WorldWideScience

Sample records for chemically peculiar stars

  1. Helium in Chemically Peculiar Stars

    OpenAIRE

    Leone, F.

    1998-01-01

    For the purpose of deriving the helium abundances in chemically peculiar stars, the importance of assuming a correct helium abundance has been investigated for determining the effective temperature and gravity of main sequence B-type stars, making full use of the present capability of reproducing their helium lines. Even if the flux distribution of main sequence B-type stars appears to depend only on the effective temperature for any helium abundance, the effective temperature, gravity and he...

  2. Early Stage of Chemically Peculiar Stars

    Science.gov (United States)

    Netopil, M.; Fossati, L.; Zwintz, K.; Paunzen, E.; Bagnulo, S.; Pintado, O. I.

    2015-04-01

    Chemically peculiar stars are known to be the main sequence objects and are characterized by a wide variety of element abundance patterns. They display abundance peculiarities of various chemical elements from helium to mercury in their photospheres. These are explained by the diffusion processes driven by the competition between the radiative levitation and gravitational settling. Current estimates suggest that about 10% of all the stars in the corresponding spectral range (B to F-type) belong to various CP groups. The most populous groups are the metallic line (Am) stars and the magnetic Bp/Ap objects. The reason and the time-scale for the rise of chemical peculiarities is still not known, so is for the role of the magnetic field. The investigation of very young CP stars can help to shed more light on these issues and to test the diffusion theory. However, so far only one pre-main sequence (PMS) Bp star is known. We present here the discovery of a PMS CP candidate, which very probably belongs to the group of Am CP stars.

  3. Precision age indicators that exploit chemically peculiar stars

    OpenAIRE

    Worthey, Guy

    2015-01-01

    We would like to find a way to improve the determination of galaxy star formation history from integrated light spectroscopy. To this end, several classes of chemically peculiar (CP) stars arise during the course of normal evolution in single stars and noninteracting binary stars. An aging stellar population has periods of time in which CP stars contribute to the integrated light, and others in which the contributions fade. The HgMn stars, for example, occupy a narrow temperature range of 105...

  4. Precision age indicators that exploit chemically peculiar stars

    CERN Document Server

    Worthey, Guy

    2015-01-01

    We would like to find a way to improve the determination of galaxy star formation history from integrated light spectroscopy. To this end, several classes of chemically peculiar (CP) stars arise during the course of normal evolution in single stars and noninteracting binary stars. An aging stellar population has periods of time in which CP stars contribute to the integrated light, and others in which the contributions fade. The HgMn stars, for example, occupy a narrow temperature range of 10500 to 16000 K, which maps to a narrow range of ages. Wolf-Rayet stars, He-poor stars, Bp-Ap stars, Am-Fm stars, and C stars all become very common in a normal stellar population at various ages between zero and several Gyr, fading in and out in a way that is analogous to features used in stellar spectral classification. We examine population fractions and light fractions in order to assess the feasibility of using CP stars as age tracers. We find that, even though CP stars do not usually dominate in number, there are enou...

  5. Chemically peculiar stars as seen with 2MASS

    CERN Document Server

    Herdin, A; Netopil, M

    2016-01-01

    The chemically peculiar (CP) stars of the upper main sequence are well suited for investigating the impact of magnetic fields and diffusion on the surface layers of slowly rotating stars. They can even be traced in the Magellanic Clouds and are important to the understanding of the stellar formation and evolution. A systematic investigation of the near-infrared (NIR), 2MASS JHKs, photometry for the group of CP stars has never been performed. Nowadays, there is a great deal of data available in the NIR that reach very large distances. It is therefore very important for CP stars to be unambiguously detected in the NIR region and for these detections to be used to derive astrophysical parameters (age and mass) by applying isochrone fitting. Furthermore, we investigated whether the CP stars behave in a different way to normal-type stars in the various photometric diagrams. For our analysis, we carefully compiled a sample of CP and apparently normal (non-peculiar) type stars. Only stars for which high-quality (i.e...

  6. Magnetic Doppler imaging of the chemically peculiar star HD 125248

    CERN Document Server

    Rusomarov, N; Ryabchikova, T; Ilyin, I

    2016-01-01

    Intermediate-mass, chemically peculiar stars with strong magnetic fields give us an excellent opportunity to study the topology of their surface magnetic fields and the interplay between magnetic geometries and abundance inhomogeneities in their atmospheres. We reconstruct detailed maps of the surface magnetic field and abundance distributions for the magnetic Ap star HD 125248. We performed the analysis based on phase-resolved, four Stokes parameter spectropolarimetric observations obtained with the HARPSpol instrument. These data were interpreted with the magnetic Doppler imaging technique. We improved the atmospheric parameters of the star, T_eff = 9850K +/- 250K and logg = 4.05 +/- 0.10. We performed detailed abundance analysis and discovered vertical stratification effects for the FeII and CrII ions. We computed LSD Stokes profiles and studied their behavior with rotational phase. We improved the rotational period of the star P_rot = 9.29558(6)d. Magnetic Doppler imaging of HD 125248 showed that its magn...

  7. A photometric study of chemically peculiar stars with the STEREO satellites. II. Non-magnetic chemically peculiar stars

    CERN Document Server

    Paunzen, E; Fossati, L; Netopil, M; White, G J; Bewsher, D

    2012-01-01

    We have analysed the photometric data obtained with the STEREO spacecraft for 558 non-magnetic chemically peculiar (CP) stars to search for rotational and pulsational variability. Applying the Lomb-Scargle and the phase dispersion minimisation methods, we have detected photometric variability for 44 objects from which 35 were previously unknown. The new objects are all bright stars on the Ecliptic Plane (magnitude range 4.7 < V < 11.7) and will therefore be of great interest to studies of stellar structure and evolution. In particular, several show multiple signals consistent with hybrid delta Scuti and gamma Doradus pulsation, with different periodicities allowing very different regions of the stellar interior to be studied. There are two subgroups of stars in our sample: the cool metallic line Am (CP1) and the hot HgMn (CP3) stars. These objects fall well inside the classical instability strip where delta Scuti, gamma Doradus and slowly pulsating B-type stars are located. We also expect to find period...

  8. Magnetic Doppler imaging of the chemically peculiar star HD 125248

    Science.gov (United States)

    Rusomarov, N.; Kochukhov, O.; Ryabchikova, T.; Ilyin, I.

    2016-04-01

    Context. Intermediate-mass, chemically peculiar stars with strong magnetic fields provide an excellent opportunity to study the topology of their surface magnetic fields and the interplay between magnetic geometries and abundance inhomogeneities in the atmospheres of these stars. Aims: We reconstruct detailed maps of the surface magnetic field and abundance distributions for the magnetic Ap star HD 125248. Methods: We performed the analysis based on phase-resolved, four Stokes parameter spectropolarimetric observations obtained with the HARPSpol instrument. These data were interpreted with the help of magnetic Doppler imaging techniques and model atmospheres taking the effects of strong magnetic fields and nonsolar chemical composition into account. Results: We improved the atmospheric parameters of the star, Teff = 9850 ± 250 K and log g = 4.05 ± 0.10. We performed detailed abundance analysis, which confirmed that HD 125248 has abundances typical of other Ap stars, and discovered significant vertical stratification effects for the Fe ii and Cr ii ions. We computed LSD Stokes profiles using several line masks corresponding to Fe-peak and rare earth elements, and studied their behavior with rotational phase. Combining previous longitudinal field measurements with our own observations, we improved the rotational period of the star Prot = 9.29558 ± 0.00006 d. Magnetic Doppler imaging of HD 125248 showed that its magnetic field is mostly poloidal and quasi-dipolar with two large spots of different polarity and field strength. The chemical maps of Fe, Cr, Ce, Nd, Gd, and Ti show abundance contrasts of 0.9-3.5 dex. Among these elements, the Fe abundance map does not show high-contrast features. Cr is overabundant around the negative magnetic pole and has 3.5 dex abundance range. The rare earth elements and Ti are overabundant near the positive magnetic pole. Conclusions: The magnetic field of HD 125248 has strong deviations from the classical oblique dipole field

  9. Chemically peculiar stars in the Large Magellanic Cloud

    CERN Document Server

    Paunzen, E; Pintado, O I; Claret, A; Iliev, I K; Netopil, M

    2006-01-01

    The detection of magnetic chemically peculiar (CP2) stars in open clusters of extragalactic systems can give observational answers to many unsolved questions. The mean percentage of CP2 stars in the Milky Way is of the order of 5% for the spectral range from early B- to F-type, luminosity class V objects. The origin of the CP2 phenomenon seems to be closely connected to the overall metallicity and global magnetic field environment. The theoretical models are still only tested by observations in the Milky Way. It is therefore essential to provide high quality observations in rather different global environments. The young clusters NGC 2136/7 were observed in the Delta a photometric system. This intermediate band photometric system samples the depth of the 520nm flux depression by comparing the flux at the center with the adjacent regions with bandwidths of 11nm to 23nm. The Delta a photometric system is most suitable for detecting CP2 stars with high efficiency, but is also capable of detecting a small percent...

  10. Multiplicity among chemically peculiar stars II. Cool magnetic Ap stars

    OpenAIRE

    Carrier, F.; North, P.; Udry, S.; Babel, J.

    2002-01-01

    We present new orbits for sixteen Ap spectroscopic binaries, four of which might in fact be Am stars, and give their orbital elements. Four of them are SB2 systems: HD 5550, HD 22128, HD 56495 and HD 98088. The twelve other stars are : HD 9996, HD 12288, HD 40711, HD 54908, HD 65339, HD 73709, HD 105680, HD 138426, HD 184471, HD 188854, HD 200405 and HD 216533. Rough estimates of the individual masses of the components of HD 65339 (53 Cam) are given, combining our radial velocities with the r...

  11. A spectroscopic analysis of the chemically peculiar star HD207561

    CERN Document Server

    Joshi, S; Martinez, P; Sachkov, M; Joshi, Y C; Seetha, S; Chakradhari, N K; Mary, D L; Girish, V; Ashoka, B N

    2012-01-01

    In this paper we present a high-resolution spectroscopic analysis of the chemically peculiar star HD207561. During a survey programme to search for new roAp stars in the Northern hemisphere, Joshi et al. (2006) observed significant photometric variability on two consecutive nights in the year 2000. The amplitude spectra of the light curves obtained on these two nights showed oscillations with a frequency of 2.79 mHz [P~6-min]. However, subsequent follow-up observations could not confirm any rapid variability. In order to determine the spectroscopic nature of HD207561, high-resolution spectroscopic and spectro-polarimetric observations were carried out. A reasonable fit of the calculated Hbeta line profile to the observed one yields the effective temperature (Teff) and surface gravity (log g) as 7300 K and 3.7 dex, respectively. The derived projected rotational velocity (vsin i) for HD207561 is 74 km/sec indicative of a relatively fast rotator. The position of HD207561 in the H-R diagram implies that this is s...

  12. Chemical peculiarities in magnetic and non-magnetic pre-main sequence A and B stars

    CERN Document Server

    Folsom, C P; Wade, G A; Landstreet, J D; Alecian, E

    2013-01-01

    In A- and late B-type stars, strong magnetic fields are always associated with Ap and Bp chemical peculiarities. However, it is not clear at what point in a star's evolution those peculiarities develop. Strong magnetic fields have been observed in pre-main sequence A and B stars (Herbig Ae and Be stars), and these objects have been proposed to be the progenitors of Ap and Bp stars. However, the photospheric chemical abundances of these magnetic Herbig stars have not been studied carefully, and furthermore the chemical abundances of 'normal' non-magnetic Herbig stars remain poorly characterized. To investigate this issue, we have studied the photospheric compositions of 23 Herbig stars, four of which have confirmed magnetic fields. Surprisingly, we found that half the non-magnetic stars in our sample show lambda Bootis chemical peculiarities to varying degrees. For the stars with detected magnetic fields, we find one chemically normal star, one star with lambda Boo peculiarities, one star displaying weak Ap/Bp...

  13. On the incidence of chemically peculiar stars in the Large Magellanic cloud

    CERN Document Server

    Paunzen, E; Maitzen, H M; Claret, A

    2005-01-01

    With the aim to corroborate the result of a search for chemically peculiar stars in the Large Magellanic Cloud (LMC) we present measurements obtained from CCD-imaging of two fields, one containing a young open cluster (NGC 1711). While for the latter field, including its surrounding we obtain a contribution of three percent of chemically peculiar stars detectable by Delta a photometry (i.e. the magnetic objects of this group), the second field yields about half of this value in good accordance with the finding for NGC 1866 (Maitzen et al., 2001, A&A, 371, L5) the surrounding field of which has been found to exhibit a very low value of such stars - 0.3%. Thus we are faced with the fact, that our incipient impression about a substantially lower appearance of magnetic chemically peculiar stars in the LMC as compared to the Galaxy continues to be valid. Most of the photometrically identified peculiar stars (from their historical origin denominated Ap-stars) are located in the domain of the B-type stars. But t...

  14. On the co-existence of chemically peculiar Bp stars, slowly pulsating B stars and constant B stars in the same part of the H-R diagram

    NARCIS (Netherlands)

    Briquet, M.; Hubrig, S.; Cat, P. de; Aerts, C.; North, P.; Schöller, M.

    2007-01-01

    Aims. In order to better model massive B-type stars, we need to understand the physical processes taking place in slowly pulsating B (SPB) stars, chemically peculiar Bp stars, and non-pulsating normal B stars co-existing in the same part of the H-R diagram. Methods: We carry out a comparative study

  15. Magnetic, chemically peculiar (CP2) stars in the SuperWASP survey

    Science.gov (United States)

    Bernhard, K.; Hümmerich, S.; Paunzen, E.

    2015-12-01

    The magnetic chemically peculiar (CP2) stars of the upper main sequence are well-suited for investigating the impact of magnetic fields on the surface layers of stars, which leads to abundance inhomogeneities (spots) resulting in photometric variability. The light changes are explained in terms of the oblique rotator model; the derived photometric periods thus correlate with the rotational periods of the stars. CP2 stars exhibiting this kind of variability are classified as α2 Canum Venaticorum (ACV) variables. We have analysed around 3 850 000 individual photometric WASP measurements of magnetic chemically peculiar (CP2) stars and candidates selected from the catalogue of Ap, HgMn, and Am stars, with the ultimate goal of detecting new ACV variables. In total, we found 80 variables, from which 74 are reported here for the first time. The data allowed us to establish variability for 23 stars which had been reported as probably constant in the literature before. Light curve parameters were obtained for all stars by a least-squares fit with the fundamental sine wave and its first harmonic. Because of the scarcity of Strömgren uvbyβ measurements and the lack of parallax measurements with an accuracy better than 20%, we are not able to give reliable astrophysical parameters for the investigated objects.

  16. The Nainital-Cape Survey-III : A Search for Pulsational Variability in Chemically Peculiar Stars

    CERN Document Server

    Joshi, S; Chakradhari, N K; Tiwari, S K; Billaud, C

    2009-01-01

    The Nainital-Cape survey is a dedicated research programme to search and study pulsational variability in chemically peculiar stars in the Northern Hemisphere. The aim of the survey is to search such chemically peculiar stars which are pulsationally unstable. The observations of the sample stars were carried out in high-speed photometric mode using a three-channel fast photometer attached to the 1.04-m Sampurnanand telescope at ARIES. The new photometric observations confirmed that the pulsational period of star HD25515 is 2.78-hrs. The repeated time-series observations of HD113878 and HD118660 revealed that previously known frequencies are indeed present in the new data sets. We have estimated the distances, absolute magnitudes, effective temperatures and luminosities of these stars. Their positions in the H-R diagram indicate that HD25515 and HD118660 lie near the main-sequence while HD113878 is an evolved star. We also present a catalogue of 61 stars classified as null results, along with the corresponding...

  17. Magnetic, chemically peculiar (CP2) stars in the SuperWASP survey

    CERN Document Server

    Bernhard, K; Paunzen, E

    2015-01-01

    The magnetic chemically peculiar (CP2) stars of the upper main sequence are well-suited for investigating the impact of magnetic fields on the surface layers of stars, which leads to abundance inhomogeneities (spots) resulting in photometric variability. The light changes are explained in terms of the oblique rotator model; the derived photometric periods thus correlate with the rotational periods of the stars. CP2 stars exhibiting this kind of variability are classified as alpha2 Canum Venaticorum (ACV) variables. We have analysed around 3 850 000 individual photometric WASP measurements of magnetic chemically peculiar (CP2) stars and candidates selected from the Catalogue of Ap, HgMn, and Am stars, with the ultimate goal of detecting new ACV variables. In total, we found 80 variables, from which 74 are reported here for the first time. The data allowed us to establish variability for 23 stars which had been reported as probably constant in the literature before. Light curve parameters were obtained for all ...

  18. New Photometrically Variable Magnetic Chemically Peculiar Stars in the ASAS-3 Archive

    CERN Document Server

    Hümmerich, Stefan; Bernhard, Klaus

    2016-01-01

    The magnetic Ap or CP2 stars are natural atomic and magnetic laboratories and ideal testing grounds for the evaluation of model atmospheres. CP2 stars exhibiting photometric variability are traditionally referred to as alpha2 Canum Venaticorum (ACV) variables. Strictly periodic changes are observed in the spectra and brightness of these stars, which allow the derivation of rotational periods. Related to this group of objects are the He-weak (CP4) and He-rich stars, some of which are also known to undergo brightness changes due to rotational modulation. Increasing the sample size of known rotational periods among CP2/4 stars is an important task, which will contribute to our understanding of these objects and their evolution in time. We have compiled an extensive target list of magnetic chemically peculiar (CP2/4) stars. In addition to that, a systematic investigation of early-type (spectral types B/A) variable stars of undetermined type in the International Variable Star Index of the AAVSO (VSX) yielded addit...

  19. A search for photometric variability in magnetic chemically peculiar stars using ASAS-3 data

    CERN Document Server

    Bernhard, K; Otero, S; Paunzen, E

    2015-01-01

    The (magnetic) chemically peculiar (CP) stars of the upper main sequence are well-suited laboratories for investigating the influence of magnetic fields on the stellar surface because they produce abundance inhomogeneities (spots), which results in photometric variability that is explained in terms of the oblique rotator model. CP stars exhibiting this phenomenon are normally classified as alpha2 Canum Venaticorum (ACV) variables. It is important to increase the sample of known rotational periods among CP stars by discovering new ACV variables. The ASAS-3 data were cross-correlated with the Catalogue of Ap, HgMn, and Am stars in order to analyse the light curves of bona fide CP and related stars. The light curves were downloaded and cleaned of outliers and data points with a flag indicating bad quality. Promising candidates showing a larger scatter than observed for constant stars in the corresponding magnitude range were searched for periodic signals using a standard Fourier technique. In total, we found 323...

  20. The Nainital-Cape Survey. IV. A search for pulsational variability in 108 chemically peculiar stars

    Science.gov (United States)

    Joshi, S.; Martinez, P.; Chowdhury, S.; Chakradhari, N. K.; Joshi, Y. C.; van Heerden, P.; Medupe, T.; Kumar, Y. B.; Kuhn, R. B.

    2016-05-01

    Context. The Nainital-Cape Survey is a dedicated ongoing survey program to search for and study pulsational variability in chemically peculiar (CP) stars to understand their internal structure and evolution. Aims: The main aims of this survey are to find new pulsating Ap and Am stars in the northern and southern hemisphere and to perform asteroseismic studies of these new pulsators. Methods: The survey is conducted using high-speed photometry. The candidate stars were selected on the basis of having Strömgren photometric indices similar to those of known pulsating CP stars. Results: Over the last decade a total of 337 candidate pulsating CP stars were observed for the Nainital-Cape Survey, making it one of the longest ground-based surveys for pulsation in CP stars in terms of time span and sample size. The previous papers of this series presented seven new pulsating variables and 229 null results. In this paper we present the light curves, frequency spectra and various astrophysical parameters of the 108 additional CP stars observed since the last reported results. We also tabulated the basic physical parameters of the known roAp stars. As a part of establishing the detection limits in the Nainital-Cape Survey, we investigated the scintillation noise level at the two observing sites used in this survey, Sutherland and Nainital, by comparing the combined frequency spectra stars observed from each location. Our analysis shows that both the sites permit the detection of variations of the order of 0.6 milli-magnitude (mmag) in the frequency range 1-4 mHz, Sutherland is on average marginally better. The dataset is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A116

  1. A probable pre-main sequence chemically peculiar star in the open cluster Stock 16

    CERN Document Server

    Netopil, M; Paunzen, E; Zwintz, K; Pintado, O I; Bagnulo, S

    2014-01-01

    We used the Ultraviolet and Visual Echelle Spectrograph of the ESO-Very Large Telescope to obtain a high resolution and high signal-to-noise ratio spectrum of Stock 16-12, an early-type star which previous Delta-a photometric observations suggest being a chemically peculiar (CP) star. We used spectral synthesis to perform a detailed abundance analysis obtaining an effective temperature of 8400 +/- 400 K, a surface gravity of 4.1 +/- 0.4, a microturbulence velocity of 3.4 +0.7/-0.3 km/s, and a projected rotational velocity of 68 +/- 4 km/s. We provide photometric and spectroscopic evidence showing the star is most likely a member of the young Stock 16 open cluster (age 3-8 Myr). The probable cluster membership, the star's position in the Hertzsprung-Russell diagram, and the found infrared excess strongly suggest the star is still in the pre-main-sequence (PMS) phase. We used PMS evolutionary tracks to determine the stellar mass, which ranges between 1.95 and 2.3 Msun, depending upon the adopted spectroscopic o...

  2. Model atmospheres of magnetic chemically peculiar stars. A remarkable strong-field Bp SiCrFe star HD137509

    CERN Document Server

    Shulyak, Denis; Khan, Sergiy

    2008-01-01

    In the last few years we have developed stellar model atmospheres which included effects of anomalous abundances and strong magnetic field. The full treatment of anomalous Zeeman splitting and polarized radiative transfer were introduced in the model atmosphere calculations for the first time. In this investigation we present results of modelling the atmosphere of one of the most extreme magnetic chemically peculiar stars, HD137509. This Bp SiCrFe star has the mean surface magnetic field modulus of about 29kG. We use the recent version of the line-by-line opacity sampling stellar model atmosphere code LLmodels, which incorporates the full treatment of Zeeman splitting of spectral lines, detailed polarized radiative transfer and arbitrary abundances. We compare model predictions with photometric and spectroscopic observations of the star, aiming to reach a self-consistency between the abundance pattern derived from high-resolution spectra and abundances used for model atmosphere calculation. Based on magnetic ...

  3. Surprising variations in the rotation of the chemically peculiar stars CU Virginis and V901 Orionis

    CERN Document Server

    Mikulasek, Zdenek; Henry, Gregory W; Janik, Jan; Zverko, Juraj; Ziznovsky, Jozef; Zejda, Miloslav; Liska, Jiri; Zverina, Pavel; Kudryavtsev, Dmitry O; Romanyuk, Iosif I; Sokolov, Nikolay A; Lüftinger, Theresa; Trigilio, Corrado; Neiner, Coralie; de Villiers, Stephanus N; 10.1051/0004-6361/201117784

    2011-01-01

    CU Vir and V901 Ori belong among these few magnetic chemically peculiar stars whose rotation periods vary on timescales of decades. We aim to study the stability of the periods in CU Vir and V901 Ori using all accessible observational data containing phase information. We collected all available relevant archived observations supplemented with our new measurements of these stars and analysed the period variations of the stars using a novel method that allows for the combination of data of diverse sorts. We found that the shapes of their phase curves were constant, while the periods were changing. Both stars exhibit alternating intervals of rotational braking and acceleration. The rotation period of CU Vir was gradually shortening until the year 1968, when it reached its local minimum of 0.52067198 d. The period then started increasing, reaching its local maximum of 0.5207163 d in the year 2005. Since that time the rotation has begun to accelerate again. We also found much smaller period changes in CU Vir on a...

  4. Magnetic field topology of the unique chemically peculiar star CU Virginis

    CERN Document Server

    Kochukhov, O; Neiner, C; Alecian, E

    2014-01-01

    The late-B magnetic chemically peculiar star CU Vir is one of the fastest rotators among the intermediate-mass stars with strong fossil magnetic fields. It shows a prominent rotational modulation of the spectral energy distribution and absorption line profiles due to chemical spots and exhibits a unique strongly beamed variable radio emission. Little is known about the magnetic field topology of CU Vir. In this study we aim to derive, for the first time, detailed maps of the magnetic field distribution over the surface of this star. We use high-resolution spectropolarimetric observations covering the entire rotational period. These data are interpreted using a multi-line technique of least-squares deconvolution (LSD) and a new Zeeman Doppler imaging code based on detailed polarised radiative transfer modelling of the Stokes I and V LSD profiles. This new magnetic inversion approach relies on the spectrum synthesis calculations over the full wavelength range covered by observations and does not assume that the...

  5. A search for photometric variability in magnetic chemically peculiar stars using ASAS-3 data

    Science.gov (United States)

    Bernhard, K.; Hümmerich, S.; Otero, S.; Paunzen, E.

    2015-09-01

    Context. The (magnetic) chemically peculiar (CP) stars of the upper main sequence are well-suited laboratories for investigating the influence of magnetic fields on the stellar surface because they produce abundance inhomogeneities (spots), which results in photometric variability that is explained in terms of the oblique rotator model. CP stars exhibiting this phenomenon are normally classified as α2 Canum Venaticorum (ACV) variables. It is important to increase the sample of known rotational periods among CP stars by discovering new ACV variables. An increased sample size will contribute to the understanding of the CP stars' evolution in time. Aims: We aim at discovering new ACV variables in the public data of the third phase of the All Sky Automated Survey (ASAS-3). Furthermore, by analysis of the available photometric data, we intend to derive rotational periods of the stars. Methods: The ASAS-3 data were cross-correlated with the Catalogue of Ap, HgMn, and Am stars in order to analyse the light curves of bona fide CP and related stars. The light curves were downloaded and cleaned of outliers and data points with a flag indicating bad quality. Promising candidates showing a larger scatter than observed for constant stars in the corresponding magnitude range were searched for periodic signals using a standard Fourier technique. Objects exhibiting periodic signals well above the noise level were considered and visually inspected, whereas borderline cases were rejected. Results: In total, we found 323 variables, from which 246 are reported here for the first time, and 77 were probably wrongly classified before. The observed variability pattern of most stars is in accordance with an ACV classification. For some cases, it is difficult to distinguish between the light curves of double-waved ACVs and the variability induced by orbital motion (ellipsoidal variables/eclipsing variables), especially for objects exhibiting very small amplitudes and/or significant scatter

  6. AO Vel: The role of multiplicity in the development of chemical peculiarities in late B-type stars

    CERN Document Server

    González, J F; Castelli, F; 10.1111/j.1365-2966.2009.16061.x

    2010-01-01

    We present high-resolution, high signal-to-noise UVES spectra of AO Vel, a quadruple system containing an eclipsing BpSi star. From these observations we reconstruct the spectra of the individual components and perform an abundance analysis of all four stellar members. We found that all components are chemically peculiar with different abundances patters. In particular, the two less massive stars show typical characteristics of HgMn stars. The two most massive stars in the system show variable line profiles indicating the presence of chemical spots. Given the youth of the system and the notable chemical peculiarities of their components, this system could give important insights in the origin of chemical anomalies.

  7. On the detection of chemically peculiar stars using Delta a photometry

    CERN Document Server

    Paunzen, E; Maitzen, H M; Stuetz, Ch.

    2005-01-01

    We have summarized all Delta a measurements for galactic field stars (1474 objects) from the literature published over more than two decades. These measurements were, for the first time, compiled and homogeneously analyzed. The Delta a intermediate band photometric system samples the depth of the 520nm flux depression by comparing the flux at the center with the adjacent regions with bandwidths of 11 to 23nm. Because it was slightly modified over the last three decades, we checked for systematic trends for the different measurements but found no correlations whatsoever. The Delta a photometric system is most suitable to detecting magnetic chemically peculiar (CP) stars with high efficiency, but is also capable of detecting a small percentage of non-magnetic CP objects. Furthermore, the groups of (metal-weak) lambda Bootis, as well as classical Be/shell stars, can be successfully investigated. In addition, we also analyzed the behaviour of supergiants (luminosity class I and II). On the basis of apparent norma...

  8. On the co-existence of chemically peculiar Bp stars, slowly pulsating B stars and constant B stars in the same part of the H-R diagram

    CERN Document Server

    Briquet, M; De Cat, P; Aerts, C; North, P; Scholler, M; 10.1051/0004-6361:20066940

    2009-01-01

    Aims. In order to better model massive B-type stars, we need to understand the physical processes taking place in slowly pulsating B (SPB) stars, chemically peculiar Bp stars, and non-pulsating normal B stars co-existing in the same part of the H-R diagram. Methods. We carry out a comparative study between samples of confirmed and well-studied SPB stars and a sample of well-studied Bp stars with known periods and magnetic field strengths. We determine their evolutionary state using accurate HIPPARCOS parallaxes and Geneva photometry. We discuss the occurrence and strengths of magnetic fields as well as the occurrence of stellar pulsation among both groups. Further, we make a comparison of Geneva photometric variability for both kinds of stars. Results. The group of Bp stars is significantly younger than the group of SPB stars. Longitudinal magnetic fields in SPB stars are weaker than those of Bp stars, suggesting that the magnetic field strength is an important factor for B type stars to become chemically pec...

  9. Spectropolarimetric measurements of the mean longitudinal magnetic field of chemically peculiar stars. II. Phase relating the magnetic and luminosity variabilities

    Science.gov (United States)

    Leone, F.; Catanzaro, G.

    2001-01-01

    For a sample of chemically peculiar stars, we report time-resolved measurements of the effective magnetic field which were obtained with the spectropolarimetry operating at the Catania Astrophysical Observatory. These observations are combined with data from the literature for better pointing out that periodic magnetic variability which characterises this class of stars. Periods given in the literature have been checked and, if possible, re-determined, not only by means of the magnetic measurements but referring also to the Hipparcos photometry. The variability of the effective magnetic field of the already known magnetic star 25 Sex is pointed out for the first time. As to the suspected magnetic chemically peculiar star EP UMa, our measurements confirm that this is really a magnetic star and we indicate a possible variability period. The accuracy of the variability period for CS Vir and FF Vir is improved. The suggestion that light variability is due to the re-distribution of ultraviolet flux towards the visible wavelengths in metal rich regions, which are not homogeneously distributed on the stellar surface, appears not always and straightly valid. Local line-blocking is certainly important in the case of CS Vir and a direct influence of the magnetic field on the infrared photometric variability cannot be ruled out for 25 Sex. Based on observations collected at the Catania Astrophysical Observatory, Italy.

  10. Chemically peculiar A/F stars in open clusters of the Milky Way

    Science.gov (United States)

    Gebran, M.; Monier, R.

    2010-12-01

    Abundance anomalies have been determined at the surface of many field and open cluster A and F dwarfs. These abundance anomalies are most likely caused by microscopic diffusion at work within the stable envelopes of A stars. However diffusion can be counteracted by several other mixing processes such as convection, rotational mixing and mass loss. We present a short review of the surface abundance patterns of A/F stars in the Pleiades (100 Myr), Coma Berenices (450 Myr) and Hyades (650 Myr) open clusters. Real star-to-star variations of the abundances were found for several chemical elements in the A dwarfs in these clusters. The derived abundances are then compared to evolutionary models from the Montreal group. These comparisons strongly suggest the occurence of hydrodynamical processes at play within the radiative zones of these stars and hindering the effects of microscopic diffusion (mixing processes/mass loss). In the frame of Gaia mission, simulations are presented that predict the number of A stars and open clusters that Gaia will observe in the Galaxy.

  11. Chemically Peculiar A/F Stars in Open Clusters of the Milky Way

    CERN Document Server

    Gebran, M

    2010-01-01

    Abundance anomalies have been determined at the surface of many field and open cluster A and F dwarfs. These abundance anomalies are most likely caused by microscopic diffusion at work within the stable envelopes of A stars. However diffusion can be counteracted by several other mixing processes such as convection, rotational mixing and mass loss. We present a short review of the surface abundance patterns of A/F stars in the Pleiades (100 Myr), Coma Berenices (450 Myr) and Hyades (650 Myr) open clusters. Real star-to-star variations of the abundances were found for several chemical elements in the A dwarfs in these clusters. The derived abundances are then compared to evolutionary models from the Montreal group. These comparisons strongly suggest the occurence of hydrodynamical processes at play within the radiative zones of these stars and hindering the effects of microscopic diffusion (mixing processes/mass loss). In the frame of Gaia mission, simulations are presented that predict the number of A stars an...

  12. Magnetic fields of chemically peculiar and related stars. I. Main results of 2014 and near-future prospects

    Science.gov (United States)

    Romanyuk, I. I.

    2015-04-01

    We make a critical analysis of the results of studies of magnetic fields in chemically peculiar and related stars, published mostly in 2014. Methodological matters are discussed, and research results are analyzed. Most of the measurements of magnetic fields were obtained with well-known instruments. In 2014 a large observational project MiMeS was accomplished, the observations of more than 500 objects were performed, magnetic fields were found in 35 of them. Twenty new magnetic stars have been detected from the observations with the SAORAS 6-m telescope. Regular measurements of magnetic fields with an accuracy of units of gauss are conducted on a number of telescopes using the HARPS, ESPaDOnS, and NARVAL spectropolarimeters. The fields of complex topology have been studied, magnetic maps have been built, a connection with the distribution of anomalies of chemical composition has been found. The debate about the existence of a magnetic field of about 1 G in Vega and some other objects is ongoing. Apparently, the absence of a large-scale magnetic field greater than tens of gauss in the mercury-manganese and Am stars is confirmed. First CP stars were detected outside the Galaxy, in the Large Magellanic Cloud. Observations of magnetic fields in solar-type stars are continued, a strong correlation between the field strength and the degree of chromospheric activity was discovered.

  13. The 5200A flux depression of chemically peculiar stars I. Synthetic Delta a photometry - the normality line

    CERN Document Server

    Kupka, F; Maitzen, H M

    2003-01-01

    The Delta a photometric system provides an efficient observational method to identify and distinguish magnetic and several other types of chemically peculiar (CP) stars of spectral types B to F from other classes of stars in the same range of effective temperatures. We have developed a synthetic photometric system which can be used to explore the capability of model atmospheres with individual element abundances to predict photometric Delta a magnitudes which measure the extent of the flux depression around 5200A found in different types of CP stars. In this first paper, we confirm the observed dependency of the a-index as a function of various colour indices sensitive to the effective temperature of stars as well as its average scatter expected from surface gravity variations within the main sequence band. The behaviour of the so-called normality line of Delta a systems used in photometric observations of CP stars is well reproduced. The metallicity dependence of the normality line of the Delta a system was ...

  14. New Photometrically Variable Magnetic Chemically Peculiar Stars in the ASAS-3 Archive

    Science.gov (United States)

    Hümmerich, Stefan; Paunzen, Ernst; Bernhard, Klaus

    2016-10-01

    The magnetic Ap or CP2 stars are natural atomic and magnetic laboratories. Strictly periodic changes are observed in the spectra and brightness of these stars, which allow the derivation of rotational periods. Related to this group of objects are the He-weak (CP4) and He-rich stars, some of which also undergo brightness changes due to rotational modulation. Increasing the sample size of known rotational periods among CP2/4 stars is important and will contribute to our understanding of these objects and their evolution in time. We have compiled an extensive target list of CP2/4 stars from the General Catalog of Ap, HgMn, and Am stars, including several early-type (spectral types B/A) variables of undetermined type from the International Variable Star Index. We investigated our sample stars using publicly available observations from the ASAS-3 archive. Our previous efforts in this respect led to the discovery of 323 variable stars. Using a refined analysis approach, we were able to identify another 360 stars exhibiting photometric variability in ASAS-3 data. Summary data, folded light curves and, if available, information from the literature are presented for our final sample, which is composed of 334 bona-fide {α }2 Canum Venaticorum (ACV) variables, 23 ACV candidates, and 3 eclipsing binary systems. Interesting and unusual objects are discussed in detail. In particular, we call attention to HD 66051 (V414 Pup), which is an eclipsing binary system showing obvious rotational modulation of the light curve due to the presence of an ACV variable in the system.

  15. Using the Seismology of Non-magnetic Chemically Peculiar Stars as a Probe of Dynamical Processes in Stellar Interiors

    Indian Academy of Sciences (India)

    Sylvain Turcotte

    2005-06-01

    Chemical composition is a good tracer of the hydrodynamical processes that occur in stars as they often lead to mixing and particle transport. By comparing abundances predicted by models and those observed in stars we can infer some constraints on those mixing processes. As pulsations in the stars are often very sensitive to chemical composition, we can use asteroseismology to probe the internal chemical composition of stars where no direct observations are possible. In this paper I focus on main sequence stars Am, Bootis, and HgMn stars and discuss what we can learn of mixing processes in these stars from seismology.

  16. A Brief Overview and Research Progress of Chemically Peculiar Stars%化学组成特殊星的概述与研究进展

    Institute of Scientific and Technical Information of China (English)

    田晓慢; 朱俐颖

    2015-01-01

    化学组成特殊星(即CP星)是一类具有特殊化学元素丰度的恒星,大部分属于A型和B型主序星.主要介绍了CP星的分类、特征以及主要的起源理论.CP星存在于双星中的比例非常高,在Am星和Hg-Mn星中双星的比例高达90%以上.当CP星是食双星的成员时,通过对双星的观测可以精确地确定CP星的质量、半径等物理参数;双星中物质交流以及最终的子星并合等也可能会形成CP星的特殊化学组成和强磁场.通过CP星双星的观测与研究,有助于研究CP星的起源和演化,也为解释CP现象提供了一个有效途径.%Chemically peculiar stars (CP star) are the stars in the spectra of which lines of some elements are abnormally strong or weak. Most of them are main sequence A and B type stars. By now, the research of the CP star also is very little in China. In the present paper, we introduce the characteristics, classification and main original theories of CP stars. At the same time,a detailed introduction of the mainly subclasses of the CP stars is given, such as Am star,Hg-Mn star,magnetic CP star and so on. Strong magnetic filed has been found in CP star(magnetic CP star), but not all CP star are magnetic CP star.For Am star and Hg-Mn star, just weak magnetic field (2×10-5 T) or no magnetic filed was detected. The origin of CP star still is a problem for us.Even though there are many theories trying to explore it, no one is totaly accurate so far. The percentage of CP stars in the binaries is really high. For example, 90% Am and Hg-Mn stars are in the binary systems, and for Ap and Bp star,the percentage is 43%and 20%respectively. The binary environment provides abundant information of CP star, especially when the CP star is a component of an eclipsing binary, many important physical quantities, such as mass and radius, can be determined in high precision. In addition, the mass transfer and the stellar merger happened in the binary systems may be the main

  17. Chemical surface inhomogeneities in late B-type stars with Hg and Mn peculiarity I Spot evolution in HD 11753 on short and long time scales

    CERN Document Server

    Korhonen, H; Briquet, M; Soriano, M Flores; Hubrig, S; Savanov, I; Hackman, T; Ilyin, I V; Eulaers, E; Pessemier, W

    2013-01-01

    Aims: Time series of high-resolution spectra of the late B-type star HD 11753 exhibiting HgMn chemical peculiarity are used to study the surface distribution of different chemical elements and their temporal evolution. Methods: High-resolution and high signal-to-noise ratio spectra were obtained using the CORALIE spectrograph at La Silla in 2000, 2009, and 2010. Surface maps of YII, SrII, TiII, and CrII were calculated using the Doppler imaging technique. The results were also compared to equivalent width measurements. The evolution of chemical spots both on short and long time scales were investigated. Results: We determine the binary orbit of HD 11753 and fine-tune the rotation period of the primary. The earlier discovered fast evolution of the chemical spots is confirmed by an analysis using both the chemical spot maps and equivalent width measurements. In addition, a long-term decrease in the overall YII and SrII abundances is discovered. A detailed analysis of the chemical spot configurations reveals som...

  18. The chemically peculiar double-lined spectroscopic binary HD 90264

    Science.gov (United States)

    Quiroga, C.; Torres, A. F.; Cidale, L. S.

    2010-10-01

    Context. HD 90264 is a chemically peculiar (CP) double-lined spectroscopic binary system of the type He-weak. Double-lined binaries are unique sources of data for stellar masses, physical properties, and evolutionary aspects of stars. Therefore, the determination of orbital elements is of great importance to study how the physical characteristics of CP stars are affected by a companion. Aims: We carried out a detailed spectral and polarimetric study of the spectroscopic binary system HD 90264 to characterize its orbit, determine the stellar masses, and investigate the spectral variability and possible polarization of the binary components. Methods: We employed medium-resolution échelle spectra and polarimetric data obtained at the 2.15-m telescope at CASLEO Observatory, Argentina. We measured radial velocities and line equivalent widths with IRAF packages. The radial velocity curves of both binary components were obtained combining radial velocity data derived from the single line of Hg II λ3984 Åand the double lines of Mg II λ4481 Å. Polarimetric data were studied by means of the statistical method of Clarke & Stewart and the Welch test. Results: We found that both components of the binary system are chemically peculiar stars, deficient in helium, where the primary is a He variable and the secondary is a Hg-Mn star. We derived for the first time the orbital parameters of the binary system. We found that the system has a quasi-circular orbit (e ~ 0.04) with an orbital period of 15.727 days. Taking into account the circular orbit solution, we derived a mass ratio of q = MHe-w/MHg-Mn = 1.22. We also found a rotational period of around 15-16 days, suggesting a spin-orbit synchronization. Possible signs of intrinsic polarization have also been detected. Conclusions: HD 90264 is the first known binary system comprised of a He variable star as the primary component and a Hg-Mn star as the secondary one. Based on observations taken at Complejo Astronómico El

  19. Peculiar early-type galaxies with central star formation

    Institute of Scientific and Technical Information of China (English)

    Chong Ge; Qiu-Sheng Gu

    2012-01-01

    Early-type galaxies (ETGs) are very important for understanding the formation and evolution of galaxies.Recent observations suggest that ETGs are not simply old stellar spheroids as we previously thought.Widespread recent star formation,cool gas and dust have been detected in a substantial fraction of ETGs.We make use of the radial profiles of g - r color and the concentration index from the Sloan Digital Sky Survey database to pick out 31 peculiar ETGs with central blue cores.By analyzing the photometric and spectroscopic data,we suggest that the blue cores are caused by star formation activities rather than the central weak active galactic nucleus.From the results of stellar population synthesis,we find that the stellar population of the blue cores is relatively young,spreading from several Myr to less than one Gyr.In 14 galaxies with H I observations,we find that the average gas fraction of these galaxies is about 0.55.The bluer galaxies show a higher gas fraction,and the total star formation rate (SFR) correlates very well with the H l gas mass.The star formation history of these ETGs is affected by the environment,e.g.in the denser environment the H 1 gas is less and the total SFR is lower.We also discuss the origin of the central star formation of these early-type galaxies.

  20. Rotation and surface abundance peculiarities in A-type stars

    CERN Document Server

    Takeda, Yoichi; Kang, Dong-Il; Lee, Byeong-Cheol; Kim, Kang-Min

    2008-01-01

    In an attempt of clarifying the connection between the photospheric abundance anomalies and the stellar rotation as well as of exploring the nature of "normal A" stars, the abundances of seven elements (C, O, Si, Ca, Ti, Fe, and Ba) and the projected rotational velocity for 46 A-type field stars were determined by applying the spectrum-fitting method to the high-dispersion spectral data obtained with BOES at BOAO. We found that the peculiarities (underabundances of C, O, and Ca; an overabundance of Ba) seen in slow rotators efficiently decrease with an increase of rotation, which almost disappear at v_e sin i > 100 km s^-1. This further suggests that stars with sufficiently large rotational velocity may retain the original composition at the surface without being altered. Considering the subsolar tendency (by several tenths dex below) exhibited by the elemental abundances of such rapidly-rotating (supposedly normal) A stars, we suspect that the gas metallicity may have decreased since our Sun was born, contra...

  1. HD 101065, the Most Peculiar Star: First Results from Precise Radial Velocity Study

    Indian Academy of Sciences (India)

    D. E. Mkrtichian; A. P. Hatzes

    2005-06-01

    In this paper we discuss the prospects for asteroseismology with spatial resolution and motivate studies of the most chemically peculiar roAp star HD 101065. We present the first results from a high-precision radial velocity (RV) study of HD 101065 based on data spanning four nights that were acquired using the HARPS echelle-spectrometer at the ESO 3.6 m telescope. The analysis of individual nights showed the amplitude and phase modulation of the dominant mode. The analysis of the whole data set showed the presence of multi-periodic oscillations with two groups of equally-spaced modes. We find = 65.2 Hz and = 7.3 Hz for the large and the small spacing, respectively. HD 101065 is the only roAp star to show the existence of two groups of = 0, 2 and = 1, 3 excited modes.

  2. Search for white dwarf companions of cool stars with peculiar element abundances

    Science.gov (United States)

    Boehm-Vitense, E.

    1984-01-01

    A search for a white dwarf companions of cool stars with peculiar element abundances was undertaken. One additional star the xi Cet, was found with a white dwarf companion. It was found that HR 1016, 56Uma, 16 Ser, have high excitation emission lines which indicate a high temperature object in the system. It is suggested that since these indications for high temperature companions were seen for all nearby Ba stars, it is highly probable that all Ba stars have white dwarf companions, and that the peculiar element abundances seen in the Ba stars are due to mass transfer. Observations, arguments and conclusions are presented. White dwarf companions were not found. Together with the Li and Be abundances and the chromospheric emission line spectra in these stars were studied. No white dwarf companions were seen for subgiant CH stars.

  3. The (non-)variability of magnetic chemically peculiar candidates in the Large Magellanic Cloud

    CERN Document Server

    Paunzen, E; Poleski, R; Krticka, J; Netopil, M; Zejda, M

    2013-01-01

    The galactic magnetic chemically peculiar (mCP) stars of the upper main sequence are well known as periodic spectral and light variables. The observed variability is obviously caused by the uneven distribution of overabundant chemical elements on the surfaces of rigidly rotating stars. The mechanism causing the clustering of some chemical elements into disparate structures on mCP stars has not been fully understood up to now. The observations of light changes of mCP candidates recently revealed in the nearby Large Magellanic Cloud (LMC) should provide us with information about their rotational periods and about the distribution of optically active elements on mCP stars born in other galaxies. We queried for photometry at the Optical Gravitational Lensing Experiment (OGLE)-III survey of published mCP candidates selected because of the presence of the characteristic 5200A flux depression. In total, the intersection of both sources resulted in twelve stars. We performed our own and standard periodogram time seri...

  4. Discovery of Peculiar Periodic Spectral Modulations in a Small Fraction of Solar-type Stars

    Science.gov (United States)

    Borra, Ermanno F.; Trottier, Eric

    2016-11-01

    A Fourier transform analysis of 2.5 million spectra in the Sloan Digital Sky Survey was carried out to detect periodic spectral modulations. Signals having the same period were found in only 234 stars overwhelmingly in the F2 to K1 spectral range. The signals cannot be caused by instrumental or data analysis effects because they are present in only a very small fraction of stars within a narrow spectral range and because signal-to-noise ratio considerations predict that the signal should mostly be detected in the brightest objects, while this is not the case. We consider several possibilities, such as rotational transitions in molecules, rapid pulsations, Fourier transform of spectral lines, and signals generated by extraterrestrial intelligence (ETI). They cannot be generated by molecules or rapid pulsations. It is highly unlikely that they come from the Fourier transform of spectral lines because too many strong lines located at nearly periodic frequencies are needed. Finally, we consider the possibility, predicted in a previous published paper, that the signals are caused by light pulses generated by ETI to makes us aware of their existence. We find that the detected signals have exactly the shape of an ETI signal predicted in the previous publication and are therefore in agreement with this hypothesis. The fact that they are only found in a very small fraction of stars within a narrow spectral range centered near the spectral type of the Sun is also in agreement with the ETI hypothesis. However, at this stage, this hypothesis needs to be confirmed with further work. Although unlikely, there is also a possibility that the signals are due to highly peculiar chemical compositions in a small fraction of galactic halo stars.

  5. Ionized and neutral gas in the peculiar star/cluster complex in NGC 6946

    NARCIS (Netherlands)

    Efremov, Yu. N.; Afanasiev, V. L.; Alfaro, E. J.; Boomsma, R.; Bastian, N.; Larsen, S.; Sanchez-Gil, M. C.; Silchenko, O. K.; Garcia-Lorenzo, B.; Munoz-Tunon, C.; Hodge, P. W.

    2007-01-01

    The characteristics of ionized and H I gas in the peculiar star/cluster complex in NGC 6946, obtained with the 6-m telescope (BTA) Special Astrophysical Observatory Russian Academy of Sciences (RAS), the Gemini North telescope, and the Westerbork Synthesis Radio Telescope, are presented. The complex

  6. Analysis of the multiple system with chemically peculiar component φ Draconis

    Science.gov (United States)

    Liška, J.

    2016-09-01

    The star ϕ Dra comprises a spectroscopic binary and a third star that together form a visual triple system. It is one of the brightest chemically peculiar stars of the upper main sequence. Despite these facts, no comprehensive study of its multiplicity has been performed yet. In this work, we present a detailed analysis of the triple system based on available measurements. We use radial velocities taken from four sources in the literature in a re-analysis of the inner spectroscopic binary (Aab). An incorrect value of the orbital period of the inner system Aab about 27 d was accepted in literature more than 40 yr. A new solution of orbit with the 128-d period was determined. Relative position measurements of the outer visual binary system (AB) from Washington Double Star Catalog were compared with known orbital models. Furthermore, it was shown that astrometric motion in system AB is well described by the model of Andrade with a 308-yr orbital period. Parameters of A and B components were utilized to estimate individual brightness for all components and their masses from evolutionary tracks. Although we found several facts which support the gravitational bond between them, unbound solution cannot be fully excluded yet.

  7. The composite nature of the peculiar star HR 6560 (HD 159870)

    Science.gov (United States)

    Wegner, Gary; Cowley, Charles R.

    1992-01-01

    Ground-based high-dispersion photographic spectra and ultraviolet spectra obtained with the IUE satellite are described and employed to determine the nature of the peculiar star HR 6560 (HD 159870). Previously this object had been described as both a composite system and as a strong Fm star. The UBVRI, Stromgren, and ultraviolet colors of HR 6560 are compared with objects classified composite from the Bright Star Catalogue and normal dwarfs and giants. The colors of HR 6560 are not unusual for a composite and are consistent with a late-A dwarf, combined with a late-G or early-K giant. The ultraviolet satellite clearly shows the presence of an A component, but its precise spectral type is difficult to assign. The IUE and TD-1 data suggest that the ultraviolet is dominated by light from an A5 V secondary and the visual from a GO III primary. This does not agree well with the most plausible model that fits the visual photometry. The peculiar nature of HR 6560's spectrum is most likely due to its composite nature.

  8. Ionized and neutral gas in the peculiar star/cluster complex in NGC 6946

    CERN Document Server

    Efremov, Yu N; Alfaro, E J; Boomsma, R; Bastian, N; Larsen, S; Sanchez-Gil, M C; Silchenko, O K; García-Lorenzo, B; Muñoz-Tunón, C; Hodge, P W

    2007-01-01

    The characteristics of ionized and HI gas in the peculiar star/cluster complex in NGC 6946, obtained with the 6-m telescope (BTA) SAO RAS, the Gemini North telescope, and the Westerbork Synthesis Radio Telescope (WSRT), are presented. The complex is unusual as hosting a super star cluster, the most massive known in an apparently non-interacting giant galaxy. It contains a number of smaller clusters and is bordered by a sharp C-shaped rim. We found that the complex is additionally unusual in having peculiar gas kinematics. The velocity field of the ionized gas reveals a deep oval minimum, ~300 pc in size, centered 7" east of the supercluster. The Vr of the ionized gas in the dip center is 100 km/s lower than in its surroundings, and emission lines within the dip appear to be shock excited. This dip is near the center of an HI hole and a semi-ring of HII regions. The HI (and less certainly, HII) velocity fields reveal expansion, with the velocity reaching ~30 km/s at a distance about 300 pc from the center of e...

  9. CCD photometric search for peculiar stars in open clusters. V. NGC 2099, NGC 3114, NGC 6204, NGC 6705 and NGC 6756

    CERN Document Server

    Paunzen, E; Pintado, O I

    2003-01-01

    We have investigated 1008 objects in the area of five intermediate age open clusters (NGC 2099, NGC 3114, NGC 6204, NGC 6705 and NGC 6756) via the narrow band Delta a-system. The detection limit for photometric peculiarity is very low (always less than 0.009mag) due to the high number of individual frames used (193 in total). We have detected six peculiar objects in NGC 6705 and NGC 6756 from which one in the latter is almost certainly an unreddened late type foreground star. The remaining five stars are probably cluster members and bona fide chemically peculiar objects (two are lambda Bootis type candidates). Furthermore, we have investigated NGC 3114, a cluster for which already photoelectric Delta a-measurements exist. A comparison of the CCD and photoelectric values shows very good agreement. Again, the high capability of our CCD Delta a-photometric system to sort out true peculiar objects together with additional measurements from broad or intermediate band photometry is demonstrated.

  10. Chemical spots and oscillatory diffusion modes in magnetic stars

    Science.gov (United States)

    Urpin, V.

    2016-07-01

    The stars of the middle main sequence often have spot-like chemical structures at their surfaces. We consider diffusion caused by electric currents and argue that such current-driven diffusion can form chemical inhomogeneities in a plasma. The considered mechanism can contribute to a formation of element spots in Hg-Mn and Ap-stars. Due to the Hall effect, diffusion in the presence of electric currents can be accompanied by the propagation of a particular type of magnetohydrodynamic modes in which only the impurity number density oscillates. Such modes exist if the magnetic pressure is much greater than the gas pressure and can be the reason for variations of the abundance peculiarities in stars.

  11. Nuclear process and the heaviest chemical elements in the magnetic stars

    International Nuclear Information System (INIS)

    Full text : In the base of investigate isotopic shifts in the lines it was obtained that several lanthanides (rare earths) and actinides (Thand U) is present in the atmosphere of magnetic chemical peculiar stars. Isotopic shifts in the lines of the heavy elements in MCP stars point to the fact it is observed mainly the products of rapid neutron capture. Isotopic shifts in the lines of the heavy elements in MCP stars and it is known that large majority chemically elements may be generated by the nuclear reactions, in particular in a stars

  12. Peculiarities of chemical composition of sainfoin seeds powder

    Directory of Open Access Journals (Sweden)

    Natalia Aleksandrovna Tarasenko

    2015-09-01

    Full Text Available This paper is devoted to studying chemical composition of the powder of the seeds of non-traditional legume, sainfoin. The experimental studies showed that crushed seeds of sainfoin make a flowing fine powder of light brown color with a pleasant unpronounced specific smell with floral notes. The taste is grassy with the after-taste typical for legumes. The chemical composition of sainfoin seeds is dominated by proteins and fiber, and fat content does not exceed 8%. The total content of amino-acids is 26.94/100 g of the product, with the share of indispensable ones being 37.85%. The limiting amino acid is tryptophan (48.0 %. By the composition of essential amino acids, proteins of sainfoin seeds are slightly inferior to the proteins of soybean seeds, but are better than the proteins of peanut seeds. The composition of fatty acid of the lipid complex of sainfoin seeds is dominated by (over 40% of the total linolenic ω-3 acid with sufficiently low (less than 20% of the total content of linoleic ω-6 acid. The lipid composition of sainfoin seeds, along with triacylglycerols, contains about 40% of related lipids, which are dominated by sterols, aliphatic alcohols, phospholipids and tocopherols. All this makes the lipid complex of sainfoin seed a promising means of adjusting fatty acids composition in food products of functional and specialized purpose, dietary supplements, and a valuable raw material for creating pharmaceutical substances and preparations. Adding sainfoin seeds powder into the nutritive medium has no inhibitory effect on development of the tested organism. At the same time, 58% of the organism's physiological need for protein is satifsied, as compared to caseine.

  13. A high resolution, multi-epoch spectral atlas of peculiar stars including RAVE, GAIA and HERMES wavelength ranges

    CERN Document Server

    Tomasella, L; Zwitter, T

    2010-01-01

    We present an Echelle+CCD, high S/N, high resolution (R = 20\\,000) spectroscopic atlas of 108 well-known objects representative of the most common types of peculiar and variable stars. The wavelength interval extends from 4600 to 9400 Ang, and includes the RAVE, Gaia and HERMES wavelength ranges. Multi-epoch spectra are provided for the majority of observed stars. A total of 425 spectra of peculiar stars are presented, which have been collected during 56 observing nights between November 1998 and August 2002. The spectra are given in FITS format and heliocentric wavelengths, with accurate subtraction of both the sky background and the scattered light. Auxiliary material useful for custom applications (telluric dividers, spectro-photometric stars, flat-field tracings) is also provided. The atlas aims to provide a homogeneous database of the spectral appearance of stellar peculiarities, a tool useful both for classification purposes and inter-comparison studies. It could also serve the planning for and training...

  14. Chemical abundance analysis of 19 barium stars

    CERN Document Server

    Yang, G C; Spite, M; Chen, Y Q; Zhao, G; Zhang, B; Liu, G Q; Liu, Y J; Liu, N; Deng, L C; Spite, F; Hill, V; Zhang, C X

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures, surface gravities, metallicity and microturbulent velocity) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their light elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn and Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-ca...

  15. The peculiar abundance pattern of the new Hg-Mn star HD 30085

    CERN Document Server

    Monier, R; Royer, F; Griffin, R E M

    2015-01-01

    Using high-dispersion, high-quality spectra of HD 30085 obtained with the echelle spectrograph SOPHIE at Observatoire de Haute Provence, we show that this star contains strong lines of the s-process elements Sr II, Y II and Zr II. Line syntheses of the lines yield large overabundances of Sr, Y, Zr which are characteristic of HgMn stars. The Sr-Y-Zr triad of abundances is inverted in HD 30085 compared to that in our solar system. The violation of the odd-even rule suggests that physical processes such as radiative diffusion, chemical fractionation and others must be at work in the atmosphere of HD 30085, and that the atmosphere is stable enough to sustain them.

  16. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakis, P E [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Avgeropoulos, A [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Universidad Nacional de Educacion a Distancia, Facultad de Ciencias, Senda del Rey 9, 28040 Madrid (Spain); Kosmas, M [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Vlahos, C [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2007-11-21

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  17. Peculiar double-periodic pulsation in RR Lyrae stars of the OGLE collection - I. Long-period stars with dominant radial fundamental mode

    Science.gov (United States)

    Smolec, R.; Prudil, Z.; Skarka, M.; Bakowska, K.

    2016-09-01

    We present the discovery of a new, peculiar form of double-periodic pulsation in RR Lyrae stars. In four, long-period (P > 0.6 d) stars observed by the Optical Gravitational Lensing Experiment, and classified as fundamental mode pulsators (RRab), we detect additional, low-amplitude variability, with period shorter than fundamental mode period. The period ratios fall in a range similar to double-mode fundamental and first overtone RR Lyrae stars (RRd), with the exception of one star, in which the period ratio is significantly lower and nearly exactly equals 0.7. Although period ratios are fairly different for the four stars, the light-curve shapes corresponding to the dominant, fundamental mode are very similar. The peak-to-peak amplitudes and amplitude ratios (Fourier parameters R21 and R31) are among the highest observed in RRab stars of similar period, while Fourier phases (ϕ21 and ϕ31) are among the lowest observed in RRab stars. If the additional variability is interpreted as due to radial first overtone, then, the four stars are the most extreme RRd variables of the longest pulsation periods known. Indeed, the observed period ratios can be well modelled with high-metallicity pulsation models. However, at such long pulsation periods, first overtone is typically damped. Five other candidates, with weak signature of additional variability, sharing the same characteristics, were also detected and are briefly discussed.

  18. Chemical spots and their dynamical evolution on HgMn stars

    CERN Document Server

    Korhonen, Heidi; Briquet, Maryline; Gonzalez, Federico; Savanov, Igor

    2010-01-01

    Our recent studies of late B-type stars with HgMn peculiarity revealed for the first time the presence of fast dynamical evolution of chemical spots on their surfaces. These observations suggest a hitherto unknown physical process operating in the stars with radiative outer envelopes. Furthermore, we have also discovered existence of magnetic fields on these stars that have up to now been thought to be non-magnetic. Here we will discuss the dynamical spot evolution on HD 11753 and our new results on magnetic fields on AR Aur.

  19. Chemical abundance analysis of 19 barium stars

    Science.gov (United States)

    Yang, Guo-Chao; Liang, Yan-Chun; Spite, Monique; Chen, Yu-Qin; Zhao, Gang; Zhang, Bo; Liu, Guo-Qing; Liu, Yu-Juan; Liu, Nian; Deng, Li-Cai; Spite, Francois; Hill, Vanessa; Zhang, Cai-Xia

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures Teff, surface gravities log g, metallicity [Fe/H] and microturbulence velocity ξt) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants as indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their Na, Al, α- and iron-peak elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-capture) process elements relative to the Sun. Their median abundances of [Ba/Fe], [La/Fe] and [Eu/Fe] are 0.54, 0.65 and 0.40, respectively. The Y I and Zr I abundances are lower than Ba, La and Eu, but higher than the α- and iron-peak elements for the strong Ba stars and similar to the iron-peak elements for the mild stars. There exists a positive correlation between Ba intensity and [Ba/Fe]. For the n-capture elements (Y, Zr, Ba, La), there is an anti-correlation between their [X/Fe] and [Fe/H]. We identify nine of our sample stars as strong Ba stars with [Ba/Fe] >0.6 where seven of them have Ba intensity Ba=2-5, one has Ba=1.5 and another one has Ba=1.0. The remaining ten stars are classified as mild Ba stars with 0.17<[Ba/Fe] <0.54.

  20. Photoelectric search for peculiar stars in open clusters. XV. Feinstein 1, NGC 2168, NGC 2323, NGC 2437, NGC 2547, NGC 4103, NGC 6025, NGC 6633, Stock 2, and Trumpler 2

    CERN Document Server

    Paunzen, E; Maitzen, H M; Pavlovski, K; Schnell, A; Zejda, M

    2014-01-01

    The chemically peculiar (CP) stars of the upper main sequence are mainly characterized by strong overabundances of heavy elements. Two subgroups (CP2 and CP4) have strong local magnetic fields which make them interesting targets for astrophysical studies. This star group, in general, is often used for the analysis of stellar formation and evolution in the context of diffusion as well as meridional circulation. In continuation of a long term study of CP stars (initiated in the 1980ies), we present new results based on photoelectric measurements for ten open clusters that are, with one exception, younger than 235Myr. Observations in star clusters are favourable because they represent samples of stars of constant age and homogeneous chemical composition. The very efficient tool of Delta a photometry was applied. It samples the flux depression at 5200A typically for CP stars. In addition, it is able to trace emission line Be/Ae and lambda Bootis stars. Virtually all CP2 and CP4 stars can be detected via this tool...

  1. Discovery of a peculiar Cepheid-like star towards the northern edge of the Small Magellanic Cloud

    CERN Document Server

    Marquette, J B; François, P; Beaulieu, J P; Doublier, V; Lesquoy, E; Milsztajn, A; Pritchard, J; Schwarzenberg-Czerny, A; Afonso, C; Albert, J N; Andersen, J; Ansari, R; Aubourg, E; Bareyre, P; Charlot, X; Coutures, C; Ferlet, R; Fouqué, P; Glicenstein, J F; Goldman, B; Gould, A; Graff, D; Gros, M; Haïssinski, J; Hamadache, C; De Kat, J; Guillou, L Le; Loup, C; Magneville, C; Maurice, E; Maury, A; Moniez, M; Palanque-Delabrouille, Nathalie; Perdereau, O; Rahal, Y R; Rich, J; Spiro, M; Vidal-Madjar, A; Zylberajch, S

    2008-01-01

    For seven years, the EROS-2 project obtained a mass of photometric data on variable stars. We present a peculiar Cepheid-like star, in the direction of the Small Magellanic Cloud, which demonstrates unusual photometric behaviour over a short time interval. We to report on data of the photometriy acquired by the MARLY telescope and spectroscopy from the EFOSC instrument for this star, called EROS2 J005135-714459(sm0060n13842), which resembles the unusual Cepheid HR 7308. The light curve of our target is analysed using the Analysis of Variance method to determine a pulsational period of 5.5675 days. A fit of time-dependent Fourier coefficients is performed and a search for proper motion is conducted. The light curve exhibits a previously unobserved and spectacular change in both mean magnitude and amplitude, which has no clear theoretical explanation. Our analysis of the spectrum implies a radial velocity of 104 km s$^{-1}$ and a metallicity of -0.4$\\pm$0.2 dex. In the direction of right ascension, we measure a...

