.I.; Yefimova, S.L.; Malyukin, Yu.V.

    2016-01-01

    The effect of cyanine dye 3,3′-dioctadecyloxacarbocyanine perchlorate (DiO) and benzimidazole dye 4-dimethylamino-1,8-naphthoylene-1′,2′-benzimidazole (DNBI) accumulation in nanoporous silica matrices on the dyes luminescence properties has been studied. For both dyes, ground state dimer formation with perpendicular transition dipoles at high dye concentrations has been considered as a result of restricted geometry of the nanoscale pores. The dimer excitation leads to excimer formation revealing by appearance of new long-wavelength luminescence band and shortening the dye luminescence lifetime. In the excimer luminescence excitation spectra two additional bands have been observed, one of which is bathochromically shifted relatively to the absorption band and another one is hypsocromically shifted. Using the Kasha exciton model it was shown that the excimers possess oblique transition dipoles configuration. - Highlights: • Organic dye molecules are efficiently accumulated in nanoporous silica matrices. • Restricted geometry of SiO 2 nanopores provokes excimerization of both cyanine and benzimidazole dyes. • The excimers reveal configuration of oblique dimers. • The excimers are originated from ground state dimers with a perpendicular arrangement of transition dipoles.

  13. Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting

    KAUST Repository

    Wang, Hong

    2017-01-04

    Nanoporous graphitic carbon membranes with defined chemical composition and pore architecture are novel nanomaterials that are actively pursued. Compared with easy-to-make porous carbon powders that dominate the porous carbon research and applications in energy generation/conversion and environmental remediation, porous carbon membranes are synthetically more challenging though rather appealing from an application perspective due to their structural integrity, interconnectivity and purity. Here we report a simple bottom–up approach to fabricate large-size, freestanding and porous carbon membranes that feature an unusual single-crystal-like graphitic order and hierarchical pore architecture plus favourable nitrogen doping. When loaded with cobalt nanoparticles, such carbon membranes serve as high-performance carbon-based non-noble metal electrocatalyst for overall water splitting.

  14. Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting

    KAUST Repository

    Wang, Hong; Min, Shixiong; Ma, Chun; Liu, Zhixiong; Zhang, Weiyi; Wang, Qiang; Li, Debao; Li, Yangyang; Turner, Stuart; Han, Yu; Zhu, Haibo; Abou-Hamad, Edy; Hedhili, Mohamed N.; Pan, Jun; Yu, Weili; Huang, Kuo-Wei; Li, Lain-Jong; Yuan, Jiayin; Antonietti, Markus; Wu, Tao

    2017-01-01

    Nanoporous graphitic carbon membranes with defined chemical composition and pore architecture are novel nanomaterials that are actively pursued. Compared with easy-to-make porous carbon powders that dominate the porous carbon research and applications in energy generation/conversion and environmental remediation, porous carbon membranes are synthetically more challenging though rather appealing from an application perspective due to their structural integrity, interconnectivity and purity. Here we report a simple bottom–up approach to fabricate large-size, freestanding and porous carbon membranes that feature an unusual single-crystal-like graphitic order and hierarchical pore architecture plus favourable nitrogen doping. When loaded with cobalt nanoparticles, such carbon membranes serve as high-performance carbon-based non-noble metal electrocatalyst for overall water splitting.

  15. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.

    2014-01-01

    of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid

  16. Nanoporous ultrahigh specific surface polyacrylonitrile fibres

    International Nuclear Information System (INIS)

    Zhang Lifeng; Hsieh, Y-L

    2006-01-01

    The concept of phase separation was coupled with electrospinning to generate polyacrylonitrile (PAN) and poly(ethylene oxide) (PEO) bicomponent fibres that, upon removal of the phase-separated PEO domains, became nanoporous. Electrospinning of PAN (150 kDa) with 15-50% w/w PEO (10 kDa) at a 8% w/w total concentration in N,N-dimethylformamide produced fibres with decreasing averaged diameters from 390 to 130 nm. Evidence of phase separation between PAN and PEO in the bicomponent fibres was indicated by the characteristic PAN and PEO peaks by Fourier transform infrared (FTIR) spectroscopy and solid-state nuclear magnetic resonance (NMR) imaging, and confirmed by the co-existence of PAN cyclization and PEO melting by differential scanning calorimetry (DSC) and the presence of PEO crystalline diffraction by wide-angle x-ray scattering (WAXS). Removal of PEO by dissolution in water was confirmed by the matched mass loss to PEO fraction and the absence of PEO by FTIR and DSC. The water-treated bicomponent fibres appeared slightly larger in diameter and contained internal pores of nanometre scale. The nanoporous fibres generated from 50/50 PAN/PEO bicomponent precursor contained internal pores of a few nanometres to tens of nanometres in size and had 50% higher pore volume and 2.5-fold higher specific surface

  17. Resizing metal-coated nanopores using a scanning electron microscope.

    Science.gov (United States)

    Chansin, Guillaume A T; Hong, Jongin; Dusting, Jonathan; deMello, Andrew J; Albrecht, Tim; Edel, Joshua B

    2011-10-04

    Electron beam-induced shrinkage provides a convenient way of resizing solid-state nanopores in Si(3) N(4) membranes. Here, a scanning electron microscope (SEM) has been used to resize a range of different focussed ion beam-milled nanopores in Al-coated Si(3) N(4) membranes. Energy-dispersive X-ray spectra and SEM images acquired during resizing highlight that a time-variant carbon deposition process is the dominant mechanism of pore shrinkage, although granular structures on the membrane surface in the vicinity of the pores suggest that competing processes may occur. Shrinkage is observed on the Al side of the pore as well as on the Si(3) N(4) side, while the shrinkage rate is observed to be dependent on a variety of factors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores

    Science.gov (United States)

    Bell, Nicholas A. W.; Keyser, Ulrich F.

    2016-07-01

    The simultaneous detection of a large number of different analytes is important in bionanotechnology research and in diagnostic applications. Nanopore sensing is an attractive method in this regard as the approach can be integrated into small, portable device architectures, and there is significant potential for detecting multiple sub-populations in a sample. Here, we show that highly multiplexed sensing of single molecules can be achieved with solid-state nanopores by using digitally encoded DNA nanostructures. Based on the principles of DNA origami, we designed a library of DNA nanostructures in which each member contains a unique barcode; each bit in the barcode is signalled by the presence or absence of multiple DNA dumbbell hairpins. We show that a 3-bit barcode can be assigned with 94% accuracy by electrophoretically driving the DNA structures through a solid-state nanopore. Select members of the library were then functionalized to detect a single, specific antibody through antigen presentation at designed positions on the DNA. This allows us to simultaneously detect four different antibodies of the same isotype at nanomolar concentration levels.

  19. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes.

    Science.gov (United States)

    Wang, Luda; Boutilier, Michael S H; Kidambi, Piran R; Jang, Doojoon; Hadjiconstantinou, Nicolas G; Karnik, Rohit

    2017-06-06

    Graphene and other two-dimensional materials offer a new approach to controlling mass transport at the nanoscale. These materials can sustain nanoscale pores in their rigid lattices and due to their minimum possible material thickness, high mechanical strength and chemical robustness, they could be used to address persistent challenges in membrane separations. Here we discuss theoretical and experimental developments in the emerging field of nanoporous atomically thin membranes, focusing on the fundamental mechanisms of gas- and liquid-phase transport, membrane fabrication techniques and advances towards practical application. We highlight potential functional characteristics of the membranes and discuss applications where they are expected to offer advantages. Finally, we outline the major scientific questions and technological challenges that need to be addressed to bridge the gap from theoretical simulations and proof-of-concept experiments to real-world applications.

  20. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes

    Science.gov (United States)

    Wang, Luda; Boutilier, Michael S. H.; Kidambi, Piran R.; Jang, Doojoon; Hadjiconstantinou, Nicolas G.; Karnik, Rohit

    2017-06-01

    Graphene and other two-dimensional materials offer a new approach to controlling mass transport at the nanoscale. These materials can sustain nanoscale pores in their rigid lattices and due to their minimum possible material thickness, high mechanical strength and chemical robustness, they could be used to address persistent challenges in membrane separations. Here we discuss theoretical and experimental developments in the emerging field of nanoporous atomically thin membranes, focusing on the fundamental mechanisms of gas- and liquid-phase transport, membrane fabrication techniques and advances towards practical application. We highlight potential functional characteristics of the membranes and discuss applications where they are expected to offer advantages. Finally, we outline the major scientific questions and technological challenges that need to be addressed to bridge the gap from theoretical simulations and proof-of-concept experiments to real-world applications.

  1. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability.

    Science.gov (United States)

    Pawar, Rajendra C; Kang, Suhee; Park, Jung Hyun; Kim, Jong-Ho; Ahn, Sunghoon; Lee, Caroline S

    2016-08-08

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g(-1)) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g(-1)). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective.

  2. Solid-state nanopores for probing DNA and protein

    NARCIS (Netherlands)

    Plesa, C.

    2015-01-01

    Solid-state nanopores are small nanometer-scale holes in thin membranes. When used to separate two chambers containing salt solution, any biomolecule passing from one chamber to the other is forced to pass through the pore constriction. An electric field applied across the membrane is used to create

  3. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  4. Systems approach to chemical spill response information needs

    Energy Technology Data Exchange (ETDEWEB)

    Parnarouskis, M.C.; Flessner, M.F.; Potts, R.G.

    1980-01-01

    The Chemical Hazards Response Information System (CHRIS) has been specifically designed to meet the emergency needs of US Coast Guard field personnel, currently providing them with information on 900 hazardous chemicals, with methods of predicting hazards resulting from accidental discharges, and with procedures for selecting and implementing response to accident discharges. The major components of CHRIS and the computerized hazard assessment models within the Hazard Assessment Computer System are described in detail.

  5. Effect of Nanopore Length on the Translocation Process of a Biopolymer: Numerical Study

    Directory of Open Access Journals (Sweden)

    Yong Kweon Suh

    2013-09-01

    Full Text Available In this study, we simulate the electrophoretic motion of a bio-polymer through a synthetic nanopore in the presence of an external bias voltage by considering the hydrodynamic interactions between the polymer and the fluid explicitly. The motion of the polymer is simulated by 3D Langevin dynamics technique by modeling the polymer as a worm-like-chain, while the hydrodynamic interactions are incorporated by the lattice Boltzmann equation. We report the simulation results for three different lengths of the nanopore. The translocation time increases with the pore length even though the electrophoretic force on the polymer is the same irrespective of the pore length. This is attributed to the fact that the translocation velocity of each bead inside the nanopore decreases with the pore length due to the increased fluid resistance force caused by the increase in the straightened portion of the polymer. We confirmed this using a theoretical formula.

  6. Pt-Al{sub 2}O{sub 3} dual layer atomic layer deposition coating in high aspect ratio nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Pardon, Gaspard; Gatty, Hithesh K; Stemme, Goeran; Wijngaart, Wouter van der; Roxhed, Niclas [KTH Royal Institute of Technology, School of Electrical Engineering, Micro and Nanosystems, Osquldas Vaeg 10, SE-10044 Stockholm (Sweden)

    2013-01-11

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al{sub 2}O{sub 3}) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al{sub 2}O{sub 3} layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 {mu}m thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al{sub 2}O{sub 3} using ALD. (paper)

  7. Electrochromic artificial muscles based on nanoporous metal-polymer composites

    NARCIS (Netherlands)

    Detsi, E.; Onck, P. R.; De Hosson, J. T. M.

    2013-01-01

    This work shows that a nano-coating of electrochromic polymer grown onto the ligaments of nanoporous gold causes reversible dimensional and color changes during electrochemical actuation. This combination of electromechanical and optical properties opens additional avenues for the applications of

  8. SIMPLE METHOD TO PRODUCE NANOPOROUS CARBON FOR VARIOUS APPLICATIONS BY PYROLYSIS OF SPECIALLY SYNTHESIZED PHENOLIC RESIN

    Directory of Open Access Journals (Sweden)

    Imam Prasetyo

    2013-08-01

    Full Text Available Nanoporous carbon materials, a unique and useful material, have been widely used in many technologies such as separation processes, catalysis, energy storage, gas storage, energy conversion, etc. due to its high specific surface area and tunable porosity. In this research, nanoporous carbons were prepared using simple and innovative approach based on structural array of phenolic resin polymer without activation during carbonization process. The effect of phenolic reactant type and composition on pore structure and carbon surface morphologies was studied. Nanoporous carbon derived from resorcinol formaldehyde (RF and from resorcinol phenol formaldehyde (RPF polymers was suitable for electrode material supercapacitor and CO2 capture medium. RF-derived and RPF-derived carbons provide electrode material supercapacitor with specific capacitance up to 246 F/g, whereas carbonized RPF exhibited CO2 uptake of 10.63 mmol/g (at 3.5 MPa 298 K. Nanoporous carbon derived from resorcinol para-tert-butyl phenol formaldehyde (RTBPF polymer exhibited attractive characteristics as methane storage media with methane uptake capacity as high as 8.98 mmol/g (at 3.5 MPa 298 K.

  9. Nanoporous carbon for electrochemical capacitors.

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, Michael P.; Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

    2010-05-01

    Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

  10. Nanoporous carbon for electrochemical capacitors.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Siegal, Michael P.; Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

    2010-04-01

    Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

  11. Nanoporous gold assembly of glucose oxidase for electrochemical biosensing

    DEFF Research Database (Denmark)

    Xiao, Xinxin; Ulstrup, Jens; Li, Hui

    2014-01-01

    Nanoporous gold (NPG) is composed of three-dimensional (3D) bicontinuous nanostructures with large surface area. Nano-channels inside NPG provide an ideal local environment for immobilization of enzyme molecules with expected stabilization of the protein molecules. In this work, glucose oxidase (...

  12. A three-dimensional hierarchical nanoporous PdCu alloy for enhanced electrocatalysis and biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Liu Aihua [Laboratory for Nanobioelectronics and Biosensors, Qingdao Institute of Bioenergy and Bioprocess Technology, and Key Laboratory for Biofuels, Chinese Academy of Sciences, Qingdao 266101 (China); Geng Haoran [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Xu Caixia, E-mail: chm_xucx@ujn.edu.cn [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Qiu Huajun, E-mail: qiuhuajun@gmail.com [Laboratory for Nanobioelectronics and Biosensors, Qingdao Institute of Bioenergy and Bioprocess Technology, and Key Laboratory for Biofuels, Chinese Academy of Sciences, Qingdao 266101 (China)

    2011-10-10

    Highlights: {yields} Nanotubular mesoporous PdCu (NM-PdCu) alloy is facilely fabricated via one-step metal replacement reaction between nanoporous Cu and H{sub 2}PdCl{sub 4}. {yields} The NM-PdCu exhibits remarkably improved structure stability and electrocatalytic activity towards formic acid and hydrogen peroxide oxidation compared with NP-Pd. {yields} When coupled with GOx, the GOx/NM-PdCu electrode can be used for sensitive detection of glucose over a wide concentration range. - Abstract: Nanoporous copper (NPC) obtained by dealloying CuAl alloy is used as both three-dimensional template and reducing agent for the fabrication of nanoporous PdCu alloy with hollow ligaments by a simple galvanic replacement reaction with H{sub 2}PdCl{sub 4} aqueous solution. Electron microscopy and X-ray diffraction characterizations demonstrate that after the replacement reaction, the ligaments become hollow tubular structure and the ligament shell is also comprised of small pores and nanoparticles with a typical size of {approx}4 nm (third order porosity). The as-prepared nanotubular mesoporous PdCu alloy (NM-PdCu) structure exhibits remarkably improved electrocatalytic activity towards the oxidation of formic acid and H{sub 2}O{sub 2} compared with nanoporous Pd (NP-Pd), and can be used for sensitive electrochemical sensing applications. After coupled with glucose oxidase (GOx), the enzyme modified NM-PdCu electrode can sensitively detect glucose over a wide linear range (0.5-20 mM).

  13. A three-dimensional hierarchical nanoporous PdCu alloy for enhanced electrocatalysis and biosensing

    International Nuclear Information System (INIS)

    Liu Aihua; Geng Haoran; Xu Caixia; Qiu Huajun

    2011-01-01

    Highlights: → Nanotubular mesoporous PdCu (NM-PdCu) alloy is facilely fabricated via one-step metal replacement reaction between nanoporous Cu and H 2 PdCl 4 . → The NM-PdCu exhibits remarkably improved structure stability and electrocatalytic activity towards formic acid and hydrogen peroxide oxidation compared with NP-Pd. → When coupled with GOx, the GOx/NM-PdCu electrode can be used for sensitive detection of glucose over a wide concentration range. - Abstract: Nanoporous copper (NPC) obtained by dealloying CuAl alloy is used as both three-dimensional template and reducing agent for the fabrication of nanoporous PdCu alloy with hollow ligaments by a simple galvanic replacement reaction with H 2 PdCl 4 aqueous solution. Electron microscopy and X-ray diffraction characterizations demonstrate that after the replacement reaction, the ligaments become hollow tubular structure and the ligament shell is also comprised of small pores and nanoparticles with a typical size of ∼4 nm (third order porosity). The as-prepared nanotubular mesoporous PdCu alloy (NM-PdCu) structure exhibits remarkably improved electrocatalytic activity towards the oxidation of formic acid and H 2 O 2 compared with nanoporous Pd (NP-Pd), and can be used for sensitive electrochemical sensing applications. After coupled with glucose oxidase (GOx), the enzyme modified NM-PdCu electrode can sensitively detect glucose over a wide linear range (0.5-20 mM).