  2. SDSS J080449.49+161624.8: A peculiar AM CVn star from a colour-selected sample of candidates

    CERN Document Server

    Roelofs, G H A; Steeghs, D; Rau, A; de Groot, E; Marsh, T R; Nelemans, G; Liebert, J; Woudt, P

    2008-01-01

    We describe a spectroscopic survey designed to uncover an estimated ~40 AM CVn stars hiding in the photometric database of the Sloan Digital Sky Survey (SDSS). We have constructed a relatively small sample of about 1500 candidates based on a colour selection, which should contain the majority of all AM CVn binaries while remaining small enough that spectroscopic identification of the full sample is feasible. We present the first new AM CVn star discovered using this strategy, SDSS J080449.49+161624.8, the ultracompact binary nature of which is demonstrated using high-time-resolution spectroscopy obtained at the Magellan telescopes at Las Campanas Observatory, Chile. A kinematic 'S-wave' feature is observed on a period 44.5+/-0.1min, which we propose is the orbital period, although the present data cannot yet exclude its nearest daily aliases. The new AM CVn star shows a peculiar spectrum of broad, single-peaked helium emission lines with unusually strong series of ionised helium, reminiscent of the (intermedi...

  3. A peculiar Of star in the Local Group galaxy IC 1613

    CERN Document Server

    Herrero, A; Puls, J; Uytterhoeven, K; Najarro, F; Lennon, D J; Rivero-Gonzalez, J G

    2012-01-01

    Context. Results from the theory of radiatively driven winds are incorporated in stellar evolutionary and population synthesis models, and used in our interpretation of the observations of the deep Universe. Yet, the theory has been confirmed only until Small Magellanic Cloud metallicities. Analyses of O-stars at lower metallicities are needed to prove the theory. Aims. We have observed GHV-62024, an O6.5 IIIf star in the low-metallicity galaxy IC1613. According to a previous preliminary analysis this star could challenge the radiatively driven wind theory at low metallicities. Methods. Our observations were obtained with VIMOS at VLT, at R~2000 and were analysed using the latest version of the model atmosphere code FASTWIND, which includes N III Results. We obtain the stellar parameters and conclude that the star follows the average wind momentum-luminosity relationship (WLR) expected for its metallicity, but with a high value for the exponent of the wind velocity law, beta. We suggest that this high value m...

  4. Kepler photometry of RRc stars: peculiar double-mode pulsations and period doubling

    CERN Document Server

    Moskalik, P; Kolenberg, K; Molnár, L; Kurtz, D W; Szabó, R; Benkő, J M; Nemec, J M; Chadid, M; Guggenberger, E; Ngeow, C -C; Jeon, Y -B; Kopacki, G; Kanbur, S M

    2014-01-01

    We present the analysis of four first overtone RR Lyrae stars observed with the Kepler space telescope, based on data obtained over nearly 2.5yr. All four stars are found to be multiperiodic. The strongest secondary mode with frequency f_2 has an amplitude of a few mmag, 20 - 45 times lower than the main radial mode with frequency f_1. The two oscillations have a period ratio of P_2/P_1 = 0.612 - 0.632 that cannot be reproduced by any two radial modes. Thus, the secondary mode is nonradial. Modes yielding similar period ratios have also recently been discovered in other variables of the RRc and RRd types. These objects form a homogenous group and constitute a new class of multimode RR Lyrae pulsators, analogous to a similar class of multimode classical Cepheids in the Magellanic Clouds. Because a secondary mode with P_2/P_1 ~ 0.61 is found in almost every RRc and RRd star observed from space, this form of multiperiodicity must be common. In all four Kepler RRc stars studied, we find subharmonics of f_2 at ~1/...

  5. On the asymptotic giant branch star origin of peculiar spinel grain OC2

    CERN Document Server

    Lugaro, M; Nittler, L R; Alexander, O D; Hoppe, P; Lattanzio, J C

    2006-01-01

    Microscopic presolar grains extracted from primitive meteorites have extremely anomalous isotopic compositions revealing the stellar origin of these grains. The composition of presolar spinel grain OC2 is different from that of all other presolar spinel grains. Large excesses of the heavy Mg isotopes are present and thus an origin from an intermediate-mass (IM) asymptotic giant branch (AGB) star was previously proposed for this grain. We discuss the isotopic compositions of presolar spinel grain OC2 and compare them to theoretical predictions. We show that the isotopic composition of O, Mg and Al in OC2 could be the signature of an AGB star of IM and metallicity close to solar experiencing hot bottom burning, or of an AGB star of low mass (LM) and low metallicity suffering very efficient cool bottom processing. Large measurement uncertainty in the Fe isotopic composition prevents us from discriminating which model better represents the parent star of OC2. However, the Cr isotopic composition of the grain favo...

  6. Discovery of peculiar periodic spectral modulations in a small fraction of solar type stars

    CERN Document Server

    Borra, E F

    2016-01-01

    A Fourier transform analysis of 2.5 million spectra in the Sloan Digital Sky Survey was carried out to detect periodic spectral modulations. Signals having the same period were found in only 234 stars overwhelmingly in the F2 to K1 spectral range. The signals cannot be caused by instrumental or data analysis effects because they are present in only a very small fraction of stars within a narrow spectral range and because signal to noise ratio considerations predict that the signal should mostly be detected in the brightest objects, while this is not the case. We consider several possibilities, such as rotational transitions in molecules, rapid pulsations, Fourier transform of spectral lines and signals generated by Extraterrestrial Intelligence (ETI). They cannot be generated by molecules or rapid pulsations. It is highly unlikely that they come from the Fourier transform of spectral lines because too many strong lines located at nearly periodic frequencies are needed. Finally we consider the possibility, pre...

  7. Star Formation Near Photodissociation Regions: Detection of a Peculiar Protostar Near Ced 201

    CERN Document Server

    Goicoechea, Javier R; Gerin, Maryvonne; Joblin, Christine; Teyssier, David

    2008-01-01

    We present the detection and characterization of a peculiar low-mass protostar (IRAS 22129+7000) located ~0.4 pc from Ced 201 Photodissociation Region (PDR) and ~0.2 pc from the HH450 jet. The cold circumstellar envelope surrounding the object has been mapped through its 1.2 mm dust continuum emission with IRAM-30m/MAMBO. The deeply embedded protostar is clearly detected with Spitzer/MIPS (70 um), IRS (20-35 um) and IRAC (4.5, 5.8, and 8 um) but also in the K_s band (2.15 um). Given the large "near- and mid-IR excess" in its spectral energy distribution, but large submillimeter-to-bolometric luminosity ratio (~2%), IRAS 22129+7000 must be a transition Class 0/I source and/or a multiple stellar system. Targeted observations of several molecular lines from CO, 13CO, C18O, HCO+ and DCO+ have been obtained. The presence of a collimated molecular outflow mapped with the CSO telescope in the CO J=3-2 line suggests that the protostar/disk system is still accreting material from its natal envelope. Indeed, optically ...

  8. The peculiar Galactic center neutron star X-ray binary XMM J174457-2850.3

    CERN Document Server

    Degenaar, N; Reynolds, M T; Miller, J M; Altamirano, D; Kennea, J; Gehrels, N; Haggard, D; Ponti, G

    2014-01-01

    The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary / radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of ~2 hr and a radiated energy output of ~5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx~5E32 erg/s and exhibits occasional accretion outbursts during which it brightens to Lx~1E35-1E36 erg/s for a few weeks (2-10 keV). However, the source often lingers in between outburst...

  9. Strong far-infrared cooling lines, peculiar CO kinematics, and possible star-formation suppression in Hickson compact group 57

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, K.; Appleton, P. N.; Ogle, P. M.; Rich, J. A.; Xu, C. K. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Lisenfeld, U. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, E-18071 Granada (Spain); Bitsakis, T. [NASA Herschel Science Center, IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Guillard, P. [Institut d' Astrophysique Spatiale, Université Paris-Sud XI, F-91405 Orsay Cedex (France); Charmandaris, V. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Penteli (Greece); Cluver, M.; Jarrett, T. [Astrophysics Cosmology and Gravity Centre, Dept of Astronomy, University of Cape Town, Private Bag X3, Rondebosch, 7701, Republic of South Africa (South Africa); Dopita, M. A.; Kewley, L. J. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Freeland, E. [The Oskar Klein Centre, Department of Astronomy, AlbaNova, Stockholm University, SE-106 91 Stockholm (Sweden); Rasmussen, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Verdes-Montenegro, L. [Departamento Astronomía Extragaláctica, Instituto Astrofísica Andalucía (CSIC), Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Yun, M., E-mail: kalatalo@ipac.caltech.edu [University of Massachusetts, Astronomy Department, Amherst, MA 01003 (United States)

    2014-11-10

    We present [C II] and [O I] observations from Herschel and CO(1-0) maps from the Combined Array for Research in Millimeter Astronomy (CARMA) of the Hickson compact group HCG 57, focusing on the galaxies HCG 57a and HCG 57d. HCG 57a has been previously shown to contain enhanced quantities of warm molecular hydrogen consistent with shock or turbulent heating. Our observations show that HCG 57d has strong [C II] emission compared to L {sub FIR} and weak CO(1-0), while in HCG 57a, both the [C II] and CO(1-0) are strong. HCG 57a lies at the upper end of the normal distribution of the [C II]/CO and [C II]/FIR ratios, and its far-infrared (FIR) cooling supports a low-density, warm, diffuse gas that falls close to the boundary of acceptable models of a photon-dominated region. However, the power radiated in the [C II] and warm H{sub 2} emissions have similar magnitudes, as seen in other shock-dominated systems and predicted by recent models. We suggest that shock heating of the [C II] is a viable alternative to photoelectric heating in violently disturbed, diffuse gas. The existence of shocks is also consistent with the peculiar CO kinematics in the galaxy, indicating that highly noncircular motions are present. These kinematically disturbed CO regions also show evidence of suppressed star formation, falling a factor of 10-30 below normal galaxies on the Kennicutt-Schmidt relation. We suggest that the peculiar properties of both galaxies are consistent with a highly dissipative, off-center collisional encounter between HCG 57d and 57a, creating ring-like morphologies in both systems. Highly dissipative gas-on-gas collisions may be more common in dense groups because of the likelihood of repeated multiple encounters. The possibility of shock-induced star-formation suppression may explain why a subset of these HCG galaxies has been found previously to fall in the mid-infrared green valley.

  10. Masses and age of the chemically peculiar double-lined binary χ Lupi

    Science.gov (United States)

    Le Bouquin, J.-B.; Beust, H.; Duvert, G.; Berger, J. P.; Ménard, F.; Zins, G.

    2013-03-01

    Aims: We aim at measuring the stellar parameters of the two chemically peculiar components of the B9.5Vp HgMn + A2 Vm double-lined spectroscopic binary HD 141556 (χ Lup), whose period is 15.25 days. Methods: We combined historical radial velocity measurements with new spatially resolved astrometric observations from PIONIER/VLTI to reconstruct the three-dimensional orbit of the binary, and thus obtained the individual masses. We fit the available photometric points together with the flux ratios provided by interferometry to constrain the individual sizes, which we compared to predictions from evolutionary models. Results: The individual masses of the components are Ma = 2.84 ± 0.12 M⊙ and Mb = 1.94 ± 0.09 M⊙. The dynamical distance is compatible with the Hipparcos parallax. We find linear stellar radii of Ra = 2.85 ± 0.15 R⊙ and Rb = 1.75 ± 0.18 R⊙. This result validates a posteriori the flux ratio used in previous detailed abundance studies. Assuming coevality, we determine a slightly sub-solar initial metallicity Z = 0.012 ± 0.003 and an age of (2.8 ± 0.3) × 108 years. Finally, our results imply that the primary rotates more slowly than its synchronous velocity, while the secondary is probably synchronous. We show that strong tidal coupling during the pre-main sequence evolution followed by a full decoupling at zero-age main sequence provides a plausible explanation for these very low rotation rates. Based on data collected with the PIONIER visitor-instrument installed at the ESO Paranal Observatory under program 088.D-0828.Appendices are available in electronic form at http://www.aanda.org

  11. RT Cru: a look into the X-ray emission of a peculiar symbiotic star

    CERN Document Server

    Ducci, L; Suleimanov, V; Nikolajuk, M; Santangelo, A; Ferrigno, C

    2016-01-01

    Symbiotic stars are a heterogeneous class of interacting binaries. Among them, RT Cru has been classified as prototype of a subclass that is characterised by hard X-ray spectra extending past ~20 keV. We analyse ~8.6 Ms of archival INTEGRAL data collected in the period 2003-2014, ~140 ks of Swift/XRT data, and a Suzaku observation of 39 ks, to study the spectral X-ray emission and investigate the nature of the compact object. Based on the 2MASS photometry, we estimate the distance to the source of 1.2-2.4 kpc. The X-ray spectrum obtained with Swift/XRT, JEM-X, IBIS/ISGRI, and Suzaku data is well fitted by a cooling flow model modified by an absorber that fully covers the source and two partial covering absorbers. Assuming that the hard X-ray emission of RT Cru originates from an optically thin boundary layer around a non-magnetic white dwarf, we estimated a mass of the WD of about 1.2 M_Sun. The mass accretion rate obtained for this source might be too high for the optically thin boundary layer scenario. Ther...

  12. Chemical Composition of Intermediate-mass Star Members of the M6 (NGC 6405) Open Cluster

    Science.gov (United States)

    Kılıçoğlu, T.; Monier, R.; Richer, J.; Fossati, L.; Albayrak, B.

    2016-03-01

    We present here the first abundance analysis of 44 late B-, A-, and F-type members of the young open cluster M6 (NGC 6405, age about 75 Myr). Low- and medium-resolution spectra, covering the 4500-5840 Å wavelength range, were obtained using the FLAMES/GIRAFFE spectrograph attached to the ESO Very Large Telescopes. We determined the atmospheric parameters using calibrations of the Geneva photometry and by adjusting the Hβ profiles to synthetic ones. The abundances of up to 20 chemical elements, from helium to mercury, were derived for 19 late B, 16 A, and 9 F stars by iteratively adjusting synthetic spectra to the observations. We also derived a mean cluster metallicity of [Fe/H] = 0.07 ± 0.03 dex from the iron abundances of the F-type stars. We find that for most chemical elements, the normal late B- and A-type stars exhibit larger star-to-star abundance variations than the F-type stars probably because of the faster rotation of the B and A stars. The abundances of C, O, Mg, Si, and Sc appear to be anticorrelated with that of Fe, while the opposite holds for the abundances of Ca, Ti, Cr, Mn, Ni, Y, and Ba as expected if radiative diffusion is efficient in the envelopes of these stars. In the course of this analysis, we discovered five new peculiar stars: one mild Am, one Am, and one Fm star (HD 318091, CD-32 13109, GSC 07380-01211, CP1), one HgMn star (HD 318126, CP3), and one He-weak P-rich (HD 318101, CP4) star. We also discovered a new spectroscopic binary, most likely a SB2. We performed a detailed modeling of HD 318101, the new He-weak P-rich CP star, using the Montréal stellar evolution code XEVOL which self-consistently treats all particle transport processes. Although the overall abundance pattern of this star is properly reproduced, we find that detailed abundances (in particular the high P excess) resisted modeling attempts even when a range of turbulence profiles and mass-loss rates were considered. Solutions are proposed which are still under

  13. CHEMICAL COMPOSITION OF INTERMEDIATE-MASS STAR MEMBERS OF THE M6 (NGC 6405) OPEN CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Kılıçoğlu, T.; Albayrak, B. [Ankara University, Faculty of Science, Department of Astronomy and Space Sciences, 06100, Tandoğan, Ankara (Turkey); Monier, R. [LESIA, UMR 8109, Observatoire de Paris Meudon, Place J. Janssen, Meudon (France); Richer, J. [Département de physique, Université de Montréal, 2900, Boulevard Edouard-Montpetit, Montréal QC, H3C 3J7 (Canada); Fossati, L., E-mail: tkilicoglu@ankara.edu.tr, E-mail: balbayrak@ankara.edu.tr, E-mail: Richard.Monier@obspm.fr, E-mail: Jacques.Richer@umontreal.ca, E-mail: lfossati@astro.uni-bonn.de [Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D-53121, Bonn (Germany)

    2016-03-15

    We present here the first abundance analysis of 44 late B-, A-, and F-type members of the young open cluster M6 (NGC 6405, age about 75 Myr). Low- and medium-resolution spectra, covering the 4500–5840 Å wavelength range, were obtained using the FLAMES/GIRAFFE spectrograph attached to the ESO Very Large Telescopes. We determined the atmospheric parameters using calibrations of the Geneva photometry and by adjusting the H{sub β} profiles to synthetic ones. The abundances of up to 20 chemical elements, from helium to mercury, were derived for 19 late B, 16 A, and 9 F stars by iteratively adjusting synthetic spectra to the observations. We also derived a mean cluster metallicity of [Fe/H] = 0.07 ± 0.03 dex from the iron abundances of the F-type stars. We find that for most chemical elements, the normal late B- and A-type stars exhibit larger star-to-star abundance variations than the F-type stars probably because of the faster rotation of the B and A stars. The abundances of C, O, Mg, Si, and Sc appear to be anticorrelated with that of Fe, while the opposite holds for the abundances of Ca, Ti, Cr, Mn, Ni, Y, and Ba as expected if radiative diffusion is efficient in the envelopes of these stars. In the course of this analysis, we discovered five new peculiar stars: one mild Am, one Am, and one Fm star (HD 318091, CD-32 13109, GSC 07380-01211, CP1), one HgMn star (HD 318126, CP3), and one He-weak P-rich (HD 318101, CP4) star. We also discovered a new spectroscopic binary, most likely a SB2. We performed a detailed modeling of HD 318101, the new He-weak P-rich CP star, using the Montréal stellar evolution code XEVOL which self-consistently treats all particle transport processes. Although the overall abundance pattern of this star is properly reproduced, we find that detailed abundances (in particular the high P excess) resisted modeling attempts even when a range of turbulence profiles and mass-loss rates were considered. Solutions are proposed which are

  14. Chemical evolution of A- and B-type stars in open clusters: observed abundances vs. diffusion models. Am stars in the Praesepe cluster

    Science.gov (United States)

    Fossati, L.; Bagnulo, S.; Monier, R.; Khan, S. A.; Kochukhov, O.; Landstreet, J. D.; Wade, G. A.; Weiss, W. W.

    2008-04-01

    We have decided to address the problem of how abundances and peculiarities change during main sequence evolution. We have setup a program to measure the atmospheric abundance patterns from tens of A-type star members of clusters of different ages, and compare the results with theory predictions. In this paper we present the overall project and we focus on the results obtained for a sample of Am stars of the Praesepe cluster (log t= 8.85 ± 0.15; González-García et al., 2006). We have obtained spectra for eight Am stars, two normal A-type stars and one blue straggler, that are probable members of the Praesepe cluster. For all of these stars we have determined fundamental parameters and photospheric abundances for a large number of chemical elements. For seven stars we also obtained spectra in circular polarisation and applied the LSD technique to measure the mean longitudinal magnetic field. We have found good agreement between abundance predictions of diffusion models and measured abundances, except for Na and S. Li appears to be overabundant in three stars of our sample. No magnetic field was detected in any of the analysed stars.

  15. Mathematical Assessment of Physical and Chemical Processes from the middle B to the early F Type Main Sequence Stars

    Science.gov (United States)

    Yuce, Kutluay; Adelman, Saul J.

    2016-07-01

    The middle B to the early F main sequence stars are thought to have some of the most quiet atmospheres. In this part of the HR diagram we find stars with atmospheres in radiative equilibrium. They lack the convective circulations of the middle F and cooler stars and the massive stellar winds of hotter stars. Diffusion theory requires the Chemically Peculiar stars to have relatively quiet atmospheres and if there are no magnetic fields they should lack abundance spots. If we look at stars evolving off the Main Sequence in this part of the HR diagram, we see that the evolutionary paths of stars of different mass do not cross. So if we compare stars with the same effective temperature and surface gravity, we are studying stars of the same luminosity and mass. By comparing their elemental abundances, we might be able to identify physical processes which cause their abundances to be different. In this work we begin with stars whose effective temperatures and surface gravities are similar, and which has been analyzed by us using spectra obtained from the Dominion Astrophysical Observatory.

  16. Massive stars. A chemical signature of first-generation very massive stars.

    Science.gov (United States)

    Aoki, W; Tominaga, N; Beers, T C; Honda, S; Lee, Y S

    2014-08-22

    Numerical simulations of structure formation in the early universe predict the formation of some fraction of stars with several hundred solar masses. No clear evidence of supernovae from such very massive stars has, however, yet been found in the chemical compositions of Milky Way stars. We report on an analysis of a very metal-poor star SDSS J001820.5-093939.2, which possesses elemental-abundance ratios that differ significantly from any previously known star. This star exhibits low [α-element Fe] ratios and large contrasts between the abundances of odd and even element pairs, such as scandium/titanium and cobalt/nickel. Such features have been predicted by nucleosynthesis models for supernovae of stars more than 140 times as massive as the Sun, suggesting that the mass distribution of first-generation stars might extend to 100 solar masses or larger.

  17. The chemical composition of the Orion star forming region: stars, gas and dust

    CERN Document Server

    Simón-Díaz, S; Przybilla, N; Stasińska, G

    2010-01-01

    We present a summary of main results from the studies performed in the series of papers "The chemical composition of the Orion star forming region". We reinvestigate the chemical composition of B-type stars in the Orion OB1 association by means of state-of-the-art stellar atmosphere codes, atomic models and techniques, and compare the resulting abundances with those obtained from the emission line spectra of the Orion nebula (M42), and recent determinations of the Solar chemical composition.

  18. ECOLOGICAL PECULIARITIES OF COPPER CHEMICAL FORMS CONTENT IN THE ERODED SOILS

    OpenAIRE

    T. Leah

    2013-01-01

    The content of chemical forms of copper, the features of the distribution and transformation in eroded Gray soils and Calcareous chernozems are presented. Erosion process led to increase the chemical forms associated with clay minerals, carbonates, oxides, and reducing the mobile and humus organic forms. The losses of copper in different chemical forms consist 35% from humus horizon of eroded soils.

  19. ECOLOGICAL PECULIARITIES OF COPPER CHEMICAL FORMS CONTENT IN THE ERODED SOILS

    Directory of Open Access Journals (Sweden)

    T. Leah

    2013-06-01

    Full Text Available The content of chemical forms of copper, the features of the distribution and transformation in eroded Gray soils and Calcareous chernozems are presented. Erosion process led to increase the chemical forms associated with clay minerals, carbonates, oxides, and reducing the mobile and humus organic forms. The losses of copper in different chemical forms consist 35% from humus horizon of eroded soils.

  20. Late stages of the evolution of A-type stars on the main sequence: comparison between observed chemical abundances and diffusion models for 8 Am stars of the Praesepe cluster

    CERN Document Server

    Fossati, L; Monier, R; Khan, S A; Kochukhov, O; Landstreet, J; Wade, G; Weiss, W

    2007-01-01

    Aims. We aim to provide observational constraints on diffusion models that predict peculiar chemical abundances in the atmospheres of Am stars. We also intend to check if chemical peculiarities and slow rotation can be explained by the presence of a weak magnetic field. Methods. We have obtained high resolution, high signal-to-noise ratio spectra of eight previously-classified Am stars, two normal A-type stars and one Blue Straggler, considered to be members of the Praesepe cluster. For all of these stars we have determined fundamental parameters and photospheric abundances for a large number of chemical elements, with a higher precision than was ever obtained before for this cluster. For seven of these stars we also obtained spectra in circular polarization and applied the LSD technique to constrain the longitudinal magnetic field. Results. No magnetic field was detected in any of the analysed stars. HD 73666, a Blue Straggler previously considered as an Ap (Si) star, turns out to have the abundances of a no...

  1. Chemical abundances and kinematics of barium stars

    Science.gov (United States)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Sales Silva, J. V.

    2016-07-01

    In this paper, we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scaleheight, radial velocities, abundances of the Na, Al, α-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars cannot be represented by a single Gaussian distribution. The abundances of α-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anticorrelated with the metallicity. Our kinematical analysis showed that 90 per cent of the barium stars belong to the thin disc population. Based on their luminosities, none of the barium stars are luminous enough to be an asymptotic giant branch star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  2. The peculiar isolated neutron star in the Carina Nebula - Deep XMM-Newton and ESO-VLT observations of 2XMM J104608.7-594306

    CERN Document Server

    Pires, Adriana Mancini; Turolla, Roberto; Schwope, Axel; Pilia, Maura; Treves, Aldo; Popov, Sergei B; Janot-Pacheco, Eduardo

    2012-01-01

    While fewer in number relative to the dominant rotation-powered radio pulsar population, peculiar classes of isolated neutron stars (INSs) -- which include magnetars, the ROSAT-discovered "Magnificent Seven" (M7), rotating radio transients (RRATs) and central compact objects in supernova remnants (CCOs) -- represent a key element to understand the neutron star phenomenology. We report here on the results of an observational campaign aiming at studying the properties of the source 2XMM J104608.7-594306. Its evolutionary state is investigated by means of deep dedicated observations obtained with XMM-Newton, the ESO Very Large Telescope as well as on publicly available gamma-ray data from the Fermi and AGILE missions. The observations confirm previous expectations and further reveal a unique object. The source, likely within the Carina Nebula, shows a soft spectrum with absorption features and no magnetospheric emission. The optical counterpart is fainter than V=27 and no gamma-ray emission is significantly dete...

  3. Peculiarities of helium bubble formation and helium behavior in vanadium alloys of different chemical composition

    International Nuclear Information System (INIS)

    The influence of alloying of vanadium by Ti and Fe on helium bubble formation, gaseous swelling and helium release peculiarities is investigated by means of transmission electron microscopy and helium thermal desorption spectrometry (HTDS). The samples were irradiated by 40 keV He+ ions up to a fluence of 5 ⋅ 1020 m−2 at 293 and 923 K. It is found that large faceted pores/bubbles are formed in pure vanadium and it has the highest gaseous swelling. Alloying by any used quantity of Ti (from 0.1 up to 10 wt.%) or Fe (from 1 up to 10 wt.%) essentially decreases the helium swelling. The effect of alloying of vanadium by Ti on the bubble sizes and the helium swelling is nonmonotonic. The density of bubbles increases significantly and their sizes and swelling grow monotonically with increasing the Fe content in vanadium. With low-temperature helium implantation, alloying of V by Ti shifts the HTDS peaks to higher temperatures and the temperatures of peaks are decreased with increasing the Fe concentration. A significant portion of the helium releases in a high-temperature area beyond the main peak temperatures in the HTDS spectra. It is assumed that this is caused by formation of helium bubbles on the surfaces of incoherent particles of secondary phases (oxides, nitrides), having high binding energies with these particles

  4. Chemical analysis of 24 dusty (pre-)main-sequence stars

    CERN Document Server

    Acke, B; Acke, Bram; Waelkens, Christoffel

    2004-01-01

    We have analysed the chemical photospheric composition of 24 Herbig Ae/Be and Vega-type stars in search for the lambda Bootis phenomenon. We present the results of the elemental abundances of the sample stars. Some of the stars were never before studied spectroscopically at optical wavelengths. We have determined the projected rotational velocities of our sample stars. Furthermore, we discuss stars that depict a (selective) depletion pattern in detail. HD 4881 and HD 139614 seem to display an overall deficiency. AB Aur and possibly HD 126367 have subsolar values for the iron abundance, but are almost solar in silicon. HD 100546 is the only clear lambda Bootis star in our sample.

  5. Polarizacion en estrellas químicamente peculiares

    Science.gov (United States)

    Quiroga, C.; Torres, A. F.; Cidale, L.

    2016-08-01

    Chemically peculiar stars are characterized by the presence of He lines with anomalous intensities relative to the ones expected for their spectral type. They usually show photometric and polarimetric variations, with variable magnetic fields of the order 2 kG. Our goal is to measure the intrinsic polarization, the stokes parameters and their possible variations to obtain information on the structure of the magnetic field and their effects on the geometry of the star.

  6. Prospects for Chemically Tagging Stars in the Galaxy

    Science.gov (United States)

    Ting, Yuan-Sen; Conroy, Charlie; Goodman, Alyssa

    2015-07-01

    It is now well-established that the elemental abundance patterns of stars hold key clues not only to their formation, but also to the assembly histories of galaxies. One of the most exciting possibilities is the use of stellar abundance patterns as “chemical tags” to identify stars that were born in the same molecular cloud. In this paper, we assess the prospects of chemical tagging as a function of several key underlying parameters. We show that in the fiducial case of 104 distinct cells in chemical space and {10}5-{10}6 stars in the survey, one can expect to detect ∼ {10}2-{10}3 groups that are ≥slant 5σ overdensities in the chemical space. However, we find that even very large overdensities in chemical space do not guarantee that the overdensity is due to a single set of stars from a common birth cloud. In fact, for our fiducial model parameters, the typical 5σ overdensity is comprised of stars from a wide range of clusters with the most dominant cluster contributing only 25% of the stars. The most important factors limiting the identification of disrupted clusters via chemical tagging are the number of chemical cells in the chemical space and the survey sampling rate of the underlying stellar population. Both of these factors can be improved through strategic observational plans. While recovering individual clusters through chemical tagging may prove challenging, we show, in agreement with previous work, that different CMFs imprint different degrees of clumpiness in chemical space. These differences provide the opportunity to statistically reconstruct the slope and high-mass cutoff of CMF and its evolution through cosmic time.

  7. Neutron Stars as a Source of the Short-Lived Nuclides in Ap-star Atmospheres

    International Nuclear Information System (INIS)

    We propose a new explanation of some magnetic chemically peculiar (MCP) star anomalies, which is based on an assumption that such stars be the close binary systems with a secondary component being a neutron star. Within this hypothesis one can naturally explain the main anomalous features of MCP stars: first of all, an existence of the short-lived radioactive isotopes detected in some stars (like Przybylski's star (PS) and HR465), and some others peculiarities. Also we can assume the presence of the electron-positron annihilation emission lines (0.511 MeV) in the gamma spectrum of some MCP stars

  8. Chemical abundances and kinematics of barium stars

    CERN Document Server

    de Castro, D B; Roig, F; Jilinski, E; Drake, N A; Chavero, C; Silva, J V Sales

    2016-01-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, $alpha$-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code {\\sc moog}. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of $alpha$-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heav...

  9. Prospects for Chemically Tagging Stars in the Galaxy

    CERN Document Server

    Ting, Yuan-Sen; Goodman, Alyssa

    2015-01-01

    It is now well-established that the elemental abundance patterns of stars holds key clues not only to their formation but also to the assembly histories of galaxies. One of the most exciting possibilities is the use of stellar abundance patterns as "chemical tags" to identify stars that were born in the same molecular cloud. In this paper we assess the prospects of chemical tagging as a function of several key underlying parameters. We build an observationally-motivated model for the star formation history (SFH), the gas and stellar mass distributions, and the radial size growth of the Milky Way through cosmic time. The multidimensional grid of parameters includes the fraction of stars that were born in-situ in the Solar annulus, the evolution and slope of the zero age cluster mass function (CMF), the survey geometry, number of stars in the survey, and the dimensionality of the chemical space. We show that in the fiducial case of $10^4$ distinct cells in chemical space and $10^5-10^6$ stars in the survey, one...

  10. Chemical Abundance Gradients in the Star-forming Ring Galaxies

    Science.gov (United States)

    Korchagin, Vladimir; Vorobyov, Eduard; Mayya, Y. D.

    1999-09-01

    Ring waves of star formation, propagating outward in the galactic disks, leave chemical abundance gradients in their wakes. We show that the relative [Fe/O] abundance gradients in ring galaxies can be used as a tool for determining the role of the SN Ia explosions in their chemical enrichment. We consider two mechanisms--a self-induced wave and a density wave--that can create outwardly propagating star-forming rings in a purely gaseous disk and demonstrate that the radial distribution of the relative [Fe/O] abundance gradients depends neither on the particular mechanism of the wave formation anor on the parameters of the star-forming process. We show that the [Fe/O] profile is determined by the velocity of the wave, the initial mass function, and the initial chemical composition of the star-forming gas. If the role of SN Ia explosions is negligible in the chemical enrichment, the ratio [Fe/O] remains constant throughout the galactic disk with a steep gradient at the wave front. If SN Ia stars are important in the production of cosmic iron, the [Fe/O] ratio has a gradient in the wake of the star-forming wave with the value depending on the frequency of SN Ia explosions.

  11. Peculiarities of Enhancing Resistant Starch in Ruminants Using Chemical Methods: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Qendrim Zebeli

    2013-06-01

    Full Text Available High-producing ruminants are fed high amounts of cereal grains, at the expense of dietary fiber, to meet their high energy demands. Grains consist mainly of starch, which is easily degraded in the rumen by microbial glycosidases, providing energy for rapid growth of rumen microbes and short-chain fatty acids (SCFA as the main energy source for the host. Yet, low dietary fiber contents and the rapid accumulation of SCFA lead to rumen disorders in cattle. The chemical processing of grains has become increasingly important to confer their starch resistances against rumen microbial glycosidases, hence generating ruminally resistant starch (RRS. In ruminants, unlike monogastric species, the strategy of enhancing resistant starch is useful, not only in lowering the amount of carbohydrate substrates available for digestion in the upper gut sections, but also in enhancing the net hepatic glucose supply, which can be utilized by the host more efficiently than the hepatic gluconeogenesis of SCFA. The use of chemical methods to enhance the RRS of grains and the feeding of RRS face challenges in the practice; therefore, the present article attempts to summarize the most important achievements in the chemical processing methods used to generate RRS, and review advantages and challenges of feeding RRS to ruminants

  12. Chemical Enrichment from Massive Stars in Starbursts; 2, NGC 1569

    CERN Document Server

    Kobulnicky, H A; Kobulnicky, Henry A.; Skillman, Evan D.

    1997-01-01

    We present a longslit optical spectrophotometric survey in the irregular "post-starburst" galaxy NGC 1569 to search for chemical gradients and inhomogeneities in the interstellar medium. Despite the presence of two massive evolved starclusters and numerous HII regions, we find no evidence for chemical gradients or inhomogeneities that may be attributed to enrichment from the recent star formation activity. The chemical properties are consistent with 12+log(O/H)=8.19+/-0.04 and log(N/O)=-1.40+/-0.05 at all locations. No localized chemical self-enrichment ("pollution") from massive star evolution is found, even though the data are sensitive to the chemical yields from as few as two or three massive stars. Flat chemical abundance profiles appear to be the rule rather than the exception in low-mass galaxies. Strong chemical signatures in the surrounding interstellar material should be detected unless one or more of the following are true: 1) Different star forming regions throughout the studied galaxies ``conspir...

  13. Preserving chemical signatures of primordial star formation in the first low-mass stars

    CERN Document Server

    Ji, Alexander P; Bromm, Volker

    2015-01-01

    We model early star forming regions and their chemical enrichment by Population III (Pop III) supernovae with nucleosynthetic yields featuring high [C/Fe] ratios and pair-instability supernova (PISN) signatures. We aim to test how well these chemical abundance signatures are preserved in the gas prior to forming the first long-lived low-mass stars (or second-generation stars). Our results show that second-generation stars can retain the nucleosynthetic signature of their Pop III progenitors, even in the presence of nucleosynthetically normal Pop III core-collapse supernovae. We find that carbon-enhanced metal-poor stars are likely second-generation stars that form in minihaloes. Furthermore, it is likely that the majority of Pop III supernovae produce high [C/Fe] yields. In contrast, metals ejected by a PISN are not concentrated in the first star forming haloes, which may explain the absence of observed PISN signatures in metal-poor stars. We also find that unique Pop III abundance signatures in the gas are q...

  14. Chemical processes in star forming regions

    OpenAIRE

    Caselli, Paola

    2005-01-01

    This paper will review the basic concepts of gas-phase and grain surface chemistry of dense molecular clouds, where low mass and high mass stars form. The chemistry of cold pre-stellar cloud cores, where molecular freeze-out and deuterium fractionation dominate, will be presented. Then, following cloud evolution after protostellar birth, hot core and shock chemistry will be discussed in view of recent observations. A brief summary of the chemistry in protoplanetary disks will also be furnishe...

  15. Cosmic chemical evolution with intermediate mass pop III stars

    International Nuclear Information System (INIS)

    We explore the consequences of an early population of intermediate mass stars (IMS) in the 2 – 8 Msun range on cosmic chemical evolution. We discuss the implications of this population as it pertains to several cosmological and astrophysical observables. Some very metal-poor galactic stars show large enhancements of carbon, typical of the C-rich ejecta of IMS; moreover, halo star carbon and oxygen abundances show a scatter, which imply a wide range of star-formation and nucleosynthetic histories contributed to the first generations of stars. Also, recent analyses of the He abundance in metal-poor extragalactic H II regions suggest an elevated primitive abundance of Helium, Yp ≅ 0.256 by mass, higher than the predicted result from big bang nucleosynthesis assuming the baryon density determined by WMAP, Yp ≅ 0.249. This offset suggests a prompt initial enrichment of He in early metal-poor structures, and IMS Pop III stars are again good candidates. We also discuss the effect of these Pop III stars on global cosmic evolution for example the reionization of the Universe. We conclude that if IMS are to be associated with some Population III stars, their relevance is limited to low mass structures involving a little fraction of the total baryon content of the Universe typical at redshift 10 [1].

  16. Level and Formation Peculiarities of Chemical and Physical Pollution in the Workplaces

    Directory of Open Access Journals (Sweden)

    Vaida Kristina Valuntaitė

    2010-10-01

    Full Text Available The use of computers, printers, copiers, other electronic equipment and technological processes increases indoor air pollution. Traditional collection of previous home and office air pollutants as sulphur dioxide, carbon monoxide, dust and alike is enriched with other pollutants as ozone, volatile organic compounds, noise, ultraviolet radiation. The growing use of office equipment in combination with health concerns and limited evidence whether and how this equipment can emit harmful chemicals demand systematic research into pollutant emissions from office equipment. The measurements were carried out in the workplaces (in welding and copying premises to estimate noise pollution, the level of ozone and aerosol number concentrations, the microclimate parameters (temperature, relative humidity. The sound level in the copying premises increased up to 75 dBA and mostly simultaneously varied with the aerosol particles and ozone concentration. During the copying machine non-working hours the ozone concentration varied about 4 μg m-³, and the aerosol number concentration was up to 40·106 m-3. When copying was performed the ozone concentration increased from 1 up to 270 μg m-³ and the aerosol number concentration exceeded (10-315·106 m-3. The results have shown that ozone concentration in a welding room can increase up to 1850 μg m-3 and UVB radiation intensity up to 1.78 mW cm-2. It is established that the correlation coefficient between these parameters was 0.99 during the analyzed period. No increase in the thermal and noise pollution above the limited level associated with copying has been determined

  17. Ap stars with variable periods

    OpenAIRE

    Mikulášek, Zdeněk; Krtička, Jiří; Janík, Jan; Zejda, Miloslav; Henry, Gegory W.; Paunzen, Ernst; Žižňovský, Jozef; Zverko, Juraj

    2013-01-01

    The majority of magnetic chemically peculiar (mCP) stars exhibit periodic light, magnetic, radio, and spectroscopic variations that can be adequately modelled as a rigidly-rotating main-sequence star with persistent surface structures. Nevertheless, there is a small sample of diverse mCP stars whose rotation periods vary on timescales of decades while the shapes of their phase curves remain unchanged. Alternating period increases and decreases have been suspected in the hot CP stars CU Vir an...

  18. Chemical abundances of distant extremely metal-poor unevolved stars

    CERN Document Server

    Bonifacio, P; Caffau, E; Ludwig, H -G; Spite, M; Hernández, J I González; Behara, N T

    2012-01-01

    Aims: The purpose of our study is to determine the chemical composition of a sample of 16 candidate Extremely Metal-Poor (EMP) dwarf stars, extracted from the Sloan Digital Sky Survey (SDSS). There are two main purposes: in the first place to verify the reliability of the metallicity estimates derived from the SDSS spectra; in the second place to see if the abundance trends found for the brighter nearer stars studied previously also hold for this sample of fainter, more distant stars. Methods: We used the UVES at the VLT to obtain high-resolution spectra of the programme stars. The abundances were determined by an automatic analysis with the MyGIsFOS code, with the exception of lithium, for which the abundances were determined from the measured equivalent widths of the Li I resonance doublet. Results: All candidates are confirmed to be EMP stars, with [Fe/H]<= -3.0. The chemical composition of the sample of stars is similar to that of brighter and nearer samples. We measured the lithium abundance for 12 st...

  19. The effect of rotation on the abundances of the chemical elements of the A-type stars in the Praesepe cluster

    Science.gov (United States)

    Fossati, L.; Bagnulo, S.; Landstreet, J.; Wade, G.; Kochukhov, O.; Monier, R.; Weiss, W.; Gebran, M.

    2008-06-01

    Aims: We study how chemical abundances of late B-, A-, and early F-type stars evolve with time, and we search for correlations between the abundance of chemical elements and other stellar parameters, such as effective temperature and υ sin i. Methods: We observed a large number of B-, A-, and F-type stars belonging to open clusters of different ages. In this paper we concentrate on the Praesepe cluster (log t = 8.85), for which we have obtained high-resolution, high signal-to-noise ratio spectra of sixteen normal A- and F-type stars and one Am star, using the SOPHIE spectrograph of the Observatoire de Haute-Provence. For all the observed stars, we derived fundamental parameters and chemical abundances. In addition, we discuss another eight Am stars belonging to the same cluster, for which the abundance analysis had been presented in a previous paper. Results: We find a strong correlation between the peculiarity of Am stars and υ sin i. The abundance of the elements underabundant in Am stars increases with υ sin i, while it decreases for the overabundant elements. Chemical abundances of various elements appear correlated with the iron abundance. Based on observations made at the Observatoire de Haute-Provence. Figures [see full textsee full textsee full text] to [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  20. Cool Stars May Have Different Prebiotic Chemical Mix

    Science.gov (United States)

    2009-01-01

    NASA's Spitzer Space Telescope detected a prebiotic, or potentially life-forming, molecule called hydrogen cyanide (HCN) in the planet-forming disks around yellow stars like our sun, but not in the disks around cooler, reddish stars. The observations are plotted in this graph, called a spectrum, in which light from the gas in the disks around the stars has been split up into its basic components, or wavelengths. Data from stars like our sun are yellow, and data from cool stars are orange. Light wavelengths are shown on the X-axis, and the relative brightness of disk emission is shown on the Y-axis. The signature of a baseline molecule, called acetylene (C2H2), was seen for both types of stars, but hydrogen cyanide was seen only around stars like our sun. Hydrogen cyanide is an organic, nitrogen-containing molecule. Five hydrogen cyanide molecules can link up to form adenine, one of the four chemical bases of DNA.

  1. Modelling the chemical evolution of star forming filaments

    Science.gov (United States)

    Seifried, D.; Walch, S.

    2016-05-01

    We present simulations of star forming filaments incorporating - to our knowledge - the largest chemical network used to date on-the-fly in a 3D-MHD simulation. The network contains 37 chemical species and about 300 selected reaction rates. For this we use the newly developed package KROME (Grassi et al. [4]). Our results demonstrate the feasibility of using such a complex chemical network in 3D-MHD simulations on modern supercomputers. We perform simulations with different strengths of the interstellar radiation field and the cosmic ray ionisation rate and find chemical and physical results in accordance with observations and other recent numerical work.

  2. Modelling the chemical evolution of star forming filaments

    CERN Document Server

    Seifried, D

    2015-01-01

    We present simulations of star forming filaments incorporating - to our knowledge - the largest chemical network used to date on-the-fly in a 3D-MHD simulation. The network contains 37 chemical species and about 300 selected reaction rates. For this we use the newly developed package KROME (Grassi et al. 2014). Our results demonstrate the feasibility of using such a complex chemical network in 3D-MHD simulations on modern supercomputers. We perform simulations with different strengths of the interstellar radiation field and the cosmic ray ionisation rate and find chemical and physical results in accordance with observations and other recent numerical work.

  3. Chemical abundances of blue straggler stars in Galactic Globular Clusters

    CERN Document Server

    Lovisi, L

    2014-01-01

    By using the high resolution spectrograph FLAMES@VLT we performed the first systematic campaign devoted to measure chemical abundances of blue straggler stars (BSSs). These stars, whose existence is not predicted by the canonical stellar evolutionary theory, are likely the product of the interactions between stars in the dense environment of Globular Clusters. Two main scenarios for BSS formation (mass transfer in binary systems and stellar collisions) have been proposed and hydrodynamical simulations predict different chemical patterns in the two cases, in particular C and O depletion for mass transfer BSSs. In this contribution, the main results for BSS samples in 6 Globular Clusters and their interpretation in terms of BSS formation processes are discussed. For the first time, evidence of radiative levitation in the shallow envelopes of BSSs hotter than $\\sim$8000 K has been found. C and O depletion for some BSSs has been detected in 47 Tucanae, M30 and $\\omega$ Centauri thus suggesting a mass transfer ori...

  4. The chemical composition of carbon stars: The R-type stars

    OpenAIRE

    Zamora, Olga; Abia, Carlos; PLEZ, Bertrand; Dominguez, Inmaculada; Cristallo, Sergio

    2009-01-01

    The aim of this work is to shed some light on the problem of the formation of carbon stars of R-type from a detailed study of their chemical composition. We use high-resolution and high signal-to-noise optical spectra of 23 R-type stars selected from the Hipparcos catalogue. The chemical analysis is made using spectral synthesis in LTE and state-of-the-art carbon-rich spherical model atmospheres. We derive their CNO content (including the carbon isotopic ratio), average metallicity, lithium, ...

  5. Chemical Abundances of the Secondary Star in the Black Hole X-Ray Binary V404 Cygni

    CERN Document Server

    Hernández, Jonay I González; Rebolo, Rafael; Israelian, Garik; Filippenko, Alexei V; Chornock, Ryan

    2011-01-01

    We present a chemical abundance analysis of the secondary star in the black hole binary V404 Cygni, using Keck I/HIRES spectra. We adopt a $\\chi^2$-minimization procedure to derive the stellar parameters, taking into account any possible veiling from the accretion disk. With these parameters we determine the atmospheric abundances of O, Na, Mg, Al, Si, Ca, Ti, Fe, and Ni. The abundances of Al, Si, and Ti appear to be slightly enhanced when comparing with average values in thin-disk solar-type stars. The O abundance, derived from optical lines, is particularly enhanced in the atmosphere of the secondary star in V404 Cygni. This, together with the peculiar velocity of this system as compared with the Galactic velocity dispersion of thin-disk stars, suggests that the black hole formed in a supernova or hypernova explosion. We explore different supernova/hypernova models having various geometries to study possible contamination of nucleosynthetic products in the chemical abundance pattern of the secondary star. W...

  6. A VLT/FLAMES study of the peculiar intermediate-age Large Magellanic Cloud star cluster NGC 1846 - I. Kinematics

    CERN Document Server

    Mackey, A D; Ferguson, A M N; Yong, D

    2012-01-01

    In this paper we present high resolution VLT/FLAMES observations of red giant stars in the massive intermediate-age Large Magellanic Cloud star cluster NGC 1846, which, on the basis of its extended main-sequence turn-off (EMSTO), possesses an internal age spread of ~300 Myr. We describe in detail our target selection and data reduction procedures, and construct a sample of 21 stars possessing radial velocities indicating their membership of NGC 1846 at high confidence. We consider high-resolution spectra of the planetary nebula Mo-17, and conclude that this object is also a member of the cluster. Our measured radial velocities allow us to conduct a detailed investigation of the internal kinematics of NGC 1846, the first time this has been done for an EMSTO system. The key result of this work is that the cluster exhibits a significant degree of systemic rotation, of a magnitude comparable to the mean velocity dispersion. Using an extensive suite of Monte Carlo models we demonstrate that, despite our relatively...

  7. The effect of rotation on the abundances of the chemical elements of the A-type stars in the Praesepe cluster

    CERN Document Server

    Fossati, L; Landstreet, J; Wade, G; Kochukhov, O; Monier, R; Weiss, W; Gebran, M

    2008-01-01

    We study how chemical abundances of late B-, A- and early F-type stars evolve with time, and we search for correlations between the abundance of chemical elements and other stellar parameters, such as effective temperature and Vsini. We have observed a large number of B-, A- and F-type stars belonging to open clusters of different ages. In this paper we concentrate on the Praesepe cluster (log t = 8.85), for which we have obtained high resolution, high signal-to-noise ratio spectra of sixteen normal A- and F-type stars and one Am star, using the SOPHIE spectrograph of the Observatoire de Haute-Provence. For all the observed stars, we have derived fundamental parameters and chemical abundances. In addition, we discuss another eight Am stars belonging to the same cluster, for which the abundance analysis had been presented in a previous paper. We find a strong correlation between peculiarity of Am stars and Vsini. The abundance of the elements underabundant in Am stars increases with Vsini, while it decreases f...

  8. Stars at the Tip of Peculiar Elephant Trunk-Like Clouds in IC 1848E: A Possible Third Mechanism of Triggered Star Formation

    CERN Document Server

    Chauhan, Neelam; Pandey, Anil K; Samal, Manash R; Bhatt, Bhuwan C

    2011-01-01

    The HII region IC 1848 harbors a lot of intricate elephant trunk-like structures that look morphologically different from usual bright-rimmed clouds (BRCs). Of particular interest is a concentration of thin and long elephant trunk-like structures in the southeastern part of IC 1848E. Some of them have an apparently associated star (or two stars) at their very tip. We conducted $VI_{c}$ photometry of several of these stars. Their positions on the $V/(V-I_{c})$ color-magnitude diagram as well as the physical parameters obtained by SED fittings indicate that they are low-mass pre-main-sequence stars having ages of mostly one Myr or less. This strongly suggests that they formed from elongated, elephant trunk-like clouds. We presume that such elephant trunk-like structures are genetically different from BRCs, on the basis of the differences in morphology, size distributions, and the ages of the associated young stars. We suspect that those clouds have been caused by hydrodynamical instability of the ionization/sho...

  9. Stokes IQUV magnetic Doppler imaging of Ap stars - III. Next generation chemical abundance mapping of α2 CVn

    Science.gov (United States)

    Silvester, J.; Kochukhov, O.; Wade, G. A.

    2014-10-01

    In a previous paper, we presented an updated magnetic field map for the chemically peculiar star α2 CVn using ESPaDOnS and Narval time-resolved high-resolution Stokes IQUV spectra. In this paper, we focus on mapping various chemical element distributions on the surface of α2 CVn. With the new magnetic field map and new chemical abundance distributions, we can investigate the interplay between the chemical abundance structures and the magnetic field topology on the surface of α2 CVn. Previous attempts at chemical abundance mapping of α2 CVn relied on lower resolution data. With our high-resolution (R = 65 000) data set, we present nine chemical abundance maps for the elements O, Si, Cl, Ti, Cr, Fe, Pr, Nd and Eu. We also derive an updated magnetic field map from Fe and Cr lines in Stokes IQUV and O and Cl in Stokes IV. These new maps are inferred from line profiles in Stokes IV using the magnetic Doppler imaging code INVERS10. We examine these new chemical maps and investigate correlations with the magnetic topology of α2 CVn. We show that chemical abundance distributions vary between elements, with two distinct groups of elements; one accumulates close to the negative part of the radial field, whilst the other group shows higher abundances located where the radial magnetic field is of the order of 2 kG regardless of the polarity of the radial field component. We compare our results with previous works which have mapped chemical abundance structures of Ap stars. With the exception of Cr and Fe, we find no clear trend between what we reconstruct and other mapping results. We also find a lack of agreement with theoretical predictions. This suggests that there is a gap in our theoretical understanding of the formation of horizontal chemical abundance structures and the connection to the magnetic field in Ap stars.

  10. Diffusion and Settling in Ap/Bp Stars

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, S

    2003-04-09

    Ap/Bp stars are magnetic chemically peculiar early A and late B type stars of the main sequence. They exhibit peculiar surface abundance anomalies that are thought to be the result of gravitational settling and radiative levitation. The physics of diffusion in these stars are reviewed briefly and some model predictions are discussed. While models reproduce some observations reasonably well, more work is needed before the behavior of diffusing elements in a complex magnetic field is fully understood.

  11. Diffusion and Settling in Ap/Bp Stars

    CERN Document Server

    Turcotte, S

    2003-01-01

    Ap/Bp stars are magnetic chemically peculiar early A and late B type stars of the main sequence. They exhibit peculiar surface abundance anomalies that are thought to be the result of gravitational settling and radiative levitation. The physics of diffusion in these stars are reviewed briefly and some model predictions are discussed. While models reproduce some observations reasonably well, more work is needed before the behavior of diffusing elements in a complex magnetic field is fully understood.

  12. The chemical compositions of RR Lyrae type c variable stars

    Energy Technology Data Exchange (ETDEWEB)

    Govea, Jose; Gomez, Thomas; Sneden, Christopher [Department of Astronomy and McDonald Observatory, The University of Texas, Austin, TX 78712 (United States); Preston, George W., E-mail: jgovea@utexas.edu, E-mail: chris@verdi.as.utexas.edu, E-mail: iii@ociw.edu [The Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States)

    2014-02-20

    We present a detailed chemical abundance study of eight RR Lyrae variable stars of subclass c (RRc). The target RRc stars chosen for study exhibit 'Blazhko-effect' period and amplitude modulations to their pulsational cycles. Data for this study were gathered with the echelle spectrograph of the 100 inch du Pont telescope at Las Campanas Observatory. Spectra were obtained throughout each star's pulsation cycle. Atmospheric parameters—effective temperature, surface gravity, microturbulent velocity, and metallicity—were derived at multiple phase points. We found metallicities and element abundance ratios to be constant within observational uncertainties over the pulsational cycles of all stars. Moreover, the α-element and Fe-group abundance ratios with respect to iron are consistent with other horizontal-branch members (RRab, blue and red non-variables). Finally, we have used the [Fe/H] values of these eight RRc stars to anchor the metallicity estimates of a large-sample RRc snapshot spectroscopic study being conducted with the same telescope and instrument combination employed here.

  13. Metal transport and chemical heterogeneity in early star forming systems

    Science.gov (United States)

    Ritter, Jeremy S.; Sluder, Alan; Safranek-Shrader, Chalence; Milosavljević, Miloš; Bromm, Volker

    2015-08-01

    To constrain the properties of the first stars with the chemical abundance patterns observed in metal-poor stars, one must identify any non-trivial effects that the hydrodynamics of metal dispersal can imprint on the abundances. We use realistic cosmological hydrodynamic simulations to quantify the distribution of metals resulting from one Population III supernova and from a small number of such supernovae exploding in close succession. Overall, supernova ejecta are highly inhomogeneously dispersed throughout the simulations. When the supernova bubbles collapse, quasi-virialized metal-enriched clouds, fed by fallback from the bubbles and by streaming of metal-free gas from the cosmic web, grow in the centres of the dark matter haloes. Partial turbulent homogenization on scales resolved in the simulation is observed only in the densest clouds where the vortical time-scales are short enough to ensure true homogenization on subgrid scales. However, the abundances in the clouds differ from the gross yields of the supernovae. Continuing the simulations until the cloud have gone into gravitational collapse, we predict that the abundances in second-generation stars will be deficient in the innermost mass shells of the supernova (if only one has exploded) or in the ejecta of the latest supernovae (when multiple have exploded). This indicates that hydrodynamics gives rise to biases complicating the identification of nucleosynthetic sources in the chemical abundance spaces of the surviving stars.

  14. Chemical yields from low- and intermediate-mass stars

    CERN Document Server

    Marigo, P

    1999-01-01

    We present new sets of chemical yields from low- and intermediate-mass stars with 0.8 Msun <= M <= Mup ~ 5 Msun, and three choices of the metallicity, Z=0.02, Z=0.008, and Z=0.004 (Marigo 2000, in preparation). These are then compared with the yields calculated by other authors on the basis of different model prescriptions, and basic observational constraints which should be reproduced.

  15. The Extreme Chemical Environments Associated with Dying Stars

    Science.gov (United States)

    Ziurys, Lucy

    Mass loss from dying stars is the main avenue by which material enters the interstellar medium, and eventually forms solar systems and planets. When stars consume all the hydrogen burning in their core, they start to burn helium, first in their centers, and then in a surrounding shell. During these phases, the so-called ``giant branches,'' large instabilities are created, and stars begin to shed their outer atmospheres, producing so-called circumstellar envelopes. Molecules form readily in these envelopes, in part by LTE chemistry at the base of the stellar photosphere, and also by radical reactions in the outer regions. Eventually most stars shed almost all their mass, creating ``planetary nebulae,'' which consist of a hot, ultraviolet-emitting white dwarf surrounded by the remnant stellar material. The environs in such nebulae are not conducive to chemical synthesis; yet molecular gas exits. The ejecta from these nebulae then flows into the interstellar medium, becoming the starting material for diffuse clouds, which subsequently collapse into dense clouds and then stars. This molecular ``life cycle'' is repeated many times in the course of the evolution of our Galaxy. We have been investigating the interstellar molecular life cycle, in particular the chemical environments of circumstellar shells and planetary nebulae, through both observational and laboratory studies. Using the facilities of the Arizona Radio Observatory (ARO), we have conducted broad-band spectral-line surveys to characterize the contrasting chemical and physical properties of carbon (IRC +10216) vs. oxygen-rich envelopes (VY CMa and NML Cyg). The carbon-rich types are clearly more complex in terms of numbers of chemical compounds, but the O-rich variety appear to have more energetic, shocked material. We have also been conducting surveys of polyatomic molecules towards planetary nebulae. Species such as HCN, HCO+, HNC, CCH, and H2CO appear to be common constituents of these objects, and their

  16. New chemical profiles for the asteroseismology of ZZ Ceti stars

    CERN Document Server

    Althaus, L G; Bischoff-Kim, A; Romero, A D; Renedo, I; García-Berro, E; Bertolami, M M Miller

    2010-01-01

    We compute new chemical profiles for the core and envelope of white dwarfs appropriate for pulsational studies of ZZ Ceti stars. These profiles are extracted from the complete evolution of progenitor stars, evolved through the main sequence and the thermally-pulsing asymptotic giant branch (AGB) stages, and from time-dependent element diffusion during white dwarf evolution. We discuss the importance of the initial-final mass relationship for the white dwarf carbon-oxygen composition. In particular, we find that the central oxygen abundance may be underestimated by about 15% if the white dwarf mass is assumed to be the hydrogen-free core mass before the first thermal pulse. We also discuss the importance for the chemical profiles expected in the outermost layers of ZZ Ceti stars of the computation of the thermally-pulsing AGB phase and of the phase in which element diffusion is relevant. We find a strong dependence of the outer layer chemical stratification on the stellar mass. In particular, in the less massi...

  17. The chemical composition of Galactic ring nebulae around massive stars

    Science.gov (United States)

    Esteban, C.; Mesa-Delgado, A.; Morisset, C.; García-Rojas, J.

    2016-08-01

    We present deep spectra of ring nebulae associated with Wolf-Rayet (WR) and O-type stars: NGC 6888, G2.4+1.4, RCW 58, S 308, NGC 7635 and RCW 52. The data have been taken with the 10m Gran Telescopio Canarias and the 6.5m Clay Telescope. We extract spectra of several apertures in some of the objects. We derive C2+ and O2+ abundances from faint recombination lines in NGC 6888 and NGC 7635, permitting to derive their C/H and C/O ratios and estimate the abundance discrepancy factor (ADF) of O2+. The ADFs are larger than the typical ones of normal H II regions but similar to those found in the ionized gas of star-forming dwarf galaxies. We find that chemical abundances are rather homogeneous in the nebulae where we have spectra of several apertures: NGC 6888, NGC 7635 and G2.4+1.4. We obtain very high values of electron temperature in a peripheral zone of NGC 6888, finding that shock excitation can reproduce its spectral properties. We find that all the objects associated with WR stars show N enrichment. Some of them also show He enrichment and O deficiency as well as a lower Ne/O than expected, this may indicate the strong action of the ON and NeNa cycles. We have compared the chemical composition of NGC 6888, G2.4+1.4, RCW 58 and S 308 with the nucleosynthesis predicted by stellar evolution models of massive stars. We find that non-rotational models of stars of initial masses between 25 and 40 M⊙ seem to reproduce the observed abundance ratios of most of the nebulae.

  18. Multiplicity of A-type and related stars

    CERN Document Server

    North, Pierre L

    2013-01-01

    The origin of chemically peculiar stars remains enigmatic, especially regarding their frequency among their "normal" peers. In addition to magnetic fields and rotation, multiplicity may shed light on the question. We mention the main surveys of the three kinds performed so far of intermediate mass stars, either normal or chemically peculiar, magnetic or not: imaging, spectroscopic, and photometric. We also consider the mulitiplicity of red giant stars, since many of them are descendants of A-type stars, through Mermilliod's radial velocity monitoring of open cluster members. We briefly review the orbital properties of binary systems hosting chemically peculiar stars. Some specific objects of special interest are mentioned as deserving further study. Finally, we recall that some binary systems composed of A-type stars are progenitors of Type Ia supernovae, and evoke the potentialities of future surveys like Gaia.

  19. Metal Transport and Chemical Heterogeneity in Early Star Forming Systems

    CERN Document Server

    Ritter, Jeremy S; Safranek-Shrader, Chalence; Milosavljevic, Milos; Bromm, Volker

    2014-01-01

    To constrain the properties of the first stars with the chemical abundance patterns observed in metal-poor stars, one must identify any non-trivial effects that the hydrodynamics of metal dispersal can imprint on the abundances. We use realistic cosmological hydrodynamic simulations to quantify the distribution of metals resulting from one Population III supernova and from a small number of such supernovae. Overall, supernova ejecta remain highly inhomogeneous throughout the simulations. When the supernova bubbles collapse, quasi-virialized metal-enriched clouds, fed by fallback from the bubbles and by streaming of metal-free gas from the cosmic web, grow in the centers of the dark matter halos. Partial turbulent homogenization on scales resolved in the simulation is observed in the clouds, and the vortical time scales are short enough to ensure true homogenization on subgrid scales. However, the abundances in the clouds differ from the gross yields of the supernovae. Continuing the simulations until the clou...

  20. Evidence for a chemical enrichment coupling of globular clusters and field stars in the Fornax dSph

    Science.gov (United States)

    Hendricks, Benjamin; Boeche, Corrado; Johnson, Christian I.; Frank, Matthias J.; Koch, Andreas; Mateo, Mario; Bailey, John I.

    2016-01-01

    The globular cluster H4, located in the center of the Fornax dwarf spheroidal galaxy, is crucial for understanding the formation and chemical evolution of star clusters in low-mass galactic environments. H4 is peculiar because the cluster is significantly more metal-rich than the galaxy's other clusters, is located near the galaxy center, and may also be the youngest cluster in the galaxy. In this study, we present detailed chemical abundances derived from high-resolution (R ~ 28 000) spectroscopy of an isolated H4 member star for comparison with a sample of 22 nearby Fornax field stars. We find the H4 member to be depleted in the alpha-elements Si, Ca, and Ti with [Si/Fe] = -0.35 ± 0.34, [Ca/Fe] = + 0.05 ± 0.08, and [Ti/Fe] = -0.27 ± 0.23, resulting in an average [α/Fe] = -0.19 ± 0.14. If this result is representative of the average cluster properties, H4 is the only known system with a low [α/Fe] ratio and a moderately low metallicity embedded in an intact birth environment. For the field stars we find a clear sequence, seen as an early depletion in [α/Fe] at low metallicities, in good agreement with previous measurements. H4 falls on top of the observed field star [α/Fe] sequence and clearly disagrees with the properties of Milky Way halo stars. We therefore conclude that within a galaxy, the chemical enrichment of globular clusters may be closely linked to the enrichment pattern of the field star population. The low [α/Fe] ratios of H4 and similar metallicity field stars in Fornax give evidence that slow chemical enrichment environments, such as dwarf galaxies, may be the original hosts of alpha-depleted clusters in the halos of the Milky Way and M31. This article includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  1. Peculiar Euphrosyne

    Energy Technology Data Exchange (ETDEWEB)

    Carruba, V.; Aljbaae, S. [UNESP, Univ. Estadual Paulista, Grupo de dinâmica Orbital e Planetologia, Guaratinguetá, SP, 12516-410 (Brazil); Souami, D., E-mail: vcarruba@feg.unesp.br [NAXYS, Namur Center for Complex Systems, Department of Mathematics, University of Namur, B-5000 Namur (Belgium)

    2014-09-01

    The asteroid (31) Euphrosyne is the largest body of its namesake family, and it contains more than 99% of the family mass. Among large asteroid families, the Euphrosyne group is peculiar because of its quite steep size-frequency distribution (SFD), significantly depleted in large- and medium-sized asteroids (8 < D < 12 km). The current steep SFD of the Euphrosyne family has been suggested to be the result of a grazing impact in which only the farthest, smallest members failed to accrete. The Euphrosyne family is, however, also very peculiar because of its dynamics: near its center it is crossed by the ν{sub 6} = g – g {sub 6} linear secular resonance, and it hosts the largest population (140 bodies) of asteroids in ν{sub 6} antialigned librating states (or Tina-like asteroids) in the main belt. In this work we investigated the orbital evolution of newly obtained members of the dynamical family, with an emphasis on its interaction with the ν{sub 6} resonance. Because of its unique resonant configuration, large- and medium-sized asteroids tend to migrate away from the family orbital region faster than small-sized objects, which were ejected farther away from the family center. As a consequence, the SFD of the Euphrosyne family becomes steeper in time with a growing depletion in the number of the largest family members. We estimate that the current SFD could be attained from a typical, initial SFD on timescales of 500 Myr, consistent with estimates of the family age obtained with other independent methods.