  14. Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film

    International Nuclear Information System (INIS)

    Singh, S. P.; Arya, Sunil K.; Pandey, Pratibha; Malhotra, B. D.; Saha, Shibu; Sreenivas, K.; Gupta, Vinay

    2007-01-01

    Cholesterol oxidase (ChOx) has been immobilized onto zinc oxide (ZnO) nanoporous thin films grown on gold surface. A preferred c-axis oriented ZnO thin film with porous surface morphology has been fabricated by rf sputtering under high pressure. Optical studies and cyclic voltammetric measurements show that the ChOx/ZnO/Au bioelectrode is sensitive to the detection of cholesterol in 25-400 mg/dl range. A relatively low value of enzyme's kinetic parameter (Michaelis-Menten constant) ∼2.1 mM indicates enhanced enzyme affinity of ChOx to cholesterol. The observed results show promising application of nanoporous ZnO thin film for biosensing application without any functionalization

  15. Capillary Condensation of Binary and Ternary Mixtures of n-Pentane-Isopentane-CO2 in Nanopores: An Experimental Study on the Effects of Composition and Equilibrium.

    Science.gov (United States)

    Barsotti, Elizabeth; Saraji, Soheil; Tan, Sugata P; Piri, Mohammad

    2018-02-06

    Confinement in nanopores can significantly impact the chemical and physical behavior of fluids. While some quantitative understanding is available for how pure fluids behave in nanopores, there is little such insight for mixtures. This study aims to shed light on how nanoporosity impacts the phase behavior and composition of confined mixtures through comparison of the effects of static and dynamic equilibrium on experimentally measured isotherms and chromatographic analysis of the experimental fluids. To this end, a novel gravimetric apparatus is introduced and validated. Unlike apparatuses that have been previously used to study the confinement-induced phase behavior of fluids, this apparatus employs a gravimetric technique capable of discerning phase transitions in a wide variety of nanoporous media under both static and dynamic conditions. The apparatus was successfully validated against data in the literature for pure carbon dioxide and n-pentane. Then, isotherms were generated for binary mixtures of carbon dioxide and n-pentane using static and flow-through methods. Finally, two ternary mixtures of carbon dioxide, n-pentane, and isopentane were measured using the static method. While the equilibrium time was found important for determination of confined phase transitions, flow rate in the dynamic method was not found to affect the confined phase behavior. For all measurements, the results indicate qualitative transferability of the bulk phase behavior to the confined fluid.

  16. Nanoporous Polymer Films of Cyanate Ester Resins Designed by Using Ionic Liquids as Porogens.

    Science.gov (United States)

    Fainleib, Alexander; Vashchuk, Alina; Starostenko, Olga; Grigoryeva, Olga; Rogalsky, Sergiy; Nguyen, Thi-Thanh-Tam; Grande, Daniel

    2017-12-01

    Novel nanoporous film materials of thermostable cyanate ester resins (CERs) were generated by polycyclotrimerization of dicyanate ester of bisphenol E in the presence of varying amounts (from 20 to 40 wt%) of an ionic liquid (IL), i.e., 1-heptylpyridinium tetrafluoroborate, followed by its quantitative extraction after complete CER network formation. The completion of CER formation and IL extraction was assessed using gel fraction content determination, FTIR, 1 H NMR, and energy-dispersive X-ray spectroscopy (EDX). SEM and DSC-based thermoporometry analyses demonstrated the formation of nanoporous structures after IL removal from CER networks, thus showing the effective role of IL as a porogen. Pore sizes varied from ~20 to ~180 nm with an average pore diameter of around 45-60 nm depending on the initial IL content. The thermal stability of nanoporous CER-based films was investigated by thermogravimetric analysis.

  17. Free energy and scalings for polymer translocation through a nanopore: A molecular dynamics simulation study combined with milestoning

    International Nuclear Information System (INIS)

    Xue, Xiang-Gui; Zhao, Li; Lu, Zhong-Yuan; Li, Ze-Sheng

    2012-01-01

    Coarse-grained molecular dynamics simulations combined with milestoning method are used to study the stochastic process of polymer chain translocation though a nanopore. We find that the scalings for polymer translocation process (the chain is initialized with the first monomer in the nanopore) and for polymer escape process (the chain is initialized with the middle monomer in the nanopore) are different. The translocation process is mainly controlled by the entropic barrier, while the polymer escape process is driven by the effective force due to free energy difference. -- Highlights: ► We study polymer translocating through a nanopore by CGMD combined with milestoning. ► We find that the scalings for polymer translocation and for polymer escape are different. ► The translocation process is mainly controlled by the entropic barrier. ► The polymer escape process is driven by the effective force due to free energy difference.

  18. Elastic constants of nanoporous III-V semiconductors

    Czech Academy of Sciences Publication Activity Database

    Janovská, Michaela; Sedlák, Petr; Kruisová, Alena; Seiner, Hanuš; Landa, Michal; Grym, Jan

    2015-01-01

    Roč. 48, č. 24 (2015) ISSN 0022-3727 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 ; RVO:67985882 Keywords : nanoporous semiconductors * resonant ultrasound spectroscopy * finite elements modelling Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (URE-Y) Impact factor: 2.772, year: 2015 http://iopscience.iop.org/0022-3727/48/24/245102/article

  19. Surfactant-controlled etching of ion track nanopores and its practical applications in membrane technology

    International Nuclear Information System (INIS)

    Apel, P.Yu.; Blonskaya, I.V.; Dmitriev, S.N.; Mamonova, T.I.; Orelovitch, O.L.; Sartowska, B.; Yamauchi, Yu.

    2008-01-01

    The effect of surfactants on chemical development of ion tracks in polymers has been studied. It has been shown that surface-active agents added to an alkaline etching solution adsorb on the polymer surface at the pore entrances. This reduces the etch rate, which leads to the formation of pores tapered toward the surface. Self-assembly of surfactant molecules at the pore entrance creates a barrier for their penetration into the etched-out nanopores, whereas hydroxide ions diffuse freely. Due to this, the internal pore volume grows faster than the pore surface diameter. The ability to control pore shape is demonstrated with the fabrication of profiled nano- and micropores in polyethylene terephthalate, polycarbonate. Some earlier published data on small track-etched pores in polycarbonate (in particular, the pore diameter vs. etching time curves measured conductometrically) have been revised in light of the above findings. Adding surfactants to chemical etchants makes it possible to optimize the structure of track membranes, thus improving their retention and permeation properties. Asymmetric membranes with thin skin retention layers have been produced and their performance studied

  20. Nanoporous Structure of Bone Matrix at Osteoporosis from Data of Atomic Force Microscopy and IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. A. Gaidash

    2011-01-01

    Full Text Available It was found that in an osteoporotic bone the fraction of nanosized pores decreases, the mineral phase amorphizes, hydrated shells around mineralized particles of the bone matrix thicken, and adhesion forces increase. This contributes to the formation of water clusters similar to bulk water clusters compared to the healthy bone tissue and leads to the accumulation of more viscous liquid with increased intermolecular interaction forces in the pores of the bone matrix. Given this, the rates of chemical reactions proceeding in the water phase of ultrathin channels of general parts of collagen fibrils decrease. Ultimately, nanopores of collagen-apatite interfaces lose, to a certain extent, the capability of catalyzing the hydroxyapatite crystallization.

  1. Nanoporous amide networks based on tetraphenyladamantane for selective CO2capture

    KAUST Repository

    Zulfiqar, Sonia; Mantione, Daniele; El Tall, Omar; Sarwar, Muhammad Ilyas; Ruipé rez, Fernando; Rothenberger, Alexander; Mecerreyes, David

    2016-01-01

    Reduction of anthropogenic CO2 emissions and CO2 separation from post-combustion flue gases are among the imperative issues in the spotlight at present. Hence, it is highly desirable to develop efficient adsorbents for mitigating climate change with possible energy savings. Here, we report the design of a facile one pot catalyst-free synthetic protocol for the generation of three different nitrogen rich nanoporous amide networks (NANs) based on tetraphenyladamantane. Besides the porous architecture, CO2 capturing potential and high thermal stability, these NANs possess notable CO2/N2 selectivity with reasonable retention while increasing the temperature from 273 K to 298 K. The quantum chemical calculations also suggest that CO2 interacts mainly in the region of polar amide groups (-CONH-) present in NANs and this interaction is much stronger than that with N2 thus leading to better selectivity and affirming them as promising contenders for efficient gas separation. © The Royal Society of Chemistry 2016.

  2. Nanoporous amide networks based on tetraphenyladamantane for selective CO2capture

    KAUST Repository

    Zulfiqar, Sonia

    2016-04-19

    Reduction of anthropogenic CO2 emissions and CO2 separation from post-combustion flue gases are among the imperative issues in the spotlight at present. Hence, it is highly desirable to develop efficient adsorbents for mitigating climate change with possible energy savings. Here, we report the design of a facile one pot catalyst-free synthetic protocol for the generation of three different nitrogen rich nanoporous amide networks (NANs) based on tetraphenyladamantane. Besides the porous architecture, CO2 capturing potential and high thermal stability, these NANs possess notable CO2/N2 selectivity with reasonable retention while increasing the temperature from 273 K to 298 K. The quantum chemical calculations also suggest that CO2 interacts mainly in the region of polar amide groups (-CONH-) present in NANs and this interaction is much stronger than that with N2 thus leading to better selectivity and affirming them as promising contenders for efficient gas separation. © The Royal Society of Chemistry 2016.

  3. Final Report of Optimization Algorithms for Hierarchical Problems, with Applications to Nanoporous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Stephen G.

    2013-11-11

    The research focuses on the modeling and optimization of nanoporous materials. In systems with hierarchical structure that we consider, the physics changes as the scale of the problem is reduced and it can be important to account for physics at the fine level to obtain accurate approximations at coarser levels. For example, nanoporous materials hold promise for energy production and storage. A significant issue is the fabrication of channels within these materials to allow rapid diffusion through the material. One goal of our research is to apply optimization methods to the design of nanoporous materials. Such problems are large and challenging, with hierarchical structure that we believe can be exploited, and with a large range of important scales, down to atomistic. This requires research on large-scale optimization for systems that exhibit different physics at different scales, and the development of algorithms applicable to designing nanoporous materials for many important applications in energy production, storage, distribution, and use. Our research has two major research thrusts. The first is hierarchical modeling. We plan to develop and study hierarchical optimization models for nanoporous materials. The models have hierarchical structure, and attempt to balance the conflicting aims of model fidelity and computational tractability. In addition, we analyze the general hierarchical model, as well as the specific application models, to determine their properties, particularly those properties that are relevant to the hierarchical optimization algorithms. The second thrust was to develop, analyze, and implement a class of hierarchical optimization algorithms, and apply them to the hierarchical models we have developed. We adapted and extended the optimization-based multigrid algorithms of Lewis and Nash to the optimization models exemplified by the hierarchical optimization model. This class of multigrid algorithms has been shown to be a powerful tool for

  4. Fabrication of an open Au/nanoporous film by water-in-oil emulsion-induced block copolymer micelles.

    Science.gov (United States)

    Koh, Haeng-Deog; Kang, Nam-Goo; Lee, Jae-Suk

    2007-12-18

    Water-in-oil (W/O) emulsion-induced micelles with narrow size distributions of approximately 140 nm were prepared by sonicating the polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer in the toluene/water (50:1 vol %). The ordered nanoporous block copolymer films with the hydrophilic P2VP interior and the PS matrix were distinctly fabricated by casting the resultant solution on substrates, followed by evaporating the organic solvent and water. The porous diameter was estimated to be about 70 nm. Here, we successfully prepared the open nanoporous nanocomposites, the P2VP domain decorated by Au (5+/-0.4 nm) nanoparticles based on the methodology mentioned. We anticipate that this novelty enhances the specific function of nanoporous films.

  5. Electrochemical impedance spectroscopy of nanoporous anodic alumina template

    International Nuclear Information System (INIS)

    Shahzad, K.

    2010-01-01

    Room temperature EIS characterization of nanoporous anodic alumina prepared at 40 V and 60 V has been done in 0.3 M oxalic acid solution. Rapid decrease in impedance was observed for the template prepared at 40 V. EIS study of porous anodic alumina template prepared in 0.3 M oxalic acid has been done in different electrolytes. Templates prepared in 0.3 M sulfuric acid solution were also characterized for comparison. Rapid decrease in the thickness of nonporous anodic film was observed with an increase of aggressiveness of electrolyte. Temperature based systematic study of EIS measurement has been done for porous anodic alumina template at different temperatures. Formation of micropores was observed in the nanoporous anodic alumina film formed on aluminum in 0.3 M oxalic acid solution which accelerates the dissolution rate with increase of measurement temperature. In addition to these, electropolishing behavior of pure aluminum has also been studied in different electrolytes and it was observed that electropolishing conditions prior to anodization are extremely important. (author)

  6. Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: Isotherms, kinetic and thermodynamic studies.

    Science.gov (United States)

    Kaynar, Ümit H; Ayvacıklı, Mehmet; Hiçsönmez, Ümran; Kaynar, Sermin Çam

    2015-12-01

    The adsorption of thorium (IV) from aqueous solutions onto a novel nanoporous ZnO particles prepared by microwave assisted combustion was studied using batch methods under different experimental conditions. The effect of contact time, solution pH, initial concentration and temperature on adsorption process was studied. The ability of this material to remove Th (IV) from aqueous solution was characterises by Langmuir, Freunlinch and Temkin adsorption isotherms. The adsorption percent and distribution coefficient for nanoporous ZnO powders in optimum conditions were 97% ± 1.02; 8080 L kg(-1)for Th (IV), respectively. Based on the Langmuir model, the maximum adsorption capacity of nanoporous ZnO for Th (IV) was found to be 1500 g kg(-1). Thermodynamic parameters were determined and discussed. The results indicated that nanoporous ZnO was suitable as sorbent material for recovery and adsorption of Th (IV) ions from aqueous solutions. The radioactive Th (VI) in surface water, sea water and waste waters from technologies producing nuclear fuels, mining (uranium and thorium) and laboratories working with radioactive materials (uranium and thorium) can be removed with this nanoporous ZnO. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?

    Science.gov (United States)

    Lian, Cheng; Liu, Honglai; Henderson, Douglas; Wu, Jianzhong

    2016-10-01

    The ionophobicity effect of nanoporous electrodes on the capacitance and the energy storage capacity of nonaqueous-electrolyte supercapacitors is studied by means of the classical density functional theory (DFT). It has been hypothesized that ionophobic nanopores may create obstacles in charging, but they store energy much more efficiently than ionophilic pores. In this study, we find that, for both ionic liquids and organic electrolytes, an ionophobic pore exhibits a charging behavior different from that of an ionophilic pore, and that the capacitance-voltage curve changes from a bell shape to a two-hump camel shape when the pore ionophobicity increases. For electric-double-layer capacitors containing organic electrolytes, an increase in the ionophobicity of the nanopores leads to a higher capacity for energy storage. Without taking into account the effects of background screening, the DFT predicts that an ionophobic pore containing an ionic liquid does not enhance the supercapacitor performance within the practical voltage ranges. However, by using an effective dielectric constant to account for ion polarizability, the DFT predicts that, like an organic electrolyte, an ionophobic pore with an ionic liquid is also able to increase the energy stored when the electrode voltage is beyond a certain value. We find that the critical voltage for an enhanced capacitance in an ionic liquid is larger than that in an organic electrolyte. Our theoretical predictions provide further understanding of how chemical modification of porous electrodes affects the performance of supercapacitors. The authors are saddened by the passing of George Stell but are pleased to contribute this article in his memory. Some years ago, DH gave a talk at a Gordon Conference that contained an approximation that George had demonstrated previously to be in error in one of his publications. Rather than making this point loudly in the discussion, George politely, quietly, and privately pointed this out

  8. Fabrication of fine spongy nanoporous Ag-Au alloys with improved catalysis properties

    Directory of Open Access Journals (Sweden)

    Cuiting Li

    2017-12-01

    Full Text Available Fine NP-AgAu (nanoporous AgAu alloys with spongy structure was fabricated by chemical dealloying from rapidly solidified amorphous precursors Ag38.75−xCu38.75Si22.5Aux (x=0, 0.5, 1 and 5. The results indicate that the addition of small content Au in precursor can refine both the ligaments and pores obviously. Among the present components of the precursors, NP-AgAu alloys dealloying from Ag37.75Cu38.75Si22.5Au1 had the finest spongy structure. The size of pores was 5–10 nm and the grain size of ligaments was 10–20 nm. It also had the highest surface area of 106.83 m2g−1 and the best catalytic activity towards electro-oxidation of formaldehyde with the peak current of 665 mA mg−1.