  2. A Survey of Chemical Separation in Accreting Neutron Stars

    Science.gov (United States)

    Mckinven, Ryan; Cumming, Andrew; Medin, Zach; Schatz, Hendrik

    2016-06-01

    The heavy element ashes of rp-process hydrogen and helium burning in accreting neutron stars are compressed to high density where they freeze, forming the outer crust of the star. We calculate the chemical separation on freezing for a number of different nuclear mixtures resulting from a range of burning conditions for the rp-process. We confirm the generic result that light nuclei are preferentially retained in the liquid and heavy nuclei in the solid. This is in agreement with the previous study of a 17-component mixture of rp-process ashes by Horowitz et al., but extends that result to a much larger range of compositions. We also find an alternative phase separation regime for the lightest ash mixtures which does not demonstrate this generic behavior. With a few exceptions, we find that chemical separation reduces the expected {Q}{{imp}} in the outer crust compared to the initial rp-process ash, where {Q}{{imp}} measures the mean-square dispersion in atomic number Z of the nuclei in the mixture. We find that the fractional spread of Z plays a role in setting the amount of chemical separation and is strongly correlated to the divergence between the two/three-component approximations and the full component model. The contrast in Y e between the initial rp-process ashes and the equilibrium liquid composition is similar to that assumed in earlier two-component models of compositionally driven convection, except for very light compositions which produce nearly negligible convective driving. We discuss the implications of these results for observations of accreting neutron stars.

  3. Star Formation and Chemical Enrichment for Globular Clusters

    Institute of Scientific and Technical Information of China (English)

    林清; 束成钢; 常瑞香; 赵君亮

    2001-01-01

    A model considering gas outflows due to supernova explosions is developed for the star formation and chemical enrichment for the globular clusters (GCs) in the Milky Way galaxy. Through Monte Carlo simulations, the observed global properties of GCs can be well reproduced, including the metallicity distribution, no-correlation between cluster masses and galactocentric distances, etc. The predicted mass function of the parent clouds for the observed GCs at present day can be well described as a power law with the index of-1.8, which is consistent with the current observations for the molecular clouds.

  4. Stokes $IQUV$ magnetic Doppler imaging of Ap stars - III. Next generation chemical abundance mapping of Alpha 2 CVn

    CERN Document Server

    Silvester, James; Wade, Gregg A

    2014-01-01

    In a previous paper we presented an updated magnetic field map for the chemically peculiar star Alpha 2 CVn using ESPaDOnS and Narval time-resolved high-resolution Stokes $IQUV$ spectra. In this paper we focus on mapping various chemical element distributions on the surface of Alpha 2 CVn. With the new magnetic field map and new chemical abundance distributions we can investigate the interplay between the chemical abundance structures and the magnetic field topology on the surface of Alpha 2 CVn. Previous attempts at chemical abundance mapping of Alpha 2 CVn relied on lower resolution data. With our high resolution (R=65,000) dataset we present nine chemical abundance maps for the elements O, Si, Cl, Ti, Cr, Fe, Pr, Nd and Eu. We also derive an updated magnetic field map from Fe and Cr lines in Stokes $IQUV$ and O and Cl in Stokes $IV$. These new maps are inferred from line profiles in Stokes $IV$ using the magnetic Doppler imaging code Invers10. We examine these new chemical maps and investigate correlations...

  5. The chemical composition of Galactic ring nebulae around massive stars

    CERN Document Server

    Esteban, C; Morisset, C; Garcia-Rojas, J

    2016-01-01

    We present deep spectra of ring nebulae associated with Wolf-Rayet (WR) and O-type stars: NGC 6888, G2.4+1.4, RCW 58, S 308, NGC 7635 and RCW 52. The data have been taken with the 10m Gran Telescopio Canarias and the 6.5m Clay Telescope. We extract spectra of several apertures in some of the objects. We derive C$^{++}$ and O$^{++}$ abundances from faint recombination lines in NGC 6888 and NGC 7635, permitting to derive their C/H and C/O ratios and estimate the abundance discrepancy factor (ADF) of O$^{++}$. The ADFs are larger than the typical ones of normal HII regions but similar to those found in the ionised gas of star-forming dwarf galaxies. We find that chemical abundances are rather homogeneous in the nebulae where we have spectra of several apertures: NGC 6888, NGC 7635 and G2.4+1.4. We obtain very high values of electron temperature in a peripheral zone of NGC 6888, finding that shock excitation can reproduce its spectral properties. We find that all the objects associated with WR stars show N enrich...

  6. A Survey of Chemical Separation in Accreting Neutron Stars

    CERN Document Server

    Mckinven, Ryan; Medin, Zach; Schatz, Hendrik

    2016-01-01

    The heavy element ashes of rp-process hydrogen and helium burning in accreting neutron stars are compressed to high density where they freeze, forming the outer crust of the star. We calculate the chemical separation on freezing for a number of different nuclear mixtures resulting from a range of burning conditions for the rp-process. We confirm the generic result that light nuclei are preferentially retained in the liquid and heavy nuclei in the solid. This is in agreement with the previous study of a 17-component mixture of rp-process ashes by Horowitz et al. (2007), but extends that result to a much larger range of compositions. We also find an alternate phase separation regime for the lightest ash mixtures which does not demonstrate this generic behaviour. With a few exceptions, we find that chemical separation reduces the expected $Q_{\\rm imp}$ in the outer crust compared to the initial rp-process ash, where $Q_{\\rm imp}$ measures the mean-square dispersion in atomic number $Z$ of the nuclei in the mixtu...

  7. The Peculiar Volatile Composition of Comet 8P/Tuttle: A Contact Binary of Chemically Distinct Cometesimals?

    CERN Document Server

    Bonev, B P; Radeva, Y L; DiSanti, M A; Gibb, E L; Villanueva, G L

    2008-01-01

    We report measurements of eight native (i.e., released directly from the comet nucleus) volatiles (H2O, HCN, CH4, C2H2, C2H6, CO, H2CO, and CH3OH) in comet 8P/Tuttle using NIRSPEC at Keck 2. Comet Tuttle reveals a truly unusual composition, distinct from that of any comet observed to date at infrared wavelengths. The prominent enrichment of methanol relative to water contrasts the depletions of other molecules, especially C2H2 and HCN. We suggest that the nucleus of 8P/Tuttle may contain two cometesimals characterized by distinct volatile composition. The relative abundances C2/CN, C2/OH, and CN/OH in 8P/Tuttle (measured at optical/near-UV wavelengths) differ substantially from the mixing ratios of their potential parents (C2H2/HCN, C2H2/H2O, and HCN/H2O) found in this work. Based on this comparison, our results do not support C2H2 and HCN being the principal precursors for respectively C2 and CN in Tuttle. The peculiar native composition observed in 8P/Tuttle (compared to other comets) provides new strong ev...

  8. Chemical spots in the absence of magnetic field in the binary HgMn star 66 Eridani

    CERN Document Server

    Makaganiuk, V; Piskunov, N; Jeffers, S V; Johns-Krull, C M; Keller, C U; Rodenhuis, M; Snik, F; Stempels, H C; Valenti, J A

    2011-01-01

    According to our current understanding, a subclass of the upper main sequence chemically peculiar stars, called mercury-manganese (HgMn), is non-magnetic. Nevertheless, chemical inhomogeneities were recently discovered on their surfaces. At the same time, no global magnetic fields stronger than 1-100 G are detected by modern studies. The goals of our study are to search for magnetic field in the HgMn binary system 66 Eri and to investigate chemical spots on the stellar surfaces of both components. Our analysis is based on high quality spectropolarimetric time-series observations obtained during 10 consecutive nights with the HARPSpol instrument at the ESO 3.6-m telescope. To increase the sensitivity of the magnetic field search we employed a least-squares deconvolution (LSD). We used spectral disentangling to measure radial velocities and study line profile variability. Chemical spot geometry was reconstructed using multi-line Doppler imaging. We report a non-detection of magnetic field in 66 Eri, with error ...

  9. Chemical Herschel Surveys of Star Forming Regions (chess)

    Science.gov (United States)

    Emprechtinger, Martin

    2011-06-01

    CHESS is an unbiased line survey of low-, intermediate-, and high-mass star forming regions at different stages of their evolution. The eight sources in the CHESS program are observed with the HIFI instrument on board of the Herschel Space Telescope, which provides a high spectral resolution (R˜ 10^6) and covers a frequency range from 480 to 1910 GHz. The objective of CHESS is to study the chemical composition and physical conditions in star forming regions and their variation with mass and evolutionary stage. To date about 50% of the program have been completed. One of the eight objects in the CHESS program is the hot core NGC 6334 I. With an envelope mass of 200 M_⊙ and temperatures 100 K, NGC 6334 I is very line rich. In this object emission lines of more than 40 species have been identified, including first detections of H_2Cl^+ (Lis et al. 2010) and H_2O^+ (Ossenkopf et al. 2010). Furthermore, several lines of ortho and para water and ammonia have been detected, allowing to determine the ortho/para ratio of these crucial species. In addition many hydrides (HF, CH) and hydride ions (SH^+, OH^+, CH^+) have been found. In the low mass protostar IRAS 16293-2422, another source of our sample, several deuterated species, including the first detection of ND (Bacmann et al. 2010), were found. The data allowed also the first determination of the ortho/para ratio of D_2H^+ (>2.6) (Vastel et al. 2010). In this talk I will give a summary of the conducted observation and highlight the most important results.

  10. Detection of a weak surface magnetic field on Sirius A: are all tepid stars magnetic ?

    OpenAIRE

    Petit, P.; Lignières, F.; Aurière, M.; Wade, G. A.; Alina, D.; Ballot, J.; Böhm, T.; Jouve, L.; Oza, A.; Paletou, F; Théado, S.

    2011-01-01

    We aim at a highly sensitive search for weak magnetic fields in main sequence stars of intermediate mass, by scanning classes of stars with no previously reported magnetic members. After detecting a weak magnetic field on the normal, rapidly rotating A-type star Vega, we concentrate here on the bright star Sirius A, taken as a prototypical, chemically peculiar, moderately rotating Am star. We employed the NARVAL and ESPaDOnS high-resolution spectropolarimeters to collect 442 circularly polari...

  11. Star Formation History and Chemical Evolution of the Sextans Dwarf Spheroidal Galaxy

    OpenAIRE

    Lee, Myung Gyoon; Yuk, In-Soo; Park, Hong Soo; Harris, Jason; Zaritsky, Dennis

    2009-01-01

    We present the star formation history and chemical evolution of the Sextans dSph dwarf galaxy as a function of galactocentric distance. We derive these from the $VI$ photometry of stars in the $42' \\times 28'$ field using the SMART model developed by Yuk & Lee (2007, ApJ, 668, 876) and adopting a closed-box model for chemical evolution. For the adopted age of Sextans 15 Gyr, we find that $>$84% of the stars formed prior to 11 Gyr ago, significant star formation extends from 15 to 11 Gyr ago (...

  12. Parent Stars of Extrasolar Planets. VIII. Chemical Abundances for 18 Elements in 31 Stars

    OpenAIRE

    Gonzalez, Guillermo; Laws, Chris

    2007-01-01

    We present the results of detailed spectroscopic abundance analyses for 18 elements in 31 nearby stars with planets. The resulting abundances are combined with other similar studies of nearby stars with planets and compared to a sample of nearby stars without detected planets. We find some evidence for abundance differences between these two samples for Al, Si and Ti. Some of our results are in conflict with a recent study of stars with planets in the SPOCS database. We encourage continued st...

  13. Influence of Population III stars on cosmic chemical evolution

    OpenAIRE

    Rollinde, E.; Vangioni, E.; Maurin, D.; Olive, K. A.; Daigne, F.; Silk, J.; Vincent, F.

    2008-01-01

    New observations from the Hubble ultra deep field suggest that the star formation rate at z>7 drops off faster than previously thought. Using a newly determined star formation rate for the normal mode of Population II/I stars (PopII/I), including this new constraint, we compute the Thomson scattering optical depth and find a result that is marginally consistent with WMAP5 results. We also reconsider the role of Population III stars (PopIII) in light of cosmological and stellar evolution const...

  14. Chemical Evolution in High-Mass Star-Forming Regions: Results from the MALT90 Survey

    OpenAIRE

    Hoq, Sadia; Jackson, James M.; Foster, Jonathan B.; Sanhueza, Patricio; Guzman, Andres; Whitaker, J. Scott; Claysmith, Christopher; Rathborne, Jill M.; Vasyunina, Tatiana; Vasyunin, Anton

    2013-01-01

    The chemical changes of high-mass star-forming regions provide a potential method for classifying their evolutionary stages and, ultimately, ages. In this study, we search for correlations between molecular abundances and the evolutionary stages of dense molecular clumps associated with high-mass star formation. We use the molecular line maps from Year 1 of the Millimetre Astronomy Legacy Team 90 GHz (MALT90) Survey. The survey mapped several hundred individual star-forming clumps chosen from...

  15. [Chemical composition and microstructural peculiarities of overground and underground vegetative organs of field restharrow (Ononis arvensis L.)].

    Science.gov (United States)

    Sichinava, M B; Mchelidze, K Z; Churadze, M V; Alaniia, M D; Aneli, Dzh N

    2014-06-01

    The paper presents the results of the study of anatomy and chemical composition of Field Restharrow (Ononis arvensis L.). The existence of triterpene alcohol α-onocerin and isoflavons in the overground organs of the plant is established by chemical analysis. Oxycumarines - scopoletin and scopolin are isolated and identified. Morphological characterization of the whole plant is given. Anatomy of the vegetative organs of the species is examined. Among the main microstructural characteristics multilayer integumentary tissues, active periderm and sclerenchyma cells were specified in roots; and complex radial rays and structural units of wood, located radially, were observed in the central cylinder. Shoots are characterized with intensive pubescence. Mechanical tissues of different structures exist in the parenchime of crust and central cylinder of shoots. Vessels with spiral and spiro-annular thickened walls are located in the libriforms of wood. Leaves of Ononis arvensis are bifacial, mesophile is of dorsiventral structure; central conductive bunch is complex-collateral. Basal cells of upper and lower epidermis belong to of bent-walled type, where paracytal and anisocytal cells of stomatal apparatus are scattered chaotically. PMID:25020180

  16. Discovery of secular variations in the atmospheric abundances of magnetic Ap stars

    CERN Document Server

    Bailey, J D; Bagnulo, S

    2013-01-01

    The stars of the middle main sequence have relatively quiescent outer layers, and unusual chemical abundance patterns may develop in their atmospheres. The presence of chemical peculiarities reveal the action of such subsurface phenomena as gravitational settling and radiatively driven levitation of trace elements, and their competition with mixing processes such as turbulent diffusion. We want to establish whether abundance peculiarities change as stars evolve on the main sequence, and provide observational constraints to diffusion theory. We have performed spectral analysis of 15 magnetic Bp stars that are members of open clusters (and thus have well-known ages), with masses between about 3 and 4 M_sun. For each star, we measured the abundances of He, O, Mg, Si, Ti, Cr, Fe, Pr and Nd. We have discovered the systematic time evolution of trace elements through the main-sequence lifetime of magnetic chemically peculiar stars as their atmospheres cool and evolve toward lower gravity. During the main sequence li...

  17. Chemical Evolution in Omega Centauri

    OpenAIRE

    Smith, Verne V.

    2003-01-01

    The globular cluster Omega Centauri displays evidence of a complex star formation history and peculiar internal chemical evolution, setting it apart from essentially all other globular clusters of the Milky Way. In this review we discuss the nature of the chemical evolution that has occurred within Omega Cen and attempt to construct a simple scenario to explain its chemistry.

  18. Peculiarities of cognitive functions in urban children with mental retardation in relation to the chemical elements content in a hair

    Directory of Open Access Journals (Sweden)

    Yevstafyeva E.V.

    2012-06-01

    Full Text Available

    In 30 children in the age of 12,8±0,3 with mental retardation and 30 healthy children of the same age an element balance of organism and state of cognitive functions were related. The content of elements (Ca, Fe, Mn, Mo, Ni, Sr, Pb in the hair was determined by a method of X-ray fuorescent spectroscopy. The content of Ca, Ni and Mn in 55 % of children and the defciency of Fe in 21 % of children with mental retardation were established. The defciency of Ca, Fe and Mn of healthy children was displayed. The value of Sr and Pb in organism in children of booth group was normal. The content of Mo in hair in 40 % of children with mental retardation and in 30 % of children of a check-group were established. The relationship between the content of chemical elements in organisms and state of cognitive functions was analyzed by non-parametric analysis by Spearmen. The excess of Ni in organism of children with mental retardation and defciency of Fe in organism of children in booth groups negatively infuenced the characteristics of cognitive functions (0,34

  19. The Nainital–Cape Survey: A Search for Variability in Ap and Am Stars

    Indian Academy of Sciences (India)

    Santosh Joshi

    2005-06-01

    The ``Nainital–Cape Survey” program for searching photometric variability in chemically peculiar (CP) stars was initiated in 1997 at ARIES, Nainital. We present here the results obtained to date. The Am stars HD 98851, HD 102480, HD 13079 and HD 113878 were discovered to exhibit Scuti type variability. Photometric variability was also discovered in HD 13038, for which the type of peculiarity and variability is not fully explained. The null results of this survey are also presented and discussed.

  20. Chemical abundances of the high-latitude Herbig Ae Star PDS2

    CERN Document Server

    Cowley, C R; Przybilla, N

    2014-01-01

    The Herbig Ae star PDS2 (CD -53 251) is unusual in several ways. It has a high Galactic latitude, unrelated to any known star-forming region. It is at the cool end of the Herbig Ae sequence, where favorable circumstances facilitate the determination of stellar parameters and chemical abundances. We find $T_{\\rm eff} = 6500$ K, and $\\log(g) = 3.5$. The relatively low $v\\cdot\\sin(i) = 12\\pm2$ \\kms made it possible to use mostly weak lines for the abundances. PDS2 appears to belong to the class of Herbig Ae stars with normal volatile and depleted involatile elements. This pattern is seen not only in $\\lambda$ Boo stars, but in some post AGB and RV Tauri stars. The appearance of the same abundance pattern in young stars and highly evolved giants strengthens the hypothesis of gas-grain separation for its origin. The intermediate volatile zinc can violate the pattern of depleted volatiles.

  1. Effect of magnetic field decay on the chemical heating of cooling neutron stars

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xia; KANG Miao; WANG Na

    2013-01-01

    The effect of magnetic field decay on the chemical heating and thermal evolution of neutron stars is discussed in this paper.Our main goal is to study how the chemical heating mechanism and thermal evolution are changed by the field decay and how the magnetic field decay is modified by the thermal evolution.We compare stars cooling with chemical heating with one without chemical heating and find that the decay of the magnetic field is delayed significantly by the chemical heating.We find that the effect of chemical heating has been suppressed through the decaying magnetic field by the spin-down of the stars at a later stage.Compared with typical chemical heating,we find the decay of the magnetic field can even cause the surface temperature to turn down at an older age.When we discuss the cooling of neutron stars,we should consider the coupling effect of the magnetic field and the rotational evolution of neutron stars on the heating mechanisms.

  2. Chemical inhomogeneities and pulsation

    OpenAIRE

    Turcotte, S.

    2001-01-01

    Major improvements in models of chemically peculiar stars have been achieved in the past few years. With these new models it has been possible to test quantitatively some of the processes involved in the formation of abundance anomalies and their effect on stellar structure. The models of metallic A (Am) stars have shown that a much deeper mixing has to be present to account for observed abundance anomalies. This has implications on their variability, which these models also reproduce qualita...

  3. CHEMICAL ABUNDANCES OF THE MAGNETIC CP STAR HD 168733

    Directory of Open Access Journals (Sweden)

    Ana Collado

    2009-01-01

    Full Text Available Se ha llevado a cabo un an lisis detallado de las abundancias en la estrella CP magn tica HD 168733 utilizando espectros de alta resoluci n obtenidos con el espectr grafo echelle EBASIM del telescopio de 2.1 m de CASLEO en Argentina. Los espectros cubren la regi n 382{700 nm. La estrella no puede ser clasi cada ni como una peculiar de HgMn ni como perteneciente al grupo CP2 de silicio. Comparada con el Sol, C, N son levementes sobreabundantes mientras que el Mg y S son de cientes, Si es normal y P y Cl son sobreabundantes. Los elementos del pico de hierro: Sc, Ti, Cr y Fe son sobreabundantes. Se han identi cado tambi n l neas de Ti III y Fe III. HD 168733 muestra una gran sobreabundancia de Ga, Sr, Y, Zr, Xe, Pt, Hg y algunas tierras raras.

  4. Statistical analysis from recent abundance determinations in HgMn stars

    Science.gov (United States)

    Ghazaryan, S.; Alecian, G.

    2016-08-01

    To better understand the hot chemically peculiar group of HgMn stars, we have considered a compilation of a large number of recently published data obtained for these stars from spectroscopy. We compare these data to the previous compilation by Smith. We confirm the main trends of the abundance peculiarities, namely the increasing overabundances with increasing atomic number of heavy elements, and their large spread from star to star. For all the measured elements, we have looked for correlations between abundances and effective temperature (Teff). In addition to the known correlation for Mn, some other elements are found to show some connection between their abundances and Teff. We have also checked if multiplicity is a determinant parameter for abundance peculiarities determined for these stars. A statistical analysis using a Kolmogorov-Smirnov test shows that the abundances anomalies in the atmosphere of HgMn stars do not present significant dependence on the multiplicity.

  5. Chemical analysis of Asymptotic Giant Branch stars in M62

    CERN Document Server

    Lapenna, E; Ferraro, F R; Origlia, L; Lanzoni, B; Massari, D; Dalessandro, E

    2015-01-01

    We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster M62 (NGC6266). Here we present the detailed abundance analysis of iron, titanium, and light-elements (O, Na, Al and Mg). For the majority (5 out 6) of the AGB targets we find that the abundances, of both iron and titanium, determined from neutral lines are significantly underestimated with respect to those obtained from ionized features, the latter being, instead, in agreement with those measured for the RGB targets. This is similar to recent findings in other clusters and may suggest the presence of Non-Local Thermodynamical Equilibrium (NLTE) effects. In the O-Na, Al-Mg and Na-Al planes, the RGB stars show the typical correlations observed for globular cluster stars. Instead, all the AGB targets are clumped in the regions where first generation stars are expected to lie, similarly to what recently found for the AGB population of NGC6752. W...

  6. CHEMICAL ABUNDANCES OF METAL-POOR RR LYRAE STARS IN THE MAGELLANIC CLOUDS

    International Nuclear Information System (INIS)

    We present for the first time a detailed spectroscopic study of chemical element abundances of metal-poor RR Lyrae stars in the Large and Small Magellanic Cloud (LMC and SMC). Using the MagE echelle spectrograph at the 6.5 m Magellan telescopes, we obtain medium resolution (R ∼ 2000-6000) spectra of six RR Lyrae stars in the LMC and three RR Lyrae stars in the SMC. These stars were chosen because their previously determined photometric metallicities were among the lowest metallicities found for stars belonging to the old populations in the Magellanic Clouds. We find the spectroscopic metallicities of these stars to be as low as [Fe/H]spec = –2.7 dex, the lowest metallicity yet measured for any star in the Magellanic Clouds. We confirm that for metal-poor stars, the photometric metallicities from the Fourier decomposition of the light curves are systematically too high compared to their spectroscopic counterparts. However, for even more metal-poor stars below [Fe/H]phot < –2.8 dex this trend is reversed and the spectroscopic metallicities are systematically higher than the photometric estimates. We are able to determine abundance ratios for 10 chemical elements (Fe, Na, Mg, Al, Ca, Sc, Ti, Cr, Sr, and Ba), which extend the abundance measurements of chemical elements for RR Lyrae stars in the Clouds beyond [Fe/H] for the first time. For the overall [α/Fe] ratio, we obtain an overabundance of 0.36 dex, which is in very good agreement with results from metal-poor stars in the Milky Way halo as well as from the metal-poor tail in dwarf spheroidal galaxies. Comparing the abundances with those of the stars in the Milky Way halo we find that the abundance ratios of stars of both populations are consistent with another. Therefore, we conclude that from a chemical point of view early contributions from Magellanic-type galaxies to the formation of the Galactic halo as claimed in cosmological models are plausible.

  7. Searching for chemical relics of first stars with LAMOST and Subaru

    Science.gov (United States)

    Li, Haining; Aoki, Wako; Zhao, Gang; Honda, Satoshi; Christlieb, Norbert; Takuma, Suda

    2015-08-01

    Extremely Metal-Poor (EMP) stars ([Fe/H] EMP stars are rare, but provide basic information of first stars and supernova, as well as on the nucleosynthesis and chemical enrichment of the very beginning of the Universe. LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope) plans to observe 6 million Galactic stars through a 5-year spectroscopic survey, and has already obtained more than 3 million stellar spectra during the first two years. Such huge database will provide an unprecedented chance to enlarge the EMP star sample. Since 2014, a joint project on searching for EMP stars has been initiated based on the LAMOST survey and Subaru follow-up observation. The first run with Subaru for 54 objects found by the LAMOST survey resulted in 40 EMP stars, indicating that the efficiency of the searches for EMP stars from LAMOST is as high as 80%. We already identified chemically interesting objects in our EMP sample: (1) Two UMP (ultra metal-poor) stars with [Fe/H] ~ -4.0 have been found, of which only a dozen have been discovered in the past 30 years. One of them is the second UMP turnoff star with Li detection. Both objects are carbon-enhanced stars with no excess of neutron-capture elements (i.e. CEMP-no stars). (2) A super Li-rich (A(Li)=+3) giant with extremely low metallicity has been discovered. This is the most metal-poor and most extreme example of Li enhancement in red giants known to date, and will shed light on production of Li during the evolution on the red giant branch. (3) A few EMP stars showing extreme enhancements in neutron-capture elements showing r-process or s-process abundance patterns have also been identified. Detailed chemical abundances of these extreme objects, as well as statistics obtained by the large sample of EMP stars, provides with important constraints on formation processes of the Milky Way halo.

  8. Chemical Abundances in the Secondary Star of the Neutron Star Binary Centaurus X-4

    CERN Document Server

    Hern'andez, J I G; Israelian, G; Casares, J; Maeda, K; Bonifacio, P; Molaro, P; Hern\\'andez, Jonay I. Gonz\\'alez; Rebolo, Rafael; Israelian, Garik; Casares, Jorge; Maeda, Keiichi; Bonifacio, Piercarlo; Molaro, Paolo

    2005-01-01

    Using a high resolution spectrum of the secondary star in the neutron star binary {Cen X-4}, we have derived the stellar parameters and veiling caused by the accretion disk in a consistent way. We have used a $\\chi^{2}$ minimization procedure to explore a grid of 1 500 000 LTE synthetic spectra computed for a plausible range of both stellar and veiling parameters. Adopting the best model parameters found, we have determined atmospheric abundances of Fe, Ca, Ti, Ni and Al. These element abundances are super solar ($\\mathrm{[Fe/H]}=0.23 \\pm 0.10$), but only the abundance of Ti and Ni appear to be moderately enhanced ($\\ge1\\sigma$) as compared with the average values of stars of similar iron content. These element abundances can be explained if the secondary star captured a significant amount of matter ejected from a spherically symmetric supernova explosion of a 4 {$M_\\odot$} He core progenitor and assuming solar abundances as primordial abundances in the secondary star. The kinematic properties of the system i...

  9. HeII emitters in the VIMOS VLT Deep Survey: PopIII star formation or peculiar stellar populations in galaxies at 2

    CERN Document Server

    Cassata, P; Charlot, S; Contini, T; Cucciati, O; Garilli, B; Zamorani, G; Adami, C; Bardelli, S; Brun, V Le; Lemaux, B; Maccagni, D; Pollo, A; Pozzetti, L; Tresse, L; Vergani, D; Zanichelli, A; Zucca, E

    2012-01-01

    The aim of this work is to identify HeII emitters at 21200km/s), 3 AGN, and an additional 12 possible HeII emitters. The properties of the individual broad emitters are in agreement with expectations from a W-R model. On the contrary, the properties of the narrow emitters are not compatible with such model, neither with predictions of gravitational cooling radiation produced by gas accretion. Rather, we find that the EW of the narrow HeII line emitters are in agreement with expectations for a PopIII star formation, if the episode of star formation is continuous, and we calculate that a PopIII SFR of 0.1-10 Mo yr-1 only is enough to sustain the observed HeII flux. We conclude that narrow HeII emitters are either powered by the ionizing flux from a stellar population rare at z~0 but much more common at z~3, or by PopIII star formation. As proposed by Tornatore et al. (2007), incomplete ISM mixing may leave some small pockets of pristine gas at the periphery of galaxies from which PopIII may form, even down to z...

  10. The magnetic field topology and chemical abundance distributions of the Ap star HD 32633

    OpenAIRE

    Silvester, James; Kochukhov, Oleg; Wade, G. A.

    2015-01-01

    Previous observations of the Ap star HD 32633 indicated that its magnetic field was unusually complex in nature and could not be characterised by a simple dipolar structure. Here we derive magnetic field maps and chemical abundance distributions for this star using full Stokes vector (Stokes $IQUV$) high-resolution observations obtained with the ESPaDOnS and Narval spectropolarimeters. Our maps, produced using the Invers10 magnetic Doppler imaging (MDI) code, show that HD 32633 has a strong m...

  11. Chemical Abundances of the magnetic CP star HD 168733

    Science.gov (United States)

    Collado, A.; López-García, Z.

    2009-04-01

    A detailed abundance analysis has been carried out for the magnetic CP star HD 168733 using high-resolution spectra obtained with the EBASIM echelle spectrograph at the 2.1 m CASLEO telescope in Argentina. The spectral coverage is 382-700 nm. It is neither a silicon nor a mercury-manganese star. Compared to the Sun, C and N are slightly overabundant, while Mg and S are deficient, Si is normal and P and Cl are overabundant. The iron peak elements Sc, Ti, Cr and Fe are overabundant. Lines of Ti III and Fe III are also identified. HD 168733 shows a great overabundance of Ga, Sr, Y, Zr, Xe, Pt, Hg and of some rare earths.

  12. Magnetic field measurements of O stars with FORS 1 at the VLT

    NARCIS (Netherlands)

    S. Hubrig; M. Schöller; R.S. Schnerr; J.F. González; R. Ignace; H.F. Henrichs

    2008-01-01

    Context. The presence of magnetic fields in O-type stars has been suspected for a long time. The discovery of these fields would explain a wide range of well documented enigmatic phenomena in massive stars, in particular cyclical wind variability, Ha emission variations, chemical peculiarity, narrow

  13. The C+N+O abundance of Omega Centauri giant stars: implications on the chemical enrichment scenario and the relative ages of different stellar populations

    CERN Document Server

    Marino, A F; Piotto, G; Cassisi, S; D'Antona, F; Anderson, J; Aparicio, A; Bedin, L R; Renzini, A; Villanova, S

    2011-01-01

    We present a chemical-composition analysis of 77 red-giant stars in Omega Centauri. We have measured abundances for carbon and nitrogen, and combined our results with abundances of O, Na, La, and Fe that we determined in our previous work. Our aim is to better understand the peculiar chemical-enrichment history of this cluster, by studying how the total C+N+O content varies among the different-metallicity stellar groups, and among stars at different places along the Na-O anticorrelation. We find the (anti)correlations among the light elements that would be expected on theoretical ground for matter that has been nuclearly processed via high-temperature proton captures. The overall [(C+N+O)/Fe] increases by 0.5 dex from [Fe/H] -2.0 to [Fe/H] -0.9. Our results provide insight into the chemical-enrichment history of the cluster, and the measured CNO variations provide important corrections for estimating the relative ages of the different stellar populations.

  14. Chemical composition of intermediate mass stars members of the M6 (NGC 6405) open cluster

    CERN Document Server

    Kılıçoğlu, Tolgahan; Richer, Jacques; Fossati, Luca; Albayrak, Berahitdin

    2015-01-01

    We present here the first abundance analysis of 44 late B, A and F-type members of the young open cluster M6 (NGC 6405, age about 75 Myrs). Spectra, covering the 4500 to 5800 \\AA{} wavelength range, were obtained using the FLAMES/GIRAFFE spectrograph attached to the ESO Very Large Telescopes (VLT). We determined the atmospheric parameters using calibrations of the Geneva photometry and by adjusting the $H_{\\beta}$ profiles to synthetic ones. The abundances of up to 20 chemical elements, were derived for 19 late B, 16 A and 9 F stars by iteratively adjusting synthetic spectra to the observations. We also derived a mean cluster metallicity of $\\mathrm{[Fe/H]=0.07\\pm0.03}$ dex from the iron abundances of the F-type stars. We find that, for most chemical elements, the normal late B and A-type stars exhibit larger star-to-star abundance variations than the F-type stars do probably because of the faster rotation of the B and A stars. The abundances of C, O, Mg, Si and Sc appear to be anticorrelated to that of Fe, w...

  15. Chemical abundances in a high velocity RR Lyrae star near the bulge

    CERN Document Server

    Hansen, Camilla Juul; Koch, Andreas; Xu, Siyi; Kunder, Andrea; Ludwig, Hans-Guenter

    2016-01-01

    Low-mass, variable, high-velocity stars are interesting study cases for many aspects of Galactic structure and evolution. Until recently, the only known high- or hyper-velocity stars were young stars thought to originate from the Galactic centre. Wide-area surveys like APOGEE and BRAVA have found several low-mass stars in the bulge with Galactic rest-frame velocities larger than 350 km/s. In this study we present the first abundance analysis of a low-mass, RR Lyrae star, located close to the Galactic bulge, with a space motion of ~ -400 km/s. Using medium-resolution spectra, we derive abundances (including upper limits) of 11 elements. These allow us to chemically tag the star and discuss its origin, although our derived abundances and metallicity, at [Fe/H] =-0.9 dex, do not point toward one unambiguous answer. Based on the chemical tagging, we cannot exclude that it originated in the bulge. However, combining its retrograde orbit and the derived abundances suggests that the star was accelerated from the out...

  16. Chemical abundances of giant stars in the Crater stellar system

    CERN Document Server

    Bonifacio, P; Zaggia, S; François, P; Sbordone, L; Andrievsky, S M; Korotin, S A

    2015-01-01

    We obtained spectra for two giants of Crater (Crater J113613-105227 and Crater J113615-105244) using X-Shooter at the VLT. The spectra have been analysed with the MyGIsFoS code using a grid of synthetic spectra computed from one dimensional, Local Thermodynamic Equilibrium (LTE) model atmospheres. Effective temperature and surface gravity have been derived from photometry measured from images obtained by the Dark Energy Survey. The radial velocities are 144.3+-4.0 km/s for Crater J113613-105227 and and 134.1+-4.0 km/s for Crater J113615-105244. The metallicities are [Fe/H]=-1.73 and [Fe/H]=-1.67, respectively. Beside the iron abundance we could determine abundances for nine elements: Na, Mg, Ca, Ti, V, Cr, Mn, Ni and Ba. For Na and Ba we took into account deviations from LTE, since the corrections are significant. The abundance ratios are similar in the two stars and resemble those of Galactic stars of the same metallicity. On the deep photometric images we could detect several stars that lie to the blue of t...

  17. The chemical signature of surviving Population III stars in the Milky Way

    CERN Document Server

    Johnson, Jarrett L

    2014-01-01

    Cosmological simulations of Population (Pop) III star formation suggest that the primordial initial mass function may have extended to sub-solar masses. If Pop III stars with masses < 0.8 M_Sun did form, then they should still be present in the Galaxy today as either main sequence or red giant stars. To date, however, despite searches for metal-poor stars in both the halo and the bulge of the Milky Way, no primordial stars have been identified. It has long been recognized that the initial metal-free nature of primordial stars could be masked due to accretion of metal-enriched material from the interstellar medium (ISM) over the course of their long lifetimes. Here we point out that while gas accretion from the ISM may readily occur, the accretion of dust from the ISM can be prevented due to the pressure of the radiation emitted from low-mass stars. This implies a possible unique chemical signature for stars polluted only via accretion, namely an enhancement in gas phase elements relative to those in the du...

  18. HD 30963: a new HgMn star

    CERN Document Server

    Monier, R; Royer, F

    2016-01-01

    Using high dispersion high quality spectra of HD 30963 obtained with the echelle spectrograph SOPHIE at Observatoire de Haute Provence in November 2015, we show that this star, hitherto classified as a B9 III superficially normal star, is actually a new Chemically Peculiar star of the HgMn type. Spectrum synthesis reveals large overabundances of Mn, Sr, Y, Zr , Pt and Hg and pronounced underabundances of He and Ni which are characteristic of HgMn stars. We therefore propose that this interesting object be reclassified as a B9 HgMn star.

  19. Detailed chemical abundances of distant RR Lyrae stars in the Virgo Stellar Stream

    CERN Document Server

    Duffau, S; Vivas, A K; Hansen, C J; Zoccali, M; Catelan, M; Minniti, D; Grebel, E K

    2016-01-01

    We present the first detailed chemical abundances for distant RR Lyrae stars members of the Virgo Stellar Stream (VSS), derived from X-Shooter medium-resolution spectra. Sixteen elements from carbon to barium have been measured in six VSS RR Lyrae stars, sampling all main nucleosynthetic channels. For the first time we will be able to compare in detail the chemical evolution of the VSS progenitor with those of Local Group dwarf spheroidal galaxies (LG dSph) as well as the one of the smooth halo.

  20. Chemical Compositions of RV Tauri Stars and Related Objects

    CERN Document Server

    Rao, S Sumangala

    2013-01-01

    We have undertaken a comprehensive abundance analysis for a sample of relatively unexplored RV Tauri and RV Tauri like stars to further our understanding of post-Asymptotic Giant Branch (post-AGB) evolution. From our study based on high resolution spectra and grid of model atmospheres, we find indications of mild s-processing for V820 Cen and IRAS 06165+3158. On the other hand, SU Gem and BT Lac exhibit the effects of mild dust-gas winnowing. We have also compiled the existing abundance data on RV Tauri objects and find that a large fraction of them are afflicted by dust-gas winnowing and now added by the present work, we find a small group of two RV Tauris showing mild s-process enhancement in our Galaxy. With two out of three reported s-process enhanced objects belonging to RV Tauri spectroscopic class C, these intrinsically metal-poor objects appear to be promising candidates to analyse the possible s-processing in RV Tauri stars.

  1. Reconstructing the star formation history of the Milky Way disc(s) from chemical abundances

    CERN Document Server

    Snaith, O; Di Matteo, P; Lehnert, M D; Combes, F; Katz, D; Gómez, A

    2014-01-01

    We develop a chemical evolution model in order to study the star formation history of the Milky Way. Our model assumes that the Milky Way is formed from a closed box-like system in the inner regions, while the outer parts of the disc experience some accretion. Unlike the usual procedure, we do not fix the star formation prescription (e.g. Kennicutt law) in order to reproduce the chemical abundance trends. Instead, we fit the abundance trends with age in order to recover the star formation history of the Galaxy. Our method enables one to recover with unprecedented accuracy the star formation history of the Milky Way in the first Gyrs, in both the inner (R9-10kpc) discs as sampled in the solar vicinity. We show that, in the inner disc, half of the stellar mass formed during the thick disc phase, in the first 4-5 Gyr. This phase was followed by a significant dip in the star formation activity (at 8-9 Gyr) and a period of roughly constant lower level star formation for the remaining 8 Gyr. The thick disc phase ha...

  2. Normal A0--A1 stars with low rotational velocities. I. Abundance determination and classification

    CERN Document Server

    Royer, F; Monier, R; Adelman, S; Smalley, B; Pintado, O; Reiners, A; Hill, G; Gulliver, A

    2014-01-01

    Context. The study of rotational velocity distributions for normal stars requires an accurate spectral characterization of the objects in order to avoid polluting the results with undetected binary or peculiar stars. This piece of information is a key issue in the understanding of the link between rotation and the presence of chemical peculiarities. Aims. A sample of 47 low v sin i A0-A1 stars (v sin i < 65km/s), initially selected as main-sequence normal stars, are investigated with high-resolution and high signal-to-noise spectroscopic data. The aim is to detect spectroscopic binaries and chemically peculiar stars, and eventually establish a list of confirmed normal stars. Methods. A detailed abundance analysis and spectral synthesis is performed to derive abundances for 14 chemical species. A hierarchical classification, taking measurement errors into account, is applied to the abundance space and splits the sample into two different groups, identified as the chemically peculiar stars and the normal sta...

  3. Chemical abundances in a high-velocity RR Lyrae star near the bulge

    Science.gov (United States)

    Hansen, C. J.; Rich, R. M.; Koch, A.; Xu, S.; Kunder, A.; Ludwig, H.-G.

    2016-05-01

    Low-mass variable high-velocity stars are interesting study cases for many aspects of Galactic structure and evolution. Until recently, the only known high- or hyper-velocity stars were young stars thought to originate from the Galactic center. Wide-area surveys such as APOGEE and BRAVA have found several low-mass stars in the bulge with Galactic rest-frame velocities higher than 350 km s-1. In this study we present the first abundance analysis of a low-mass RR Lyrae star that is located close to the Galactic bulge, with a space motion of ~-400 km s-1. Using medium-resolution spectra, we derived abundances (including upper limits) of 11 elements. These allowed us to chemically tag the star and discuss its origin, although our derived abundances and metallicity, at [Fe/H] =-0.9 dex, do not point toward one unambiguous answer. Based on the chemical tagging, we cannot exclude that it originated in the bulge. However, its retrograde orbit and the derived abundances combined suggest that the star was accelerated from the outskirts of the inner (or even outer) halo during many-body interactions. Other possible origins include the bulge itself, or the star might have been stripped from a stellar cluster or the Sagittarius dwarf galaxy when it merged with the Milky Way. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Discovery of Secular Evolution of the Atmospheric Abundances of Ap Stars

    Science.gov (United States)

    Bailey, J. D.; Landstreet, J. D.; Bagnulo, S.

    2015-01-01

    The stars of the middle main-sequence have relatively quiescent outer layers, and unusual chemical abundance patterns may develop in their atmospheres, revealing the action of such subsurface phenomena as gravitational settling and radiatively driven levitation of trace elements, and their competition with mixing processes such as turbulent diffusion. We report the discovery of the time evolution of such chemical tracers through the main-sequence lifetime of magnetic chemically peculiar stars.

  5. A SIGNATURE OF CHEMICAL SEPARATION IN THE COOLING LIGHT CURVES OF TRANSIENTLY ACCRETING NEUTRON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Medin, Zach [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cumming, Andrew, E-mail: zmedin@lanl.gov, E-mail: cumming@physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montreal, QC H3A 2T8 (Canada)

    2014-03-01

    We show that convection driven by chemical separation can significantly affect the cooling light curves of accreting neutron stars after they go into quiescence. We calculate the thermal relaxation of the neutron star ocean and crust including the thermal and compositional fluxes due to convection. After the inward propagating cooling wave reaches the base of the neutron star ocean, the ocean begins to freeze, driving chemical separation. The resulting convection transports heat inward, giving much faster cooling of the surface layers than found assuming the ocean cools passively. The light curves including convection show a rapid drop in temperature weeks after outburst. Identifying this signature in observed cooling curves would constrain the temperature and composition of the ocean as well as offer a real time probe of the freezing of a classical multicomponent plasma.

  6. A signature of chemical separation in the cooling curves of transiently accreting neutron stars

    CERN Document Server

    Medin, Zach

    2013-01-01

    We show that convection driven by chemical separation can significantly affect the cooling curves of accreting neutron stars after they go into quiescence. We calculate the thermal relaxation of the neutron star ocean and crust including the thermal and compositional fluxes due to convection. After the inward propagating cooling wave reaches the base of the neutron star ocean, the ocean begins to freeze, driving chemical separation. The resulting convection transports heat inward, giving much faster cooling of the surface layers than found assuming the ocean cools passively. The light curves including convection show a rapid drop in temperature weeks after outburst. Identifying this signature in observed cooling curves would constrain the temperature and composition of the ocean as well as offer a real time probe of the freezing of a classical multicomponent plasma.

  7. X-ray flares on the UV Ceti-type star CC Eridani: a "peculiar" time-evolution of spectral parameters

    CERN Document Server

    Crespo-Chacón, I; Reale, F; Caramazza, M; López-Santiago, J; Pillitteri, I

    2007-01-01

    Context: Weak flares are supposed to be an important heating agent of the outer layers of stellar atmospheres. However, due to instrumental limitations, only large X-ray flares have been studied in detail until now. Aims: We used an XMM-Newton observation of the very active BY-Dra type binary star CC Eri in order to investigate the properties of two flares that are weaker than those typically studied in the literature. Methods: We performed time-resolved spectroscopy of the data taken with the EPIC-PN CCD camera. A multi-temperature model was used to fit the spectra. We inferred the size of the flaring loops using the density-temperature diagram. The loop scaling laws were applied for deriving physical parameters of the flaring plasma. We also estimated the number of loops involved in the observed flares. Results: A large X-ray variability was found. Spectral analysis showed that all the regions in the light curve, including the flare segments, are well-described by a 3-T model with variable emission measures...

  8. Chemical evolution of spiral galaxies: models with star formation proportional to molecular hydrogen

    OpenAIRE

    Tosi, M.; Angeles I. Díaz

    1990-01-01

    This is an electronic version of an article published in Monthly Notices of the Royal Astronomical Society. Tosi, M., Díaz, A.I. Chemical evolution of spiral galaxies: models with star formation proportional to molecular hydrogen. Monthly Notices of the Royal Astronomical Society 246 (1990): 616-623

  9. Ap stars with variable periods

    CERN Document Server

    Mikulášek, Zdeněk; Janík, Jan; Zejda, Miloslav; Henry, Gegory W; Paunzen, Ernst; Žižňovský, Jozef; Zverko, Juraj

    2013-01-01

    The majority of magnetic chemically peculiar (mCP) stars exhibit periodic light, magnetic, radio, and spectroscopic variations that can be adequately modelled as a rigidly-rotating main-sequence star with persistent surface structures. Nevertheless, there is a small sample of diverse mCP stars whose rotation periods vary on timescales of decades while the shapes of their phase curves remain unchanged. Alternating period increases and decreases have been suspected in the hot CP stars CU Vir and V901 Ori, while rotation in the moderately cool star BS Cir has been decelerating. These examples bring new insight into this theoretically unpredicted phenomenon. We discuss possible causes of such behaviour and propose that dynamic interactions between a thin, outer, magnetically-confined envelope braked by the stellar wind, and an inner faster-rotating stellar body are able to explain the observed rotational variability

  10. The chemical evolution in the early phases of massive star formation I

    CERN Document Server

    Gerner, T; Semenov, D; Linz, H; Vasyunina, T; Bihr, S; Shirley, Y L; Henning, Th

    2014-01-01

    Understanding the chemical evolution of young (high-mass) star-forming regions is a central topic in star formation research. Chemistry is employed as a unique tool 1) to investigate the underlying physical processes and 2) to characterize the evolution of the chemical composition. We observed a sample of 59 high-mass star-forming regions at different evolutionary stages varying from the early starless phase of infrared dark clouds to high-mass protostellar objects to hot molecular cores and, finally, ultra-compact HII regions at 1mm and 3mm with the IRAM 30m telescope. We determined their large-scale chemical abundances and found that the chemical composition evolves along with the evolutionary stages. On average, the molecular abundances increase with time. We modeled the chemical evolution, using a 1D physical model where density and temperature vary from stage to stage coupled with an advanced gas-grain chemical model and derived the best-fit chi^2 values of all relevant parameters. A satisfying overall a...

  11. A nova re-accretion model for J-type carbon stars

    OpenAIRE

    S. Sengupta; Izzard, R.G.; Lau, H. H. B.

    2013-01-01

    The J-type carbon (J)-stars constitute 10-15% of the observed carbon stars in both our Galaxy and the Large Magellanic Cloud (LMC). They are characterized by strong 13C absorption bands with low 12C/13C ratios along with other chemical signatures peculiar for typical carbon stars, e.g. a lack of s-process enhancement. Most of the J-stars are dimmer than the N-type carbon stars some of which, by hot-bottom burning, make 13C only in a narrow range of masses. We investigate a binary-star formati...

  12. Efectos de la difusión en las líneas espectrales de estrellas peculiares magnéticas de helio

    Science.gov (United States)

    Vallverdú, R.; Panei, J.; Cidale, L.

    2016-08-01

    Chemically peculiar stars show intensity variations in the spectral lines of some chemical elements. These variations might correlate with the rotation period of the star. A possible explanation to this phenomenon is the existence of spots related to regions of different density for a particular chemical element. Diffusion is a possible mechanism that would allow the formation of these spots. In this work, we show how magnetic fields can affect the diffusion processes, either favoring or not the spot's formation, and whose presence results in variations of the intensities of the observed line profiles. In particular, the variations in the lines of helium are discussed.

  13. Physical and Chemical Parameters of HgMn Stars on the Basis of the Available Data

    Science.gov (United States)

    Ghazaryan, Satenik

    2014-12-01

    For better understanding the details of physical processes affecting essentially the atmosphere of HgMn stars, I compiled the chemical abundances of nearly all the observed HgMn stars and compared them with Smith's review (1996). During this study for about 130 stars of the mentioned type, more than 65 elements' abundances were compiled and rescaled assuming solar abundances values given by Asplund (2009). This compilation results show that the heavy elements are systematically overabundant in HgMn stars (see Preston (1974) and Smith (1996)). The under abundance of HeI seems less pronounced than in Smith's review. For some elements (As, Br, Rh, Pd, Gd, Au, and U) no abundances have been shown by Smith while for the others, the results are mostly the same. Thus we arrive at a conclusion that these results are in good agreement with Smith's figure. But it is important to know that the created database is not homogenous because the HgMn stars were observed by different techniques and dissimilar methods. Consequently, the uncertainties need to be taken into account to be sure for each abundance value. It is planned also to combine the abundances of all observed A and B stars as well to be able to see the abundance stratifications changes because of the effective temperature. This work is in preparation and will be done in near future.

  14. Comportamiento del viento estelar en estrellas peculiares en He

    Science.gov (United States)

    Arias, M. L.; Torres, A.; Cruzado, A.; Cidale, L.

    We study the behavior of the He II ( 1640 line and the resonance lines of Si IV and C IV in the spectra of a group of helium peculiar stars, to analyze the wind structure. For this purpose, we make determinations of fundamental parameters of the stars by means of the BCD method and we analyze the intensity and velocity variability of the lines.

  15. Ultra weak magnetic fields in Am stars: Beta UMa and theta Leo

    OpenAIRE

    Blazère, Aurore; Petit, Pascal; Lignières, François; Aurière, Michel; Böhm, Torsten; Wade, Gregg

    2014-01-01

    An extremely weak circularly-polarized signature was recently discovered in spectral lines of the chemically peculiar Am star Sirius A (Petit et al. 2011). This signal was interpreted as a Zeeman signature related to a sub-gauss longitudinal magnetic field, constituting the first detection of a surface magnetic field in an Am star. We present here ultra-deep spectropolarimetric observations of two other bright Am stars, $\\beta$ UMa and $\\theta$ Leo, observed with the NARVAL spectropolarimeter...

  16. Evolved stars and the origin of abundance trends in planet hosts

    OpenAIRE

    Maldonado, J.; Villaver, E.

    2016-01-01

    Tentative evidence that the properties of evolved stars with planets may be different from what we know for MS hosts has been recently reported. We aim to test whether evolved stars with planets show any chemical peculiarity that could be related to the planet formation process. We determine in a consistent way the metallicity and individual abundances of a large sample of evolved (subgiants and red giants) and MS stars with and without known planetary companions. No differences in the vs. c...

  17. Chemical Pollution and Evolution of Massive Starbursts: Cleaning up the Environment in Star-Forming Galaxies

    Science.gov (United States)

    Kobulnicky, C.

    1996-12-01

    I present the results of a research program seeking to characterize the impact of massive star-clusters on the chemical and dynamical evolution of metal-poor, irregular and blue compact galaxies. The evolution of high mass stars is thought to contribute the bulk of heavy element enrichment in the interstellar medium, especially alpha -process elements like O, Si, etc. Yet, in actively star-forming galaxies, localized chemical inhomogeneities are seldom observed. Spatially-resolved optical and ultraviolet spectroscopy from the Hubble Space Telescope and ground-based observatories is used to search for chemical enrichment in the vicinity of young star clusters in nearby galaxies. VLA aperture synthesis maps are used to examine the neutral hydrogen content, dynamics, and local environment of the sample galaxies. Despite the spread in evolutionary state of the starbursts determined by the EW of Balmer emission lines and the radio continuum spectral index, few instances of localized enrichment are found. In light of these data, the ``instantaneous enrichment'' scenario for extragalactic HII regions appears less probable than one which operates on long timescales and global spatial scales. The results are consistent with the idea that starburst driven winds expel freshly synthesized metals in a hot 10(6) K phase into the halos of galaxies where they cool, condense into globules, and mix homogeneously with the rest of the galaxy on long (dynamical) timescales. The C/O and N/O ratios of the galaxies are used as new tools for measuring the recent star formation history. Implications for chemical evolution of galaxies both locally and cosmologically are developed.

  18. HD 41641: a classical $\\delta$ Sct-type pulsator with chemical signatures of an Ap star

    CERN Document Server

    Escorza, A; Tkachenko, A; Van Reeth, T; Ryabchikova, T; Neiner, C; Poretti, E; Rainer, M; Michel, E; Baglin, A; Aerts, C

    2016-01-01

    Among the known groups of pulsating stars, $\\delta$ Sct stars are one of the least understood. The theoretical models do not predict the oscillation frequencies that observations reveal. Complete asteroseismic studies are necessary to improve these models and better understand the internal structure of these targets. In this paper, we study the $\\delta$ Sct star HD 41641 with the ultimate goal of understanding its oscillation pattern. The target has been simultaneously observed by the CoRoT space telescope and the HARPS high-resolution spectrograph. The photometric data set was analyzed with the software package PERIOD04, while FAMIAS was used to analyze the line profile variations. The method of spectrum synthesis was used for spectroscopically determining the fundamental atmospheric parameters and the individual chemical abundances. A total of 90 different frequencies was identified and analyzed. An unambiguous identification of the azimuthal order of the surface geometry could be provided for the dominant ...

  19. Chemical gradients in the Milky Way from the RAVE data. I. Dwarf stars

    CERN Document Server

    Boeche, C; Piffl, T; Just, A; Steinmetz, M; Sharma, S; Kordopatis, G; Gilmore, G; Chiappini, C; Williams, M; Grebel, E K; Bland-Hawthorn, J; Gibson, B K; Munari, U; Siviero, A; Bienaymé, O; Navarro, J F; Parker, Q A; Reid, W; Seabroke, G M; Watson, F G; Wyse, R F G; Zwitter, T

    2013-01-01

    Aim: We aim at measuring the chemical gradients of the elements Mg, Al, Si, and Fe along the Galactic radius to provide new constraints on the chemical evolution models of the Galaxy and Galaxy models such as the Besancon model. Methods: We analysed three different samples selected from three independent datasets: a sample of 19,962 dwarf stars selected from the RAVE database, a sample of 10,616 dwarf stars selected from the Geneva-Copenhagen Survey (GCS) dataset, and a mock sample (equivalent to the RAVE sample) created by using the GALAXIA code, which is based on the Besancon model. We measured the chemical gradients as functions of the guiding radius (Rg) at different distances from the Galactic plane reached by the stars along their orbit (Zmax). Results: The chemical gradients of the RAVE and GCS samples are negative and show consistent trends, although they are not equal: at Zmax<0.4 kpc and 4.5

  20. Visual and ultraviolet flux variability of the bright CP star $\\theta$ Aur

    CERN Document Server

    Krticka, J; Luftinger, T; Jagelka, M

    2015-01-01

    Chemically peculiar stars of the upper part of the main sequence show periodical variability in line intensities and continua, modulated by the stellar rotation, which is attributed to the existence of chemical spots on the surface of these stars. The flux variability is caused by the changing redistribution rate of the radiative flux predominantly from the short-wavelength part of the spectra to the long-wavelength part, which is a result of abundance anomalies. We study the nature of the multi-spectral variability of one of the brightest chemically peculiar stars, $\\theta$ Aur. We predict the flux variability of $\\theta$ Aur from the emerging intensities calculated for individual surface elements of the star taking into account horizontal variation of chemical composition derived from Doppler abundance maps. The simulated optical variability in the Str\\"omgren photometric system and the ultraviolet flux variability agree well with observations. The IUE flux distribution is reproduced in great detail by our ...

  1. Ultrafaint dwarfs—star formation and chemical evolution in the smallest galaxies

    International Nuclear Information System (INIS)

    In earlier work, we showed that a dark matter halo with a virial mass of 107 M ☉ can retain a major part of its baryons in the face of the pre-ionization phase and supernova (SN) explosion from a 25 M ☉ star. Here, we expand on the results of that work, investigating the star formation and chemical evolution of the system beyond the first SN. In a galaxy with a mass M vir = 107 M ☉, sufficient gas is retained by the potential for a second period of star formation to occur. The impact of a central explosion is found to be much stronger than that of an off-center explosion both in blowing out the gas and in enriching it, as in the off-center case most of the SN energy and metals escape into the intergalactic medium. We model the star formation and metallicity, given the assumption that stars form for 100, 200, 400, and 600 Myr, and discuss the results in the context of recent observations of very low-mass galaxies. We show that we can account for most features of the observed relationship between [α/Fe] and [Fe/H] in ultra-faint dwarf galaxies with the assumption that the systems formed at a low mass, rather than being remnants of much larger systems.

  2. Ultrafaint dwarfs—star formation and chemical evolution in the smallest galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Webster, David; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph, E-mail: d.webster@physics.usyd.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia)

    2014-11-20

    In earlier work, we showed that a dark matter halo with a virial mass of 10{sup 7} M {sub ☉} can retain a major part of its baryons in the face of the pre-ionization phase and supernova (SN) explosion from a 25 M {sub ☉} star. Here, we expand on the results of that work, investigating the star formation and chemical evolution of the system beyond the first SN. In a galaxy with a mass M {sub vir} = 10{sup 7} M {sub ☉}, sufficient gas is retained by the potential for a second period of star formation to occur. The impact of a central explosion is found to be much stronger than that of an off-center explosion both in blowing out the gas and in enriching it, as in the off-center case most of the SN energy and metals escape into the intergalactic medium. We model the star formation and metallicity, given the assumption that stars form for 100, 200, 400, and 600 Myr, and discuss the results in the context of recent observations of very low-mass galaxies. We show that we can account for most features of the observed relationship between [α/Fe] and [Fe/H] in ultra-faint dwarf galaxies with the assumption that the systems formed at a low mass, rather than being remnants of much larger systems.

  3. History of Star Formation and Chemical Enrichment in the Milky Way Disk

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on a physical treatment of the star formation law similar to thatgiven by Efstathiou, we have improved our two-component chemical evolution modelfor the Milky Way disk. Two gas infall rates are compared, one exponential, oneGaussian. It is shown that the star formation law adopted in this paper dependsmore strongly on the gas surface density than that in Chang et al. It has large effectson the history of star formation and gas evolution of the whole disk. In the solarneighborhood, the history of chemical evolution and star formation is not sensitiveto whether the infall rate is Gaussian or exponential. For the same infall time scale,both forms predict the same behavior for the current properties of the Galactic disk.The model predictions do depend on whether or not the infall time scale varies withthe radius, but current available observations cannot decide which case is the morerealistic. Our results also show that it would be inadequate to describe the gradientevolution along the Galactic disk by only one word "flatter" or "steeper", as wassuggested by Hou et al. and Chiapinni et al. We point out that both the absolutevalue and the evolution of the abundance gradient may be different in the inner andouter regions.

  4. Extremely Metal-Poor Stars and a Hierarchical Chemical Evolution Model

    CERN Document Server

    Komiya, Yutaka

    2011-01-01

    Early phases of the chemical evolution and formation history of extremely metal poor (EMP) stars are investigated using hierarchical galaxy formation models. We build a merger tree of the Galaxy according to the extended Press-Schechter theory. We follow the chemical evolution along the tree, and compare the model results to the metallicity distribution function (MDF) and abundance ratio distribution of the Milky Way halo. We adopt three different initial mass functions (IMFs). In a previous studies, we argue that typical mass of EMP stars should be high-mass(~10Msun) based on studies of binary origin carbon-rich EMP stars. In this study, we show that only the high-mass IMF can explain a observed small number of EMP stars. For relative element abundances, the high-mass IMF and the Salpeter IMF predict similar distributions. We also investigate dependence on nucleosynthetic yields of supernovae (SNe). The theoretical SN yields by Kobayashi et al.(2006) and Chieffi & Limonge (2004) show reasonable agreement...

  5. The Chemical Imprint of Dust on the Most Metal-Poor Stars

    CERN Document Server

    Ji, Alexander P; Bromm, Volker

    2013-01-01

    We investigate the impact of dust-induced gas fragmentation on the formation of the first low-mass, metal-poor stars (< 1M_sun) in the early universe. Previous work has posited the existence of a critical dust-to-gas ratio, below which dust thermal cooling is unable to cause fragmentation. Using silicon-based (rather than carbon-based) dust compositions, we compute such critical dust-to-gas ratios and associated critical silicon abundances. We evaluate the robustness of these critical values by considering variations in the dust chemical composition, grain size distribution, and star formation environment. Variations in the dust chemical composition are less important than variations in the size distribution, and the most likely environment where dust cooling becomes significant is in a rotationally supported protostellar disk. We test the dust cooling theory by comparing to silicon abundances observed in metal-poor stars. Several stars have silicon abundances low enough to rule out fragmentation induced b...

  6. Chemical Composition of the RS CVn-type Star 29 Draconis

    CERN Document Server

    Barisevi\\vcius, G; Berdyugina, S; Chorniy, Y; Ilyin, I

    2011-01-01

    Photospheric parameters and chemical composition are determined for the single-lined chromospherically active RS CVn-type star 29 Draconis (HD 160538). From the high resolution spectra obtained on the Nordic Optical Telescope, abundances of 22 chemical elements, including the key elements such as 12C, 13C, N and O, were investigated. The differential line analysis with the MARCS model atmospheres gives Teff=4720 K, log g=2.5, Fe/H]=-0.20, [C/Fe]=-0.14, [N/Fe]=0.08, [O/Fe]=-0.04, C/N=2.40, 12C/13C=16. The low value of the 12C/13C ratio gives a hint that extra mixing processes in low-mass chromospherically active stars may start earlier than the theory of stellar evolution predicts.

  7. Cosmic star formation, gamma-ray burst rate at high redshift and cosmic chemical evolution

    International Nuclear Information System (INIS)

    Recent optical observations and Gamma-ray burst rate determinations have led to significant progress in establishing the star formation rate (SFR) at high redshift. The SFR in turn is used to predict the ionization history of the Universe (using last results from CMB WMAP mission), the cosmic chemical abundances, and supernova rates. These predictions are done using a hierarchical model for structure formation (Press and Schechter). (author)

  8. Chemical Composition of the Planet-Harboring Star TrES-1

    CERN Document Server

    Sozzetti, A; Carney, B W; Laird, J B; Latham, D W; Torres, G

    2005-01-01

    We present a detailed chemical abundance analysis of the parent star of the transiting extrasolar planet TrES-1. Based on high-resolution Keck/HIRES and HET/HRS spectra, we have determined abundances relative to the Sun for 16 elements (Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, and Ba). The resulting average abundance of $<[

  9. The global chemical properties of high-mass star forming clumps at different evolutionary stages

    Science.gov (United States)

    Zhang, Yan-Jun; Zhou, Jian-Jun; Esimbek, Jarken; He, Yu-Xin; Li, Da-Lei; Tang, Xin-Di; Ji, Wei-Guang; Yuan, Ye; Guo, Wei-Hua

    2016-06-01

    A total of 197 relatively isolated high-mass star-forming clumps were selected from the Millimeter Astronomy Legacy Team 90 GHz (MALT90) survey data and their global chemical evolution investigated using four molecular lines, N2H+ (1--0), HCO+ (1--0), HCN (1-0), and HNC (1-0). The results suggest that the global averaged integrated intensity ratios I(HCO+)/I(HNC), I(HCN)/I(HNC), I(N2H+)/I(HCO+), and I(N2H+)/ I(HCN) are promising tracers for evolution of high-mass star-forming clumps. The global averaged column densities and abundances of N2H+, HCO+, HCN, and HNC increase as clumps evolve. The global averaged abundance ratios X(HCN)/X(HNC) could be used to trace evolution of high-mass star forming clumps, X(HCO+)/X(HNC) is more suitable for distinguishing high-mass star-forming clumps in prestellar (stage A) from those in protostellar (stage B) and HII/PDR region (stage C). These results suggest that the global averaged integrated intensity ratios between HCN (1-0), HNC (1-0), HCO+ (1--0) and N2H+ (1--0) are more suitable for tracing the evolution of high-mass star forming clumps. We also studied the chemical properties of the target high-mass star-forming clumps in each spiral arm of the Galaxy, and got results very different from those above. This is probably due to the relatively small sample in each spiral arm. For high-mass star-forming clumps in Sagittarius arm and Norma-Outer arm, comparing two groups located on one arm with different Galactocentric distances, the clumps near the Galactic Center appear to be younger than those far from the Galactic center, which may be due to more dense gas concentrated near the Galactic Center, and hence more massive stars being formed there.