  9. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid

    Science.gov (United States)

    2012-01-01

    The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing. PMID:23272786

  10. Dynamic translocation of ligand-complexed DNA through solid-state nanopores with optical tweezers

    International Nuclear Information System (INIS)

    Sischka, Andy; Spiering, Andre; Anselmetti, Dario; Khaksar, Maryam; Laxa, Miriam; Koenig, Janine; Dietz, Karl-Josef

    2010-01-01

    We investigated the threading and controlled translocation of individual lambda-DNA (λ-DNA) molecules through solid-state nanopores with piconewton force sensitivity, millisecond time resolution and picoampere ionic current sensitivity with a set-up combining quantitative 3D optical tweezers (OT) with electrophysiology. With our virtually interference-free OT set-up the binding of RecA and single peroxiredoxin protein molecules to λ-DNA was quantitatively investigated during dynamic translocation experiments where effective forces and respective ionic currents of the threaded DNA molecule through the nanopore were measured during inward and outward sliding. Membrane voltage-dependent experiments of reversible single protein/DNA translocation scans yield hysteresis-free, asymmetric single-molecule fingerprints in the measured force and conductance signals that can be attributed to the interplay of optical trap and electrostatic nanopore potentials. These experiments allow an exact localization of the bound protein along the DNA strand and open fascinating applications for label-free detection of DNA-binding ligands, where structural and positional binding phenomena can be investigated at a single-molecule level.

  11. Dynamic Self-Assembly of Homogenous Microcyclic Structures Controlled by a Silver-Coated Nanopore.

    Science.gov (United States)

    Gao, Rui; Lin, Yao; Ying, Yi-Lun; Liu, Xiao-Yuan; Shi, Xin; Hu, Yong-Xu; Long, Yi-Tao; Tian, He

    2017-07-01

    The self-assembly of nanoparticles is a challenging process for organizing precise structures with complicated and ingenious structures. In the past decades, a simple, high-efficiency, and reproducible self-assembly method from nanoscale to microscale has been pursued because of the promising and extensive application prospects in bioanalysis, catalysis, photonics, and energy storage. However, microscale self-assembly still faces big challenges including improving the stability and homogeneity as well as pursuing new assembly methods and templates for the uniform self-assembly. To address these obstacles, here, a novel silver-coated nanopore is developed which serves as a template for electrochemically generating microcyclic structures of gold nanoparticles at micrometers with highly homogenous size and remarkable reproducibility. Nanopore-induced microcyclic structures are further applied to visualize the diffusion profile of ionic flux. Based on this novel strategy, a nanopore could potentially facilitate the delivery of assembled structures for many practical applications including drug delivery, cellular detection, catalysis, and plasmonic sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Brownian dynamics of a protein-polymer chain complex in a solid-state nanopore

    Science.gov (United States)

    Wells, Craig C.; Melnikov, Dmitriy V.; Gracheva, Maria E.

    2017-08-01

    We study the movement of a polymer attached to a large protein inside a nanopore in a thin silicon dioxide membrane submerged in an electrolyte solution. We use Brownian dynamics to describe the motion of a negatively charged polymer chain of varying lengths attached to a neutral protein modeled as a spherical bead with a radius larger than that of the nanopore, allowing the chain to thread the nanopore but preventing it from translocating. The motion of the protein-polymer complex within the pore is also compared to that of a freely translocating polymer. Our results show that the free polymer's standard deviations in the direction normal to the pore axis is greater than that of the protein-polymer complex. We find that restrictions imposed by the protein, bias, and neighboring chain segments aid in controlling the position of the chain in the pore. Understanding the behavior of the protein-polymer chain complex may lead to methods that improve molecule identification by increasing the resolution of ionic current measurements.

  13. Nanoporous SiO{sub 2}/TiO{sub 2} coating with enhanced interfacial compatibility for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaobing, E-mail: zhaoxiaobing00@163.com [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Cao, Hengchun; You, Jing; Cheng, Xingbao [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Xie, Youtao [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Cao, Huiliang [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Liu, Xuanyong, E-mail: xyliu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-11-15

    Graphical abstract: - Highlights: • The SiO{sub 2}/TiO{sub 2} coatings were fabricated on the cp-Ti substrates by plasma spraying. • Nanoporous topography was formed on SiO{sub 2}/TiO{sub 2} coating by HF-hydrothermal etching. • The hydrothermal conditions had important effects on the nanoporous topographies. • Nanoporous SiO{sub 2}/TiO{sub 2} coating exhibited enhanced cytocompatibility. - Abstract: Topographic modification in nanoscale is one of the most often used strategies to enhance the interfacial biocompatibility of implant materials. The aim of this work is to produce SiO{sub 2}/TiO{sub 2} coatings with nanoporous structures and favorable biological properties by atmospheric plasma spraying technology and subsequently hydrothermal etching method in hydrogen fluoride solution. The effects of hydrothermal time and temperature on the microstructures and osteoblast behavior of the SiO{sub 2}/TiO{sub 2} coatings were investigated. Results demonstrated that the as-sprayed SiO{sub 2}/TiO{sub 2} coating was mainly composed of rutile and quartz phases. After etching, nanoporous topographies were formed on the surface of the coatings and the hydrothermal parameters had important influences on the size and shape of the pores. The interconnected network pores on the coating surface could only produce at the appropriate hydrothermal conditions (the hydrothermal time and temperature were 60 min and 100 °C, respectively). Compared to TiO{sub 2} and SiO{sub 2}/TiO{sub 2} coatings, nanoporous SiO{sub 2}/TiO{sub 2} coatings could enhance osteoblast adhesion and promote cell proliferation. The results suggested the potential application of the porous coatings for enhancing the biological performance of the currently used dental and orthopedic implant materials.

  14. Liquid Core Waveguides by UV Modification of Nanoporous Polymer

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Gopalakrishnan, Nimi; Sagar, Kaushal Shashikant

    2011-01-01

    Liquid core waveguides are fabricated from a self-assembled nanoporous polymer, with a porosity of 40%. The high porosity results in an effective refractive index of 1.26 for visible light, i.e. below the refractive index of aqueous solutions. However, since the polymer is hydrophobic, fluids...

  15. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    OpenAIRE

    Kumaresa P S Prasad, Dattatray S Dhawale, Thiripuranthagan Sivakumar, Salem S Aldeyab, Javaid S M Zaidi, Katsuhiko Ariga and Ajayan Vinu

    2011-01-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD r...

  16. Retroreflection from nanoporous InP

    International Nuclear Information System (INIS)

    Prislopski, S.Ya.; Naumenko, E.K.; Gaponenko, S.V.; Tiginyanu, I.M.; Ghimpu, L.; Sirbu, L.; Monaico, E.

    2013-01-01

    Pronounced retroreflection behavior is reported for a fishnet nanoporous strongly absorbing semiconductor material. Retroreflection appears with diffusive specular reflection for all angles of incidence. Retroreflection is apparent by the naked eye with day light illumination and exhibits no selectivity with respect to wavelength and polarization of incident light featuring minor depolarization of retroreflected light. The phenomenon can be classified neither as coherent backscattering nor as Anderson localization of light. The primary model includes light scattering from strongly absorptive and refractive super-wavelength clusters existing within the porous fishnet structure. We found that retroreflection vanishes for wavelength where absorption becomes negligible. (authors)

  17. The use of a hierarchically platinum-free electrode composed of tin oxide decorated polypyrrole on nanoporous copper in catalysis of methanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Asghari, Elnaz, E-mail: elnazasghari@yahoo.com; Ashassi-Sorkhabi, Habib; Vahed, Akram; Rezaei-Moghadam, Babak; Charmi, Gholam Reza

    2016-01-01

    Tin oxide nanoparticles were synthesized through a galvanostatic pathway on polypyrrole, PPy, coated nanoporous copper. The morphology and surface analysis of the assemblies were evaluated by field emission scanning electron microscopy, FESEM, and energy dispersive X-ray, EDX, analysis, respectively. The electrocatalytic behavior of electrodes was studied by cyclic voltammetry and chronoamperometry tests in methanol solution. FESEM results showed that uniformly distributed nanoparticles with diameters of about 20–30 nm have been dispersed on PPy matrix. Cyclic voltammetry and chronoamperometry tests in methanol solution showed a significant enhancement in the catalytic action of PPy after decoration of tin oxide nanoparticles. Porous Cu/PPy/SnO{sub x} electrodes showed enhanced anodic peak current density for methanol oxidation compared to smooth Cu/PPy/SnO{sub x} and porous Cu/PPy. The effects of synthesis current density and time on the electrocatalytic behavior of the electrodes were evaluated. The significant enhancement of electrocatalytic behavior of the Cu/PPy electrode after decoration of SnO{sub x} overlayer was attributed to the effect of tin oxide on the adsorption of intermediates of methanol oxidation as well as oxidation of bi-products such as CO; huge tendency of tin oxides for dehydrogenation of the alcohols and the increase in microscopic surface area of the electrodes were introduced as other affecting factors. - Highlights: • Nanoporous copper–zinc substrates were formed by chemical leaching of zinc. • Polypyrrole thin film was electrodeposited on nanoporous copper. • Thin oxide nanoparticles were synthesized electrochemically on polypyrrole layer. • The catalytic performance of the electrodes was evaluated for methanol oxidation.