  10. Surface structure of the CoRoT CP2 target star HD 50773

    OpenAIRE

    Lüftinger, T.; Fröhlich, H. -E.; Weiss, W.; Petit, P.; Aurière, M.; Nesvacil, N.; Gruberbauer, M.; Shulyak, D.; Alecian, E.; Baglin, A.; Baudin, F; Catala, C.; Donati, J.-F.; Kochukhov, O.; Michel, E.

    2009-01-01

    We compare surface maps of the chemically peculiar star HD 50773 produced with a Bayesian technique and based on high quality CoRoT photometry with those derived from rotation phase resolved spectropolarimetry. The goal is to investigate the correlation of surface brightness with surface chemical abundance distribution and the stellar magnetic field. The rotational period of the star was determined from a nearly 60 day long continuous light curve obtained during the initial run of CoRoT. Usin...

  11. The magnetic field topology and chemical abundance distributions of the Ap star HD 32633

    Science.gov (United States)

    Silvester, J.; Kochukhov, O.; Wade, G. A.

    2015-10-01

    Previous observations of the Ap star HD 32633 indicated that its magnetic field was unusually complex in nature and could not be characterized by a simple dipolar structure. Here we derive magnetic field maps and chemical abundance distributions for this star using full Stokes vector (Stokes IQUV) high-resolution observations obtained with the ESPaDOnS and Narval spectropolarimeters. Our maps, produced using the INVERS10 magnetic Doppler imaging (MDI) code, show that HD 32633 has a strong magnetic field which features two large regions of opposite polarity but deviates significantly from a pure dipole field. We use a spherical harmonic expansion to characterize the magnetic field and find that the harmonic energy is predominately in the ℓ = 1 and 2 poloidal modes with a small toroidal component. At the same time, we demonstrate that the observed Stokes parameter profiles of HD 32633 cannot be fully described by either a dipolar or dipolar plus quadrupolar field geometry. We compare the magnetic field topology of HD 32633 with other early-type stars for which MDI analyses have been performed, supporting a trend of increasing field complexity with stellar mass. We then compare the magnetic field topology of HD 32633 with derived chemical abundance maps for the elements Mg, Si, Ti, Cr, Fe, Ni and Nd. We find that the iron-peak elements show similar distributions, but we are unable to find a clear correlation between the location of local chemical enhancements or depletions and the magnetic field structure.

  12. Chemical analysis of CH stars - II: atmospheric parameters and elemental abundances

    CERN Document Server

    Karinkuzhi, Drisya

    2014-01-01

    We present detailed chemical analyses for a sample of twelve stars selected from the CH star catalogue of Bartkevicius (1996). The sample includes two confirmed binaries, four objects that are known to show radial velocity variations and the rest with no information on the binary status. A primary objective is to examine if all these objects exhibit chemical abundances characteristics of CH stars, based on detailed chemical composition study using high resolution spectra. We have used high resolution (R ~ 42000) spectra from the ELODIE archive. These spectra cover 3900 to 6800 Angstrom in the wavelength range. We have estimated the stellar atmospheric parameters, the effective temperature Teff, the surface gravity log g, and metallicity [Fe/H] from LTE analysis using model atmospheres. Estimated temperatures of these objects cover a wide range from 4200 K to 6640 K, the surface gravity from 0.6 to 4.3 and metallicity from -0.13 to -1.5. We report updates on elemental abundances for several heavy elements, Sr,...

  13. Kinematic Evidence for Superbubbles in I Zw 18: Constraints on the Star Formation History and Chemical Evolution

    OpenAIRE

    Martin, Crystal L.

    1996-01-01

    We have combined measurements of the kinematics, morphology, and oxygen abundance of the ionized gas in \\IZw18, one of the most metal-poor galaxies known, to examine the star formation history and chemical mixing processes.

  14. Chemical stratification in the atmosphere of Ap star HD 133792. Regularized solution of the vertical inversion problem

    CERN Document Server

    Kochukhov, O; Ryabchikova, T A; Makaganyk, V; Bagnulo, S

    2006-01-01

    High spectral resolution studies of cool Ap stars reveal conspicuous anomalies of the shape and strength of many absorption lines. This is a signature of large atmospheric chemical gradients produced by the selective radiative levitation and gravitational settling of chemical species. Here we present a new approach to mapping the vertical chemical structures in stellar atmospheres. We have developed a regularized chemical inversion procedure that uses all information available in high-resolution stellar spectra. The new technique for the first time allowed us to recover chemical profiles without making a priori assumptions about the shape of chemical distributions. We have derived average abundances and applied the vertical inversion procedure to the high-resolution VLT UVES spectra of the weakly magnetic, cool Ap star HD 133792. Our analysis yielded improved estimates of the atmospheric parameters of HD 133792. We show that this star has negligible vsini and the mean magnetic field modulus =1.1+/-0.1 kG. We ...

  15. PECULIARITIES OF DRY FRICTION

    OpenAIRE

    Каgаn Mikhail Lazarevich; Antonov Viktor Ivanovich; Belov Viktor Anatolevich

    2012-01-01

    Some peculiarities of dry friction that represent the outcomes of several well-known physical phenomena but that are insufficiently accurately and simply explained in the scientific literature, are analyzed in this paper. The authors research into the reasons for the oscillation of strings of bowed string instruments in furtherance of the laws of mechanics; they also explain differences in the sound produced by strings of bowed and plucked instruments; they study the reasons for t...

  16. Chemical homogeneity in the Orion Association: Oxygen abundances of B stars

    Directory of Open Access Journals (Sweden)

    Lanz T.

    2012-02-01

    Full Text Available We present non-LTE oxygen abundances for a sample of B stars in the Orion association. The abundance calculations included non-LTE line formation and used fully blanketed non-LTE model atmospheres. The stellar parameters were the same as adopted in the previous study by Cunha & Lambert (1994. We find that the young Orion stars in this sample of 10 stars are described by a single oxygen abundance with an average value of A(O = 8.78 and a small dispersion of ±0.05, dex which is of the order of the uncertainties in the analysis. This average oxygen abundance compares well with the average oxygen abundance obtained previously in Cunha & Lambert (1994: A(O = 8.72 ± 0.13 although this earlier study, based upon non-blanketed model atmospheres in LTE, displayed larger scatter. Small scatter of chemical abundances in Orion B stars had also been found in our previous studies for neon and argon; all based on the same effective temperature scale. The derived oxygen abundance distribution for the Orion association compares well with other results for the oxygen abundance in the solar neighborhood.

  17. Evolution and chemical and dynamical effects of high-mass stars

    CERN Document Server

    Meynet, Georges; Georgy, Cyril; Pignatari, Marco; Hirschi, Raphael; Ekstrom, Sylvia; Maeder, Andre

    2008-01-01

    We review general characteristics of massive stars, present the main observable constraints that stellar models should reproduce. We discuss the impact of massive star nucleosynthesis on the early phases of the chemical evolution of the Milky Way (MW). We show that rotating models can account for the important primary nitrogen production needed at low metallicity. Interestingly such rotating models can also better account for other features as the variation with the metallicity of the C/O ratio. Damped Lyman Alpha (DLA) systems present similar characteristics as the halo of the MW for what concern the N/O and C/O ratios. Although in DLAs, the star formation history might be quite different from that of the halo, in these systems also, rotating stars (both massive and intermediate) probably play an important role for explaining these features. The production of primary nitrogen is accompanied by an overproduction of other elements as $^{13}$C, $^{22}$Ne and s-process elements. We show also how the observed var...

  18. The dissimilar chemical composition of the planet-hosting stars of the XO-2 binary system

    CERN Document Server

    Ramirez, I; Aleo, P; Sobotka, A; Liu, F; Casagrande, L; Melendez, J; Yong, D; Lambert, D L; Asplund, M

    2015-01-01

    Using high-quality spectra of the twin stars in the XO-2 binary system, we have detected significant differences in the chemical composition of their photospheres. The differences correlate strongly with the elements' dust condensation temperature. In XO-2N, volatiles are enhanced by about 0.015 dex and refractories are overabundant by up to 0.090 dex. On average, our error bar in relative abundance is 0.012 dex. We present an early metal-depletion scenario in which the formation of the gas giant planets known to exist around these stars is responsible for a 0.015 dex offset in the abundances of all elements while 20 M_Earth of non-detected rocky objects that formed around XO-2S explain the additional refractory-element difference. An alternative explanation involves the late accretion of at least 20 M_Earth of planet-like material by XO-2N, allegedly as a result of the migration of the hot Jupiter detected around that star. Dust cleansing by a nearby hot star as well as age or Galactic birthplace effects can...

  19. Chemical tagging of the Ursa Major moving group: A northern selection of FGK stars

    CERN Document Server

    Tabernero, H M; Hernandez, J I Gonzalez; Eiff, M Ammler-von

    2014-01-01

    Stellar kinematic groups are kinematical coherent groups of stars which might share a common origin.These groups spread through the Galaxy over time due to tidal effects caused by Galactic rotation and disc heating.However, the chemical information survives these processes. The information provided by the analysis of chemical elements can reveal the origin of these kinematic groups. Here we investigate the origin of the stars that belong to the Ursa Major Moving Group. We present high-resolution spectroscopic observations obtained from three different spectrographs of kinematically selected FGK stars of the Ursa Major moving group. Stellar atmospheric parameters (Teff, log(g), xi, and [Fe/H]) were determined using our own automatic code (StePar) which makes use of the sensitivity of iron equivalent widths measured in the spectra. We critically compare the StePar results with other methods (Teff values derived using the infrared flux method and log(g) values based on Hipparcos parallaxes). We derived the chemi...

  20. Chemical Composition of the RS CVn-TYPE Star Lambda Andromedae

    CERN Document Server

    {e}, G Tautvaišien\\; Berdyugina, S; Chorniy, Y; Ilyin, I

    2010-01-01

    Photospheric parameters and chemical composition are determined for the single-lined chromospherically active RS CVn-type star {\\lambda} And (HD 222107). From the high resolution spectra obtained on the Nordic Optical Telescope, abundances of 22 chemical elements and isotopes, including such key elements as 12C, 13C, N and O, were investigated. The differential line analysis with the MARCS model atmospheres gives T eff=4830 K, log g=2.8, [Fe/H]=-0.53, [C/Fe]=0.09, [N/Fe]=0.35, [O/Fe]=0.45, C/N=2.21, 12C/13C = 14. The value of 12C/13C ratio for a star of the RS CVn-type is determined for the first time, and its low value gives a hint that extra-mixing processes may start acting in low-mass chromospherically active stars below the bump of the luminosity function of red giants.

  1. Rayleigh scattering in the atmospheres of hot stars

    CERN Document Server

    Fišák, Jakub; Munzar, Dominik; Kubát, Jiří

    2016-01-01

    Rayleigh scattering is a result of an interaction of photons with bound electrons. Rayleigh scattering is mostly neglected in calculations of hot star model atmospheres because most of the hydrogen atoms are ionized and the heavier elements have a lower abundance than hydrogen. In atmospheres of some chemically peculiar stars, helium overabundant regions containing singly ionized helium are present and Rayleigh scattering can be a significant opacity source. We evaluate the contribution of Rayleigh scattering by neutral hydrogen and singly ionized helium in the atmospheres of hot stars with solar composition and in the atmospheres of helium overabundant stars. We computed several series of model atmospheres using the TLUSTY code and emergent fluxes using the SYNSPEC code. These models describe atmospheres of main sequence B-type stars with different helium abundance. We used an existing grid of models for atmospheres with solar chemical composition and we calculated an additional grid for helium-rich stars wi...

  2. Spectroscopic variability and magnetic fields of HgMn stars

    CERN Document Server

    Hubrig, S; Ilyin, I; Korhonen, H; Savanov, I S; Dall, T; Schoeller, M; Cowley, C R; Briquet, M; Arlt, R

    2011-01-01

    The discovery of exotic abundances, chemical inhomogeneities, and weak magnetic fields on the surface of late B-type primaries in spectroscopic binaries has important implications not only for our understanding of the formation mechanisms of stars with Hg and Mn peculiarities themselves, but also for the general understanding of B-type star formation in binary systems. The origin of the abundance anomalies observed in late B-type stars with HgMn peculiarity is still poorly understood. The connection between HgMn peculiarity and membership in binary and multiple systems is supported by our observations during the last decade. The important result achieved in our studies of a large sample of HgMn stars is the finding that most HgMn stars exhibit spectral variability of various chemical elements, proving that the presence of an inhomogeneous distribution on the surface of these stars is a rather common characteristic and not a rare phenomenon. Further, in the studied systems, we found that all components are che...

  3. Magnetic Doppler Imaging of Ap stars

    OpenAIRE

    Silvester, J.; Wade, G. A.; Kochukhov, O.; Landstreet, J. D.; Bagnulo, S.

    2007-01-01

    Historically, the magnetic field geometries of the chemically peculiar Ap stars were modelled in the context of a simple dipole field. However, with the acquisition of increasingly sophisticated diagnostic data, it has become clear that the large-scale field topologies exhibit important departures from this simple model. Recently, new high-resolution circular and linear polarisation spectroscopy has even hinted at the presence of strong, small-scale field structures, which were completely une...

  4. Massive star evolution in close binaries. Conditions for homogeneous chemical evolution

    Science.gov (United States)

    Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.

    2016-01-01

    Aims: We investigate the impact of tidal interactions, before any mass transfer, on various properties of the stellar models. We study the conditions for obtaining homogeneous evolution triggered by tidal interactions, and for avoiding any Roche lobe overflow (RLOF) during the main-sequence phase. By homogeneous evolution, we mean stars evolving with a nearly uniform chemical composition from the centre to the surface. Methods: We consider the case of rotating stars computed with a strong core-envelope coupling mediated by an interior magnetic field. Models with initial masses between 15 and 60 M⊙, for metallicities between 0.002 and 0.014 and with initial rotation equal to 30% and 66% the critical rotation on the zero age main sequence, are computed for single stars and for stars in close binary systems. We consider close binary systems with initial orbital periods equal to 1.4, 1.6, and 1.8 days and a mass ratio equal to 3/2. Results: In models without any tidal interaction (single stars and wide binaries), homogeneous evolution in solid body rotating models is obtained when two conditions are realised: the initial rotation must be high enough, and the loss of angular momentum by stellar winds should be modest. This last point favours metal-poor fast rotating stars. In models with tidal interactions, homogeneous evolution is obtained when rotation imposed by synchronisation is high enough (typically a time-averaged surface velocities during the main-sequence phase above 250 km s-1), whatever the mass losses. We present plots that indicate for which masses of the primary and for which initial periods the conditions for the homogenous evolution and avoidance of the RLOF are met, for various initial metallicities and rotations. In close binaries, mixing is stronger at higher than at lower metallicities. Homogeneous evolution is thus favoured at higher metallicities. RLOF avoidance is favoured at lower metallicities because stars with less metals remain more

  5. HR8844: A new hot Am star ?

    CERN Document Server

    Monier, R; Royer, F

    2016-01-01

    Using one archival high dispersion high quality spectrum of HR8844 (A0V) obtained with the echelle spectrograph SOPHIE at Observatoire de Haute Provence, we show that this star is not a superficially normal A0V star as hitherto thought. The model atmosphere and spectrum synthesis modeling of the spectrum of HR8844 reveals large departures of its abundances from the solar composition. We report here on our first determinations of the elemental abundances of 41 elements in the atmosphere of HR8844. Most of the light elements are underabundant whereas the very heavy elements are overabundant in HR8844.This interesting new chemically peculiar star could be a hybrid object between the HgMn stars and the Am stars.

  6. Spectroscopy of southern Galactic disk planetary nebulae. Notes on chemical composition and emission-line stars

    CERN Document Server

    Górny, S K

    2014-01-01

    We present low resolution spectroscopic observations for a sample of 53 planetary nebulae (PNe) located in the southern sky between Vela and Norma constellations and pertaining to the Galactic disk with expected Galactocentric distance range of 5 to 10 kpc. We derive nebular chemical composition and plasma parameters with the classical empirical method. For most of the observed objects it is done for the first time. The distributions of the chemical abundances of the observed disk sample are generally indistinguishable from Galactic bulge and inner-disk PNe populations. The exceptions are possible differences in He/H distribution comparing to bulge PNe and Ne/Ar comparing to inner-disk PNe sample. The derived O/H ratios for the observed disk PNe fit to the concept of flattening of the chemical gradient in the inner parts of the Milky Way. We use the spectra to search for emission-line central stars in the observed sample. We found 6 new emission-line central stars comprising examples of all known types: WEL, ...

  7. Evolved stars as complex chemical laboratories - the quest for gaseous chemistry

    Science.gov (United States)

    Katrien Els Decin, Leen

    2015-08-01

    At the end of their life, most stars lose a large fraction of their mass through a stellar wind. The stellar winds of evolved (super)giant stars are the dominant suppliers for the pristine building blocks of the interstellar medium (ISM). Crucial to the understanding of the chemical life cycle of the ISM is hence a profound insight in the chemical and physical structure governing these stellar winds.These winds are really unique chemical laboratories in which currently more than 70 different molecules and 15 different dust species are detected. Several chemical processes such as neutral-neutral and ion-molecule gas-phase reactions, dust nucleation and growth, and photo-processes determine the chemical content of these winds. However, gas-phase and dust-nucleation chemistry for astronomical environments still faces many challenges. One should realize that only ˜15% of the rate coefficients for gas-phase reactions considered to occur in (inter/circum)stellar regions at temperatures (T) below 300K have been subject to direct laboratory determinations and that the temperature dependence of the rate constants is often not known; only ˜2% have rate constants at Tstars. In this presentation, I will demonstrate the need for accurate temperature-dependent gas-phase reaction rate constants and will present our new laboratory equipment built to measure the rate constants for species key in stellar wind chemistry. Specifically, we aim to obtain the rate constants of reactions involving silicon- and sulphur bearing species and HCCO for 30

  8. Re-grouping stars based on the chemical tagging technique: A case study of M67 and IC4651

    CERN Document Server

    Blanco-Cuaresma, S

    2016-01-01

    The chemical tagging technique proposed by Freeman & Bland-Hawthorn (2002) is based on the idea that stars formed from the same molecular cloud should share the same chemical signature. Thus, using only the chemical composition of stars we should be able to re-group the ones that once belonged to the same stellar aggregate. In Blanco-Cuaresma et al. (2015), we tested the technique on open cluster stars using iSpec (Blanco-Cuaresma et al. 2014a), we demonstrated their chemical homogeneity but we found that the 14 studied elements lead to chemical signatures too similar to reliably distinguish stars from different clusters. This represents a challenge to the technique and a new question was open: Could the inclusion of other elements help to better distinguish stars from different aggregates? With an updated and improved version of iSpec, we derived abundances for 28 elements using spectra from HARPS, UVES and NARVAL archives for the open clusters M67 and IC4651, and we found that the chemical signatures of...

  9. Episodic Model For Star Formation History and Chemical Abundances in Giant and Dwarf Galaxies

    CERN Document Server

    Debsarma, Suma; Das, Sukanta; Pfenniger, Daniel

    2016-01-01

    In search for a synthetic understanding, a scenario for the evolution of the star formation rate and the chemical abundances in galaxies is proposed, combining gas infall from galactic halos, outflow of gas by supernova explosions, and an oscillatory star formation process. The oscillatory star formation model is a consequence of the modelling of the fractional masses changes of the hot, warm and cold components of the interstellar medium. The observed periods of oscillation vary in the range $(0.1-3.0)\\times10^{7}$\\,yr depending on various parameters existing from giant to dwarf galaxies. The evolution of metallicity varies in giant and dwarf galaxies and depends on the outflow process. Observed abundances in dwarf galaxies can be reproduced under fast outflow together with slow evaporation of cold gases into hot gas whereas slow outflow and fast evaporation is preferred for giant galaxies. The variation of metallicities in dwarf galaxies supports the fact that low rate of SNII production in dwarf galaxies i...

  10. HE0107-5240, A Chemically Ancient Star.I. A Detailed Abundance Analysis

    CERN Document Server

    Christlieb, N; Korn, A J; Barklem, P S; Beers, T C; Bessell, M S; Karlsson, T; Mizuno-Wiedner, M

    2004-01-01

    We report a detailed abundance analysis for HE0107-5240, a halo giant with [Fe/H]_NLTE=-5.3. This star was discovered in the course of follow-up medium-resolution spectroscopy of extremely metal-poor candidates selected from the digitized Hamburg/ESO objective-prism survey. On the basis of high-resolution VLT/UVES spectra, we derive abundances for 8 elements (C, N, Na, Mg, Ca, Ti, Fe, and Ni), and upper limits for another 12 elements. A plane-parallel LTE model atmosphere has been specifically tailored for the chemical composition of {\\he}. Scenarios for the origin of the abundance pattern observed in the star are discussed. We argue that HE0107-5240 is most likely not a post-AGB star, and that the extremely low abundances of the iron-peak, and other elements, are not due to selective dust depletion. The abundance pattern of HE0107-5240 can be explained by pre-enrichment from a zero-metallicity type-II supernova of 20-25M_Sun, plus either self-enrichment with C and N, or production of these elements in the AG...

  11. Chemical Abundance Analysis of the Extremely Metal-Poor Star HE 1300+0157

    CERN Document Server

    Frebel, A; Aoki, W; Honda, S; Bessell, M S; Takada-Hidai, M; Beers, T C; Christlieb, N; Frebel, Anna; Norris, John E.; Aoki, Wako; Honda, Satoshi; Bessell, Michael S.; Takada-Hidai, Masahide; Beers, Timothy C.; Christlieb, Norbert

    2006-01-01

    We present a detailed chemical abundance analysis of HE 1300+0157, a subgiant with [Fe/H]=-3.9. From a high-resolution, high-S/N Subaru/HDS spectrum we find the star to be enriched in C ([C/Fe]_1D ~ +1.4) and O ([O/Fe]_1D ~ +1.8). With the exception of these species, HE 1300+0157 exhibits an elemental abundance pattern similar to that found in many other very and extremely metal-poor stars. The Li abundance is lower than the Spite-plateau value, in agreement with expectation for its evolutionary status. Of particular interest, no neutron-capture elements are detected in HE 1300+0157. This type of abundance pattern has been found by recent studies in several other metal-poor giants. We suggest that HE 1300+0157 is an unevolved example of this group of stars, which exhibit high C abundances together with low (or absent) abundances of neutron-capture elements. Several potential enrichment scenarios are presented. The low neutron-capture elements, including Sr, Ba, and Pb, suggests that the carbon excess observed...

  12. Cosmic-Lab: Chemical and kinematical properties of Blue Straggler stars in Galactic Globular Clusters

    CERN Document Server

    Lovisi, L

    2014-01-01

    Blue straggler stars (BSSs) are brighter and bluer than the main-sequence (MS) turnoff and more massive than MS stars.Two scenarios for their formation have been proposed: collision-induced stellar mergers (COL-BSSs),or mass-transfer in binary systems (MT-BSSs).Depleted surface abundances of C and O are expected for MT-BSSs,whereas no chemical anomalies are predicted for COL-BSSs. Both MT and COL-BSSs should rotate fast,but braking mechanisms may intervene with efficiencies and time-scales unknown,thus preventing a clear prediction of the expected rotational velocities. In this context,an extensive survey is ongoing by using FLAMES@VLT, with the aim to obtain abundance patterns and rotational velocities for representative samples of BSSs in Galactic GCs.A sub-population of CO-depleted BSSs has been identified in 47 Tuc,with only one fast rotating star detected (Ferraro et al.2006). For this PhD Thesis work I analyzed FLAMES spectra of more than 130 BSSs in 4 GCs:M4,NGC 6397,M30 and {\\omega}Centauri.This is th...

  13. Chemical composition of red horizontal branch stars in the thick disk of the Galaxy

    CERN Document Server

    Tautvaisiene, G; Tuominen, I; Ilyin, I V

    2001-01-01

    High-resolution spectra of 13 core helium-burning stars in the thick disk of the Galaxy have been obtained with the SOFIN spectrograph on the Nordic Optical Telescope to investigate abundances of up to 22 chemical elements. Abundances of carbon were studied using the C_2 Swan (0,1) band head at 5635.5 A. The wavelength interval 7980-8130 A with strong CN features was analysed in order to determine nitrogen abundances and 12C/13C isotope ratios. The oxygen abundances were determined from the O I line at 6300 A. Abundances in the investigated stars suggest that carbon is depleted by about 0.3 dex, nitrogen is enhanced by more than 0.4 dex and oxygen is unaltered. The 12C/13C ratios are lowered and lie between values 3 and 7 which is in agreement with "cool bottom processing" predictions (Boothroyd & Sackmann 1999). The C/N ratios in the investigated stars are lowered to values between 0.7 and 1.2 which is less than present day theoretical predictions and call for further studies of stellar mixing processes....

  14. Chemical Evolution in High-Mass Star-Forming Regions: Results from the MALT90 Survey

    CERN Document Server

    Hoq, Sadia; Foster, Jonathan B; Sanhueza, Patricio; Guzman, Andres; Whitaker, J Scott; Claysmith, Christopher; Rathborne, Jill M; Vasyunina, Tatiana; Vasyunin, Anton

    2013-01-01

    The chemical changes of high-mass star-forming regions provide a potential method for classifying their evolutionary stages and, ultimately, ages. In this study, we search for correlations between molecular abundances and the evolutionary stages of dense molecular clumps associated with high-mass star formation. We use the molecular line maps from Year 1 of the Millimetre Astronomy Legacy Team 90 GHz (MALT90) Survey. The survey mapped several hundred individual star-forming clumps chosen from the ATLASGAL survey to span the complete range of evolution, from prestellar to protostellar to H II regions. The evolutionary stage of each clump is classified using the Spitzer GLIMPSE/MIPSGAL mid-IR surveys. Where possible, we determine the dust temperatures and H2 column densities for each clump from Herschel Hi-GAL continuum data. From MALT90 data, we measure the integrated intensities of the N2H+, HCO+, HCN and HNC (1-0) lines, and derive the column densities and abundances of N2H+ and HCO+. The Herschel dust tempe...

  15. Episodic model for star formation history and chemical abundances in giant and dwarf galaxies

    Science.gov (United States)

    Debsarma, Suma; Chattopadhyay, Tanuka; Das, Sukanta; Pfenniger, Daniel

    2016-11-01

    In search for a synthetic understanding, a scenario for the evolution of the star formation rate and the chemical abundances in galaxies is proposed, combining gas infall from galactic haloes, outflow of gas by supernova explosions, and an oscillatory star formation process. The oscillatory star formation model is a consequence of the modelling of the fractional masses changes of the hot, warm and cold components of the interstellar medium. The derived periods of oscillation vary in the range (0.1-3.0) × 107 yr depending on various parameters existing from giant to dwarf galaxies. The evolution of metallicity varies in giant and dwarf galaxies and depends on the outflow process. Observed abundances in dwarf galaxies can be reproduced under fast outflow together with slow evaporation of cold gases into hot gas whereas slow outflow and fast evaporation is preferred for giant galaxies. The variation of metallicities in dwarf galaxies supports the fact that low rate of SNII production in dwarf galaxies is responsible for variation in metallicity in dwarf galaxies of similar masses as suggested by various authors.

  16. Chemical and Kinematical Properties of Galactic Bulge Stars Surrounding the Stellar System Terzan 5

    Science.gov (United States)

    Massari, D.; Mucciarelli, A.; Ferraro, F. R.; Origlia, L.; Rich, R. M.; Lanzoni, B.; Dalessandro, E.; Ibata, R.; Lovisi, L.; Bellazzini, M.; Reitzel, D.

    2014-08-01

    As part of a study aimed at determining the kinematical and chemical properties of Terzan 5, we present the first characterization of the bulge stars surrounding this puzzling stellar system. We observed 615 targets located well beyond the tidal radius of Terzan 5 and found that their radial velocity distribution is well described by a Gaussian function peaked at langv radrang = +21.0 ± 4.6 km s-1 with dispersion σ v = 113.0 ± 2.7 km s-1. This is one of the few high-precision spectroscopic surveys of radial velocities for a large sample of bulge stars in such a low and positive latitude environment (b = +1.°7). We found no evidence of the peak at langv radrang ~ +200 km s-1 found in Nidever et al. Strong contamination of many observed spectra by TiO bands prevented us from deriving the iron abundance for the entire spectroscopic sample, introducing a selection bias. The metallicity distribution was finally derived for a subsample of 112 stars in a magnitude range where the effect of the selection bias is negligible. The distribution is quite broad and roughly peaked at solar metallicity ([Fe/H] sime +0.05 dex) with a similar number of stars in the super-solar and in the sub-solar ranges. The population number ratios in different metallicity ranges agree well with those observed in other low-latitude bulge fields, suggesting (1) the possible presence of a plateau for |b| Observatory, proposal numbers 087.D-0716(B), 087.D-0748(A), and 283.D-5027(A), and at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  17. The Hercules Cluster Environment Impact on the Chemical History of Star-Forming Galaxies

    Science.gov (United States)

    Petropoulou, V.; VíLchez, J. M.; Iglesias-Páramo, J.; Papaderos, P.

    In this work we study the effects of the Hercules cluster environment on the chemical history of star-forming (SF) galaxies. For this purpose we have derived the gas metallicities, the mean stellar metallicities and ages, the masses and the luminosities of our sample of galaxies. We have found that our Hercules SF galaxies are either chemically evolved spirals with nearly flat oxygen gradients, or less metal-rich dwarf galaxies which appear to be the "newcomers" in the cluster. Most Hercules SF galaxies follow well defined mass-metallicity and luminosity-metallicity sequences; nevertheless significant outliers to these relations have been identified, illustrating how environmental effects can provide a physical source of dispersion in these fundamental relations.

  18. A NEW CHEMICAL EVOLUTION MODEL FOR DWARF SPHEROIDAL GALAXIES BASED ON OBSERVED LONG STAR FORMATION HISTORIES

    International Nuclear Information System (INIS)

    We present a new chemical evolution model for dwarf spheroidal galaxies (dSphs) in the local universe. Our main aim is to explain both their observed star formation histories and metallicity distribution functions simultaneously. Applying our new model for the four local dSphs, that is, Fornax, Sculptor, Leo II, and Sextans, we find that our new model reproduces the observed chemical properties of the dSphs consistently. Our results show that the dSphs have evolved with both a low star formation efficiency and a large gas outflow efficiency compared with the Milky Way, as suggested by previous works. Comparing the observed [α/Fe]-[Fe/H] relation of the dSphs with the model predictions, we find that our model favors a longer onset time of Type Ia supernovae (i.e., 0.5 Gyr) than that suggested in previous studies (i.e., 0.1 Gyr). We discuss the origin of this discrepancy in detail

  19. On the binary helium star DY Centauri: chemical composition and evolutionary state

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Gajendra; Rao, N. Kameswara [Indian Institute of Astrophysics, Bangalore 560034 (India); Jeffery, C. Simon [Armagh Observatory, Collage Hill, Armagh BT61 9DG (United Kingdom); Lambert, David L., E-mail: pandey@iiap.res.in, E-mail: nkrao@iiap.res.in, E-mail: csj@arm.ac.uk, E-mail: dll@astro.as.utexas.edu [The W. J. McDonald Observatory and Department of Astronomy, University of Texas at Austin, Austin, TX 78712-1083 (United States)

    2014-10-01

    DY Cen has shown a steady fading of its visual light by about one magnitude in the last 40 yr, suggesting a secular increase in its effective temperature. We have conducted non-local thermodynamic equilibrium (LTE) and LTE abundance analyses to determine the star's effective temperature, surface gravity, and chemical composition using high-resolution spectra obtained over two decades. The derived stellar parameters for three epochs suggest that DY Cen has evolved at a constant luminosity and has become hotter by about 5000 K in 23 yr. We show that the derived abundances remain unchanged for the three epochs. The derived abundances of the key elements, including F and Ne, are as observed for the extreme helium stars resulting from a merger of a He white dwarf with a C-O white dwarf. Thus DY Cen by chemical composition appears to also be a product of a merger of two white dwarfs. This appearance seems to be at odds with the recent suggestion that DY Cen is a single-lined spectroscopic binary.

  20. A NEW CHEMICAL EVOLUTION MODEL FOR DWARF SPHEROIDAL GALAXIES BASED ON OBSERVED LONG STAR FORMATION HISTORIES

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Hidetomo; Murayama, Takashi [Astronomical Institute, Tohoku University, Aoba-ku, Sendai 980-8578 (Japan); Kobayashi, Masakazu A. R.; Taniguchi, Yoshiaki, E-mail: hide@astr.tohoku.ac.jp [Research Center for Space and Cosmic Evolution, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan)

    2015-02-01

    We present a new chemical evolution model for dwarf spheroidal galaxies (dSphs) in the local universe. Our main aim is to explain both their observed star formation histories and metallicity distribution functions simultaneously. Applying our new model for the four local dSphs, that is, Fornax, Sculptor, Leo II, and Sextans, we find that our new model reproduces the observed chemical properties of the dSphs consistently. Our results show that the dSphs have evolved with both a low star formation efficiency and a large gas outflow efficiency compared with the Milky Way, as suggested by previous works. Comparing the observed [α/Fe]-[Fe/H] relation of the dSphs with the model predictions, we find that our model favors a longer onset time of Type Ia supernovae (i.e., 0.5 Gyr) than that suggested in previous studies (i.e., 0.1 Gyr). We discuss the origin of this discrepancy in detail.

  1. On the metallicity distribution of the peculiar globular cluster M22

    CERN Document Server

    Lee, Jae-Woo

    2016-01-01

    In our previous study, we showed that the peculiar globular cluster (GC) M22 contains two distinct stellar populations, namely the Ca-w and Ca-s groups with different physical properties, having different chemical compositions, spatial distributions and kinematics. We proposed that M22 is most likely formed via a merger of two GCs with heterogeneous metallicities in a dwarf galaxy environment and accreted later to our Galaxy. In their recent study, Mucciarelli et al. claimed that M22 is a normal mono-metallic globular cluster without any perceptible metallicity spread among the two groups of stars, which challenges our results and those of others. We devise new strategies for the local thermodynamic equilibrium (LTE) abundance analysis of red giant branch (RGB) stars in GCs and show there exists a spread in the iron abundance distribution in M22.

  2. The calcium isotopic anomaly in magnetic CP stars

    OpenAIRE

    Cowley, Ch. R.; Hubrig, S.

    2005-01-01

    Chemically peculiar stars in the magnetic sequence can show the same isotopic anomaly in calcium previously discovered for mercury-manganese stars in the non-magnetic sequence. In extreme cases, the dominant isotope is the exotic 48^Ca. Measurements of Ca II lines arising from 3d-4p transitions reveal the anomaly by showing shifts up to 0.2 AA for the extreme cases - too large to be measurement errors. We report measurements of miscellaneous objects, including two metal-poor stars, two appare...

  3. Chemical Abundances in the Secondary Star of the Black Hole Binary V4641 Sagittarii (SAX J1819.3-2525)

    CERN Document Server

    Sadakane, K; Aoki, W; Arimoto, N; Takada-Hidai, M; Ohnishi, T; Tajitsu, A; Beers, T C; Iwamoto, N; Tominaga, N; Umeda, H; Maeda, K; Nomoto, K; Sadakane, Kozo; Arai, Akira; Aoki, Wako; Arimoto, Nobuo; Takada-Hidai, Masahide; Ohnishi, Takashi; Tajitsu, Akito; Beers, Timothy C.; Iwamoto, Nobuyuki; Tominaga, Nozomu; Umeda, Hideyuki; Maeda, Keiichi; Nomoto, Ken'ichi

    2006-01-01

    We report on detailed spectroscopic studies performed for the secondary star in the black hole binary (micro-quasar) V4641 Sgr in order to examine its surface chemical composition and to see if its surface shows any signature of pollution by ejecta from a supernova explosion. High-resolution spectra of V4641 Sgr observed in the quiescent state in the blue-visual region are compared with those of the two bright well-studied B9 stars (14 Cyg and $\

  4. The first stars: a classification of CEMP-no stars

    CERN Document Server

    Maeder, Andre

    2015-01-01

    We propose and apply a new classification for the CEMP-no stars, which are "carbon-enhanced metal-poor" stars with no overabundance of s-elements and with [Fe/H] generally inferior or equal to -2.5. This classification is based on the changes in abundances for the elements and isotopes involved in the CNO, Ne-Na, and Mg-Al nuclear cycles. These abundances change very much owing to successive back and forth mixing motions between the He- and H-burning regions in massive stars (the "source stars" responsible for the chemical enrichment of the CEMP-no stars). The wide variety of the ratios [C/Fe], 12C/13C, [N/Fe], [O/Fe], [Na/Fe], [Mg/Fe], [Al/Fe], [Sr/Fe], and [Ba/Fe], which are the main characteristics making the CEMP-no and low s stars so peculiar, is described well in terms of the proposed nucleosynthetic classification. We note that the [(C+N+O)/Fe] ratios significantly increase for lower values of [Fe/H]. The classification of CEMP-no stars and the behavior of [(C+N+O)/Fe] support the presence, in the firs...

  5. Lighting up stars in chemical evolution models: the CMD of Sculptor

    CERN Document Server

    Vincenzo, Fiorenzo; de Boer, Thomas J L; Cignoni, Michele; Tosi, Monica

    2016-01-01

    We present a novel approach to draw the synthetic color-magnitude diagram of galaxies, which can provide - in principle - a deeper insight in the interpretation and understanding of current observations. In particular, we `light up' the stars of chemical evolution models, according to their initial mass, metallicity and age, to eventually understand how the assumed underlying galaxy formation and evolution scenario affects the final configuration of the synthetic CMD. In this way, we obtain a new set of observational constraints for chemical evolution models beyond the usual photospheric chemical abundances. The strength of our method resides in the very fine grid of metallicities and ages of the assumed database of stellar isochrones. In this work, we apply our photo-chemical model to reproduce the observed CMD of the Sculptor dSph and find that we can reproduce the main features of the observed CMD. The main discrepancies are found at fainter magnitudes in the main sequence turn-off and sub-giant branch, wh...

  6. Lighting up stars in chemical evolution models: the CMD of Sculptor

    Science.gov (United States)

    Vincenzo, F.; Matteucci, F.; de Boer, T. J. L.; Cignoni, M.; Tosi, M.

    2016-08-01

    We present a novel approach to draw the synthetic colour-magnitude diagram (CMD) of galaxies, which can provide - in principle - a deeper insight in the interpretation and understanding of current observations. In particular, we `light up' the stars of chemical evolution models, according to their initial mass, metallicity and age, to eventually understand how the assumed underlying galaxy formation and evolution scenario affects the final configuration of the synthetic CMD. In this way, we obtain a new set of observational constraints for chemical evolution models beyond the usual photospheric chemical abundances. The strength of our method resides in the very fine grid of metallicities and ages of the assumed data base of stellar isochrones. In this work, we apply our photochemical model to reproduce the observed CMD of the Sculptor dSph and find that we can reproduce the main features of the observed CMD. The main discrepancies are found at fainter magnitudes in the main sequence turn-off and sub-giant branch, where the observed CMD extends towards bluer colours than the synthetic one; we suggest that this is a signature of metal-poor stellar populations in the data, which cannot be captured by our assumed one-zone chemical evolution model.

  7. Chemical tagging with APOGEE: Discovery of a large population of N-rich stars in the inner Galaxy

    Science.gov (United States)

    Schiavon, Ricardo P.; Zamora, Olga; Carrera, Ricardo; Lucatello, Sara; Robin, A. C.; Ness, Melissa; Martell, Sarah L.; Smith, Verne V.; García-Hernández, D. A.; Manchado, Arturo; Schönrich, Ralph; Bastian, Nate; Chiappini, Cristina; Shetrone, Matthew; Mackereth, J. Ted; Williams, Rob A.; Mészáros, Szabolcs; Allende Prieto, Carlos; Anders, Friedrich; Bizyaev, Dmitry; Beers, Timothy C.; Chojnowski, S. Drew; Cunha, Katia; Epstein, Courtney; Frinchaboy, Peter M.; García Pérez, Ana E.; Hearty, Fred R.; Holtzman, Jon A.; Johnson, Jennifer A.; Kinemuchi, Karen; Majewski, Steven R.; Muna, Demitri; Nidever, David L.; Nguyen, Duy Cuong; O'Connell, Robert W.; Oravetz, Daniel; Pan, Kaike; Pinsonneault, Marc; Schneider, Donald P.; Schultheis, Matthias; Simmons, Audrey; Skrutskie, Michael F.; Sobeck, Jennifer; Wilson, John C.; Zasowski, Gail

    2016-09-01

    Formation of globular clusters (GCs), the Galactic bulge, or galaxy bulges in general, are important unsolved problems in Galactic astronomy. Homogeneous infrared observations of large samples of stars belonging to GCs and the Galactic bulge field are one of the best ways to study these problems. We report the discovery by APOGEE of a population of field stars in the inner Galaxy with abundances of N, C, and Al that are typically found in GC stars. The newly discovered stars have high [N/Fe], which is correlated with [Al/Fe] and anti-correlated with [C/Fe]. They are homogeneously distributed across, and kinematically indistinguishable from, other field stars within the same volume. Their metallicity distribution is seemingly unimodal, peaking at [Fe/H]˜-1, thus being in disagreement with that of the Galactic GC system. Our results can be understood in terms of different scenarios. N-rich stars could be former members of dissolved GCs, in which case the mass in destroyed GCs exceeds that of the surviving GC system by a factor of ˜8. In that scenario, the total mass contained in so-called "first-generation" stars cannot be larger than that in "second-generation" stars by more than a factor of ˜9 and was certainly smaller. Conversely, our results may imply the absence of a mandatory genetic link between "second generation" stars and GCs. Last, but not least, N-rich stars could be the oldest stars in the Galaxy, the by-products of chemical enrichment by the first stellar generations formed in the heart of the Galaxy.

  8. Detection of ultra-weak magnetic fields in Am stars: beta UMa and theta Leo

    OpenAIRE

    Blazère, A.; Petit, P.; Lignières, F.; Aurière, M.; Ballot, J.; Böhm, T.; Folsom, C. P.; Gaurat, M.; Jouve, L.; Ariste, A. Lopez; Neiner, C.; Wade, G. A.

    2016-01-01

    An extremely weak circularly polarized signature was recently discovered in spectral lines of the chemically peculiar Am star Sirius A. A weak surface magnetic field was proposed to account for the observed polarized signal, but the shape of the phase-averaged signature, dominated by a prominent positive lobe, is not expected in the standard theory of the Zeeman effect. We aim at verifying the presence of weak circularly polarized signatures in two other bright Am stars, beta UMa and theta Le...

  9. CHEMICAL EVOLUTION IN HIGH-MASS STAR-FORMING REGIONS: RESULTS FROM THE MALT90 SURVEY

    International Nuclear Information System (INIS)

    The chemical changes of high-mass star-forming regions provide a potential method for classifying their evolutionary stages and, ultimately, ages. In this study, we search for correlations between molecular abundances and the evolutionary stages of dense molecular clumps associated with high-mass star formation. We use the molecular line maps from Year 1 of the Millimetre Astronomy Legacy Team 90 GHz (MALT90) Survey. The survey mapped several hundred individual star-forming clumps chosen from the ATLASGAL survey to span the complete range of evolution, from prestellar to protostellar to H II regions. The evolutionary stage of each clump is classified using the Spitzer GLIMPSE/MIPSGAL mid-IR surveys. Where possible, we determine the dust temperatures and H2 column densities for each clump from Herschel/Hi-GAL continuum data. From MALT90 data, we measure the integrated intensities of the N2H+, HCO+, HCN and HNC (1-0) lines, and derive the column densities and abundances of N2H+ and HCO+. The Herschel dust temperatures increase as a function of the IR-based Spitzer evolutionary classification scheme, with the youngest clumps being the coldest, which gives confidence that this classification method provides a reliable way to assign evolutionary stages to clumps. Both N2H+ and HCO+ abundances increase as a function of evolutionary stage, whereas the N2H+ (1-0) to HCO+ (1-0) integrated intensity ratios show no discernable trend. The HCN (1-0) to HNC(1-0) integrated intensity ratios show marginal evidence of an increase as the clumps evolve

  10. Chemical composition of evolved stars in the young open clusters NGC 4609 and NGC 5316

    Science.gov (United States)

    Drazdauskas, Arnas; Tautvaišienė, Gražina; Smiljanic, Rodolfo; Bagdonas, Vilius; Chorniy, Yuriy

    2016-10-01

    High-resolution spectral analysis is performed for the first time in evolved stars of two young open clusters: NGC 4609 and NGC 5316, of about 80 and 100 Myr in age, respectively, and turn-off masses above 5 M⊙. Stellar evolution models predict an extra-mixing event in evolved stars, which follows the first dredge-up and happens later on the red giant branch. However, it is still not understood how this process affects stars of different masses. In this study, we determine abundances of the mixing sensitive elements carbon and nitrogen, carbon isotope 12C/13C ratios, as well as 20 other elements produced by different nucleosynthetic processes (O, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Y, Zr, Ba, La, Ce, Pr, Nd, and Eu). We compared our results with the latest theoretical models of evolutionary mixing processes. We find that the obtained 12C/13C and C/N ratios and [Na/Fe] agree quite well with the model which takes into account thermohaline- and rotation-induced mixing but within error limits also agree with the standard first dredge-up model. Comparison of oxygen, magnesium, and other α-elements with theoretical models of Galactic chemical evolution revealed that both clusters follow the thin disc α-element trends. Neutron-capture element abundances in NGC 4609 are apparently reflecting its birthplace in the thin disc, while NGC 5316 has marginally higher abundances, which would indicate its birthplace in an environment more enriched with neutron-capture elements.

  11. Early Star Formation, Nucleosynthesis, and Chemical Evolution in Proto-Galactic Clouds

    CERN Document Server

    Saleh, L; Mathews, G J

    2006-01-01

    We present numerical simulations to describe the nucleosynthesis and evolution of pre-Galactic clouds in a model which is motivated by cold dark matter simulations of hierarchical galaxy formation. We adopt a SN-induced star-formation mechanism and follow the chemical enrichment and energy input by Type II and Type Ia SNe. We utilize metallicity-dependent yields and include finite stellar lifetimes. We derive the metallicity distribution functions, the age-metallicity relation, and relative elemental abundances for a number of alpha- and Fe-group elements. We find that the dispersion of the metallicity distribution function of the outer halo is reproduced by contributions from clouds with different initial conditions. Clouds with initial masses greater than that of present globular clusters are found to survive the first 0.1 Gyr, suggesting that such systems may have contributed to the formation of the first stars, and could have been self-enriched. More massive clouds are only stable when one assumes an init...

  12. The magnetic field topology and chemical abundance distributions of the Ap star HD 32633

    CERN Document Server

    Silvester, J; Wade, G A

    2015-01-01

    Previous observations of the Ap star HD 32633 indicated that its magnetic field was unusually complex in nature and could not be characterised by a simple dipolar structure. Here we derive magnetic field maps and chemical abundance distributions for this star using full Stokes vector (Stokes $IQUV$) high-resolution observations obtained with the ESPaDOnS and Narval spectropolarimeters. Our maps, produced using the Invers10 magnetic Doppler imaging (MDI) code, show that HD 32633 has a strong magnetic field which features two large regions of opposite polarity but deviates significantly from a pure dipole field. We use a spherical harmonic expansion to characterise the magnetic field and find that the harmonic energy is predominately in the $\\ell=1$ and $\\ell=2$ poloidal modes with a small toroidal component. At the same time, we demonstrate that the observed Stokes parameter profiles of HD 32633 cannot be fully described by either a dipolar or dipolar plus quadrupolar field geometry. We compare the magnetic fi...

  13. Chemical evolution in the early phases of massive star formation II: Deuteration

    CERN Document Server

    Gerner, Th; Beuther, H; Semenov, D; Linz, H; Abertsson, T; Henning, Th

    2015-01-01

    The chemical evolution in high-mass star-forming regions is still poorly constrained. Studying the evolution of deuterated molecules allows to differentiate between subsequent stages of high-mass star formation regions due to the strong temperature dependence of deuterium isotopic fractionation. We observed a sample of 59 sources including 19 infrared dark clouds, 20 high-mass protostellar objects, 11 hot molecular cores and 9 ultra-compact HII regions in the (3-2) transitions of the four deuterated molecules, DCN, DNC, DCO+ and N2D+ as well as their non-deuterated counterpart. The overall detection fraction of DCN, DNC and DCO+ is high and exceeds 50% for most of the stages. N2D+ was only detected in a few infrared dark clouds and high-mass protostellar objects. It can be related to problems in the bandpass at the frequency of the transition and to low abundances in the more evolved, warmer stages. We find median D/H ratios of ~0.02 for DCN, ~0.005 for DNC, ~0.0025 for DCO+ and ~0.02 for N2D+. While the D/H ...

  14. Planet signatures and effect of the chemical evolution of the Galactic thin-disk stars

    CERN Document Server

    Spina, Lorenzo; Ramírez, Ivan

    2016-01-01

    Context: Studies based on high-precision abundance determinations revealed that chemical patterns of solar twins are characterised by the correlation between the differential abundances relative to the Sun and the condensation temperatures (Tc) of the elements. It has been suggested that the origin of this relation is related to the chemical evolution of the Galactic disk, but other processes, associated with the presence of planets around stars, might also be involved. Aims: We analyse HIRES spectra of 14 solar twins and the Sun to provide new insights on the mechanisms that can determine the relation between [X/H] and Tc. Methods: Our spectroscopic analysis produced stellar parameters (Teff, log g, [Fe/H], and $\\xi$), ages, masses, and abundances of 22 elements (C, O, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, and Ba). We used these determinations to place new constraints on the chemical evolution of the Galactic disk and to verify whether this process alone can explain the diff...

  15. Deviations from chemical equilibrium due to spin-down as an internal heat source in neutron stars

    CERN Document Server

    Reisenegger, A

    1994-01-01

    The core of a neutron star contains several species of particles, whose relative equilibrium concentrations are determined by the local density. As the star spins down, its centrifugal force decreases continuously, and the star contracts. The density of any given fluid element increases, changing its chemical equilibrium state. The relaxation towards the new equilibrium takes a finite time, so the matter is not quite in chemical equilibrium, and energy is stored that can be released by reactions. For a neutron star core composed of neutrons (n), protons (p), and electrons (e), the departure from chemical equilibrium is quantified by the chemical potential difference \\delta\\mu\\equiv \\mu_{\\rm p}+\\mu_{\\rm e} -\\mu_{\\rm n}. A finite \\delta\\mu increases the reaction rates and the neutrino emissivity. If large enough (|\\delta\\mu|\\gta 5kT), it reduces the net cooling rate because some of the stored chemical energy is converted into thermal energy, and can even lead to net heating. A simple model shows the effect of t...

  16. Chemical evolution during the process of proto-star formation by considering a two dimensional hydrodynamic model

    CERN Document Server

    Das, Ankan; Chakrabarti, Sandip K; Chakrabarti, Sonali

    2013-01-01

    Chemical composition of a molecular cloud is highly sensitive to the physical properties of the cloud. In order to obtain the chemical composition around a star forming region, we carry out a two dimensional hydrodynamical simulation of the collapsing phase of a proto-star. A total variation diminishing scheme (TVD) is used to solve the set of equations governing hydrodynamics. This hydrodynamic code is capable of mimicking evolution of the physical properties during the formation of a proto-star. We couple our reasonably large gas-grain chemical network to study the chemical evolution during the collapsing phase of a proto-star. To have a realistic estimate of the abundances of bio-molecules in the interstellar medium, we include the recently calculated rate coefficients for the formation of several interstellar bio-molecules into our gas phase network. Chemical evolution is studied in detail by keeping grain at the constant temperature throughout the simulation as well as by using the temperature variation ...

  17. Chemical analysis of carbon stars in the Local Group: I. The Small Magellanic Cloud and the Sagittarius dwarf spheroidal galaxy

    CERN Document Server

    De Laverny, P; Dominguez, I; Plez, B; Straniero, O; Wahlin, R; Eriksson, K; Jørgensen, U G

    2005-01-01

    We present the first results of our ongoing chemical study of carbon stars in the Local Group of galaxies. We used spectra obtained with UVES at the 8.2 m Kueyen-VLT telescope and a new grid of spherical model atmospheres for cool carbon-rich stars which include polyatomic opacities, to perform a full chemical analysis of one carbon star, BMB-B~30, in the Small Magellanic Cloud (SMC) and two, IGI95-C1 and IGI95-C3, in the Sagittarius Dwarf Spheroidal (Sgr dSph) galaxy. Our main goal is to test the dependence on the stellar metallicity of the s-process nucleosynthesis and mixing mechanism occurring in AGB stars. For these three stars, we find important s-element enhancements with respect to the mean metallicity ([M/H]), namely [s/M]$\\approx$+1.0, similar to the figure found in galactic AGB stars of similar metallicity. The abundance ratios derived between elements belonging to the first and second s-process abundance peaks, corresponding to nuclei with a magic number of neutrons N=50 (88Sr, 89Y, 90Zr) and N=82...

  18. Contribution of Neutron Star Mergers to the r-Process Chemical Evolution in the Hierarchical Galaxy Formation

    Science.gov (United States)

    Komiya, Yutaka; Shigeyama, Toshikazu

    2016-10-01

    The main astronomical source of r-process elements has not yet been identified. One plausible site is neutron star mergers (NSMs), but from the perspective of the Galactic chemical evolution, it has been pointed out that NSMs cannot reproduce the observed r-process abundance distribution of metal-poor stars at [{Fe}/{{H}}]\\lt -3. Recently, Tsujimoto & Shigeyama pointed out that NSM ejecta can spread into a much larger volume than ejecta from a supernova. We re-examine the enrichment of r-process elements by NSMs considering this difference in propagation using the chemical evolution model under the hierarchical galaxy formation. The observed r-process enhanced stars around [{Fe}/{{H}}]∼ -3 are reproduced if the star formation efficiency is lower for low-mass galaxies under a realistic delay-time distribution for NSMs. We show that a significant fraction of NSM ejecta escape from its host proto-galaxy to pollute intergalactic matter and other proto-galaxies. The propagation of r-process elements over proto-galaxies changes the abundance distribution at [{Fe}/{{H}}]\\lt -3 and obtains distribution compatible with observations of the Milky Way halo stars. In particular, the pre-enrichment of intergalactic medium explains the observed scarcity of extremely metal-poor stars without Ba and abundance distribution of r-process elements at [{Fe}/{{H}}]≲ -3.5.

  19. Stars with and without planets: Where do they come from?

    CERN Document Server

    Adibekyan, V Zh; Mena, E Delgado; Sousa, S G; Santos, N C; Israelian, G; Figueira, P; de Lis, S Bertran

    2014-01-01

    A long and thorough investigation of chemical abundances of planet-hosting stars that lasted for more than a decade has finally beared fruit. We explore a sample of 148 solar-like stars to search for a possible correlation between the slopes of the abundance trends versus condensation temperature (known as the Tc slope) both with stellar parameters and Galactic orbital parameters in order to understand the nature of the peculiar chemical signatures of these stars and the possible connection with planet formation. We find that the Tc slope correlates at a significant level (at more than 4sigma) with the stellar age and the stellar surface gravity. We also find tentative evidence that the Tc slope correlates with the mean galactocentric distance of the stars (Rmean), suggesting that stars that originated in the inner Galaxy have fewer refractory elements relative to the volatile ones. We found that the chemical peculiarities (small refractory-to-volatile ratio) of planet-hosting stars is merely a reflection of ...

  20. Chemical freeze-out parameters in Beam Energy Scan Program of STAR at RHIC

    CERN Document Server

    ,

    2014-01-01

    The STAR experiment at RHIC has completed its first phase of the Beam Energy Scan (BES-I) program to understand the phase structure of the quantum chromodynamics (QCD). The bulk properties of the system formed in Au+Au collisions at different center of mass energy $\\sqrt{s_{NN}} = $ 7.7, 11.5, 19.6, 27, and 39 GeV have been studied from the data collected in the year 2010 and 2011. The centrality and energy dependence of mid-rapidity ($|y|$ < 0.1) particle yields, and ratios are presented here. The chemical freeze-out parameters are extracted using measured particle ratios within the framework of a statistical model.

  1. Chemical freeze-out parameters in Beam Energy Scan Program of STAR at RHIC

    Directory of Open Access Journals (Sweden)

    Das Sabita

    2015-01-01

    Full Text Available The STAR experiment at RHIC has completed its first phase of the Beam Energy Scan (BES-I program to understand the phase structure of the quantum chromodynamics (QCD. The bulk properties of the system formed in Au+Au collisions at different center of mass energy √sNN = 7.7, 11.5, 19.6, 27, and 39 GeV have been studied from the data collected in the year 2010 and 2011. The centrality and energy dependence of mid-rapidity (|y| < 0.1 particle yields, and ratios are presented here. The chemical freeze-out parameters are extracted using measured particle ratios within the framework of a statistical model.

  2. Chemical freeze-out parameters in Beam Energy Scan Program of STAR at RHIC

    Science.gov (United States)

    Das, Sabita

    2015-03-01

    The STAR experiment at RHIC has completed its first phase of the Beam Energy Scan (BES-I) program to understand the phase structure of the quantum chromodynamics (QCD). The bulk properties of the system formed in Au+Au collisions at different center of mass energy √sNN = 7.7, 11.5, 19.6, 27, and 39 GeV have been studied from the data collected in the year 2010 and 2011. The centrality and energy dependence of mid-rapidity (|y| < 0.1) particle yields, and ratios are presented here. The chemical freeze-out parameters are extracted using measured particle ratios within the framework of a statistical model.

  3. Determining stellar atmospheric parameters and chemical abundances of FGK stars with iSpec

    CERN Document Server

    Blanco-Cuaresma, S; Heiter, U; Jofré, P

    2014-01-01

    Context. An increasing number of high-resolution stellar spectra is available today thanks to many past and ongoing extensive spectroscopic surveys. Consequently, the scientific community needs automatic procedures to derive atmospheric parameters and individual element abundances. Aims. Based on the widely known SPECTRUM code by R. O. Gray, we developed an integrated spectroscopic software framework suitable for the determination of atmospheric parameters (i.e., effective temperature, surface gravity, metallicity) and individual chemical abundances. The code, named iSpec and freely distributed, is written mainly in Python and can be used on different platforms. Methods. iSpec can derive atmospheric parameters by using the synthetic spectral fitting technique and the equivalent width method. We validated the performance of both approaches by developing two different pipelines and analyzing the Gaia FGK benchmark stars spectral library. The analysis was complemented with several tests designed to assess other ...

  4. Deep SDSS optical spectroscopy of distant halo stars. III. Chemical analysis of extremely metal-poor stars

    Science.gov (United States)

    Fernández-Alvar, E.; Allende Prieto, C.; Beers, T. C.; Lee, Y. S.; Masseron, T.; Schneider, D. P.

    2016-09-01

    Aims: We present the results of an analysis of 107 extremely metal-poor (EMP) stars with metallicities lower than [Fe/H] =- 3.0, identified in medium-resolution spectra in the Sloan Digital Sky Survey (SDSS). Our analysis provides estimates of the stellar effective temperatures and surface gravities, as well as iron, calcium, and magnesium abundances. Methods: We followed the same method as in previous papers of this series. The method is based on comparisons of the observed spectra with synthetic spectra. The abundances of Fe, Ca, and Mg were determined by fitting spectral regions that are dominated by lines of each element. In addition, we present a technique to determine upper limits for elements whose features are not detected in a given spectrum. We also analyzed our sample with the SEGUE stellar parameter pipeline to obtain additional determinations of the atmospheric parameters and iron and alpha-element abundances, which we thend compare with ours. In addition, we used these parameters to infer [C/Fe] ratios. Results: Ca is typically the only element in these spectra with a moderate to low signal-to-noise ratio and medium resolution in this metallicity regime with lines that are sufficiently strong to reliably measure its abundance. Fe and Mg exhibit weaker features that in most cases only provide upper limits. We measured [Ca/Fe] and [Mg/Fe] for EMP stars in the SDSS spectra and conclude that most of the stars exhibit the typical enhancement level for α-elements, ~+0.4, although some stars for which only [Fe/H] upper limits could be estimated indicate higher [α/Fe] ratios. We also find that 26% of the stars in our sample can be classified as carbon-enhanced metal-poor (CEMP) stars and that the frequency of CEMP stars also increases with decreasing metallicity, as has been reported for previous samples. We identify a rare, bright (g = 11.90) EMP star, SDSS J134144.61+474128.6, with [Fe/H] =- 3.27, [C/Fe] = + 0.95, and elevated magnesium ([Mg/Fe] =+ 0

  5. The Gaia-ESO Survey: chemical signatures of rocky accretion in a young solar-type star

    CERN Document Server

    Spina, L; Randich, S; Sacco, G G; Jeffries, R; Magrini, L; Franciosini, E; Meyer, M R; Tautvaišienė, G; Gilmore, G; Alfaro, E J; Prieto, C Allende; Bensby, T; Bragaglia, A; Flaccomio, E; Koposov, S E; Lanzafame, A C; Costado, M T; Hourihane, A; Lardo, C; Lewis, J; Monaco, L; Morbidelli, L; Sousa, S G; Worley, C C; Zaggia, S

    2015-01-01

    It is well known that newly formed planetary systems undergo processes of orbital reconfiguration and planetary migration. As a result, planets or protoplanetary objects may accrete onto the central star, being fused and mixed into its external layers. If the accreted mass is sufficiently high and the star has a sufficiently thin convective envelope, such events may result in a modification of the chemical composition of the stellar photosphere in an observable way, enhancing it with elements that were abundant in the accreted mass. The recent Gaia-ESO Survey observations of the 10-20 Myr old Gamma Velorum cluster have enabled identifying a star that is significantly enriched in iron with respect to other cluster members. In this Letter we further investigate the abundance pattern of this star, showing that its abundance anomaly is not limited to iron, but is also present in the refractory elements, whose overabundances are correlated with the condensation temperature. This finding strongly supports the hypot...

  6. The chemical composition of donors in AM CVn stars and ultra-compact X-ray binaries: observational tests of their formation

    OpenAIRE

    Nelemans, G.A.; Yungelson, L. R.; Van Der Sluys, M. V.; Tout, C. A.

    2009-01-01

    We study the formation of ultra-compact binaries (AM CVn stars and ultra-compact X-ray binaries) with emphasis on the surface chemical abundances of the donors in these systems. Hydrogen is not convincingly detected in the spectra of these systems. Three different proposed formation scenarios involve different donor stars, white dwarfs, helium stars or evolved main-sequence stars. Using detailed evolutionary calculations we show that the abundances of helium WD donors and evolved main-sequenc...

  7. MODELING THE ATOMIC-TO-MOLECULAR TRANSITION AND CHEMICAL DISTRIBUTIONS OF TURBULENT STAR-FORMING CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Offner, Stella S. R. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Bisbas, Thomas G.; Viti, Serena [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6B (United Kingdom); Bell, Tom A., E-mail: stella.offner@yale.edu [Centro de Astrobiologia (CSIC-INTA), Carretera de Ajalvir, km 4, E-28850 Madrid (Spain)

    2013-06-10

    We use 3D-PDR, a three-dimensional astrochemistry code for modeling photodissociation regions (PDRs), to post-process hydrodynamic simulations of turbulent, star-forming clouds. We focus on the transition from atomic to molecular gas, with specific attention to the formation and distribution of H, C{sup +}, C, H{sub 2}, and CO. First, we demonstrate that the details of the cloud chemistry and our conclusions are insensitive to the simulation spatial resolution, to the resolution at the cloud edge, and to the ray angular resolution. We then investigate the effect of geometry and simulation parameters on chemical abundances and find weak dependence on cloud morphology as dictated by gravity and turbulent Mach number. For a uniform external radiation field, we find similar distributions to those derived using a one-dimensional PDR code. However, we demonstrate that a three-dimensional treatment is necessary for a spatially varying external field, and we caution against using one-dimensional treatments for non-symmetric problems. We compare our results with the work of Glover et al., who self-consistently followed the time evolution of molecule formation in hydrodynamic simulations using a reduced chemical network. In general, we find good agreement with this in situ approach for C and CO abundances. However, the temperature and H{sub 2} abundances are discrepant in the boundary regions (A{sub v} {<=} 5), which is due to the different number of rays used by the two approaches.