  18. Understanding Energy Absorption Behaviors of Nanoporous Materials

    Science.gov (United States)

    2008-05-23

    induced liquid infiltration in nanopores. J. Appl. Phys. 100, 014308.1-3 (2006). 26. Surani, F. B. and Qiao, Y. Energy absorption of a polyacrylic ...that the infiltration pressure decreases as the cation size increases (Fig.K-2). The ionic radii of cesium, potassium , sodium and lithium are...REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 Public Reporting burden for this collection of information is estimated to average 1 hour

  19. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment.

    Science.gov (United States)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-27

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable 'brick-and-mortar' nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  20. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment

    Science.gov (United States)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-01

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable ‘brick-and-mortar’ nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  1. Prussian blue-modified nanoporous gold film electrode for amperometric determination of hydrogen peroxide.

    Science.gov (United States)

    Ghaderi, Seyran; Mehrgardi, Masoud Ayatollahi

    2014-08-01

    In this manuscript, the electrocatalytic reduction of hydrogen peroxides on Prussian blue (PB) modified nanoporous gold film (NPGF) electrode is described. The PB/NPGF is prepared by simple anodizing of a smooth gold film followed by PB film electrodeposition method. The morphology of the PB/NPGF electrode is characterized using scanning electron microscopy (SEM). The effect of solution pH and the scan rates on the voltammetric responses of hydrogen peroxide have also been examined. The amperometric determination of H2O2 shows two linear dynamic responses over the concentration range of 1μM-10μM and 10μM-100μM with a detection limit of 3.6×10(-7)M. Furthermore, this electrode demonstrated good stability, repeatability and selectivity remarkably. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Characterization of nanoporous Al{sub 2}O{sub 3}:C for thermoluminescent radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Barros, V.S.M. de [Departamento de Energia Nuclear-UFPE, Rua prof Luiz Freire, 1000, Recife, PE 50740-540 (Brazil)], E-mail: vdbarros@terra.com.br; Khoury, H.J. [Departamento de Energia Nuclear-UFPE, Rua prof Luiz Freire, 1000, Recife, PE 50740-540 (Brazil); Azevedo, W.M. [Departamento de Quimica Fundamental-CCEN Recife, PE 50740-540 (Brazil); Silva, E.F. da [Departamento de Fisica CCEN Recife, PE 50740-540 (Brazil)

    2007-09-21

    Thermoluminescent (TL) {alpha}-Al{sub 2}O{sub 3}:C dosimeters, produced in the form of single crystals, show a high sensitivity to ionizing radiation (about 40-60 times higher than LiF:Mg,Ti). However, the crystal growth requires high temperatures (2050 deg. C) and highly reducing atmospheres. This paper presents the TL response of thin nanoporous Al{sub 2}O{sub 3}:C membranes obtained by electrochemical anodizing of aluminum in organic acid solutions at room temperature. The TL properties of the samples were analyzed as a function of the anodizing voltage in the interval 30-60 V and of the acid concentrations from 0.05 to 0.6 M. The dosimetric response of the samples for {sup 60}Co gamma radiation is linear with dose, and the best response was found for samples anodized at 130 V with 0.10 M acid concentration.

  3. Effect of Addition of Soybean Oil and Gamma-Ray Cross-linking on the Nanoporous HDPE Membrane

    Directory of Open Access Journals (Sweden)

    Jong-Seok Park

    2012-01-01

    Full Text Available A nanoporous high-density polyethylene (HDPE membrane was prepared by a wet process. Soybean oil and dibutyl phthalate (DBP were premixed as codiluents, and gamma-rays were used for the cross-linking of HDPE. The pore volume of the nanoporous HDPE membranes with soybean oil was affected by the extracted amount of oil. The tensile strength of the membrane improved with an increasing absorbed dose up to 60 kGy, but decreased at 80 kGy due to severe degradation. The ionic conductivity of the nanoporous HDPE membrane did not really change with an increasing absorbed dose because the pores had already been formed before the gamma-ray radiation. Finally, the electrochemical stability of the HDPE membrane increased when the absorbed dose increased up to 60 kGy.

  4. Stress-induced chemical detection using flexible metal-organic frameworks.

    Science.gov (United States)

    Allendorf, Mark D; Houk, Ronald J T; Andruszkiewicz, Leanne; Talin, A Alec; Pikarsky, Joel; Choudhury, Arnab; Gall, Kenneth A; Hesketh, Peter J

    2008-11-05

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N2 or O2. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO2. Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes.

  5. Electrochemical catalytic activities of nanoporous palladium rods for methanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoguang; Wang, Weimin; Qi, Zhen; Zhao, Changchun; Ji, Hong; Zhang, Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (MOE), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2010-10-01

    A novel electrocatalyst, nanoporous palladium (npPd) rods can be facilely fabricated by dealloying a binary Al{sub 80}Pd{sub 20} alloy in a 5 wt.% HCl aqueous solution under free corrosion conditions. The microstructure of these nanoporous palladium rods has been characterized using scanning electron microscopy and transmission electron microscopy. The results show that each Pd rod is several microns in length and several hundred nanometers in diameter. Moreover, all the rods exhibit a typical three-dimensional bicontinuous interpenetrating ligament-channel structure with length scale of 15-20 nm. The electrochemical experiments demonstrate that these peculiar nanoporous palladium rods (mixed with Vulcan XC-72 carbon powders to form a npPd/C catalyst) reveal a superior electrocatalytic performance toward methanol oxidation in the alkaline media. In addition, the electrocatalytic activity obviously depends on the metal loading on the electrode and will reach to the highest level (223.52 mA mg{sup -1}) when applying 0.4 mg cm{sup -2} metal loading on the electrode. Moreover, a competing adsorption mechanism should exist when performing methanol oxidation on the surface of npPd rods, and the electro-oxidation reaction is a diffusion-controlled electrochemical process. Due to the advantages of simplicity and high efficiency in the mass production, the npPd rods can act as a promising candidate for the anode catalyst for direct methanol fuel cells (DMFCs). (author)

  6. Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell

    Science.gov (United States)

    Sahmani, S.; Aghdam, M. M.

    2017-12-01

    Morphology and pore size plays an essential role in the mechanical properties as well as the associated biological capability of a porous structure made of biomaterials. The objective of the current study is to predict the Young's modulus and Poisson's ratio of nanoporous biomaterials including refined truncated cube cells based on a hyperbolic shear deformable beam model. Analytical relationships for the mechanical properties of nanoporous biomaterials are given as a function of the refined cell's dimensions. After that, the size dependency in the nonlinear bending behavior of micro/nano-beams made of such nanoporous biomaterials is analyzed using the nonlocal strain gradient elasticity theory. It is assumed that the micro/nano-beam has one movable end under axial compression in conjunction with a uniform distributed lateral load. The Galerkin method together with an improved perturbation technique is employed to propose explicit analytical expression for nonlocal strain gradient load-deflection curves of the micro/nano-beams made of nanoporous biomaterials subjected to uniform transverse distributed load. It is found that through increment of the pore size, the micro/nano-beam will undergo much more deflection corresponding to a specific distributed load due to the reduction in the stiffness of nanoporous biomaterial. This pattern is more prominent for lower value of applied axial compressive load at the free end of micro/nano-beam.

  7. Biological and chemical sensors based on graphene materials.

    Science.gov (United States)

    Liu, Yuxin; Dong, Xiaochen; Chen, Peng

    2012-03-21

    Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, graphene and its derivatives have stimulated exploding interests in their sensor applications ever since the first isolation of free-standing graphene sheets in year 2004. This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection. We emphasize on the underlying detection (or signal transduction) mechanisms, the unique roles and advantages of the used graphene materials. Properties and preparations of different graphene materials, their functionalizations are also comparatively discussed in view of sensor development. Finally, the perspective and current challenges of graphene sensors are outlined (312 references).