  8. Chemical enrichment of Damped Lyman Alpha systems as a direct constraint on Population III star formation

    CERN Document Server

    Kulkarni, Girish; Hennawi, Joseph F; Vangioni, Elisabeth

    2013-01-01

    Damped Ly-alpha absorbers (DLAs) can be used to measure gas-phase metallicities at large cosmological lookback times with high precision. Relative abundances can still be measured accurately deep into the reionization epoch (z > 6) using transitions redward of Ly-alpha. Here we study chemical evolution of DLAs using a constrained model for evolution of galaxies and IGM to determine the degree to which DLA abundance measurements can probe Population III enrichment. We find that if the critical metallicity of Population III to II transition is 5. Thus, a sample of DLA abundance measurements at high redshift holds the promise to constrain Population III IMF. A sample of just 10 DLAs with relative abundances measured to an accuracy of 0.1 dex is sufficient to constrain the Population III IMF at 4-sigma. These constraints may prove stronger than other probes such as metal-poor stars and individual DLAs. Our results provide a global picture of the cosmic thermal, ionization, and chemical evolution, and can rule ou...

  9. Chemical compositions and plasma parameters of planetary nebulae with Wolf-Rayet and wels type central stars

    CERN Document Server

    Girard, P; Acker, A

    2006-01-01

    Aims: Chemical compositions and other properties of planetary nebulae around central stars of spectral types [WC], [WO], and wels are compared with those of `normal' central stars, in order to clarify the evolutionary status of each type and their interrelation. Methods: We use plasma diagnostics to derive from optical spectra the plasma parameters and chemical compositions of 48 planetary nebulae. We also reanalyze the published spectra of a sample of 167 non-WR PN. The results as well as the observational data are compared in detail with those from other studies of the objects in common. Results: The central star's spectral type is clearly correlated with electron density, temperature and excitation class of the nebula, [WC] nebulae tend to be smaller than the other types. All this corroborates the view of an evolutionary sequence from cool [WC 11] central stars inside dense, low excitation nebulae towards hot [WO 1] stars with low density, high excitation nebulae. The wels PN, however, appear to be a separ...

  10. Chemical tagging in the SDSS-III/APOGEE survey: new identifications of halo stars with globular cluster origins

    CERN Document Server

    Martell, Sarah; Lucatello, Sara; Schiavon, Ricardo; Meszaros, Szabolcs; Prieto, Carlos Allende; Hernandez, Anibal Garcia; Beers, Tim; Nidever, David

    2016-01-01

    We present new identifications of five red giant stars in the Galactic halo with chemical abundance patterns that indicate they originally formed in globular clusters. Using data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Survey available through Sloan Digital Sky Survey Data Release 12 (DR12), we first identify likely halo giants, and then search those for the well-known chemical tags associated with globular clusters, specifically enrichment in nitrogen and aluminum. We find that 2% of the halo giants in our sample have this chemical signature, in agreement with previous results. Following the interpretation in our previous work on this topic, this would imply that at least 13% of halo stars originally formed in globular clusters. Recent developments in the theoretical understanding of globular cluster formation raise questions about that interpretation, and we concede the possibility that these migrants represent a small fraction of the halo field. There are roughly as many st...

  11. Searching for dust around hyper metal poor stars

    Energy Technology Data Exchange (ETDEWEB)

    Venn, Kim A.; Divell, Mike; Starkenburg, Else [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2 (Canada); Puzia, Thomas H. [Institute of Astrophysics, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, 7820436 Macul, Santiago (Chile); Côté, Stephanie [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Lambert, David L., E-mail: kvenn@uvic.ca [McDonald Observatory and the Department of Astronomy, University of Texas at Austin, RLM 15.308, Austin, TX 78712 (United States)

    2014-08-20

    We examine the mid-infrared fluxes and spectral energy distributions for stars with iron abundances [Fe/H] <–5, and other metal-poor stars, to eliminate the possibility that their low metallicities are related to the depletion of elements onto dust grains in the formation of a debris disk. Six out of seven stars examined here show no mid-IR excesses. These non-detections rule out many types of circumstellar disks, e.g., a warm debris disk (T ≤ 290 K), or debris disks with inner radii ≤1 AU, such as those associated with the chemically peculiar post-asymptotic giant branch spectroscopic binaries and RV Tau variables. However, we cannot rule out cooler debris disks, nor those with lower flux ratios to their host stars due to, e.g., a smaller disk mass, a larger inner disk radius, an absence of small grains, or even a multicomponent structure, as often found with the chemically peculiar Lambda Bootis stars. The only exception is HE0107-5240, for which a small mid-IR excess near 10 μm is detected at the 2σ level; if the excess is real and associated with this star, it may indicate the presence of (recent) dust-gas winnowing or a binary system.

  12. The Lorentz force in atmospheres of CP stars: 56 Arietis

    CERN Document Server

    Shulyak, D; Valyavin, G; Lee, B -C; Galazutdinov, G; Kim, K -M; Han, Inwoo; Burlakova, T

    2009-01-01

    The presence of electric currents in the atmospheres of magnetic chemically peculiar (mCP) stars could bring important theoretical constrains about the nature and evolution of magnetic field in these stars. The Lorentz force, which results from the interaction between the magnetic field and the induced currents, modifies the atmospheric structure and induces characteristic rotational variability of pressure-sensitive spectroscopic features, that can be analysed using phase-resolved spectroscopic observations. In this work we continue the presentation of results of the magnetic pressure studies in mCP stars focusing on the high-resolution spectroscopic observations of Bp star 56Ari. We have detected a significant variability of the Halpha, Hbeta, and Hgamma spectral lines during full rotation cycle of the star. Then these observations are interpreted in the framework of the model atmosphere analysis, which accounts for the Lorentz force effects. We used the LLmodels stellar model atmosphere code for the calcul...

  13. Chemical mixing by turbulent convection in the overshooting region below the convective envelope of RGB stars

    Institute of Scientific and Technical Information of China (English)

    Xiang-Jun Lai; Yan Li

    2011-01-01

    Based on the turbulent convection model (TCM),we investigate chemical mixing in the bottom overshooting region of the convective envelope of intermediatemass stars,focusing on its influence on the formation and extension of blue loops in the Hertzsprung-Russell (HR) diagram.A diffusive mixing model is adopted during the Red Giant Branch (RGB) phase.The properties of the blue loop are changed by modification of the element profiles above the H-burning shell,which results from the incomplete mixing in the bottom overshooting region when the stellar model evolves up along the RGB.Such modification of the element profiles will lead to an increase of opacity in the region just above the H-burning shell and a decrease of opacity in the outer homogeneous convection zone,which will result in a quick decrease of the H-shell nuclear luminosity LH when the stellar model evolves from the RGB tip to its bottom and,finally,a much weaker and smaller convection zone will be obtained in the stellar envelope.This helps to form a longer blue loop.The extension of the blue loop is very sensitive to the parameters (Cx and αTCM ) of the diffusive mixing model and of the TCM.The results mainly show that:1) comparing the results of the classical model with the mixing-length theory,the lengths of the obtained blue loops with different combinations of the values of Cx and αTCM are all increased and the length of the blue loop increases with the values of parameters CX and αTCM; 2) the diffusive mixing model can significantly extend the time of stellar models lingering on the blue side of the HR diagram,even though the length of the blue loop for the 7M(O) star has a less prominent difference between the classical and diffusive mixing model;3) both the observations referring to the location of the Cepheid instability strip and the number ratio NB/NR of blue to red evolved stars in the Galactic open clusters can confine the two parameters in a range of 0.5 ≤ αTCM ≤ 0.9 and 10-5 ≤ CX

  14. Chemical gradients in the Milky Way from the RAVE data. II. Giant stars

    CERN Document Server

    Boeche, C; Piffl, T; Just, A; Steinmetz, M; Grebel, E K; Sharma, S; Kordopatis, G; Gilmore, G; Chiappini, C; Freeman, K; Gibson, B K; Munari, U; Siviero, A; Bienaymé, O; Navarro, J F; Parker, Q A; Reid, W; Seabroke, G M; Watson, F G; Wyse, R F G; Zwitter, T

    2014-01-01

    We provide new constraints on the chemo-dynamical models of the Milky Way by measuring the radial and vertical chemical gradients for the elements Mg, Al, Si, Ti, and Fe in the Galactic disc and the gradient variations as a function of the distance from the Galactic plane ($Z$). We selected a sample of giant stars from the RAVE database using the gravity criterium 1.7$<$log g$<$2.8. We created a RAVE mock sample with the Galaxia code based on the Besan\\c con model and selected a corresponding mock sample to compare the model with the observed data. We measured the radial gradients and the vertical gradients as a function of the distance from the Galactic plane $Z$ to study their variation across the Galactic disc. The RAVE sample exhibits a negative radial gradient of $d[Fe/H]/dR=-0.054$ dex kpc$^{-1}$ close to the Galactic plane ($|Z|<0.4$ kpc) that becomes flatter for larger $|Z|$. Other elements follow the same trend although with some variations from element to element. The mock sample has radial...

  15. Modeling the Atomic-to-Molecular Transition and Chemical Distributions of Turbulent Star-Forming Clouds

    CERN Document Server

    Offner, Stella S R; Viti, Serena; Bell, Thomas A

    2013-01-01

    We use 3D-PDR, a three-dimensional astrochemistry code for modeling photodissociation regions (PDRs), to post-process hydrodynamic simulations of turbulent, star-forming clouds. We focus on the transition from atomic to molecular gas, with specific attention to the formation and distribution of H, C+, C, H2 and CO. First, we demonstrate that the details of the cloud chemistry and our conclusions are insensitive to the simulation spatial resolution, to the resolution at the cloud edge, and to the ray angular resolution. We then investigate the effect of geometry and simulation parameters on chemical abundances and find weak dependence on cloud morphology as dictated by gravity and turbulent Mach number. For a uniform external radiation field, we find similar distributions to those derived using a one-dimensional PDR code. However, we demonstrate that a three-dimensional treatment is necessary for a spatially varying external field, and we caution against using one-dimensional treatments for non-symmetric probl...

  16. The chemical composition of the Orion star-forming region. III. C, N, Ne, Mg and Fe abundances in B-type stars revisited

    CERN Document Server

    Nieva, Maria-Fernanda

    2011-01-01

    Early B-type stars are invaluable indicators for elemental abundances of their birth environments. In contrast to the surrounding neutral interstellar matter (ISM) and HII regions their chemical composition is unaffected by depletion onto dust grains and by the derivation of different abundances from recombination and collisional lines. In combination with ISM or nebular gas-phase abundances they facilitate the dust-phase composition to be constrained. Precise abundances of C, N, Mg, Ne, Fe in early B-type stars in the Orion star-forming region are determined in order to: a) review previous determinations using a self-consistent quantitative spectral analysis based on modern stellar atmospheres and recently updated model atoms, b) complement results found in Paper I for oxygen and silicon, c) establish an accurate and reliable set of stellar metal abundances to constrain the dust-phase composition of the Orion HII region in Paper II of the series. A detailed, self-consistent spectroscopic study of a sample of...

  17. High-Resolution Spectroscopy of Extremely Metal-Poor Stars from SDSS/SEGUE: I. Atmospheric Parameters and Chemical Compositions

    CERN Document Server

    Aoki, Wako; Lee, Young Sun; Honda, Satoshi; Ito, Hiroko; Takada-Hidai, Masahide; Frebel, Anna; Suda, Takuma; Fujimoto, Masatuki Y; Carollo, Daniela; Sivarani, Thirupathi

    2012-01-01

    Chemical compositions are determined based on high-resolution spectroscopy for 137 candidate extremely metal-poor (EMP) stars selected from the Sloan Digital Sky Survey (SDSS) and its first stellar extension, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). High-resolution spectra with moderate signal-to-noise (S/N) ratios were obtained with the High Dispersion Spectrograph of the Subaru Telescope. Most of the sample (approximately 80%) are main-sequence turn-off stars, including dwarfs and subgiants. Four cool main-sequence stars, the most metal-deficient such stars known, are included in the remaining sample. Good agreement is found between effective temperatures estimated by the SEGUE stellar parameter pipeline, based on the SDSS/SEGUE medium-resolution spectra, and those estimated from the broadband $(V-K)_0$ and $(g-r)_0$ colors. Our abundance measurements reveal that 70 stars in our sample have [Fe/H] $ +0.7$) among the 25 giants in our sample is as high as 36%, while only a lowe...

  18. Chemical compositions of six metal-poor stars in the ultra-faint dwarf spheroidal galaxy Bo\\"otes I

    CERN Document Server

    Ishigaki, Miho N; Arimoto, Nobuo; Okamoto, Sakurako

    2014-01-01

    Ultra-faint dwarf galaxies recently discovered around the Milky Way (MW) contain extremely metal-poor stars, and might represent the building blocks of low-metallicity components of the MW. Among them, the Bo\\"otes I dwarf spheroidal galaxy is of particular interest because of its exclusively old stellar population. We determine chemical compositions of six red giant stars in Bo\\"otes I, based on the high-resolution spectra obtained with the High Dispersion Spectrograph mounted on the Subaru Telescope. Abundances of 12 elements, including C, Na, alpha, Fe-peak, and neutron capture elements, were determined for the sample stars. The abundance results were compared to those in field MW halo stars previously obtained using an abundance analysis technique similar to the present study. We confirm the low metallicity of Boo-094 ([Fe/H]=-3.4). Except for this star, the abundance ratios ([X/Fe]) of elements lighter than zinc are generally homogeneous with small scatter around the mean values in the metallicities span...

  19. Contribution of Neutron Star Mergers to the R-process Chemical Evolution in the Hierarchical Galaxy Formation

    CERN Document Server

    Komiya, Yutaka

    2016-01-01

    The main astronomical source of r-process elements has not yet been identified. One plausible site is neutron star mergers (NSMs), but from perspective of the Galactic chemical evolution, it has been pointed out that NSMs cannot reproduce the observed r-process abundance distribution of metal-poor stars at [Fe/H] $< -3$. Recently, Tsujimoto & Shigeyama (2014) pointed out that NSM ejecta can spread into much larger volume than ejecta from a supernova. We re-examine the enrichment of r-process elements by NSMs considering this difference in propagation using the chemical evolution model under the hierarchical galaxy formation. The observed r-process enhanced stars around [Fe/H] $\\sim -3$ are reproduced if the star formation efficiency is lower for low-mass galaxies under a realistic delay time distribution for NSMs. We show that a significant fraction of NSM ejecta escape from its host proto-galaxy to pollute intergalactic matter and other proto-galaxies. The propagation of r-process elements over proto-...

  20. Rayleigh scattering in the atmospheres of hot stars

    Science.gov (United States)

    Fišák, J.; Krtička, J.; Munzar, D.; Kubát, J.

    2016-05-01

    Context. Rayleigh scattering is a result of an interaction of photons with bound electrons. Rayleigh scattering is mostly neglected in calculations of hot star model atmospheres because most of the hydrogen atoms are ionized and the heavier elements have a lower abundance than hydrogen. In atmospheres of some chemically peculiar stars, helium overabundant regions containing singly ionized helium are present and Rayleigh scattering can be a significant opacity source. Aims: We evaluate the contribution of Rayleigh scattering by neutral hydrogen and singly ionized helium in the atmospheres of hot stars with solar composition and in the atmospheres of helium overabundant stars. Methods: We computed several series of model atmospheres using the TLUSTY code and emergent fluxes using the SYNSPEC code. These models describe atmospheres of main sequence B-type stars with different helium abundance. We used an existing grid of models for atmospheres with solar chemical composition and we calculated an additional grid for helium-rich stars with N(He)/N(H) = 10. Results: Rayleigh scattering by neutral hydrogen can be neglected in atmospheres of hot stars, while Rayleigh scattering by singly ionized helium can be a non-negligible opacity source in some hot stars, especially in helium-rich stars.

  1. A Peculiar Tripartite Entangled State

    Institute of Scientific and Technical Information of China (English)

    黄燕霞; 於亚飞; 詹明生

    2003-01-01

    We present a scheme to prepare two-atom Einstein-Podolsky-Rosen states and three-atom entangled states via cavity quantum electrodynamics, and it can be realized experimentally. Importantly, we find that in the set of tripartite entangled states prepared by our scheme there is a peculiar tripartite entangled state except the Greenberger-Horne-Zeilinger (GHZ) state. The peculiar tripartite entangled states have double feature of the GHZ state (i.e. T123 > 0) and W state (i.e. the remaining reduce density matrices ρij retain entanglement according to the positive partial transformation (PPT) criterion) simultaneously. However, its entanglement properties are not completely identical either to the GHZ state or to the W state. It is interesting that for peculiar entanglement properties, the remaining reduced density matrices ρij can retain entanglement or disentanglement independently, which can be chosen freely according to our need.

  2. Interplay between diffusion, accretion and nuclear reactions in the atmospheres of Sirius and Przybylski's star

    CERN Document Server

    Yushchenko, A; Goriely, S; Shavrina, A; Kang, Y W; Rostopchin, S; Valyavin, G; Mkrtichian, D; Hatzes, A; Lee, B C; Kim, C; Yushchenko, Alexander; Gopka, Vera; Goriely, Stephane; Shavrina, Angelina; Kang, Young Woon; Rostopchin, Sergey; Valyavin, Gennady; Mkrtichian, David; Hatzes, Artie; Lee, Byeong-Cheol; Kim, Chulhee

    2006-01-01

    The abundance anomalies in chemically peculiar B-F stars are usually explained by diffusion of chemical elements in the stable atmospheres of these stars. But it is well known that Cp stars with similar temperatures and gravities show very different chemical compositions. We show that the abundance patterns of several stars can be influenced by accretion and (or) nuclear reactions in stellar atmospheres. We report the result of determination of abundances of elements in the atmosphere of hot Am star: Sirius A and show that Sirius A was contaminated by s-process enriched matter from Sirius B (now a white dwarf). The second case is Przybylski's star. The abundance pattern of this star is the second most studied one after the Sun with the abundances determined for about 60 chemical elements. Spectral lines of radioactive elements with short decay times were found in the spectrum of this star. We report the results of investigation on the stratification of chemical elements in the atmosphere of Przybylski's star ...

  3. Asteroseismology of Pulsating Stars

    Indian Academy of Sciences (India)

    Santosh Joshi; Yogesh C. Joshi

    2015-03-01

    The success of helioseismology is due to its capability of measuring -mode oscillations in the Sun. This allows us to extract information on the internal structure and rotation of the Sun from the surface to the core. Similarly, asteroseismology is the study of the internal structure of the stars as derived from stellar oscillations. In this review we highlight the progress in the observational asteroseismology, including some basic theoretical aspects. In particular, we discuss our contributions to asteroseismology through the study of chemically peculiar stars under the 'Nainital-Cape Survey' project being conducted at ARIES, Nainital, since 1999. This survey aims to detect new rapidly-pulsating Ap (roAp) stars in the northern hemisphere. We also discuss the contribution of ARIES towards the asteroseismic study of the compact pulsating variables. We comment on the future prospects of our project in the light of the new optical 3.6-m telescope to be installed at Devasthal (ARIES). Finally, we present a preliminary optical design of the high-speed imaging photometers for this telescope.

  4. Lithium abundances in nearby FGK dwarf and subgiant stars: internal destruction, Galactic chemical evolution, and exoplanets

    CERN Document Server

    Ramirez, I; Lambert, D L; Prieto, C Allende

    2012-01-01

    We derive atmospheric parameters and lithium abundances for 671 stars and include our measurements in a literature compilation of 1381 dwarf and subgiant stars. First, a "lithium desert" in the effective temperature (Teff) versus lithium abundance (A_Li) plane is observed such that no stars with Teff~6075 K and A_Li~1.8 are found. We speculate that most of the stars on the low A_Li side of the desert have experienced a short-lived period of severe surface lithium destruction as main-sequence or subgiant stars. Next, we search for differences in the lithium content of thin-disk and thick-disk stars, but we find that internal processes have erased from the stellar photospheres their possibly different histories of lithium enrichment. Nevertheless, we note that the maximum lithium abundance of thick-disk stars is nearly constant from [Fe/H]=-1.0 to -0.1, at a value that is similar to that measured in very metal-poor halo stars (A_Li~2.2). Finally, differences in the lithium abundance distribution of known planet...

  5. Ultraviolet and visual flux and line variations of one of the least variable Bp stars HD 64740

    CERN Document Server

    Krticka, J; Markova, H; Mikulasek, Z; Zverko, J; Prvak, M; Skarka, M

    2013-01-01

    The light variability of hot magnetic chemically peculiar stars is typically caused by the flux redistribution in spots with peculiar abundance. This raises the question why some stars with surface abundance spots show significant rotational light variability, while others do not. We study the Bp star HD 64740 to investigate how its remarkable inhomogeneities in the surface distribution of helium and silicon, and the corresponding strong variability of many spectral lines, can result in one of the faintest photometric variabilities among the Bp stars. We used model atmospheres and synthetic spectra calculated for the silicon and helium abundances from surface abundance maps to predict the ultraviolet and visual light and line variability of HD 64740. The predicted fluxes and line profiles were compared with the observed ones derived with the IUE, HST, and Hipparcos satellites and with spectra acquired using the FEROS spectrograph at the 2.2m MPG/ESO telescope. We are able to reproduce the observed visual ligh...

  6. The interplay between chemical and mechanical feedback from the first generation of stars

    CERN Document Server

    Maio, Umberto; Johnson, Jarrett L; Ciardi, Benedetta

    2010-01-01

    We study cosmological simulations of early structure formation, including non-equilibrium molecular chemistry, metal pollution from stellar evolution, transition from population III (popIII) to population II (popII) star formation, regulated by a given critical metallicity, and feedback effects. We investigate the properties of early metal spreading from the different stellar populations and its interplay with primordial molecular gas. We find that, independently of the details about popIII modeling, after the onset of star formation, regions enriched below the critical level are mostly found in isolated environments, while popII star formation regions are much more clumped. Typical star forming haloes show average SN driven outflow rates of up to 10^{-4} Msun/yr in enriched gas, initially leaving the original star formation regions almost devoid of metals. The polluted material, which is gravitationally incorporated in over-dense environments on timescales of 10^7 yr, is mostly coming from external, nearby s...

  7. Towards a theory of rapidly oscillating Ap stars

    CERN Document Server

    Gough, Douglas

    2011-01-01

    Peculiar A stars are so named because they exhibit abundance peculiarities in their atmospheres. It is believed that these arise as a result of differentiation of chemical species in large magnetic spots in which convective mixing is inhibited: there might be just two antipodal spots, whose axis is inclined to the axis of rotation. Many of the Ap stars that are rotating slowly also pulsate, with periods substantially shorter than the period of the fundamental radial mode. The pulsations appear to be nonradial, but axisymmetric, with their common axis usually aligned with the axis of the spots. In this lecture I shall first discuss the magnetic suppression of convection in the spots, and then I shall try to explain the pulsation phenomenon, reviewing some of the suggestions that have been made to explain the alignment and the excitation mechanism, and finally raising some issues that need to be addressed.

  8. Searching for Dust around Hyper Metal-Poor Stars

    CERN Document Server

    Venn, Kim A; Divell, Mike; Cote, Stephanie; Lambert, David L; Starkenburg, Else

    2014-01-01

    We examine the mid-infrared fluxes and spectral energy distributions for metal-poor stars with iron abundances [Fe/H] $\\lesssim-5$, as well as two CEMP-no stars, to eliminate the possibility that their low metallicities are related to the depletion of elements onto dust grains in the formation of a debris disk. Six out of seven stars examined here show no mid-IR excess. These non-detections rule out many types of circumstellar disks, e.g. a warm debris disk ($T\\!\\le\\!290$ K), or debris disks with inner radii $\\le1$ AU, such as those associated with the chemically peculiar post-AGB spectroscopic binaries and RV Tau variables. However, we cannot rule out cooler debris disks, nor those with lower flux ratios to their host stars due to, e.g. a smaller disk mass, a larger inner disk radius, an absence of small grains, or even a multicomponent structure, as often found with the chemically peculiar Lambda Bootis stars. The only exception is HE0107-5240, for which a small mid-IR excess near 10 microns is detected at ...

  9. Ultra-weak magnetic fields in Am stars: β UMa and θ Leo

    Science.gov (United States)

    Blazère, A.; Petit, P.; Lignières, F.; Aurière, M.; Böhm, T.; Wade, G.

    2014-12-01

    An extremely weak circularly-polarized signature was recently discovered in spectral lines of the chemically peculiar Am star Sirius A (Petit et al. 2011). This signal was interpreted as a Zeeman signature related to a sub-gauss longitudinal magnetic field, constituting the first detection of a surface magnetic field in an Am star. We present here ultra-deep spectropolarimetric observations of two other bright Am stars, β UMa and θ Leo, observed with the NARVAL spectropolarimeter. The line profiles of the two stars display circularly-polarized signatures similar in shape to the observations gathered for Sirius A. These new detections suggest that very weak magnetic fields may be present in the photospheres of a significant fraction of intermediate-mass stars, although the strongly asymmetric Zeeman signatures measured so far in Am stars (featuring a prominent positive lobe and no detected negative lobe) are not expected in the standard theory of the Zeeman effect.

  10. Ultra weak magnetic fields in Am stars: Beta UMa and theta Leo

    CERN Document Server

    Blazère, Aurore; Lignières, François; Aurière, Michel; Böhm, Torsten; Wade, Gregg

    2014-01-01

    An extremely weak circularly-polarized signature was recently discovered in spectral lines of the chemically peculiar Am star Sirius A (Petit et al. 2011). This signal was interpreted as a Zeeman signature related to a sub-gauss longitudinal magnetic field, constituting the first detection of a surface magnetic field in an Am star. We present here ultra-deep spectropolarimetric observations of two other bright Am stars, $\\beta$ UMa and $\\theta$ Leo, observed with the NARVAL spectropolarimeter. The line profiles of the two stars display circularly-polarized signatures similar in shape to the observations gathered for Sirius A. These new detections suggest that very weak magnetic fields may be present in the photospheres of a significant fraction of intermediate-mass stars, although the strongly asymmetric Zeeman signatures measured so far in Am stars (featuring a prominent positive lobe and no detected negative lobe) are not expected in the standard theory of the Zeeman effect.

  11. Deep SDSS Optical Spectroscopy of Distant Halo Stars. III. Chemical analysis of extremely metal-poor stars

    CERN Document Server

    Fernandez-Alvar, E; Beers, T C; Lee, Y S; Masseron, T; Schneider, D P

    2016-01-01

    We present the results of an analysis for 107 extremely metal-poor (EMP) stars with metallicities less than [Fe/H] = -3.0, identified from medium-resolution spectra in SDSS. We follow a methodology based on comparisons of the observed spectra with synthetic spectra. The abundances of Fe, Ca, and Mg are determined by fitting spectral regions dominated by lines of each element. In addition, we present a technique to determine upper limits for elements whose features are not detected in a given spectrum. We also analyse our sample with the SEGUE Stellar Parameter Pipeline, in order to obtain additional determinations of the atmospheric parameters, iron and alpha-element abundances, to compare with ours, and to infer [C/Fe] ratios. We find that, in these moderate to low signal-to-noise and medium-resolution spectra in this metallicity regime, Ca is usually the only element that exhibits lines that are sufficiently strong to reliably measure its abundance. Fe and Mg exhibit weaker features that, in most cases, onl...

  12. Chemical abundances of the metal-poor horizontal-branch stars CS 22186-005 and CS 30344-033

    CERN Document Server

    Caliskan, S; Bonifacio, P; Christlieb, N; Monaco, L; Beers, T C; Albayrak, B; Sbordone, L

    2014-01-01

    We report on a chemical-abundance analysis of two very metal-poor horizontal-branch stars in the Milky Way halo: CS 22186-005 ([Fe/H]=-2.70) and CS 30344-033 ([Fe/H]=-2.90). The analysis is based on high-resolution spectra obtained at ESO, with the spectrographs HARPS at the 3.6 m telescope, and UVES at the VLT. We adopted one-dimensional, plane-parallel model atmospheres assuming local thermodynamic equilibrium. We derived elemental abundances for 13 elements for CS 22186-005 and 14 elements for CS 30344-033. This study is the first abundance analysis of CS 30344-033. CS 22186-005 has been analyzed previously, but we report here the first measurement of nickel (Ni; Z = 28) for this star, based on twenty-two NiI lines ([Ni/Fe]=-0.21$\\pm$0.02); the measurement is significantly below the mean found for most metal-poor stars. Differences of up to 0.5 dex in [Ni/Fe] ratios were determined by different authors for the same type of stars in the literature, which means that it is not yet possible to conclude that th...

  13. The C/O ratio at low metallicity: constraints on early chemical evolution from observations of Galactic halo stars

    CERN Document Server

    Fabbian, D; Asplund, M; Pettini, M; Akerman, C

    2008-01-01

    We present new measurements of the abundances of carbon and oxygen derived from high-excitation C I and O I absorption lines in metal-poor halo stars, with the aim of clarifying the main sources of these two elements in the early stages of the chemical enrichment of the Galaxy. We target 15 new stars compared to our previous study, with an emphasis on additional C/O determinations in the crucial metallicity range -3<[Fe/H]<-2. Departures from local thermodynamic equilibrium were accounted for in the line formation for both carbon and oxygen. The non-LTE effects are very strong at the lowest metallicities but, contrary to what has sometimes been assumed in the past due to a simplified assessment, of different degrees for the two elements. In addition, for the 28 stars with [Fe/H]<-1 previously analysed, stellar parameters were re-derived and non-LTE corrections applied in the same fashion as for the rest of our sample, giving consistent abundances for 43 halo stars in total. The new observations and n...

  14. Characterizing the local population of star-forming and passive galaxies with analytical models of chemical evolution

    CERN Document Server

    Spitoni, E; Matteucci, F

    2016-01-01

    Analytical models of chemical evolution, including inflow and outflow of gas, are important tools to study how the metal content in galaxies evolves as a function of time. In this work, we present new analytical solutions for the evolution of the gas mass, total mass and metallicity of a galactic system, when a decaying exponential infall rate of gas and galactic winds are assumed. We apply our model to characterize a sample of local star-forming and passive galaxies from the Sloan Digital Sky Survey data, with the aim of reproducing their observed mass-metallicity relation; in this way, we can derive how the two populations of star-forming and passive galaxies differ in their particular distribution of ages, formation time scales, infall masses and mass loading factors. We find that the local passive galaxies are on average older and assembled on shorter typical time-scales than the local star-forming ones; on the other hand, the larger mass star-forming galaxies show generally older ages and longer typical ...

  15. Spectroscopy of blue horizontal branch stars in NGC 6656 (M22)

    CERN Document Server

    Salgado, C; Villanova, S; Geisler, D; Catelan, M

    2013-01-01

    Recent investigations revealed very peculiar properties of blue horizontal branch (HB) stars in \\omega Centauri, which show anomalously low surface gravity and mass compared to other clusters and to theoretical models. \\omega Centauri, however, is a very unusual object, hosting a complex mix of multiple stellar populations with different metallicity and chemical abundances. We measured the fundamental parameters (temperature, gravity, and surface helium abundance) of a sample of 71 blue HB stars in M22, with the aim of clarifying if the peculiar results found in \\omega Cen are unique to this cluster. M22 also hosts multiple sub-populations of stars with a spread in metallicity, analogous to \\omega Cen. The stellar parameters were measured on low-resolution spectra fitting the Balmer and helium lines with a grid of synthetic spectra. From these parameters, the mass and reddening were estimated. Our results on the gravities and masses agree well with theoretical expectations, matching the previous measurements ...

  16. THE PECULIAR DISTRIBUTION OF CH{sub 3}CN IN IRC +10216 SEEN BY ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, M.; Cernicharo, J.; Quintana-Lacaci, G.; Prieto, L. Velilla [Instituto de Ciencia de Materiales de Madrid, CSIC, C/Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco (Spain); Castro-Carrizo, A.; Guélin, M. [Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, F-38406 St. Martin d’Héres (France); Marcelino, N. [INAF, Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy)

    2015-12-01

    IRC +10216 is a circumstellar envelope around a carbon-rich evolved star which contains a large variety of molecules. According to interferometric observations, molecules are distributed either concentrated around the central star or as a hollow shell with a radius of ∼15″. We present ALMA Cycle 0 band 6 observations of the J = 14 – 13 rotational transition of CH{sub 3}CN in IRC +10216, obtained with an angular resolution of 0.″76 × 0.″61. The bulk of the emission is distributed as a hollow shell located at just ∼2″ from the star, with a void of emission in the central region up to a radius of ∼1″. This spatial distribution is markedly different from those found to date in this source for other molecules. Our analysis indicates that methyl cyanide is not formed in either the stellar photosphere or far in the outer envelope, but at radial distances as short as 1″–2″, reaching a maximum abundance of ∼0.02 molecules cm{sup −3} at 2″ from the star. Standard chemical models of IRC +10216 predict that the bulk of CH{sub 3}CN molecules should be present at a radius of ∼15″ where other species such as polyyne radicals and cyanopolyynes are observed, with an additional inner component within 1″ from the star. The non-uniform structure of the circumstellar envelope and grain surface processes are discussed as possible causes of the peculiar distribution of methyl cyanide in IRC +10216.

  17. Hot subluminous stars: On the Search for Chemical Signatures of their Genesis

    Science.gov (United States)

    Hirsch, Heiko Andreas

    2009-10-01

    This thesis deals with the hot subluminous stars of spectral class O. Although the name suggests otherwise, these stars are still 10 to 1000 times more luminous than the sun, they emit most of their radiation energy in the ultraviolet range. First stars of this type have been categorized in the 1950ies. Since they are blue objects like Quasars they often are discovered in surveys at high Galactic latitudes aiming at Quasars and other extragalactic objects. The hot subluminous stars can be divided into two classes, the subluminous O and subluminous B stars, or short sdO and sdB. The sdOs and sdBs play an important role in astronomy, as many old stellar populations, e.g. globular clusters and elliptical galaxies, have strong UV fluxes. UV bright regions often are "stellar nurseries", where new stars are born. Globular clusters and elliptical galaxies, however, do not experience star formation. This UV excess can be explained by population models that include the hot subluminous stars. Many sdB stars show short-period, multiperiodic light variations, which are due to radial and nonradial pulsations. Asteroseismology can explore the inner structure of stars and estimate e.g. the stellar mass, a variable that can only determine in very lucky circumstances (eclipsing binaries). These stars are also important for cosmology because they qualify as supernova Ia progenitors. The nature of the sdO stars is less well understood than that of their cooler and more numerous siblings, the sdBs. The connection of the sdBs to the horizontal branch is established for many years now, accordingly they are old helium core burning objects after their red giant phase. More precisely, they are on the extended horizontal branch (EHB), the hot end of the horizontal branch. EHB stars are characterized by a very low envelope mass, i.e. we see more or less directly the hot helium burning core. Strong mass loss in the RGB phase is regarded as responsible for this phenomenon, the exact mechanism

  18. Chemical similarities between Galactic bulge and local thick disk red giant stars

    OpenAIRE

    Melendez, J.; Asplund, M.; Alves-Brito, A.; Cunha, K.; B. Barbuy; Bessell, M. S.; Chiappini, C.; Freeman, K. C.; Ramirez, I.; Smith, V.V.; Yong, D.

    2008-01-01

    The evolution of the Milky Way bulge and its relationship with the other Galactic populations is still poorly understood. The bulge has been suggested to be either a merger-driven classical bulge or the product of a dynamical instability of the inner disk. To probe the star formation history, the initial mass function and stellar nucleosynthesis of the bulge, we performed an elemental abundance analysis of bulge red giant stars. We also completed an identical study of local thin disk, thick d...

  19. Chemical Abundances and Rotation Velocities of Blue Horizontal-Branch Stars in Six Globular Clusters

    CERN Document Server

    Behr, B B

    2003-01-01

    High-resolution spectroscopic measurements of blue horizontal-branch stars in six metal-poor globular clusters -- M3, M13, M15, M68, M92, and NGC 288 -- reveal remarkable variations in photospheric composition and rotation velocity as a function of a star's position along the horizontal branch. For the cooler stars (Teff < 11200 K), the derived abundances are in good agreement with the canonical cluster metallicities, and we find a wide range of v sin i rotation velocities, some as high as 40 km/s. In the hotter stars, however, most metal species are strongly enhanced, by as much as 3 dex, relative to the expected cluster metallicity, while helium is depleted by 2 dex or more. In addition, the hot stars all rotate slowly, with v sin i < 8 km/s. The anomalous abundances appear to be due to atomic diffusion mechanisms -- gravitational settling of helium, and radiative levitation of metals -- in the non-convective atmospheres of these hot stars. We discuss the influence of these photospheric metal enhancem...

  20. Atomic Diffusion, Mixing, and Element Abundances in Main Sequence Stars

    Science.gov (United States)

    Vauclair, S.

    2013-12-01

    Atomic diffusion is now recognized as a standard process working in stars, and gravitational settling is introduced in most stellar evolution codes. Helioseismology proved the importance of the downward diffusion of helium and heavy elements below the solar convective zone. However, in more massive stars, the effect of selective radiative accelerations cannot be neglected. It has been known for a long time that the resulting atomic levitation may, in some cases, lead to abundance variations in stellar atmospheres, as observed in the so-called chemically peculiar stars. But this was only part of the story. We have now discovered that, when acting on important elements like iron or nickel, radiative levitation may also lead to global macroscopic effects inside stars, like extra convective zones, wave excitation by the κ-mechanism, and double-diffusive mixing processes like fingering (thermohaline) convection. This paper presents some links between these processes and their consequences.

  1. The Lorentz force in atmospheres of CP stars: $\\theta$ Aurigae

    CERN Document Server

    Shulyak, D; Kochukhov, O; Lee, B C; Galazutdinov, G; Kim, K M; Han, I; Burlakova, T; Tsymbal, V; Lyashko, D; Han, Inwoo

    2006-01-01

    Several dynamical processes may induce considerable electric currents in the atmospheres of magnetic chemically peculiar (CP) stars. The Lorentz force, which results from the interaction between the magnetic field and the induced currents, modifies the atmospheric structure and induces characteristic rotational variability of the hydrogen Balmer lines. To study this phenomena we have initiated a systematic spectroscopic survey of the Balmer lines variation in magnetic CP stars. In this paper we continue presentation of results of the program focusing on the high-resolution spectral observations of A0p star \\aur (HD 40312). We have detected a significant variability of the H$\\alpha$, H$\\beta$, and H$\\gamma$ spectral lines during full rotation cycle of the star. This variability is interpreted in the framework of the model atmosphere analysis, which accounts for the Lorentz force effects. Both the inward and outward directed Lorentz forces are considered under the assumption of the axisymmetric dipole or dipole...

  2. Weighing stars: the identification of an Evolved Blue Straggler Star in the globular cluster 47 Tucanae

    CERN Document Server

    Ferraro, F R; Mucciarelli, A; Lanzoni, B; Dalessandro, E; Pallanca, C; Massari, D

    2015-01-01

    Globular clusters are known to host peculiar objects, named Blue Straggler Stars (BSSs), significantly heavier than the normal stellar population. While these stars can be easily identified during their core hydrogen-burning phase, they are photometrically indistinguishable from their low-mass sisters in advanced stages of the subsequent evolution. A clear-cut identification of these objects would require the direct measurement of the stellar mass. We used the detailed comparison between chemical abundances derived from neutral and from ionized spectral lines as a powerful stellar "weighing device" to measure stellar mass and to identify an evolved BSS in 47 Tucanae. In particular, high-resolution spectra of three bright stars located slightly above the level of the "canonical" horizontal branch sequence in the color-magnitude diagram of 47 Tucanae, have been obtained with UVES spectrograph. The measurements of iron and titanium abundances performed separately from neutral and ionized lines reveal that two ta...

  3. A magnetic model for acoustic modes in roAp stars

    CERN Document Server

    Zita, E J

    1998-01-01

    The mechanism for excitation of p-modes in rapidly oscillating, peculiar A (roAp, or cool chemically peculiar, CP) stars is unknown. Observations strongly suggest that acoustic modes in roAp stars are causally linked to the stars' magnetic field. We propose that small fluctuations in the shape of the mean magnetic field drive magnetosonic waves, which are observed as p-modes in these stars. The dynamic edge region of roAp stars is a force-free spherical shell. When strongly coupled to the magnetic field, a force-free plasma can oscillate about a minimum in its mean magnetic energy. We describe the stable eigenmodes for this energy minimum in a spherical shell with an open boundary. The wavenumbers, frequencies, and energies of resulting oscillations are consistent with observations of p-modes in roAp stars. Our magnetic model for p-mode oscillations in stars does not invoke convection or opacity mechanisms. We also suggest the possibility of a nonlinear dynamo for such magnetic stars, which lack the convectio...

  4. Hydrogen Atom Collision Processes in Cool Stellar Atmospheres: Effects on Spectral Line Strengths and Measured Chemical Abundances in Old Stars

    International Nuclear Information System (INIS)

    The precise measurement of the chemical composition of stars is a fundamental problem relevant to many areas of astrophysics. State-of-the-art approaches attempt to unite accurate descriptions of microphysics, non-local thermodynamic equilibrium (non-LTE) line formation and 3D hydrodynamical model atmospheres. In this paper I review progress in understanding inelastic collisions of hydrogen atoms with other species and their influence on spectral line formation and derived abundances in stellar atmospheres. These collisions are a major source of uncertainty in non-LTE modelling of spectral lines and abundance determinations, especially for old, metal-poor stars, which are unique tracers of the early evolution of our galaxy. Full quantum scattering calculations of direct excitation processes X(nl) + H ↔ X(n'l') + H and charge transfer processes X(nl) + H ↔ X+ + H− have been done for Li, Na and Mg [1,2,3] based on detailed quantum chemical data, e.g. [4]. Rate coefficients have been calculated and applied to non-LTE modelling of spectral lines in stellar atmospheres [5,6,7,8,9]. In all cases we find that charge transfer processes from the first excited S-state are very important, and the processes affect measured abundances for Li, Na and Mg in some stars by as much as 60%. Effects vary with stellar parameters (e.g. temperature, luminosity, metal content) and so these processes are important not only for accurate absolute abundances, but also for relative abundances among dissimilar stars.

  5. Chemical Abundances for Evolved Stars in M5: Lithium through Thorium

    CERN Document Server

    Lai, David K; Bolte, Michael; Johnson, Jennifer A; Lucatello, Sara; Kraft, Robert P; Sneden, Christopher

    2011-01-01

    We present analysis of high-resolution spectra of a sample of stars in the globular cluster M5 (NGC 5904). The sample includes stars from the red giant branch (seven stars), the red horizontal branch (two stars), and the asymptotic giant branch (eight stars), with effective temperatures ranging from 4000 K to 6100 K. Spectra were obtained with the HIRES spectrometer on the Keck I telescope, with a wavelength coverage from 3700 to 7950 angstroms for the HB and AGB sample, and 5300 to 7600 angstroms for the majority of the RGB sample. We find offsets of some abundance ratios between the AGB and the RGB branches. However, these discrepancies appear to be due to analysis effects, and indicate that caution must be exerted when directly comparing abundance ratios between different evolutionary branches. We find the expected signatures of pollution from material enriched in the products of the hot hydrogen burning cycles such as the CNO, Ne-Na, and Mg-Al cycles, but no significant differences within these signatures...

  6. Chemical spots on the surface of the strongly magnetic Herbig Ae star HD 101412

    OpenAIRE

    Järvinen, S. P.; Hubrig, S.; Schöller, M; Ilyin, I; Carroll, T. A.; Korhonen, H.

    2016-01-01

    Due to the knowledge of the rotation period and the presence of a rather strong surface magnetic field, the sharp-lined young Herbig Ae star HD 101412 with a rotation period of 42 d has become one of the most well-studied targets among the Herbig Ae stars. High-resolution HARPS polarimetric spectra of HD 101412 were recently obtained on seven different epochs. Our study of the spectral variability over the part of the rotation cycle covered by HARPS observations reveals that the line profiles...

  7. The Chemical Composition of Red Giant Branch Stars in the Galactic Globular Clusters NGC 6342 and NGC 6366

    OpenAIRE

    Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Pilachowski, Catherine A.; Hsyu, Tiffany

    2016-01-01

    We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high resolution (R > 20,000) spectra obtained with the MMT-Hectochelle and WIYN-Hydra spectrographs. We find that NGC 6342 has a heliocentric radial velocity of +112.5 km/s (sigma = 8.6 km/s), NGC 6366 has a heliocentric radial velocity of -122.3 km/s (sigma = 1.5 km/s), and that both clusters ...

  8. The Chemical Composition Contrast between M3 and M13 Revisited: New Abundances for 28 Giant Stars in M3

    Science.gov (United States)

    Sneden, Christopher; Kraft, Robert P.; Guhathakurta, Puragra; Peterson, Ruth C.; Fulbright, Jon P.

    2004-04-01

    We report new chemical abundances of 23 bright red giant members of the globular cluster M3, based on high-resolution (R~45,000) spectra obtained with the Keck I telescope. The observations, which involve the use of multislits in the HIRES Keck I spectrograph, are described in detail. Combining these data with a previously reported small sample of M3 giants obtained with the Lick 3 m telescope, we compare metallicities and [X/Fe] ratios for 28 M3 giants with a 35-star sample in the similar-metallicity cluster M13, and with Galactic halo field stars having [Fe/H]=A(Si), we derive little difference in [X/Fe] ratios in the M3, M13, or halo field samples. All three groups exhibit C depletion with advancing evolutionary state beginning at the level of the red giant branch ``bump,'' but the overall depletion of about 0.7-0.9 dex seen in the clusters is larger than that associated with the field stars. The behaviors of O, Na, Mg, and Al are distinctively different among the three stellar samples. Field halo giants and subdwarfs have a positive correlation of Na with Mg, as predicted from explosive or hydrostatic carbon burning in Type II supernova sites. Both M3 and M13 show evidence of high-temperature proton-capture synthesis from the ON, NeNa, and MgAl cycles, while there is no evidence for such synthesis among halo field stars. But the degree of such extreme proton-capture synthesis in M3 is smaller than it is in M13: the M3 giants exhibit only modest deficiencies of O and corresponding enhancements of Na, less extreme overabundances of Al, fewer stars with low Mg and correspondingly high Na, and no indication that O depletions are a function of advancing evolutionary state, as has been claimed for M13. We have also considered NGC 6752, for which Mg isotopic abundances have been reported by Yong et al. Giants in NGC 6752 and M13 satisfy the same anticorrelation of O abundances with the ratio (25Mg+26Mg)/24Mg, which measures the relative contribution of rare to

  9. Spatially Resolved Spectroscopy and Chemical History of Star-forming Galaxies in the Hercules Cluster: The Effects of the Environment

    Science.gov (United States)

    Petropoulou, V.; Vílchez, J.; Iglesias-Páramo, J.; Papaderos, P.; Magrini, L.; Cedrés, B.; Reverte, D.

    2011-06-01

    Spatially resolved spectroscopy has been obtained for a sample of 27 star-forming (SF) galaxies selected from our deep Hα survey of the Hercules cluster. We have applied spectral synthesis models to all emission-line spectra of this sample using the population synthesis code STARLIGHT and have obtained fundamental parameters of stellar components such as mean metallicity and age. The emission-line spectra were corrected for underlying stellar absorption using these spectral synthesis models. Line fluxes were measured and O/H and N/O gas chemical abundances were obtained using the latest empirical calibrations. We have derived the masses and total luminosities of the galaxies using available Sloan Digital Sky Survey broadband photometry. The effects of cluster environment on the chemical evolution of galaxies and on their mass-metallicity (MZ) and luminosity-metallicity (LZ) relations were studied by combining the derived gas metallicities, the mean stellar metallicities and ages, the masses and luminosities of the galaxies, and their existing H I data. Our Hercules SF galaxies are divided into three main subgroups: (1) chemically evolved spirals with truncated ionized-gas disks and nearly flat oxygen gradients, demonstrating the effect of ram-pressure stripping; (2) chemically evolved dwarfs/irregulars populating the highest local densities, possible products of tidal interactions in preprocessing events; and (3) less metallic dwarf galaxies that appear to be "newcomers" to the cluster and are experiencing pressure-triggered star formation. Most Hercules SF galaxies follow well-defined MZ and LZ sequences (for both O/H and N/O), though the dwarf/irregular galaxies located at the densest regions appear to be outliers to these global relations, suggesting a physical reason for the dispersion in these fundamental relations. The Hercules cluster appears to be currently assembling via the merger of smaller substructures, providing an ideal laboratory where the local

  10. A nova re-accretion model for J-type carbon stars

    CERN Document Server

    Sengupta, S; Lau, H H B

    2013-01-01

    The J-type carbon (J)-stars constitute 10-15% of the observed carbon stars in both our Galaxy and the Large Magellanic Cloud (LMC). They are characterized by strong 13C absorption bands with low 12C/13C ratios along with other chemical signatures peculiar for typical carbon stars, e.g. a lack of s-process enhancement. Most of the J-stars are dimmer than the N-type carbon stars some of which, by hot-bottom burning, make 13C only in a narrow range of masses. We investigate a binary-star formation channel for J-stars involving re-accretion of carbon-rich nova ejecta on main-sequence companions to low-mass carbon-oxygen white-dwarfs. The subsequent evolution of the companion stars in such systems is studied with a rapid binary evolutionary code to predict chemical signatures of nova pollution in systems which merge into giant single stars. A detailed population synthesis study is performed to estimate the number of these mergers and compare their properties with observed J-stars. Our results predict that such nov...

  11. Chemical Abundances of the Milky Way Thick Disk and Stellar Halo I.: Implications of [alpha/Fe] for Star Formation Histories in Their Progenitors

    CERN Document Server

    Ishigaki, M N; Aoki, W

    2012-01-01

    We present the abundance analysis of 97 nearby metal-poor (-3.3-2$. These results favor the scenarios that the MW thick disk formed through rapid chemical enrichment primarily through Type II supernovae of massive stars, while the stellar halo has formed at least in part via accretion of progenitor stellar systems having been chemically enriched with different timescales.

  12. A Spectroscopic Study of Blue Supergiant Stars in the Sculptor Galaxy NGC 55: Chemical Evolution and Distance

    Science.gov (United States)

    Kudritzki, R. P.; Castro, N.; Urbaneja, M. A.; Ho, I.-T.; Bresolin, F.; Gieren, W.; Pietrzyński, G.; Przybilla, N.

    2016-10-01

    Low-resolution (4.5-5 Å) spectra of 58 blue supergiant stars distributed over the disk of the Magellanic spiral galaxy NGC 55 in the Sculptor group are analyzed by means of non-LTE techniques to determine stellar temperatures, gravities, and metallicities (from iron peak and α-elements). A metallicity gradient of -0.22 ± 0.06 dex/R 25 is detected. The central metallicity on a logarithmic scale relative to the Sun is [Z] = -0.37 ± 0.03. A chemical evolution model using the observed distribution of column densities of the stellar and interstellar medium gas mass reproduces the observed metallicity distribution well and reveals a recent history of strong galactic mass accretion and wind outflows with accretion and mass-loss rates of the order of the star formation rate. There is an indication of spatial inhomogeneity in metallicity. In addition, the relatively high central metallicity of the disk confirms that two extraplanar metal-poor H ii regions detected in previous work 1.13 to 2.22 kpc above the galactic plane are ionized by massive stars formed in situ outside the disk. For a subsample of supergiants, for which Hubble Space Telescope photometry is available, the flux-weighted gravity-luminosity relationship is used to determine a distance modulus of 26.85 ± 0.10 mag.

  13. The Chemical Composition Contrast between M3 and M13 Revisited: New Abundances for 28 Giant Stars in M3

    CERN Document Server

    Sneden, C; Guhathakurta, P; Peterson, R C; Fulbright, J P; Sneden, Christopher; Kraft, Robert P.; Guhathakurta, Puragra; Peterson, Ruth C.; Fulbright, Jon P.

    2003-01-01

    We report new chemical abundances of 23 bright red giants of the globular cluster M3, based on high-resolution spectra obtained with the Keck I telescope. Combining these data with a previously-reported small sample of M3 giants obtained with the Lick 3m telescope, we compare [X/Fe] ratios for 28 M3 giants with 35 M13 giants, and with halo field stars. All three groups exhibit C depletion with advancing evolutionary state beginning at the RGB bump region. but the overall depletion in the clusters is larger than that of the field stars. The behaviors of O, Na, Mg and Al are distinctively different among the three stellar samples. Both M3 and M13 show evidence of high-temperature proton capture synthesis from the ON, NeNa, and MgAl cycles, while there is no evidence for such synthesis among halo field stars. But the degree of such extreme proton-capture synthesis in M3 is smaller than it is in M13, and no indication that O depletions are a function of advancing evolutionary state as has been claimed for M13. We...

  14. Abundances in Metal-Poor Stars and Chemical Evolution of the Early Galaxy

    CERN Document Server

    Wasserburg, G J

    2008-01-01

    We have attributed the elements from Sr through Ag in stars of low metallicities ([Fe/H] -0.32 for all metal-poor stars. This is in direct conflict with the high-resolution data now available, which show that there is a great shortfall of Sr relative to Fe in many stars with [Fe/H] < -3. The same conflict also exists for the CPR elements Y and Zr. We show that the data require a stellar source leaving behind black holes and that hypernovae (HNe) from progenitors of ~ 25 to 50 M_sun are the most plausible candidates. If we expand our previous model to include three components (low-mass and normal SNe and HNe), we find that essentially all of the data are very well described by the new model. The HN yield pattern for the low-A elements from Na through Zn (including Fe) is inferred from the stars deficient in Sr, Y, and Zr. We estimate that HNe contributed ~ 24% of the bulk solar Fe inventory while normal SNe contributed only ~ 9% (not the usually assumed ~ 33%). This implies a greatly reduced role of normal...

  15. Tracing chemical evolution over the extent of the Milky Way's disk with apogee red clump stars

    Energy Technology Data Exchange (ETDEWEB)

    Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48104 (United States); Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Bird, Jonathan C. [Physics and Astronomy Department, Vanderbilt University, 1807 Station B, Nashville, TN 37235 (United States); Andrews, Brett H.; Johnson, Jennifer A.; Weinberg, David H. [Department of Astronomy and the Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Hayden, Michael; Holtzman, Jon; Feuillet, Diane [New Mexico State University, Las Cruces, NM 88003 (United States); Majewski, Steven R.; García Pérez, Ana E. [Department of Astronomy, University of Virginia, Charlottesville, VA, 22904 (United States); Smith, Verne [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Robin, Annie C.; Sobeck, Jennifer [Institut Utinam, CNRS UMR 6213, OSU THETA, Université de Franche-Comté, 41bis avenue de l' Observatoire, F-25000 Besançon (France); Cunha, Katia [Observatorio Nacional, Rio de Janeiro (Brazil); Allende Prieto, Carlos [Instituto de Astrofsica de Canarias, E-38205 La Laguna, Tenerife (Spain); Zasowski, Gail [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Schiavon, Ricardo P. [Astrophysics Research Institute, IC2, Liverpool Science Park, Liverpool John Moores University, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Shetrone, Matthew, E-mail: dnidever@umich.edu [University of Texas at Austin, McDonald Observatory, 32 Fowlkes Road, McDonald Observatory, TX 79734-3005 (United States); and others

    2014-11-20

    We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and α-element abundances of stars over a large part of the Milky Way disk. Using a sample of ≈10, 000 kinematically unbiased red-clump stars with ∼5% distance accuracy as tracers, the [α/Fe] versus [Fe/H] distribution of this sample exhibits a bimodality in [α/Fe] at intermediate metallicities, –0.9 < [Fe/H] <–0.2, but at higher metallicities ([Fe/H] ∼+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the α-element abundance patterns. The described abundance pattern is found throughout the range 5 < R < 11 kpc and 0 < |Z| < 2 kpc across the Galaxy. The [α/Fe] trend of the high-α sequence is surprisingly constant throughout the Galaxy, with little variation from region to region (∼10%). Using simple galactic chemical evolution models, we derive an average star-formation efficiency (SFE) in the high-α sequence of ∼4.5 × 10{sup –10} yr{sup –1}, which is quite close to the nearly constant value found in molecular-gas-dominated regions of nearby spirals. This result suggests that the early evolution of the Milky Way disk was characterized by stars that shared a similar star-formation history and were formed in a well-mixed, turbulent, and molecular-dominated ISM with a gas consumption timescale (SFE{sup –1}) of ∼2 Gyr. Finally, while the two α-element sequences in the inner Galaxy can be explained by a single chemical evolutionary track, this cannot hold in the outer Galaxy, requiring, instead, a mix of two or more populations with distinct enrichment histories.

  16. Peculiarities of Thermodynamic Simulation with the Method of Bound Affinity

    CERN Document Server

    Zilbergleyt, B

    2004-01-01

    Thermodynamic simulation of chemical and metallurgical systems is the only method to predict their equilibrium composition and is the most important application of chemical thermodynamics. The conventional strategy of simulation is always to find the most probable composition of the system, corresponding to thermodynamic equilibrium. Traditional simulation methods do not account for interactions within the chemical system. The Method of Bound Affinity (MBA) is based on the theory that explicitly takes into account interactions between subsystems of a complex chemical system and leads sometimes to essential differences in simulation results. This article discusses peculiarities of MBA application, exemplified by results for a complex system with a set of subsystems.

  17. Torsional oscillations and observed rotational period variations in early-type stars

    CERN Document Server

    Krticka, J; Henry, G W; Kurfurst, P; Karlicky, M

    2016-01-01

    Some chemically peculiar stars in the upper main sequence show rotational period variations of unknown origin. We propose these variations are a consequence of the propagation of internal waves in magnetic rotating stars that lead to the torsional oscillations of the star. We simulate the magnetohydrodynamic waves and calculate resonant frequencies for two stars that show rotational variations: CU Vir and HD 37776. We provide updated analyses of rotational period variations in these stars and compare our results with numerical models. For CU Vir, the length of the observed rotational-period cycle, $\\mathit\\Pi=67.6(5)$ yr, can be well reproduced by the models, which predict a cycle length of 51 yr. However, for HD 37776, the observed lower limit of the cycle length, $\\mathit\\Pi\\geq100$ yr, is significantly longer than the numerical models predict. We conclude that torsional oscillations provide a reasonable explanation at least for the observed period variations in CU Vir.

  18. [Peculiarity of the occupational physician].

    Science.gov (United States)

    Pagliaro, G; Simonini, S; del Bufalo, P; Serra, A; Ramistella, E

    2011-01-01

    Aim of this contribution is to consider, although in a concise way, the peculiarity of the Occupational Physician's activity operating in Health care sector, that employs about 5% of Italian workers. Particularly, we bring into focus the global roll that the Occupational Physician must fulfil in a reality where he is the protagonist towards the safeguard of the worker's safe, already submitted to several occupational risks, and about the safety of the third parties, which is more important than in other sectors. Shared elaboration in this article shows that Occupational Physician of the Health care sector has the same problems and expectations everywhere, in our Country. PMID:23393851

  19. Peculiar velocities in dynamic spacetimes

    CERN Document Server

    Bini, Donato

    2014-01-01

    We investigate the asymptotic behavior of peculiar velocities in certain physically significant time-dependent gravitational fields. Previous studies of the motion of free test particles have focused on the \\emph{collapse scenario}, according to which a double-jet pattern with Lorentz factor $\\gamma \\to \\infty$ develops asymptotically along the direction of complete gravitational collapse. In the present work, we identify a second \\emph{wave scenario}, in which a single-jet pattern with Lorentz factor $\\gamma \\to \\infty$ develops asymptotically along the direction of wave propagation. The possibility of a connection between the two scenarios for the formation of cosmic jets is critically examined.

  20. New chemically reworkable epoxy coatings obtained by the addition of polyesters with star topologies to diglycidyl ether of bisphenol A resins

    OpenAIRE

    Tomuta, Adrian Marius; Ramis Juan, Xavier; Fernández Francos, Xavier; Ferrando Piera, Francesc; Serra Albet, Àngels

    2013-01-01

    A new multiarm star with hyperbranched aromatic–aliphatic polyester core and poly(ɛ-caprolactone) arms (HBPCL) was synthesized and characterized. Mixtures of diglycidyl ether of bisphenol A (DGEBA) resin and different proportions of this star type modifier were cured using a thermal cationic curing agent, Yb(OTf)3. The HBPCL prepared has hydroxyl groups as chain ends, which are capable of chemically incorporating to the epoxy matrix by means of the monomer activated mechanism. This, together ...

  1. The Chemical Compositions of Non-Variable Red and Blue Field Horizontal Branch Stars

    CERN Document Server

    For, Bi-Qing

    2010-01-01

    We present a new detailed abundance study of field red horizontal branch (RHB) and blue horizontal branch (BHB) non-variable stars. High resolution and high S/N echelle spectra of 11 RHB and 12 BHB were obtained with the McDonald 2.7 m telescope, and the RHB sample was augmented by reanalysis of spectra of 25 stars from a recent survey. We derived stellar atmospheric parameters based on spectroscopic constraints, and computed relative abundance ratios for 24 species of 19 elements. The species include Si II and Ca II, which have not been previously studied in RHB and BHB (Teff ~ [Fe/H] >~ -2.5. This yielded effective temperatures estimates of 5900K and 7400 K for the red and blue edges of the RR Lyrae instability strip.

  2. Chemical Abundances in 35 Metal-Poor Stars. I. Basic Data

    CERN Document Server

    Lee, Jeong-Deok; Kim, Kang-Min

    2008-01-01

    We carried out a homogeneous abundance study for various elements, including $\\alpha$-elements, iron peak elements and $n$-capture elements for 35 metal-poor stars with a wide metallicity range ($-3.0\\lesssim$[Fe/H]$\\lesssim-0.5$). High-resolution ($R\\simeq30$k), high signal-to-noise($S/N\\geq110$) spectra with a wavelength range of 3800 to 10500 \\AA using the Bohyunsan Optical Echelle Spectrograph (BOES). Equivalent widths were measured by means of the Gaussian-fitting method for numerous isolated weak lines of elements. Atmospheric parameters were determined by a self-consistent LTE analysis technique using Fe I and Fe II lines. In this study, we present the EWs of lines and atmospheric parameters for 35 metal-poor stars.

  3. Alkaline broadening in Stars

    CERN Document Server

    De Kertanguy, A

    2015-01-01

    Giving new insight for line broadening theory for atoms with more structure than hydrogen in most stars. Using symbolic software to build precise wave functions corrected for ds;dp quantum defects. The profiles obtained with that approach, have peculiar trends, narrower than hydrogen, all quantum defects used are taken from atomic database topbase. Illustration of stronger effects of ions and electrons on the alkaline profiles, than neutral-neutral collision mechanism. Keywords : Stars: fundamental parameters - Atomic processes - Line: profiles.

  4. SiO outflows in high-mass star forming regions: A potential chemical clock?

    CERN Document Server

    López-Sepulcre, A; Cesaroni, R; Codella, C; Schuller, F; Bronfman, L; Carey, S J; Menten, K M; Molinari, S; Noriega-Crespo, A

    2010-01-01

    Some theoretical models propose that O-B stars form via accretion, in a similar fashion to low-mass stars. Jet-driven molecular outflows play an important role in this scenario, and their study can help to understand the process of high-mass star formation and the different evolutionary phases involved. Observations towards low-mass protostars so far favour an evolutionary picture in which jets are always associated with Class 0 objects while more evolved Class I/II objects show less evidence of powerful jets. The present study aims at checking whether an analogous picture can be found in the high-mass case. The IRAM 30-m telescope (Spain) has been used to perform single-pointing SiO(2-1) and (3-2) observations towards a sample of 57 high-mass molecular clumps in different evolutionary stages. Continuum data at different wavelengths, from mid-IR to 1.2 mm, have been gathered to build the spectral energy distributions of all the clumps and estimate their bolometric luminosities. SiO emission at high velocities...

  5. Chemical Compositions of Red Giant Stars in Old Large Magellanic Cloud Globular Clusters

    CERN Document Server

    Johnson, J A; Stetson, P B; Ivans, Inese I.; Johnson, Jennifer A.; Stetson, Peter B.

    2006-01-01

    We have observed ten red giant stars in four old Large Magellanic Cloud globular clusters with the high-resolution spectrograph MIKE on the Magellan Landon Clay 6.5-m telescope. The stars in our sample have up to 20 elemental abundance determinations for the alpha-, iron-peak, and neutron-capture element groups. We have also derived abundances for the light odd-Z elements Na and Al. We find NGC 2005 and NGC 2019 to be more metal-rich than previous estimates from the Ca II triplet, and we derive [Fe/H] values closer to those obtained from the slope of the red giant branch. However, we confirm previous determinations for Hodge 11 and NGC 1898 to within 0.2 dex. The LMC cluster [Mg/Fe] and [Si/Fe] ratios are comparable to the values observed in old Galactic globular cluster stars, as are the abundances [Y/Fe], [Ba/Fe], and [Eu/Fe]. The LMC clusters do not share the low-Y behavior observed in some dwarf spheroidal galaxies. [Ca/Fe], [Ti/Fe], and [V/Fe] in the LMC, however, are significantly lower than what is see...