  8. Polyhedral Boranes: A Versatile Building Block for Nanoporous Materials

    Science.gov (United States)

    Clingerman, Daniel Jon

    The studies described in this dissertation examine several new concepts related to polyhedral boranes and their applications towards the synthesis of novel nanoporous materials. The unique thermal and chemical robustness, rigidity, quasi-spherical geometry, and high boron content of polyhedral boranes are explored to generate materials not possible with typical organic synthons. Aside from the fundamental synthetic work, this work was also aimed at solving larger global issues such as energy storage and new routes to therapeutics. Chapter 2 highlights the discovery of the first highly porous carborane-based metal-organic framework, where the spherical nature of the carborane increases volumetric surface area without reducing pore volume. Chapter 3 examines the first tritopic carborane-based ligand and the stabilizing effect the rigid, sterically bulky carboranyl groups have on highly porous topologies not stable with typical organic ligands. Chapters 4 and 5 describe the use of polyhedral borane-based ligands as a means to influence and generate unexpected topologies. Lastly, chapter 6 explores using a simple carborane-based ligand that harnesses the power of coordination-driven assembly to rapidly generate a high boron-containing supramolecular cuboctahedron.

  9. Nanoporous separators for supercapacitor using activated carbon monolith electrode from oil palm empty fruit bunches

    International Nuclear Information System (INIS)

    Nor, N. S. M.; Deraman, M.; Omar, R.; Basri, N. H.; Dolah, B. N. M.; Taer, E.; Awitdrus,; Farma, R.

    2014-01-01

    Activated porous carbon electrode prepared from fibres of oil palm empty fruit bunches was used for preparing the carbon based supercapacitor cells. The symmetrical supercapacitor cells were fabricated using carbon electrodes, stainless steel current collector, H 2 SO 4 electrolyte, and three types of nanoporous separators. Cells A, B and C were fabricated using polypropylene, eggshell membrane, and filter paper, respectively. Electrochemical characterizations data from Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Galvanic Charge Discharge techniques showed that specific capacitance, specific power and specific energy for cell A were 122 F g −1 , 177 W kg −1 , 3.42 Wh kg −1 , cell B; 125 F g −1 , 179 W kg −1 , and 3.64 Wh kg −1 , and cell C; 180 F g −1 , 178 W kg −1 , 4.27 Wh kg −1 . All the micrographs from Field Emission Scanning Electron Microscope showed that the different in nanoporous structure of the separators lead to a significant different in influencing the values of specific capacitance, power and energy of supercapacitors, which is associated with the mobility of ion into the pore network. These results indicated that the filter paper was superior than the eggshell membrane and polypropylene nanoporous separators. However, we found that in terms of acidic resistance, polypropylene was the best nanoporous separator for acidic medium

  10. Surfactant-assisted growth of anodic nanoporous niobium oxide with a grained surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jeong Eun [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Choi, Jinsub, E-mail: jinsub@inha.ac.k [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of)

    2010-07-15

    Nanoporous niobium oxide film with a maximum thickness of 520 nm was prepared by anodizing niobium in a mixture of 1 wt% HF, 1 M H{sub 3}PO{sub 4}, and a small amount of Sodium Dodecyl Sulfate (SDS) surfactant. The porosity of the anodic niobium oxide prepared without SDS is irregular with the surface of the oxide suggesting a grained surface pattern rather than an ordered porous structure. A proper amount of SDS addition can prepare a pore arrangement with stripe patterns. The pore depth and surface pattern were strongly affected by the concentration of SDS and bath temperature. We found that the addition of SDS surfactant facilitated improvement in the chemical resistance of niobium oxide, leading to the formation of pores with a longer length compared to those prepared without a SDS surfactant. This can be in part ascribed to the protection of the surface by the physical adsorption of SDS on the surface due to a charge-charge interaction and be in part attributed to the formation of Nb=O bonding on the outermost oxide layer by SDS. When anodization was carried out for 4 h, the surface dissolution of niobium oxide was observed, which means that the maximum tolerance time against chemical dissolution was less than 4 h.

  11. Disposable urea biosensor based on nanoporous ZnO film fabricated from omissible polymeric substrate

    International Nuclear Information System (INIS)

    Rahmanian, Reza; Mozaffari, Sayed Ahmad; Abedi, Mohammad

    2015-01-01

    In the present study, a facile and simple fabrication method of a semiconductor based urea biosensor was reported via three steps: (i) producing a ZnO–PVA composite film by means of a polymer assisted electrodeposition of zinc oxide (ZnO) on the F-doped SnO 2 conducting glass (FTO) using water soluble polyvinyl alcohol (PVA), (ii) obtaining a nanoporous ZnO film by PVA omission via a subsequent post-treatment by annealing of the ZnO–PVA film, and (iii) preparation of a FTO/ZnO/Urs biosensor by exploiting a nanoporous ZnO film as an efficient and excellent platform area for electrostatic immobilization of urease enzyme (Urs) which was forced by the difference in their isoelectric point (IEP). The characterization techniques focused on the analysis of the ZnO–PVA film surfaces before and after annealing, which had a prominent effect on the porosity of the prepared ZnO film. The surface characterization of the nanostructured ZnO film by a field emission-scanning electron microscopy (FE–SEM), exhibited a film surface area as an effective bio-sensing matrix for enzyme immobilization. The structural characterization and monitoring of the biosensor fabrication was performed using UV–Vis, Fourier Transform Infrared (FT-IR), Raman Spectroscopy, Thermogravimetric Analysis (TGA), Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS) techniques. The impedimetric results of the FTO/ZnO/Urs biosensor showed a high sensitivity for urea detection within 8.0–110.0 mg dL −1 with the limit of detection as 5.0 mg dL −1 . - Highlights: • Novel disposable impedimetric urea biosensor fabrication based on ZnO–nanoporous transducer • Exploiting omissible PVA polymer as a simple strategy for ZnO–nanoporous film preparation • ZnO–nanoporous film as a good pore framework with large surface area/volume for enzyme immobilization • Application of impedimetric measurement for urea monitoring due to its rapidity, sensitivity, and repeatability

  12. Disposable urea biosensor based on nanoporous ZnO film fabricated from omissible polymeric substrate

    Energy Technology Data Exchange (ETDEWEB)

    Rahmanian, Reza; Mozaffari, Sayed Ahmad, E-mail: mozaffari@irost.ir; Abedi, Mohammad

    2015-12-01

    In the present study, a facile and simple fabrication method of a semiconductor based urea biosensor was reported via three steps: (i) producing a ZnO–PVA composite film by means of a polymer assisted electrodeposition of zinc oxide (ZnO) on the F-doped SnO{sub 2} conducting glass (FTO) using water soluble polyvinyl alcohol (PVA), (ii) obtaining a nanoporous ZnO film by PVA omission via a subsequent post-treatment by annealing of the ZnO–PVA film, and (iii) preparation of a FTO/ZnO/Urs biosensor by exploiting a nanoporous ZnO film as an efficient and excellent platform area for electrostatic immobilization of urease enzyme (Urs) which was forced by the difference in their isoelectric point (IEP). The characterization techniques focused on the analysis of the ZnO–PVA film surfaces before and after annealing, which had a prominent effect on the porosity of the prepared ZnO film. The surface characterization of the nanostructured ZnO film by a field emission-scanning electron microscopy (FE–SEM), exhibited a film surface area as an effective bio-sensing matrix for enzyme immobilization. The structural characterization and monitoring of the biosensor fabrication was performed using UV–Vis, Fourier Transform Infrared (FT-IR), Raman Spectroscopy, Thermogravimetric Analysis (TGA), Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS) techniques. The impedimetric results of the FTO/ZnO/Urs biosensor showed a high sensitivity for urea detection within 8.0–110.0 mg dL{sup −1} with the limit of detection as 5.0 mg dL{sup −1}. - Highlights: • Novel disposable impedimetric urea biosensor fabrication based on ZnO–nanoporous transducer • Exploiting omissible PVA polymer as a simple strategy for ZnO–nanoporous film preparation • ZnO–nanoporous film as a good pore framework with large surface area/volume for enzyme immobilization • Application of impedimetric measurement for urea monitoring due to its rapidity, sensitivity, and

  13. Sugar-influenced water diffusion, interaction, and retention in clay interlayer nanopores probed by theoretical simulations and experimental spectroscopies

    Science.gov (United States)

    Aristilde, Ludmilla; Galdi, Stephen M.; Kelch, Sabrina E.; Aoki, Thalia G.