  6. Chemical spots on the surface of the strongly magnetic Herbig Ae star HD 101412

    CERN Document Server

    Järvinen, S P; Schöller, M; Ilyin, I; Carroll, T A; Korhonen, H

    2016-01-01

    Due to the knowledge of the rotation period and the presence of a rather strong surface magnetic field, the sharp-lined young Herbig Ae star HD 101412 with a rotation period of 42 d has become one of the most well-studied targets among the Herbig Ae stars. High-resolution HARPS polarimetric spectra of HD 101412 were recently obtained on seven different epochs. Our study of the spectral variability over the part of the rotation cycle covered by HARPS observations reveals that the line profiles of the elements Mg, Si, Ca, Ti, Cr, Mn, Fe, and Sr are clearly variable while He exhibits variability that is opposite to the behaviour of the other elements studied. Since classical Ap stars usually show a relationship between the magnetic field geometry and the distribution of element spots, we used in our magnetic field measurements different line samples belonging to the three elements with the most numerous spectral lines, Ti, Cr, and Fe. Over the time interval covered by the available spectra, the longitudinal magn...

  7. Chemical composition of evolved stars in the young open clusters NGC 4609 and NGC 5316

    CERN Document Server

    Drazdauskas, Arnas; Smiljanic, Rodolfo; Bagdonas, Vilius; Chorniy, Yuriy

    2016-01-01

    High-resolution spectral analysis is performed for the first time in evolved stars of two young open clusters: NGC 4609 and NGC 5316, of about 80 and 100 Myr in age, respectively, and turn-off masses above 5 Msun. Stellar evolution models predict an extra-mixing event in evolved stars, which follows the first dredge-up and happens later on the red giant branch. However, it is still not understood how this process affects stars of different masses. In this study, we determine abundances of the mixing sensitive elements carbon and nitrogen, carbon isotope 12C/13C ratios, as well as 20 other elements produced by different nucleosynthetic processes (O, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Y, Zr, Ba, La, Ce, Pr, Nd, and Eu). We compared our results with the latest theoretical models of evolutionary mixing processes. We find that the obtained 12C/13C and C/N ratios and [Na/Fe] agree quite well with the model which takes into account thermohaline- and rotation-induced mixing but within error limits also agree...

  8. CHESS, Chemical Herschel surveys of star forming regions:Peering into the protostellar shock L1157-B1

    CERN Document Server

    Lefloch, B; Codella, C; Melnick, G; Cernicharo, J; Caux, E; Benedettini, M; Boogert, A; Caselli, P; Ceccarelli, C; Gueth, F; Hily-Blant, P; Lorenzani, A; Neufeld, D; Nisini, B; Pacheco, S; Pagani, L; Pardo, J R; Parise, B; Salez, M; Schuster, K; Viti, S; Bacmann, A; Baudry, A; Bell, T; Bergin, E A; Blake, G; Bottinelli, S; Castets, A; Comito, C; Coutens, A; Crimier, N; Dominik, C; Demyk, K; Encrenaz, P; Falgarone, E; Fuente, A; Gerin, M; Goldsmith, P; Helmich, F; Hennebelle, P; Henning, T; Herbst, E; Jacq, T; Kahane, C; Kama, M; Klotz, A; Langer, W; Lis, D; Lord, S; Maret, S; Pearson, J; Phillips, T; Saraceno, P; Schilke, P; Tielens, X; van der Tak, F; van der Wiel, M; Vastel, C; Wakelam, V; Walters, A; Wyrowski, F; Yorke, H; Bachiller, R; Borys, C; De Lange, G; Delorme, Y; Kramer, C; Larsson, B; Lai, R; Maiwald, F W; Martin-Pintado, J; Mehdi, I; Ossenkopf, V; Siegel, P; Stutzki, J; Wunsch, J H

    2010-01-01

    The outflow driven by the low-mass class 0 protostar L1157 is the prototype of the so-called chemically active outflows. The bright bowshock B1 in the southern outflow lobe is a privileged testbed of magneto-hydrodynamical (MHD) shock models, for which dynamical and chemical processes are strongly interdependent. We present the first results of the unbiased spectral survey of the L1157-B1 bowshock, obtained in the framework of the key program "Chemical Herschel Surveys of Star Forming Regions" (CHESS). The main aim is to trace the warm and chemically enriched gas and to infer the excitation conditions in the shock region. The CO 5-4 and H2O lines have been detected at high-spectral resolution in the unbiased spectral survey of the HIFI-Band 1b spectral window (555-636 GHz), presented by Codella et al. in this volume. Complementary ground-based observations in the submm window help establish the origin of the emission detected in the main-beam of HIFI, and the physical conditions in the shock.}{Both lines exhi...

  9. Star formation history written in spectra

    NARCIS (Netherlands)

    L.E. Ellerbroek

    2014-01-01

    In this thesis, the process of star formation is mapped from large to small scales, using the world's most advanced observatories. Discoveries of several young stars with peculiar environments are reported. Dynamics of circumstellar gas and dust are analyzed in a diverse ensemble of young stars. The

  10. IUE observations of the Henize-Carlson sample of peculiar emission line supergiants: The galactic analogs of the Magellanic Zoo

    Science.gov (United States)

    Shore, Steven N.; Brown, Douglas N.; Sanduleak, N.

    1986-01-01

    Some 15 stars from the Carlson-Henize survey of southern peculiar emission line stars were studied. From both the optical and UV spectra, they appear to be galactic counterparts of the most extreme early-type emission line supergiants of the Magellanic Clouds.

  11. The CHESS chemical Herschel surveys of star forming regions: Peering into the protostellar shock L1157-B1. I. Shock chemical complexity

    CERN Document Server

    Codella, C; Ceccarelli, C

    2010-01-01

    We present the first results of the unbiased survey of the L1157-B1 bow shock, obtained with HIFI in the framework of the key program Chemical Herschel surveys of star forming regions (CHESS). The L1157 outflow is driven by a low-mass Class 0 protostar and is considered the prototype of the so-called chemically active outflows. The bright blue-shifted bow shock B1 is the ideal laboratory for studying the link between the hot (around 1000-2000 K) component traced by H2 IR-emission and the cold (around 10-20 K) swept-up material. The main aim is to trace the warm gas chemically enriched by the passage of a shock and to infer the excitation conditions in L1157-B1. A total of 27 lines are identified in the 555-636 GHz region, down to an average 3 sigma level of 30 mK. The emission is dominated by CO(5-4) and H2O(110-101) transitions, as discussed by Lefloch et al. (2010). Here we report on the identification of lines from NH3, H2CO, CH3OH, CS, HCN, and HCO+. The comparison between the profiles produced by molecul...

  12. Hot Subluminous Stars

    Science.gov (United States)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung–Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW

  13. Hot Subluminous Stars

    Science.gov (United States)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW

  14. Peculiar velocity measurement in a clumpy universe

    CERN Document Server

    Habibi, Farhang; Tavasoli, Saeed

    2014-01-01

    At low redshifts, deviations of the measured luminosity distance from the background FRW universe can be attributed to peculiar velocities of galaxies. Via observing the cosmic standard candles, this is one of the conventional ways to estimate peculiar velocities. However, at intermediate redshifts ($z > 0.5$), deviations from the background FRW model are not uniquely governed by peculiar velocities. Luminosity distances are modified by gravitational lensing which affects the light trajectories. Hence using the conventional peculiar velocity method will result in an overestimate of the measured peculiar velocities at intermediate redshifts. Here we quantify this effect and show that although present data are still incapable of extracting any lensing effect on distance measurement and peculiar velocity estimation, this effect will however be significant for future large-scale structure surveys.

  15. Chemical spots on the surface of the strongly magnetic Herbig Ae star HD 101412

    Science.gov (United States)

    Järvinen, S. P.; Hubrig, S.; Schöller, M.; Ilyin, I.; Carroll, T. A.; Korhonen, H.

    2016-03-01

    Due to the knowledge of the rotation period and the presence of a rather strong surface magnetic field, the sharp-lined young Herbig Ae star HD 101412 with a rotation period of 42 d has become one of the most well-studied targets among the Herbig Ae stars. High-resolution HARPS polarimetric spectra of HD 101412 were recently obtained on seven different epochs. Our study of the spectral variability over the part of the rotation cycle covered by HARPS observations reveals that the line profiles of the elements Mg, Si, Ca, Ti, Cr, Mn, Fe, and Sr are clearly variable while He exhibits variability that is opposite to the behaviour of the other elements studied. Since classical Ap stars usually show a relationship between the magnetic field geometry and the distribution of element spots, we used in our magnetic field measurements different line samples belonging to the three elements with the most numerous spectral lines, Ti, Cr, and Fe. Over the time interval covered by the available spectra, the longitudinal magnetic field changes sign from negative to positive polarity. The distribution of field values obtained using Ti, Cr, and Fe lines is, however, completely different compared to the magnetic field values determined in previous low-resolution FORS 2 measurements, where hydrogen Balmer lines are the main contributors to the magnetic field measurements, indicating the presence of concentration of the studied iron-peak elements in the region of the magnetic equator. Further, we discuss the potential role of contamination by the surrounding warm circumstellar matter in the appearance of Zeeman features obtained using Ti lines. Based on data obtained from the ESO Science Archive Facility under request MSCHOELLER 101895 (ESO programme Nos. 081.C-0410(A), 085.C-0137(A), and 187.D-0917(D)).

  16. Chemical composition of stars in kinematical substructures of the galactic disk

    Directory of Open Access Journals (Sweden)

    Gorbaneva T.I.

    2012-02-01

    Full Text Available The Y, Zr, La, Ce, Nd , Sm and Eu abundances were found in LTE approach, and the abundance of Ba was computed in NLTE approximation for 280 FGK dwarfs in the region of metallicity of − 1<[Fe]< + 0.3. The selection of stars belonging to thin and thick disks and the stream Hercules was made on kinematic criteria. The analysis of enrichment of the different substructures of the Galaxy with α-element (Mg, Si, the iron peak (Ni and neutron-capture elements was carried out.

  17. Multiplicity of rapidly oscillating Ap stars

    CERN Document Server

    Schoeller, M; Hubrig, S; Kurtz, D W

    2012-01-01

    Rapidly oscillating Ap (roAp) stars have rarely been found in binary or higher order multiple systems. This might have implications for their origin. We intend to study the multiplicity of this type of chemically peculiar stars, looking for visual companions in the range of angular separation between 0.05" and 8". We carried out a survey of 28 roAp stars using diffraction-limited near-infrared imaging with NAOS-CONICA at the VLT. Additionally, we observed three non-oscillating magnetic Ap stars. We detected a total of six companion candidates with low chance projection probabilities. Four of these are new detections, the other two are confirmations. An additional 39 companion candidates are very likely chance projections. We also found one binary system among the non-oscillating magnetic Ap stars. The detected companion candidates have apparent K magnitudes between 6.8 and 19.5 and angular separations ranging from 0.23" to 8.9", corresponding to linear projected separations of 30-2400AU. While our study confi...

  18. Metal-Poor Stars

    OpenAIRE

    Frebel, Anna

    2008-01-01

    The abundance patterns of metal-poor stars provide us a wealth of chemical information about various stages of the chemical evolution of the Galaxy. In particular, these stars allow us to study the formation and evolution of the elements and the involved nucleosynthesis processes. This knowledge is invaluable for our understanding of the cosmic chemical evolution and the onset of star- and galaxy formation. Metal-poor stars are the local equivalent of the high-redshift Universe, and offer cru...

  19. THE CHEMICAL SIGNATURE OF A RELIC STAR CLUSTER IN THE SEXTANS DWARF SPHEROIDAL GALAXY-IMPLICATIONS FOR NEAR-FIELD COSMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Torgny [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Freeman, Ken C. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston ACT 2611 (Australia); Silk, Joe, E-mail: torgny.karlsson@physics.uu.se [Physics Department, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2012-11-10

    We present tentative evidence for the existence of a dissolved star cluster at [Fe/H] = -2.7 in the Sextans dwarf spheroidal galaxy. We use the technique of chemical tagging to identify stars that are highly clustered in a multi-dimensional chemical abundance space (C-space). In a sample of six stars, three, possibly four, stars are identified as potential cluster stars. The initial stellar mass of the parent cluster is estimated from two independent observations to be M{sub *,init}=1.9{sup +1.5}{sub -0.9}(1.6{sup +1.2}{sub -0.8}) Multiplication-Sign 10{sup 5} M{sub sun}, assuming a Salpeter (Kroupa) initial mass function. If corroborated by follow-up spectroscopy, this star cluster is the most metal-poor system identified to date. Chemical signatures of remnant clusters in dwarf galaxies like Sextans provide us with a very powerful probe to the high-redshift universe. From available observational data, we argue that the average star cluster mass in the majority of the newly discovered ultra-faint dwarf galaxies was notably lower than it is in the Galaxy today and possibly lower than in the more luminous, classical dwarf spheroidal galaxies. Furthermore, the mean cumulative metallicity function of the dwarf spheroidals falls below that of the ultra-faints, which increases with increasing metallicity as predicted from our stochastic chemical evolution model. These two findings, together with a possible difference in the ([Mg/Fe]) ratio suggest that the ultra-faint dwarf galaxy population, or a significant fraction thereof, and the dwarf spheroidal population were formed in different environments and would thus be distinct in origin.

  20. Galactic fountains and outflows in star forming dwarf galaxies: ISM expulsion and chemical enrichment

    CERN Document Server

    Melioli, C; D'Ercole, A

    2014-01-01

    We investigated the impact of supernova feedback in gas-rich dwarf galaxies experiencing a low-to-moderate star formation rate, typical of relatively quiescent phases between starbursts. We calculated the long term evolution of the ISM and the metal-rich SN ejecta using 3D hydrodynamic simulations, in which the feedback energy is deposited by SNeII exploding in distinct OB associations. We found that a circulation flow similar to galactic fountains is generally established, with some ISM lifted at heights of one to few kpc above the galactic plane. This gas forms an extra-planar layer, which falls back to the plane in about $10^8$ yr, once the star formation stops. Very little or no ISM is expelled outside the galaxy system for the considered SFRs, even though in the most powerful model the SN energy is comparable to the gas binding energy. The metal-rich SN ejecta is instead more vulnerable to the feedback and we found that a significant fraction (25-80\\%) is vented in the intergalactic medium, even for low ...

  1. Tracing chemical evolution over the extent of the Milky Way's Disk with APOGEE Red Clump Stars

    CERN Document Server

    Nidever, David L; Bird, Jonathan C; Andrews, Brett H; Hayden, Michael; Holtzman, Jon; Majewski, Steven R; Smith, Verne; Robin, Annie C; Perez, Ana E Garcia; Cunha, Katia; Prieto, Carlos Allende; Zasowski, Gail; Schiavon, Ricardo P; Johnson, Jennifer A; Weinberg, David H; Feuillet, Diane; Schneider, Donald P; Shetrone, Matthew; Sobeck, Jennifer; Garcia-Hernandez, D A; Zamora, O; Rix, Hans-Walter; Beers, Timothy C; Wilson, John C; O'Connell, Robert W; Minchev, Ivan; Chiappini, Cristina; Anders, Friedrich; Bizyaev, Dmitry; Brewington, Howard; Ebelke, Garrett; Frinchaboy, Peter M; Ge, Jian; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Marchante, Moses; Meszaros, Szabolcs; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey; Skrutskie, Michael F

    2014-01-01

    We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and alpha-element abundances of stars over a large part of the Milky Way disk. Using a sample of ~10,000 kinematically-unbiased red-clump stars with ~5% distance accuracy as tracers, the [alpha/Fe] vs. [Fe/H] distribution of this sample exhibits a bimodality in [alpha/Fe] at intermediate metallicities, -0.9<[Fe/H]<-0.2, but at higher metallicities ([Fe/H]=+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the alpha-element abundance patterns. The described abundance pattern is found throughout the range 5

  2. A spectroscopic study of blue supergiant stars in the Sculptor galaxy NGC 55: chemical evolution and distance

    CERN Document Server

    Kudritzki, Rolf; Castro, Norberto; Ho, I-Ting; Bresolin, Fabio; Gieren, Wolfgang; Pietrzynski, Grzegorz; Przybilla, Norbert

    2016-01-01

    Low resolution (4.5 to 5 Angstroem) spectra of 58 blue supergiant stars distributed over the disk of the Magellanic spiral galaxy NGC 55 in the Sculptor group are analyzed by means of non-LTE techniques to determine stellar temperatures, gravities and metallicities (from iron peak and alpha-elements). A metallicity gradient of -0.22 +/- 0.06$ dex/R_25 is detected. The central metallicity on a logarithmic scale relative to the Sun is [Z] = -0.37 +\\- 0.03. A chemical evolution model using the observed distribution of stellar and interstellar medium gas mass column densities reproduces the observed metallicity distribution well and reveals a recent history of strong galactic mass accretion and wind outflows with accretion and mass-loss rates of the order of the star formation rate. There is an indication of spatial inhomogeneity in metallicity. In addition, the relatively high central metallicity of the disk confirms that two extra-planar metal poor HII regions detected in previous work 1.13 to 2.22 kpc above th...

  3. Stochastic processes, galactic star formation, and chemical evolution. Effects of accretion, stripping, and collisions in multiphase multi-zone models

    CERN Document Server

    Valle, G D; Galli, D

    2005-01-01

    This paper reports simulations allowing for stochastic accretion and mass loss within closed and open systems modeled using a previously developed multi-population, multi-zone (halo, thick disk, thin disk) treatment. The star formation rate is computed as a function of time directly from the model equations and all chemical evolution is followed without instantaneous recycling. Several types of simulations are presented here: (1) a closed system with bursty mass loss from the halo to the thick disk, and from the thick to the thin disk, in separate events to the thin disk; (2) open systems with random environmental (extragalactic) accretion, e.g. by infall of high velocity clouds directly to the thin disk; (3) schematic open system single and multiple collision events and intracluster stripping. For the open models, the mass of the Galaxy has been explicitly tracked with time. We present the evolution of the star formation rate, metallicity histories, and concentrate on the light elements. We find a wide range...

  4. The Chemical Composition of Red Giant Branch Stars in the Galactic Globular Clusters NGC 6342 and NGC 6366

    CERN Document Server

    Johnson, Christian I; Rich, R Michael; Pilachowski, Catherine A; Hsyu, Tiffany

    2016-01-01

    We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high resolution (R > 20,000) spectra obtained with the MMT-Hectochelle and WIYN-Hydra spectrographs. We find that NGC 6342 has a heliocentric radial velocity of +112.5 km/s (sigma = 8.6 km/s), NGC 6366 has a heliocentric radial velocity of -122.3 km/s (sigma = 1.5 km/s), and that both clusters have nearly identical metallicities ([Fe/H] ~ -0.55). NGC 6366 shows evidence of a moderately extended O-Na anti-correlation, but more data are needed for NGC 6342 to determine if this cluster also exhibits the typical O-Na relation likely found in all other Galactic globular clusters. The two clusters are distinguished from similar metallicity field stars as having larger [Na/Fe] spreads and enhanced [La/Fe] ratios, but we find that NGC 6342 and NGC 6366 display alpha and Fe-peak element abundance patterns that are typic...

  5. The Chemical Composition of Red Giant Branch Stars in the Galactic Globular Clusters NGC 6342 and NGC 6366

    Science.gov (United States)

    Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Pilachowski, Catherine A.; Hsyu, Tiffany

    2016-07-01

    We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high-resolution (R ≳ 20,000) spectra obtained with the MMT-Hectochelle and WIYN-Hydra spectrographs. We find that NGC 6342 has a heliocentric radial velocity of +112.5 km s-1 (σ = 8.6 km s-1), NGC 6366 has a heliocentric radial velocity of -122.3 km s-1 (σ = 1.5 km s-1), and both clusters have nearly identical metallicities ([Fe/H] ≈ -0.55). NGC 6366 shows evidence of a moderately extended O-Na anti-correlation, but more data are needed for NGC 6342 to determine if this cluster also exhibits the typical O-Na relation likely found in all other Galactic globular clusters. The two clusters are distinguished from similar metallicity field stars as having larger [Na/Fe] spreads and enhanced [La/Fe] ratios, but we find that NGC 6342 and NGC 6366 display α and Fe-peak element abundance patterns that are typical of other metal-rich ([Fe/H] > -1) inner Galaxy clusters. However, the median [La/Fe] abundance may vary from cluster-to-cluster.

  6. Variable stars in Local Group Galaxies - II. Sculptor dSph

    Science.gov (United States)

    Martínez-Vázquez, C. E.; Stetson, P. B.; Monelli, M.; Bernard, E. J.; Fiorentino, G.; Gallart, C.; Bono, G.; Cassisi, S.; Dall'Ora, M.; Ferraro, I.; Iannicola, G.; Walker, A. R.

    2016-08-01

    We present the identification of 634 variable stars in the Milky Way dSph satellite Sculptor based on archival ground-based optical observations spanning ˜24 years and covering ˜ 2.5 deg2. We employed the same methodologies as the "Homogeneous Photometry" series published by Stetson. In particular, we have identified and characterized the largest (536) RR Lyrae sample so far in a Milky Way dSph satellite. We have also detected four Anomalous Cepheids, 23 SX Phoenicis stars, five eclipsing binaries, three field variable stars, three peculiar variable stars located above the horizontal branch - near to the locus of BL Herculis - that we are unable to classify properly. Additionally we identify 37 Long Period Variables plus 23 probable variable stars, for which the current data do not allow us to determine the period. We report positions and finding charts for all the variable stars, and basic properties (period, amplitude, mean magnitude) and light curves for 574 of them. We discuss the properties of the RR Lyrae stars in the Bailey diagram, which supports the coexistence of subpopulations with different chemical compositions. We estimate the mean mass of Anomalous Cepheids (˜1.5M⊙) and SX Phoenicis stars (˜1M⊙). We discuss in detail the nature of the former. The connections between the properties of the different families of variable stars are discussed in the context of the star formation history of the Sculptor dSph galaxy.

  7. Variable stars in Local Group Galaxies - II. Sculptor dSph

    Science.gov (United States)

    Martínez-Vázquez, C. E.; Stetson, P. B.; Monelli, M.; Bernard, E. J.; Fiorentino, G.; Gallart, C.; Bono, G.; Cassisi, S.; Dall'Ora, M.; Ferraro, I.; Iannicola, G.; Walker, A. R.

    2016-11-01

    We present the identification of 634 variable stars in the Milky Way dwarf spheroidal (dSph) satellite Sculptor based on archival ground-based optical observations spanning ˜24 yr and covering ˜2.5 deg2. We employed the same methodologies as the `Homogeneous Photometry' series published by Stetson. In particular, we have identified and characterized one of the largest (536) RR Lyrae samples so far in a Milky Way dSph satellite. We have also detected four Anomalous Cepheids, 23 SX Phoenicis stars, five eclipsing binaries, three field variable stars, three peculiar variable stars located above the horizontal branch - near to the locus of BL Herculis - that we are unable to classify properly. Additionally, we identify 37 long period variables plus 23 probable variable stars, for which the current data do not allow us to determine the period. We report positions and finding charts for all the variable stars, and basic properties (period, amplitude, mean magnitude) and light curves for 574 of them. We discuss the properties of the RR Lyrae stars in the Bailey diagram, which supports the coexistence of subpopulations with different chemical compositions. We estimate the mean mass of Anomalous Cepheids (˜1.5 M⊙) and SX Phoenicis stars (˜1 M⊙). We discuss in detail the nature of the former. The connections between the properties of the different families of variable stars are discussed in the context of the star formation history of the Sculptor dSph galaxy.

  8. Does the chemical signature of TYC 8442-1036-1 originate from a rotating massive star that died in a faint explosion?

    CERN Document Server

    Cescutti, G; François, P; Chiappini, C; Depagne, E; Christlieb, N; Cortés, C

    2016-01-01

    Context. We have recently investigated the origin of chemical signatures observed in Galactic halo stars by means of a stochastic chemical evolution model. We have found that rotating massive stars are a promising way to explain several signatures observed in these fossil stars. Aims. In the present paper we discuss how the extremely metal-poor halo star TYC 8442-1036-1, for which we have now obtained detailed abundances from VLT-UVES spectra, fits into the framework of our previous work. Methods. We apply a standard 1D LTE analysis to the spectrum of this star. We measure the abundances of 14 chemical elements; for Na, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni and Zn we compute the abundances using equivalent widths; for C, Sr and Ba we obtain the abundances by means of synthetic spectra generated by MOOG. Results. We find an abundance of [Fe/H]= $-$3.5 $\\pm$0.13 dex based on our high resolution spectrum; this points to an iron content lower by a factor of three (0.5 dex) compared to the one obtained by a low resolu...

  9. Chemical abundances for A-and F-type supergiant stars

    CERN Document Server

    Molina, R E

    2016-01-01

    We present the stellar parameters and elemental abundances of a set of A--F-type supergiant stars HD\\,45674, HD\\,180028, HD\\,194951 and HD\\,224893 using high resolution ($R$\\,$\\sim$\\,42,000) spectra taken from ELODIE library. We present the first results of the abundance analysis for HD\\,45674 and HD\\,224893. We reaffirm the abundances for HD\\,180028 and HD\\,194951 studied previously by Luck (2014) respectively. Alpha-elements indicates that objects belong to the thin disc population. From their abundances and its location on the Hertzsprung-Russell diagram seems point out that HD\\,45675, HD\\,194951 and HD\\,224893 are in the post-first dredge-up (post-1DUP) phase and they are moving in the red-blue loop region. HD~180028, on the contary, shows typical abundances of the population I but its evolutionary status could not be satisfactorily defined.

  10. Chemical abundances for A-and F-type supergiant stars

    Science.gov (United States)

    Molina, R. E.; Rivera, H.

    2016-04-01

    We present the stellar parameters and elemental abundances of a set of A-F-type supergiant stars HD 45674, HD 180028, HD 194951 and HD 224893 using high resolution (R≈ 42,000) spectra taken from ELODIE library. We present the first results of the abundance analysis for HD 45674 and HD 224893. We reaffirm the abundances for HD 180028 and HD 194951 studied previously by Luck. Alpha-elements indicate that the objects belong to the thin disc population. Their abundances and their location on the Hertzsprung-Russell diagram seem to indicate that HD 45675, HD 194951 and HD 224893 are in the post-first dredge-up (post-1DUP) phase, and that they are moving in the red-blue loop region. HD 180028, on the contary, shows typical abundances of Population I, but its evolutionary status cannot be satisfactorily defined.

  11. Derivation of chemical abundances in star-forming galaxies at intermediate redshift

    CERN Document Server

    Perez-Martinez, J M

    2014-01-01

    We have studied a sample of 11 blue, luminous, metal-poor galaxies at redshift 0.744 < z < 0.835 from the DEEP2 redshift survey. They were selected by the presence of the [OIII]4363 auroral line and the [OII]3726,3729 doublet together with the strong emission nebular [OIII] lines in their spectra from a sample of around 6000 galaxies within a narrow redshift range. All the spectra have been taken with DEIMOS, which is a multi-slit, double-beam spectrograph which uses slitmasks to allow the spectra from many objects to be imaged at the same time. The selected objects present high luminosities (20.3 < MB < 18.5), remarkable blue color index, and total oxygen abundances between 7.69 and 8.15 which represent 1/3 to 1/10 of the solar value. The wide spectral coverage (from 6500 to 9100 angstroms) of the DEIMOS spectrograph and its high spectral resolution, R around 5000, bring us an opportunity to study the behaviour of these star-forming galaxies at intermediate redshift with high quality spectra. We ...

  12. Search for associations containing young stars (SACY):II. Chemical abundances of stars in 11 young Associations in the Solar neighborhood

    CERN Document Server

    Almeida, P Viana; Melo, C; Eiff, M Ammler-von; Torres, C A O; Quast, G R; Gameiro, J F; Sterzik, M

    2009-01-01

    The recently discovered coeval, moving groups of young stellar objects in the solar neighborhood represent invaluable laboratories to study recent star formation and to search for high metallicity stars which can be included in future exo-planet surveys. In this study we derived through an uniform and homogeneous method stellar atmospheric parameters and abundances for iron, silicium and nickel in 63 Post T-Tauri Stars from 11 nearby young associations. We further compare the results with two different pre-main sequence (PMS) and main sequence (MS) star populations. The stellar atmospheric parameters and the abundances presented here were derived using the equivalent width of individual lines in the stellar spectra through the excitation/ionization equilibrium of iron. Moreover, we compared the observed Balmer lines with synthetic pro?les calculated for model atmospheres with a different line formation code. We found that the synthetic pro?les agree reasonably well with the observed pro?les, although the Balm...

  13. The Chemical Classification of the AGB Star IRAS 17515-2407

    Institute of Scientific and Technical Information of China (English)

    Pei-Sheng Chen; Pin Zhang

    2003-01-01

    The chemical classification of IRAS 17515-2407 has been debated for a long time. Up to now there are two contenders, oxygen-rich or carbon-rich. We believe that IRAS 17515-2407 is an oxygen-rich source: because (i) it shows the silicate self-absorbed emission; (ii) in the near infrared-IRAS diagram it is located in the oxygen-rich object region and (iii) particularly, it has detected SiO maser emission.

  14. Chemical Evolution in Hierarchical Models of Cosmic Structure II: The Formation of the Milky Way Stellar Halo and the Distribution of the Oldest Stars

    CERN Document Server

    Tumlinson, Jason

    2009-01-01

    This paper presents theoretical star formation and chemical enrichment histories for the stellar halo of the Milky Way based on new chemodynamical modeling. The goal of this study is to assess the extent to which metal-poor stars in the halo reflect the star formation conditions that occurred in halo progenitor galaxies at high redshift, before and during the epoch of reionization. Simple prescriptions that translate dark-matter halo mass into baryonic gas budgets and star formation histories yield models that resemble the observed Milky Way halo in its total stellar mass, metallicity distribution, and the luminosity function and chemical enrichment of dwarf satellite galaxies. These model halos in turn allow an exploration of how the populations of interest for probing the epoch of reionization are distributed in physical and phase space, and of how they are related to lower-redshift populations of the same metallicity. The fraction of stars dating from before a particular time or redshift depends strongly o...

  15. The problem of the barium stars

    Science.gov (United States)

    Bohm-Vitense, E.; Nemec, J.; Proffitt, C.

    1984-01-01

    Ultraviolet observations of barium stars and other cool stars with peculiar element abundances are reported. Those observations attempted to find hot white dwarf companions. Among six real barium stars studied, only Zeta Cap was found to have a white dwarf companion. Among seven mild, or marginal, barium stars studied, at least three were found to have hot subluminous companions. It is likely that all of them have white dwarf companions.

  16. Galactic orbits of stars with planets

    OpenAIRE

    Barbieri, M.; Gratton, R. G.

    2001-01-01

    We have reconstructed the galactic orbits of the parent stars of exoplanets. For comparison, we have recalculated the galactic orbits of stars from the Edvardsson et al.(1993) catalog. A comparison between the two samples indicates that stars with planets are not kinematically peculiar. At each perigalactic distance stars with planets have a metallicity systematically larger than the average for the comparison sample. We argue that this result favors scenarios where the presence of planets is...

  17. The Chemical Abundances of Stars in the Halo (CASH) Project. III. A New Classification Scheme for Carbon-Enhanced Metal-poor Stars with S-process Element Enhancement

    CERN Document Server

    Hollek, Julie K; Placco, Vinicius M; Karakas, Amanda I; Shetrone, Matthew; Sneden, Christopher; Christlieb, Norbert

    2015-01-01

    We present a detailed abundance analysis of 23 elements for a newly discovered carbon-enhanced metal-poor (CEMP) star, HE 0414-0343, from the Chemical Abundances of Stars in the Halo (CASH) Project. Its spectroscopic stellar parameters are Teff = 4863 K, log g = 1.25, vmic = 2.20 km/s, and [Fe/H] = -2.24. Radial velocity measurements covering seven years indicate HE 0414-0343 to be a binary. HE 0414-0343 has [C/Fe] = 1.44 and is strongly enhanced in neutron-capture elements but its abundances cannot be reproduced by a solar-type s-process pattern alone. Traditionally, it could be classified as "CEMP-r/s" star. Based on abundance comparisons with AGB star nucleosynthesis models, we suggest a new physically-motivated origin and classification scheme for CEMP-s stars and the still poorly-understood CEMP-r/s. The new scheme describes a continuous transition between these two so-far distinctly treated subgroups: CEMP-sA, CEMP-sB, and CEMP-sC. Possible causes for a continuous transition include the number of therma...

  18. Chemical abundances and kinematics of 257 G-, K-type field giants. Setting a base for further analysis of giant-planet properties orbiting evolved stars

    CERN Document Server

    Adibekyan, V Zh; Santos, N C; Alves, S; Lovis, C; Udry, S; Israelian, G; Sousa, S G; Tsantaki, M; Mortier, A; Sozzetti, A; De Medeiros, J R

    2015-01-01

    We performed a uniform and detailed abundance analysis of 12 refractory elements (Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Co, Sc, Mn, and V) for a sample of 257 G- and K-type evolved stars from the CORALIE planet search program. To date, only one of these stars is known to harbor a planetary companion. We aimed to characterize this large sample of evolved stars in terms of chemical abundances and kinematics, thus setting a solid base for further analysis of planetary properties around giant stars. This sample, being homogeneously analyzed, can be used as a comparison sample for other planet-related studies, as well as for different type of studies related to stellar and Galaxy astrophysics. The abundances of the chemical elements were determined using an LTE abundance analysis relative to the Sun, with the spectral synthesis code MOOG and a grid of Kurucz ATLAS9 atmospheres. To separate the Galactic stellar populations both a purely kinematical approach and a chemical method were applied. We confirm the overabundance...

  19. The central star of the planetary nebula PB 8: a Wolf-Rayet-type wind of an unusual WN/WC chemical composition

    OpenAIRE

    Todt, H.; Peña, M.; Hamann, W. -R.; Gräfener, G.

    2010-01-01

    A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. As a rule, these CSPNe exhibit a chemical composition of helium, carbon, and oxygen with the majority showing Wolf-Rayet-like emission line spectra. These stars are classified as CSPNe of a spectral type [WC]. We perform a spectral analysis of CSPN PB 8 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. The source PB 8 displays wind-broadened emission lines from strong mass loss...

  20. The chemical composition of the Orion star forming region: I. Homogeneity of O and Si abundances in B-type stars

    CERN Document Server

    Simón-Díaz, S

    2009-01-01

    Recent accurate abundance analyses of B-type main sequence stars in the solar vicinity has shown that abundances derived from these stellar objects are more homogeneous and metal-rich than previously thought. We investigate whether the inhomogeneity of abundances previously found in B-type stars in the Ori OB1 association is real (hence a signature of enrichment of the newly formed stars in an induced star formation scenario) or a consequence of intrinsic errors induced by the use of photometric indices to establish the stellar parameters prior to the abundance analysis. We obtained a new (improved) spectroscopic data set comprising 13 B-type stars in the various Ori OB1 associations, and performed a detailed, self-consistent spectroscopic abundance analysis by means of the modern stellar atmosphere code FASTWIND. We detect systematic errors in the stellar parameters determined previously which affect the derived abundances. Once these errors are accounted for, we find a high degree of homogeneity in the O an...

  1. Mass loss in main-sequence B stars

    CERN Document Server

    Krticka, Jiri

    2014-01-01

    We calculate radiatively driven wind models of main-sequence B stars and provide the wind mass-loss rates and terminal velocities. The main-sequence mass-loss rate strongly depends on the stellar effective temperature. For the hottest B stars the mass-loss rate amounts to $10^{-9}\\,\\text{M}_\\odot\\,\\text{year}^{-1}$, while for the cooler ones the mass-loss rate is by more than three orders of magnitude lower. Main sequence B stars with solar abundance and effective temperatures lower than about $15\\,000\\,\\text{K}$ (later than the spectral type B5) do not have any homogeneous line-driven wind. We predict the wind mass-loss rates for the solar chemical composition and for modified abundance of heavier elements to study the winds of chemically peculiar stars. The mass-loss rate may both increase or decrease with increasing abundance depending on the importance of the induced emergent flux redistribution. Stars with overabundant silicon may have homogeneous winds even below the solar abundance wind limit at $15\\,0...

  2. Chemical Composition of the RS CVn-type Star 33 Piscium

    CERN Document Server

    Barisevi\\vcius, G; Berdyugina, S; Chorniy, Y; Ilyin, I

    2011-01-01

    Abundances of 22 chemical elements, including the key elements and isotopes such as 12C/13C, N and O, are investigated in the spectrum of 33 Psc, a single-lined RS CVn-type binary of low magnetic activity. The high resolution spectra were observed on the Nordic Optical Telescope and analyzed with the MARCS model atmospheres. The following main parameters have been determined: T_eff = 4750 K, log g = 2.8, [Fe/H] = -0.09, [C/Fe] = -0.04, [N/Fe] = 0.23, [O/Fe] = 0.05, C/N = 2.14, 12C/13C = 30, which show the first-dredge-up mixing signatures and no extra-mixing.

  3. The Detailed Chemical Properties of M31 Star Clusters. I. Fe, Alpha and Light Elements

    Science.gov (United States)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cohen, Judith G.

    2014-12-01

    We present ages, [Fe/H] and abundances of the α elements Ca I, Si I, Ti I, Ti II, and light elements Mg I, Na I, and Al I for 31 globular clusters (GCs) in M31, which were obtained from high-resolution, high signal-to-noise ratio >60 echelle spectra of their integrated light (IL). All abundances and ages are obtained using our original technique for high-resolution IL abundance analysis of GCs. This sample provides a never before seen picture of the chemical history of M31. The GCs are dispersed throughout the inner and outer halo, from 2.5 kpc Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. The Chemical Abundances of Stars in the Halo (CASH) Project. III. A New Classification Scheme for Carbon-enhanced Metal-poor Stars with s-process Element Enhancement

    Science.gov (United States)

    Hollek, Julie K.; Frebel, Anna; Placco, Vinicius M.; Karakas, Amanda I.; Shetrone, Matthew; Sneden, Christopher; Christlieb, Norbert

    2015-12-01

    We present a detailed abundance analysis of 23 elements for a newly discovered carbon-enhanced metal-poor (CEMP) star, HE 0414-0343, from the Chemical Abundances of Stars in the Halo Project. Its spectroscopic stellar parameters are Teff = 4863 K, {log}g=1.25,\\ξ = 2.20 km s-1, and [Fe/H] = -2.24. Radial velocity measurements covering seven years indicate HE 0414-0343 to be a binary. HE 0414-0343 has {{[C/Fe]}}=1.44 and is strongly enhanced in neutron-capture elements but its abundances cannot be reproduced by a solar-type s-process pattern alone. Traditionally, it could be classified as a “CEMP-r/s” star. Based on abundance comparisons with asymptotic giant branch (AGB) star nucleosynthesis models, we suggest a new physically motivated origin and classification scheme for CEMP-s stars and the still poorly understood CEMP-r/s. The new scheme describes a continuous transition between these two so-far distinctly treated subgroups: CEMP-sA, CEMP-sB, and CEMP-sC. Possible causes for a continuous transition include the number of thermal pulses the AGB companion underwent, the effect of different AGB star masses on their nucleosynthetic yields, and physics that is not well approximated in 1D stellar models such as proton ingestion episodes and rotation. Based on a set of detailed AGB models, we suggest the abundance signature of HE 0414-0343 to have arisen from a >1.3 M⊙ mass AGB star and a late-time mass transfer that transformed HE 0414-0343 into a CEMP-sC star. We also find that the [Y/Ba] ratio well parametrizes the classification and can thus be used to easily classify any future such stars. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  5. New determination of abundances and stellar parameters for a set of weak G-band stars

    CERN Document Server

    Palacios, A; Masseron, T; Thévenin, F; Itam-Pasquet, J; Parthasarathy, M

    2015-01-01

    Weak G-band (wGb) stars are very peculiar red giants almost devoided of carbon and often mildly enriched in lithium. Despite their very puzzling abundance patterns, very few detailed spectroscopic studies existed up to a few years ago, preventing any clear understanding of the wGb phenomenon. We recently proposed the first consistent analysis of published data for 28 wGb stars and identified them as descendants of early A-type to late B-type stars, without being able to conclude on their evolutionary status or the origin of their peculiar abundance pattern. We used newly obtained high-resolution and high SNR spectra for 19 wGb stars in the southern and northern hemisphere to homogeneously derive their fundamental parameters, metallicities, as well as the spectroscopic abundances for Li, C, N, O, Na, Sr, and Ba. We also computed dedicated stellar evolution models that we used to determine the masses and to investigate the evolutionary status and chemical history of the stars in our sample. We confirm that the ...

  6. Young stars and ionized nebulae in M83: comparing chemical abundances at high metallicity

    CERN Document Server

    Bresolin, Fabio; Urbaneja, Miguel A; Gieren, Wolfgang; Ho, I-Ting; Pietrzynski, Grzegorz

    2016-01-01

    We present spectra of 14 A-type supergiants in the metal-rich spiral galaxy M83. We derive stellar parameters and metallicities, and measure a spectroscopic distance modulus m-M = 28.47 +\\- 0.10 (4.9 +\\- 0.2 Mpc), in agreement with other methods. We use the stellar characteristic metallicity of M83 and other systems to discuss a version of the galaxy mass-metallicity relation that is independent of the analysis of nebular emission lines and the associated systematic uncertainties. We reproduce the radial metallicity gradient of M83, which flattens at large radii, with a chemical evolution model, constraining gas inflow and outflow processes. We carry out a comparative analysis of the metallicities we derive from the stellar spectra and published HII region line fluxes, utilizing both the direct, Te-based method and different strong-line abundance diagnostics. The direct abundances are in relatively good agreement with the stellar metallicities, once we apply a modest correction to the nebular oxygen abundance...

  7. Abundance Ratios in Stars vs. Hot Gas in Elliptical Galaxies: the Chemical Evolution Modeller Point of View

    CERN Document Server

    Pipino, A

    2009-01-01

    I will present predictions from chemical evolution model aimed at a self-consistent study of both optical (i.e. stellar) and X-ray (i.e.gas) properties of present-day elliptical galaxies. Detailed cooling and heating processes in the interstellar medium (ISM) are taken into and allow a reliable modelling of the SN-driven galactic wind. SNe Ia activity, in fact, may power a galactic wind lasting for a considerable amount of the galactic lifetime, even in the case for which the efficiency of energy transfer into the ISM per SN Ia event is less than unity. The model simultaneously reproduces the mass-metallicity, the colour-magnitude, the L_X - L_B and the L_X - T relations, as well as the observed trend of the [Mg/Fe] ratio as a function of sigma, by adopting the prescriptions of Pipino & Matteucci (2004) for the gas infall and star formation timescales. The "iron discrepancy", namely the too high predicted iron abundance in X-ray haloes of ellipticals compared to observations, can be solved by taking into ...

  8. Discovery of a peculiar DQ white dwarf

    CERN Document Server

    Carollo, D; Spagna, A; Smart, R L; Lattanzi, M G; McLean, B J; Pinfield, D J

    2002-01-01

    We report the discovery of a new carbon rich white dwarf that was identified during a proper motion survey for cool white dwarfs based on photographic material used for the construction of the Guide Star Catalog II. Its large proper motion (0.48 arcsec/yr) and faint apparent magnitude (V = 18.7) suggest a nearby object of low luminosity. A low-resolution spectrum taken with the William Herschel Telescope clearly shows strong C2 Deslandres-d'Azambuja and Swan bands, which identify the star as a DQ white dwarf. The strength of the Deslandres-d'Azambuja bands and the depression of the continuum in the Swan-band region are signs of enhanced carbon abundance for the given Teff. Comparison of our spectrophotometric data to published synthetic spectra suggests 6000 K < Teff < 8000 K although further analysis with specialized synthetic models appear necessary to derive both Teff and chemical composition. Finally, the range of spatial velocity estimated for this object makes it a likely member of the halo or thi...

  9. The central star of the planetary nebula PB 8: a Wolf-Rayet-type wind of an unusual WN/WC chemical composition

    CERN Document Server

    Todt, H; Hamann, W -R; Gräfener, G

    2010-01-01

    A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. As a rule, these CSPNe exhibit a chemical composition of helium, carbon, and oxygen with the majority showing Wolf-Rayet-like emission line spectra. These stars are classified as CSPNe of a spectral type [WC]. We perform a spectral analysis of CSPN PB 8 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. The source PB 8 displays wind-broadened emission lines from strong mass loss. Most strikingly, we find that its surface composition is hydrogen-deficient, but not carbon-rich. With mass fractions of 55% helium, 40% hydrogen, 1.3% carbon, 2% nitrogen, and 1.3% oxygen, it differs greatly from the 30-50% of carbon which are typically seen in [WC]-type central stars. The atmospheric mixture in PB 8 has an analogy in the WN/WC transition type among the massive Wolf-Rayet stars. Therefore we suggest to introduce a new spectral type [WN/WC] for CSPNe, with PB 8 as its first member. The central star of P...

  10. Chemical abundances for the transiting planet host stars OGLE-TR-10, 56, 111, 113, 132 and TrES-1. Abundances in different galactic populations

    CERN Document Server

    Santos, N C; Israelian, G; Mayor, M; Melo, C; Queloz, D; Udry, S; Ribeiro, J P; Jorge, S

    2006-01-01

    We used the UVES spectrograph (VLT-UT2 telescope) to obtain high-resolution spectra of 6 stars hosting transiting planets, namely for OGLE-TR-10, 56, 111, 113, 132 and TrES-1. The spectra are now used to derive and discuss the chemical abundances for C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn. Abundances were derived in LTE, using 1-D plane-parallel Kurucz model atmospheres. For S, Zn and Cu we used a spectral synthesis procedure, while for the remaining cases the abundances were derived from measurements of line-equivalent widths. The resulting abundances are compared with those found for stars in the solar neighborhood. Distances and galactic coordinates are estimated for the stars. We conclude that besides being particularly metal-rich, with small possible exceptions OGLE-TR-10, 56, 111, 113, 132 and TrES-1 are chemically undistinguishable from the field (thin disk) stars regarding their [X/Fe] abundances. This is particularly relevant for the most distant of the targets, located at ...

  11. A search for non-pulsating, chemically normal stars in the δ Scuti instability strip using Kepler data

    DEFF Research Database (Denmark)

    Murphy, Simon J.; Bedding, Timothy R.; Niemczura, Ewa;

    2015-01-01

    is a challenge to pulsation theory. However, its existence as the only known star of its kind indicates that such stars are rare. We conclude that the delta Sct instability strip is pure, unless pulsation is shut down by diffusion or another mechanism, which could be interaction with a binary companion....

  12. Chemical Composition in the Globular Cluster M71 from Keck/HIRES Spectra of Turn-Off Stars

    CERN Document Server

    Boesgaard, A M; Cody, A M; Stephens, A; Deliyannis, C P; Boesgaard, Ann Merchant; King, Jeremy R.; Cody, Ann Marie; Stephens, Alex; Deliyannis, Constantine P.

    2005-01-01

    We have made observations with the Keck I telescope and HIRES at a resolution of $\\sim$45,000 of five nearly identical stars at the turn-off of the metal-rich globular cluster M 71. Our mean Fe abundance, [Fe/H]=-0.80 +-0.02, is in excellent agreement with previous cluster determinations from both giants and near-turnoff stars. There is no clear evidence for any star-to-star abundance differences or correlations in our sample. Abundance ratios of the Fe-peak elements (Cr, Ni) are similar to Fe. The turn-off stars in M71 have remarkably consistent enhancements of 0.2 - 0.3 dex in [Si/Fe], [Ca/Fe] and [Ti/Fe] -- like the red giants. Our [Mg/Fe] ratio is somewhat lower than that suggested by other studies. We compare our mean abundances for the five M 71 stars with field stars of similar [Fe/H] -- 8 with halo kinematics and 17 with disk kinematics. The abundances of the alpha-fusion products (Mg, Si, Ca, Ti) agree with both samples, but seem a closer match to the disk stars. The Mg abundance in M71 is at the low...

  13. Radial velocity study of the CP star Epsilon Ursae Majoris

    CERN Document Server

    Sokolov, N A

    2009-01-01

    In this Letter, the radial velocity variability of the chemically peculiar star Epsilon Ursae Majoris ($\\epsilon$ UMa) from the sharp cores of the hydrogen lines is investigated. This study is based on the ELODIE archival data obtained at different phases of the rotational cycle. The star exhibits low-amplitude radial velocity variations with a period of P=5.0887 d. The best Keplerian solution yields an eccentricity e=0.503 and a minimum mass ~14.7$M_{\\rm Jup}$ on the hypothesis that the rotational axis of $\\epsilon$ UMa is perpendicular to the orbital plane. This result indicate that the companion is the brown-dwarf with the projected semi-amplitude variation of the radial velocity $K_{\\rm 2}$=135.9 km/sec and the sine of inclination times semi-major axis $a_{2}$sin(i)=0.055 au.

  14. A window on the efficiency of the s-process in AGB stars: chemical abundances of n-capture elements in the planetary nebula NGC 3918

    CERN Document Server

    Madonna, S; Luridiana, V; Sterling, N C; Morisset, C

    2015-01-01

    The chemical content of the planetary nebula NGC 3918 is investigated through deep, high-resolution (R~40000) UVES at VLT spectrophotometric data. We identify and measure more than 750 emission lines, making ours one of the deepest spectra ever taken for a planetary nebula. Among these lines we detect very faint lines of several neutron-capture elements (Se, Kr, Rb, and Xe), which enable us to compute their chemical abundances with unprecedented accuracy, thus constraining the efficiency of the s-process and convective dredge-up in the progenitor star of NGC 3918.

  15. Evidence for Chemical Processing of Precometary Icy Grains In Circumstellar Environments of Pre-Main-Sequence Stars

    Science.gov (United States)

    Teglier, Stephen C.; Weintraub, David A.; Rettig, Terrence W.; Pendleton, Yvonne J.; Whittet, Douglas C.; Kulesa, Craig A.

    1995-01-01

    We report the detection of a broad absorption feature near 2166 cm-1 in the spectrum of the Taurus cloud source Elias 18. This pre-main-sequence source is the second in Taurus, the third in our survey, and the fifth known in the sky to show the broad 2166 cm-1 absorption feature. Of equal importance, this feature is not seen toward several other embedded sources in our survey, nor is it seen toward the source Elias 16, located behind the Taurus cloud. Laboratory experiments with interstellar ice analogs show that such a feature is associated with a complex C=-N containing compound [called X(C=-N)] that results from high-energy processing (ultraviolet irradiation or ion bombardment) of simple ice components into more complex, organic components, We find a nonlinear anticorrelation between the abundance of X(C=-N) and frozen CO in non- polar lattices. We find no correlation between the abundance of X(C=-N) and frozen CO in polar lattices. Because the abundances of frozen CO and H20 are strongly correlated with each other and with visual extinction toward sources embedded in and located behind the Taurus molecular cloud, these ice components usually are associated with intracloud material. Our results indicate that X(C=-N) molecules result from chemical processing of dust grains dominated by nonpolar icy mantles in the local environments of pre-main- sequence stars. Such processing of icy grains in the early solar system may be an important source of organic compounds observed in minor solar system bodies. The delivery of these organic compounds to the surface of the primitive Earth through comet impacts may have provided the raw materials for prebiotic chemistry.

  16. Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies

    Science.gov (United States)

    Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella

    2008-12-01

    'Shea and Michael L. Norman; 16. Damped Lyα systems as probes of chemical evolution over cosmological timescales Miroslava Dessauges-Zavadsky; 17. Connecting high-redshift galaxy populations through observations of local damped Lyman alpha dwarf galaxies Regina E. Schulte-Ladbeck; 18. Chemical enrichment and feedback in low metallicity environments: constraints on galaxy formation Francesca Matteucci; 19. Effects of reionization on dwarf galaxy formation Massimo Ricotti; 20. The importance of following the evolution of the dust in galaxies on their SEDs A. Schurer, F. Calura, L. Silva, A. Pipino, G. L. Granato, F. Matteucci and R. Maiolino; 21. About the chemical evolution of dSphs (and the peculiar globular cluster ωCen) Andrea Marcolini and Annibale D'Ercole; 22. Young star clusters in the small Magellanic cloud: impact of local and global conditions on star formation Elena Sabbi, Linda J. Smith, Lynn R. Carlson, Antonella Nota, Monca Tosi, Michele Cignoni, Jay S. Gallagher III, Marco Sirianni and Margaret Meixner; 23. Modeling the ISM properties of metal-poor galaxies and gamma-ray burst hosts Emily M. Levesque, Lisa J. Kewley, Kirsten Larson and Leonie Snijders; 24. Dwarf galaxies and the magnetisation of the IGM Uli Klein; Session III. Explosive Events in Low-Metallicity Environments: 25. Supernovae and their evolution in a low metallicity ISM Roger A. Chevalier; 26. First stars - type Ib supernovae connection Ken'ichi Nomoto, Masaomi Tanaka, Yasuomi Kamiya, Nozomu Tominaga and Keiichi Maeda; 27. Supernova nucleosynthesis in the early universe Nozomu Tominaga, Hideyuki Umeda, Keiichi Maeda, Ken'ichi Nomoto and Nobuyuki Iwamoto; 28. Powerful explosions at Z = 0? Sylvia Ekström, Georges Meynet, Raphael Hirschi and André Maeder; 29. Wind anisotropy and stellar evolution Cyril Georgy, Georges Meynet and André Maeder; 30. Low-mass and metal-poor gamma-ray burst

  17. Physical and chemical data collected from BT casts and other instruments from SAXON STAR in North Atlantic Ocean from 23 April 1975 to 12 March 1986 (NODC Accession 8700036)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and chemical data were collected using BT, MBT, XBT, and other instruments in the North Atlantic Ocean and other seas from SAXON STAR and other platforms....

  18. Magnetic fields of HgMn stars

    DEFF Research Database (Denmark)

    Hubrig, S.; Gonzalez, J. F.; Ilyin, I.;

    2012-01-01

    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have...... by applying the moment technique on spectral lines of inhomogeneously distributed elements separately. Furthermore, we present new determinations of the mean longitudinal magnetic field for the HgMn star HD 65949 and the hotter analog of HgMn stars, the PGa star HD 19400, using FORS 2 installed at the VLT. We...... also give new measurements of the eclipsing system ARAur with a primary star of HgMn peculiarity, which were obtained with the SOFIN spectropolarimeter installed at the Nordic Optical Telescope. Methods. We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS...

  19. CNO and F abundances in the barium star HD 123396

    CERN Document Server

    Alves-Brito, Alan; Yong, David; Meléndez, Jorge; Vásquez, Sergio

    2011-01-01

    [Abridged] Barium stars are moderately rare chemically peculiar objects which are believed to be the result of the pollution of an otherwise normal star by material from an evolved companion on the asymptotic giant branch (AGB). We aim to derive carbon, nitrogen, oxygen, and fluorine abundances for the first time from infrared spectra of the barium red giant star HD 123396 to quantitatively test AGB nucleosynthesis models for producing barium stars via mass accretion. High-resolution and high S/N infrared spectra were obtained using the Phoenix spectrograph mounted at the Gemini South telescope. The abundances were obtained through spectrum synthesis of individual atomic and molecular lines, using the MOOG stellar line analysis program together with Kurucz's stellar atmosphere models. The analysis was classical, using 1D stellar models and spectral synthesis under the assumption of local thermodynamic equilibrium. We confirm that HD 123396 is a metal-deficient barium star ([Fe/H] = -1.05), with A(C) = 7.88, A...

  20. Cloud Implosion and Star Formation(Proceedings of Japan-France Seminar on Chemical Evolution of Galaxies with Active Star Formation)

    OpenAIRE

    Kimura, Toshiya; TOSA, Makoto

    1987-01-01

    The evolution of the molecular gas cloud embedded in an HII region is studied. We consider a spherical, uniform, and stable molecular gas cloud, which is exposed to strong ionizing radiation from nearby massive stars. The gas cloud is strongly compressed by the surrounding high pressure ionized gas and a shock wave is formed. The shock compressed gas forms a shell which converges toward the center of the cloud sweeping up the inner material. As the shell accumulates the swept up gas, it becom...

  1. Chemical abundances of giant stars in NGC 5053 and NGC 5634, two globular clusters associated with the Sagittarius dwarf Spheroidal galaxy?

    CERN Document Server

    Sbordone, L; Bidin, C Moni; Bonifacio, P; Villanova, S; Bellazzini, M; Ibata, R; Chiba, M; Geisler, D; Caffau, E; Duffau, S

    2015-01-01

    The tidal disruption of the Sagittarius dwarf Spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, the Sgr dSph is suspected to have lost a number of globular clusters (GC). Many Galactic GC are suspected to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed due to chemical similarities, others exist whose chemical composition has never been investigated. NGC 5053 and NGC 5634 are two among these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. We analize high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of "unassociated" MW halo globulars, and of the metal poor Sgr dSph main body population...

  2. Chemical tagging with APOGEE: Discovery of a large population of N-rich stars in the inner Galaxy

    CERN Document Server

    Schiavon, Ricardo P; Carrera, Ricardo; Lucatello, Sara; Robin, A C; Ness, Melissa; Martell, Sarah L; Smith, Verne V; Hernandez, D A Garcia; Manchado, Arturo; Schoenrich, Ralph; Bastian, Nate; Chiappini, Cristina; Shetrone, Matthew; Mackereth, J Ted; Williams, Rob A; Meszaros, Szabolcs; Prieto, Carlos Allende; Anders, Friedrich; Bizyaev, Dmitry; Beers, Timothy C; Chojnowski, S Drew; Cunha, Katia; Epstein, Courtney; Frinchaboy, Peter M; Perez, Ana E Garcia; Hearty, Fred R; Holtzman, Jon A; Johnson, Jennifer A; Kinemuchi, Karen; Majewski, Steven R; Muna, Demitri; Nidever, David L; Nguyen, Duy Cuong; O'Connell, Robert W; Oravetz, Daniel; Pan, Kaike; Pinsonneault, Marc; Schneider, Donald P; Schultheis, Matthias; Simmons, Audrey; Skrutskie, Michael F; Sobeck, Jennifer; Wilson, John C; Zasowski, Gail

    2016-01-01

    Formation of globular clusters (GCs), the Galactic bulge, or galaxy bulges in general, are important unsolved problems in Galactic astronomy. Homogeneous infrared observations of large samples of stars belonging to GCs and the Galactic bulge field are one of the best ways to study these problems. We report the discovery by APOGEE of a population of field stars in the inner Galaxy with abundances of N, C, and Al that are typically found in GC stars. The newly discovered stars have high [N/Fe], which is correlated with [Al/Fe] and anti-correlated with [C/Fe]. They are homogeneously distributed across, and kinematically indistinguishable from, other field stars in the same volume. Their metallicity distribution is seemingly unimodal, peaking at [Fe/H]~-1, thus being in disagreement with that of the Galactic GC system. Our results can be understood in terms of different scenarios. N-rich stars could be former members of dissolved GCs, in which case the mass in destroyed GCs exceeds that of the surviving GC system...

  3. Abundances of Sr, Y, and Zr in Metal-Poor Stars and Implications for Chemical Evolution in the Early Galaxy

    CERN Document Server

    Qian, Y -Z

    2008-01-01

    Studies of nucleosynthesis in neutrino-driven winds from nascent neutron stars show that the elements from Sr through Ag with mass numbers A~88-110 are produced by charged-particle reactions (CPR) during the alpha-process in the winds. Accordingly, we have attributed all these elements in stars of low metallicities ([Fe/H]-0.32 for all metal-poor stars. The high-resolution data now available on Sr abundances in Galactic halo stars show that there is a great shortfall of Sr relative to Fe in many stars with [Fe/H]<-3. This is in direct conflict with the above prediction. The same conflict also exists for two other CPR elements Y and Zr. The very low abundances of Sr, Y, and Zr observed in stars with [Fe/H]<-3 thus require a stellar source that cannot be low-mass or normal SNe. We show that this observation requires a stellar source leaving behind black holes and that hypernovae (HNe) from progenitors of ~25-50M_sun are the most plausible candidates. (Abridged)

  4. The peculiarity of animal complexes of chernozem

    Directory of Open Access Journals (Sweden)

    O. V. Zhukov

    2005-02-01

    Full Text Available The genetic connection of animal complexes and soil cover is in the basis of diagnostic ability of animals to indicate and quantity assessment of soil processes. The ecoiGgical view and peculiarity of soil animal complexes has the most impotent value. The soil animal complexes of steppe and their trans-formation under artificial forest are discussed

  5. The peculiarity of animal complexes of chernozem

    OpenAIRE

    O. V. Zhukov

    2005-01-01

    The genetic connection of animal complexes and soil cover is in the basis of diagnostic ability of animals to indicate and quantity assessment of soil processes. The ecoiGgical view and peculiarity of soil animal complexes has the most impotent value. The soil animal complexes of steppe and their trans-formation under artificial forest are discussed

  6. Peculiar Features of Burning Alternative Motor Fuels

    Directory of Open Access Journals (Sweden)

    M. Assad

    2006-01-01

    Full Text Available Some peculiar features of air-hydrogen mixture combustion process in a modeling combustion chamber are given in the paper. Dependences of burning duration of various fuel types on initial pressure have been obtained. The paper considers dynamics of changes in pressure and ignition rate of some fuel types in the combustion chamber.

  7. A NEW TWIST IN THE EVOLUTION OF LOW-MASS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Denissenkov, Pavel A., E-mail: pavelden@uvic.ca [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada)

    2012-07-01

    We show that the evolutionary track of a low-mass red giant should make an extended zigzag on the Hertzsprung-Russel diagram just after the bump luminosity if fast internal rotation and enhanced extra mixing in the radiative zone bring the temperature gradient close to the adiabatic one. This can explain both the location and peculiar surface chemical composition of Li-rich K giants studied by Kumar et al. We also discuss a striking resemblance between the photometric and composition peculiarities of these stars and giant components of RS CVn binaries. We demonstrate that the observationally constrained values of the temperature gradient in the Li-rich K giants agree with the required rate of extra mixing only if the turbulence that is believed to be responsible for this extra mixing is highly anisotropic, with its associated transport coefficients in the horizontal direction strongly dominating over those in the vertical direction.

  8. Abundance analysis of s-process enhanced barium stars

    Science.gov (United States)

    Mahanta, Upakul; Karinkuzhi, Drisya; Goswami, Aruna; Duorah, Kalpana

    2016-08-01

    Detailed chemical composition studies of stars with enhanced abundances of neutron-capture elements can provide observational constraints for neutron-capture nucleosynthesis studies and clues for understanding their contribution to the Galactic chemical enrichment. We present abundance results from high-resolution spectral analyses of a sample of four chemically peculiar stars characterized by s-process enhancement. High-Resolution spectra (R ˜42000) of these objects spanning a wavelength range from 4000 to 6800 Å, are taken from the ELODIE archive. We have estimated the stellar atmospheric parameters, the effective temperature Teff, the surface gravity log g, and metallicity [Fe/H] from local thermodynamic equilibrium analysis using model atmospheres. We report estimates of elemental abundances for several neutron-capture elements, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy. While HD 49641 and HD 58368 show [Ba/Fe] ≥ 1.16 the other two objects HD 119650 and HD 191010 are found to be mild barium stars with [Ba/Fe] ˜ 0.4. The derived abundances of the elements are interpreted on the basis of existing theories for understanding their origin and evolution.

  9. Abundance analysis of s-process enhanced barium stars

    CERN Document Server

    Mahanta, Upakul; Goswami, Aruna; Duorah, Kalpana

    2016-01-01

    Detailed chemical composition studies of stars with enhanced abundances of neutron-capture elements can provide observational constraints for neutron-capture nucleosynthesis studies and clues for understanding their contribution to the Galactic chemical enrichment. We present abundance results from high-resolution spectral analyses of a sample of four chemically peculiar stars characterized by s-process enhancement. High-Resolution spectra (R ~ 42000) of these objects spanning a wavelength range from 4000 to 6800 A, are taken from the ELODIE archive. We have estimated the stellar atmospheric parameters, the effective temperature T_eff, the surface gravity log g, and metallicity [Fe/H] from local thermodynamic equilibrium analysis using model atmospheres. We report estimates of elemental abundances for several neutron-capture elements, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy. While HD 49641 and HD 58368 show [Ba/Fe] > 1.16 the other two objects HD 119650 and HD 191010 are found to be mild barium stars wit...

  10. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. IV. Two bulge populations

    CERN Document Server

    Bensby, T; Meléndez, J; Gould, A; Feltzing, S; Asplund, M; Johnson, J A; Lucatello, S; Yee, J C; Ramírez, I; Cohen, J G; Thompson, I; Gal-Yam, A; Sumi, T; Bond, I A

    2011-01-01

    [ABRIDGED] Based on high-resolution (R~42000 to 48000) and high signal-to-noise (S/N~50 to 150) spectra obtained with UVES/VLT, we present detailed elemental abundances (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba) and stellar ages for 26 microlensed dwarf and subgiant stars in the Galactic bulge. The analysis is based on equivalent width measurements and standard 1-D LTE MARCS model stellar atmospheres. We also present NLTE Li abundances based on line synthesis of the 7Li line at 670.8 nm. We show that the bulge metallicity distribution (MDF) is double-peaked; one peak at [Fe/H]= -0.6 and one at [Fe/H]=+0.3, and with a dearth of stars around solar metallicity. This is in contrast to the MDF derived from red giants in Baade's window, which peaks at this exact value. A simple significance test shows that it is extremely unlikely to have such a gap in the microlensed dwarf star MDF if the dwarf stars are drawn from the giant star MDF. To resolve this issue we discuss several possibilities, but we can n...

  11. The role of binaries in the enrichment of the early Galactic halo. I. r-process-enhanced metal-poor stars

    CERN Document Server

    Hansen, T T; Nordstrøm, B; Beers, T C; Yoon, J; Buchhave, L A

    2015-01-01

    The detailed chemical composition of most metal-poor halo stars has been found to be highly uniform, but a minority of stars exhibit dramatic enhancements in their abundances of heavy neutron-capture elements and/or of carbon. The key question for Galactic chemical evolution models is whether these peculiarities reflect the composition of the natal clouds, or if they are due to later mass transfer of processed material from a binary companion. If the former case applies, the observed excess of certain elements was implanted within selected clouds in the early ISM from a production site at interstellar distances. Our aim is to determine the frequency and orbital properties of binaries among these chemically peculiar stars. This information provides the basis for deciding whether mass transfer from a binary companion is necessary and sufficient to explain their unusual compositions. This paper discusses our study of a sample of 17 moderately (r-I) and highly (r-II) r-process-element enhanced VMP and EMP stars. ...

  12. Carbon-enhanced metal-poor stars: a window on AGB nucleosynthesis and binary evolution. I. Detailed analysis of 15 binary stars with known orbital periods

    CERN Document Server

    Abate, C; Karakas, A I; Izzard, R G

    2015-01-01

    AGB stars are responsible for producing a variety of elements, including carbon, nitrogen, and the heavy elements produced in the slow neutron-capture process ($s$-elements). There are many uncertainties involved in modelling the evolution and nucleosynthesis of AGB stars, and this is especially the case at low metallicity, where most of the stars with high enough masses to enter the AGB have evolved to become white dwarfs and can no longer be observed. The stellar population in the Galactic halo is of low mass ($\\lesssim 0.85M_{\\odot}$) and only a few observed stars have evolved beyond the first giant branch. However, we have evidence that low-metallicity AGB stars in binary systems have interacted with their low-mass secondary companions in the past. The aim of this work is to investigate AGB nucleosynthesis at low metallicity by studying the surface abundances of chemically peculiar very metal-poor stars of the halo observed in binary systems. To this end we select a sample of 15 carbon- and $s$-element-en...

  13. Evolution of long-lived globular cluster stars. II. Sodium abundance variations on the asymptotic giant branch as a function of globular cluster age and metallicity

    CERN Document Server

    Charbonnel, C

    2016-01-01

    Long-lived stars in GCs exhibit chemical peculiarities with respect to their halo counterparts. In particular, Na-enriched stars are identified as belonging to a 2d stellar population born from cluster material contaminated by the H-burning ashes of a 1st stellar population. Their presence and numbers in different locations of the CMDs provide important constraints on the self-enrichment scenarios. In particular, the ratio of Na-poor to Na-rich stars on the AGB has recently been found to vary strongly from cluster to cluster, while it is relatively constant on the RGB. We investigate the impact of both age and metallicity on the theoretical Na spread along the AGB within the framework of the fast rotating massive stars scenario for GC self-enrichment. (tb continued)

  14. r-Process Elements in EMP stars: Indicators of Inhomogeneous Early Halo Enrichment

    Science.gov (United States)

    Andersen, Johannes; Nordström, Birgitta; Thidemann Hansen, Terese

    2015-08-01

    Extremely metal-poor (EMP) halo stars with [Fe/H] below ~ -3 are considered to be fossil records of conditions in the early halo. In the simplest picture where iron is a proxy for overall metallicity and indirectly for time, EMP stars formed before the oldest and most metal-poor Galactic globular clusters. High-resolution spectroscopy with 8m-class telescopes has shown the detailed abundance pattern of these stars to be surprisingly uniform (e.g. Bonifacio+ 2012) and essentially Solar, apart from the α-enhancement typical of SN II nucleosynthesis. A small fraction (~3%) of EMP stars, however, is strongly enhanced in the heaviest (r-process) neutron-capture elements, highlighting that the periodic system of elements was fully populated already this early.These striking departures from the general chemical homogeneity could be produced by local or distant sources. The former case is simple - mass transfer from a binary companion that evolved to produce a highly neutron-rich environment (one or more NS). Alternatively, the r-process elements were formed in a site at interstellar distance and preferentially seeded into the natal clouds of the present-day EMP-r stars. Our long-term, precise monitoring of the radial velocities of a sample of such stars (Hansen+ 2011) disproved the binary hypothesis, which would in fact also fail to explain the existence of r-process poor stars, such as HD 122653. We thus conclude that the chemical enrichment of the early halo was far more complex, patchy and likely anisotropic than assumed in current models of Galactic chemical evolution: The EMP-r stars are not just peculiarities to be ignored, but indicate that a new level of complexity must be invoked. That r-process elements have not (yet) been observed in high-redshift DLA systems is readily explained by their low abundance relative to the lighter species and the rarity of strong enrichment events.

  15. Defining photometric peculiar type Ia supernovae

    International Nuclear Information System (INIS)

    We present a new photometric identification technique for SN 1991bg-like type Ia supernovae (SNe Ia), i.e., objects with light curve characteristics such as later primary maxima and the absence of a secondary peak in redder filters. This method is capable of selecting this sub-group from the normal type Ia population. Furthermore, we find that recently identified peculiar sub-types such as SNe Iax and super-Chandrasekhar SNe Ia have photometric characteristics similar to 91bg-like SNe Ia, namely, the absence of secondary maxima and shoulders at longer wavelengths, and can also be classified with our technique. The similarity of these different SN Ia sub-groups perhaps suggests common physical conditions. This typing methodology permits the photometric identification of peculiar SNe Ia in large upcoming wide-field surveys either to study them further or to obtain a pure sample of normal SNe Ia for cosmological studies.

  16. Evolution of the habitable zone of low-mass stars. Detailed stellar models and analytical relationships for different masses and chemical compositions

    CERN Document Server

    Valle, G; Moroni, P G Prada; Degl'Innocenti, S

    2014-01-01

    We study the temporal evolution of the habitable zone (HZ) of low-mass stars - only due to stellar evolution - and evaluate the related uncertainties. These uncertainties are then compared with those due to the adoption of different climate models. We computed stellar evolutionary tracks from the pre-main sequence phase to the helium flash at the red-giant branch tip for stars with masses in the range [0.70 - 1.10] Msun, metallicity Z in the range [0.005 - 0.04], and various initial helium contents. We evaluated several characteristics of the HZ, such as the distance from the host star at which the habitability is longest, the duration of this habitability, the width of the zone for which the habitability lasts one half of the maximum, and the boundaries of the continuously habitable zone (CHZ) for which the habitability lasts at least 4 Gyr. We developed analytical models, accurate to the percent level or lower, which allowed to obtain these characteristics in dependence on the mass and the chemical composit...

  17. Type II Cepheids in the Milky Way disc. Chemical composition of two new W Vir stars: DD Vel and HQ Car

    CERN Document Server

    Lemasle, B; Bono, G; François, P; Saviane, I; Yegorova, I; Genovali, K; Inno, L; Galazutdinov, G; da Silva, R

    2015-01-01

    A robust classification of Cepheids into their different sub-classes and, in particular, between classical and Type II Cepheids, is necessary to properly calibrate the period-luminosity relations and for populations studies in the Galactic disc. Type II Cepheids are, however, very diverse, and classifications based either on intrinsic (period, light curve) or external parameters (e.g., [Fe/H], |z|) do not provide a unique classification. We want to ascertain the classification of two Cepheids, HQ Car and DD Vel, that are sometimes classified as classical Cepheids and sometimes as Type II Cepheids. To achieve this goal, we examine both their chemical composition and the presence of specific features in their spectra. We find emission features in the H{\\alpha} and in the 5875.64 {\\AA} He I lines that are typical of W Vir stars. The [Na/Fe] (or [Na/Zn]) abundances are typical of thick-disc stars, while BL Her stars are Na-overabundant ([Na/Fe]>+0.5 dex). Finally, the two Cepheids show a possible (HQ Car) or prob...

  18. The FMOS-COSMOS survey of star-forming galaxies at z~1.6. IV: Excitation state and chemical enrichment of HII regions

    CERN Document Server

    Kashino, D; Sanders, D; Kartaltepe, J S; Daddi, E; Renzini, A; Valentino, F; Rodighiero, G; Juneau, S; Kewley, L J; Zahid, H J; Arimoto, N; Nagao, T; Chu, J; Sugiyama, N; Civano, F; Ilbert, O; Kajisawa, M; Fevre, O Le; Maier, C; Onodera, M; Puglisi, A; Taniguchi, Y; COSMOS,

    2016-01-01

    We present results on the physical conditions of the interstellar medium of star-forming galaxies at 1.410^11Msun being well sampled. The excitation state and chemical enrichment of the ionized gas are investigated using diagnostic diagrams based on the ratios of emission line strengths, including Alpha, [NII]6584, [SII]6717,6731, Hbeta, and [OIII]5007. Our data confirm an offset of the star-forming sequence on the BPT diagram ([OIII]/Hbeta vs. [NII]/Halpha), primarily towards higher [OIII]/Hbeta, compared with local star-forming galaxies. Based on the [SII] ratio, we measure an electron density (n_e=222^{+172}_{-128} cm^-3), higher than that of local galaxies. Overall, these changes in emission-line properties are due to a higher ionization parameter in high redshift galaxies as demonstrated by a lower than expected [SII]/Halpha ratio and a comparison to theoretical models. These results likely rule out an offset in the BPT diagram caused by a harder radiation field or AGN as assessed with Chandra. Finally, ...

  19. Galaxy peculiar velocities and evolution-bias

    OpenAIRE

    Percival, Will; Schafer, B.

    2007-01-01

    Galaxy bias can be split into two components: a formation-bias based on the locations of galaxy creation, and an evolution-bias that details their subsequent evolution. In this letter we consider evolution-bias in the peaks model. In this model, galaxy formation takes place at local maxima in the density field, and we analyse the subsequent peculiar motion of these galaxies in a linear model of structure formation. The peak restriction yields differences in the velocity distribution and corre...

  20. Social Enterprise Compliance with Social Marketing Peculiarity

    OpenAIRE

    Cristina Sandu

    2013-01-01

    A challenging approach for social enterprise is considered the marketing approach. The profile of social enterprise raises the question whether or not this type of organization can comply with social marketing peculiarity. The reason for making this question is that a proper definition of marketing for social enterprises is needed for both managerial and marketing functions of the (social) organizations. Thus, starting from a previous research of defining social enterprise, the aim of the pap...

  1. First supernova companion star found

    Science.gov (United States)

    2004-01-01

    years after this cataclysmic event, a European/University of Hawaii team of astronomers has now peered deep into the glowing remnants of SN 1993J using the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS) and the giant Keck telescope on Mauna Kea in Hawaii. They have discovered a massive star exactly at the position of the supernova that is the long sought companion to the supernova progenitor. This is the first supernova companion star ever to be detected and it represents a triumph for the theoretical models. In addition, this observation allows a detailed investigation of the stellar physics leading to supernova explosions. It is now clear that during the last 250 years before the explosion 10 solar masses of gas were torn violently from the red supergiant by its partner. By observing the companion closely in the coming years it may even be possible to detect a neutron star or black hole emerge from the remnants of the explosion ‘in real time’. Given the paucity of observations of supernova progenitor systems this result, published in Nature on 8 January 2004, is likely to “be crucial to understanding how very massive stars explode and why we see such peculiar supernovae” according to first author Justyn R. Maund from the University of Cambridge, UK. Stephen Smartt, also from the University of Cambridge, says “Supernova explosions are at the heart of our understanding of the evolution of galaxies and the formation of chemical elements in the Universe. It is essential that we know what type of stars produce them.” For the last ten years astronomers have believed that they could understand the very peculiar behaviour of 1993J by invoking the existence of a binary companion star and now this picture has proved correct. According to Rolf Kudritzki from the University of Hawaii “The combination of the outstanding spatial resolution of Hubble and the huge light gathering power of the Keck 10m telescope in Hawaii has made this fantastic

  2. Chemical composition of A and F dwarfs members of the Pleiades open cluster

    Science.gov (United States)

    Gebran, M.; Monier, R.

    2008-05-01

    Aims: We derive the abundances of 18 chemical elements for 16 A-dwarf, both normal and chemically-peculiar, and 5 F-dwarf members of the Pleiades open cluster to place constraints on evolutionary models. Methods: Abundances and rotational and microturbulent velocities were derived by fitting synthetic spectra to high-resolution (R ~ 42 000 and R ~ 75 000) observations of high signal-to-noise ratio (S/N). Results: The abundances exhibit correlation with neither the effective temperature nor the projected rotational velocity. Interestingly, A stars exhibit larger star-to-star variations in C, Sc, Ti, V, Cr, Mn, Sr, Y, Zr and Ba, than F stars. F stars have solar abundances of almost all elements. In A stars, the abundances of Si, Ti and Cr are correlated with that of Fe, and the [X/Fe] ratios are solar for these three elements. The derived abundances are compared with the predictions of evolutionary models for the age of Pleiades (100 Myr). For F stars, small predicted underabundances of light elements and overabundances of Cr, Fe and Ni are confirmed by our findings. For A stars, the predicted overabundances in iron-peak elements are confirmed for a few stars only. Conclusions: The large scatter in the abundances of A stars, discovered previously in the Hyades, Coma Berenices, UMa group, and in field stars, appears to be a characteristic property of dwarf A stars. Hydrodynamical processes competing with radiative diffusion in the radiative zone of A dwarfs, could account for the scatter in abundances that we determine. Based on observations performed at the Observatoire de Haute-Provence (France). Tables [see full textsee full text] and [see full textsee full text] are only available in electronic form at http://www.aanda.org

  3. The role of binaries in the enrichment of the early Galactic halo. I. r-process-enhanced metal-poor stars

    Science.gov (United States)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Yoon, J.; Buchhave, L. A.

    2015-11-01

    Context. The detailed chemical composition of most metal-poor halo stars has been found to be highly uniform, but a minority of stars exhibit dramatic enhancements in their abundances of heavy neutron-capture elements and/or of carbon. The key question for Galactic chemical evolution models is whether these peculiarities reflect the composition of the natal clouds, or if they are due to later (post-birth) mass transfer of chemically processed material from a binary companion. If the former case applies, the observed excess of certain elements was implanted within selected clouds in the early ISM from a production site at interstellar distances. Aims: Our aim is to determine the frequency and orbital properties of binaries among these chemically peculiar stars. This information provides the basis for deciding whether local mass transfer from a binary companion is necessary and sufficient to explain their unusual compositions. This paper discusses our study of a sample of 17 moderately (r-I) and highly (r-II) r-process-element enhanced VMP and EMP stars. Methods: High-resolution, low signal-to-noise spectra of the stars were obtained at roughly monthly intervals over eight years with the FIES spectrograph at the Nordic Optical Telescope. From these spectra, radial velocities with an accuracy of ~100 m s-1 were determined by cross-correlation against an optimized template. Results: Fourteen of the programme stars exhibit no significant radial-velocity variation over this temporal window, while three are binaries with orbits of typical eccentricity for their periods, resulting in a normal binary frequency of ~18 ± 6% for the sample. Conclusions: Our results confirm our preliminary conclusion from 2011, based on partial data, that the chemical peculiarity of the r-I and r-II stars is not caused by any putative binary companions. Instead, it was imprinted on the natal molecular clouds of these stars by an external, distant source. Models of the ISM in early galaxies

  4. Metal-Poor Stars

    CERN Document Server

    Frebel, Anna

    2008-01-01

    The abundance patterns of metal-poor stars provide us a wealth of chemical information about various stages of the chemical evolution of the Galaxy. In particular, these stars allow us to study the formation and evolution of the elements and the involved nucleosynthesis processes. This knowledge is invaluable for our understanding of the cosmic chemical evolution and the onset of star- and galaxy formation. Metal-poor stars are the local equivalent of the high-redshift Universe, and offer crucial observational constraints on the nature of the first stars. This review presents the history of the first discoveries of metal-poor stars that laid the foundation to this field. Observed abundance trends at the lowest metallicities are described, as well as particular classes of metal-poor stars such as r-process and C-rich stars. Scenarios on the origins of the abundances of metal-poor stars and the application of large samples of metal-poor stars to cosmological questions are discussed.

  5. Discovery of secular variations in the atmospheric abundances of magnetic Ap stars

    Science.gov (United States)

    Bailey, J. D.; Landstreet, J. D.; Bagnulo, S.

    2014-01-01

    Context. The stars of the middle main sequence have relatively quiescent outer layers, and unusual chemical abundance patterns may develop in their atmospheres. The presence of chemical peculiarities reveal the action of such subsurface phenomena as gravitational settling and radiatively driven levitation of trace elements, and their competition with mixing processes such as turbulent diffusion. At present, little is known about the time evolution of these anomalous abundances, nor about the role that diffusion may play in maintaining them, during the main sequence lifetime of such a star. Aims: We want to establish whether abundance peculiarities change as stars evolve on the main sequence, and provide observational constraints to diffusion theory. Methods: We have performed spectral analysis of 15 magnetic Bp stars that are members of open clusters (and thus have well-known ages), with masses between about 3 and 4 M⊙. For each star, we measured the abundances of He, O, Mg, Si, Ti, Cr, Fe, Pr and Nd. Results: We have discovered the systematic time evolution of trace elements through the main-sequence lifetime of magnetic chemically peculiar stars as their atmospheres cool and evolve towards lower gravity. During the main sequence lifetime, we observe clear and systematic variations in the atmospheric abundances of He, Ti, Cr, Fe, Pr and Nd. For all these elements, except He, the atmospheric abundances decrease with age. The abundances of Fe-peak elements converge towards solar values, while the rare-earth elements converge towards values at least 100 times more abundant than in the Sun. Helium is always underabundant compared to the Sun, evolving from about 1% up to 10% of the solar He abundance. We have attempted to interpret the observed abundance variations in the context of radiatively driven diffusion theory, which appears to provide a framework to understand some, but not all, of the anomalous abundance levels and variations that we observe. Based in part

  6. The Spitzer Spectroscopic Survey of S-type Stars

    CERN Document Server

    Smolders, K; Blommaert, J A D L; Hony, S; Van Winckel, H; Decin, L; Van Eck, S; Sloan, G C; Cami, J; Uttenthaler, S; Degroote, P; Barry, D; Feast, M; Groenewegen, M A T; Matsuura, M; Menzies, J; Sahai, R; van Loon, J Th; Zijlstra, A A; Acke, B; Bloemen, S; Cox, N; de Cat, P; Desmet, M; Exter, K; Ladjal, D; Ostensen, R; Saesen, S; van Wyk, F; Verhoest, T; Zima, W

    2012-01-01

    S-type AGB stars are thought to be in the transitional phase between M-type and C-type AGB stars. Because of their peculiar chemical composition, one may expect a strong influence of the stellar C/O ratio on the molecular chemistry and the mineralogy of the circumstellar dust. In this paper, we present a large sample of 87 intrinsic galactic S-type AGB stars, observed at infrared wavelengths with the Spitzer Space Telescope, and supplemented with ground-based optical data. On the one hand, we derive the stellar parameters from the optical spectroscopy and photometry, using a grid of model atmospheres. On the other, we decompose the infrared spectra to quantify the flux-contributions from the different dust species. Finally, we compare the independently determined stellar parameters and dust properties. For the stars without significant dust emission, we detect a strict relation between the presence of SiS absorption in the Spitzer spectra and the C/O ratio of the stellar atmosphere. These absorption bands can...

  7. Fingerprints of giant planets in the photospheres of Herbig stars

    CERN Document Server

    Kama, Mihkel; Pinilla, Paola

    2015-01-01

    Around 2% of all A stars have photospheres depleted in refractory elements. This is hypothesized to arise from a preferential accretion of gas rather than dust, but the specific processes and the origin of the material -- circum- or interstellar -- are not known. The same depletion is seen in 30% of young, disk-hosting Herbig Ae/Be stars. We investigate whether the chemical peculiarity originates in a circumstellar disk. Using a sample of systems for which both the stellar abundances and the protoplanetary disk structure are known, we find that stars hosting warm, flaring group I disks typically have Fe, Mg and Si depletions of 0.5 dex compared to the solar-like abundances of stars hosting cold, flat group II disks. The volatile, C and O, abundances in both sets are identical. Group I disks are generally transitional, having radial cavities depleted in millimetre-sized dust grains, while those of group II are usually not. Thus we propose that the depletion of heavy elements emerges as Jupiter-like planets blo...

  8. Characterisation of the magnetic fields of the Herbig Be stars HD 200775 and V380 0ri

    CERN Document Server

    Alecian, E; Catala, C; Bagnulo, S; Böhm, T; Bouret, J C; Donati, J F; Folsom, C P; Landstreet, J D; Silvester, J

    2006-01-01

    The origin of the magnetic fields of the chemically peculiar main sequence Ap/Bp stars is still matter of intense debate. The recent discoveries of magnetic fields in Herbig Ae/Be stars using high resolution data obtained with the spectropolarimeter ESPaDOnS at CFHT provide a strong argument in favour of the fossil field hypothesis. Using a simple oblique rotator model of a centered dipole, we fit the Stokes V LSD profiles of two of these magnetic HAeBe stars, HD 200775 and V380 Ori, as well as their variations on timescales from days to months. We find that in both cases the dipole hypothesis is acceptable and we determine the rotation period, the angle between rotation and magnetic axes and the intensity of the magnetic field at pole.

  9. The role of turbulent pressure as a coherent pulsational driving mechanism: the case of the delta Scuti star HD 187547

    CERN Document Server

    Antoci, V; Houdek, G; Kjeldsen, H; Trampedach, R; Handler, G; Lueftinger, T; Arentoft, T; Murphy, S

    2014-01-01

    HD 187547 was the first candidate that led to the suggestion that solar-like oscillations are present in delta Scuti stars. Longer observations, however, show that the modes interpreted as solar-like oscillations have either very long mode lifetimes, longer than 960 days, or are coherent. These results are incompatible with the nature of `pure' stochastic excitation as observed in solar-like stars. Nonetheless, one point is certain: the opacity mechanism alone cannot explain the oscillation spectrum of HD 187547. Here we present new theoretical investigations showing that convection dynamics can intrinsically excite coherent pulsations in the chemically peculiar delta Scuti star HD 187547. More precisely, it is the perturbations of the mean Reynold stresses (turbulent pressure) that drives the pulsations and the excitation takes place predominantly in the hydrogen ionization zone.

  10. The Sample Properties of Metallic-line, A-stars in SDSS, Data Release 8

    Science.gov (United States)

    Keeling, Chloe; Wilhelm, Ronald J.

    2015-01-01

    It has been known for many years that some stars in the spectral range of mid-A to early-F show chemically peculiar spectral lines characterized by very weak absorption in the calcium and scandium lines and overly strong absorption in metallic lines (such as iron) compared to the spectral strength of hydrogen lines in the star. This Am effect is caused by photospheric differentiation and is manifest through a combination of gravitational settling and radiative levitation of the various elements in the quiescent atmosphere of non-convective, slowly rotating A-stars. We identify this effect in a large sample of field blue straggler stars from SDSS DR8, by comparing the strength of the CaII K line to that of metallic regions. We will present results for spatial and kinematic distribution of the Am sample and compare these distributions and specific frequency to the chemically normal sample of blue stragglers. These results will be used to help constrain the nature of stellar features such as the Monoceros stream of stars.

  11. Runaway Stars in Supernova Remnants

    Science.gov (United States)

    Pannicke, Anna; Neuhaeuser, Ralph; Dinçel, Baha

    2016-07-01

    Half of all stars and in particular 70 % of the massive stars are a part of a multiple system. A possible development for the system after the core collapse supernova (SN) of the more massive component is as follows: The binary is disrupted by the SN. The formed neutron star is ejected by the SN kick whereas the companion star either remains within the system and is gravitationally bounded to the neutron star, or is ejected with a spatial velocity comparable to its former orbital velocity (up to 500 km/s). Such stars with a large peculiar space velocity are called runaway stars. We present our observational results of the supernova remnants (SNRs) G184.6-5.8, G74.0-8.5 and G119.5+10.2. The focus of this project lies on the detection of low mass runaway stars. We analyze the spectra of a number of candidates and discuss their possibility of being the former companions of the SN progenitor stars. The spectra were obtained with INT in Tenerife, Calar Alto Astronomical Observatory and the University Observatory Jena. Also we investigate the field stars in the neighborhood of the SNRs G74.0-8.5 and G119.5+10.2 and calculate more precise distances for these SNRs.

  12. Peculiar Transverse Velocities of Galaxies from Quasar Microlensing. Tentative Estimate of the Peculiar Velocity Dispersion at $z\\sim 0.5$

    CERN Document Server

    Mediavilla, E; Munoz, J A; Battaner, E

    2016-01-01

    We propose to use the flux variability of lensed quasar images induced by gravitational microlensing to measure the transverse peculiar velocity of lens galaxies over a wide range of redshift. Microlensing variability is caused by the motions of the observer, the lens galaxy (including the motion of the stars within the galaxy), and the source; hence, its frequency is directly related to the galaxy's transverse peculiar velocity. The idea is to count time-event rates (e.g., peak or caustic crossing rates) in the observed microlensing light curves of lensed quasars that can be compared with model predictions for different values of the transverse peculiar velocity. To compensate for the large time-scale of microlensing variability we propose to count and model the number of events in an ensemble of gravitational lenses. We develop the methodology to achieve this goal and apply it to an ensemble of 17 lensed quasar systems. In spite of the shortcomings of the available data, we have obtained tentative estimates...

  13. Circumstellar molecular composition of the oxygen-rich AGB star IK Tau: I. Observations and LTE chemical abundance analysis

    CERN Document Server

    Kim, Hyunjoo; Menten, Karl M; Decin, Leen

    2010-01-01

    The aim of this paper is to study the molecular composition in the circumstellar envelope around the oxygen-rich star IK Tau. We observed IK Tau in several (sub)millimeter bands using the APEX telescope during three observing periods. To determine the spatial distribution of the $\\mathrm{^{12}CO(3-2)}$ emission, mapping observations were performed. To constrain the physical conditions in the circumstellar envelope, multiple rotational CO emission lines were modeled using a non local thermodynamic equilibrium radiative transfer code. The rotational temperatures and the abundances of the other molecules were obtained assuming local thermodynamic equilibrium. An oxygen-rich Asymptotic Giant Branch star has been surveyed in the submillimeter wavelength range. Thirty four transitions of twelve molecular species, including maser lines, were detected. The kinetic temperature of the envelope was determined and the molecular abundance fractions of the molecules were estimated. The deduced molecular abundances were com...

  14. The fraction of second generation stars in Globular Clusters from the analysis of the Horizontal Branch

    CERN Document Server

    D'Antona, F

    2008-01-01

    Most Globular Clusters (GC) show chemical inhomogeneities in the composition of their stars, apparently due to a second stellar generation (SG) in which the forming gas is enriched by hot-CNO cycled material processed in stars belonging to a first stellar generation (FG). We propose to use the horizontal branch (HB) to infer which is today the relative number fraction of ''normal" and anomalous stars in clusters. We assume that the anomalies also include enhanced helium abundance. Helium variations have been recognized to be able to explain several puzzling peculiarities (gaps, RR Lyr periods and period distribution, ratio of blue to red stars, blue tails) in HBs. We extend the analysis to as many clusters as possible. We show that, with few exceptions, 50% or more of the stars belong to the SG. In other cases, where one would think of a simple stellar population, we suggest that the stars might all belong to the SG. We fit the optical and UV data of NGC2808, including a reproduction of the main sequence spli...

  15. SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-Ning; Zhao, Gang; Wang, Liang; Wang, Wei; Yuan, Hailong [Key Lab of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang, Beijing 100012 (China); Christlieb, Norbert [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany); Zhang, Yong; Hou, Yonghui, E-mail: lhn@nao.cas.cn, E-mail: gzhao@nao.cas.cn [Nanjing Institute of Astronomical Optics and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing 210042 (China)

    2015-01-10

    We report on early results from a pilot program searching for metal-poor stars with LAMOST and follow-up high-resolution observation acquired with the MIKE spectrograph attached to the Magellan II telescope. We performed detailed abundance analysis for eight objects with iron abundances [Fe/H] < -2.0, including five extremely metal-poor (EMP; [Fe/H] < -3.0) stars with two having [Fe/H] < -3.5. Among these objects, three are newly discovered EMP stars, one of which is confirmed for the first time with high-resolution spectral observations. Three program stars are regarded as carbon-enhanced metal-poor (CEMP) stars, including two stars with no enhancement in their neutron-capture elements, which thus possibly belong to the class of CEMP-no stars; one of these objects also exhibits significant enhancement in nitrogen, and is thus a potential carbon and nitrogen-enhanced metal-poor star. The [X/Fe] ratios of the sample stars generally agree with those reported in the literature for other metal-poor stars in the same [Fe/H] range. We also compared the abundance patterns of individual program stars with the average abundance pattern of metal-poor stars and find only one chemically peculiar object with abundances of at least two elements (other than C and N) showing deviations larger than 0.5 dex. The distribution of [Sr/Ba] versus [Ba/H] agrees that an additional nucleosynthesis mechanism is needed aside from a single r-process. Two program stars with extremely low abundances of Sr and Ba support the prospect that both main and weak r-processes may have operated during the early phase of Galactic chemical evolution. The distribution of [C/N] shows that there are two groups of carbon-normal giants with different degrees of mixing. However, it is difficult to explain the observed behavior of the [C/N] of the nitrogen-enhanced unevolved stars based on current data.

  16. Chemical composition of A and F dwarfs members of the Pleiades open cluster

    CERN Document Server

    Gebran, M

    2008-01-01

    Abundances of 18 chemical elements have been derived for 16 A (normal and chemically peculiar CP) and 5 F dwarfs members of the Pleiades open cluster in order to set constraints on evolutionary models. The abundances, rotational velocities and microturbulent velocities were derived by iteratively adjusting synthetic spectra to observations at high resolution (R~42000 and R~75000) and high signal-to-noise (S/N) ratios. The abundances obtained do not exhibit any clear correlation with the effective temperature nor the projected rotational velocity. Interestingly, A stars exhibit larger star-to-star variations in C, Sc, Ti, V, Cr, Mn, Sr, Y, Zr and Ba than F stars. F stars exhibit solar abundances for almost all the elements. In A stars, the abundances of Si, Ti and Cr are found to be correlated with that of Fe, the [X/Fe] ratios being solar for these three elements. The derived abundances have been compared to the predictions of published evolutionary models at the age of Pleiades (100 Myr). For the F stars, th...

  17. Low-metallicity Star Formation (IAU S255)

    Science.gov (United States)

    Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella

    2009-01-01

    'Shea and Michael L. Norman; 16. Damped Lyα systems as probes of chemical evolution over cosmological timescales Miroslava Dessauges-Zavadsky; 17. Connecting high-redshift galaxy populations through observations of local damped Lyman alpha dwarf galaxies Regina E. Schulte-Ladbeck; 18. Chemical enrichment and feedback in low metallicity environments: constraints on galaxy formation Francesca Matteucci; 19. Effects of reionization on dwarf galaxy formation Massimo Ricotti; 20. The importance of following the evolution of the dust in galaxies on their SEDs A. Schurer, F. Calura, L. Silva, A. Pipino, G. L. Granato, F. Matteucci and R. Maiolino; 21. About the chemical evolution of dSphs (and the peculiar globular cluster ωCen) Andrea Marcolini and Annibale D'Ercole; 22. Young star clusters in the small Magellanic cloud: impact of local and global conditions on star formation Elena Sabbi, Linda J. Smith, Lynn R. Carlson, Antonella Nota, Monca Tosi, Michele Cignoni, Jay S. Gallagher III, Marco Sirianni and Margaret Meixner; 23. Modeling the ISM properties of metal-poor galaxies and gamma-ray burst hosts Emily M. Levesque, Lisa J. Kewley, Kirsten Larson and Leonie Snijders; 24. Dwarf galaxies and the magnetisation of the IGM Uli Klein; Session III. Explosive Events in Low-Metallicity Environments: 25. Supernovae and their evolution in a low metallicity ISM Roger A. Chevalier; 26. First stars - type Ib supernovae connection Ken'ichi Nomoto, Masaomi Tanaka, Yasuomi Kamiya, Nozomu Tominaga and Keiichi Maeda; 27. Supernova nucleosynthesis in the early universe Nozomu Tominaga, Hideyuki Umeda, Keiichi Maeda, Ken'ichi Nomoto and Nobuyuki Iwamoto; 28. Powerful explosions at Z = 0? Sylvia Ekström, Georges Meynet, Raphael Hirschi and André Maeder; 29. Wind anisotropy and stellar evolution Cyril Georgy, Georges Meynet and André Maeder; 30. Low-mass and metal-poor gamma-ray burst

  18. THE FIRST STARS

    Directory of Open Access Journals (Sweden)

    Daniel J. Whalen

    2013-12-01

    Full Text Available Pop III stars are the key to the character of primeval galaxies, the first heavy elements, the onset of cosmological reionization, and the seeds of supermassive black holes. Unfortunately, in spite of their increasing sophistication, numerical models of Pop III star formation cannot yet predict the masses of the first stars. Because they also lie at the edge of the observable universe, individual Pop III stars will remain beyond the reach of observatories for decades to come, and so their properties are unknown. However, it will soon be possible to constrain their masses by direct detection of their supernovae, and by reconciling their nucleosynthetic yields to the chemical abundances measured in ancient metal-poor stars in the Galactic halo, some of which may bear the ashes of the first stars. Here, I review the state of the art in numerical simulations of primordial stars and attempts to directly and indirectly constrain their properties.

  19. The First Stars

    CERN Document Server

    Whalen, Daniel J

    2012-01-01

    Pop III stars are the key to the character of primeval galaxies, the first heavy elements, the onset of cosmological reionization, and the seeds of supermassive black holes. Unfortunately, in spite of their increasing sophistication, numerical models of Pop III star formation cannot yet predict the masses of the first stars. Because they lie at the edge of the observable universe, individual Pop III stars will also remain beyond the reach of telescopes for the foreseeable future, and so their properties remain unknown. However, it will soon be possible to constrain their masses by the direct detection of their supernovae and by reconciling their nucleosynthetic yields to the chemical abundances measured in ancient metal-poor stars in the Galactic halo, some of which may be bear the ashes of the first stars. Here, I review current problems on the simulation frontier in Pop III star formation and discuss the best prospects for constraining their properties observationally in the near term.

  20. The transiting exoplanet CoRoT-11b and its peculiar tidal evolution

    Directory of Open Access Journals (Sweden)

    Damiani C.

    2011-02-01

    Full Text Available CoRoT-11b is a fairly massive hot-Jupiter (Mp = 2.33 ± 0.34 MJup in a 3 days orbit around a F6 V star with an age of 2 ± 1 Gyr. The relatively high projected rotational velocity of the star (v sin i⋆ = 40 ± 5 km/s places CoRoT-11 among the most rapidly rotating planet hosting stars discovered so far. Assuming that the star is seen equator-on, the v sin i⋆ and the star radius (R∗ = 1.37±0.03 R⊙ translate into a stellar rotation period of 1.73±0.26 days. This peculiar planet/star configuration offers an unique opportunity to study the tidal evolution of the system. Owing to the strong tidal interaction, the planet would have moved outwards, from a starting semi-major axis corresponding to an orbital period almost synchronized with the stellar rotation. We found that the present value of the tidal quality factor Q′s could be measured by a timing of the mid-epoch of the transits to be observed with an accuracy of about 0.5 − 1 seconds over a time baseline of about 25 years.

  1. [Morphology and structural peculiarities of Basidiomycetes pathogens].

    Science.gov (United States)

    Boĭko, O A; Shevchenko, T P; Boĭko, A A

    2013-01-01

    The materials of studies of morphology and structural peculiarities of viruses, fungi and bacteria, which affect Basidiomycetes under biotechnology process and nature biocenosis conditions are given. The analysis of infection development in button mushroom (Agaricus bisporus) (J.Lge) Imbach and in oyster mushroom (Pleurotus ostreatus Kumm.), which served as model objects in the experiments of various levels of complexity has been carried out. Other kinds of edible and medicinal mushrooms, which were a source of biochemical fractions to form biologicals were investigated. PMID:23866587

  2. Nonlinear Peculiar-Velocity Analysis and PCA

    OpenAIRE

    Dekel, A.; Eldar, A.; Silberman, L.; Zehavi, I.

    2001-01-01

    We allow for nonlinear effects in the likelihood analysis of peculiar velocities, and obtain ~35%-lower values for the cosmological density parameter and for the amplitude of mass-density fluctuations. The power spectrum in the linear regime is assumed to be of the flat LCDM model (h=0.65, n=1) with only Om_m free. Since the likelihood is driven by the nonlinear regime, we "break" the power spectrum at k_b=0.2 h/Mpc and fit a two-parameter power-law at k>k_b. This allows for an unbiased fit i...

  3. Companions to peculiar red giants: HR 363 and HR 1105

    Science.gov (United States)

    Ake, Thomas B., III; Johnson, Hollis R.; Perry, Benjamin F., Jr.

    1988-01-01

    Recent IUE observations of two Tc-deficient S-type peculiar red giants that are also spectroscopic binaries, HR 363 and HR 1105 are reported. A 675 min SWP exposure of HR 363 shows emission lines of O I 1304 and Si II 1812 and a trace of continuum. Compared to the M giants, the far UV flux may be relatively larger, indicating a possible contribution from a white dwarf companion, but no high temperature emission lines are seen to indicate that this is an interacting system where mass-transfer recently occurred. However, HR 1105 appears to have a highly variable UV companion. In 1982, no UV flux was discerned for this system, but by 1986 C IV was strong, increasing by a factor of 3 in 1987 with prominent lines of Si III, C III, O III, Si IV, and N V. Using orbital parameters, these observations are consistent with high activity occuring when the side of the S-star primary illuminated by the companion faces the Earth, but since the IUE data were taken over 3 orbits, a secular change in the UV component cannot be excluded.

  4. Peculiar compact stellar systems in the Fornax cluster

    CERN Document Server

    Wittmann, Carolin; Pasquali, Anna; Hilker, Michael; Grebel, Eva K

    2016-01-01

    We search for hints to the origin and nature of compact stellar systems in the magnitude range of ultracompact dwarf galaxies in deep wide-field imaging data of the Fornax cluster core. We visually investigate a large sample of 355 spectroscopically confirmed cluster members with V-band equivalent magnitudes brighter than -10 mag for faint extended structures. Our data reveal peculiar compact stellar systems, which appear asymmetric or elongated from their outer light distribution. We characterize the structure of our objects by quantifying their core concentration, as well as their outer asymmetry and ellipticity. For the brighter objects of our sample we also investigate their spatial and phase-space distribution within the cluster. We argue that the distorted outer structure alone that is seen for some of our objects, is not sufficient to decide whether these systems have a star cluster or a galaxy origin. However, we find that objects with low core concentration and high asymmetry (or high ellipticity) ar...

  5. Star formation and chemical complexity in the Orion nebula: A new view with the IRAM and ALMA interferometers

    Science.gov (United States)

    Baudry, Alain; Brouillet, Nathalie; Despois, Didier

    2016-11-01

    The Orion nebula is one of the most observed celestial regions in the Milky Way. It is an active massive star-forming region, especially well studied in the millimeter and submillimeter domains that allow us to unveil the cool and obscured regions in which stars are being formed. After a brief introduction to the main properties of a radio telescope, we recall that the most sensitive radio interferometers, the IRAM mm array and, especially, the recently built ALMA millimeter/submillimeter array, offer an outstanding spatial resolution reaching the sub-arcsecond scale, or even about 10 milli-arcseconds for ALMA (about four times the Earth's orbit radius at the Orion distance). These interferometers can reveal the fine spatial details of the Orion clouds of gas and dust within which new stars and associated planetary systems are being formed. The high spectral resolution and sensitivity of both interferometers and the broad instantaneous bandwidth offered by ALMA allowed us to map the emission from a number of complex organic molecules, to estimate the molecular abundances, and to address some important aspects of the molecular complexity in Orion. Our observations do not lead to a unique molecular formation and excitation scheme, but the chemistry at work in the proto-stellar 'fragments' at the center of the Orion nebula can be compared with the chemistry prevailing in comets of the Solar system. We have underlined the possible links between the prebiotic molecules observed in space and the chemistry leading to the early terrestrial life. xml:lang="fr"

  6. The surface magnetic field and chemical abundance distributions of the B2V helium-strong star HD184927

    CERN Document Server

    Yakunin, I; Bohlender, D; Kochukhov, O; Marcolino, W; Shultz, M; Monin, D; Grunhut, J; Sitnova, T; Tsymbal, V

    2014-01-01

    A new time series of high-resolution Stokes I and V spectra of the magnetic B2V star HD 184927 has been obtained in the context of the Magnetism in Massive Stars (MiMeS) Large Program with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope and dimaPol liquid crystal spectropolarimeter at 1.8-m telescope of Dominion Astrophysical Observatory. We model the optical and UV spectrum obtained from the IUE archive to infer the stellar physical parameters. Using magnetic field measurements we derive an improved rotational period of 9.53102+-0.0007d. We infer the longitudinal magnetic field from lines of H, He and various metals, revealing large differences between the apparent field strength variations determined from different elements. Magnetic Doppler Imaging using He and O lines yields strongly nonuniform surface distributions of these elements. We demonstrate that the diversity of longitudinal field variations can be understood as due to the combination of element-specific surface abundance di...

  7. The Chemical Compositions of Very Metal-Poor Stars HD 122563 and HD 140283; A View From the Infrared

    CERN Document Server

    Afşar, Melike; Frebel, Anna; Kim, Hwihyun; Mace, Gregory N; Kaplan, Kyle F; Lee, Hye-In; Oh, Hee-Young; Oh, Jae Sok; Pak, Soojong; Park, Chan; Pavel, Michael D; Yuk, In-Soo; Jaffe, Daniel T

    2016-01-01

    From high resolution (R = 45,000), high signal-to-noise (S/N > 400) spectra gathered with the Immersion Grating Infrared Spectrograph (IGRINS) in the H and K photometric bands, we have derived elemental abundances of two bright, well-known metal-poor halo stars: the red giant HD 122563 and the subgiant HD 140283. Since these stars have metallicities approaching [Fe/H] = -3, their absorption features are generally very weak. Neutral-species lines of Mg, Si, S and Ca are detectable, as well as those of the light odd-Z elements Na and Al. The derived IR-based abundances agree with those obtained from optical-wavelength spectra. For Mg and Si the abundances from the infrared transitions are improvements to those derived from shorter wavelength data. Many useful OH and CO lines can be detected in the IGRINS HD 122563 spectrum, from which derived O and C abundances are consistent to those obtained from the traditional [O I] and CH features. IGRINS high resolutions H- and K-band spectroscopy offers promising ways to...

  8. TRANSITIONAL DISKS AROUND YOUNG LOW MASS STARS

    Directory of Open Access Journals (Sweden)

    P. D'Alessio

    2009-01-01

    have been interpreted as produced by disks with inner holes, which have been classi ed as \\Transitional Disks". These disks are considered the evolutionary link between the full disks typically found around the young T Tauri and Herbig Ae stars, and the debris disks, found around some main sequence stars. In this contribution we summarize the observed/inferred characteristics of these transitional disks and also some of the models proposed to explain their peculiar geometry.

  9. DASCH J075731.1+201735: Discovery of A Peculiar Slow Nova in A Peculiar Symbiotic Binary

    CERN Document Server

    Tang, Sumin; Moe, Maxwell; Orosz, Jerome; Kurucz, Robert; Quinn, Samuel; Servillat, Matthew

    2011-01-01

    We present photometric and spectroscopic observations of a peculiar slow nova (designated DASCH J075731.1+201735 or J0757) discovered using digitized scans from our DASCH project of the Harvard College Observatory archival photographic plates. The source brightened by about 1.5 magnitudes in B within a year starting in 1942, and then slowly faded back to its pre-outburst brightness from 1943 to ~1950s. Its current spectral type is M0III. The mean brightness level was stable before and after the outburst, and ellipsoidal variations with a period of $P=119.18\\pm0.07$ days are seen, indicating that the red giant is at least close to filling its Roche lobe. Radial-velocity measurements indicate that the orbit is nearly circular ($e=0.02\\pm 0.01$) with a spectroscopic period that is the same as the photometric period. Unlike other symbiotic stars, there is no sign of emission lines or a stellar wind in the spectra. With an outburst timescale of ~10 yr and estimated B band peak luminosity $M_B\\sim1.4$, J0757 is dif...

  10. Mining the HST "Advanced Spectral Library (ASTRAL) - Hot Stars": The High Definition UV Spectrum of the Ap Star HR 465

    Science.gov (United States)

    Carpenter, Kenneth G.; Ayres, T. R.; Nielsen, K. E.; Kober, G. V.; Wahlgren, G. M.; Adelman, S. J.; Cowley, C. R.

    2014-01-01

    The "Advanced Spectral Library (ASTRAL) Project: Hot Stars" is a Hubble Space Telescope (HST) Cycle 21 Treasury Program (GO-13346: Ayres PI). It is designed to collect a definitive set of representative, high-resolution ( 30,000-100,000), high signal/noise (S/N>100), and full UV coverage 1200 - 3000 A) spectra of 21 early-type stars, utilizing the high-performance Space Telescope Imaging Spectrograph (STIS). The targets span the range of spectral types between early-O and early-A, including both main sequence and evolved stars, fast and slow rotators, as well as chemically peculiar (CP) and magnetic objects. These extremely high-quality STIS UV echelle spectra will be available from the HST archive and, in post-processed and merged form, at http://casa.colorado.edu ayres/ASTRAL/. The UV "atlases" produced by this program will enable investigations of a broad range of problems -- stellar, interstellar, and beyond -- for many years to come. We offer a first look at one of the earliest datasets to come out of this observing program, a "high definition" UV spectrum of the Ap star HR 465, which was chosen as a prototypical example of an A-type magnetic CP star. HR 465 has a global magnetic field of ~2200 Gauss. Earlier analyses of IUE spectra show strong iron-peak element lines, along with heavy elements such as Ga and Pt, while being deficient in the abundance of some ions of low atomic number, such as carbon. We demonstrate the high quality of the ASTRAL data and present the identification of spectral lines for a number of elements. By comparison of the observed spectra with calculated spectra, we also provide estimates of element abundances, emphasizing heavy elements, and place these measurements in the context of earlier results for this and other Ap stars.

  11. Combined Nucleosynthetic Yields of Multiple First Stars

    CERN Document Server

    Chan, Conrad

    2016-01-01

    Modern numerical simulations of the formation of the first stars predict that the first stars formed in multiples. In those cases, the chemical yields of multiple supernova explosions may have contributed to the formation of a next generation star. We match the chemical abundances of the oldest observed stars in the universe to a database of theoretical supernova models, to show that it is likely that the first stars formed from the ashes of two or more progenitors.

  12. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  13. Chemical Abundances from Inversions of Stellar Spectra Analysis of Solar-Type Stars with Homogeneous and Static Model Atmospheres

    CERN Document Server

    Allende-Prieto, C; Asplund, M; Cobo, B R; Prieto, Carlos Allende; Barklem, Paul S.; Asplund, Martin; Cobo, Basilio Ruiz

    2001-01-01

    Spectra of late-type stars are usually analyzed with static model atmospheres in local thermodynamic equilibrium (LTE) and a homogeneous plane-parallel or spherically symmetric geometry. The energy balance requires particular attention, as two elements which are particularly difficult to model play an important role: line blanketing and convection. Inversion techniques are able to bypass the difficulties of a detailed description of the energy balance. Assuming that the atmosphere is in hydrostatic equilibrium and LTE, it is possible to constrain its structure from spectroscopic observations. Among the most serious approximations still implicit in the method is a static and homogeneous geometry. In this paper, we take advantage of a realistic three-dimensional radiative hydrodynamical simulation of the solar surface to check the systematic errors incurred by an inversion assuming a plane-parallel horizontally-homogeneous atmosphere. The thermal structure recovered resembles the spatial and time average of the...

  14. Juridical and ethical peculiarities in doping policy.

    Science.gov (United States)

    McNamee, Mike J; Tarasti, Lauri

    2010-03-01

    Criticisms of the ethical justification of antidoping legislation are not uncommon in the literatures of medical ethics, sports ethics and sports medicine. Critics of antidoping point to inconsistencies of principle in the application of legislation and the unjustifiability of ethical postures enshrined in the World Anti-Doping Code, a new version of which came into effect in January 2009. This article explores the arguments concerning the apparent legal peculiarities of antidoping legislation and their ethically salient features in terms of: notions of culpability, liability and guilt; aspects of potential duplication of punishments and the limitations of athlete privacy in antidoping practice and policy. It is noted that tensions still exist between legal and ethical principles and norms that require further critical attention.

  15. The peculiar supernova remnant CTB 80

    CERN Document Server

    Mavromatakis, F; Paleologou, E V; Papamastorakis, J

    2001-01-01

    Deep CCD exposures of the peculiar supernova remnant CTB 80 in the light of major optical lines have been obtained. These images reveal significant shock heated emission in the area of the remnant. The sulfur line image shows emission in the north along the outer boundary of the IRAS and HI shells. The comparison between the [OIII] and [OII] line images further suggest the presence of significant inhomogeneities in the interstellar medium. The flux calibrated images do not indicate the presence of incomplete recombination zones, and we estimate that the densities of the preshock clouds should not exceed a few atoms per cm^3. The area covered by the optical radiation along with the radio emission at 1410 MHz suggest that CTB 80 occupies a larger angular extent than was previously known.

  16. Juridical and ethical peculiarities in doping policy.

    Science.gov (United States)

    McNamee, Mike J; Tarasti, Lauri

    2010-03-01

    Criticisms of the ethical justification of antidoping legislation are not uncommon in the literatures of medical ethics, sports ethics and sports medicine. Critics of antidoping point to inconsistencies of principle in the application of legislation and the unjustifiability of ethical postures enshrined in the World Anti-Doping Code, a new version of which came into effect in January 2009. This article explores the arguments concerning the apparent legal peculiarities of antidoping legislation and their ethically salient features in terms of: notions of culpability, liability and guilt; aspects of potential duplication of punishments and the limitations of athlete privacy in antidoping practice and policy. It is noted that tensions still exist between legal and ethical principles and norms that require further critical attention. PMID:20211997

  17. Peculiar chondroblastoma involving multiple tarsal bones

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, Masaharu [Jikei University School of Medicine, Department of Pathology, Tokyo (Japan); the Jikei University Daisan Hospital, Department of Pathology, Tokyo (Japan); Asanuma, Kazuo [Jikei University School of Medicine, Department of Orthopedic Surgery, Tokyo (Japan); Irie, Takeo [Jikei University School of Medicine, Department of Radiology, Tokyo (Japan)

    2010-07-15

    A case of peculiar chondroblastoma involving multiple tarsal bones in a 49-year-old woman is described. The patient presented with pain and swelling of the right foot. Radiographs revealed a lytic expansile lesion of medial, intermediate, and lateral cuneiform bones, navicular, cuboid, and tarsal bones of the right foot, indicating a malignant tumor. Biopsies demonstrated a diffuse proliferation of round cells with eccentric and indented nuclei with longitudinal grooves and eosinophilic cytoplasm. Atypia was prominent, but mitotic figures were rare. The stroma was chondroid with focal chicken-wire calcification. On electron microscopy, the tumor exhibited chondroblastic features. The patient is alive with the tumor 7 years after radiotherapy. The tumor is considered a chondroblastoma with low malignant potential. (orig.)

  18. Cosmology with Peculiar Velocities: Observational Effects

    CERN Document Server

    Andersen, Per; Howlett, Cullan

    2016-01-01

    In this paper we investigate how observational effects could possibly bias cosmological inferences from peculiar velocity measurements. Specifically, we look at how bulk flow measurements are compared with theoretical predictions. Usually bulk flow calculations try to approximate the flow that would occur in a sphere around the observer. Using the Horizon Run 2 simulation we show that the traditional methods for bulk flow estimation can overestimate the magnitude of the bulk flow for two reasons: when the survey geometry is not spherical (the data do not cover the whole sky), and when the observations undersample the velocity distributions. Our results may explain why several bulk flow measurements found bulk flow velocities that seem larger than those expected in standard {\\Lambda}CDM cosmologies. We recommend a different approach when comparing bulk flows to cosmological models, in which the theoretical prediction for each bulk flow measurement is calculated specifically for the geometry and sampling rate o...

  19. The VLT-FLAMES Tarantula Survey V. The peculiar B[e]-like supergiant, VFTS698, in 30 Doradus

    OpenAIRE

    Dunstall, P. R.; Fraser, M; Clark, J. S.; Crowther, P. A.; Dufton, P. L.; Evans, C J; Lennon, D.J.; Soszynski, I.; Taylor, W.D.; Vink, J. S.

    2012-01-01

    Aims. We present an analysis of a peculiar supergiant B-type star (VFTS698/Melnick 2/Parker 1797) in the 30 Doradus region of the Large Magellanic Cloud which exhibits characteristics similar to the broad class of B[e] stars. Methods. We analyse optical spectra from the VLT-FLAMES survey, together with archival optical and infrared photometry and X-ray imaging to characterise the system. Results. We find radial velocity variations of around 400 kms−1 in the high excitation Si iv...

  20. SALT reveals the barium central star of the planetary nebula Hen 2-39

    CERN Document Server

    Miszalski, B; Jones, D; Karakas, A I; Köppen, J; Tyndall, A A; Mohamed, S S; Rodríguez-Gil, P; Santander-García, M

    2013-01-01

    Classical barium stars are binary systems which consist of a late-type giant enriched in carbon and slow neutron capture (s-process) elements and an evolved white dwarf (WD) that is invisible at optical wavelengths. The youngest observed barium stars are surrounded by planetary nebulae (PNe), ejected soon after the wind accretion of polluted material when the WD was in its preceeding asymptotic giant branch (AGB) phase. Such systems are rare but powerful laboratories for studying AGB nucleosynthesis as we can measure the chemical abundances of both the polluted star and the nebula ejected by the polluter. Here we present evidence for a barium star in the PN Hen 2-39. The polluted giant is very similar to that found in WeBo 1. It is a cool (Teff=4250 +/- 150 K) giant enhanced in carbon ([C/H]=0.42 +/- 0.02 dex) and barium ([Ba/Fe]=1.50 +/- 0.25 dex). A spectral type of C-R3 C_24 nominally places Hen 2-39 amongst the peculiar early R-type carbon stars, however the barium enhancement and likely binary status mea...

  1. Detection of a weak surface magnetic field on Sirius A: are all tepid stars magnetic ?

    CERN Document Server

    Petit, P; Aurière, M; Wade, G A; Alina, D; Ballot, J; Böhm, T; Jouve, L; Oza, A; Paletou, F; Théado, S

    2011-01-01

    We aim at conducting a highly sensitive search for weak magnetic fields in main sequence stars of intermediate mass, scanning classes of stars with no previously reported magnetic members. After the detection of a weak magnetic field on the normal, rapidly rotating A-type star Vega, we concentrate here on the bright star Sirius A, taken as a prototypical chemically peculiar, moderately rotating Am star. We employ the NARVAL and ESPaDOnS high resolution spectropolarimeters to collect 442 circularly polarized spectra, complemented by 60 linearly polarized spectra. Using a list of about 1,100 photospheric spectral lines, we compute from every spectrum a cross correlation line profile, leading to a signal-to-noise ratio of up to 30,000 in the polarized profile. We report the repeated detection of circularly polarized signatures in the line profiles, interpreted as Zeeman signatures of a large-scale photospheric magnetic field, with a line-of-sight component equal to $0.2 \\pm 0.1$ G. The polarized signatures are h...

  2. The magnetic field and spectral variability of the He-weak star HR 2949

    CERN Document Server

    Shultz, M; Folsom, C P; Wade, G A; Townsend, R H D; Sikora, J; Grunhut, J; Stahl, O

    2015-01-01

    We analyze a high resolution spectropolarimetric dataset collected for the He-weak B3p IV star HR 2949. The Zeeman effect is visible in the circularly polarized component of numerous spectral lines. The longitudinal magnetic field varies between approximately $-650$ and $+150$ G. The polar strength of the surface magnetic dipole is calculated to be 2.4$^{+0.3}_{-0.2}$ kG. The star has strong overabundances of Fe-peak elements, along with extremely strong overabundances of rare-earth elements; however, He, Al, and S are underabundant. This implies that HR 2949 is a chemically peculiar star. Variability is seen in all photospheric lines, likely due to abundance patches as seen in many Ap/Bp stars. Longitudinal magnetic field variations measured from different spectral lines yield different results, likely a consequence of uneven sampling of the photospheric magnetic field by the abundance patches. Analysis of photometric and spectroscopic data for both HR 2949 and its companion star, HR 2948, suggests a revisio...

  3. The Origin of HVS17, an Unbound Main Sequence B Star at 50 kpc

    CERN Document Server

    Brown, Warren R; Geller, Margaret J; Kenyon, Scott J

    2013-01-01

    We analyze Keck ESI spectroscopy of HVS17, a B-type star traveling with a Galactic rest frame radial velocity of +445 km/s in the outer halo of the Milky Way. HVS17 has the projected rotation of a main sequence B star and is chemically peculiar, with solar iron abundance and sub-solar alpha abundance. Comparing measured T_eff and logg with stellar evolution tracks implies that HVS17 is a 3.91 +-0.09 Msun, 153 +-9 Myr old star at a Galactocentric distance of r=48.5 +-4.6 kpc. The time between its formation and ejection significantly exceeds 10 Myr and thus is difficult to reconcile with any Galactic disk runaway scenario involving massive stars. The observations are consistent, on the other hand, with a hypervelocity star ejection from the Galactic center. We show that Gaia proper motion measurements will easily discriminate between a disk and Galactic center origin, thus allowing us to use HVS17 as a test particle to probe the shape of the Milky Way's dark matter halo.

  4. Evolved stars and the origin of abundance trends in planet hosts

    CERN Document Server

    Maldonado, J

    2016-01-01

    Tentative evidence that the properties of evolved stars with planets may be different from what we know for MS hosts has been recently reported. We aim to test whether evolved stars with planets show any chemical peculiarity that could be related to the planet formation process. We determine in a consistent way the metallicity and individual abundances of a large sample of evolved (subgiants and red giants) and MS stars with and without known planetary companions. No differences in the vs. condensation temperature (Tc) slopes are found between the samples of planet and non-planet hosts when all elements are considered. However, if the analysis is restricted to only refractory elements, differences in the Tc-slopes between stars with and without known planets are found. This result is found to be dependent on the stellar evolutionary stage, as it holds for MS and subgiant stars, while there seem to be no difference between planet and non-planet hosts among the sample of giants. A search for correlations betwe...

  5. Surface structure of the CoRoT CP2 target star HD 50773

    CERN Document Server

    Lüftinger, T; Weiss, W; Petit, P; Aurière, M; Nesvacil, N; Gruberbauer, M; Shulyak, D; Alecian, E; Baglin, A; Baudin, F; Catala, C; Donati, J -F; Kochukhov, O; Michel, E; Piskunov, N; Roudier, T; Samadi, R

    2009-01-01

    We compare surface maps of the chemically peculiar star HD 50773 produced with a Bayesian technique and based on high quality CoRoT photometry with those derived from rotation phase resolved spectropolarimetry. The goal is to investigate the correlation of surface brightness with surface chemical abundance distribution and the stellar magnetic field. The rotational period of the star was determined from a nearly 60 day long continuous light curve obtained during the initial run of CoRoT. Using a Bayesian approach to star-spot modelling, which in this work is applied for the first time for the photometric mapping of a CP star, we derived longitudes, latitudes and radii of four different spot areas. Additional parameters like stellar inclination and the spot's intensities were also determined. The CoRoT observations triggered an extensive ground-based spectroscopic and spectropolarimetric observing campaign and enabled us to obtain 19 different high resolution spectra in Stokes parameters I and V with NARVAL, E...

  6. The Role of Turbulent Pressure as a Coherent Pulsational Driving Mechanism: The Case of the δ Scuti Star HD 187547

    DEFF Research Database (Denmark)

    Antoci, V.; Cunha, M.; Houdek, G.;

    2014-01-01

    HD 187547 was the first candidate that led to the suggestion that solar-like oscillations are present in δ Scuti stars. Longer observations, however, show that the modes interpreted as solar-like oscillations have either very long mode lifetimes, longer than 960 days, or are coherent. These results...... are incompatible with the nature of "pure" stochastic excitation as observed in solar-like stars. Nonetheless, one point is certain: the opacity mechanism alone cannot explain the oscillation spectrum of HD 187547. Here we present new theoretical investigations showing that convection dynamics can intrinsically...... excite coherent pulsations in the chemically peculiar δ Scuti star HD 187547. More precisely, it is the perturbations of the mean Reynold stresses (turbulent pressure) that drives the pulsations and the excitation takes place predominantly in the hydrogen ionization zone....

  7. Analysis of chemical abundances in planetary nebulae with [WC] central stars. I. Line intensities and physical conditions

    Science.gov (United States)

    García-Rojas, J.; Peña, M.; Morisset, C.; Mesa-Delgado, A.; Ruiz, M. T.

    2012-02-01

    Context. Planetary nebulae (PNe) around Wolf-Rayet [WR] central stars ([WR]PNe) constitute a particular photoionized nebula class that represents about 10% of the PNe with classified central stars. Aims: We analyse deep high-resolution spectrophotometric data of 12 [WR] PNe. This sample of [WR]PNe represents the most extensive analysed so far, at such high spectral resolution. We aim to select the optimal physical conditions in the nebulae to be used in ionic abundance calculations that will be presented in a forthcoming paper. Methods: We acquired spectra at Las Campanas Observatory with the 6.5-m telescope and the Magellan Inamori Kyocera (MIKE) spectrograph, covering a wavelength range from 3350 Å to 9400 Å. The spectra were exposed deep enough to detect, with signal-to-noise ratio higher than three, the weak optical recombination lines (ORLs) of O ii, C ii, and other species. We detect and identify about 2980 emission lines, which, to date, is the most complete set of spectrophotometric data published for this type of objects. From our deep data, numerous diagnostic line ratios for Te and ne are determined from collisionally excited lines (CELs), ORLs, and continuum measurements (H i Paschen continuum in particular). Results: Densities are closely described by the average of all determined values for objects with ne behaviour of both temperatures agrees with the predictions of the temperature fluctuations paradigm, owing to the large errors in Te(H i). We do not find any evidence of low-temperature, high-density clumps in our [WR]PNe from the analysis of faint O ii and N ii plasma diagnostics, although uncertainties dominate the observed line ratios in most objects. The behaviour of Te([O iii])/Te([N ii]), which is smaller for high ionization degrees, can be reproduced by a set of combined matter-bounded and radiation-bounded models, although, for the smallest temperature ratios, a too high metallicity seem to be required. Based on data obtained at Las

  8. Abundances in stars with exoplanets

    OpenAIRE

    Israelian, Garik

    2003-01-01

    Extensive spectroscopic studies of stars with and without planets have concluded that stars hosting planets are significantly more metal-rich than those without planets. More subtle trends of different chemical elements begin to appear as the number of detected extrasolar planetary systems continues to grow. I review our current knowledge concerning the observed abundance trends of various chemical elements in stars with exoplanets and their possible implications.

  9. New determination of abundances and stellar parameters for a set of weak G-band stars

    Science.gov (United States)

    Palacios, A.; Jasniewicz, G.; Masseron, T.; Thévenin, F.; Itam-Pasquet, J.; Parthasarathy, M.

    2016-03-01

    Context. Weak G-band (wGb) stars are a very peculiar class of red giants; they are almost devoided of carbon and often present mild lithium enrichment. Despite their very puzzling abundance patterns, very few detailed spectroscopic studies existed up to a few years ago, which prevented any clear understanding of the wGb phenomenon. We recently proposed the first consistent analysis of published data for a sample of 28 wGb stars and were able to identify them as descendants of early A-type to late B-type stars, although we were not able to conclude on their evolutionary status or the origin of their peculiar abundance pattern. Aims: Using new high-resolution spectra, we present the study of a new sample of wGb stars with the aim of homogeneously deriving their fundamental parameters and surface abundances for a selected set of chemical species that we use to improve our insight on this peculiar class of objects. Methods: We obtained high-resolution and high signal-to-noise spectra for 19 wGb stars in the southern and northern hemisphere that we used to perform consistent spectral synthesis to derive their fundamental parameters and metallicities, as well as the spectroscopic abundances for Li, C, 12C/13C, N, O, Na, Sr, and Ba. We also computed dedicated stellar evolution models that we used to determine the masses and to investigate the evolutionary status and chemical history of the stars in our sample. Results: We confirm that the wGb stars are stars with initial masses in the range 3.2 to 4.2 M⊙. We suggest that a large fraction could be mildly evolved stars on the subgiant branch currently undergoing the first dredge-up, while a smaller number of stars are more probably in the core He burning phase at the clump. After analysing their abundance pattern, we confirm their strong nitrogen enrichment anti-correlated with large carbon depletion, characteristic of material fully processed through the CNO cycle to an extent not known in evolved intermediate-mass stars

  10. Nonlinear Peculiar-Velocity Analysis and PCA

    CERN Document Server

    Dekel, A; Silberman, L; Zehavi, I

    2001-01-01

    We allow for nonlinear effects in the likelihood analysis of peculiar velocities, and obtain ~35%-lower values for the cosmological density parameter and for the amplitude of mass-density fluctuations. The power spectrum in the linear regime is assumed to be of the flat LCDM model (h=0.65, n=1) with only Om_m free. Since the likelihood is driven by the nonlinear regime, we "break" the power spectrum at k_b=0.2 h/Mpc and fit a two-parameter power-law at k>k_b. This allows for an unbiased fit in the linear regime. Tests using improved mock catalogs demonstrate a reduced bias and a better fit. We find for the Mark III and SFI data Om_m=0.35+-0.09$ with sigma_8*Om_m^0.6=0.55+-0.10 (90% errors). When allowing deviations from \\lcdm, we find an indication for a wiggle in the power spectrum in the form of an excess near k~0.05 and a deficiency at k~0.1 h/Mpc --- a "cold flow" which may be related to a feature indicated from redshift surveys and the second peak in the CMB anisotropy. A chi^2 test applied to principal ...

  11. Cosmology with Peculiar Velocities: Observational Effects

    Science.gov (United States)

    Andersen, P.; Davis, T. M.; Howlett, C.

    2016-09-01

    In this paper we investigate how observational effects could possibly bias cosmological inferences from peculiar velocity measurements. Specifically, we look at how bulk flow measurements are compared with theoretical predictions. Usually bulk flow calculations try to approximate the flow that would occur in a sphere around the observer. Using the Horizon Run 2 simulation we show that the traditional methods for bulk flow estimation can overestimate the magnitude of the bulk flow for two reasons: when the survey geometry is not spherical (the data do not cover the whole sky), and when the observations undersample the velocity distributions. Our results may explain why several bulk flow measurements found bulk flow velocities that seem larger than those expected in standard ΛCDM cosmologies. We recommend a different approach when comparing bulk flows to cosmological models, in which the theoretical prediction for each bulk flow measurement is calculated specifically for the geometry and sampling rate of that survey. This means that bulk flow values will not be comparable between surveys, but instead they are comparable with cosmological models, which is the more important measure.

  12. High-resolution spectroscopic observations of binary stars and yellow stragglers in three open clusters: NGC 2360, NGC 3680, and NGC 5822

    Energy Technology Data Exchange (ETDEWEB)

    Sales Silva, J. V.; Peña Suárez, V. J.; Katime Santrich, O. J.; Pereira, C. B.; Drake, N. A.; Roig, F., E-mail: joaovictor@on.br, E-mail: jearim@on.br, E-mail: osantrich@on.br, E-mail: claudio@on.br, E-mail: drake@on.br, E-mail: froig@on.br [Observatório Nacional/MCT, Rua Gen. José Cristino, 77, 20921-400 Rio de Janeiro (Brazil)

    2014-11-01

    Binary stars in open clusters are very useful targets in constraining the nucleosynthesis process. The luminosities of the stars are known because the distances of the clusters are also known, so chemical peculiarities can be linked directly to the evolutionary status of a star. In addition, binary stars offer the opportunity to verify a relationship between them and the straggler population in both globular and open clusters. We carried out a detailed spectroscopic analysis to derive the atmospheric parameters for 16 red giants in binary systems and the chemical composition of 11 of them in the open clusters NGC 2360, NGC 3680, and NGC 5822. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employ the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that the stars NGC 2360-92 and 96, NGC 3680-34, and NGC 5822-4 and 312 are yellow straggler stars. We show that the spectra of NGC 5822-4 and 312 present evidence of contamination by an A-type star as a secondary star. For the other yellow stragglers, evidence of contamination is given by the broad wings of the Hα. Detection of yellow straggler stars is important because the observed number can be compared with the number predicted by simulations of binary stellar evolution in open clusters. We also found that the other binary stars are not s-process enriched, which may suggest that in these binaries the secondary star is probably a faint main-sequence object. The lack of any s-process enrichment is very useful in setting constraints for the number of white dwarfs in the open cluster, a subject that is related to the birthrate of these kinds of stars in open clusters and also to the age of a

  13. Magnetic fields of HgMn stars

    CERN Document Server

    Hubrig, S; Ilyin, I; Korhonen, H; Schoeller, M; Savanov, I; Arlt, R; Castelli, F; Curto, G Lo; Briquet, M; Dall, T H

    2012-01-01

    The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. We re-analyse available spectropolarimetric material by applying the moment technique on spectral lines of inhomogeneously distributed elements separately. Furthermore, we present new determinations of the mean longitudinal magnetic field for the HgMn star HD65949 and the hotter analog of HgMn stars, the PGa star HD19400, using FORS2 installed at the VLT. We also give new measurements of the eclipsing system AR Aur with a primary star of HgMn peculiarity which were obtained with the SOFIN spectropolarimeter installed at the Nordic Optical Telescope. We downloaded from the ESO archive the publically available HARPS spectra for eight HgMn stars and one normal and one superficially normal B-type star obtained in 2010. The application of the moment technique to the HARPS and SOFIN spectra allowed us to study the presence of the longitudina...

  14. Peculiarities of the modern neutron spectrometry

    Indian Academy of Sciences (India)

    Yu P Popov

    2001-08-01

    Neutron spectrometry provides many branches of science and technology with the necessary data. Usually the main part of the data is supplied by powerful neutron time-of-flight spectrometers. Nevertheless there are many other very effective but simpler and cheaper neutron spectroscopy methods on accelerators, suitable for solution of plenty of scientific and applied problems (for example, in astrophysics and radioactive waste transmutation). The methods of slowing-down spectrometry in lead and graphite, generating of neutron spectra, characteristic for nucleosynthesis in the stars, and neutron spectrometry by means of primary -transition shift are discussed in the report.

  15. Modeling lithium rich carbon stars in the Large Magellanic Cloud: an independent distance indicator ?

    OpenAIRE

    Ventura, P.; D'Antona, F.; Mazzitelli, I.

    1999-01-01

    We present the first quantitative results explaining the presence in the Large Magellanic Cloud of some asymptotic giant branch stars that share the properties of lithium rich carbon stars. A self-consistent description of time-dependent mixing, overshooting, and nuclear burning was required. We identify a narrow range of masses and luminosities for this peculiar stars. Comparison of these models with the luminosities of the few Li-rich C stars in the Large Magellanic Cloud provides an indepe...

  16. Chemical and dynamics properties of heavy ion collisions at RHIC energies by the measurement of the production of the doubly strange baryons in the STAR experiment

    International Nuclear Information System (INIS)

    Lattice QCD calculations predict, at μB ∼ 0, a crossover from ordinary hadronic matter to a Quark Gluon Plasma. Heavy ion collisions have been proposed to recreate it in the laboratory and to study its properties. The Au+Au, d+Au collisions at √(SNN) = 200 GeV and the Au+Au ones at 62.4 GeV delivered at RHIC have been probed by the measurement of the Ξ particles in the STAR experiment. Their yield evolution with collision energy and system size gives size to the chemical properties of the reaction in the framework of hadronic and statistical models. The Ξ RCP shows: (1) a meson/baryon dependence for 2 pT CP suppression at pT > 3 GeV/c, (3) strong interactions between constituents suggesting the existence of strong collectivity in the medium. The Ξ transverse flow seems to be interesting to probe the early stage the collision with presumably partonic degrees of freedom. (author)

  17. Weighing Stars: The Identification of an Evolved Blue Straggler Star in the Globular Cluster 47 Tucanae

    Science.gov (United States)

    Ferraro, F. R.; Lapenna, E.; Mucciarelli, A.; Lanzoni, B.; Dalessandro, E.; Pallanca, C.; Massari, D.

    2016-01-01

    Globular clusters are known to host peculiar objects named blue straggler stars (BSSs), significantly heavier than the normal stellar population. While these stars can be easily identified during their core hydrogen-burning phase, they are photometrically indistinguishable from their low-mass sisters in advanced stages of the subsequent evolution. A clear-cut identification of these objects would require the direct measurement of the stellar mass. We used the detailed comparison between chemical abundances derived from neutral and from ionized spectral lines as a powerful stellar “weighing device” to measure stellar mass and to identify an evolved BSS in 47 Tucanae. In particular, high-resolution spectra of three bright stars, located slightly above the level of the “canonical” horizontal branch (HB) sequence in the color-magnitude diagram of 47 Tucanae, have been obtained with the UVES spectrograph. The measurements of iron and titanium abundances performed separately from neutral and ionized lines reveal that two targets have stellar parameters fully consistent with those expected for low-mass post-HB objects, while for the other target the elemental ionization balance is obtained only by assuming a mass of ˜ 1.4{M}⊙ , which is significantly larger than the main sequence turn-off mass of the cluster (˜ 0.85{M}⊙ ). The comparison with theoretical stellar tracks suggests that this is a BSS descendant possibly experiencing its core helium-burning phase. The large applicability of the proposed method to most of the globular clusters in our Galaxy opens the possibility to initiate systematic searches for evolved BSSs, thus giving access to still unexplored phases of their evolution. Based on UVES-FLAMES observations collected under Program 193.D-0232.

  18. Studying Young Stars with Large Spectroscopic Surveys

    CERN Document Server

    Martell, Sarah L

    2015-01-01

    Galactic archaeology is the study of the history of star formation and chemical evolution in the Milky Way, based on present-day stellar populations. Studies of young stars are a key anchor point for Galactic archaeology, since quantities like the initial mass function and the star formation rate can be studied directly in young clusters and star forming regions. Conversely, massive spectroscopic Galactic archaeology surveys can be used as a data source for young star studies.

  19. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  20. Compositional waves and variations in the atmospheric abundances of magnetic stars

    CERN Document Server

    Urpin, Vadim

    2016-01-01

    The stars of the middle main sequence often have relatively quiescent outer layers and spot-like chemical structures may develope in their atmospheres. Recent observations show that abundance peculiarities can change as stars evolve on the main sequence and the timescale of these changes lies in a wide range from million years to months. These observations imply that, perhaps, our understanding of diffusion processes at work in magnetic stars is incomplete and a more detailed analysis of these processes is required. In the present paper, we consider diffusion caused by a combined influence of the electric current and the Hall effect.Such diffusion has a number of very particular properties and, generally, can change the surface chemistry of stars in combination with other diffusion processes. For instance, current-driven diffusion is accompanied by a propagation of the special type of waves in which only the impurity number density oscillates. Propagation of such waves changes the shape and size of spots as w...

  1. On the origin of stars with and without planets. Tc trends and clues to Galactic evolution

    CERN Document Server

    Adibekyan, V Zh; Mena, E Delgado; Sousa, S G; Santos, N C; Israelian, G; Figueira, P; de Lis, S Bertran

    2014-01-01

    We explore a sample of 148 solar-like stars to search for a possible correlation between the slopes of the abundance trends versus condensation temperature (known as the Tc slope) with stellar parameters and Galactic orbital parameters in order to understand the nature of the peculiar chemical signatures of these stars and the possible connection with planet formation. We find that the Tc slope significantly correlates (at more than 4sigma) with the stellar age and the stellar surface gravity. We also find tentative evidence that the Tc slope correlates with the mean galactocentric distance of the stars (Rmean), suggesting that those stars that originated in the inner Galaxy have fewer refractory elements relative to the volatiles. While the average Tc slope for planet-hosting solar analogs is steeper than that of their counterparts without planets, this difference probably reflects the difference in their age and Rmean. We conclude that the age and probably the Galactic birth place are determinant to establi...

  2. Star Product and Star Exponential

    OpenAIRE

    Tomihisa, Toshio; Yoshioka, Akira

    2010-01-01

    Here we extend the star products by means of complex symmetric matrices. In this way we obtain a family of star products. Next we consider the star exponentials with respect to these star products, and finally we obtain several interesting identities.

  3. Discovery of extremely lead-rich subdwarfs: does heavy metal signal the formation of subdwarf B stars?

    CERN Document Server

    Neelamkodan, Naslim; Hibbert, Alan; Behara, Natalie

    2014-01-01

    Hot subdwarfs represent a group of low-mass helium-burning stars formed through binary-star interactions and include some of the most chemically-peculiar stars in the Galaxy. Stellar evolution theory suggests that they should have helium-rich atmospheres but, because radiation causes hydrogen to diffuse upwards, a majority are extremely helium poor. Questions posed include: when does the atmosphere become chemically stratified and at what rate? The existence of several helium-rich subdwarfs suggests further questions; are there distinct subgroups of hot subdwarf, or do hot subdwarfs change their surface composition in the course of evolution? Recent analyses have revealed remarkable surface chemistries amongst the helium-rich subgroup. In this paper, we analyse high-resolution spectra of nine intermediate helium-rich hot subdwarfs. We report the discovery that two stars, HE 2359-2844 and HE 1256-2738, show an atmospheric abundance of lead which is nearly ten thousand times that seen in the Sun. This is measur...

  4. THE PECULIARITIES OF TEACHER'S SUPPORT OF PUPILS IN PRISON SYSTEM

    OpenAIRE

    Lavrina, R.

    2010-01-01

    This article discusses the peculiarities of pedagogical support, directed on the development of positive social identity of pupils in prison system. The pedagogical support of students is gradually considered in the context of humanization.

  5. Cosmic microwave background dipole, peculiar velocity and Hubble flow

    CERN Document Server

    Tomozawa, Yukio

    2007-01-01

    Two types of cosmology are discussed and their implications for the observed cmb (cosmic microwave background radiation) dipole are described. Theorems useful for understanding the cause for a cmb dipole are presented. Since the present peculiar velocity of the solar system relative to the GA (Great Attracter) cannot explain the observed cmb dipole, the author presents the possibility of Hubble flow of the GA as a cause in one case and a further peculiar velocity of the GA in the other case.

  6. The nature of the late B-type stars HD 67044 and HD 42035

    CERN Document Server

    Monier, R; Royer, F

    2016-01-01

    While monitoring a sample of apparently slowly rotating superficially normal bright late B and early A stars in the northern hemisphere, we have discovered that HD 67044 and HD 42035, hitherto classified as normal late B-type stars, are actually respectively a new chemically peculiar star and a new spectroscopic binary containing a very slow rotator HD 42035 S with ultra-sharp lines (vsini = 3.7 km/s) and a fast rotator HD 42035 B with broad lines. The lines of Ti, Cr, Mn, Sr, Y, Zr and Ba are conspicuous features in the high resolution SOPHIE spectrum of HD 67044. The HgII line at 3983.93 A is also present as a weak feature. The composite spectrum of HD 42035 is characterised by very sharp lines formed in HD 42035 S superimposed onto the shallow and broad lines of HD 42035 B. These very sharp lines are mostly due to light elements from C to Ni, the only heavy species definitely present are Sr and Ba. Selected lines of 21 chemical elements from He up to Hg have been synthesized using model atmospheres compute...

  7. Pulsational line profile variation of the roAp star HR 3831

    CERN Document Server

    Kochukhov, O

    2005-01-01

    We report the first comprehensive investigation of the line profile variation caused by non-radial pulsation in a magnetic oscillating chemically peculiar star. Spectrum variation of the well-known roAp star HR 3831 is detected using very high-resolution high signal-to-noise spectroscopic time-series observations and are followed through the whole rotation cycle of the star. We confirm outstanding diversity of pulsational behaviour of different lines in the HR 3831 spectrum and attribute this phenomenon to an interplay between extreme vertical chemical inhomogeneity of the HR 3831 atmosphere and a running pulsation wave, propagating towards the upper photospheric layers with increasing amplitude. Rapid profile variation of the NdIII 6145 A line is characterized by measuring changes of its equivalent width and the first three moments. We demonstrate that rotational modulation of the radial velocity oscillations cannot be fully explained by an oblique axisymmetric dipole (ell=1, m=0) mode, implied by the classi...

  8. No magnetic field in the spotted HgMn star mu Leporis

    CERN Document Server

    Kochukhov, O; Piskunov, N; Jeffers, S V; Johns-Krull, C M; Keller, C U; Rodenhuis, M; Snik, F; Stempels, H C; Valenti, J A

    2011-01-01

    Chemically peculiar stars of the mercury-manganese (HgMn) type represent a new class of spotted late-B stars, in which evolving surface chemical inhomogeneities are apparently unrelated to the presence of strong magnetic fields but are produced by some hitherto unknown astrophysical mechanism. The goal of this study is to perform a detailed line profile variability analysis and carry out a sensitive magnetic field search for one of the brightest HgMn stars - mu Lep. We acquired a set of very high-quality intensity and polarization spectra of mu Lep with the HARPSpol polarimeter. These data were analyzed with the multiline technique of least-squares deconvolution in order to extract information on the magnetic field and line profile variability. Our spectra show very weak but definite variability in the lines of Sc, all Fe-peak elements represented in the spectrum of mu Lep, as well as Y, Sr, and Hg. Variability might also be present in the lines of Si and Mg. Anomalous profile shapes of Ti II and Y II lines s...

  9. Is the chemistry of lawrencium peculiar?

    Science.gov (United States)

    Xu, Wen-Hua; Pyykkö, Pekka

    2016-07-14

    It is explicitly verified that the atomic 7p(1) ground-state configuration of Lr originates from relativistic effects. Without relativity one has 6d(1). All three ionization potentials IP1-3 of Lr resemble those of Lu. Simple model studies on mono- and trihydrides, monocarbonyls or trichlorides suggest no major chemical differences between Lr and the lanthanides. PMID:27314425

  10. An idea for detecting capture dominated Dark Stars

    CERN Document Server

    Iocco, Fabio

    2009-01-01

    I discuss an idea which could lead to a methodology for testing the effects of WIMP DM scattering and capture onto primordial stars. It relies on the effects of "life-prolongation" of affected Population III stars, that can slow down nuclear reactions by supporting their own structure with the energy produced by annihilating DM captured inside the star. This can lead to an alteration of the Pair Production SuperNova rate, which could constitute a peculiar signature of the existence of capture Dark Stars.

  11. An Analysis of the Rapidly Rotating Bp star HD 133880

    Science.gov (United States)

    Bailey, J. D.; Grunhut, J.; Shultz, M.; Wade, G.; Landstreet, J. D.; Bohlender, D.; Lim, J.; Wong, K.; Drake, S.; Linsky, J.

    2012-01-01

    HD 133880 is a rapidly rotating chemically peculiar B-type (Bp) star (nu sin i approx = 103km/s) and is host to one of the strongest magnetic fields of any Ap/Bp star. A member of the Upper Centaurus Lupus association, it is a star with a well-determined age of 16 Myr. 12 new spectra, four of which are polarimetric, obtained from the FEROS, ESPaDOnS and HARPS instruments, provide sufficient material from which to re-evaluate the magnetic field and obtain a first approximation to the atmospheric abundance distributions of He, O, Mg, Si, Ti. Cr, Fe, Ni, Pr and Nd. An abundance analysis was carried out using ZEEMAN, a program which synthesizes spectral line profiles for stars with permeating magnetic fields. The magnetic field structure was characterized by a colinear multipole expansion from the observed variations of the longitudinal and surface fields with rotational phase. Both magnetic hemispheres are clearly visible during the stellar rotation, and thus a three-ring abundance distribution model encompassing both magnetic poles and magnetic equator with equal spans in colatitude was adopted. Using the new magnetic field measurements and optical photometry together with previously published data, we refine the period of HD 133880 to P = 0.877 476 +/- 0.000009 d. Our simple axisymmetric magnetic field model is based on a predominantly quadrupolar component that roughly describes the field variations. Using spectrum synthesis, we derived mean abundances for O, Mg, Si, Ti, Cr, Fe and Pr. All elements; except Mg, are overabundant compared to the Son. Mg appears to be approximately uniform over the stellar surface, while all other elements are more abundant in the negative magnetic hemisphere than in the positive magnetic hemisphere. In contrast to most Ap/Bp stars which show an underabundance in 0, in HD 133880 this element is clearly overabundant compared to the solar abundance ratio. In studying the Ha and Paschen lines in the optical spectra, we could not

  12. Anthropogenic transformation of city parks soils: spatial and time peculiarities.

    Science.gov (United States)

    Poputnikov, Vadim; Prokofieva, Tatiana

    2010-05-01

    Despite of quasi-natural status of urban parks, these territories often have a complicated history of local landuse. Urban park territories can accumulate maximum volume of information about the ways and peculiarities of soil anthropogenic transformation due to the absence of large-scale ground works and sealing of territories. As an objects of research 2 Moscow historical forest parks - "Pokrovskoe-Streshnevo" and "Tushinskiy" were chosen. From the one hand, these parks are characterizing by sufficiently square, which are representative by abundance of areas with different land use type. On the other hand, these areas have distinction both in soil forming factors and anthropogenic activities history. For the description of anthropogenic soil cover transformation the set of landuse types schemes were created. By these schemes were characterized a more than 250 years period. A range of soil pits were described on the different land use types territories. Different physical-chemical (pH, cation exchange capacity, amount of total organic carbon and nutrient element (P2O5 & K2O), amount of carbonates, and total amount of Cd, Pb, Zn, Cu, Mn & Ni), physical (particle size composition, bulk density and penetration resistance) properties were measured. The micromorphological (in thin sections) properties were described. Using scanning electron microscopy and energy-dispersive X-ray spectroscopy, the main morphological and chemical properties of black carbon particles were disclosed in every surface horizons type. Using above-mentioned methods, we described following types of anthropogenic-transformed horizons - "postagricultural" horizons of abandoned tillage field soils, "urbic" horizons of settlements area soils, "technogenic" horizons of soils of constructed or reclaimed territories and different intergrade horizons. The presence of different type horizons with various properties marks existence of fixed land use for different periods. The whole way of anthropogenic

  13. Some peculiarities of corrosion of wheel steel

    OpenAIRE

    Alexander SHRAMKO; Alfred KOZLOWSKY; Elena BELAJA; Yuriy PROIDAK; Pinchuk, Sofia; Gubenko, Svetlana

    2009-01-01

    Corrosion mechanism and rate of different chemical composition and structural condition of wheel steel were investigated. It was shown that “white layers”, variation in grain size and banding of wheel steel structure results in corrosion rate. Microstructure of steel from different elements of railway wheels after operation with corrosion was investigated. Wheel steel with addition of vanadium corroded more quickly than steel without vanadium. Non-metallic inclusions are the centre of corrosi...

  14. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  15. A preliminary study of the RR Lyrae stars observed in K2 Campaign 3

    CERN Document Server

    Juhász, Á; Plachy, E

    2016-01-01

    We have started a comprehensive analysis of the Kepler K2 Field 3 data set. Our goals are to assess the statistics of the sample, and to search for peculiar stars. We found a candidate triple-mode RRab star, where the first and ninth overtones also seem to be excited.

  16. Detection of ultra-weak magnetic fields in Am stars: β Ursae Majoris and θ Leonis

    Science.gov (United States)

    Blazère, A.; Petit, P.; Lignières, F.; Aurière, M.; Ballot, J.; Böhm, T.; Folsom, C. P.; Gaurat, M.; Jouve, L.; Lopez Ariste, A.; Neiner, C.; Wade, G. A.

    2016-02-01

    Context. An extremely weak circularly polarized signature was recently discovered in spectral lines of the chemically peculiar Am star Sirius A. A weak surface magnetic field was proposed to account for the observed polarized signal, but the shape of the phase-averaged signature, dominated by a prominent positive lobe, is not expected in the standard theory of the Zeeman effect. Aims: We aim at verifying the presence of weak circularly polarized signatures in two other bright Am stars, β UMa and θ Leo, and investigating the physical origin of Sirius-like polarized signals further. Methods: We present here a set of deep spectropolarimetric observations of β UMa and θ Leo, observed with the NARVAL spectropolarimeter. We analyzed all spectra with the least squares deconvolution multiline procedure. To improve the signal-to-noise ratio and detect extremely weak signatures in Stokes V profiles, we co-added all available spectra of each star (around 150 observations each time). Finally, we ran several tests to evaluate whether the detected signatures are consistent with the behavior expected from the Zeeman effect. Results: The line profiles of the two stars display circularly polarized signatures similar in shape and amplitude to the observations previously gathered for Sirius A. Our series of tests brings further evidence of a magnetic origin of the recorded signal. Conclusions: These new detections suggest that very weak magnetic fields may well be present in the photospheres of a significant fraction of intermediate-mass stars. The strongly asymmetric Zeeman signatures measured so far in Am stars (featuring a dominant single-sign lobe) are not expected in the standard theory of the Zeeman effect and may be linked to sharp vertical gradients in photospheric velocities and magnetic field strengths.

  17. Massive Stars

    Science.gov (United States)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  18. Substitutional impurities and their effect on fracture peculiarities in W-Ni-Fe-alloy

    Energy Technology Data Exchange (ETDEWEB)

    Minakova, R.V.; Bazhenova, L.G.; Verkhovodov, P.A.; Kolchin, O.P.; Nedelyaeva, L.P.; Tolstunov, A.V. (AN Ukrainskoj SSR, Kiev. Inst. Problem Materialovedeniya)

    1983-11-01

    The paper deals with distribution of admixture elements, shape, size, content, chemical composition, distribution of nonmetal inclusions and their effect on peculiarities of W-Ni-Fe-alloy deformation and fractures. It is established that non-metal inclusions play the part of additional ''notches'' decreasing the size of the slow crack growth area in a refractory component. Segregation of the impurities and the film on the boundaries of nickel base solid solution promote intercrystalline fracture of the alloy.

  19. All-star sports medicine film panel

    International Nuclear Information System (INIS)

    All Star Sports Panel cases are selected to test the mettle of the panelists and familiarize the audience with injuries peculiar to participation in a variety of sports. Match wits with the experts on the field. Gear up for the big game by previewing the clinical histories and initial radiographic examinations. Diagnosis requires familiarity with stresses incurred in the performance of various athletic pursuits, knowledge of specific radiographic findings, and awareness of imaging techniques that best demonstrate underlying injury

  20. Carbon neutron star atmospheres

    CERN Document Server

    Suleimanov, V F; Pavlov, G G; Werner, K

    2013-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.

  1. Galaxy Distances in the Nearby Universe Corrections For Peculiar Motions

    CERN Document Server

    Marinoni, C; Giuricin, G; Costantini, B

    1998-01-01

    By correcting the redshift--dependent distances for peculiar motions through a number of peculiar velocity field models, we recover the true distances of a wide, all-sky sample of nearby galaxies (~ 6400 galaxies with velocities cz<5500 km/s), which is complete up to the blue magnitude B=14 mag. Relying on catalogs of galaxy groups, we treat ~2700 objects as members of galaxy groups and the remaining objects as field galaxies. We model the peculiar velocity field using: i) a cluster dipole reconstruction scheme; ii) a multi--attractor model fitted to the Mark II and Mark III catalogs of galaxy peculiar velocities. According to Mark III data the Great Attractor has a smaller influence on local dynamics than previously believed, whereas the Perseus-Pisces and Shapley superclusters acquire a specific dynamical role. Remarkably, the Shapley structure, which is found to account for nearly half the peculiar motion of the Local Group, is placed by Mark III data closer to the zone of avoidance with respect to its ...

  2. Emotional salience, emotional awareness, peculiar beliefs, and magical thinking.

    Science.gov (United States)

    Berenbaum, Howard; Boden, M Tyler; Baker, John P

    2009-04-01

    Two studies with college student participants (Ns = 271 and 185) tested whether peculiar beliefs and magical thinking were associated with (a) the emotional salience of the stimuli about which individuals may have peculiar beliefs or magical thinking, (b) attention to emotion, and (c) clarity of emotion. Study 1 examined belief that a baseball team was cursed. Study 2 measured magical thinking using a procedure developed by P. Rozin and C. Nemeroff (2002). In both studies, peculiar beliefs and magical thinking were associated with Salience x Attention x Clarity interactions. Among individuals for whom the objects of the belief-magical thinking were highly emotionally salient and who had high levels of attention to emotion, higher levels of emotional clarity were associated with increased peculiar beliefs-magical thinking. In contrast, among individuals for whom the objects of the belief-magical thinking were not emotionally salient and who had high levels of attention to emotion, higher levels of emotional clarity were associated with diminished peculiar beliefs-magical thinking. PMID:19348532

  3. Cosmological Forecasts for Combined and Next Generation Peculiar Velocity Surveys

    CERN Document Server

    Howlett, Cullan; Blake, Chris

    2016-01-01

    Peculiar velocity surveys present a very promising route to measuring the growth rate of large-scale structure and its scale dependence. However, individual peculiar velocity surveys suffer from large statistical errors due to the intrinsic scatter in the relations used to infer a galaxy's true distance. In this context we use a Fisher Matrix formalism to investigate the statistical benefits of combining multiple peculiar velocity surveys. We find that for all cases we consider there is a marked improvement on constraints on the linear growth rate $f\\sigma_{8}$. For example, the constraining power of only a few peculiar velocity measurements is such that the addition of the 2MASS Tully-Fisher survey (containing only $\\sim2,000$ galaxies) to the full redshift and peculiar velocity samples of the 6-degree Field Galaxy Survey (containing $\\sim 110,000$ redshifts and $\\sim 9,000$ velocities) can improve growth rate constraints by $\\sim20\\%$. Furthermore, the combination of the future TAIPAN and WALLABY+WNSHS surv...

  4. Hadron star models. [neutron stars

    Science.gov (United States)

    Cohen, J. M.; Boerner, G.

    1974-01-01

    The properties of fully relativistic rotating hadron star models are discussed using models based on recently developed equations of state. All of these stable neutron star models are bound with binding energies as high as about 25%. During hadron star formation, much of this energy will be released. The consequences, resulting from the release of this energy, are examined.

  5. The effects of supernovae on the dynamical evolution of binary stars and star clusters

    CERN Document Server

    Parker, Richard J

    2016-01-01

    In this chapter I review the effects of supernovae explosions on the dynamical evolution of (1) binary stars and (2) star clusters. (1) Supernovae in binaries can drastically alter the orbit of the system, sometimes disrupting it entirely, and are thought to be partially responsible for `runaway' massive stars - stars in the Galaxy with large peculiar velocities. The ejection of the lower-mass secondary component of a binary occurs often in the event of the more massive primary star exploding as a supernova. The orbital properties of binaries that contain massive stars mean that the observed velocities of runaway stars (10s - 100s km s$^{-1}$) are consistent with this scenario. (2) Star formation is an inherently inefficient process, and much of the potential in young star clusters remains in the form of gas. Supernovae can in principle expel this gas, which would drastically alter the dynamics of the cluster by unbinding the stars from the potential. However, recent numerical simulations, and observational e...

  6. Mass loss from Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Recent results relating to the stellar winds and mass loss rates of the WR stars are reviewed, emphasising new data and their interpretation acquired at UV, IR and Radio wavelengths. The subject is discussed under the headings: physical and chemical properties of WR stars (effective temperatures and radiative luminosities; masses; chemical abundances); velocity, ionisation and excitation structure of WR winds; mass loss rates of WR stars; mass loss properties of WR stars in the LMC; comparisons with theoretical models of mass loss; ring nebulae around WR stars; conclusions. (author)

  7. Star Formation in Extreme Starburst Environments - "Super" Star Clusters

    CERN Document Server

    De Grijs, R

    2003-01-01

    The currently available empirical evidence on the star formation processes in the extreme, high-pressure environments induced by galaxy encounters, mostly based on high-resolution Hubble Space Telescope imaging observations, strongly suggests that star CLUSTER formation is an important and perhaps even the dominant mode of star formation in the starburst events associated with galaxy interactions. The production of "super star clusters" (SSCs; luminous, compact star clusters) seems to be a hallmark of intense star formation, particularly in interacting and starburst galaxies. Their sizes, luminosities, and mass estimates are entirely consistent with what is expected for young Milky Way-type globular clusters (GCs). SSCs are important because of what they can tell us about GC formation and evolution (e.g., initial characteristics and early survival rates). They are also of prime importance as probes of the formation and (chemical) evolution of their host galaxies, and of the initial mass function in the extrem...

  8. Minimization of Biases in Galaxy Peculiar Velocity Catalogs

    CERN Document Server

    Sorce, Jenny G

    2015-01-01

    Galaxy distances and derived radial peculiar velocity catalogs constitute valuable datasets to study the dynamics of the Local Universe. However, such catalogs suffer from biases whose effects increase with the distance. Malmquist biases and lognormal error distribution affect the catalogs. Velocity fields of the Local Universe reconstructed with these catalogs present a spurious overall infall onto the Local Volume if they are not corrected for biases. Such an infall is observed in the reconstructed velocity field obtained when applying the BayesianWiener-Filter technique to the raw second radial peculiar velocity catalog of the Cosmicflows project. In this paper, an iterative method to reduce spurious non-Gaussianities in the radial peculiar velocity distribution, to retroactively derive overall better distance estimates resulting in a minimization of the effects of biases, is presented. This method is tested with mock catalogs. To control the cosmic variance, mocks are built out of different cosmological c...

  9. Personal peculiarities in patients with middle cerebral artery infarction

    Directory of Open Access Journals (Sweden)

    Antonova N.A.

    2013-12-01

    Full Text Available The purpose of the work is to reveal personal peculiarities in patients who have suffered middle cerebral artery infarction. Material and Methods. 39 patients with middle cerebral artery infarction have been under the study. All patients have received clinical instrumental inspection (neurologic survey, duplex ultrasound investigation of vessels of neck, head and brain, the research CT or MRT. Personal peculiarities have been studied by "The standard multiple-factor method of research of the personality" (PITCHES. Results. Psychological reactions for the disease have been determined. They include hypochondria, depression, psychasthenia and anxiety. Conclusion. Personal peculiarities in patients suffered from middle cerebral artery infarction may be characterized by the appearance of psychological response to the psychotraumatic situation. Therefore it is necessary to give psychotherapeutic aid.

  10. Surface abundances of ON stars

    CERN Document Server

    Martins, F; Palacios, A; Howarth, I; Georgy, C; Walborn, N R; Bouret, J -C; Barba, R

    2015-01-01

    Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient, or when mass transfer in binary systems happens, chemically processed material is observed at the surface of O and B stars. ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle or not is not known. Our goal is to answer this question. We perform a spectroscopic analysis of a sample of ON stars with atmosphere models. We determine the fundamental parameters as well as the He, C, N, and O surface abundances. We also measure the projected rotational velocities. We compare the properties of the ON stars to those of normal O stars. We show that ON stars are usually helium-rich. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cann...

  11. Star Caught Smoking

    Science.gov (United States)

    2007-08-01

    VLTI Snapshots Dusty Puff Around Variable Star Using ESO's Very Large Telescope Interferometer, astronomers from France and Brazil have detected a huge cloud of dust around a star. This observation is further evidence for the theory that such stellar puffs are the cause of the repeated extreme dimming of the star. ESO PR Photo 34a/07 ESO PR Photo 34a/07 Dust Cloud in a R CrB Star (Artist's Impression) R Coronae Borealis stars are supergiants exhibiting erratic variability. Named after the first star that showed such behaviour [1], they are more than 50 times larger than our Sun. R Coronae Borealis stars can see their apparent brightness unpredictably decline to a thousandth of their nominal value within a few weeks, with the return to normal light levels being much slower. It has been accepted for decades that such fading could be due to obscuration of the stellar surface by newly formed dusty clouds. This 'Dust Puff Theory' suggests that mass is lost from the R Coronae Borealis (or R CrB for short) star and then moves away until the temperature is low enough for carbon dust to form. If the newly formed dust cloud is located along our line-of-sight, it eclipses the star. As the dust is blown away by the star's strong light, the 'curtain' vanishes and the star reappears. RY Sagittarii is the brightest member in the southern hemisphere of this family of weird stars. Located about 6,000 light-years away towards the constellation of Sagittarius (The Archer), its peculiar nature was discovered in 1895 by famous Dutch astronomer Jacobus Cornelius Kapteyn. In 2004, near-infrared adaptive optics observations made with NACO on ESO's Very Large Telescope allowed astronomers Patrick de Laverny and Djamel Mékarnia to clearly detect the presence of clouds around RY Sagittarii. This was the first direct confirmation of the standard scenario explaining the light variations of R CrB stars by the presence of heterogeneities in their envelope surrounding the star. ESO PR Photo 32e

  12. Planck intermediate results: XIII. Constraints on peculiar velocities

    OpenAIRE

    2014-01-01

    Using Planck data combined with the Meta Catalogue of X-ray detected Clusters of galaxies (MCXC), we address the study of peculiar motions by searching for evidence of the kinetic Sunyaev-Zeldovich effect (kSZ). By implementing various filters designed to extract the kSZ generated at the positions of the clusters, we obtain consistent constraints on the radial peculiar velocity average, root mean square (rms), and local bulk flow amplitude at different depths. For the whole cluster sample of ...

  13. The peculiar velocities in the Galactic outer disk--hints of the elliptical disk and the perturbation of the spiral structures

    CERN Document Server

    Tian, Hai-Jun; Wan, Jun-Chen; Deng, Li-Cai; Cao, Zi-Huang; Hou, Yong-Hui; Zhang, Yong; Wang, Yue-Fei; Wu, Yue; Zhao, Yong-Heng

    2016-01-01

    We present the peculiar in-plane velocities derived from the LAMOST red clump stars. From the variations of the in-plane velocity with the Galactocentric radius for the young and old red clump stars, we are able to identify two types of peculiar velocities: 1) both the two red clump populations show that the radial velocity is negative within $R=9.0$\\,kpc and becomes positive beyond (denoted as the \\emph{long-wave} mode); and 2) the young red clump stars show larger mean radial velocity than the old population by about 3\\,km$\\rm s^{-1}$ between $R=9$ and 12\\,kpc (denoted as the \\emph{short-wave} mode). We find that the elliptical disk induced by the rotating bar can well explain the \\emph{long-wave} mode peculiar velocity. The axis ratio of the elliptical disk is around 0.8-0.95 and the disk keeps circular at $R=9.24\\pm0.2$\\,kpc, which should be the location of the outer Lindblad resonance radius (OLR). Adopting the circular speed of 238\\,km$\\rm s^{-1}$, the pattern speed of the bar is then derived as $48\\pm3...

  14. The Explosive Yields Produced by the First Generation of Core Collapse Supernovae and the Chemical Composition of Extremely Metal Poor Stars

    CERN Document Server

    Chieffi, A; Chieffi, Alessandro; Limongi, Marco

    2002-01-01

    We present a detailed comparison between an extended set of elemental abundances observed in some of the most metal poor stars presently known and the ejecta produced by a generation of primordial core collapse supernovae. We used five stars which form our initial database and define a "template" ultra metal poor star which is then compared to the theoretical predictions. Our main findings are as follows: a) the fit to [Si/Mg] and [Ca/Mg] of these very metal poor stars seems to favor the presence of a rather large C abundance at the end of the central He burning; in a classical scenario in which the border of the convective core is strictly determined by the Schwarzschild criterion, such a large C abundance would imply a rather low C12(alpha,gamma)O16 reaction rate; b) a low C abundance left by the central He burning would imply a low [Al/Mg] (<-1.2 dex) independently on the initial mass of the exploding star while a rather large C abundance would produce such a low [Al/Mg] only for the most massive stella...

  15. Magnetism and binarity of the Herbig Ae star V380 Ori

    CERN Document Server

    Alecian, E; Catala, C; Bagnulo, S; Böhm, T; Bouret, J -C; Donati, J -F; Folsom, C P; Grunhut, J; Landstreet, J D

    2009-01-01

    In this paper we report the results of high-resolution circular spectropolarimetric monitoring of the Herbig Ae star V380 Ori, in which we discovered a magnetic field in 2005. A careful study of the intensity spectrum reveals the presence of a cool spectroscopic companion. By modelling the binary spectrum we infer the effective temperature of both stars: $10500\\pm 500$ K for the primary, and $5500\\pm500$ K for the secondary, and we argue that the high metallicity ($[M/H] = 0.5$), required to fit the lines may imply that the primary is a chemically peculiar star. We observe that the radial velocity of the secondary's lines varies with time, while that of the the primary does not. By fitting these variations we derive the orbital parameters of the system. We find an orbital period of $104\\pm5$ d, and a mass ratio ($M_{\\rm P}/M_{\\rm S}$) larger than 2.9. The intensity spectrum is heavily contaminated with strong, broad and variable emission. A simple analysis of these lines reveals that a disk might surround the...

  16. KIC 4768731: a bright long-period roAp star in the Kepler Field

    CERN Document Server

    Smalley, B; Murphy, S J; Lehmann, H; Kurtz, D W; Holdsworth, D L; Cunha, M S; Balona, L A; Briquet, M; Bruntt, H; de Cat, P; Lampens, P; Thygesen, A O; Uytterhoeven, K

    2015-01-01

    We report the identification of 61.45 d^-1 (711.2 mu Hz) oscillations, with amplitudes of 62.6-mu mag, in KIC 4768731 (HD 225914) using Kepler photometry. This relatively bright (V=9.17) chemically peculiar star with spectral type A5 Vp SrCr(Eu) has previously been found to exhibit rotational modulation with a period of 5.21 d. Fourier analysis reveals a simple dipole pulsator with an amplitude that has remained stable over a 4-yr time span, but with a frequency that is variable. Analysis of high-resolution spectra yields stellar parameters of T_eff = 8100 +/- 200 K, log g = 4.0 +/- 0.2, [Fe/H] = +0.31 +/- 0.24 and v sin i = 14.8 +/- 1.6 km/s. Line profile variations caused by rotation are also evident. Lines of Sr, Cr, Eu, Mg and Si are strongest when the star is brightest, while Y and Ba vary in anti-phase with the other elements. The abundances of rare earth elements are only modestly enhanced compared to other roAp stars of similar T_eff and log g. Radial velocities in the literature suggest a significant...

  17. Detection of ultra-weak magnetic fields in Am stars: beta UMa and theta Leo

    CERN Document Server

    Blazère, A; Lignières, F; Aurière, M; ballot, J; Böhm, T; Folsom, C P; Gaurat, M; Jouve, L; Ariste, A Lopez; Neiner, C; Wade, G A

    2016-01-01

    An extremely weak circularly polarized signature was recently discovered in spectral lines of the chemically peculiar Am star Sirius A. A weak surface magnetic field was proposed to account for the observed polarized signal, but the shape of the phase-averaged signature, dominated by a prominent positive lobe, is not expected in the standard theory of the Zeeman effect. We aim at verifying the presence of weak circularly polarized signatures in two other bright Am stars, beta UMa and theta Leo, and investigating the physical origin of Sirius-like polarized signals further. We present here a set of deep spectropolarimetric observations of beta UMa and theta Leo, observed with the NARVAL spectropolarimeter. We analyzed all spectra with the Least Squares Deconvolution multiline procedure. To improve the signal-to-noise ratio and detect extremely weak signatures in Stokes V profiles, we co-added all available spectra of each star (around 150 observations each time). Finally, we ran several tests to evaluate wheth...

  18. Shooting stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurette, M.; Hammer, C.

    A shooting star passage -even a star shower- can be sometimes easily seen during moonless black night. They represent the partial volatilization in earth atmosphere of meteorites or micrometeorites reduced in cosmic dusts. Everywhere on earth, these star dusts are searched to be gathered. This research made one year ago on the Greenland ice-cap is the object of this article; orbit gathering projects are also presented.

  19. Stellar Archaeology: New Science with Old Stars

    OpenAIRE

    Frebel, Anna

    2010-01-01

    The abundance patterns of metal-poor stars provide us a wealth of chemical information about various stages of cosmic chemical evolution. In particular, these stars allow us to study the formation and evolution of the elements, and the involved nucleosynthesis processes. This knowledge is invaluable for our understanding of the nature and condition of the early Universe, and the associated processes of early star- and galaxy formation. This proceeding summarizes the astrophysical topics and q...

  20. PECULIARITIES OF ANESTHESIOLOGY OF MINIMAL INVASIVE SPINE SURGERY

    OpenAIRE

    Hakobyan, Arman; Abrahamyan, Samvel

    2014-01-01

    The 204 percutant RX-controled lumbal disc extractions have been done in our department. The transforaminal approach was preformed, the disc herniation was extracted under endoscopic control. In all cases the epidural anesthesia was performed. We would like to introduce the peculiarities, complications of epidural anesthesia.

  1. Planck intermediate results: XIII. Constraints on peculiar velocities

    DEFF Research Database (Denmark)

    Delabrouille, J.; Ganga, K.; Le Jeune, M.;

    2014-01-01

    Using Planck data combined with the Meta Catalogue of X-ray detected Clusters of galaxies (MCXC), we address the study of peculiar motions by searching for evidence of the kinetic Sunyaev-Zeldovich effect (kSZ). By implementing various filters designed to extract the kSZ generated at the position...

  2. Planck intermediate results. XIII. Constraints on peculiar velocities

    CERN Document Server

    Ade, P A R; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Balbi, A; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoit-Levy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bikmaev, I; Bobin, J; Bock, J J; Bonaldi, A; Bond, J R; Borrill, J; Bouchet, F R; Burigana, C; Butler, R C; Cabella, P; Cardoso, J -F; Catalano, A; Chamballu, A; Chiang, L -Y; Chon, G; Christensen, P R; Clements, D L; Colombi, S; Colombo, L P L; Crill, B P; Cuttaia, F; Da Silva, A; Dahle, H; Davies, R D; Davis, R J; de Bernardis, P; de Gasperis, G; de Zotti, G; Delabrouille, J; Democles, J; Diego, J M; Dolag, K; Dole, H; Donzelli, S; Dore, O; Doerl, U; Douspis, M; Dupac, X; Ensslin, T A; Finelli, F; Flores-Cacho, I; Forni, O; Frailis, M; Frommert, M; Galeotta, S; Ganga, K; Genova-Santos, R T; Giard, M; Giardino, G; Gonzalez-Nuevo, J; Gregorio, A; Gruppuso, A; Hansen, F K; Harrison, D; Hernandez-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Holmes, W A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, T R; Jaffe, A H; Jasche, J; Jones, W C; Juvela, M; Keihanen, E; Keskitalo, R; Khamitov, I; Kisner, T S; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lahteenmaki, A; Lamarre, J -M; Lasenby, A; Lawrence, C R; Jeune, M Le; Leonardi, R; Lilje, P B; Linden-Vornle, M; Lopez-Caniego, M; Macias-Perez, J F; Maino, D; Mak, D S Y; Mandolesi, N; Maris, M; Marleau, F; Martinez-Gonzalez, E; Masi, S; Matarrese, S; Mazzotta, P; Melchiorri, A; Melin, J -B; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschenes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Norgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Pagano, L; Paoletti, D; Perdereau, O; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Poutanen, T; Pratt, G W; Prunet, S; Puget, J -L; Puisieux, S; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Roman, M; Rubino-Martin, J A; Rusholme, B; Sandri, M; Savini, G; Scott, D; Spencer, L; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Welikala, N; Yvon, D; Zacchei, A; Zibin, J P; Zonca, A

    2013-01-01

    Using \\Planck\\ data combined with the Meta Catalogue of X-ray detected Clusters of galaxies (MCXC), we address the study of peculiar motions by searching for evidence of the kinetic Sunyaev-Zeldovich effect (kSZ). By implementing various filters designed to extract the kSZ generated at the positions of the clusters, we obtain consistent constraints on the radial peculiar velocity average, root mean square (rms), and local bulk flow amplitude at different depths. For the whole cluster sample of average redshift 0.18, the measured average radial peculiar velocity with respect to the cosmic microwave background (CMB) radiation at that redshift, i.e., the kSZ monopole, amounts to $72 \\pm 60$\\,km\\,s$^{-1}$. This constitutes less than 1\\,% of the relative Hubble velocity of the cluster sample with respect to our local CMB frame. From a subset of this cluster sample \\Planck\\ finds the radial peculiar velocity rms to be below 800\\,km\\,s$^{-1}$ at the 95\\,% confidence level, which is around three times the $\\Lambda$CD...

  3. The RAVE Survey : Rich in Very Metal-poor Stars

    NARCIS (Netherlands)

    Fulbright, Jon P.; Wyse, Rosemary F. G.; Ruchti, Gregory R.; Gilmore, G. F.; Grebel, Eva; Bienaymé, O.; Binney, J.; Bland-Hawthorn, J.; Campbell, R.; Freeman, K. C.; Gibson, B. K.; Helmi, A.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Reid, W.; Seabroke, G. M.; Siebert, A.; Siviero, A.; Steinmetz, M.; Watson, F. G.; Williams, M.; Zwitter, T.

    2010-01-01

    Very metal-poor stars are of obvious importance for many problems in chemical evolution, star formation, and galaxy evolution. Finding complete samples of such stars which are also bright enough to allow high-precision individual analyses is of considerable interest. We demonstrate here that stars w

  4. Are peculiar velocity surveys competitive as a cosmological probe?

    Science.gov (United States)

    Koda, Jun; Blake, Chris; Davis, Tamara; Magoulas, Christina; Springob, Christopher M.; Scrimgeour, Morag; Johnson, Andrew; Poole, Gregory B.; Staveley-Smith, Lister

    2014-12-01

    Peculiar velocity surveys, which measure galaxy velocities directly from standard candles in addition to redshifts, can provide strong constraints on the growth rate of structure at low redshift. The improvement originates from the physical relationship between galaxy density and peculiar velocity, which substantially reduces cosmic variance. We use Fisher matrix forecasts to show that peculiar velocity data can improve the growth rate constraints by about a factor of 2 compared to density alone for surveys with galaxy number density of 10-2 (h-1 Mpc)-3, if we can use all the information for wavenumber k ≤ 0.2 h Mpc-1. In the absence of accurate theoretical models at k = 0.2 h Mpc- 1, the improvement over redshift-only surveys is even larger - around a factor of 5 for k ≤ 0.1 h Mpc-1. Future peculiar velocity surveys, Transforming Astronomical Imaging surveys through Polychromatic Analysis of Nebulae (TAIPAN), and the all-sky H I surveys, Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY) and Westerbork Northern Sky H I Survey (WNSHS), can measure the growth rate to 3 per cent at z ˜ 0.025. Although the velocity subsample is about an order of magnitude smaller than the redshift sample from the same survey, it improves the constraint by 40 per cent compared to the same survey without velocity measurements. Peculiar velocity surveys can also measure the growth rate as a function of wavenumber with 15-30 per cent uncertainties in bins with widths Δk = 0.01 h Mpc-1 in the range k ≤ 0.1 h Mpc-1, which is a large improvement over galaxy density only. Such measurements on very large scales can detect signatures of modified gravity or non-Gaussianity through scale-dependent growth rate or galaxy bias. We test our modelling in detail using N-body simulations.

  5. A chemical route to the formation of water in circumstellar envelopes around carbon-rich asymptotic branch stars: Fischer-Tropsch catalysis

    Science.gov (United States)

    Willacy, K.

    2004-01-01

    Fischer-Tropsch catalysis has been suggested as a means of driving hydrocarbon chemistry in oxygen rich regions such as the protosolar nebula. In addition to producing hydrocarbons, Fischer-Tropsch catalysis also produces water, and it is therefore possible that such processes could account for the recent observations of water in the circumstellar envelope of asymptotic giant branch star IRC +10216.

  6. Bipolar Supernova Explosions: Nucleosynthesis & Implication on Abundances in Extremely Metal-Poor Stars

    OpenAIRE

    Maeda, K.; Nomoto, K.

    2003-01-01

    Hydrodynamics and explosive nucleosynthesis in bipolar supernova explosions are examined to account for some peculiar properties of hypernovae as well as peculiar abundance patterns of metal-poor stars. The explosion is supposed to be driven by bipolar jets which are powered by accretion onto a central remnant. We explore the features of the explosions with varying progenitors' masses and jet properties. The outcomes are different from conventional spherical models. (1) In the bipolar models,...

  7. Monitoring evolved stars for binarity with the HERMES spectrograph

    CERN Document Server

    Gorlova, N; Vos, J; Ostensen, R H; Jorissen, A; Van Eck, S; Ikonnikova, N

    2014-01-01

    Binarity is often invoked to explain peculiarities that can not be explained by the standard theory of stellar evolution. Detecting orbital motion via the Doppler effect is the best method to test binarity when direct imaging is not possible. However, when the orbital period exceeds the duration of a typical observing run, monitoring often becomes problematic. Placing a high-throughput spectrograph on a small semi- robotic telescope allowed us to carry out a radial-velocity survey of various types of peculiar evolved stars. In this review we highlight some findings after the first four years of observations. Thus, we detect eccentric binaries among hot subdwarfs, barium, S stars, and post- AGB stars with disks, which are not predicted by the standard binary interaction theory. In disk objects, in addition, we find signs of the on- going mass transfer to the companion, and an intriguing line splitting, which we attribute to the scattered light of the primary.

  8. Doppler imaging of the helium-variable star a Cen

    OpenAIRE

    Bohlender, David A.; Rice, J. B.; P. Hechler

    2010-01-01

    The helium-peculiar star a Cen exhibits line profile variations of elements such as iron, nitrogen and oxygen in addition to its well-known extreme helium variability. New high S/N, high-resolution spectra are used to perform a quantitative measurement of the abundances of the star and determine the relation of the concentrations of the heavier elements on the surface of the star to the helium concentration and the magnetic field orientation. Doppler images have been created using programs de...

  9. The Hobby-Eberly Telescope Chemical Abundances of Stars in the Halo (CASH) Project. I. The Lithium-, s-, and r-enhanced Metal-poor Giant HKII 17435-00532

    Science.gov (United States)

    Roederer, Ian U.; Frebel, Anna; Shetrone, Matthew D.; Allende Prieto, Carlos; Rhee, Jaehyon; Gallino, Roberto; Bisterzo, Sara; Sneden, Christopher; Beers, Timothy C.; Cowan, John J.

    2008-06-01

    We present the first detailed abundance analysis of the metal-poor giant HKII 17435-00532. This star was observed as part of the University of Texas long-term project Chemical Abundances of Stars in the Halo (CASH). A spectrum was obtained with the High Resolution Spectrograph (HRS) on the Hobby-Eberly Telescope with a resolving power of R ~ 15,000. Our analysis reveals that this star may be located on the red giant branch, red horizontal branch, or early asymptotic giant branch. We find that this metal-poor ([Fe/H] = - 2.2) star has an unusually high lithium abundance [log ɛ (Li) = + 2.1], mild carbon ([C/Fe] = + 0.7) and sodium ([Na/Fe] = + 0.6) enhancement, as well as enhancement of both s-process ([Ba/Fe] = + 0.8) and r-process ([Eu/Fe] = + 0.5) material. The high Li abundance can be explained by self-enrichment through extra mixing that connects the convective envelope with the outer regions of the H-burning shell. If so, HKII 17435-00532 is the most metal-poor star in which this short-lived phase of Li enrichment has been observed. The Na and n-capture enrichment can be explained by mass transfer from a companion that passed through the thermally pulsing AGB phase of evolution with only a small initial enrichment of r-process material present in the birth cloud. Despite the current nondetection of radial velocity variations (over ~180 days), it is possible that HKII 17435-00532 is in a long-period or highly inclined binary system, similar to other stars with similar n-capture enrichment patterns. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  10. Radio stars.

    Science.gov (United States)

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  11. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta;

    1997-01-01

    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  12. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  13. Evolution of long-lived globular cluster stars. III. Effect of the initial helium spread on the position of stars in a synthetic Hertzsprung-Russell diagram

    Science.gov (United States)

    Chantereau, W.; Charbonnel, C.; Meynet, G.

    2016-08-01

    Context. Globular clusters host multiple populations of long-lived low-mass stars whose origin remains an open question. Several scenarios have been proposed to explain the associated photometric and spectroscopic peculiarities. They differ, for instance, in the maximum helium enrichment they predict for stars of the second population, which these stars can inherit at birth as the result of the internal pollution of the cluster by different types of stars of the first population. Aims: We present the distribution of helium-rich stars in present-day globular clusters as it is expected in the original framework of the fast-rotating massive stars scenario (FRMS) as first-population polluters. We focus on NGC 6752. Methods: We completed a grid of 330 stellar evolution models for globular cluster low-mass stars computed with different initial chemical compositions corresponding to the predictions of the original FRMS scenario for [Fe/H] = -1.75. Starting from the initial helium-sodium relation that allows reproducing the currently observed distribution of sodium in NGC 6752, we deduce the helium distribution expected in that cluster at ages equal to 9 and 13 Gyr. We distinguish the stars that are moderately enriched in helium from those that are very helium-rich (initial helium mass fraction below and above 0.4, respectively), and compare the predictions of the FRMS framework with other scenarios for globular cluster enrichment. Results: The effect of helium enrichment on the stellar lifetime and evolution reduces the total number of very helium-rich stars that remain in the cluster at 9 and 13 Gyr to only 12% and 10%, respectively, from an initial fraction of 21%. Within this age range, most of the stars still burn their hydrogen in their core, which widens the MS band significantly in effective temperature. The fraction of very helium-rich stars drops in the more advanced evolution phases, where the associated spread in effective temperature strongly decreases. These

  14. Surface abundances of ON stars

    Science.gov (United States)

    Martins, F.; Simón-Díaz, S.; Palacios, A.; Howarth, I.; Georgy, C.; Walborn, N. R.; Bouret, J.-C.; Barbá, R.

    2015-06-01

    Context. Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient or when mass transfer in binary systems occurs, chemically processed material is observed at the surface of O and B stars. Aims: ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle is not known. Our goal is to answer this question. Methods: We performed a spectroscopic analysis of a sample of ON stars with atmosphere models. We determined the fundamental parameters as well as the He, C, N, and O surface abundances. We also measured the projected rotational velocities. We compared the properties of the ON stars to those of normal O stars. Results: We show that ON stars are usually rich in helium. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Mass transfer is therefore not a simple explanation for the observed chemical properties. Conclusions: We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present. Based on observations obtained 1) at the Anglo-Australian Telescope; 2) at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii; 3) at the ESO/La Silla Observatory under programs 081.D-2008, 083.D-0589, 086.D-0997; 4) the Nordic Optical Telescope, operated on the island of La

  15. Life Cycle of Stars

    Science.gov (United States)

    1999-01-01

    In this stunning picture of the giant galactic nebula NGC 3603, the crisp resolution of NASA's Hubble Space Telescope captures various stages of the life cycle of stars in one single view. To the upper left of center is the evolved blue supergiant called Sher 25. The star has a unique circumstellar ring of glowing gas that is a galactic twin to the famous ring around the supernova 1987A. The grayish-bluish color of the ring and the bipolar outflows (blobs to the upper right and lower left of the star) indicates the presence of processed (chemically enriched) material. Near the center of the view is a so-called starburst cluster dominated by young, hot Wolf-Rayet stars and early O-type stars. A torrent of ionizing radiation and fast stellar winds from these massive stars has blown a large cavity around the cluster. The most spectacular evidence for the interaction of ionizing radiation with cold molecular-hydrogen cloud material are the giant gaseous pillars to the right of the cluster. These pillars are sculptured by the same physical processes as the famous pillars Hubble photographed in the M16 Eagle Nebula. Dark clouds at the upper right are so-called Bok globules, which are probably in an earlier stage of star formation. To the lower left of the cluster are two compact, tadpole-shaped emission nebulae. Similar structures were found by Hubble in Orion, and have been interpreted as gas and dust evaporation from possibly protoplanetary disks (proplyds). This true-color picture was taken on March 5, 1999 with the Wide Field Planetary Camera 2.

  16. Suzaku X-Ray Spectroscopy of a Peculiar Hot Star in the Galactic Center Region

    CERN Document Server

    Hyodo, Yoshiaki; Koyama, Katsuji; Nishiyama, Shogo; Nagata, Tetsuya; Sakon, Itsuki; Murakami, Hiroshi; Matsumoto, Hironori

    2007-01-01

    We present the results of a Suzaku study of a bright point-like source in the 6.7 keV intensity map of the Galactic center region. We detected an intense FeXXV 6.7 keV line with an equivalent width of ~1 keV as well as emission lines of highly ionized Ar and Ca from a spectrum obtained by the X-ray Imaging Spectrometer. The overall spectrum is described very well by a heavily absorbed (~2x10^{23}cm^{-2}) thin thermal plasma model with a temperature of 3.8+/-0.6 keV and a luminosity of ~3x10^{34} erg s^{-1} (2.0--8.0 keV) at 8 kpc. The absorption, temperature, luminosity, and the 6.7 keV line intensity were confirmed with the archived XMM-Newton data. The source has a very red (J-Ks=8.2 mag) infrared spectral energy distribution (SED), which was fitted by a blackbody emission of ~1000 K attenuated by a visual extinction of ~31 mag. The high plasma temperature and the large X-ray luminosity are consistent with a wind-wind colliding Wolf-Rayet binary. The similarity of the SED to those of the eponymous Quintuple...

  17. What is the difference? Blazhko and non-Blazhko RRab stars and the special case of V123 in M3

    CERN Document Server

    Jurcsik, J; Hajdu, G; Pilachowski, C; Kolenberg, K; Sódor, Á; Fűrész, G; Moór, A; Kun, E; Saha, A; Prakash, P; Blum, P; Tóth, I

    2013-01-01

    In an extended photometric campaign of RR Lyrae variables of the globular cluster M3, an aberrant light-curve, non-Blazhko RRab star, V123, was detected. Based on its brightness, colors and radial velocity curve, V123 is a bona fide member of M3. The light curve of V123 exhibits neither a bump preceding light minimum, nor a hump on the rising branch, and has a longer than normal rise time, with a convex shape. Similar shape characterizes the mean light curves of some large-modulation-amplitude Blazhko stars, but none of the regular RRab variables with similar pulsation periods. This peculiar object thus mimics Blazhko variables without showing any evidence of periodic amplitude and/or phase modulation. We cannot find any fully convincing answer to the peculiar behavior of V123, however, the phenomenon raises again the possibility that rotation and aspect angle might play a role in the explanation of the Blazhko phenomenon, and some source of inhomogeneity acts (magnetic field, chemical inhomogeneity) that def...

  18. Hot Stars Old-Fashioned or Trendy?

    CERN Document Server

    Pauldrach, A W A

    2002-01-01

    Spectroscopic analyses with the intention of the interpretation of the UV-spectra of the brightest stars as individuals - supernovae - or as components of star-forming regions - massive O stars - provide a powerful tool with great astrophysical potential for the determination of extragalactic distances and of the chemical composition of star-forming galaxies even at high redshifts. The perspectives of already initiated work with the new generation of tools for quantitative UV-spectroscopy of Hot Stars that have been developed during the last two decades are presented and the status of the continuing effort to construct corresponding models for Hot Star atmospheres is reviewed. Because the physics of the atmospheres of Hot Stars are strongly affected by velocity expansion dominating the spectra at all wavelength ranges, hydrodynamic model atmospheres for O-type stars and explosion models for Supernovae of Type Ia are necessary as basis for the synthesis and analysis of the spectra. It is shown that stellar par...

  19. On the nature of sn stars. I. A detailed abundance study

    OpenAIRE

    Saffe, C.; H. Levato

    2014-01-01

    The sn stars present sharp Balmer lines, sharp metallic lines and broad coreless He I lines. Initially Abt & Levato proposed a shell-like nature to explain the sn stars, although this scenario was subsequently questioned. We aim to derive abundances for a sample of 9 stars, including sn and non-sn stars, to determine the possible relation between sn and CP stars. We analysed the photospheric chemical composition of sn stars and show that approximately 40% of them display chemical peculiaritie...

  20. Physics of primordial star formation

    Science.gov (United States)

    Yoshida, Naoki

    2012-09-01

    The study of primordial star formation has a history of nearly sixty years. It is generally thought that primordial stars are one of the key elements in a broad range of topics in astronomy and cosmology, from Galactic chemical evolution to the formation of super-massive blackholes. We review recent progress in the theory of primordial star formation. The standard theory of cosmic structure formation posits that the present-day rich structure of the Universe developed through gravitational amplification of tiny matter density fluctuations left over from the Big Bang. It has become possible to study primordial star formation rigorously within the framework of the standard cosmological model. We first lay out the key physical processes in a primordial gas. Then, we introduce recent developments in computer simulations. Finally, we discuss prospects for future observations of the first generation of stars.