    2017-08-01

    Understanding the hydrodynamics in clay nanopores is important for gaining insights into the trapping of water, nutrients, and contaminants in natural and engineered soils. Previous investigations have focused on the interlayer organization and molecular diffusion coefficients (D) of cations and water molecules in cation-saturated interlayer nanopores of smectite clays. Little is known, however, about how these interlayer dynamic properties are influenced by the ubiquitous presence of small organic compounds such as sugars in the soil environment. Here we probed the effects of glucose molecules on montmorillonite interlayer properties. Molecular dynamics simulations revealed re-structuring of the interlayer organization of the adsorptive species. Water-water interactions were disrupted by glucose-water H-bonding interactions. ;Dehydration; of the glucose-populated nanopore led to depletion in the Na solvation shell, which resulted in the accumulation of both Na ions (as inner-sphere complexes) and remaining hydrated water molecules at the mineral surface. This accumulation led to a decrease in both DNa and Dwater. In addition, the reduction in Dglucose as a function of increasing glucose content can be explained by the aggregation of glucose molecules into organic clusters H-bonded to the mineral surface on both walls of the nanopore. Experimental nuclear magnetic resonance and X-ray diffraction data were consistent with the theoretical predictions. Compared to clay interlayers devoid of glucose, increased intensities and new peaks in the 23Na nuclear magnetic resonance spectra confirmed increasing immobilization of Na as a function of increasing glucose content. And, the X-ray diffraction data indicated a reduced collapse of glucose-populated interlayers exposed to decreasing moisture conditions, which led to the maintenance of hydrated clay nanopores. The coupling of theoretical and experimental findings sheds light on the molecular to nanoscale mechanisms that

  14. Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2014-03-01

    Full Text Available A very simple synthetic procedure was developed for the preparation of Ni-Sn alloy catalysts that were utilised for chemoselective hydrogenation of furfural, producing furfuryl alcohol almost exclusively. The mixture of nickel nanoparticles supported on aluminium hydroxide (R-Ni/AlOH and a solution containing tin was treated under hydrothermal condition, producing the as prepared nickel-tin alloy supported on aluminium hydroxide (Ni-Sn/AlOH. H2 treatment at range of temperature of 673-873 K for 1.5 h to the as prepared Ni-Sn/AlOH produced nanoporous Ni-Sn alloy catalysts. XRD patterns and SEM images revealed that the formation of Ni-Sn alloy of Ni3Sn and Ni3Sn2 phases and the transformation of crystalline gibbsite and bayerite into amorphous alumina were clearly observed after H2 treatment at 873 K. The formation of the Ni-Sn alloy may have played a key role in the enhancement of the chemoselectivity. © 2014 BCREC UNDIP. All rights reservedReceived: 1st September 2013; Revised: 26th November 2013; Accepted: 7th December 2013[How to Cite: Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2014. Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 53-59. (doi:10.9767/bcrec.9.1.5529.53-59][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5529.53-59

  15. Photophysics and energy transfer studies of Alq3 confined in the voids of nanoporous anodic alumina.

    Science.gov (United States)

    Mohammadpour, Arash; Utkin, Ilya; Bodepudi, Srikrishna Chanakya; Kar, Piyush; Fedosejevs, Robert; Pramanik, Sandipan; Shankar, Karthik

    2013-04-01

    We report on a hierarchical nanoarchitecture wherein distinct chromophores are deterministically placed at two different types of sites in a nanoporous metal oxide framework. One chromophore, namely Tris(8-hydroxyquinoline)aluminium(III) (Alq3), is embedded in the 1-2 nm sized nanovoids of anodic aluminum oxide (AAO) and another chromophore (carboxyfluorescein or pyrenebutyric acid) is anchored in the form of a monolayer to the surface of the walls of the cylindrical nanopores (- 20 nm in diameter) of AAO. We found the luminescence maximum to occur at 492 nm, blueshifted by at least 18 nm from the value in solutions and thin films. The excited state decay of Alq3 molecules in nanovoids was found to be biexponential with a fast component of 338 ps and a slower component of 2.26 ns, different from Alq3 thin films and solutions. Using a combination of steady state and time-resolved luminescence studies, we found that efficient Forster-type resonance energy transfer (FRET) from Alq3 in the nanovoids to the carboxyfluorescein monolayer could be used to pump the emission of surface-bound chromophores. Conversely, the emission of nanovoid-confined Alq3 could be pumped by energy transfer from a pyrenebutyric acid monolayer. Such intra-nanoarchitecture interactions between chromophores deterministically placed in different spatial locations are important in applications such as organic light emitting diodes, chemical sensors, energy transfer fluorescent labels, light harvesting antennas and organic spintronics.

  16. Mechanisms of material removal and mass transport in focused ion beam nanopore formation

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kallol, E-mail: das7@illinois.edu; Johnson, Harley T., E-mail: htj@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, Illinois 61801 (United States); Freund, Jonathan B., E-mail: jbfreund@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, Illinois 61801 (United States); Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, MC-236, 104 South Wright Street Urbana, Illinois 61801 (United States)

    2015-02-28

    Despite the widespread use of focused ion beam (FIB) processing as a material removal method for applications ranging from electron microscope sample preparation to nanopore processing for DNA sequencing, the basic material removal mechanisms of FIB processing are not well understood. We present the first complete atomistic simulation of high-flux FIB using large-scale parallel molecular dynamics (MD) simulations of nanopore fabrication in freestanding thin films. We focus on the root mechanisms of material removal and rearrangement and describe the role of explosive boiling in forming nanopores. FIB nanopore fabrication is typically understood to occur via sputter erosion. This can be shown to be the case in low flux systems, where individual ion impacts are sufficiently separated in time that they may be considered as independent events. But our detailed MD simulations show that in high flux FIB processing, above a threshold level at which thermal effects become significant, the primary mechanism of material removal changes to a significantly accelerated, thermally dominated process. Under these conditions, the target is heated by the ion beam faster than heat is conducted away by the material, leading quickly to melting, and then continued heating to nearly the material critical temperature. This leads to explosive boiling of the target material with spontaneous bubble formation and coalescence. Mass is rapidly rearranged at the atomistic scale, and material removal occurs orders of magnitude faster than would occur by simple sputtering. While the phenomenology is demonstrated computationally in silicon, it can be expected to occur at lower beam fluxes in other cases where thermal conduction is suppressed due to material properties, geometry, or ambient thermal conditions.

  17. Ergodicity of a single particle confined in a nanopore

    DEFF Research Database (Denmark)

    Bernardi, S.; Hansen, Jesper Schmidt; Frascolli, F.

    2012-01-01

    -ergodic component of the phase space for energy levels typical of experiments, is surprisingly small, i.e. we conclude that the ergodic hypothesis is a reasonable approximation even for a single particle trapped in a nanopore. Due to the numerical scope of this work, our focus will be the onset of ergodic behavior...

  18. Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Chohui; Choi, Hongsik; Kim, Jae Ik; Lee, Sangheon; Kim, Jinhyun; Lee, Woojin; Hwang, Taehyun; Kang, Suji; Moon, Taeho; Park, Byungwoo

    2014-01-01

    A scattering layer is utilized by mixing nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Hundred-nanometer-sized ZnO spheres consisting of approximately 35-nm-sized nanoparticles provide not only effective light scattering but also a large surface area. Furthermore, ZnO nanoparticles are added to the scattering layer to facilitate charge transport and increase the surface area as filling up large voids. The mixed scattering layer of nanoparticles and nanoporous spheres on top of the nanoparticle-based electrode (bilayer geometry) improves solar cell efficiency by enhancing both the short-circuit current (J sc) and fill factor (FF), compared to the layer consisting of only nanoparticles or nanoporous spheres.

  19. Accurate Typing of Human Leukocyte Antigen Class I Genes by Oxford Nanopore Sequencing.

    Science.gov (United States)

    Liu, Chang; Xiao, Fangzhou; Hoisington-Lopez, Jessica; Lang, Kathrin; Quenzel, Philipp; Duffy, Brian; Mitra, Robi David

    2018-04-03

    Oxford Nanopore Technologies' MinION has expanded the current DNA sequencing toolkit by delivering long read lengths and extreme portability. The MinION has the potential to enable expedited point-of-care human leukocyte antigen (HLA) typing, an assay routinely used to assess the immunologic compatibility between organ donors and recipients, but the platform's high error rate makes it challenging to type alleles with accuracy. We developed and validated accurate typing of HLA by Oxford nanopore (Athlon), a bioinformatic pipeline that i) maps nanopore reads to a database of known HLA alleles, ii) identifies candidate alleles with the highest read coverage at different resolution levels that are represented as branching nodes and leaves of a tree structure, iii) generates consensus sequences by remapping the reads to the candidate alleles, and iv) calls the final diploid genotype by blasting consensus sequences against the reference database. Using two independent data sets generated on the R9.4 flow cell chemistry, Athlon achieved a 100% accuracy in class I HLA typing at the two-field resolution. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  20. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors

    Science.gov (United States)

    Lang, Xingyou; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2011-04-01

    Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes, but their energy storage density is too low for many important applications. Pseudocapacitive transition-metal oxides such as MnO2 could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment. However, the poor conductivity of MnO2 (10-5-10-6 S cm-1) limits the charge/discharge rate for high-power applications. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO2 have enhanced conductivity, resulting in a specific capacitance of the constituent MnO2 (~1,145 F g-1) that is close to the theoretical value. The nanoporous gold allows electron transport through the MnO2, and facilitates fast ion diffusion between the MnO2 and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery.