WorldWideScience

Sample records for chemically modified guanine

  1. Electrochemical studies on the oxidation of guanine and adenine at cyclodextrin modified electrodes.

    Science.gov (United States)

    Abbaspour, Abdolkarim; Noori, Abolhassan

    2008-12-01

    An electrochemical sensor for guanine and adenine using cyclodextrin-modified poly(N-acetylaniline) (PNAANI) on a carbon paste electrode has been developed. The oxidation mechanism of guanine and adenine on the surface of the electrode was investigated by cyclic voltammetry. It was found that the electrode processes are irreversible, pH dependent, and involve several reaction products. The electron transfer process occurs in consecutive steps with the formation of a strongly adsorbed intermediate on the electrode surface. Also, a new method for estimating the apparent formation constants of guanine and adenine with the immobilized cyclodextrins, through the change of surface coverage of studied analytes has been reported. Both guanine and adenine showed linear concentrations in the range of 0.1-10 microM by using differential pulse voltammetry, with an experimental limit of detection down to 0.05 microM. Linear concentration ranges of 2-150 microM for guanine and 6-104 microM for adenine have been found when cyclic voltammetry was used for determination of both analytes.

  2. Simultaneous Determination of Adenine and Guanine Using Cadmium Selenide Quantum Dots-Graphene Oxide Nanocomposite Modified Electrode.

    Science.gov (United States)

    Kalaivani, Arumugam; Narayanan, Sangilimuthu Sriman

    2015-06-01

    A novel electrochemical sensor was fabricated by immobilizing Cadmium Selenide Quantum Dots (CdSe QDs)-Graphene Oxide (GO) nanocomposite on a paraffin wax impregnated graphite electrode (PIGE) and was used for the simultaneous determination of adenine and guanine. The CdSe QDs-GO nanocomposite was prepared by ultrasonication and was characterized with spectroscopic and microscopic techniques. The nanocomposite modified electrode was characterized by cyclic voltammetry (CV). The modified electrode showed excellent electrocatalytic activity towards the oxidative determination of adenine and guanine with a good peak separation of 0.31 V. This may be due to the high surface area and fast electron transfer kinetics of the nanocomposite. The modified electrode exhibited wide linear ranges from 0.167 μM to 245 μM for Guanine and 0.083 μM to 291 μM for Adenine with detection limits of 0.055 μM Guanine and 0.028 μM of Adenine (S/N = 3) respectively. Further, the modified electrode was used for the quantitative determination of adenine and guanine in herring sperm DNA with satisfactory results. The modified electrode showed acceptable selectivity, reproducibility and stability under optimal conditions.

  3. Highly sensitive sensor for picomolar detection of insulin at physiological pH, using GC electrode modified with guanine and electrodeposited nickel oxide nanoparticles.

    Science.gov (United States)

    Salimi, Abdollah; Noorbakhash, Abdollah; Sharifi, Ensieh; Semnani, Abolfazl

    2008-12-01

    The electrochemical behavior of insulin at glassy carbon (GC) electrode modified with nickel oxide nanoparticles and guanine was investigated. Cyclic voltammetry technique has been used for electrodeposition of nickel oxide nanoparticles (NiOx) and immobilization of guanine on the surface GC electrode. In comparison to glassy carbon electrode modified with nickel oxide nanoparticles and bare GC electrode modified with adsorbed guanine, the guanine/nickel oxide nanoparticles/modified GC electrode exhibited excellent catalytic activity for the oxidation of insulin in physiological pH solutions at reduced overpotential. The modified electrode was applied for insulin detection using cyclic voltammetry or hydrodynamic amperometry techniques. It was found that the calibration curve was linear up to 4muM with a detection limit of 22pM and sensitivity of 100.9pA/pM under the optimized condition for hydrodynamic amperometry using a rotating disk modified electrode. In comparison to other electrochemical insulin sensors, this sensor shows many advantages such as simple preparation method without using any special electron transfer mediator or specific reagent, high sensitivity, excellent catalytic activity at physiological pH values, short response time, long-term stability and remarkable antifouling property toward insulin and its oxidation product. Additionally, it is promising for the monitoring of insulin in chromatographic effluents.

  4. Quantum-chemical study of interactions of trans-resveratrol with guanine-thymine dinucleotide and DNA-nucleobases.

    Science.gov (United States)

    Mikulski, Damian; Szeląg, Małgorzata; Molski, Marcin

    2011-12-01

    Trans-resveratrol, a natural phytoalexin present in red wine and grapes, has gained considerable attention because of its antiproliferative, chemopreventive and proapoptotic activity against human cancer cells. The accurate quantum-chemical computations based on the density functional theory (DFT) and ab initio second-order Møller-Plesset perturbation method (MP2) have been performed for the first time to study interactions of trans-resveratrol with guanine-thymine dinucleotide and DNA-derived nitrogenous bases: adenine, guanine, cytosine and thymine in vacuum and water medium. This compound is found to show high affinity to nitrogenous bases and guanine-thymine dinucleotide. The electrostatic interactions from intermolecular hydrogen bonding increase the stability of complexes studied. In particular, significantly strong hydrogen bonds between 4'-H atom of trans-resveratrol and imidazole nitrogen as well as carbonyl oxygen atoms of nucleobases studied stabilize these systems. The stabilization energies computed reveal that the negatively charged trans-resveratrol-dinucleotide complex is more energetically stable in water medium than in vacuum. MP2 method gives more reliable and significantly high values of stabilization energy of trans-resveratrol-dinucleotide, trans-resveratrol-guanine and trans-resveratrol-thymine complexes than B3LYP exchange-correlation functional because it takes into account London dispersion energy. According to the results, in the presence of trans-resveratrol the 3'-5' phosphodiester bond in dinucleotide can be cleaved and the proton from 4'-OH group of trans-resveratrol migrates to the 3'-O atom of dinucleotide. It is concluded that trans-resveratrol is able to break the DNA strand. Hence, the findings obtained help understand antiproliferative and anticancer properties of this polyphenol.

  5. Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Barhoumi, Aoune; Halas, Naomi J

    2011-12-15

    Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.

  6. Exploring non-covalent interactions in guanine- and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach.

    Science.gov (United States)

    Yurenko, Yevgen P; Novotný, Jan; Sklenář, Vladimir; Marek, Radek

    2014-02-07

    The study aimed to cast light on the structure and internal energetics of guanine- and xanthine-based model DNA quadruplexes and the physico-chemical nature of the non-covalent interactions involved. Several independent approaches were used for this purpose: DFT-D3 calculations, Quantum Theory of Atoms in Molecules, Natural Bond Orbital Analysis, Energy Decomposition Analysis, Compliance Constant Theory, and Non-Covalent Interaction Analysis. The results point to an excellent degree of structural and energetic compatibility between the two types of model quadruplexes. This fact stems from both the structural features (close values of van der Waals volumes, pore radii, geometrical parameters of the H-bonds) and the energetic characteristics (comparable values of the energies of formation). It was established that hydrogen bonding makes the greatest (∼50%) contribution to the internal stability of the DNA quadruplexes, whereas the aromatic base stacking and ion coordination terms are commensurable and account for the rest. Energy decomposition analysis performed for guanine (Gua) and xanthine (Xan) quartets B4 and higher-order structures consisting of two or three stacked quartets indicates that whereas Gua structures benefit from a high degree of H-bond cooperativity, Xan models are characterized by a more favorable and cooperative π-π stacking. The results of electron density topological analysis show that Na(+)/K(+) ion coordination deeply affects the network of non-covalent interactions in Gua models due to the change in the twist angle between the stacked tetrads. For Xan models, ion coordination makes tetrads in stacks more planar without changing the twist angle. Therefore, the presence of the ion seems to be essential for the formation of planar stacks in Xan-based DNA quadruplexes. Detailed study of the nature of ion-base coordination suggests that this interaction has a partially covalent character and cannot be considered as purely electrostatic

  7. Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life share a common catalytic mechanism.

    Science.gov (United States)

    Stengl, Bernhard; Reuter, Klaus; Klebe, Gerhard

    2005-11-01

    Transfer RNA-guanine transglycosylases (TGTs) are evolutionarily ancient enzymes, present in all kingdoms of life, catalyzing guanine exchange within their cognate tRNAs by modified 7-deazaguanine bases. Although distinct bases are incorporated into tRNA at different positions in a kingdom-specific manner, the catalytic subunits of TGTs are structurally well conserved. This review provides insight into the sequential steps along the reaction pathway, substrate specificity, and conformational adaptions of the binding pockets by comparison of TGT crystal structures in complex with RNA substrates of a eubacterial and an archaebacterial species. Substrate-binding modes indicate an evolutionarily conserved base-exchange mechanism with a conserved aspartate serving as a nucleophile through covalent binding to C1' of the guanosine ribose moiety in an intermediate state. A second conserved aspartate seems to control the spatial rearrangement of the ribose ring along the reaction pathway and supposedly operates as a general acid/base. Water molecules inside the binding pocket accommodating interaction sites subsequently occupied by polar atoms of substrates help to elucidate substrate-recognition and substrate-specificity features. This emphasizes the role of water molecules as general probes to map binding-site properties for structure-based drug design. Additionally, substrate-bound crystal structures allow the extraction of valuable information about the classification of the TGT superfamily into a subdivision of presumably homologous superfamilies adopting the triose-phosphate isomerase type barrel fold with a standard phosphate-binding motif.

  8. 氮掺杂石墨烯修饰电极的制备及对鸟嘌呤的电催化氧化%Fabrication of N-doped Graphene-modified Electrode and Its Electrocatalytic Oxidation of Guanine

    Institute of Scientific and Technical Information of China (English)

    郑波

    2012-01-01

    N-doped graphene (NG) was synthesized by thermal annealing at high temperature. The electrocatalytic oxidation of guanine at the NG-modified glass carbon electrode(GCE) was investigated. The effects of pH value, scanning rate and guanine concentration were discussed. The results showed that the oxidation process of guanine at the NG/GCE was an irreversible process and the adsorption of guanine at the modified electrode surface was increased. The modified electrode had an obvious electrocatalytic activity on guanine and decreased the oxidation potential of guanine. In a phosphate buffer solution(pH = 7. 0),the oxidation peak current of guanine and its concentration had a linear relationship in a range of 5. OX 1CTS-1. OX 10~1mol/L at the modified electrode and the detection limit was of 1.0X10~6mol/L.%采用高温热退火方法制备了氮掺杂的石墨烯,并制备了氮掺杂石墨烯修饰玻碳电极(NG/GCE),研究其对鸟嘌呤的电催化氧化作用.实验考察了溶液pH值、扫速、鸟嘌呤浓度的影响.结果表明,鸟嘌呤在NG/GCE上的氧化是不可逆过程,修饰电极可以增强鸟嘌呤在电极表面的吸附,对鸟嘌呤具有很好的电催化氧化性能,降低了鸟嘌呤氧化电位.在pH=7.0的磷酸盐缓冲溶液中检测鸟嘌呤,其氧化峰电流在5.0×10-6~1.0×10-4 mol/L浓度范围内呈良好的线性关系,检出限(3σ)为1.0×10-6 mol/L.

  9. Quality of chemically modified hemp fibers.

    Science.gov (United States)

    Kostic, Mirjana; Pejic, Biljana; Skundric, Petar

    2008-01-01

    Hemp fibers are very interesting natural material for textile and technical applications now. Applying hemp fibers to the apparel sector requires improved quality fibers. In this paper, hemp fibers were modified with sodium hydroxide solutions (5% and 18% w/v), at room and boiling temperature, for different periods of time, and both under tension and slack, in order to partially extract noncellulosic substances, and separate the fiber bundles. The quality of hemp fibers was characterised by determining their chemical composition, fineness, mechanical and sorption properties. The modified hemp fibers were finer, with lower content of lignin, increased flexibility, and in some cases tensile properties were improved. An original method for evaluation of tensile properties of hemp fibers was developed.

  10. Chemical structure and properties of interstrand cross-links formed by reaction of guanine residues with abasic sites in duplex DNA.

    Science.gov (United States)

    Catalano, Michael J; Liu, Shuo; Andersen, Nisana; Yang, Zhiyu; Johnson, Kevin M; Price, Nathan E; Wang, Yinsheng; Gates, Kent S

    2015-03-25

    A new type of interstrand cross-link resulting from the reaction of a DNA abasic site with a guanine residue on the opposing strand of the double helix was recently identified, but the chemical connectivity of the cross-link was not rigorously established. The work described here was designed to characterize the chemical structure and properties of dG-AP cross-links generated in duplex DNA. The approach involved characterization of the nucleoside cross-link "remnant" released by enzymatic digestion of DNA duplexes containing the dG-AP cross-link. We first carried out a chemical synthesis and complete spectroscopic structure determination of the putative cross-link remnant 9b composed of a 2-deoxyribose adduct attached to the exocyclic N(2)-amino group of dG. A reduced analogue of the cross-link remnant was also prepared (11b). Liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis revealed that the retention times and mass spectral properties of synthetic standards 9b and 11b matched those of the authentic cross-link remnants released by enzymatic digestion of duplexes containing the native and reduced dG-AP cross-link, respectively. These results establish the chemical connectivity of the dG-AP cross-link released from duplex DNA and provide a foundation for detection of this lesion in biological samples. The dG-AP cross-link in duplex DNA was remarkably stable, decomposing with a half-life of 22 days at pH 7 and 23 °C. The intrinsic chemical stability of the dG-AP cross-link suggests that this lesion in duplex DNA may have the power to block DNA-processing enzymes involved in transcription and replication.

  11. Encoded libraries of chemically modified peptides.

    Science.gov (United States)

    Heinis, Christian; Winter, Greg

    2015-06-01

    The use of powerful technologies for generating and screening DNA-encoded protein libraries has helped drive the development of proteins as pharmaceutical ligands. However the development of peptides as pharmaceutical ligands has been more limited. Although encoded peptide libraries are typically several orders of magnitude larger than classical chemical libraries, can be more readily screened, and can give rise to higher affinity ligands, their use as pharmaceutical ligands is limited by their intrinsic properties. Two of the intrinsic limitations include the rotational flexibility of the peptide backbone and the limited number (20) of natural amino acids. However these limitations can be overcome by use of chemical modification. For example, the libraries can be modified to introduce topological constraints such as cyclization linkers, or to introduce new chemical entities such as small molecule ligands, fluorophores and photo-switchable compounds. This article reviews the chemistry involved, the properties of the peptide ligands, and the new opportunities offered by chemical modification of DNA-encoded peptide libraries.

  12. Antitumor activity of chemical modified natural compounds

    Directory of Open Access Journals (Sweden)

    Marilda Meirelles de Oliveira

    1991-01-01

    Full Text Available Search of new activity substances starting from chemotherapeutic agents, continously appears in international literature. Perhaps this search has been done more frequently in the field of anti-tumor chemotherapy on account of the unsuccess in saving advanced stage patients. The new point in this matter during the last decade was computer aid in planning more rational drugs. In near future "the accessibility of supercomputers and emergence of computer net systems, willopen new avenues to rational drug design" (Portoghese, P. S. J. Med. Chem. 1989, 32, 1. Unknown pharmacological active compounds synthetized by plants can be found even without this eletronic devices, as tradicional medicine has pointed out in many contries, and give rise to a new drug. These compounds used as found in nature or after chemical modifications have produced successful experimental medicaments as FAA, "flavone acetic acid" with good results as inibitors of slow growing animal tumors currently in preclinical evaluation for human treatment. In this lecture some international contributions in the field of chemical modified compounds as antineoplasic drugs will be examined, particularly those done by Brazilian researches.

  13. Reactivity of chitosan derivatives and their interaction with guanine: A computational study

    Indian Academy of Sciences (India)

    Bhabesh Chandra Deka; Pradip Kr Bhattacharyya

    2016-04-01

    The present study delves into the reactivity of a few chitosan derivatives (CSDs) and their interaction with guanine in vacuum and in different phases. Increase in the polarity of the solvent lowers reactivity of the chosen derivatives (evaluated by using reactivity descriptors). Interaction between the CSDs and guanine (measured by interaction energy) weakens in solvent media and CSD-guanine interaction is weaker than the interaction between guanine and unmodified chitosan (CS). Chemical stability of CSD-guanine adducts remains similar to that of CS-guanine adduct in both polar and non-polar media. Moreover, CSD-guanine adducts exhibit comparable thermodynamic stability (quantified by free energy of solvation, Gsol) to that of unmodified CS-guanine adduct in non-polar solvent but in polar medium they are immensely destabilized in comparison to CS-guanine adduct. Observed theoretical results are expected to provide guidance for future relevant experimental research on gene delivery by CS derivatives.

  14. [Quantum-chemical investigation of tautomerization ways of Watson-Crick DNA base pair guanine-cytosine].

    Science.gov (United States)

    Brovarets', O O; Hovorun, D M

    2010-01-01

    A novel physico-chemical mechanism of the Watson-Crick DNA base pair Gua.Cyt tautomerization Gua.Cyt*Gua.CytGua*.Cyt (mutagenic tautomers of bases are marked by asterisks) have been revealed and realized in a pathway of single proton transfer through two mutual isoenergetic transition states with Gibbs free energy of activation 30.4 and 30.6 kcal/mol and they are ion pairs stabilized by three (N2H...N3, N1H...N4- and O6+H...N4-) and five (N2H...O2, N1H...O2, N1H...N3, O6+H...N4- and 06+H...N4-) H-bonds accordingly. Stable base pairs Gua-Cyt* and Gua*.Cyt which dissociate comparably easy into monomers have acceptable relative Gibbs energies--12.9 and 14.3 kcal/mol--for the explanation of the nature of the spontaneous transitions of DNA replication. Results are obtained at the MP2/6-311++G(2df,pd)//B3LYP/6-31 1++G(d,p) level of theory in vacuum approach.

  15. Chemically modified field effect transistors with nitrite or fluoride selectivity

    NARCIS (Netherlands)

    Antonisse, Martijn M.G.; Snellink-Ruël, Bianca H.M.; Engbersen, Johan F.J.; Reinhoudt, David N.

    1998-01-01

    Polysiloxanes with different types of polar substituents are excellent membrane materials for nitrite and fluoride selective chemically modified field effect transistors (CHEMFETs). Nitrite selectivity has been introduced by incorporation of a cobalt porphyrin into the membrane; fluoride selectivity

  16. Cyclic Voltammetric Responses of Nitrate Reductase on Chemical Modified Electrodes

    Institute of Scientific and Technical Information of China (English)

    YaRuSONG; HuiBoSHAO; 等

    2002-01-01

    Electrochemistry of nitrate reductases (NR) incorporated into 2-aminoethanethiol self-assembled on the gold electrode and polyacrylamide cast on the pyrolytic graphite electrode was examined. NR on chemical modified electrode showed electrochemical cyclic voltammetric responses in phosphate buffers.

  17. Chemical and semisynthesis of modified histones.

    Science.gov (United States)

    Maity, Suman Kumar; Jbara, Muhammad; Brik, Ashraf

    2016-05-01

    Post-translational modifications (PTMs) of histones play critical roles in the epigenetic regulation of eukaryotic genome by directly altering the biophysical properties of chromatin or by recruiting effector proteins. The large number of PTMs and the inherent complexity in their population and signaling processes make it highly challenging to understand epigenetics-related processes. To address these challenges, accesses to homogeneously modified histones are obligatory. Over the last decade, synthetic protein chemists have been devising novel synthetic tools and applying state-of-the-art chemoselective ligation strategies to prepare precious materials useful in answering fundamental questions in this area. In this short review, we cover some of the recent breakthroughs in these directions in particular the synthesis and semi-synthesis of modified histones and their use to unravel the mysteries of epigenetics. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  18. [Adsorption of phenol chemicals by surfactant-modified zeolites].

    Science.gov (United States)

    Xie, Jie; Wang, Zhe; Wu, De-Yi; Li, Chun-Jie

    2012-12-01

    Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently. Surfactant-modified zeolites were studied for adsorption of phenol chemicals (phenol, p-chlorphenol, bisphenol A). It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification. The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm. For the two surfactant-surfactant modified zeolites, the maximum adsorption amounts of phenol, p-chlorphenol, and bisphenol A calculated from the Langmuir equation were 37.7, 52.36, 90.9 mg x g(-1) and 10.7, 22.83, 56.8 mg x g(-1), respectively. When pH values of solutions were higher than the pK(a) values of phenol chemicals, the removal efficiencies were getting higher with the increase of pH values. The octanol/water partition coefficient (K(ow)) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites. Higher K(ow) value, which means the greater hydrophobicity of the chemicals, resulted in a higher removal.

  19. Lubricants from chemically modified vegetable oils.

    Science.gov (United States)

    Campanella, Alejandrina; Rustoy, Eduardo; Baldessari, Alicia; Baltanás, Miguel A

    2010-01-01

    This work reports laboratory results obtained from the production of polyols with branched ether and ester compounds from epoxidized vegetable oils pertaining to annual, temperate climate crops (soybean, sunflower and high-oleic sunflower oils), focusing on their possible use as components of lubricant base stocks. To this end, two different opening reactions of the epoxide ring were studied. The first caused by the attack with glacial acetic acid (exclusively in a single organic phase) and the second using short-chain aliphatic alcohols, methanol and ethanol, in acid media. Both reactions proceed under mild conditions: low synthesis temperature and short reaction times and with conversions above 99%. Spectroscopic (NMR), thermal (DSC) and rheological techniques were used to characterize the oils, their epoxides and polyols, to assess the impact of the nature of the vegetable oil and the chemical modifications introduced, including long-term storage conditions. Several correlations were employed to predict the viscosity of the vegetable oils with temperature, and good agreement with the experimental data was obtained.

  20. Chemically-Modified Cellulose Paper as a Microstructured Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Hirotaka Koga

    2015-01-01

    Full Text Available We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  1. Determination of guanine at a poly ( Safranine T) modified electrode%番红花红聚合膜修饰电极对鸟嘌呤的测定及应用研究

    Institute of Scientific and Technical Information of China (English)

    牛凌梅; 裴亚托; 陈彦彪; 倪志权; 马文献; 赵胜利; 康维钧; 吴喜凤

    2012-01-01

    The electrochemical behavior of guanine (G) at a poly ( safranine T) modified electrode was investigated. It was found that the poly (SFR) modified electrode showed an obvious electrocatalytic activity for the oxidation of G. In phosphate buffer, the linear relationship between the peak current and concentration was studied by differential pulse voltammetrics ( DPV) method. The linear ranges were 6.0×10-7 ~ 1.0 ×10-5mol/L and 2. 0×10-5 ~ 7.0×10-5mol/L, respectively. The poly (SFR) modified electrode can be applied to the determination of G in tablet samples with satisfactory results. The recoveries were between 97. 1% and 102%.%研究了鸟嘌呤(G)在番红花红聚合膜修饰的玻碳电极上的电化学行为,发现SFR聚合膜电极对G的氧化能够起到明显的电催化作用.利用差分脉冲法研究了G在磷酸盐缓冲溶液中的线性关系,发现其浓度分别在6.0×10-7~1.0×10 -5mol/L、2.0×10-5~7.0×10-5mol/L范围内与峰电流呈良好的线性关系.该电极用于实际样品的测定,回收率在97.1%~102%之间.

  2. Modified NASA-Lewis Chemical Equilibrium Code for MHD applications

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.

    1979-12-01

    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code has recently been developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. This report describes the effect of the programming details from a user point of view, but does not describe the Code in detail.

  3. Structure and biological activity of chemically modified nisin A species

    NARCIS (Netherlands)

    Rollema, Harry S.; Metzger, Jörg W.; Both, Paula; Kuipers, Oscar P.; Siezen, Roland J.

    1996-01-01

    Nisin, a 34-residue peptide bacteriocin, contains the less common amino acids lanthionine, β-methyllanthionine, dehydroalanine (Dha), and dehydrobutyrine (Dhb). Several chemically modified nisin A species were purified by reverse-phase HPLC and characterized by two-dimensional NMR and electrospray m

  4. Chemical composition of silica-based biocidal modifier

    Directory of Open Access Journals (Sweden)

    Grishina Anna Nikolaevna

    2016-11-01

    Full Text Available Increase of the amount of fungi spores and micotixines causes the increase in the number of different diseases. Because of this, ensuring the biological safety in buildings is becoming more and more important today. The preferred way to guarantee the biological safety of a building is to employ modern building materials that prevent the settlement of the fungi colonies on the inner surfaces of walls. Such building materials can be produced using novel biocidal modifiers that allow controlling the number of microorganisms on the surface and in the bulk of a composite construction. The precipitation product of zinc hydrosilicates and sodium sulfate is one of the mentioned modifiers. Till now, the exact chemical composition of such precipitation product is controversial; it is obvious, though, that the efficacy of the biocidal modifier is mostly determined by the type of the copper compounds. In the present work an integrated approach is used for the investigation of the chemical composition of the biocidal modifier. Such an approach consists in the examination of the modifier’s composition by means of different, yet complementary, research methods: X-ray diffraction, infrared spectroscopy and DTA. It is shown that the chemical composition of the modifier mainly depends on the amount of precipitant. X-ray diffraction reveals that the major part of the modifier is represented by amorphous phase. Along with the increase of the precipitant’s amount the crystalline phase Zn4SO4(OH6•xH2O formation takes place. Such a crystalline phase is not appropriate as a component of the biocidal modifier. Another two methods - DTA and IR spectroscopy - reveal that the amorphous phase consists essentially of zinc hydrosilicates.

  5. Chemical sensors based on molecularly modified metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Haick, Hossam [Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2007-12-07

    This paper presents a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to the use of molecularly modified metal nanoparticles in or as chemical sensors. This paper attempts to pull together different views and terminologies used in sensors based on molecularly modified metal nanoparticles, including those established upon electrochemical, optical, surface Plasmon resonance, piezoelectric and electrical transduction approaches. Finally, this paper discusses briefly the main advantages and disadvantages of each of the presented class of sensors. (review article)

  6. A new microplatform based on titanium dioxide nanofibers/graphene oxide nanosheets nanocomposite modified screen printed carbon electrode for electrochemical determination of adenine in the presence of guanine.

    Science.gov (United States)

    Arvand, Majid; Ghodsi, Navid; Zanjanchi, Mohammad Ali

    2016-03-15

    The current techniques for determining adenine have several shortcomings such as high cost, high time consumption, tedious pretreatment steps and the requirements for highly skilled personnel often restrict their use in routine analytical practice. This paper describes the development and utilization of a new nanocomposite consisting of titanium dioxide nanofibers (TNFs) and graphene oxide nanosheets (GONs) for screen printed carbon electrode (SPCE) modification. The synthesized GONs and TNFs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The modified electrode (TNFs/GONs/SPCE) was used for electrochemical characterization of adenine. The TNFs/GONs/SPCE exhibited an increase in peak current and the electron transfer kinetics and decrease in the overpotential for the oxidation reaction of adenine. Using differential pulse voltammetry (DPV), the prepared sensor showed good sensitivity for determining adenine in two ranges from 0.1-1 and 1-10 μM, with a detection limit (DL) of 1.71 nM. Electrochemical studies suggested that the TNFs/GONs/SPCE provided a synergistic augmentation on the voltammetric behavior of electrochemical oxidation of adenine, which was indicated by the improvement of anodic peak current and a decrease in anodic peak potential. The amount of adenine in pBudCE4.1 plasmid was determined via the proposed sensor and the result was in good compatibility with the sequence data of pBudCE4.1 plasmid.

  7. Gene silencing by chemically modified siRNAs.

    Science.gov (United States)

    Engels, Joachim W

    2013-03-25

    RNA interference (RNAi) has not only already risen as a gold standard for validating gene function in basic science studies, but also holds great promise as a new therapeutic paradigm. Advantages of RNAi-based therapeutics include relatively fast initial screening and the ability to target proteins not yet addressable by traditional drug design strategies. In this review we describe the development of chemically modified small inhibiting siRNAs and their application as potential therapeutics during the past decade. Focus is on proper siRNA design, choice of chemical modification and how to circumvent immunogenicity as well as off-target effects.

  8. THE INDUSTRIAL UTILIZATION OF CHEMICAL MODIFIED AGRICULTURAL RESIDUES

    Institute of Scientific and Technical Information of China (English)

    Feng Xu; Runcang Sun; Huaiyu Zhan

    2004-01-01

    Various lignocellulosic materials such as wood,agricultural and forest residues has the potential to be valuable substitute for, or complement to,commercial sorbents for removing heavy metal ions or dyes from waste water or spilled oil from inland water or sea. More than 9 million tons of straw pulp are produced annually in china, which account for about 90% of the world′s total straw pulp. However,huge quantity of remain straw is not used as industrial raw material and is burnt in the fields or on the side of road. These resources can be chemical modified such as acetylation. Modified straws have the characteristics of low cost, high capacity, quick uptake, and easy to desorb. This paper reviews the current status of the technology for modified agricultural residues, which focus on hemicellulose and cellulose. The potential of these natural sorbents in main industry is also indicated.

  9. THE INDUSTRIAL UTILIZATION OF CHEMICAL MODIFIED AGRICULTURAL RESIDUES

    Institute of Scientific and Technical Information of China (English)

    FengXu; RuncangSun; HuaiyuZhan

    2004-01-01

    Various lignocellulosic materials such as wood, agricultural and forest residues has the potential to be valuable substitute for, or complement to, commercial sorbents for removing heavy metal ions or dyes from waste water or spilled oil from inland water or sea. More than 9 million tons of straw pulp are produced annually in china, which account for about 90% of the world's total straw pulp. However, huge quantity of remain straw is not used as industrial raw material and is burnt in the fields or on the side of road. These resources can be chemical modified such as acetylation. Modified straws have the characteristics of low cost, high capacity, quick uptake, and easy to desorb. This paper reviews the current status of the technology for modified agricultural residues, which focus on hemicellulose and cellulose. The potential of these natural sorbents in main industry is also indicated.

  10. Chemical characteristics and volatile profile of genetically modified peanut cultivars.

    Science.gov (United States)

    Ng, Ee Chin; Dunford, Nurhan T; Chenault, Kelly

    2008-10-01

    Genetic engineering has been used to modify peanut cultivars for improving agronomic performance and pest resistance. Food products developed through genetic engineering have to be assessed for their safety before approval for human consumption. Preservation of desirable chemical, flavor and aroma attributes of the peanut cultivars during the genetic modifications is critical for acceptance of genetically modified peanuts (GMP) by the food industry. Hence, the main objective of this study is to examine chemical characteristics and volatile profile of GMP. The genetically modified peanut cultivars, 188, 540 and 654 were obtained from the USDA-ARS in Stillwater, Oklahoma. The peanut variety Okrun was examined as a control. The volatile analysis was performed using a gas chromatograph/mass spectrometer (GC/MS) equipped with an olfactory detector. The peanut samples were also analyzed for their moisture, ash, protein, sugar and oil compositions. Experimental results showed that the variations in nutritional composition of peanut lines examined in this study were within the values reported for existing cultivars. There were minor differences in volatile profile among the samples. The implication of this study is significant, since it shows that peanut cultivars with greater pest and fungal resistance were successfully developed without major changes in their chemical characteristics.

  11. Chemically modified cellulose paper as a thin film microextraction phase.

    Science.gov (United States)

    Saraji, Mohammad; Farajmand, Bahman

    2013-11-01

    In this paper, chemically modified cellulose paper was introduced as a novel extracting phase for thin film microextraction (TFME). Different reagents (Octadecyltrichlorosilane, diphenyldichlorosilane, cyclohexyl isocyanate and phenyl isocyanate) were used to modify the cellulose papers. The modified papers were evaluated as a sorbent for the extraction of some synthetic and natural estrogenic hormones (17α-ethynylestradiol, estriol and estradiol) from aqueous samples. Liquid chromatography-fluorescence detection was used for the quantification of the extracted compounds. The cellulose paper modified with phenyl isocyanate showed the best affinity to the target compounds. TEME parameters such as desorption condition, shaking rate, sample ionic strength and extraction time were investigated and optimized. Limit of detections were between 0.05 and 0.23μgL(-1) and relative standard deviations were less than 11.1% under the optimized condition. The calibration curves were obtained in the range of 0.2-100μgL(-1) with a good linearity (r(2)>0.9935). Wastewater, human urine, pool and river water samples were studied as real samples for the evaluation of the method. Relative recoveries were found to be between 75% and 101%.

  12. Recovery of palladium using chemically modified cedar wood powder.

    Science.gov (United States)

    Parajuli, Durga; Hirota, Koichi

    2009-10-15

    Japanese cedar wood powder (CWP) was chemically modified to a tertiary-amine-type adsorbent and studied for the selective recovery of Pd(II) from various industrial waters. Batch adsorption tests performed from 0.1 M to 5 M HCl and HNO3 systems reveal stable performance with better results in HNO3 medium. The maximum loading capacity for Pd(II) was studied in HCl as well as in HNO3. A continuous-flow experiment taking a real industrial solution revealed the feasibility of using modified CWP for the selective uptake and preconcentration of traces of palladium contained in acidic effluents. In addition, stable adsorption performance even on long exposure to gamma-irradiation and selective recovery of palladium from simulated high-level liquid waste (HLW) are important outcomes of the study.

  13. Mechano-sorptive creep of Portuguese pinewood chemically modified

    Directory of Open Access Journals (Sweden)

    Barroso Lopes Duarte

    2014-03-01

    Full Text Available The effect of chemical modification on mechano-sorptive creep in bending was studied by experimental work. Stakes with 20 × 20 × 400 mm RTL of Portuguese wood species (Pinus pinaster Aiton modified with 1,3-dimethylol-4,5- dihydroxyethyleneurea (DMDHEU, m-methylated melamine resin (MMF, tetraethoxysilane (TEOS and amid wax (WA were measured under asymmetric moistening conditions over a period of 42 days (app. 1000 hours with stress level (SL of 12 MPa, according to ENV 1156.

  14. Chemically modified oligonucleotides with efficient RNase H response

    DEFF Research Database (Denmark)

    Vester, Birte; Boel, Anne Marie; Lobedanz, Sune;

    2008-01-01

    Ten different chemically modified nucleosides were incorporated into short DNA strands (chimeric oligonucleotides ON3-ON12 and ON15-ON24) and then tested for their capacity to mediate RNAse H cleavage of the complementary RNA strand. The modifications were placed at two central positions directly...... in the RNase H cleaving region. The RNA strand of duplexes with ON3, ON5 and ON12 were cleaved more efficiently than the RNA strand of the DNA:RNA control duplex. There seems to be no correlation between the thermal stability between the duplexes and RNase H cleavage....

  15. Chemically modified tetracyclines: The novel host modulating agents

    Directory of Open Access Journals (Sweden)

    Devulapalli Narasimha Swamy

    2015-01-01

    Full Text Available Periodontal pathogens and destructive host responses are involved in the initiation and progression of periodontitis. The emergence of host response modulation as a treatment concept has resulted from our improved understanding of the pathogenesis of periodontal disease. A variety of drugs have been evaluated as host modulation agents (HMA, including Non Steroidal Anti Inflammatory Drugs (NSAIDS, bisphosphonates, tetracyclines, enamel matrix proteins and bone morphogenetic proteins. Chemically modified tetracyclines (CMTs are one such group of drugs which have been viewed as potential host modulating agents by their anticollagenolytic property. The CMTs are designed to be more potent inhibitors of pro inflammatory mediators and can increase the levels of anti inflammatory mediators.

  16. Probing Chromatin-modifying Enzymes with Chemical Tools

    KAUST Repository

    Fischle, Wolfgang

    2016-02-04

    Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.

  17. Reduced chemically modified graphene oxide for supercapacitor electrode.

    Science.gov (United States)

    Rajagopalan, Balasubramaniyan; Chung, Jin Suk

    2014-01-01

    An efficient active material for supercapacitor electrodes is prepared by reacting potassium hydroxide (KOH) with graphene oxide followed by chemical reduction with hydrazine. The electrochemical performance of KOH treated graphene oxide reduced for 24 h (reduced chemically modified graphene oxide, RCMGO-24) exhibits a specific capacitance of 253 F g(-1) at 0.2 A g(-1) in 2 M H2SO4 compared to a value of 141 F g(-1) for graphene oxide reduced for 24 h (RGO-24), and good cyclic stability up to 3,000 cycles. Interestingly, RCMGO-24 demonstrated a higher specific capacitance and excellent cycle stability due to its residual oxygen functional groups that accelerate the faradaic reactions and aid in faster wetting. This non-annealed strategy offers the potential for simple and cost-effective preparation of an active material for a supercapacitor electrode.

  18. Band bending and electrical transport at chemically modified silicon surfaces

    Science.gov (United States)

    Lopinski, Greg; Ward, Tim; Hul'Ko, Oleksa; Boukherroub, Rabah

    2002-03-01

    High resolution electron energy loss spectroscopy (HREELS) and electrical transport measurements have been used to investigate how various chemical modifications give rise to band bending and alter the conductivity of Si(111) surfaces. HREELS is a sensitive probe of band bending through observations of the low frequency free carrier plasmon mode. For hydrogen terminated surfaces, prepared by the standard etch in ammonium flouride, HREELS measurements on both n and n+ substrates are consistent with nearly flat bands. Chlorination of these surfaces results in substantial upward band bending due to the strong electron withdrawing nature of the chlorine, driving the surface into inversion. The presence of this inversion layer on high resistivity n-type samples is observed through a substantial enhancement of the surface conductivity (relative to the H-terminated surface), as well as through broadening of the quasi-elastic peak in the HREELS measurements. We have also begun to examine organically modified silicon surfaces, prepared by various wet chemical reactions with the H-terminated surface. Decyl modified Si(111) surfaces are seen to exhibit a small degree of band bending, attributed to extrinsic defect states cause by a small degree of oxidation accompanying the modification reaction. The prospects of using conductivity as an in-situ monitor of the rate of these reactions will be discussed.

  19. Chemically modified solid state nanopores for high throughput nanoparticle separation

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, Anmiv S; Kim, Min Jun [School of Biomedical Engineering and Health Science, Drexel University, Philadelphia, PA 19104 (United States); Jubery, Talukder Zaki N; Dutta, Prashanta [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Freedman, Kevin J; Mulero, Rafael, E-mail: mkim@coe.drexel.ed [Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104 (United States)

    2010-11-17

    The separation of biomolecules and other nanoparticles is a vital step in several analytical and diagnostic techniques. Towards this end we present a solid state nanopore-based set-up as an efficient separation platform. The translocation of charged particles through a nanopore was first modeled mathematically using the multi-ion model and the surface charge density of the nanopore membrane was identified as a critical parameter that determines the selectivity of the membrane and the throughput of the separation process. Drawing from these simulations a single 150 nm pore was fabricated in a 50 nm thick free-standing silicon nitride membrane by focused-ion-beam milling and was chemically modified with (3-aminopropyl)triethoxysilane to change its surface charge density. This chemically modified membrane was then used to separate 22 and 58 nm polystyrene nanoparticles in solution. Once optimized, this approach can readily be scaled up to nanopore arrays which would function as a key component of next-generation nanosieving systems.

  20. Determination of guanine at poly(safranine T) and gold nanoparticles composite modified glassy carbon electrode and its analytical application%聚番红花红-纳米金复合膜修饰电极对鸟嘌呤的测定及应用研究

    Institute of Scientific and Technical Information of China (English)

    牛凌梅; 张玉娜; 连靠奇; 石红梅; 徐秀娟

    2014-01-01

    制备了聚番红花红-纳米金复合膜修饰的玻碳电极并用扫描电镜及交流阻抗进行了表征。利用差分脉冲法( DPV)研究了鸟嘌呤在此修饰电极上的电化学行为。结果表明聚番红花红-纳米金复合膜对于鸟嘌呤的氧化能够起到明显的电催化作用。在优化条件下,鸟嘌呤的氧化峰电流与其浓度在6.0×10-7~7.0×10-5 mol·L-1范围内呈良好的线性关系,检出限为8.0×10-8 mol·L-1。该方法快速,准确,将聚番红花红-纳米金复合膜修饰电极用于实际样品的测定,结果满意。%Poly( safranine T) and gold nanoparticles composite modified glassy carbon electrode was prepared and characterised with scan electron microscope and electrochemical impedance. The electrochemical behavior of guanine at the modified electrode was studied by differential pulse voltammetry(DPV). It was found the composite showed an obvious electrocatalytic activity for the oxi-dation of guanine. At the optimum conditions,the peak currents of guanine were proportional to the concentrations in the range of 6. 0 × 10-7 ~7. 0 × 10-5 mol·L-1 with the detection limits of 8. 0 × 10-8 mol·L-1 . This method was rapid and accurate and the com-posite modified electrode can be applied to determine guanine in the real sample with a satisfactory result.

  1. 12-Tungstophosphates Immobilized on Chemically Modified Mesoporous Silica SBA-15

    Institute of Scientific and Technical Information of China (English)

    ZHU Jing; YOU Wan-sheng; ZHU Zai-ming; SUN Zhen-gang; ZHANG Lan-cui; GU Yuan-peng

    2005-01-01

    A functionalized material, PW/SBA-15m, was prepared successfully in diluted H2SO4 aqueous solutions by immobilizing 12-tungstophosphates on chemically modified mesoporous silica SBA-15 and characterized by elemental analysis, FTIR, 31P MAS NMR, XRD and TEM. The results indicate that the framework of SBA-15 and the Keggin structure of PW12O3-40 were retained, and that 23%-33%(mass fraction) of PW12O3-40 was immobilized; the PW12O3-40 anions were finely dispersed on the pore wall of SBA-15. Having been leached in ethanol at 60 ℃ for 7 h, the loss of PW12O3-40 anions was not found.

  2. Preparation of calcium stannate by modified wet chemical method

    Institute of Scientific and Technical Information of China (English)

    何则强; 李新海; 刘恩辉; 侯朝辉; 邓凌峰; 胡传跃

    2003-01-01

    A modified wet chemical route for low-temperature synthesis of the calcium stannate CaSnO3, a potentialmaterial for dielectric applications is reported. Firstly, a precursor CaSn(OH)6 was prepared using tin tetrachloride,calcium chloride and sodium hydroxide at room temperature. Then the precursor was annealed at relatively low tem-perature of 600 ℃ to obtain CaSnO3. The phase identification, thermal behavior and surface morphology of the sam-ples were characterized by element analysis, X-ray diffraction (XRD), thermo-gravimetric (TG) analysis and deriva-tive thermo-gravimetric (DTG) analysis, Fourier transform infrared spectroscopy (FTIR) and scanning electron mi-croscopy (SEM) in detail. The results show that CaSnO3 obtained by this method possesses a cubic perovskitestructure with average grain size of 5 μm.

  3. Highly efficient adsorption of chlorophenols onto chemically modified chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang-Chun [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China); National Center for Packaging Material Quality Supervision and Inspection, Chengdu Institute of Product Quality Supervision and Inspection, Chengdu 610064 (China); Meng, Xiang-Guang, E-mail: mengxgchem@163.com [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China); Fu, Jing-Wei [National Center for Packaging Material Quality Supervision and Inspection, Chengdu Institute of Product Quality Supervision and Inspection, Chengdu 610064 (China); Yang, Yu-Chong; Yang, Peng; Mi, Chun [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)

    2014-02-15

    A novel chemically modified chitosan CS-SA-CD with phenol and β-cyclodextrin groups was prepared. The adsorptions of phenol, 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) on the functional chitosan from aqueous solution were investigated. CS-SA-CD exhibited excellent adsorption ability for chlorophenols especially for DCP and TCP. The maximum adsorption capacities of phenol, 2-CP, 4-CP, DCP and TCP on CS-SA-CD were 59.74, 70.52, 96.43, 315.46 and 375.94 mg/g, respectively. The scanning electron microscope and Brunauer–Emmett–Teller analyses revealed that the introduction of phenol group changed the surface morphology and surface properties of chitosan. The modified chitosan CS-SA-CD possesses larger surface areas (4.72 m{sup 2}/g), pore volume (7.29 × 10{sup −3} mL/g) and average pore diameter (59.99 Å) as compared to those of chitosan 3.27 m{sup 2}/g, 2.00 × 10{sup −3} mL/g and 15.95 Å, respectively. The enhanced adsorption of chlorophenols was also attributed to the interaction of hydrogen bond between Cl atom and -OH group. The adsorption of chlorophenols on CS-SA-CD followed the pseudo-second-order kinetic model. Adsorbent could be regenerated easily and the regenerated CS-SA-CD remained 80–91% adsorption efficiency.

  4. Reference field effect transistor based on chemically modified ISFETs

    NARCIS (Netherlands)

    Skowronska-Ptasinska, Maria; Wal, van der Peter D.; Berg, van den Albert; Bergveld, Piet; Sudhölter, Ernst J.R.; Reinhoudt, David N.

    1990-01-01

    Different hydrophobic polymers were used for chemical modification of ion-sensitive field effect transistors (ISFETs) in order to prepare a reference FET (REFET). Chemical attachment of the polymer to the ISFET gate results in a long lifetime of the device. Properties of polyacrylate (polyACE) REFET

  5. A bridged nucleic acid, 2',4'-BNA COC: synthesis of fully modified oligonucleotides bearing thymine, 5-methylcytosine, adenine and guanine 2',4'-BNA COC monomers and RNA-selective nucleic-acid recognition.

    Science.gov (United States)

    Mitsuoka, Yasunori; Kodama, Tetsuya; Ohnishi, Ryo; Hari, Yoshiyuki; Imanishi, Takeshi; Obika, Satoshi

    2009-03-01

    Recently, we synthesized pyrimidine derivatives of the 2'-O,4'-C-methylenoxymethylene-bridged nucleic-acid (2',4'-BNA(COC)) monomer, the sugar conformation of which is restricted in N-type conformation by a seven-membered bridged structure. Oligonucleotides (BNA(COC)) containing this monomer show high affinity with complementary single-stranded RNA and significant resistance to nuclease degradation. Here, BNA(COC) consisting of 2',4'-BNA(COC) monomers bearing all four bases, namely thymine, 5-methylcytosine, adenine and guanine was efficiently synthesized and properties of duplexes containing the 2',4'-BNA(COC) monomers were investigated by UV melting experiments and circular dichroism (CD) spectroscopy. The UV melting curve analyses showed that the BNA(COC)/BNA(COC) duplex possessed excellent thermal stability and that the BNA(COC) increased thermal stability with a complementary RNA strand. On the other hand, BNA(COC)/DNA heteroduplexes showed almost the same thermal stability as RNA/DNA heteroduplexes. Furthermore, mismatched sequence studies showed that BNA(COC) generally improved the sequence selectivity with Watson-Crick base-pairing compared to the corresponding natural DNA and RNA. A CD spectroscopic analysis indicated that the BNA(COC) formed duplexes with complementary DNA and RNA in a manner similar to natural RNA.

  6. Electroanalytical Determination of Guanine and Uric Acid Using Double-Walled Carbon Nanotube-Graphene Nanosheet Hybrid Film/Acid Yellow 9 Modified Electrode%石墨烯-双壁碳纳米管/酸性黄9修饰电极电化学检测鸟嘌呤和尿酸

    Institute of Scientific and Technical Information of China (English)

    许冰冰; 王海军

    2012-01-01

    A new method for electroanalytical determination of guanine (GA) and uric acid (UA) based on double-walled carbon nanotube-graphene nanosheet hybrid film/acid yellow 9 modified glass carbon electrode ( DG/AY/GCE) is reported. The electrochemical behaviors of guanine and uric acid at DG/AY/GCE were investigated in details. It is found that the DG/AY/GCE exhibited excellent analytical performance for determination GA and UA in 0. 1 mol/L phosphate buffer solution (pH 4. 0) since it not only increases the oxidation peak current but also lowers the oxidation overpotential. The oxidation currents of GA and UA were found linearly related to concentration over the range 2. 0 × 10-9 to 6. 8 × 10-5 mol/L for GA and 5. 0 × 10-9 to 9. 5 × 10-5 mol/L for UA using amperometric method. The detection limits were found to be 6.67 × 10-10 mol/L (s/n = 3) for GA and 1.67 × 10-9 mol/L (s/n =3) for UA. The proposed method was used to detect GA and UA in human urine samples with satisfactory results.%制备了石墨烯-双壁碳纳米管/酸性黄9修饰玻碳电极(DG/AY/GCE),在浓度为0.1mol/L、pH为4.0的磷酸缓冲溶液中,探讨了鸟嘌呤(Guanine,GA)和尿酸(Uric acid,UA)在该修饰电极上的电化学行为.结果表明:GA和UA在该修饰电极上氧化电流可得到明显增强,过电位得以降低.利用计时电流法测定GA和UA,与GA和UA氧化电流呈线性关系的浓度范围分别为2.0×10-9 ~ 6.8×10-5 mol/L和5.0×10-9 ~ 9.5×10-5 mol/L,检测限(s/n=3)分别为6.67×10-10 mol/L和1.67×10-9 mol/L.该修饰电极已经成功应用于人类尿液中GA和UA的含量分析,结果令人满意.

  7. CHEMICALLY MODIFIED FIELD-EFFECT TRANSISTORS - POTENTIOMETRIC AG+ SELECTIVITY OF PVC MEMBRANES BASED ON MACROCYCLIC THIOETHERS

    NARCIS (Netherlands)

    BRZOZKA, Z; COBBEN, PLHM; REINHOUDT, DN; EDEMA, JJH; KELLOGG, RM

    1993-01-01

    A chemically modified field-effect transistor (CHEMFET) with satisfactory Ag+ selectivity is described. The potentiometric Ag+ selectivities of CHEMFETs with plasticized PVC membranes based on macrocyclic thioethers have been determined. All the macrocyclic thioethers tested showed silver response a

  8. A NOVEL METHOD TO SYNTHESIZE N-DOPED CNTs ARRAYS VIA CHEMICAL MODIFYING POROUS ALUMINA MEMBRANE

    OpenAIRE

    CHENGYONG LI; LEI HE

    2014-01-01

    N-doped carbon nanotubes (CNTs) arrays were fabricated via simply chemical modifying porous alumina membrane (PAM) with dopamine. The diameter of N-doped CNTs is about 60–70 nm. The N/C atomic ratio is calculated to be 0.05 and the main functionality is pyridone/pyrrole N. This chemical modifying method can be used to fabricate mass of N-doped CNTs arrays in one step with single raw material.

  9. a Novel Method to Synthesize N-DOPED CNTs Arrays via Chemical Modifying Porous Alumina Membrane

    Science.gov (United States)

    Li, Chengyong; He, Lei

    2014-01-01

    N-doped carbon nanotubes (CNTs) arrays were fabricated via simply chemical modifying porous alumina membrane (PAM) with dopamine. The diameter of N-doped CNTs is about 60-70 nm. The N/C atomic ratio is calculated to be 0.05 and the main functionality is pyridone/pyrrole N. This chemical modifying method can be used to fabricate mass of N-doped CNTs arrays in one step with single raw material.

  10. Correlation between dynamic wetting behavior and chemical components of thermally modified wood

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wang; Zhu, Yuan; Cao, Jinzhen, E-mail: caoj@bjfu.edu.cn; Sun, Wenjing

    2015-01-01

    Highlights: • We studied the dynamic wetting behavior of thermally modified wood by wetting models. • We found lower wetting speed of water droplets on thermally modified wood surface. • Dynamic wetting behavior and surface chemical components show a strong correlation. - Abstract: In order to investigate the dynamic wetting behavior of thermally modified wood, Cathay poplar (Populus cathayana Rehd.) and Scots pine (Pinus sylvestris L.) samples were thermally modified in an oven at 160, 180, 200, 220 or 240 °C for 4 h in this study. The dynamic contact angles and droplet volumes of water droplets on modified and unmodified wood surfaces were measured by sessile drop method, and their changing rates (expression index: K value and wetting slope) calculated by wetting models were illustrated for mapping the dynamic wetting process. The surface chemical components were also measured by X-ray photoelectron spectroscopy analysis (XPS), thus the relationship between dynamic wetting behavior and chemical components of thermally modified wood were determined. The results indicated that thermal modification was capable of decreasing the dynamic wettability of wood, expressed in lowing spread and penetration speed of water droplets on wood surfaces. This change was more obvious with the increased heating temperature. The K values varied linearly with the chemical components parameter (mass loss, O/C ratio, and C{sub 1}/C{sub 2} ratio), indicating a strong correlation between dynamic wetting behavior and chemical components of thermally modified wood.

  11. DIMENSIONAL STABILITY AND WATER REPELLENT EFFICIENCY MEASUREMENT OF CHEMICALLY MODIFIED TROPICAL LIGHT HARDWOOD

    OpenAIRE

    Md. Saiful Islam; Sinin Hamdan; Mohamad Rusop; Md. Rezaur Rahman; Abu Saleh Ahmed; M. A. M. Mohd Idrus

    2012-01-01

    Chemical modification is an often-followed route to improve physical and mechanical properties of solid wood materials. In this study five kinds of tropical light hardwoods species, namely jelutong (Dyera costulata), terbulan (Endospermum diadenum), batai (Paraserianthes moluccana), rubberwood (Hevea brasiliensis), and pulai (Alstonia pneumatophora), were chemically modified with benzene diazonium salt to improve their dimensional stability and water repellent efficiency. The dimensional stab...

  12. The use of modified phenol for chemical face peeling.

    Science.gov (United States)

    Stone, P A

    1998-01-01

    This article reviews the results of 59 consecutive, modified phenol facial peels on 627 anatomic areas for the purpose of reducing fine to coarse rhytides, hyperpigmentation, and actinic keratoses. This work discusses the Venner-Kellson concentrated Lysol saponated formula containing 62.5% phenol; the Maschek-Truppman 53% phenol, nonsaponated glycerin formula; and the previously unpublished Gradé formulae I, II, and III with 49.5%, 60%, and 70% phenol, respectively. The new Stone formulae I, II, and III are introduced here. These new formulae are mixed from available reagents, thus obviating the need to melt potentially toxic phenol crystals, and are designed to achieve a range of clinical peel results on a wide variety of skin types. The ingredients, methods of preparation and application, as well as three postpeel occlusion techniques are presented. Clinical data including pH measurements, croton oil ratios, phenol concentrations, and preliminary biopsy data also are presented.

  13. Radiation modification of swollen and chemically modified cellulose

    Science.gov (United States)

    Borsa, J.; Tóth, T.; Takács, E.; Hargittai, P.

    2003-06-01

    Effect of accessibility of cellulose molecules on development of crosslinks during high-energy irradiation was investigated. Accessibility of cellulose was improved by swelling (NaOH, tetramethylammonium hydroxide), carboxymethylation, coating with water-soluble carboxymethylcellulose, respectively. Irradiation of samples (10 kGy) was carried out in wet state of the fabric as mobility of cellulose molecules is much higher in the presence of water and high mobility of molecular chains is advantageous for development of crosslinks. Change in molecular size was followed by degree of polymerization. The structure modified by crosslinks was characterized by increase in the absorbance assigned to the intermolecular hydrogen bonds (FTIR), and by decrease of fiber swelling (water vapor sorption, water retention). Thew highest values both for water vapor sorption and water retention were found in sample of highest accessibility (carboxymethylated cotton fabric coated with carboxymethylcellulose).

  14. Mthfd1 is a modifier of chemically induced intestinal carcinogenesis.

    Science.gov (United States)

    MacFarlane, Amanda J; Perry, Cheryll A; McEntee, Michael F; Lin, David M; Stover, Patrick J

    2011-03-01

    The causal metabolic pathways underlying associations between folate and risk for colorectal cancer (CRC) have yet to be established. Folate-mediated one-carbon metabolism is required for the de novo synthesis of purines, thymidylate and methionine. Methionine is converted to S-adenosylmethionine (AdoMet), the major one-carbon donor for cellular methylation reactions. Impairments in folate metabolism can modify DNA synthesis, genomic stability and gene expression, characteristics associated with tumorigenesis. The Mthfd1 gene product, C1-tetrahydrofolate synthase, is a trifunctional enzyme that generates one-carbon substituted tetrahydrofolate cofactors for one-carbon metabolism. In this study, we use Mthfd1(gt/+) mice, which demonstrate a 50% reduction in C1-tetrahydrofolate synthase, to determine its influence on tumor development in two mouse models of intestinal cancer, crosses between Mthfd1(gt/+) and Apc(min)(/+) mice and azoxymethane (AOM)-induced colon cancer in Mthfd1(gt/+) mice. Mthfd1 hemizygosity did not affect colon tumor incidence, number or load in Apc(min/+) mice. However, Mthfd1 deficiency increased tumor incidence 2.5-fold, tumor number 3.5-fold and tumor load 2-fold in AOM-treated mice. DNA uracil content in the colon was lower in Mthfd1(gt/+) mice, indicating that thymidylate biosynthesis capacity does not play a significant role in AOM-induced colon tumorigenesis. Mthfd1 deficiency-modified cellular methylation potential, as indicated by the AdoMet: S-adenosylhomocysteine ratio and gene expression profiles, suggesting that changes in the transcriptome and/or decreased de novo purine biosynthesis and associated mutability cause cellular transformation in the AOM CRC model. This study emphasizes the impact and complexity of gene-nutrient interactions with respect to the relationships among folate metabolism and colon cancer initiation and progression.

  15. Interfacial characterization and analytical applications of chemically-modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhong [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    The goal of this work is to explore several new strategies and approaches to the surface modification and the microscopic characterization of interfaces in the areas mainly targeting sensor technologies that are of interest to environmental control or monitoring, and scanning probe microscopies techniques that can monitor interfacial chemical reactions in real time. Centered on the main theme, four specific topics are presented as four chapters in this dissertation following the general introduction. Chapter 1 describes the development of two immobilization schemes for covalently immobilizing fluoresceinamine at cellulose acetate and its application as a pH sensing film. Chapter 2 investigates the applicability of SFM to following the base-hydrolysis of a dithio-bis(succinimidylundecanoate) monolayer at gold in situ. Chapter 3 studies the mechanism for the accelerated rate of hydrolysis of the dithio-bis(succinimidylundecanoate) monolayer at Au(111) surface. Chapter 4 focuses on the development of an electrochemical approach to the elimination of chloride interference in Chemical Oxygen Demand (COD) analysis of waste water. The procedures, results and conclusions are described in each chapter. This report contains the introduction, references, and general conclusions. Chapters have been processed separately for inclusion on the data base. 95 refs.

  16. WATER-BLOWN POLYURETHANE RIGID FOAMS MODIFIED BY CHEMICAL PLASTICATION

    Institute of Scientific and Technical Information of China (English)

    YU Ming; XU Qiang

    2006-01-01

    Water-blown polyurethane rigid foams are getting more and more attention, because the traditional blowing agent HCFC141b has already been abolished to prevent the ozone layer from destruction. However, the polyurethane rigid foams blown by water have serious defects, i.e. friability and resulting lower adhesion strength. Thus, the purpose of this study is to resolve the problems by chemical plastication. The maleate was added to polyol-premix containing water or to polyisocyanate,with both of which maleate does not react. To prove the reaction when polyol-premix and polyisocyanate were mixed, the model composite was synthesized and analyzed by IR, NMR and ESI (MS). Furthermore, a series of water-blown polyurethane rigid foams added different amount maleate were successfully prepared. By testing impact strength and adhesion strength of the foams, the actual effect of adding maleate was obtained.

  17. Biosorption of Methylene Blue by Chemically Modified Cellulose Waste

    Institute of Scientific and Technical Information of China (English)

    JIN Yanqiao; ZHANG Yizhuan; Lü Qiufeng; CHENG Xiansu

    2014-01-01

    Citric acid modified cellulose waste (CMCW) was prepared via esterification and used as a low-cost biosorbent for the removal of methylene blue (MB) from aqueous solutions. The effects of biosorbent concentration, initial pH of MB solution, biosorption temperature, contact time, and initial MB concentration on the biosorption of MB were investigated using batch biosorption technique under static conditions. The experimental results showed that CMCW exhibited excellent biosorption characteristics for MB. The maximum biosorption capacity of MB was up to 214.5 mg/g at an adsorption temperature of 293 K. The removal rate of MB onto CMCW reached the maximum at pH>4 and the biosorption reached an equilibrium at about 50 min. The kinetic data can be described well with the pseudo-second-order model and the isotherm data was found to fit the Langmuir isotherm with a monolayer adsorption capacity of 211.42 mg/g. The biosorption appears to be controlled by chemisorption and may be involved in surface adsorption and pore diffusion during the whole biosorption process.

  18. CO2 adsorption on chemically modified activated carbon.

    Science.gov (United States)

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively.

  19. Theoretical Study of the Photophysics of 8-Vinylguanine, an Isomorphic Fluorescent Analogue of Guanine.

    Science.gov (United States)

    Kochman, Michał A; Pola, Martina; Miller, R J Dwayne

    2016-08-11

    Paving the way for the application of the algebraic-diagrammatic construction scheme of second-order (ADC(2)) to systems based on the guanine chromophore, we demonstrate the this excited-state electronic structure method provides a realistic description of the photochemistry of 9H-guanine, in close agreement with the benchmark provided by the CASPT2 method. We then proceed to apply the ADC(2) method to the photochemistry of 8-vinylguanine (8vG), a minimally modified analogue of guanine which, unlike the naturally occurring nucleobase, displays intense fluorescence, indicative of a much longer-lived excited electronic state. The emissive electronic state of 8vG is identified as an ππ*-type intramolecular charge transfer (ICT) state, in which a charge of roughly -0.2 e is transferred from the guanine moiety onto the vinyl substituent. The main radiationless deactivation pathway competing with fluorescence is predicted to involve the molecule leaving the minimum on the ICT ππ* state, and reaching a region of the S1 adiabatic state where it resembles the La ππ* state of unmodified 9H-guanine. The topology of the La ππ* region of the S1 state favors subsequent internal conversion at a crossing seam with the ground electronic state. The sensitivity of this process to environment polarity may explain the experimentally observed fluorescence quenching of 8vG upon incorporation in single- and double-stranded DNA.

  20. Mechanical and chemical properties of cysteine-modified kinesin molecules.

    Science.gov (United States)

    Iwatani, S; Iwane, A H; Higuchi, H; Ishii, Y; Yanagida, T

    1999-08-10

    To probe the structural changes within kinesin molecules, we made the mutants of motor domains of two-headed kinesin (4-411 aa) in which either all the five cysteines or all except Cys45 were mutated. A residual cysteine (Cys45) of the kinesin mutant was labeled with an environment-sensitive fluorescent probe, acrylodan. ATPase activity, mechanical properties, and fluorescence intensity of the mutants were measured. Upon acrylodan-labeled kinesin binding to microtubules in the presence of 1 mM AMPPNP, the peak intensity was enhanced by 3.4-fold, indicating the structural change of the kinesin head by the binding. Substitution of cysteines decreased both the maximum microtubule-activated ATPase and the sliding velocity to the same extent. However, the maximum force and the step size were not affected; the force produced by a single molecule was 6-6.5 pN, and a step size due to the hydrolysis of one ATP molecule by kinesin molecules was about 10 nm for all kinesins. This step size was close to a unitary step size of 8 nm. Thus, the mechanical events of kinesin are tightly coupled with the chemical events.

  1. Chitosan and chemically modified chitosan beads for acid dyes sorption

    Institute of Scientific and Technical Information of China (English)

    AZLAN Kamari; WAN SAIME Wan Ngah; LAI KEN Liew

    2009-01-01

    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan were comparatively higher than chitosan-EGDE for both acid dyes. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment.

  2. Food preparation characteristics of potato starch pastes containing a proportion of chemically-modified starch

    OpenAIRE

    菊地, 和美; 高橋 セツ子; 吉田 訓子; 山本 未穂; 知地 英征; Kazumi, KIKUCHI; Takahashi, Setsuko; Yoshida, Kuniko; Yamamoto, Miho; Chiji, Hideyuki; 藤女子大学人間生活学部食物栄養学科; 藤女子大学人間生活学部食物栄養学科藤女子大学大学院人間生活学研究科食物栄養学専攻

    2011-01-01

    Hokkaido potatoes are widely used as a source of starch. Potato starch is used for various purposes,particularly for the production of fish paste products,livestock products, and confectionery. Moreover, modified starch, which is produced by processing potato starch chemically and physically, is used in a variety of forms. This study examines the properties of modified starch gels produced by further enhancing the starch functions of potato starch. To study the primary properties of starch ge...

  3. Correlation between dynamic wetting behavior and chemical components of thermally modified wood

    Science.gov (United States)

    Wang, Wang; Zhu, Yuan; Cao, Jinzhen; Sun, Wenjing

    2015-01-01

    In order to investigate the dynamic wetting behavior of thermally modified wood, Cathay poplar (Populus cathayana Rehd.) and Scots pine (Pinus sylvestris L.) samples were thermally modified in an oven at 160, 180, 200, 220 or 240 °C for 4 h in this study. The dynamic contact angles and droplet volumes of water droplets on modified and unmodified wood surfaces were measured by sessile drop method, and their changing rates (expression index: K value and wetting slope) calculated by wetting models were illustrated for mapping the dynamic wetting process. The surface chemical components were also measured by X-ray photoelectron spectroscopy analysis (XPS), thus the relationship between dynamic wetting behavior and chemical components of thermally modified wood were determined. The results indicated that thermal modification was capable of decreasing the dynamic wettability of wood, expressed in lowing spread and penetration speed of water droplets on wood surfaces. This change was more obvious with the increased heating temperature. The K values varied linearly with the chemical components parameter (mass loss, O/C ratio, and C1/C2 ratio), indicating a strong correlation between dynamic wetting behavior and chemical components of thermally modified wood.

  4. Applicability of chemically modified capillaries in chiral capillary electrophoresis for methamphetamine profiling.

    Science.gov (United States)

    Iwata, Yuko T; Mikuma, Toshiyasu; Kuwayama, Kenji; Tsujikawa, Kenji; Miyaguchi, Hajime; Kanamori, Tatsuyuki; Inoue, Hiroyuki

    2013-03-10

    We examined the applicability of chemically modified capillaries on the chiral capillary electrophoresis of essential compounds for methamphetamine (MA) profiling (MA, amphetamine, ephedrine, pseudoephedrine, norephedrine, and norpseudoephedrine) using highly sulfated γ-cyclodextrin as a chiral selector. Four types of chemically modified capillaries, namely, FunCap-CE/Type D (possessing diol groups), Type A (amino groups), Type C (carboxyl groups), and Type S (sulfate groups), were evaluated. Repeatability, speed, and good chiral resolution sufficient for routine MA profiling were achieved with the Type S capillary.

  5. Evaluating Zeolite-Modified Sensors: towards a faster set of chemical sensors

    Science.gov (United States)

    Berna, A. Z.; Vergara, A.; Trincavelli, M.; Huerta, R.; Afonja, A.; Parkin, I. P.; Binions, R.; Trowell, S.

    2011-09-01

    The responses of zeolite-modified sensors, prepared by screen printing layers of chromium titanium oxide (CTO), were compared to unmodified tin oxide sensors using amplitude and transient responses. For transient responses we used a family of features, derived from the exponential moving average (EMA), to characterize chemo-resistive responses. All sensors were tested simultaneously against 20 individual volatile compounds from four chemical groups. The responses of the two types of sensors showed some independence. The zeolite-modified CTO sensors discriminated compounds better using either amplitude response or EMA features and CTO-modified sensors also responded three times faster.

  6. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection.

    Science.gov (United States)

    Plachá, Daniela; Rosenbergová, Kateřina; Slabotínský, Jiří; Kutláková, Kateřina Mamulová; Studentová, Soňa; Martynková, Gražyna Simha

    2014-04-30

    Sorption efficiencies of modified montmorillonite and vermiculite of their mono ionic Na and organic HDTMA and HDP forms were studied against chemical and biological warfare agents such as yperite and selected bacterial strains. Yperite interactions with modified clay minerals were observed through its capture in low-density polyethylene foil-modified clay composites by measuring yperite gas permeation with using chemical indication and gas chromatography methods. The antibacterial activities of synthetized organoclays were tested against selected Gram-positive and Gram-negative bacterial species in minimum inhibitory concentration tests. The obtained results showed a positive influence of modified clay minerals on the significant yperite breakthrough-time increase. The most effective material was the polyethylene-Na form montmorillonite, while the polyethylene-Na form vermiculite showed the lowest efficiency. With increasing organic cations loading in the interlayer space the montmorillonite efficiency decreased, and in the case of vermiculite an opposite effect was observed. Generally the modified montmorillonites were more effective than modified vermiculites. The HDP cations seem to be more effective compare to the HDTMA. The antibacterial activity tests confirmed efficiency of all organically modified clay minerals against Gram-positive bacteria. The confirmation of antibacterial activity against Y. pestis, plague bacteria, is the most interesting result of this part of the study.

  7. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    Directory of Open Access Journals (Sweden)

    Cesar GAITAN-FONSECA

    2013-01-01

    Full Text Available Objective This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS. Material and Methods An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angle measurement (WCA. The effectiveness of the modification of hydrophobicity was verified by the fluid permeability test (FPT. Results and Conclusions Statistically significant differences were found in the values of WCA and FPT between the two groups. After silanization, the hydrophobic intraradicular dentin surface exhibited in vitro properties that limit fluid penetration into the sealed root canal. This chemical treatment is a new approach for improving the sealing of the root canal system.

  8. X-Ray Photoelectron Spectroscopic Characterization of Chemically Modified Electrodes Used as Chemical Sensors and Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Elio Desimoni

    2015-04-01

    Full Text Available The characterization of chemically modified sensors and biosensors is commonly performed by cyclic voltammetry and electron microscopies, which allow verifying electrode mechanisms and surface morphologies. Among other techniques, X-ray photoelectron spectroscopy (XPS plays a unique role in giving access to qualitative, quantitative/semi-quantitative and speciation information concerning the sensor surface. Nevertheless, XPS remains rather underused in this field. The aim of this paper is to review selected articles which evidence the useful performances of XPS in characterizing the top surface layers of chemically modified sensors and biosensors. A concise introduction to X-ray Photoelectron Spectroscopy gives to the reader the essential background. The application of XPS for characterizing sensors suitable for food and environmental analysis is highlighted.

  9. Separation of Guanine and Hypoxanthine with Some Ionic Liquids in RP-HPLC

    Directory of Open Access Journals (Sweden)

    J. Zheng

    2006-01-01

    Full Text Available In this paper, guanine and hypoxanthine were separated with four different ionic liquids as additives for the mobile phase using reversed phase high performance liquid chromatography (RP-HPLC. The ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4], 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIm][BF4], 1-ethyl-3-methylimidazolium methylsulfate ([EMIm][MS] and 1-octyl-3-methylimidazolium methylsulfate ([OMIm][MS] were used. Guanine and hypoxanthine couldn’t be separated with many different kinds of unadjusted mobile phase, such as aqueous-methanol, aqueous-acetonitrile, etc. In this reason, present study introduced the ionic liquid for separation of guanine and hypoxanthine as an eluent modifier. And the effects of length of alkyl on the imidazolium ring and its counterion, the concentrations of ionic liquid on the retention factor and effect of pH of mobile phase on retention factor of solutes were investigated also. As a result, guanine and hypoxanthine were separated with the mobile phase including ionic liquid and the excellent separations of these sorbats were achieved using 2.0 mM Lˉ1 [OMIm][MS] as the eluent modifier.

  10. Chemical modifiers in electrothermal atomic absorption determination of Platinum and Palladium containing preparations in blood serum

    Directory of Open Access Journals (Sweden)

    Аntonina Alemasova

    2012-11-01

    Full Text Available The biological liquids matrixes influence on the characteristic masses and repeatability of Pt and Pd electrothermal atomic absorption spectroscopy (ETAAS determination was studied. The chemical modifiers dimethylglyoxime and ascorbic acid for matrix interferences elimination and ETAAS results repeatability improvement were proposed while bioliquids ETAAS analysis, and their action mechanism was discussed.

  11. Chemically modified tetracyclines stimulate matrix metalloproteinase-2 production by periodontal ligament cells.

    NARCIS (Netherlands)

    Bildt, M.M.; Snoek-van Beurden, A.M.; Groot, J. de; El, B. van; Kuijpers-Jagtman, A.M.; Hoff, J.W. Von den

    2006-01-01

    BACKGROUND AND OBJECTIVE: The purpose of this study was to investigate the effects of chemically modified tetracyclines (CMTs) on the production of gelatinases [matrix metalloproteinase (MMP)-2 and -9] by human periodontal ligament (PDL) cells, and on the activity of recombinant gelatinases. MATERIA

  12. Biomechanical properties of acellular sciatic nerves treated with a modified chemical method

    Institute of Scientific and Technical Information of China (English)

    Xinlong Ma; Zhao Yang; Xiaolei Sun; Jianxiong Ma; Xiulan Li; Zhenzhen Yuan; Yang Zhang; Honggang Guo

    2011-01-01

    Nerve grafts are able to adapt to surrounding biomechanical environments if the nerve graft itself exhibits appropriate biomechanical properties (load, elastic modulus, etc.). The present study was designed to determine the differences in biomechanical properties between fresh and chemically acellularized sciatic nerve grafts. Two different chemical methods were used to establish acellular nerve grafts. The nerve was chemically extracted in the Sondell method with a combination of Triton X-100 (nonionic detergent) and sodium deoxycholate (anionic detergent), and in the modified method with a combination of Triton X-200 (anionic detergent), sulfobetaine-10 (SB-10, amphoteric detergents), and sulfobetaine-16 (SB-16, amphoteric detergents). Following acellularization, hematoxylin-eosin staining and scanning electron microscopy demonstrated that the effect of acellularization via the modified method was similar to the traditional Sondell method. However, effects of demyelination and nerve fiber tube integrity were superior to the traditional Sondell method. Biomechanical testing showed that peripheral nerve graft treated using the chemical method resulted in decreased biomechanical properties (ultimate load, ultimate stress, ultimate strain, and mechanical work to fracture) compared with fresh nerves, but the differences had no statistical significance (P > 0.05). These results demonstrated no significant effect on biomechanical properties of nerves treated using the chemical method. In conclusion, nerve grafts treated via the modified method removed Schwann cells, preserved neural structures, and ensured biomechanical properties of the nerve graft, which could be more appropriate for implantation studies.

  13. Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function

    Directory of Open Access Journals (Sweden)

    Ville Y. P. Väre

    2017-03-01

    Full Text Available RNAs are central to all gene expression through the control of protein synthesis. Four major nucleosides, adenosine, guanosine, cytidine and uridine, compose RNAs and provide sequence variation, but are limited in contributions to structural variation as well as distinct chemical properties. The ability of RNAs to play multiple roles in cellular metabolism is made possible by extensive variation in length, conformational dynamics, and the over 100 post-transcriptional modifications. There are several reviews of the biochemical pathways leading to RNA modification, but the physicochemical nature of modified nucleosides and how they facilitate RNA function is of keen interest, particularly with regard to the contributions of modified nucleosides. Transfer RNAs (tRNAs are the most extensively modified RNAs. The diversity of modifications provide versatility to the chemical and structural environments. The added chemistry, conformation and dynamics of modified nucleosides occurring at the termini of stems in tRNA’s cloverleaf secondary structure affect the global three-dimensional conformation, produce unique recognition determinants for macromolecules to recognize tRNAs, and affect the accurate and efficient decoding ability of tRNAs. This review will discuss the impact of specific chemical moieties on the structure, stability, electrochemical properties, and function of tRNAs.

  14. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  15. Polynuclear Nickel Hexacyanoferrate/Graphitized Mesoporous Carbon Hybrid Chemically Modified Electrode for Selective Hydrazine Detection

    OpenAIRE

    Palani Barathi; Annamalai Senthil Kumar; Minnal Ranjan Babu Karthick

    2011-01-01

    A hybrid polynuclear nickel hexacyanoferrate (NiHCFe)/graphitized mesoporous carbon- (GMC-) modified glassy carbon electrode (GCE/NiHCFe@GMC) has been prepared by a sequential method using electrodeposited Ni on a GMC-modified glassy carbon electrode (GCE/Ni@GMC) as a template and [Fe(CN)6]3− as an in-situ chemical precipitant, without any additional interlinking agent. Physicochemical and electrochemical characterizations reveal the presence of NiHCFe units within the porous sites of the GM...

  16. Mechanisms of oxidation of guanine in DNA by carbonate radical anion, a decomposition product of nitrosoperoxycarbonate.

    Science.gov (United States)

    Lee, Young Ae; Yun, Byeong Hwa; Kim, Seog K; Margolin, Yelena; Dedon, Peter C; Geacintov, Nicholas E; Shafirovich, Vladimir

    2007-01-01

    Peroxynitrite is produced during inflammation and combines rapidly with carbon dioxide to yield the unstable nitrosoperoxycarbonate, which decomposes (in part) to CO(3) (.-) and (.)NO(2) radicals. The CO(3) (.-) radicals oxidize guanine bases in DNA through a one-electron transfer reaction process that ultimately results in the formation of stable guanine oxidation products. Here we have explored these mechanisms, starting with a spectroscopic study of the kinetics of electron transfer from 20-22mer double-stranded oligonucleotides to CO(3) (.-) radicals, together with the effects of base sequence on the formation of the end-products in runs of one, two, or three contiguous guanines. The distributions of these alkali-labile lesions were determined by gel electrophoresis methods. The cascade of events was initiated through the use of 308 nm XeCl excimer laser pulses to generate CO(3) (.-) radicals by an established method based on the photodissociation of persulfate to sulfate radicals and the oxidation of bicarbonate. Although the Saito model (Saito et al., J. Am. Chem. Soc. 1995, 117, 6406-6407) predicts relative ease of one-electron oxidations in DNA, following the trend 5'-GGG > 5'-GG > 5'-G, we found that the rate constants for CO(3) (.-)-mediated oxidation of guanines in these sequence contexts (k(5)) showed only small variation within a narrow range [(1.5-3.0)x10(7) M(-1) s(-1)]. In contrast, the distributions of the end-products are dependent on the base sequence context and are higher at the 5'-G in 5'-GG sequences and at the first two 5'-guanines in the 5'-GGG sequences. These effects are attributed to a combination of initial hole distributions among the contiguous guanines and the subsequent differences in chemical reaction yields at each guanine. The lack of dependence of k(5) on sequence context indicates that the one-electron oxidation of guanine in DNA by CO(3) (.-) radicals occurs by an inner-sphere mechanism.

  17. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces

    OpenAIRE

    Jogikalmath, G.; Stuart, J.K.; Pungor, A.; Hlady, V.

    1999-01-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface mo...

  18. Highly improved chromium (III uptake capacity in modified sugarcane bagasse using different chemical treatments

    Directory of Open Access Journals (Sweden)

    Vanessa Cristina Gonçalves Dos Santos

    2012-01-01

    Full Text Available The present paper focuses on improving chromium (III uptake capacity of sugarcane bagasse through its chemical modification with citric acid and/or sodium hydroxide. The chemical modifications were confirmed by infrared spectroscopy, with an evident peak observed at 1730 cm-1, attributed to carbonyl groups. Equilibrium was reached after 24 h, and the kinetics followed the pseudo-second-order model. The highest chromium (III maximum adsorption capacity (MAC value was found when using sugarcane bagasse modified with sodium hydroxide and citric acid (58.00 mg g-1 giving a MAC value about three times greater (20.34 mg g-1 than for raw sugarcane bagasse.

  19. Research on the chemical mechanism in the polyacrylate latex modified cement system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Rumin, E-mail: wangmin19@mail.nwpu.edu.cn [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Zheng, Shuirong [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Northwestern Polytechnical University–East China University of Science and Technology Combined Research Institute of New High Speed Railway Materials (China); Farhan, Shameel; Yao, Hao; Jiang, Hao [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China)

    2015-10-15

    In this paper, the chemical mechanism in the polyacrylate latex modified cement system was investigated by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC) and compact pH meter. All results have shown that the chemical reactions in the polyacrylate modified system can be divided into three stages. The hydration reactions of cement can produce large amounts of Ca(OH){sub 2} (calcium hydroxide) and lead the whole system to be alkali-rich and exothermic at the first stage. Subsequently, this environment can do great contributions to the hydrolysis of ester groups in the polyacrylate chains, resulting in the formation of carboxyl groups at the second stage. At the third stage, the final crosslinked network structure of the product was obtained by the reaction between the carboxyl groups in the polyacrylate latex chains and Ca(OH){sub 2}.

  20. Chemically Modified Ordered Mesoporous Carbon/Polyaniline Composites for Electrochemical Capacitors

    Institute of Scientific and Technical Information of China (English)

    KONG Ling-bin; ZHANG Jing; CAI Jian-jun; YANG Zhen-sheng; LUO Yong-chun; KANG Long

    2011-01-01

    Chemically modified ordered mesoporous carbon CMK-3 materials were prepared by means of an easy wet-oxidative method in 2 mol/L nitric acid aqueous solution. A large amount of oxygen-containing functional groups were introduced onto the CMK-3 surface. Modified CMK-3(m-CMK-3) and aniline monomer were polymerized via an in situ chemical oxidative polymerization method. Morphological characterizations of m-CMK-3/PANI (polyaniline) composites were carried out via field emission scanning electron microscopy(SEM). Their electrochemical properties were investigated with cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The m-CMK-3/PANI composites have excellent properties in capacitance, and the highest specific capacitance(SC) value was up to 489 F/g, suggesting their potential application in the electrode material for electrochemical capacitors.

  1. Chemical modifiers in arsenic determination in biological materials by tungsten coil electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, C.G.; Huerta, V.N.; Neira, J.Y. [Departamento de Analisis Instrumental, Facultad de Farmacia, Universidad de Concepcion, P.O. Box 237, Concepcion (Chile)

    2004-01-01

    Palladium, iridium, and rhodium are evaluated as possible chemical modifiers in the determination of As in digest solutions of biological materials (human hair and clam) by tungsten coil electrothermal atomic absorption spectrophotometry (TCA-AAS). The modifier in solution was applied onto the coil and thermally pre-reduced; the pre-reduction conditions, the amount of modifier, and the thermal program were optimized. Palladium was not satisfactory, whereas Ir and Rh were effective modifiers and rendered better relative sensitivity for As by a factor of 1.4 and 1.9, respectively compared to the case without modifier. Upon optimization of thermal conditions for As in pre-reduced Ir (2.0 {mu}g) and Rh (2.0 {mu}g) modifiers and in the digest solutions of the study matrices, Rh (2.0 {mu}g) was more effective modifier and was selected as such. The mean within-day repeatability was 2.8% in consecutive measurements (25-100 {mu}g L{sup -1}) (3 cycles, each of n=6) and confirmed good short-term stability of the absorbance measurements. The mean reproducibility was 4.4% (n=20 in a 3-day period) and the detection limit (3{sigma}{sub blank}/slope) was 29 pg (n=15). The useful coil lifetime in Rh modifier was extended to 300-400 firings. Validation was by determination of As in the certified reference material (CRM) of ''Oyster tissue'' solution with a percentage relative error (E{sub rel}%) of 2% and percentage relative standard deviation (RSD%) of 3% (n=4), and by analytical recovery of As spiked in CRM of human hair [94{+-}8% (n=4)]. The methodology is simple, fast (sample readout frequency 21 h{sup -1}), reliable, of low cost, and was applied to the determination of As in hair samples of exposed and unexposed workers. (orig.)

  2. Chemically modified STM tips for atomic-resolution imaging of ultrathin NaCI films

    Institute of Scientific and Technical Information of China (English)

    Zhe Li[1; Koen Schouteden[1; Violeta lancu[1; Ewald Janssens[1; Peter Lievens[1; Chris Van Haesendonck[1; Jorge I. Cerda[2

    2015-01-01

    Cl-functionalized scanning tunneling microscopy (STM) tips are fabricated by modifying a tungsten STM tip in situ on islands of ultrathin NaCI(100) films on Au(111) surfaces. The functionalized tips are used to achieve clear atomic- resolution imaging of NaCI(100) islands. In comparison with bare metal tips, the chemically modified tips yield drastically enhanced spatial resolution as well as contrast reversal in STM topographs, implying that Na atoms, rather than C1 atoms, are imaged as protrusions. STM simulations based on a Green's function formalism reveal that the experimentally observed contrast reversal in the STM topographs is due to the highly localized character of the Cl-pz states at the tip apex. An additional remarkable characteristic of the modified tips is that in dI/dV maps, a Na atom appears as a ring with a diameter that depends crucially on the tip-sample distance.

  3. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    OpenAIRE

    2011-01-01

    International audience; Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium ...

  4. Chemically modified bitumens with enhanced rheology and adhesion properties to siliceous aggregates

    OpenAIRE

    Cuadri Vega, Antonio Abad; Partal López, Pedro; Ahmad, Naveed; Grenfell, James; Airey, Gordon

    2015-01-01

    Moisture damage is one of the major premature failures that worsens the performance and shortens service life of pavements. This research assesses the effect that two chemical modifiers (thiourea and an isocyanate-functionalized castor oil prepolymer) exerts on the bitumen rheology and on the resistance to potential moisture damage of asphalt mixtures based on siliceous aggregates. Both thiourea and the isocyanate-based prepolymer improve the viscous and viscoelastic behaviours of bitumen at ...

  5. Effect of chemical heterogeneity on photoluminescence of graphite oxide treated with S-/N-containing modifiers

    Science.gov (United States)

    Ebrahim, Amani M.; Rodríguez-Castellón, Enrique; Montenegro, José María; Bandosz, Teresa J.

    2015-03-01

    Graphite oxide (GO) obtained using Hummers method was modified by hydrothermal treatment either with sulfanilic acid or polystyrene (3-ammonium) sulfonate at 100 °C or 85 °C, respectively. Both modifiers contain sulfur in the oxidized forms and nitrogen in the reduced forms. The materials were characterized using FTIR, XPS, thermal analysis, potentiometric titration and SEM. Their photoluminescent properties and their alteration with an addition of Ag+ were also measured. As a result of these modifications nitrogen was introduced to the graphene layers as amines, imides, amides, and sulfur as sulfones and sulfonic acids. Moreover, the presence of polyaniline was detected. This significantly affected the polarity, acid-base character, and conductivity of the materials. Apparently carboxylic groups of GO were involved in the surface reactions. The modified GOs lost their layered structure and the modifications resulted in the high degree of structural and chemical heterogeneity. Photoluminescence in visible light was recorded and linked to the presence of heteroatoms. For the polystyrene (3-ammonium) sulfonate modified sample addition of Ag+ quenched the photoluminescence at low wavelength showing sensitivity as a possible optical detector. No apparent effect was found for the sulfanilic acid modified sample.

  6. Dbl family guanine nucleotide exchange factors.

    Science.gov (United States)

    Zheng, Y

    2001-12-01

    The Dbl family of guanine nucleotide exchange factors are multifunctional molecules that transduce diverse intracellular signals leading to the activation of Rho GTPases. The tandem Dbl-homology and pleckstrin-homology domains shared by all members of this family represent the structural module responsible for catalyzing the GDP-GTP exchange reaction of Rho proteins. Recent progress in genomic, genetic, structural and biochemical studies has implicated Dbl family members in diverse biological processes, including growth and development, skeletal muscle formation, neuronal axon guidance and tissue organization. The detailed pictures of their autoregulation, agonist-controlled activation and mechanism of interaction with Rho GTPase substrates, have begun to emerge.

  7. Calculation of the Stabilization Energies of Oxidatively Damaged Guanine Base Pairs with Guanine

    Directory of Open Access Journals (Sweden)

    Hiroshi Miyazawa

    2012-06-01

    Full Text Available DNA is constantly exposed to endogenous and exogenous oxidative stresses. Damaged DNA can cause mutations, which may increase the risk of developing cancer and other diseases. G:C-C:G transversions are caused by various oxidative stresses. 2,2,4-Triamino-5(2H-oxazolone (Oz, guanidinohydantoin (Gh/iminoallantoin (Ia and spiro-imino-dihydantoin (Sp are known products of oxidative guanine damage. These damaged bases can base pair with guanine and cause G:C-C:G transversions. In this study, the stabilization energies of these bases paired with guanine were calculated in vacuo and in water. The calculated stabilization energies of the Ia:G base pairs were similar to that of the native C:G base pair, and both bases pairs have three hydrogen bonds. By contrast, the calculated stabilization energies of Gh:G, which form two hydrogen bonds, were lower than the Ia:G base pairs, suggesting that the stabilization energy depends on the number of hydrogen bonds. In addition, the Sp:G base pairs were less stable than the Ia:G base pairs. Furthermore, calculations showed that the Oz:G base pairs were less stable than the Ia:G, Gh:G and Sp:G base pairs, even though experimental results showed that incorporation of guanine opposite Oz is more efficient than that opposite Gh/Ia and Sp.

  8. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Uicab, O. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Yazdani-Pedram, M. [Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, S. Livingstone 1007, Independencia, Santiago (Chile); Toro, P. [Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Beauchef 850, Santiago (Chile); Gamboa, F. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Mérida, Depto. de Física Aplicada, Km. 6 Antigua Carretera a Progreso, 97310 Mérida, Yucatán (Mexico); Mazo, M.A.; Nistal, A.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain)

    2016-11-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO{sub 3}/H{sub 2}SO{sub 4} reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  9. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Science.gov (United States)

    Rodríguez-Uicab, O.; Avilés, F.; Gonzalez-Chi, P. I.; Canché-Escamilla, G.; Duarte-Aranda, S.; Yazdani-Pedram, M.; Toro, P.; Gamboa, F.; Mazo, M. A.; Nistal, A.; Rubio, J.

    2016-11-01

    Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating ("sizing"), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  10. CeO{sub 2} nanoparticles decorated multi-walled carbon nanotubes for electrochemical determination of guanine and adenine

    Energy Technology Data Exchange (ETDEWEB)

    Wei Yan [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Huang Qinan [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Li Maoguo [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Huang Xingjiu [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Fang Bin, E-mail: binfang_47@yahoo.com.cn [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Wang Lun, E-mail: wanglun@mail.ahnu.edu.cn [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China)

    2011-10-01

    Sub-10 nm CeO{sub 2} nanoparticles decorated multi-walled carbon nanotubes has been constructed for electrochemial determination of guanine and adenine. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to characterize the nanoparticles CeO{sub 2}/MWCNTs. Electrochemical impedance spectroscopy (EIS) was used to characterize the electrode modifying process. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to study the electrocatalytic activity toward the electrochemical oxidation of guanine and adenine. The detection limit (S/N = 3) for adenine and guanine was found to be 20 and 10 nM, respectively. The obtained sensitivity toward guanine and adenine was 1.26 and 1.13 {mu}A/{mu}M in the linear concentration range 5-50 {mu}M and 5-35 {mu}M, respectively. These results demonstrate that the carbon nanotubes could provide huge locations and facilitate the adsorptive accumulation of the guanine and adenine, and the CeO{sub 2} nanoparticles are promising substrates for the development of high-performance electrocatalysts for biosensing.

  11. A new modified-rate approach for gas-grain chemical simulations

    CERN Document Server

    Garrod, R T

    2008-01-01

    Understanding grain-surface processes is crucial to interpreting the chemistry of the ISM. However, accurate surface chemistry models are computationally expensive and are difficult to integrate with gas-phase simulations. A new modified-rate method for solving grain-surface chemical systems is presented. Its purpose is accurately to model highly complex systems that can otherwise only be treated using the sometimes inadequate rate-equation approach. In contrast to previous rate-modification techniques, the functional form of the surface production rates was modified, and not simply the rate coefficient. This form is appropriate to the extreme "small-grain" limit, and can be verified using an analytical master-equation approach. Various further modifications were made to this basic form, to account for competition between processes, to improve estimates of surface occupation probabilities, and to allow a switch-over to the normal rate equations where these are applicable. The new method was tested against sys...

  12. A modified method for estimation of chemical oxygen demand for samples having high suspended solids.

    Science.gov (United States)

    Yadvika; Yadav, Asheesh Kumar; Sreekrishnan, T R; Satya, Santosh; Kohli, Sangeeta

    2006-03-01

    Determination of chemical oxygen demand (COD) of samples having high suspended solids concentration such as cattle dung slurry with open reflux method of APHA-AWWA-WPCF did not give consistent results. This study presents a modification of the open reflux method (APHA-AWWA-WPCF) to make it suitable for samples with high percentage of suspended solids. The new method is based on a different technique of sample preparation, modified quantities of reagents and higher reflux time as compared to the existing open reflux method. For samples having solids contents of 14.0 g/l or higher, the modified method was found to give higher value of COD with much higher consistency and accuracy as compared to the existing open reflux method.

  13. The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Y; Mitchell, A R; Camarero, J A

    2006-11-03

    Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis of C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.

  14. Silencing of Inducible Immunoproteasome Subunit Expression by Chemically Modified siRNA and shRNA.

    Science.gov (United States)

    Gvozdeva, Olga V; Prassolov, Vladimir S; Zenkova, Marina A; Vlassov, Valentin V; Chernolovskaya, Elena L

    2016-08-01

    Overexpression of inducible subunits of immunoproteasome is related to pathogenesis of some chronic diseases. Specific inhibition of the immunosubunits may be used for the treatment of these diseases and RNA interference is one of the potent methods used in this area. We designed 2'-O-methyl modified siRNAs with selectively protected nuclease-sensitive sites, which efficiently silence LMP2, LMP7, and MECL-1 genes expression. To provide stable long-lasting inhibition of target genes, short-hairpin RNAs (shRNA) expressed by lentiviral vectors were constructed. Our results demonstrated that chemically modified siRNAs inhibited the expression of target genes with similar efficiency or with efficiency exceeding that of corresponding shRNAs and provide silencing effect for 5 days.

  15. Size-dependent mobility of gold nano-clusters during growth on chemically modified graphene

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Gavin R., E-mail: gavin.bell@warwick.ac.uk; Dawson, Peter M.; Pandey, Priyanka A.; Wilson, Neil R. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Mulheran, Paul A. [Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose St., Glasgow G1 1XJ (United Kingdom)

    2014-01-01

    Gold nano-clusters were grown on chemically modified graphene by direct sputter deposition. Transmission electron microscopy of the nano-clusters on these electron-transparent substrates reveals an unusual bimodal island size distribution (ISD). A kinetic Monte Carlo model of growth incorporating a size-dependent cluster mobility rule uniquely reproduces the bimodal ISD, providing strong evidence for the mobility of large clusters during surface growth. The cluster mobility exponent of −5/3 is consistent with cluster motion via one-dimensional diffusion of gold atoms around the edges of the nano-clusters.

  16. Modified Augmented Lagrange Multiplier Methods for Large-Scale Chemical Process Optimization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems.

  17. Retention of proteins and metalloproteins in open tubular capillary electrochromatography with etched chemically modified columns.

    Science.gov (United States)

    Pesek, Joseph J; Matyska, Maria T; Salgotra, Vasudha

    2008-09-01

    Etched chemically modified capillaries with two different bonded groups (pentyl and octadecyl) are compared for their migration behavior of several common proteins and metalloproteins as well as metalloproteinases. Migration times, efficiency and peak shape are evaluated over the pH range of 2.1-8.1 to determine any effects of the bonded group on the electrochromatographic behavior of these compounds. One goal was to determine if the relative hydrophobicity of the stationary phase has a significant effect on proteins in the open tubular format of capillary electrochromatography as it does in HPLC. Reproducibility of the migration times is also investigated.

  18. Retention of Proteins and Metalloproteins in Open Tubular Capillary Electrochromatography with Etched Chemically Modified Columns

    Science.gov (United States)

    Pesek, Joseph J.; Matyska, Maria T.; Salgotra, Vasudha

    2010-01-01

    Etched chemically modified capillaries with two different bonded groups (pentyl and octadecyl) are compared for their migration behavior of several common proteins and metalloproteins as well as metalloproteinases. Migration times, efficiency and peak shape are evaluated over the pH range of 2.1 to 8.1 to determine any effects of the bonded group on the electrochromatographic behavior of these compounds. One goal was to determine if the relative hydrophobicity of the stationary phase has a significant effect on proteins in the open tubular format of capillary electrochromatography as it does in HPLC. Reproducibility of the migration times is also investigated. PMID:18850653

  19. Size-dependent mobility of gold nano-clusters during growth on chemically modified graphene

    Directory of Open Access Journals (Sweden)

    Gavin R. Bell

    2014-01-01

    Full Text Available Gold nano-clusters were grown on chemically modified graphene by direct sputter deposition. Transmission electron microscopy of the nano-clusters on these electron-transparent substrates reveals an unusual bimodal island size distribution (ISD. A kinetic Monte Carlo model of growth incorporating a size-dependent cluster mobility rule uniquely reproduces the bimodal ISD, providing strong evidence for the mobility of large clusters during surface growth. The cluster mobility exponent of −5/3 is consistent with cluster motion via one-dimensional diffusion of gold atoms around the edges of the nano-clusters.

  20. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants

    Science.gov (United States)

    Quinn, R. C.; Zent, A. P.

    1999-01-01

    Hydrogen peroxide chemisorbed on titanium dioxide (peroxide-modified titanium dioxide) is investigated as a chemical analog to the putative soil oxidants responsible for the chemical reactivity seen in the Viking biology experiments. When peroxide-modified titanium dioxide (anatase) was exposed to a solution similar to the Viking labeled release (LR) experiment organic medium, CO2 gas was released into the sample cell headspace. Storage of these samples at 10 degrees C for 48 hr prior to exposure to organics resulted in a positive response while storage for 7 days did not. In the Viking LR experiment, storage of the Martian surface samples for 2 sols (approximately 49 hr) resulted in a positive response while storage for 141 sols essentially eliminated the initial rapid release of CO2. Heating the peroxide-modified titanium dioxide to 50 degrees C prior to exposure to organics resulted in a negative response. This is similar to, but not identical to, the Viking samples where heating to approximately 46 degrees C diminished the response by 54-80% and heating to 51.5 apparently eliminated the response. When exposed to water vapor, the peroxide-modified titanium dioxide samples release O2 in a manner similar to the release seen in the Viking gas exchange experiment (GEx). Reactivity is retained upon heating at 50 degrees C for three hours, distinguishing this active agent from the one responsible for the release of CO2 from aqueous organics. The release of CO2 by the peroxide-modified titanium dioxide is attributed to the decomposition of organics by outer-sphere peroxide complexes associated with surface hydroxyl groups, while the release of O2 upon humidification is attributed to more stable inner-sphere peroxide complexes associated with Ti4+ cations. Heating the peroxide-modified titanium dioxide to 145 degrees C inhibited the release of O2, while in the Viking experiments heating to this temperature diminished but did not eliminated the response. Although the

  1. A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J Douglas

    2011-01-21

    This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

  2. Free-radical-promoted conversion of graphite oxide into chemically modified graphene.

    Science.gov (United States)

    Chai, Na-Na; Zeng, Jing; Zhou, Kai-Ge; Xie, Yu-Long; Wang, Hang-Xing; Zhang, Hao-Li; Xu, Chen; Zhu, Ji-Xin; Yan, Qing-Yu

    2013-05-01

    The preparation of chemically modified graphene (CMG) generally involves the reduction of graphite oxide (GO) by using various reducing reagents. Herein, we report a free-radical-promoted synthesis of CMG, which does not require any conventional reductant. We demonstrated that the phenyl free radical can efficiently promote the conversion of GO into CMG under mild conditions and produces phenyl-functionalized CMG. This pseudo-"reduction" process is attributed to a free-radical-mediated elimination of the surface-attached oxygen-containing functionalities. This work illustrates a new strategy for preparing CMG that is alternative to the conventional means of chemical reduction. Furthermore, the phenyl-functionalized graphene shows an excellent performance as an electrode material for lithium-battery applications.

  3. DIMENSIONAL STABILITY AND WATER REPELLENT EFFICIENCY MEASUREMENT OF CHEMICALLY MODIFIED TROPICAL LIGHT HARDWOOD

    Directory of Open Access Journals (Sweden)

    Md Saiful Islam,

    2012-01-01

    Full Text Available Chemical modification is an often-followed route to improve physical and mechanical properties of solid wood materials. In this study five kinds of tropical light hardwoods species, namely jelutong (Dyera costulata, terbulan (Endospermum diadenum, batai (Paraserianthes moluccana, rubberwood (Hevea brasiliensis, and pulai (Alstonia pneumatophora, were chemically modified with benzene diazonium salt to improve their dimensional stability and water repellent efficiency. The dimensional stability of treated samples in terms of volumetric swelling coefficient (S and anti-swelling-efficiency (ASE were found to improve with treatment. The water repellent efficiency (WRE values also seemed to improve considerably with treatment of wood samples. Furthermore, treated wood samples had lower water and moisture absorption compared to that of untreated ones.

  4. Chemically modified inulin microparticles serving dual function as a protein antigen delivery vehicle and immunostimulatory adjuvant.

    Science.gov (United States)

    Gallovic, Matthew D; Montjoy, Douglas G; Collier, Michael A; Do, Clement; Wyslouzil, Barbara E; Bachelder, Eric M; Ainslie, Kristy M

    2016-03-01

    To develop a new subunit vaccine adjuvant, we chemically modified a naturally-occurring, immunostimulatory inulin polysaccharide to produce an acid-sensitive biopolymer (acetalated inulin, Ace-IN). Various hydrophobic Ace-IN polymers were formed into microparticles (MPs) by oil-in-water emulsions followed by solvent evaporation These Ace-IN MPs possessed tunable degradation characteristics that, unlike polyesters used in FDA-approved microparticulate formulations, had only pH-neutral hydrolytic byproducts. Macrophages were passively targeted with cytocompatible Ace-IN MPs. TNF-α production by macrophages treated with Ace-IN MPs could be altered by adjusting the polymers' chemistry. Mice immunized with Ace-IN MPs encapsulating a model ovalbumin (OVA) antigen showed higher production of anti-OVA IgG antibody levels relative to soluble antigen. The antibody titers were also comparable to an alum-based formulation. This proof-of-concept establishes the potential for chemically-modified inulin MPs to simultaneously enable dual functionality as a stimuli-controlled antigen delivery vehicle and immunostimulatory adjuvant.

  5. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation

    Science.gov (United States)

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-01-01

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon’s neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn’t been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg−1 cm−1 compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides. PMID:26041686

  6. Facile Synthesis of Mono-Dispersed Polystyrene (PS/Ag Composite Microspheres via Modified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Wen Zhu

    2013-12-01

    Full Text Available A modified method based on in situ chemical reduction was developed to prepare mono-dispersed polystyrene/silver (PS/Ag composite microspheres. In this approach; mono-dispersed PS microspheres were synthesized through dispersion polymerization using poly-vinylpyrrolidone (PVP as a dispersant at first. Then, poly-dopamine (PDA was fabricated to functionally modify the surfaces of PS microspheres. With the addition of [Ag(NH32]+ to the PS dispersion, [Ag(NH32]+ complex ions were absorbed and reduced to silver nanoparticles on the surfaces of PS-PDA microspheres to form PS/Ag composite microspheres. PVP acted both as a solvent of the metallic precursor and as a reducing agent. PDA also acted both as a chemical protocol to immobilize the silver nanoparticles at the PS surface and as a reducing agent. Therefore, no additional reducing agents were needed. The resulting composite microspheres were characterized by TEM, field emission scanning electron microscopy (FESEM, energy-dispersive X-ray spectroscopy (EDS, XRD, UV-Vis and surface-enhanced Raman spectroscopy (SERS. The results showed that Ag nanoparticles (NPs were homogeneously immobilized onto the PS microspheres’ surface in the presence of PDA and PVP. PS/Ag composite microspheres were well formed with a uniform and compact shell layer and were adjustable in terms of their optical property.

  7. Determination of bisphenol A in food-simulating liquids using LCED with a chemically modified electrode.

    Science.gov (United States)

    D'Antuono, A; Dall'Orto, V C; Lo Balbo, A; Sobral, S; Rezzano, I

    2001-03-01

    Liquid chromatography with electrochemical detector (LC-ED), using a chemically modified electrode coated with a metalloporphyrin film, is reported for determination of bisphenol A (BPA) migration from polycarbonate baby bottles. The extraction process of the samples was performed according to regulations of the Southern Common Market (MERCOSUR), where certain food-simulating liquids [(A) distilled water, (B) acetic acid 3% V/V in distilled water, and (C) ethanol 15% V/V in distilled water] are defined along with controlled time and temperature conditions. The baseline obtained using the naked electrode showed a considerable drift which increased the detection limit. This effect was suppressed with the chemically modified electrode. A linear range up to 450 ppb along with a detection limit of 20 ppb for the amperometric detection technique was observed. The procedure described herein allowed lowering the detection limit of the method to 0.2 ppb. The value found for BPA in the food-simulating liquid is 1.2 ppb, which is below the tolerance limit for specific migration (4.8 ppm).

  8. Sensory and rheological properties of transgenically and chemically modified starch ingredients as evaluated in a food product model

    DEFF Research Database (Denmark)

    Ahmt, T.; Wischmann, Bente; Blennow, A.

    2004-01-01

    Starches derived from five genetically modified potato lines, two chemically modified potato starches and two native starches from potato and maize were subjected to physical and chemical analyses and their functionality evaluated in a milk-based food product model. The transgenic starches were...... gels with a higher tendency to retrograde and a low freeze/thaw stability as compared to starches with shorter amylopectin chains and lower phosphorous content. The textural properties of the food product model prepared from genetically and chemically modified starches were characterised by sensory...... and rheological analyses. To clearly visualise the effects of the modifications, data was evaluated by radar plots and multiple regression analysis (chemometrics). Genetically modified potato starches with longer amylopectin chains and increased phosphorous content gave a more gelled and a shorter texture...

  9. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies.

    Science.gov (United States)

    Lipi, Farhana; Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N

    2016-12-01

    Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries.

  10. Dual-tracer method to estimate coral reef response to a plume of chemically modified seawater

    Science.gov (United States)

    Maclaren, J. K.; Caldeira, K.

    2013-12-01

    We present a new method, based on measurement of seawater samples, to estimate the response of a reef ecosystem to a plume of an additive (for example, a nutrient or other chemical). In the natural environment, where there may be natural variability in concentrations, it can be difficult to distinguish between changes in concentrations that would occur naturally and changes in concentrations that result from a chemical addition. Furthermore, in the unconfined natural environment, chemically modified water can mix with waters that have not been modified, making it difficult to distinguish between effects of dilution and effects of chemical fluxes or transformations. We present a dual-tracer method that extracts signals from observations that may be affected by both natural variability and dilution. In this dual-tracer method, a substance (in our example case, alkalinity) is added to the water in known proportion to a passive conservative tracer (in our example case, Rhodamine WT dye). The resulting plume of seawater is allowed to flow over the study site. Two transects are drawn across the plume at the front and back of the study site. If, in our example, alkalinity is plotted as a function of dye concentration for the front transect, the slope of the resulting mixing line is the ratio of alkalinity to dye in the added fluid. If a similar mixing line is measured and calculated for the back transect, the slope of this mixing line will indicate the amount of added alkalinity that remains in the water flowing out of the study site per unit of added dye. The ratio of the front and back slopes indicates the fraction of added alkalinity that was taken up by the reef. The method is demonstrated in an experiment performed on One Tree Reef (Queensland, Australia) aimed at showing that ocean acidification is already affecting coral reef growth. In an effort to chemically reverse some of the changes to seawater chemistry that have occurred over the past 200 years, we added

  11. The performance of chemically and physically modified local kaolinite in methanol dehydration to dimethyl ether

    Directory of Open Access Journals (Sweden)

    Sanaa M. Solyman

    2014-09-01

    Full Text Available The catalytic activity of modified natural kaolinite as a solid acid catalyst for dimethyl ether (DME preparation was investigated by following up the conversion% of methanol and the yield% of DME. Natural kaolinite (KN was treated chemically with H2O2 (KT followed by thermal treatment at 500 °C (KC and then mechano-chemically by ball milling with and without CaSO4 (KB-Ca and KB, respectively. These samples were characterized by XRD, FTIR, SEM, HRTEM, TGA and NH3-TPD techniques. The different techniques showed that the chemical treatment of kaolinite with H2O2 resulted in partial exfoliation/delamination of kaolinite, decreased the amount of acidic sites which is accompanied by increasing their strength. Calcination only decreased the acidic strength and slightly enlarged the particle size mostly due to heat effect. Ball milling resulted in multitude randomly-oriented crystals and increased the amount of acidic sites with the same strength of KT sample. CaSO4 mostly produced ordered monocrystalline kaolinite and created new acidic sites with slightly lower strength relative to KB. The catalytic activity and selectivity depend on the reaction temperature, the space velocity and the strength of acid sites. The most active sample is KB-Ca, which gives 84% DME due to its high amount and strength of acidic sites. The different modification methods resulted in 100% selectivity for DME.

  12. Experimental observation of guanine tautomers with VUV photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jia; Kostko, Oleg; Nicolas, Christophe; Tang, Xiaonan; Belau, Leonid; de Vries, Mattanjah S.; Ahmed, Musahid

    2008-12-01

    Two methods of preparing guanine in the gas phase, thermal vaporization and laser desorption, have been investigated. The guanine generated by each method is entrained in a molecular beam, single photon ionized with tunable VUV synchrotron radiation, and analyzed using reflectron mass spectrometry. The recorded photoionization efficiency (PIE) curves show a dramatic difference for experiments performed via thermal vaporization compared to laser desorption. The calculated vertical and adiabatic ionization energies for the eight lowest lying tautomers of guanine suggest the experimental observations arise from different tautomers being populated in the two different experimental methods.

  13. Covalent incorporation of non-chemically modified gelatin into degradable PVA-tyramine hydrogels.

    Science.gov (United States)

    Lim, Khoon S; Alves, Marie H; Poole-Warren, Laura A; Martens, Penny J

    2013-09-01

    Development of tissue engineering solutions for biomedical applications has driven the need for integration of biological signals into synthetic materials. Approaches to achieve this typically require chemical modification of the biological molecules. Examples include chemical grafting of synthetic polymers onto protein backbones and covalent modification of proteins using crosslinkable functional groups. However, such chemical modification processes can cause protein degradation, denaturation or loss of biological activity due to side chain disruption. This study exploited the observation that native tyrosine rich proteins could be crosslinked via radical initiated bi-phenol bond formation without any chemical modification of the protein. A new, tyramine functionalised poly(vinyl alcohol) (PVA) polymer was synthesised and characterised. The tyramine modified PVA (PVA-Tyr) was fabricated into hydrogels using a visible light initiated crosslinking system. Mass loss studies showed that PVA-Tyr hydrogels were completely degraded within 19 days most likely via degradation of ester linkages in the network. Protein incorporation to form a biosynthetic hydrogel was achieved using unmodified gelatin, a protein derived from collagen and results showed that 75% of gelatin was retained in the gel post-polymerisation. Incorporation of gelatin did not alter the sol fraction, swelling ratio and degradation profile of the hydrogels, but did significantly improve the cellular interactions. Moreover, incorporation of as little as 0.01 wt% gelatin was sufficient to facilitate fibroblast adhesion onto PVA-Tyr/gelatin hydrogels. Overall, this study details the synthesis of a new functionalised PVA macromer and demonstrates that tyrosine containing proteins can be covalently incorporated into synthetic hydrogels using this innovative PVA-Tyr system. The resultant degradable biosynthetic hydrogels hold great promise as matrices for tissue engineering applications.

  14. Chemically modified and nanostructured porous silicon as a drug delivery material and device

    Science.gov (United States)

    Anglin, Emily Jessica

    This thesis describes the fabrication, chemical modification, drug release, and toxicity studies of nanostructured porous silicon for the purposes of developing a smart drug delivery device. The first chapter is an introductory chapter, presenting the chemical and physical properties of porous silicon, the concepts and issues of current drug delivery devices and materials, and how porous silicon can address the issues regarding localized and controlled drug therapies. The second chapter discusses chemical modifications of nanostructured porous Si for stabilizing the material in biologically relevant media while providing an extended release of a therapeutic in vitro. This chapter also demonstrates the utility of the porous silicon optical signatures for effectively monitoring drug release from the system and its applications for development of a self-reporting drug delivery device. In chapter three, the concept of providing a triggered release of a therapeutic from porous silicon microparticles through initiation by an external stimulus is demonstrated. The microparticles are chemically modified, and the release is enhanced by a short application of ultrasound to the particulate system. The effect of ultrasound on the drug release and particle size is discussed. Chapter four presents a new method for sustaining the release of a monoclonal antibody from the porous matrix of porous SiO2. The therapeutic is incorporated into the films through electrostatic adsorption and a slow release is observed in vitro. A new method of quantifying the extent of drug loading is monitored with interferometry. The last chapter of the thesis provides a basic in vivo toxicity study of various porous Si microparticles for intraocular applications. Three types of porous Si particles are fabricated and studied in a rabbit eye model. The toxicity studies were conducted by collaborators at the Shiley Eye Center, La Jolla, CA. This work, demonstrates the feasibility of developing a self

  15. Biosilica from Living Diatoms: Investigations on Biocompatibility of Bare and Chemically Modified Thalassiosira weissflogii Silica Shells

    Directory of Open Access Journals (Sweden)

    Stefania Roberta Cicco

    2016-12-01

    Full Text Available In the past decade, mesoporous silica nanoparticles (MSNs with a large surface area and pore volume have attracted considerable attention for their application in drug delivery and biomedicine. Here we propose biosilica from diatoms as an alternative source of mesoporous materials in the field of multifunctional supports for cell growth: the biosilica surfaces were chemically modified by traditional silanization methods resulting in diatom silica microparticles functionalized with 3-mercaptopropyl-trimethoxysilane (MPTMS and 3-aminopropyl-triethoxysilane (APTES. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that the –SH or –NH2 were successfully grafted onto the biosilica surface. The relationship among the type of functional groups and the cell viability was established as well as the interaction of the cells with the nanoporosity of frustules. These results show that diatom microparticles are promising natural biomaterials suitable for cell growth, and that the surfaces, owing to the mercapto groups, exhibit good biocompatibility.

  16. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides.

    Science.gov (United States)

    Leikoski, Niina; Liu, Liwei; Jokela, Jouni; Wahlsten, Matti; Gugger, Muriel; Calteau, Alexandra; Permi, Perttu; Kerfeld, Cheryl A; Sivonen, Kaarina; Fewer, David P

    2013-08-22

    Ribosomal peptides are produced through the posttranslational modification of short precursor peptides. Cyanobactins are a growing family of cyclic ribosomal peptides produced by cyanobacteria. However, a broad systematic survey of the genetic capacity to produce cyanobactins is lacking. Here we report the identification of 31 cyanobactin gene clusters from 126 genomes of cyanobacteria. Genome mining suggested a complex evolutionary history defined by horizontal gene transfer and rapid diversification of precursor genes. Extensive chemical analyses demonstrated that some cyanobacteria produce short linear cyanobactins with a chain length ranging from three to five amino acids. The linear peptides were N-prenylated and O-methylated on the N and C termini, respectively, and named aeruginosamide and viridisamide. These findings broaden the structural diversity of the cyanobactin family to include highly modified linear peptides with rare posttranslational modifications.

  17. A modified next reaction method for simulating chemical systems with time dependent propensities and delays.

    Science.gov (United States)

    Anderson, David F

    2007-12-01

    Chemical reaction systems with a low to moderate number of molecules are typically modeled as discrete jump Markov processes. These systems are oftentimes simulated with methods that produce statistically exact sample paths such as the Gillespie algorithm or the next reaction method. In this paper we make explicit use of the fact that the initiation times of the reactions can be represented as the firing times of independent, unit rate Poisson processes with internal times given by integrated propensity functions. Using this representation we derive a modified next reaction method and, in a way that achieves efficiency over existing approaches for exact simulation, extend it to systems with time dependent propensities as well as to systems with delays.

  18. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    CERN Document Server

    Blanc, Wilfried; Nguyen, Luan; Bhaktha, S N B; Sebbah, Patrick; Pal, Bishnu P; Dussardier, Bernard

    2011-01-01

    Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporati...

  19. Immobilization of chemically modified horse radish peroxidase within activated alginate beads

    Directory of Open Access Journals (Sweden)

    Spasojević Dragica

    2014-01-01

    Full Text Available Immobilization of horse radish peroxidase (HRP within alginate beads was improved by chemical modification of the enzyme and polysaccharide chains. HRP and alginate were oxidized by periodate and subsequently modified with ethylenediamine. Highest specific activity of 0.43 U/ml of gel and 81 % of bound enzyme activity was obtained using aminated HRP and alginate oxidized by periodate. Immobilized enzyme retained 75 % of original activity after 2 days of incubation in 80 % (v/v dioxane and had increased activity at basic pH values compared to native enzyme. During repeated use in batch reactor for pyrogallol oxidation immobilized peroxidase retained 75 % of original activity. [Projekat Ministarstva nauke Republike Srbije, br. ON173017 i br. ON172049

  20. Genetic and chemical modifiers of a CUG toxicity model in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amparo Garcia-Lopez

    Full Text Available Non-coding CUG repeat expansions interfere with the activity of human Muscleblind-like (MBNL proteins contributing to myotonic dystrophy 1 (DM1. To understand this toxic RNA gain-of-function mechanism we developed a Drosophila model expressing 60 pure and 480 interrupted CUG repeats in the context of a non-translatable RNA. These flies reproduced aspects of the DM1 pathology, most notably nuclear accumulation of CUG transcripts, muscle degeneration, splicing misregulation, and diminished Muscleblind function in vivo. Reduced Muscleblind activity was evident from the sensitivity of CUG-induced phenotypes to a decrease in muscleblind genetic dosage and rescue by MBNL1 expression, and further supported by the co-localization of Muscleblind and CUG repeat RNA in ribonuclear foci. Targeted expression of CUG repeats to the developing eye and brain mushroom bodies was toxic leading to rough eyes and semilethality, respectively. These phenotypes were utilized to identify genetic and chemical modifiers of the CUG-induced toxicity. 15 genetic modifiers of the rough eye phenotype were isolated. These genes identify putative cellular processes unknown to be altered by CUG repeat RNA, and they include mRNA export factor Aly, apoptosis inhibitor Thread, chromatin remodelling factor Nurf-38, and extracellular matrix structural component Viking. Ten chemical compounds suppressed the semilethal phenotype. These compounds significantly improved viability of CUG expressing flies and included non-steroidal anti-inflammatory agents (ketoprofen, muscarinic, cholinergic and histamine receptor inhibitors (orphenadrine, and drugs that can affect sodium and calcium metabolism such as clenbuterol and spironolactone. These findings provide new insights into the DM1 phenotype, and suggest novel candidates for DM1 treatments.

  1. New Inorganic-organic Hybrid Tetravanadate:Preparation, Characterization and Application in Chemically Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    SUN Ying-hua; LI Xiao-ping; MEI Ze-min; ZHU Yu; NIU Li

    2011-01-01

    A new inorganic-organic hybrid tetravanadate [Co(2,2'-bpy)3]2V4O12.llH2O(l) has been prepared and characterized. X-Ray diffraction study reveals that compound 1 contains classical cluster anions [V4O12]4-, coordi nated cations [Co(2,2'-bpy)3]2+ and eleven water molecules, in which an interesting decamer water cluster is formed.The hybrid nanoparticles were firstly used as a bulk-modifier to fabricate a chemically modified paste electrode (1-CPE). The electrochemical behavior and electrocatalysis of 1-CPE have been studied in detail. The results indicate that 1-CPE has a good electrocatalytic activity toward the reduction of bromate in a 0.5 mol/L H2SO4 aqueous solu tion. I-CPE shows remarkable stability that be ascribed to the hydrogen bonding interactions between V4O12 cluster and water cluster, which are very important for practical application in electrode modification.

  2. Endogenous melatonin and oxidatively damaged guanine in DNA

    DEFF Research Database (Denmark)

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan

    2009-01-01

    attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. METHODS: Mother......-father-daughter(s) families (n = 55) were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr) has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua) results from the repair of DNA...... of oxidatively damaged guanine in DNA, thereby possibly increasing the risk of developing cancer. The possible different effects of melatonin in the rates of utilization of pathways for repair of oxidatively damaged guanine in DNA identified between older women and older men are intriguing....

  3. Fluorescence enhancement of DNA-silver nanoclusters from guanine proximity

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Hsin-chih [Los Alamos National Laboratory; Sharma, Jaswinder [Los Alamos National Laboratory; Yoo, Hyojong [Los Alamos National Laboratory; Martinez, Jennifer S [Los Alamos National Laboratory

    2010-01-01

    Oligonucleotide-templated, silver nanoclusters (DNA/Ag NCs) are a versatile set of fluorophores and have already been used for live cell imaging, detection of specific metal ions, and single-nucleotide variation identification. Compared to commonly used organic dyes, these fluorescent nanoclusters have much better photostability and are often a few times brighter. Owing to their small size, simple preparation, and biocompatibility (i.e. made of nontoxic metals), DNA/Ag NCs should find more applications in biological imaging and chemical detection in the years to come. While clearly promising as new fluorophores, DNA/Ag NCs possess a unique and poorly understood dynamic process not shared by organic dyes or photoluminescent nanocrystals - the conversion among different NC species due to silver oxidation/reduction or NC regrouping. While this environmental sensitivity can be viewed as a drawback, in the appropriate context, it can be used as a sensor or reporter. Often reversible, conversions among different NC species have been found to depend upon a number of factors, including time, temperature, oxygen and salt content. In this communication, we report significant fluorescence enhancement of DNA/Ag NCs via interactions with guanine-rich DNA sequences. Moreover, we demonstrated this property can be used for sensitive detection of specific target DNA from a human oncogene (i.e. Braf gene).

  4. Efficiency of modified chemical remediation techniques for soil contaminated by organochlorine pesticides

    Science.gov (United States)

    Correa-Torres, S. N.; Kopytko, M.; Avila, S.

    2016-07-01

    This study reports the optimization of innovation chemical techniques in order to improve the remediation of soils contaminated with organochloride pesticides. The techniques used for remediation were dehalogenation and chemical oxidation in soil contaminated by pesticides. These techniques were applied sequentially and combined to evaluate the design optimize the concentration and contact time variables. The soil of this study was collect in cotton crop zone in Agustin Codazzi municipality, Colombia, and its physical properties was measure. The modified dehalogenation technique of EPA was applied on the contaminated soil by adding Sodium Bicarbonate solution at different concentrations and rates during 4, 7 and 14 days, subsequently oxidation technique was implemented by applying a solution of KMnO4 at different concentration and reaction times. Organochlorine were detected by Gas Chromatography analysis coupled Mass Spectrometry and its removals were between 85.4- 90.0% of compounds such as 4, 4’-DDT, 4,4’-DDD, 4,4-DDE, trans-Clordane y Endrin. These results demonstrate that the technique of dehalogenation with oxidation chemistry can be used for remediation soils contaminated by organochloride pesticides.

  5. High-affinity integration of hydroxyapatite nanoparticles with chemically modified silk fibroin

    Energy Technology Data Exchange (ETDEWEB)

    Wang Li; Li Chunzhong [East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China)], E-mail: czli@ecust.edu.cn; Senna, Mamoru [Keio University, Department of Applied Chemistry, Faculty of Science and Technology (Japan)

    2007-10-15

    Hydroxyapatite (HA)-based nanocomposites were prepared by a co-precipitation method with silk fibroin (SF) serving as organic matrix. Silk fibroin was chemically modified with an alkali solution or an enzyme attempting to improve the interface between the mineral and the organic matrix. The influences of the alkali and enzyme pretreatments on microstructure and physicochemical properties of HA-SF composite were examined and compared. The results reveal that both the two kinds of pretreatments facilitate the formation of highly ordered three-dimensional porous network throughout the composites, increase the microhardness of the composite, and promote the preferential growth of HA crystallites along c-axis. Among all the as-prepared samples, the composite containing the enzyme pretreated SF shows desirable hierarchical microstructure with higher degree of organization and more uniform pore size distribution. Due to the enzyme pretreatment, HA crystallites undergo obvious changes in morphology from rod-like to whisker-like and in crystal growth towards more apparent epitaxy along c-axis. The alkali pretreatment induces the stronger chemical interactions between HA and SF and thus to strengthen the inorganic-organic interfacial adhesion. The newly developed HA-SF composites are expected to be attractive biomedical materials for bone repair and remodeling.

  6. The effects of space radiation on a chemically modified graphite-epoxy composite material

    Science.gov (United States)

    Reed, S. M.; Herakovich, C. T.; Sykes, G. F.

    1986-01-01

    The effects of the space environment on the engineering properties and chemistry of a chemically modified T300/934 graphite-epoxy composite system are characterized. The material was subjected to 1.0 x 10 to the 10th power rads of 1.0 MeV electron irradiation under vacuum to simulate 30 years in geosynchronous earth orbit. Monotonic tension tests were performed at room temperature (75 F/24 C) and elevated temperature (250 F/121 C) on 4-ply unidirectional laminates. From these tests, inplane engineering and strength properties (E sub 1, E sub 2, Nu sub 12, G sub 12, X sub T, Y sub T) were determined. Cyclic tests were also performed to characterize energy dissipation changes due to irradiation and elevated temperature. Large diameter graphite fibers were tested to determine the effects of radiation on their stiffness and strength. No significant changes were observed. Dynamic-mechanical analysis demonstrated that the glass transition temperature was reduced by 50 F(28 C) after irradiation. Thermomechanical analysis showed the occurrence of volatile products generated upon heating of the irradiated material. The chemical modification of the epoxy did not aid in producing a material which was more radiation resistant than the standard T300/934 graphite-epoxy system. Irradiation was found to cause crosslinking and chain scission in the polymer. The latter produced low molecular weight products which plasticize the material at elevated temperatures and cause apparent material stiffening at low stresses at room temperature.

  7. Chemically and biologically modified activated carbon sorbents for the removal of lead ions from aqueous media.

    Science.gov (United States)

    Mahmoud, Mohamed E; Abdel-Fattah, Tarek M; Osman, Maher M; Ahmed, Somia B

    2012-01-01

    A method is described for hybridization of the adsorption and biosorption characteristics of chemically treated commercial activated carbon and baker's yeast, respectively, for the formation of environmental friendly multifunctional sorbents. Activated carbon was loaded with baker's yeast after acid-base treatment. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy were used to characterize these sorbents. Moreover, the sorption capabilities for lead (II) ions were evaluated. A value of 90 μmol g(-1) was identified as the maximum sorption capacity of activated carbon. Acid-base treatment of activated carbon was found to double the sorption capacity (140-180 μmol g(-1)). Immobilization of baker's yeast on the surface of activated carbon sorbents was found to further improve the sorption capacity efficiency of lead to 360, 510 and 560 μmol g(-1), respectively. Several important factors such as pH, contact time, sorbent dose, lead concentration and interfering ions were examined. Lead sorption process was studied and evaluated by several adsorption isotherms and found to follow the Langmuir and BET models. The potential applications of various chemically and biologically modified sorbents and biosorbents for removal of lead from real water matrices were also investigated via multistage micro-column technique and the results referred to excellent recovery values of lead (95.0-99.0 ± 3.0-5.0 %).

  8. Kinetic and thermodynamic studies on biosorption of Cu(Ⅱ) by chemically modified orange peel

    Institute of Scientific and Technical Information of China (English)

    FENG Ning-chuan; GUO Xue-yi; LIANG Sha

    2009-01-01

    Cu(H) biosorption by orange peel that was chemically modified with sodium hydroxide and calcium chloride was investigated. The effects of temperature, contact time, initial concentration of metal ions and pH on the biosorption of Cu( II) ions were assessed. Thermodynamic parameters including change of free energy(△G~Θ), enthalpy (△H~Θ) and entropy(△S~Θ) during the biosorption were determined. The results show that the biosorption process of Cu( II) ions by chemically treated orange peel is feasible, spontaneous and exothermic under studied conditions. Equilibrium is well described by Langmuir equation with the maximum biosorption capacity(q_m) for Cu( II) as 72.73 mg/g and kinetics is found to fit pseudo-second order type biosorption kinetics. As the temperature increases from 16 ℃ to 60 ℃, copper biosorption decreases. The loaded biosorbent is regenerated using HC1 solution for repeatedly use for five times with little loss of biosorption capacity.

  9. On the structure and topography of free-standing chemically modified graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, N R; Pandey, P A; Beanland, R; Lupo, U; Rowlands, G; Roemer, R A [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL (United Kingdom); Rourke, J P, E-mail: Neil.Wilson@Warwick.ac.uk [Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL (United Kingdom)

    2010-12-15

    The mechanical, electrical and chemical properties of chemically modified graphene (CMG) are intrinsically linked to its structure. Here, we report on our study of the topographic structure of free-standing CMG using atomic force microscopy (AFM) and electron diffraction. We find that, unlike graphene, suspended sheets of CMG are corrugated and distorted on nanometre length scales. AFM reveals not only long-range (100 nm) distortions induced by the support, as previously observed for graphene, but also short-range corrugations with length scales down to the resolution limit of 10 nm. These corrugations are static not dynamic, and are significantly diminished on CMG supported on atomically smooth substrates. Evidence for even shorter-range distortions, down to a few nanometres or less, is found by electron diffraction of suspended CMG. Comparison of the experimental data with simulations reveals that the mean atomic displacement from the nominal lattice position is of order 10% of the carbon-carbon bond length. Taken together, these results suggest a complex structure for CMG where heterogeneous functionalization creates local strain and distortion.

  10. On the structure and topography of free-standing chemically modified graphene

    Science.gov (United States)

    Wilson, N. R.; Pandey, P. A.; Beanland, R.; Rourke, J. P.; Lupo, U.; Rowlands, G.; Römer, R. A.

    2010-12-01

    The mechanical, electrical and chemical properties of chemically modified graphene (CMG) are intrinsically linked to its structure. Here, we report on our study of the topographic structure of free-standing CMG using atomic force microscopy (AFM) and electron diffraction. We find that, unlike graphene, suspended sheets of CMG are corrugated and distorted on nanometre length scales. AFM reveals not only long-range (100 nm) distortions induced by the support, as previously observed for graphene, but also short-range corrugations with length scales down to the resolution limit of 10 nm. These corrugations are static not dynamic, and are significantly diminished on CMG supported on atomically smooth substrates. Evidence for even shorter-range distortions, down to a few nanometres or less, is found by electron diffraction of suspended CMG. Comparison of the experimental data with simulations reveals that the mean atomic displacement from the nominal lattice position is of order 10% of the carbon-carbon bond length. Taken together, these results suggest a complex structure for CMG where heterogeneous functionalization creates local strain and distortion.

  11. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Paladini, F., E-mail: federica.paladini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Picca, R.A.; Sportelli, M.C.; Cioffi, N. [Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, 70126 Bari (Italy); Sannino, A.; Pollini, M. [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy)

    2015-07-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag{sub 2}O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed.

  12. The Role of Aspartic Acid 143 in E. coli tRNA-Guanine Transglycosylase: Insights from Mutagenesis Studies and Computational Modeling

    Science.gov (United States)

    Todorov, Katherine Abold; Tan, Xiao-Jian; Nonekowski, Susanne T.; Garcia, George A.; Carlson, Heather A.

    2005-01-01

    tRNA guanine transglycosylase (TGT) is a tRNA-modifying enzyme which catalyzes the posttranscriptional exchange of guanine in position 34 of tRNAY,H,N,D with the modified base queuine in eukaryotes or its precursor, preQ1 base, in eubacteria. Thus, TGT must recognize the guanine in tRNA and the free base queuine or preQ1 to catalyze this exchange. The crystal structure of Zymomonas mobilis TGT with preQ1 bound suggests that a key aspartate is critically involved in substrate recognition. To explore this, a series of site-directed mutants of D143 in Escherichia coli TGT were made and characterized to investigate heterocyclic substrate recognition. Our data confirm that D143 has significant impact on KM of guanine; however, the trend in the KM data (D143A D143A > D143N > D143S > D143T appears to be directly related to the degree of hydrogen bonding available to guanine in the binding site. PMID:15951383

  13. Preparation of a sol-gel-derived carbon nanotube ceramic electrode by microwave irradiation and its application for the determination of adenine and guanine

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspour, Abdolkarim, E-mail: abbaspour@chem.susc.ac.i [Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars 71456-85464 (Iran, Islamic Republic of); Ghaffarinejad, Ali [Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars 71456-85464 (Iran, Islamic Republic of)

    2010-01-01

    In this study, microwave irradiation was used for the fast preparation (min) of a sol-gel-derived carbon nanotube ceramic electrode (MW-CNCE). For confirmation of the preparation of the ceramic by MW irradiation, Fourier transform infrared, X-ray diffraction spectra and scanning electron microscopy images of the produced ceramic were compared with those of conventional ceramic (which is produced by drying the ceramic in air for 48 h). The electrochemical behavior of MW-CNCE in nicotinamide adenine dinucleotide, L-cysteine, adenine and guanine was compared with that of a conventional sol-gel-derived carbon nanotube ceramic electrode (CNCE). In all systems, similar peak potentials and lower background currents were obtained with respect to CNCE. Finally, the MW-CNCE was used for the simultaneous determination of adenine and guanine using differential pulse voltammetry. The linear ranges of 0.1-10 and 0.1-20 muM were obtained for adenine and guanine, respectively. These results are comparable with some modified electrodes that have recently been reported for the determination of adenine and guanine, with the advantage that the proposed electrode did not contain modifier. In addition, the proposed electrode was successfully used for the oxidation of adenine and guanine in DNA, and the detection limit for this measurement was 0.05 mug mL{sup -1} DNA.

  14. Effect of emulsifiers on complexation and retrogradation characteristics of native and chemically modified White sorghum (Sorghum bicolor) starch

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Tahira Mohsin, E-mail: tahira.mohsin@uok.edu.pk [Department of Food Science and Technology, University of Karachi, 75270 Karachi (Pakistan); Hasnain, Abid, E-mail: abidhasnain@uok.edu.pk [Department of Food Science and Technology, University of Karachi, 75270 Karachi (Pakistan)

    2013-01-20

    Highlights: Black-Right-Pointing-Pointer Sorghum starches were chemically modified. Black-Right-Pointing-Pointer Starch-lipid complexes were studied in the presence of emulsifiers. Black-Right-Pointing-Pointer Type II complexes were also detected in native and oxidized starches on adding GMS. Black-Right-Pointing-Pointer Starch-lipid complexes sharply reduced retrogradation in modified starches. - Abstract: The effect of emulsifiers on complexation and retrogradation characteristics of native and chemically modified white sorghum starches was studied. Complex forming tendency of white sorghum starch with commercially available emulsifiers GMS and DATEM improved after acetylation. Presence of emulsifiers reduced {lambda}{sub max} (wavelength of maximum absorbance) both for native and modified sorghum starches suggesting lower availability of amylose chains to complex with iodine. In native white sorghum starch (NWSS) and oxidized white sorghum starch (OWSS), both Type I and Type II starch-lipid complexes were observed on addition of 1.0% GMS prior to gelatinization. Acetylated-oxidized white sorghum starch (AOWSS) formed weakest complexes among all the modified starches. The results revealed that antistaling characteristics of modified sorghum starches were enhanced when used in combination with emulsifiers. The most prominent decline in reassociative capability among modified starches was observed for acetylated starches.

  15. Adsorption Studies of Phenol Using Thermally and Chemically Modified Rice Husk as Adsorbents

    Directory of Open Access Journals (Sweden)

    *M. M. Yousaf

    2014-03-01

    Full Text Available Most of the Phenols are hazardous substances and some are supposed to have carcinogenic activity. Thus it is necessary to remove Phenolics and other aromatics from the aqueous ecosystem. Traditional processes for the removal of Phenolics compounds are extraction, adsorption on granulated activated carbon, steam distillation, chemical and bacterial techniques. Literature survey show a number of methods like oxidation, ion exchange, reverse osmosis, electrochemical oxidation and adsorption. Phenol removal by process like, adsorption is the best method of choice as it can remove most of phenols in simple and easy way. In recent past; agricultural by-products such as, maize cob, date stone, apricot Stones, rice bran, and bagass pith have been extensively studied and used as adsorbents for the adsorption of hazardous substances from wastewater. In the present study we tried modified rice husks as potential adsorbents for the removal of Phenol from aqueous system. Batch mode studies were carried out. Isotherm data was generated and fitted in Freundlich and Langmuir equation to explain the phenomenon of adsorption. The adsorption capacities based on Langmuir model (Qm of the 3 adsorbents were found to be 0.81 for raw husk (RH, 0.395 for the Grafted (G and 2.306 mg/g for the Charred (C. The R2 values were 0.92 for raw husk, 0.97 for grafted and 0.91 for charred husk. Based on Freundlich model the adsorption capacities (K were 2.94, 2.29 and 1.25mg/g for Raw husk, grafted husk and charred husk. The R2 values were found to be 0.72, 0.95 and 0.83 for the raw husk, grafted husk and charred husk respectively. Our result showed that modified rice husks could be used as potential adsorbents for Phenol removal from aqueous system.

  16. Supported liquid membrane stability in chiral resolution by chemically and physically modified membranes

    Energy Technology Data Exchange (ETDEWEB)

    Molinari, R.; Argurio, P. [Arcavata di Rende Univ. of Calabria, Arcavata di Rende, CS (Italy). Dept. of Chemical and Materials Engineering

    2001-04-01

    In the present work some stability studies on Supported Liquid Membranes (SLMs) to be used for chiral separations were realized. In particular, primary aim was to determine how a modification of the support surface influences the SLM stability. First, the procedure for support modification was optimised, making a screening of various compounds (sulphuric acid, nitric acid, chromic acid, sodium dodecyl sulphate (SDS), glycerol, oleic alcohol, propylene glycol (PPG), bovine serum albumin (BSA)) and testing their performance by means of contact angle measurements. Next, a second screening was realized by permeation tests in a stirred cell. Finally, to compare the stability of modified with unmodified support in a process of interest for chemical and/or biochemical industries, some permeation tests for resolution of DNB-DL-Leucine were realized in a re-circulation system. Results showed a better surface hydrophilization of chemically modified support and better stability of the sulphonated support. However, in operating conditions a little high stability of the unmodified support was obtained. [Italian] Nel presente lavoro sono stati realizzati degli studi di stabilita' di Membrane Liquide Supportate (SLMs) da impiegare in separazioni chirali. In particolare, obiettivo principale e' stato quello di determinare l'influenza che una modifica della superficie del supporto ha sulla stabilita' della SLM. Cosi', in un primo momento, e' stata ottimizzata le procedura di modifica del supporto, facendo una selezione tra vari composti (acido solforico, acido nitrico, acido cromico, sodio dodecil solfato (SDS), glicerolo, alcool oleico, glicole propilenico (PPG), siero di albumina bovina (BSA)) basata su misure dell'angolo di contatto. Successivamente, e' stata realizzata una seconda selezione mediante prove di permeazione in una cella agitata. Infine, con lo scopo di confrontare la stabilita' della SLM con supporto modificato rispetto

  17. Chemical Sensors Based on IR Spectroscopy and Surface-Modified Waveguides

    Science.gov (United States)

    Lopez, Gabriel P.; Niemczyk, Thomas

    1999-01-01

    Sol-gel processing techniques have been used to apply thin porous films to the surfaces of planar infrared (IR) waveguides to produce widely useful chemical sensors. The thin- film coating serves to diminish the concentration of water and increase the concentration of the analyte in the region probed by the evanescent IR wave. These porous films are composed of silica, and therefore, conventional silica surface modification techniques can be used to give the surface a specific functional character. The sol-gel film was surface-modified to make the film highly hydrophobic. These sensors were shown to be capable of detecting non-polar organic analytes, such as benzonitrile, in aqueous solution with detection limits in the ppb range. Further, these porous sol-gel structures allow the analytes to diffuse into and out of the films rapidly, thus reaching equilibrium in less than ten seconds. These sensors are unique because of the fact that their operation is based on the measurement of an IR absorption spectrum. Thus, these sensors are able to identify the analytes as well as measure concentration with high sensitivity. These developments have been documented in previous reports and publications. Recently, we have also targeted detection of the polar organic molecules acetone and isopropanol in aqueous solution. Polar organics are widely used in industrial and chemical processes, hence it is of interest to monitor their presence in effluents or decontamination process flows. Although large improvements in detection limits were expected with non-polar organic molecules in aqueous solutions using very hydrophobic porous sol-gel films on silicon attenuated total reflectance (Si ATR) waveguides, it was not as clear what the detection enhancements might be for polar organic molecules. This report describes the use of modified sol-gel-coated Si ATR sensors for trace detection and quantitation of small polar organic molecules in aqueous solutions. The detection of both acetone

  18. A modified parallel artificial membrane permeability assay for evaluating the bioconcentration of highly hydrophobic chemicals in fish.

    Science.gov (United States)

    Kwon, Jung-Hwan; Escher, Beate I

    2008-03-01

    Low cost in vitro tools are needed at the screening stage of assessment of bioaccumulation potential of new and existing chemicals because the number of chemical substances that needs to be tested highly exceeds the capacity of in vivo bioconcentration tests. Thus, the parallel artificial membrane permeability assay (PAMPA) system was modified to predict passive uptake/ elimination rate in fish. To overcome the difficulties associated with low aqueous solubility and high membrane affinity of highly hydrophobic chemicals, we measured the rate of permeation from the donor poly(dimethylsiloxane)(PDMS) disk to the acceptor PDMS disk through aqueous and PDMS membrane boundary layers and term the modified PAMPA system "PDMS-PAMPA". Twenty chemicals were selected for validation of PDMS-PAMPA. The measured permeability is proportional to the passive elimination rate constant in fish and was used to predict the "minimum" in vivo elimination rate constant. The in vivo data were very close to predicted values except for a few polar chemicals and metabolically active chemicals, such as pyrene and benzo[a]pyrene. Thus, PDMS-PAMPA can be an appropriate in vitro system for nonmetabolizable chemicals. Combination with metabolic clearance rates using a battery of metabolic degradation assays would enhance the applicability for metabolizable chemicals.

  19. Characterization of oxidative guanine damage and repair in mammalian telomeres.

    Directory of Open Access Journals (Sweden)

    Zhilong Wang

    2010-05-01

    Full Text Available 8-oxo-7,8-dihydroguanine (8-oxoG and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1-initiated DNA base excision repair (BER. Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere-FISH, by chromosome orientation-FISH (CO-FISH, and by indirect immunofluorescence in combination with telomere-FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1(-/- mouse tissues and primary embryonic fibroblasts (MEFs cultivated in hypoxia condition (3% oxygen, whereas telomere shortening was detected in Ogg1(-/- mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1(-/- mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1(-/- mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1(-/- MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity

  20. Modified chemical synthesis of porous α-Sm{sub 2}S{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumbhar, V.S.; Jagadale, A.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, (M.S.) 416004 (India); Gaikwad, N.S. [Rayat Shikshan Sanstha, Satara, (M.S.) 415 001 (India); Lokhande, C.D., E-mail: l_chandrakant@yahoo.com [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, (M.S.) 416004 (India)

    2014-08-15

    Highlights: • A novel chemical route to prepare α-Sm{sub 2}S{sub 3} thin films. • A porous honeycomb like morphology of the α-Sm{sub 2}S{sub 3} thin film. • An application of α-Sm{sub 2}S{sub 3} thin film toward its supercapacitive behaviour. - Abstract: The paper reports synthesis of porous α-Sm{sub 2}S{sub 3} thin films using modified chemical synthesis, also known as successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), wettability and ultraviolet–visible spectroscopy (UV–vis) techniques are used for the study of structural, elemental, morphological and optical properties of α-Sm{sub 2}S{sub 3} films. An orthorhombic crystal structure of α-Sm{sub 2}S{sub 3} is resulted from XRD study. The SEM and AFM observations showed highly porous α-Sm{sub 2}S{sub 3} film surface. An optical band gap of 2.50 eV is estimated from optical absorption spectrum. The porous α-Sm{sub 2}S{sub 3} thin film tuned for supercapacitive behaviour using cyclic voltammetry and galvanostatic charge discharge showed a specific capacitance and energy density of 294 Fg{sup –1} and 48.9 kW kg{sup –1}, respectively in 1 M LiClO{sub 4}–propylene carbonate electrolyte.

  1. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    Science.gov (United States)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  2. Distribution of phosphorus and hydroxypropyl groups within granules of modified sweet potato starches as determined after chemical peeling

    NARCIS (Netherlands)

    Zhao, J.; Schols, H.A.; Chen Zenghong,; Jin, Z.; Buwalda, P.; Gruppen, H.

    2015-01-01

    The distributions of phosphorus and hydroxypropyl groups within granules of cross-linked and hydroxypropylated sweet potato starches were investigated. Chemical surface peeling of starch granules was performed after sieving of native and modified starches into large-size (diameter = 20 µm) and small

  3. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall

    KAUST Repository

    Wang, Kai Yu

    2009-04-01

    To develop high-flux and high-rejection forward osmosis (FO) membranes for water reuses and seawater desalination, we have fabricated polybenzimidazole (PBI) nanofiltration (NF) hollow fiber membranes with a thin wall and a desired pore size via non-solvent induced phase inversion and chemically cross-linking modification. The cross-linking by p-xylylene dichloride can finely tune the mean pore size and enhance the salt selectivity. High water permeation flux and improved salt selectivity for water reuses were achieved by using the 2-h modified PBI NF membrane which has a narrow pore size distribution. Cross-linking at a longer time produces even a lower salt permeation flux potentially suitable for desalination but at the expense of permeation flux due to tightened pore sizes. It is found that draw solution concentration and membrane orientations are main factors determining the water permeation flux. In addition, effects of membrane morphology and operation conditions on water and salt transport through membrane have been investigated. © 2008 Elsevier Ltd. All rights reserved.

  4. Removal of lead from aqueous solution with native and chemically modified corncobs.

    Science.gov (United States)

    Tan, Guangqun; Yuan, Hongyan; Liu, Yong; Xiao, Dan

    2010-02-15

    In this study, corncobs biomass was utilized as an adsorbent to remove Pb(II) from aqueous solution. The adsorption behavior of Pb(II) was studied under different conditions, including solution pH, contact time and metal concentration. Ground corncobs were modified with CH(3)OH and NaOH to investigate the effect of chemical modification on Pb(II) binding capacity. Results showed that Pb(II) binding on the biomass is pH-dependent and the kinetics can be well described by the Lagergren-second-order model. The maximum Pb(II) binding capacity q(max) calculated from Langmuir isotherm was 0.0783 mmol/g. After base hydrolysis of the biomass, Pb(II) binding capacity increased from 0.0783 to 0.2095 mmol/g (about 43.4 mg Pb/g). However, Pb(II) binding capacity on the esterified corncobs decreased greatly from 0.0783 to 0.0381 mmol/g. Fourier transform infrared spectroscopy (FTIR) analysis showed that hydroxyl and carboxylic (COO(-)) groups on the biomass play an important role in Pb(II) binding process. The X-ray photoelectron spectroscopy (XPS) data further indicated that lead is adsorbed as Pb(2+) and is attached to oxide groups on the biomass.

  5. Optimizing the lanthanum adsorption process onto chemically modified biomaterials using factorial and response surface design.

    Science.gov (United States)

    Gabor, Andreea; Davidescu, Corneliu Mircea; Negrea, Adina; Ciopec, Mihaela; Grozav, Ion; Negrea, Petru; Duteanu, Narcis

    2017-01-29

    The rare metals' potential to pollute air, water, soil, and especially groundwater has received lot of attention recently. One of the most common rare earth group elements, lanthanum, is used in many industrial branches, and due to its toxicity, it needs to be eliminated from all residual aqueous solutions. The goal of this study was to evaluate the control of the adsorption process for lanthanum removal from aqueous solutions, using cellulose, a known biomaterial with high adsorbent properties, cheap, and environment friendly. The cellulose was chemically modified by functionalization with sodium β-glycerophosphate. The experimental results obtained after factorial design indicate optimum adsorption parameters as pH 6, contact time 60 min, and temperature 298 K, when the equilibrium concentration of lanthanum was 250 mg L(-1), and the experimental adsorption capacity obtained was 31.58 mg g(-1). Further refinement of the optimization of the adsorption process by response surface design indicates that at pH 6 and the initial concentration of 256 mg L(-1), the adsorption capacity has maximum values between 30.87 and 36.73 mg g(-1).

  6. Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber.

    Science.gov (United States)

    Bediako, John Kwame; Wei, Wei; Kim, Sok; Yun, Yeoung-Sang

    2015-12-15

    In this study, an outstanding performance of chemically modified waste Lyocell for heavy metals treatment is reported. The sorbent, which was prepared by a simple and concise method, was able to bind heavy metals such as Pb(II), Cu(II) and Cd(II), with very high efficiencies. The binding mechanisms were studied through adsorption and standard characterization tests such as scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analyses. Adsorption kinetics was very fast and attained equilibrium within 5 min in all metals studied. The maximum single metal uptakes were 531.29±0.28 mg/g, 505.64±0.21 mg/g, and 123.08±0.26 mg/g for Pb(II), Cd(II) and Cu(II), respectively. In ternary metal systems, Cu(II) selectivity was observed and the underlying factors were discussed. The sorbent by its nature, could be very effective in treating large volumes of wastewater with the contact of very little amount.

  7. Chemically modified tetracyclines: Novel therapeutic agents in the management of chronic periodontitis

    Directory of Open Access Journals (Sweden)

    Rupali Agnihotri

    2012-01-01

    Full Text Available Chronic periodontitis is a complex infection initiated by gram-negative bacteria which destroy the supporting structures of the tooth. Recently, it has been recognized that it is the host response to bacterial infection which causes greater destruction of the connective tissue elements, periodontal ligament and alveolar bone in periodontitis. This has led to the development of various host modulating approaches to target cells and their destructive mediators involved in tissue degradation. Chemically modified tetracyclines (CMTs are derivatives of tetracycline group of drugs which lack antimicrobial action but have potent host modulating affects. They inhibit pathologically elevated matrix metal loproteinases, pro-inflammtory cytokines and other destructive mediators. Bone resorption is also suppressed due to their combined anti-proteinase and apoptotic affects on osteoblasts and osteoclasts, respectively. Development of resistant bacteria and gastrointestinal toxicity seen with parent tetracyclines is not produced by CMTs. Hence, CMTs are viewed as potential therapeutic agents in the management of chronic diseases like periodontitis that involve destruction of connective tissue and bone.

  8. Chemically modified peptide scaffolds target the CFTR-associated ligand PDZ domain.

    Directory of Open Access Journals (Sweden)

    Jeanine F Amacher

    Full Text Available PDZ domains are protein-protein interaction modules that coordinate multiple signaling and trafficking pathways in the cell and that include active therapeutic targets for diseases such as cancer, cystic fibrosis, and addiction. Our previous work characterized a PDZ interaction that restricts the apical membrane half-life of the cystic fibrosis transmembrane conductance regulator (CFTR. Using iterative cycles of peptide-array and solution-binding analysis, we targeted the PDZ domain of the CFTR-Associated Ligand (CAL, and showed that an engineered peptide inhibitor rescues cell-surface expression of the most common CFTR disease mutation ΔF508. Here, we present a series of scaffolds containing chemically modifiable side chains at all non-motif positions along the CAL PDZ domain binding cleft. Concordant equilibrium dissociation constants were determined in parallel by fluorescence polarization, isothermal titration calorimetry, and surface plasmon resonance techniques, confirming robust affinity for each scaffold and revealing an enthalpically driven mode of inhibitor binding. Structural studies demonstrate a conserved binding mode for each peptide, opening the possibility of combinatorial modification. Finally, we diversified one of our peptide scaffolds with halogenated substituents that yielded modest increases in binding affinity. Overall, this work validates our approach and provides a stereochemical foundation for further CAL inhibitor design and screening.

  9. Chemically modified peptide scaffolds target the CFTR-associated ligand PDZ domain.

    Science.gov (United States)

    Amacher, Jeanine F; Zhao, Ruizhi; Spaller, Mark R; Madden, Dean R

    2014-01-01

    PDZ domains are protein-protein interaction modules that coordinate multiple signaling and trafficking pathways in the cell and that include active therapeutic targets for diseases such as cancer, cystic fibrosis, and addiction. Our previous work characterized a PDZ interaction that restricts the apical membrane half-life of the cystic fibrosis transmembrane conductance regulator (CFTR). Using iterative cycles of peptide-array and solution-binding analysis, we targeted the PDZ domain of the CFTR-Associated Ligand (CAL), and showed that an engineered peptide inhibitor rescues cell-surface expression of the most common CFTR disease mutation ΔF508. Here, we present a series of scaffolds containing chemically modifiable side chains at all non-motif positions along the CAL PDZ domain binding cleft. Concordant equilibrium dissociation constants were determined in parallel by fluorescence polarization, isothermal titration calorimetry, and surface plasmon resonance techniques, confirming robust affinity for each scaffold and revealing an enthalpically driven mode of inhibitor binding. Structural studies demonstrate a conserved binding mode for each peptide, opening the possibility of combinatorial modification. Finally, we diversified one of our peptide scaffolds with halogenated substituents that yielded modest increases in binding affinity. Overall, this work validates our approach and provides a stereochemical foundation for further CAL inhibitor design and screening.

  10. A Novel Chemically Modified Curcumin Reduces Severity of Experimental Periodontal Disease in Rats: Initial Observations

    Directory of Open Access Journals (Sweden)

    Muna S. Elburki

    2014-01-01

    Full Text Available Tetracycline-based matrix metalloproteinase- (MMP- inhibitors are currently approved for two inflammatory diseases, periodontitis and rosacea. The current study addresses the therapeutic potential of a novel pleiotropic MMP-inhibitor not based on an antibiotic. To induce experimental periodontitis, endotoxin (LPS was repeatedly injected into the gingiva of rats on one side of the maxilla; the contralateral (control side received saline injections. Two groups of rats were treated by daily oral intubation with a chemically modified curcumin, CMC 2.24, for two weeks; the control groups received vehicle alone. After sacrifice, gingiva, blood, and maxilla were collected, the jaws were defleshed, and periodontal (alveolar bone loss was quantified morphometrically and by μ-CT scan. The gingivae were pooled per experimental group, extracted, and analyzed for MMPs (gelatin zymography; western blot and for cytokines (e.g., IL-1β; ELISA; serum and plasma samples were analyzed for cytokines and MMP-8. The LPS-induced pathologically excessive bone loss was reduced to normal levels based on either morphometric (P=0.003 or μ-CT (P=0.008 analysis. A similar response was seen for MMPs and cytokines in the gingiva and blood. This initial study, on a novel triketonic zinc-binding CMC, indicates potential efficacy on inflammatory mediators and alveolar bone loss in experimental periodontitis and warrants future therapeutic and pharmacokinetic investigations.

  11. Fretting Wear Behavior of Medium Carbon Steel Modified by Low Temperature Gas Multi-component Thermo-chemical Treatment

    Institute of Scientific and Technical Information of China (English)

    LUO Jun; ZHENG Jianfeng; PENG Jinfang; HE Liping; ZHU Minhao

    2010-01-01

    The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear

  12. Identification of N2-(1-carboxyethyl)guanine (CEG) as a guanine advanced glycosylation end product.

    Science.gov (United States)

    Papoulis, A; al-Abed, Y; Bucala, R

    1995-01-17

    Reducing sugars such as glucose react nonenzymatically with protein amino groups to initiate a posttranslational modification process known as advanced glycosylation. Nucleotide bases also participate in advanced glycosylation reactions, producing DNA-linked advanced glycosylation endproducts (AGEs) that cause mutations and DNA transposition. Although several protein-derived AGEs have been isolated and structurally characterized, AGE-modified nucleotides have not yet been reported. We systematically examined the reactivities of the model nucleotide bases 9-methylguanine (9-mG), 9-methyladenine (9-mA), and 1-methylcytosine (1-mC) toward glucose and several glucose-derived reactants. In "fast" reactions performed at refluxing temperature and physiological pH, 1 equiv of nucleotide base was reacted with 10 equiv of D-glucose, D-glucose 6-phosphate (G-6-P), D-glucose 6-phosphate/lysine (G-6-P/Lys), the Schiff base 1-n-propylamino-N-D-glucoside (SB), or the Amadori product 1-n-propylamino-N-D-fructose (AP). In every reaction involving 9-mG, N2-(1-carboxyethyl)-9-methylguanine (CEmG) was a major product which was produced. N2-(1-carboxyethyl)-9-methylguanine also formed from 9-mG and AP in long-term incubations performed at 37 degrees C. Direct treatment of 9-mG with methylglyoxal (MG), a Maillard reaction propagator that forms from the decomposition of AP, also produced CEmG in high yield. N2-(1-Carboxyethyl)-9-methylguanine appears to result from the nucleophilic addition of the primary amino group of guanine to the ketone group of MG followed by an intramolecular rearrangement. Methylglyoxal is a known prokaryotic mutagen and was shown additionally to be mutagenic in a eukaryotic shuttle vector assay system.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Identification of aflatoxin M1-N7-guanine in liver and urine of tree shrews and rats following administration of aflatoxin B1.

    Science.gov (United States)

    Egner, Patricia A; Yu, Xiang; Johnson, Jesse K; Nathasingh, Christopher K; Groopman, John D; Kensler, Thomas W; Roebuck, Bill D

    2003-09-01

    Epidemiological studies have shown that exposure to aflatoxin B(1) (AFB(1)) and concurrent infection with hepatitis B lead to a multiplicative risk of developing liver cancer. This chemical-viral interaction can be recapitulated in the tree shrew (Tupia belangeri chinensis). As an initial characterization of this model, the metabolism of AFB(1) in tree shrews has been examined and compared to a sensitive bioassay species, the rat. Utilizing LC/MS/MS, an unreported product, aflatoxin M(1)-N(7)-guanine (AFM(1)-N(7)-guanine), was detected in urine and hepatic DNA samples 24 h after administration of 400 microg/kg AFB(1). In hepatic DNA isolated from tree shrews, AFM(1)-N(7)-guanine was the predominant adduct, 0.74 +/- 0.14 pmol/mg DNA, as compared to 0.37 +/- 0.07 pmol/mg DNA of AFB(1)-N(7)-guanine. Conversely, in rat liver, 6.56 +/- 2.41 pmol/mg DNA of AFB(1)-N(7)-guanine and 0.42 +/- 0.13 pmol/mg DNA of AFM(1)-N(7)-guanine were detected. Rats excreted 1.00 +/- 0.21 pmol AFB(1)-N(7)-guanine/mg creatinine and 0.29 +/- 0.10 pmol AFM(1)-N(7)-guanine/mg creatinine as compared to 0.60 +/- 0.12 pmol AFB(1)-N(7)-guanine/mg creatinine and 0.69 +/- 0.16 pmol AFM(1)-N(7)-guanine/mg creatinine excreted by the tree shrew. Furthermore, tree shrew urine contained 40 times more of the hydroxylated metabolite, AFM(1), than was excreted by rats. In vitro experiments confirmed this difference in oxidative metabolism. Hepatic microsomes isolated from tree shrews failed to produce aflatoxin Q(1) or aflatoxin P(1) but formed a significantly greater amount of AFM(1) than rat microsomes. Bioassays indicated that the tree shrew was considerably more resistant than the rat to AFB(1) hepatocarcinogenesis, which may reflect the significant differences in metabolic profiles of the two species.

  14. Direct determination of cadmium in Orujo spirit samples by electrothermal atomic absorption spectrometry: Comparative study of different chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Vilar Farinas, M. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Barciela Garcia, J. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Garcia Martin, S. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Pena Crecente, R. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Herrero Latorre, C. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain)]. E-mail: cherrero@lugo.usc.es

    2007-05-22

    In this work, several analytical methods are proposed for cadmium determination in Orujo spirit samples using electrothermal atomic absorption spectrometry (ETAAS). Permanent chemical modifiers thermally coated on the platforms inserted in pyrolytic graphite tubes (such as W, Ir, Ru, W-Ir and W-Ru) were comparatively studied in relation to common chemical modifier mixtures [Pd-Mg(NO{sub 3}){sub 2} and (NH{sub 4})H{sub 2}PO{sub 4}-Mg(NO{sub 3}){sub 2}] for cadmium stabilization. Different ETAAS Cd determination methods based on the indicated modifiers have been developed. In each case, pyrolysis and atomization temperatures, atomization shapes, characteristic masses and detection limits as well as other analytical characteristics have been determined. All the assayed modifiers (permanent and conventional) were capable of achieving the appropriate stabilization of the analyte, with the exception of Ru and W-Ru. Moreover, for all developed methods, recoveries (99-102%) and precision (R.S.D. lower than 10%) were acceptable. Taking into account the analytical performance (best detection limit LOD = 0.01 {mu}g L{sup -1}), the ETAAS method based on the use of W as a permanent modifier was selected for further direct Cd determinations in Orujo samples from Galicia (NW Spain). The chosen method was applied in the determination of the Cd content in 38 representative Galician samples. The cadmium concentrations ranged

  15. Electrochemical impedance spectroscopy for graphene surface modification and protein translocation through the chemically modified graphene nanopore

    Science.gov (United States)

    Tiwari, Purushottam; Shan, Yuping; Wang, Xuewen; Darici, Yesim; He, Jin

    2014-03-01

    The multilayer graphene surface has been modified using mercaptohexadecanoic acid (MHA) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-750] (DPPE-PEG750). The surface modifications are evaluated using electrochemical impedance spectroscopy (EIS). EIS measurements show the better graphene surface passivation with DPPE-PEG750 than with MHA. After modification with ferritin, the MHA modified surface shows greater charge transfer resistance (Rct) change than DPPE-PEG750 modified surface. Based on these results the translocations of ferritin through modified graphene nanopore with diameter 5-20 nm are studied. The translocation is more successful through DPPE-PEG750 modified graphene nanopore. This concludes that that the attachment of ferritin to DPPE-PEG750 modified graphene nanopore is not significant compared to MHA modified pore for the ferritin translocation hindrance. These results nicely correlate with the EIS data for respective Rct change of ferritin modified surfaces. P. Tiwari would like to thank FIU School of Integrated Science & Humanity, College Arts & Sciences for the research assistantship.

  16. Fragmentation of the adenine and guanine molecules induced by electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Minaev, B. F., E-mail: bfmin@rambler.ru, E-mail: boris@theochem.kth.se [Bohdan Khmelnitsky National University, 18031 Cherkasy (Ukraine); Tomsk State University, 634050 Tomsk (Russian Federation); Shafranyosh, M. I.; Svida, Yu. Yu; Sukhoviya, M. I.; Shafranyosh, I. I. [Uzhgorod National University, 88000 Uzhgorod (Ukraine); Baryshnikov, G. V.; Minaeva, V. A. [Bohdan Khmelnitsky National University, 18031 Cherkasy (Ukraine)

    2014-05-07

    Secondary electron emission is the most important stage in the mechanism of radiation damage to DNA biopolymers induced by primary ionizing radiation. These secondary electrons ejected by the primary electron impacts can produce further ionizations, initiating an avalanche effect, leading to genome damage through the energy transfer from the primary objects to sensitive biomolecular targets, such as nitrogenous bases, saccharides, and other DNA and peptide components. In this work, the formation of positive and negative ions of purine bases of nucleic acids (adenine and guanine molecules) under the impact of slow electrons (from 0.1 till 200 eV) is studied by the crossed electron and molecular beams technique. The method used makes it possible to measure the molecular beam intensity and determine the total cross-sections for the formation of positive and negative ions of the studied molecules, their energy dependences, and absolute values. It is found that the maximum cross section for formation of the adenine and guanine positive ions is reached at about 90 eV energy of the electron beam and their absolute values are equal to 2.8 × 10{sup −15} and 3.2 × 10{sup −15} cm{sup 2}, respectively. The total cross section for formation of the negative ions is 6.1 × 10{sup −18} and 7.6 × 10{sup −18} cm{sup 2} at the energy of 1.1 eV for adenine and guanine, respectively. The absolute cross-section values for the molecular ions are measured and the cross-sections of dissociative ionization are determined. Quantum chemical calculations are performed for the studied molecules, ions and fragments for interpretation of the crossed beams experiments.

  17. Study of the adsorption and electroadsorption process of Cu (II) ions within thermally and chemically modified activated carbon.

    Science.gov (United States)

    Macías-García, A; Gómez Corzo, M; Alfaro Domínguez, M; Alexandre Franco, M; Martínez Naharro, J

    2017-04-15

    The aim of this work is to modify the porous texture and superficial groups of a commercial activated carbon through chemical and thermal treatment and subsequently study the kinetics of adsorption and electroadsorption of Cu (II) ion for these carbons. Samples of three activated carbons were used. These were a commercial activated carbon, commercial activated carbon modified thermically (C-N2-900) and finally commercial activated carbon modified chemically C-SO2-H2S-200. The activated carbons were characterized chemically and texturally and the electrical conductivity of them determined. Different kinetic models were applied. The kinetics of the adsorption and electroadsorption process of the Cu (II) ion fits a pseudo second order model and the most likely mechanism takes place in two stages. A first step through transfer of the metal mass through the boundary layer of the adsorbent and distribution of the Cu (II) on the external surface of the activated carbon and a second step that represents intraparticle diffusion and joining of the Cu (II) with the active centres of the activated carbon. Finally, the kinetics of the adsorption process are faster than the kinetics of the electroadsorption but the percentage of the Cu (II) ion retained is much higher in the electroadsorption process.

  18. Effect of surface chemical composition on the work function of silicon substrates modified by binary self-assembled monolayers.

    Science.gov (United States)

    Kuo, Che-Hung; Liu, Chi-Ping; Lee, Szu-Hsian; Chang, Hsun-Yun; Lin, Wei-Chun; You, Yun-Wen; Liao, Hua-Yang; Shyue, Jing-Jong

    2011-09-07

    It has been shown that the application of self-assembled monolayers (SAMs) to semiconductors or metals may enhance the efficiency of optoelectronic devices by changing the surface properties and tuning the work functions at their interfaces. In this work, binary SAMs with various ratios of 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS) were used to modify the surface of Si to fine-tune the work function of Si to an arbitrary energy level. As an electron-donor, amine SAM (from APTMS) produced outward dipole moments, which led to a lower work function. Conversely, electron-accepting thiol SAM (from MPTMS) increased the work function. It was found that the work function of Si changed linearly with the chemical composition and increased with the concentration of thiol SAMs. Because dipoles of opposite directions cancelled each other out, homogeneously mixing them leads to a net dipole moment (hence the additional surface potential) between the extremes defined by each dipole and changes linearly with the chemical composition. As a result, the work function changed linearly with the chemical composition. Furthermore, the amine SAM possessed a stronger dipole than the thiol SAM. Therefore, the SAMs modified with APTMS showed a greater work function shift than did the SAMs modified with MPTMS.

  19. Endogenous melatonin and oxidatively damaged guanine in DNA

    Directory of Open Access Journals (Sweden)

    Poulsen Henrik E

    2009-10-01

    Full Text Available Abstract Background A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Methods Mother-father-daughter(s families (n = 55 were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight. Results Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR was associated with significantly higher levels of 8-oxodG (p Conclusion Low levels of endogenous melatonin production among older individuals may lead to

  20. Reversible electrochemistry of DNA on multi-walled carbon nanotube modified electrode

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Calf thymus DNA was electrochemically oxidized at a multi-walled carbon nanotube modified electrode. The potentials for DNA oxidation at pH 7.0 were 0.71 and 0.81 V versus SCE, corresponding to the oxidation of guanine and adenine residues,respectively. The initial 6e-oxidation of adenine, observed in the first scan, resulted a quasi-reversible 2e-redox process of the oxidation product in the following scans.(C) 2007 Hong Xia Luo. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  1. Calculating Distortions of Short DNA Duplexes with Base Pairing Between an Oxidatively Damaged Guanine and a Guanine

    Directory of Open Access Journals (Sweden)

    Masayo Suzuki

    2014-07-01

    Full Text Available DNA is constantly being oxidized, and oxidized DNA is prone to mutation; moreover, guanine is highly sensitive to several oxidative stressors. Several oxidatively damaged forms of guanine—including 2,2,4-triamino-5(2H-oxazolone (Oz, iminoallantoin (Ia, and spiroiminodihydantoin (Sp—can be paired with guanine, and cause G:C-C:G transversions. Previous findings indicate that guanine is incorporated more efficiently opposite Oz than opposite Ia or Sp, and that these differences in efficiency cannot be explained by differences in the stabilities of G:Oz, G:Ia, and G:Sp base pairs calculated ab initio. Here, to explain previous experimental result, we used a 3-base-pair model DNA duplex to calculate the difference in the stability and the distortion of DNA containing a G:Oz, G:Ia, or G:Sp base pair. We found that the stability of the structure containing 5ꞌ and 3ꞌ base pairs adjacent to G:Oz was more stable than that containing the respective base pairs adjacent to G:Ia or G:Sp. Moreover, the distortion of the structure in the DNA model duplex that contained a G:Oz was smaller than that containing a G:Ia or G:Sp. Therefore, our discussion can explain the previous results involving translesion synthesis past an oxidatively damaged guanine.

  2. HIGHLY EFFECTIVE CHEMICAL MODIFIERS FOR PRODUCTION OF CONCRETES WITH PRE-SET PROPERTIES

    OpenAIRE

    2012-01-01

    The paper demonstrates the application of industrial by-products and recycled materials. Waterproofing admixtures improve the structure and the properties of the cement stone. Development and preparation of highly effective waterproofing modifiers of durable effect, as well as development of the process procedure parameters, including mixing, activation, heat treatment, etc. are to be implemented. The composition of waterproofing modifiers is to be fine-tuned to synergize the behaviour of var...

  3. RNA-modifying enzymes.

    Science.gov (United States)

    Ferré-D'Amaré, Adrian R

    2003-02-01

    A bewildering number of post-transcriptional modifications are introduced into cellular RNAs by enzymes that are often conserved among archaea, bacteria and eukaryotes. The modifications range from those with well-understood functions, such as tRNA aminoacylation, to widespread but more mysterious ones, such as pseudouridylation. Recent structure determinations have included two types of RNA nucleobase modifying enzyme: pseudouridine synthases and tRNA guanine transglycosylases.

  4. HIGHLY EFFECTIVE CHEMICAL MODIFIERS FOR PRODUCTION OF CONCRETES WITH PRE-SET PROPERTIES

    Directory of Open Access Journals (Sweden)

    Tkach Evgeniya Vladimirovna

    2012-10-01

    Full Text Available The paper demonstrates the application of industrial by-products and recycled materials. Waterproofing admixtures improve the structure and the properties of the cement stone. Development and preparation of highly effective waterproofing modifiers of durable effect, as well as development of the process procedure parameters, including mixing, activation, heat treatment, etc. are to be implemented. The composition of waterproofing modifiers is to be fine-tuned to synergize the behaviour of various ingredients of cement systems to assure the substantial improvement of their strength, freeze- and corrosion resistance. Multi-functional waterproofing admixtures were used to produce highly effective modified concretes. The key idea of the new method of modifying cement-based building materials is that the waterproofing admixture concentration is to exceed 10% of the weight of the binding agent within the per-unit weight of the cement stone, given that its strength does not deteriorate. GKM-type modifier coupled with organo-mineral waterproofing admixture concentration agent GT-M may be recommended for mass use in the manufacturing of hydraulic concrete and reinforced concrete products. Overview of their practical implementation has proven that waterproofing modifier GKM-S, if coupled with waterproofing admixture concentration agent GT-M, improves the corrosion control inside the cement stone and makes it possible to manufacture durable concrete and reinforced concrete products that demonstrate pre-set physical and processing behaviour. Comprehensive concrete modification by modifier GKM-S and waterproofing admixture concentration agent GT-M may be regarded as one of the most ambitious methods of production of highly effective waterproof concretes.

  5. Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith.

    Science.gov (United States)

    Suksabye, Parinda; Thiravetyan, Paitip

    2012-07-15

    Coir pith samples were chemically modified by grafting with acrylic acid for the removal of Cr(VI) from electroplating wastewater. The presence of acrylic acid on the coir pith surface was verified by a scanning electron microscope with an electron dispersive x-ray spectrometer (SEM/EDX), Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TG). The carbonyl groups (C==O) from the carboxylic acids (COOH) increased on the coir pith surface after grafting with acrylic acid. In addition, the thermal stability of the acrylic acid-grafted coir pith also improved. The optimum conditions for grafting the acrylic acid on the coir pith consisted of 2 M acrylic acid and 0.00125 M ceric ammonium nitrate (CAN, as an initiator). The maximum Cr(VI) removal (99.99 ± 0.07%) was obtained with the following conditions: a 1.3% (w/v) dosage of acrylic acid-grafted coir pith, a system pH of 2, a contact time of 22 h, a temperature of 30 °C, a particle size of <150 μm and an initial Cr(VI) of 1,171 mg l(-1). At system pH of 2, Cr(VI) in the HCrO(4)(-) form can be adsorbed with acrylic acid-grafted coir pith via an electrostatic attraction. The adsorption isotherm of 2 M acrylic acid-grafted coir pith exhibited a good fit with the Langmuir isotherm. The maximum Cr(VI) adsorption capacity of the 2 M acrylic acid-grafted coir pith was 196.00 mg Cr(VI) g(-1) adsorbent, whereas for coir pith without grafting, the maximum Cr(VI) removal was 165.00 mg Cr(VI) g(-1) adsorbent. The adsorption capacity of the acrylic acid-grafted coir pith for Cr(VI) was higher compared to the original coir pith. This result was due to the enhancement of the carbonyl groups on the coir pith surface that may have involved the mechanism of chromium adsorption. The X-ray absorption near edged structure (XANES) and desorption studies suggested that most of the Cr(III) that presented on the acrylic acid-grafted coir pith was due to the Cr(VI) being reduced to Cr(III) on the adsorbent surface. FTIR

  6. Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X.; Isacsson, U. [Royal Institute of Technology, Stockholm (Sweden). Division of Highway Engineering

    1998-07-01

    The ageing properties of Styrene-Butadiene-Styrene (SBS) polymer modified bitumens were evaluated using Dynamic Mechanical Analysis (DMA), Gel Permeation Chromatography (GPC) and Fourier Transform InfraRed (FTIR) spectroscopy. The binders were aged by means of the Thin Film Oven Test (TFOT) and the Rolling Thin Film Oven Test (RTFOT), respectively. It was observed that ageing resulted in degradation of the SBS polymer containing molecules and increase in bitumen molecular weight. The polymer was observed to resist formation of sulphoxides. Changes in the rheological properties of aged-modified binders were dependent on a combined effect of bitumen oxidation and polymer degradation, which varied with bitumen source/grade and polymer type/content. In all cases, the aged modified binders showed better rheological properties than aged base bitumens. The study also indicated that the ageing index obtained using DMA was largely influenced by temperature and frequency. This parameter may be applied for evaluating the base bitumens and modified binders with a low polymer content (3% in this study), but not for modified binders with a high (6%) polymer content. 18 refs., 9 figs., 4 tabs.

  7. A Modified Approach for Calculating Dressed Quark Propagator at Finite Chemical Potential

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on the rainbow approximation of Dyson-Schwinger equation and the assumption that the full inverse quark propagator at finite chemical potential is analytic in the neighborhood of μ = 0, it is proved that the dressed From the dressed quark propagator at finite chemical potential μ can be written as (g0-1)[μ]=iγ·(p~)A((p~2))+B((p~2))with (p~)μ=((p),p4+iμ).From the dressed quark propagator at finite chemical potential in Munczek model the bag constant of a baryon and the scalar quark condensate are evaluated. A comparison with previous results is given.

  8. High-affinity triplex targeting of double stranded DNA using chemically modified peptide nucleic acid oligomers

    DEFF Research Database (Denmark)

    Hansen, Mads E; Bentin, Thomas; Nielsen, Peter E

    2009-01-01

    While sequence-selective dsDNA targeting by triplex forming oligonucleotides has been studied extensively, only very little is known about the properties of PNA-dsDNA triplexes-mainly due to the competing invasion process. Here we show that when appropriately modified using pseudoisocytosine subs...

  9. Sulfur Fixation by Chemically Modified Red Mud Samples Containing Inorganic Additives: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available Sulfur retention ability of Bayer red mud from alumina plant was investigated. Bayer red mud modified by fusel salt and waste mother liquor of sodium ferrocyanide as the main sulfur fixation agent and the calcium based natural mineral materials as servicing additives; the experimental results showed the following: (1 Through 10 wt% waste mother liquor of sodium ferrocyanide modifying Bayer red mud, sulfur fixation rate can increase by 13 wt%. (2 Magnesium oxide can obviously improve the sulfur fixation performance of Bayer red mud and up to a maximum sulfur fixation rate of 47 wt% at adding 1 wt% magnesium oxide. (3 Dolomite enhanced the sulfur fixation performances with the sulfur fixation rate of 68 wt% in optimized condition. (4 Vermiculite dust reduced sulfur dioxide during the fixed-sulfur process of modified Bayer red mud, and the desulphurization ration could reach up to a maximum 76 wt% at 950°C. (5 An advanced three-component sulfur fixation agent was investigated, in which the optimized mass ratio of modified Bayer red mud, dolomite, and vermiculite dust was 70 : 28 : 2 in order, and its sulfur fixation efficiency has reached to a maximum 87 wt% under its 20 wt% dosage in the coal.

  10. Chemically Modified Starch; Allyl- and Epoxy-Starch Derivatives: Their Synthesis and Characterization

    NARCIS (Netherlands)

    Franssen, M.C.R.; Boeriu, C.

    2014-01-01

    Both native and modified starches, such as starch that is pregelatinized, extruded, acid-converted, cross-linked, and substituted, are widely used in industry. This chapter describes a mild two-step process for the synthesis of novel, highly reactive granular epoxy-starch derivatives. Via this metho

  11. Effect of base pairing on the electrochemical oxidation of guanine.

    Science.gov (United States)

    Costentin, Cyrille; Hajj, Viviane; Robert, Marc; Savéant, Jean-Michel; Tard, Cédric

    2010-07-28

    The effect of base pairing by cytosine on the electrochemical oxidation of guanine is examined by means of cyclic voltammetry on carefully purified reactants in a solvent, CHCl(3), which strongly favors the formation of an H-bonded pair. The thermodynamics and kinetics of the oxidation reaction are not strongly influenced by the formation of the pair. They are actually similar to those of the reaction in which 2,6-lutidine, an encumbered base that cannot form a pair with guanine, replaces cytosine. The reaction does not entail a concerted proton-electron mechanism, as attested by the absence of H/D isotope effect. It rather involves the rate-determining formation of the cation radical, followed by its deprotonation and dimerization of the resulting neutral radical in competition with its further oxidation.

  12. Biosorption of Cu (II onto chemically modified waste mycelium of Aspergillus awamori: Equilibrium, kinetics and modeling studies

    Directory of Open Access Journals (Sweden)

    ZDRAVKA VELKOVA

    2012-01-01

    Full Text Available The biosorption potential of chemically modified waste mycelium of industrial xylanase-producing strain Aspergillus awamori for Cu (II removal from aqueous solutions was evaluated. The influence of pH, contact time and initial Cu (II concentration on the removal efficiency was evaluated. Maximum biosorption capacity was reached by sodium hydroxide treated waste fungal mycelium at pH 5.0. The Langmuir adsorption equation matched very well the adsorption equilibrium data in the studied conditions. The process kinetic followed the pseudo-firs order model.

  13. Interpenetrating polymer networks based on polyol modified castor oil polyurethane and poly(2-hydroxyethylmethacrylate): Synthesis, chemical, mechanical and thermal properties

    Indian Academy of Sciences (India)

    K Prashantha; K Vasanth Kumar Pai; B S Sherigara; S Prasannakumar

    2001-10-01

    Interpenetrating polymer networks (IPNs) of glycerol modified castor oil polyurethane (GC–PU) and poly[2-hydroxyethylmethacrylate] (PHEMA) were synthesized using benzoyl peroxide as initiator and N,N-methylene bis acrylamide as crosslinker. GC–PU/PHEMA interpenetrating polymer networks were obtained by transfer moulding. These were characterized with respect to their resistance to chemical reagents and mechanical properties such as tensile strength, per cent elongation and shore A hardness. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were undertaken for thermal characterization. The changes in NCO/OH ratio and GC–PU/PHEMA composition on the properties of the IPNs were studied.

  14. Use of modified chemical route for ZnSe nanocrystalline thin films growth: Study on surface morphology and physical properties

    Science.gov (United States)

    Kale, R. B.; Lokhande, C. D.; Mane, R. S.; Han, Sung-Hwan

    2006-06-01

    The zinc selenide thin films have been deposited using modified chemical bath deposition (M-CBD) method. Zinc acetate and sodium selenosulphate were used as Zn 2+ and Se 2- ion sources, respectively. The preparative parameters such as concentration, pH, number of deposition cycles have been optimized in order to deposit ZnSe thin films. The as-deposited ZnSe thin films are specularly reflective and faint yellowish in color. The as-deposited ZnSe films are annealed in an air atmosphere at 473 K for 2 h. The films are characterized using structural, morphological, compositional, optical and electrical properties.

  15. Determination of vanadium in mussels by electrothermal atomic absorption spectrometry without chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Y.; Fernandez, P. [Centro de Control do Medio Marino, Peirao de Vilaxoan s/n, Vilagarcia de Arousa, 36611 Pontevedra (Spain); Gonzalez, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Quimica, 15706, Santiago de Compostela (Spain)

    2004-05-01

    A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 C and 2600 C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg{sup -1} (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg{sup -1} (wet weight). (orig.)

  16. Rheological behaviour of polymer-modified bituminous mastics : a comparative analysis between physical and chemical modification

    OpenAIRE

    Shivokhin, Maxim; García Morales, Moisés; Partal López, Pedro; Cuadri Vega, Antonio Abad; Gallegos Montes, Críspulo

    2012-01-01

    Mastic, a bitumen/filler blend which naturally forms when bitumen is mixed with aggregates is the actual product used to bind coarse mineral particles in the asphalt mixtures. As a result, the characterisation of mastics is essential to improve the understanding of the response and performance of asphalt concrete pavements. On the other hand, the lack of experimental data concerning the behaviour of mastics and, above all, polymer-modified mastics has been lately claimed. In that sense, this ...

  17. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments.

    Science.gov (United States)

    Wu, Weidong; Li, Jianhong; Niazi, Nabeel Khan; Müller, Karin; Chu, Yingchao; Zhang, Lingling; Yuan, Guodong; Lu, Kouping; Song, Zhaoliang; Wang, Hailong

    2016-11-01

    Biochar has received widespread attention as an eco-friendly and efficient material for immobilization of toxic heavy metals in aqueous environments. In the present study, three types of coconut fiber-derived biochars were obtained by pyrolyzing at three temperatures, i.e., 300, 500, and 700 °C. In addition, nine types of biochars were prepared by chemical modification with ammonia, hydrogen peroxide, and nitric acid, respectively, which were used to investigate changes in physico-chemical properties by inter alia, Fourier transformation infrared spectrophotometry (FTIR), scanning electron microscope (SEM), and BET specific surface area analysis. Batch sorption experiments were carried out to determine the sorption capacity of the biochars for lead (Pb) in aqueous solutions. Results showed that the cation exchange capacity of biochar pyrolyzed at 300 °C and modified with nitric acid increased threefold compared to the control. Loosely corrugated carbon surface and uneven carbon surface of the biochar pyrolyzed at 300 °C were produced during ammonia and nitric acid modifications. Removal rate of Pb by the coconut biochar pyrolyzed at 300 °C and modified with ammonia was increased from 71.8 to 99.6 % compared to the untreated biochar in aqueous solutions containing 100 mg L(-1) Pb. However, chemical modification did not enhance adsorption of Pb of the biochars pyrolyzed at higher temperatures (e.g., 500 or 700 °C), indicating that resistance of biochars to chemical treatment increased with pyrolysis temperature.

  18. [Research progress in chemical communication among insect-resistant genetically modified plants, insect pests and natural enemies].

    Science.gov (United States)

    Liu, Qing-Song; Li, Yun-He; Chen, Xiu-Ping; Peng, Yu-Fa

    2014-08-01

    Semiochemicals released by plants or insects play an important role in the communication among plants, phytophagous insects and their natural enemies. They thus form a chemical information network which regulates intra- and inter-specific behaviors and sustains the composition and structure of plant and insect communities. The application of insect-resistant genetically modified (IRGM) crops may affect the chemical communication within and among the tritrophic levels, and thus cause disturbances to the biotic community structure and the stability of the farmland ecosystem. This has raised concerns about the environmental safety of IRGM crops and triggered research worldwide. In the current article we provided a brief summary of the chemical communication among plants, herbivores and natural enemies; analyzed the potential of IRGM crops to affect the chemical communication between plants and arthropods and the related mechanisms; and discussed the current research progress and the future prospects in this field. We hope that this will promote the research in this field by Chinese scientists and increase our understanding of the potential effects of growing of IRGM crops on the arthropod community structure.

  19. Chemically modified fatty acid methyl esters: their potential for use as lubrication fluids and surfactants

    Science.gov (United States)

    A review of recent developments in the synthesis and characterization of lubrication fluids and surfactants from methyl oleate. The synthesis of materials made using an epoxidation route is the focus. This versatile method of chemical modification of fatty acid methyl esters improves their oxidati...

  20. Chemical and physical properties of Paulownia elongata biochar modified with oxidants for horticultural applications

    Science.gov (United States)

    Treatment of biochar with oxidants such as acids and hydrogen peroxide has been shown to alter porosity, increase adsorption of chemicals, and introduce functional groups on the biochar surfaces, all of which are desirable for their use in horticultural applications. Biochar was produced from the py...

  1. Crystal engineering of energetic materials: co-crystals of Ethylenedinitramine (EDNA) with modified performance and improved chemical stability.

    Science.gov (United States)

    Aakeröy, Christer B; Wijethunga, Tharanga K; Desper, John

    2015-07-27

    In the area of energetic materials, co-crystallization is emerging as a new technology for modifying or enhancing the properties of existing energetic substances. Ethylenedinitramine (EDNA) is a known energetic material which requires attention partly due to its chemical instability originating with its two highly acidic protons. In order to stabilize EDNA, a co-crystallization approach targeting the acidic protons using a series of co-crystallizing agents with suitable hydrogen-bond acceptors was employed. Fifteen attempted co-crystallizations resulted in eight successful outcomes and six of these were crystallographically characterized and all showed evidence of hydrogen bonds to the intended protons. Calculated detonation properties and experimental thermal and impact data for the co-crystals were obtained and compared with those of pure EDNA. The co-crystal of EDNA and 1,2-bis(4-pyridyl)ethylene was recognized as a more thermally stable alternative to EDNA while the co-crystal of EDNA and pyrazine N,N'-dioxide showed comparable detonation strengths (and much improved chemical stability) compared with that of EDNA. The co-crystals EDNA:4,4'-bipyridine and EDNA:pyrazine N,N'-dioxide were found to be about 50 % less impact sensitive than EDNA, all of which illustrate how co-crystallizations can be utilized for successfully modifying specific aspects of energetic materials.

  2. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    Science.gov (United States)

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment.

  3. Thermogravimetric Analysis of Modified Hematite by Methane (CH{sub 4}) for Chemical-Looping Combustion: A Global Kinetics Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Monazam, Esmail R; Breault, Ronald W; Siriwardane, Ranjani; Miller, Duane D

    2013-10-01

    Iron oxide (Fe{sub 2}O{sub 3}) or in its natural form (hematite) is a potential material to capture CO{sub 2} through the chemical-looping combustion (CLC) process. It is known that magnesium (Mg) is an effective methyl cleaving catalyst and as such it has been combined with hematite to assess any possible enhancement to the kinetic rate for the reduction of Fe{sub 2}O{sub 3} with methane. Therefore, in order to evaluate its effectiveness as a hematite additive, the behaviors of Mg-modified hematite samples (hematite –5% Mg(OH){sub 2}) have been analyzed with regard to assessing any enhancement to the kinetic rate process. The Mg-modified hematite was prepared by hydrothermal synthesis. The reactivity experiments were conducted in a thermogravimetric analyzer (TGA) using continuous stream of CH{sub 4} (5, 10, and 20%) at temperatures ranging from 700 to 825 {degrees}C over ten reduction cycles. The mass spectroscopy analysis of product gas indicated the presence of CO{sub 2}, H{sub 2}O, H{sub 2} and CO in the gaseous product. The kinetic data at reduction step obtained by isothermal experiments could be well fitted by two parallel rate equations. The modified hematite samples showed higher reactivity as compared to unmodified hematite samples during reduction at all investigated temperatures.

  4. Structure and Electrical Study of New Chemically Modified Poly(vinyl chloride

    Directory of Open Access Journals (Sweden)

    F. Ammari

    2015-01-01

    Full Text Available The aim of this work was to study the structural and electrical properties of a new polymer obtained by functionalization of a commercial poly(vinyl chloride (PVC (Mw = 48000 by grafting aminoalkyl and aminoaryl groups. Modified poly(vinyl chloride was prepared in two steps. The structural properties of the polymer were systematically investigated by varieties of techniques as differential scanning calorimetric (DSC, thermogravimetry analysis (TG, X-ray diffraction (XRD, and Fourier transform infrared (FTIR spectroscopy. The electrical properties of the polymer were studied by electrochemical impedance spectroscopy (EIS.

  5. Chemically Modified Chitosan Beads as Molecularly Imprinted Polymer Matrix for Adsorptive Separation of Proteins

    Institute of Scientific and Technical Information of China (English)

    Tian Ying GUO; Yong Qing XIA; Guang Jie HAO; Bang Hua ZHANG

    2004-01-01

    In a phosphate buffer, a hemoglobin (Hb)-imprinted polymer complex was prepared using maleic anhydride (MAH) modified chitosan beads as matrix, acrylamide (AM) as functional monomer, N,N-methylenebisacrylamide (MBA) as cross-linker and potassiumpersulfate (KPS)/sodium hydrogen sulfite (NaHSO3) as initiators. Langmuir analysis showed that an equal class of adsorption was formed in the molecular imprinting polymer (MIP), and the MIP has high adsorption capacity and selectivity for the imprinted molecule. The MIP can be reused and the recovery was approximately 100% at low concentration.

  6. Comparative repellent properties of certain chemicals against mosquitoes, house flies and cockroaches using modified techniques.

    Science.gov (United States)

    Vartak, P H; Tungikar, V B; Sharma, R N

    1994-09-01

    Several terpenoids were assessed for their repellent/toxic properties against mosquitoes (Aedes aegypti), house flies (Musca domestica) and cockroaches (Periplaneta americana). Impregnated wide mesh netting was used in the case of the Dipterans, while treated filtered paper was employed for the bioassays with cockroaches. Persistence of the repellent chemicals was studied. Doses ranged from 5-20 gm/M2 for the Dipterans and 25-100 mg per 4 x 4 cm filter paper for the cockroaches. Dimethyl phthalate (DMP) offered the maximum protection of the chemicals tested against mosquitoes but was not so effective against house flies and cockroaches. Citral and Eugenol were effective against all the three test insects. Other test compounds afforded varying degrees of protection. Application strategy and utility of the findings are discussed.

  7. Calcium phosphate formation from sea urchin - (brissus latecarinatus via modified mechano-chemical (ultrasonic conversion method

    Directory of Open Access Journals (Sweden)

    R. Samur

    2013-07-01

    Full Text Available This study aims to produce apatite structures, such as hydroxyapatite (HA and fluorapatite (FA, from precursor calcium phosphates of biological origin, namely from sea urchin, with mechano-chemical stirring and hot-plating conversion method. The produced materials were heat treated at 800 °C for 4 hours. X-ray diffraction and scanning electron microscopy (SEM studies were conducted. Calcium phosphate phases were developed. The SEM images showed the formation of micro to nano-powders. The experimental results suggest that sea urchin, Brissus latecarinatus skeleton could be an alternative source for the production of various mono or biphasic calcium phosphates with simple and economic mechano-chemical (ultrasonic conversion method.

  8. The optimal one dimensional periodic table: a modified Pettifor chemical scale from data mining

    Science.gov (United States)

    Glawe, Henning; Sanna, Antonio; Gross, E. K. U.; Marques, Miguel A. L.

    2016-09-01

    Starting from the experimental data contained in the inorganic crystal structure database, we use a statistical analysis to determine the likelihood that a chemical element A can be replaced by another B in a given structure. This information can be used to construct a matrix where each entry (A,B) is a measure of this likelihood. By ordering the rows and columns of this matrix in order to reduce its bandwidth, we construct a one-dimension ordering of the chemical elements, analogous to the famous Pettifor scale. The new scale shows large similarities with the one of Pettifor, but also striking differences, especially in what comes to the ordering of the non-metals.

  9. Cellular RNA is chemically modified by exposure to air pollution mixtures.

    Science.gov (United States)

    Baldridge, Kevin C; Zavala, Jose; Surratt, Jason; Sexton, Kenneth G; Contreras, Lydia M

    2015-01-01

    RNAs are more susceptible to modifications than DNA, and chemical modifications in RNA have an effect on their structure and function. This study aimed to characterize chemical effects on total RNA in human A549 lung cells after exposure to elevated levels of major secondary air pollutants commonly found in urban locations, including ozone (O3), acrolein (ACR) and methacrolein (MACR). Enzyme-linked immunosorbent assays (ELISA) were used to measure levels of interleukin (IL)-8 in the growth media and 8-oxoguanine (8OG) levels in total cellular RNA, and lactate dehydrogenase (LDH) in the growth media was measured by a coupled enzymatic assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure levels of microRNA 10b (miR-10b). The study found that 1-h exposure to all tested pollutant mixtures consistently caused significant increases in the levels of 8OG in total RNA. In the case of 4 ppm O3 exposures, measured levels of IL-8, LDH and miR-10b each showed consistent trends between two independent trials, but varied among these three targets. After 1-h exposures to an ACR+MACR mixture, measured levels of IL-8, LDH and miR-10b showed variable results. For mixtures of O3+ACR+MACR, IL-8 measurements showed no change; miR-10b and LDH showed variable results. The results indicate that short-term high-concentration exposures to air pollution can cause RNA chemical modifications. Chemical modifications in RNAs could represent more consistent markers of cellular stress relative to other inflammation markers, such as IL-8 and LDH, and provide a new biomarker endpoint for mechanistic studies in toxicity of air pollution exposure.

  10. Calcium phosphate formation from sea urchin - (brissus latecarinatus) via modified mechano-chemical (ultrasonic) conversion method

    OpenAIRE

    R. Samur; Ozyegin, L.; D. Agaogullari; F. N. Oktar; Agathopoulos, S.; Kalkandelen, C.; I. Duman; B. Ben-Nissan

    2013-01-01

    This study aims to produce apatite structures, such as hydroxyapatite (HA) and fluorapatite (FA), from precursor calcium phosphates of biological origin, namely from sea urchin, with mechano-chemical stirring and hot-plating conversion method. The produced materials were heat treated at 800 °C for 4 hours. X-ray diffraction and scanning electron microscopy (SEM) studies were conducted. Calcium phosphate phases were developed. The SEM images showed the formation of micro to nano-powders. The e...

  11. POLYPROPYLENE-MODIFIED KAOLINITE COMPOSITES: EFFECT OF CHEMICAL MODIFICATION ON MECHANICAL, THERMAL AND MORPHOLOGICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    O. Meziane

    2016-05-01

    Full Text Available The intercalation of kaolinite with an ammonium salt was performed. Untreated and treated kaolinite samples were examined by XRD. PP/kaolinite compounds were prepared by the melt intercalation method. The effects of modified clay on properties of the prepared composites were studied. The XRD results showed that the treatment with the ammonium salt caused the return to the initial state of the clay. TGA thermograms marked an increase in thermal degradation of the composites, while the DSC results showed the decrease of the crystallization temperature and the melting point in presence of clay in the matrix owing to the fact that the filler acts as reinforcing effect. The mechanical properties of the composites exhibited important variations, the morphology of the composites was further studied using SEM and showed poor dispersion of used nanoclay in PP matrix.

  12. Physico-chemical characteristics of nano-organo bentonite prepared using different organo-modifiers

    Directory of Open Access Journals (Sweden)

    A.M. Motawie

    2014-09-01

    Full Text Available Different types of nano-organo bentonite (NOB were prepared from the Egyptian Bentonite (EB. EB was characterized by energy dispersive X-ray EDX. It was purified from different impurities using a conventional method via the treatment with HCl and distilled water. The modification of the clay was carried out using different types of organo-modifiers namely; hexadecyl trimethyl ammonium bromide (HTAB, 3-aminopropyltriethoxysilane (Silane, octadecylamine (ODA, and dodecylamine (DDA. The cation exchange capacity (CEC was measured for pristine bentonite after and before modification. The NB was characterized by FTIR, XRD, TEM, and TGA techniques. The obtained results indicated that variation of the interlayer space gallery was effected by the type of the penetrator used.

  13. Study on Natural and Modified Bentonite Adsorption of Antibiotics%Guangzhou Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    刘希

    2016-01-01

    To deal with the water polluted by antibiotics, adsorption experiments for adsorption behavior of oxytetracycline and tetracycline on bentonite/acid modified bentonite were carried out to investigate the effect of pH,activation temperature, dosing quantity and adsorption time. The results showed that two kind of antibiotics could beabsorbed effectively when theactivation temperature was 200 ℃, pH=6 , the dosing quantity was 1 gandadsorption time was 8 h. Asakind of environmental friendlyadsorbent for promotion, modified bentonite is better than natural bentonite.%针对制药工业产生的抗生素废水,研究了一定条件下膨润土/酸改性膨润土对土霉素( OTC)和四环素( TC)的吸附作用,综合考察了原土与改性膨润土在不同pH、活化温度、投加量以及吸附时间等条件下的吸附效率。结果表明:在活化温度为200℃、 pH=6、投加量为1 g、吸附时间为8 h时,可以有效地吸附两种抗生素,且酸改性膨润土比膨润土吸附效果更好,能够作为环境友好的抗生素吸附剂进行推广。

  14. Investigation of the biofouling properties of several algae on different textured chemical modified silicone surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jihai [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Wenjie, E-mail: zhaowj@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Peng, Shusen; Zeng, Zhixiang; Zhang, Xin [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wu, Xuedong, E-mail: xdwu@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xue, Qunji [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2014-08-30

    Highlights: • Engineered pillars, pits and grooves spaced 3–12 μm apart were fabricated on siloxane modified acrylic resin films. • The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. • The feature size and geometry displayed a substantial correlation with the antifouling properties. • A comparatively physical fouling deterrent mechanism was analyzed. - Abstract: Engineered pillars, pits and grooves spaced 3, 6, 9 and 12 μm apart were fabricated on siloxane modified acrylic resin films. The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. These films showed various antifouling performances to Ulothrix, Closterium and Navicula. For Navicula (length: 10–12 μm), the feature size and geometry displayed a substantial correlation with the antifouling properties. The film with pillars spaced 3 μm reduced Navicula settlement by 73% compared to the control surface. For Closterium (length: 45–55 μm), their responses were governed by the same underlying thermodynamic principles as wettability, the largest reduction in Closterium, 81%, was obtained on the surface with grooves spaced 12 μm apart. For Ulothrix (length: 5–8 mm), the surface also showed the best antifouling performance, the reduction ratio of the settlement on the surface with grooves spaced 12 μm apart could even reach 92%. At last, physical fouling deterrent mechanisms for the films with various textures were analyzed in detail. The feature size and geometry display a substantial correlation with the antifouling properties when the size of fouling algae is close to the textures. With the increasing size for algae, antifouling performance was getting better on surface with pillars or grooves because the algae are bridged between two or more features other than stabilizing its entire mass on one single feature or able to settle between features.

  15. Wrapping of a single bacterium with Functionalized - Chemically Modified Graphene (FCMG) sheets via highly specific protein-cell wall interaction

    Science.gov (United States)

    Mohanty, Nihar; Berry, Vikas

    2009-03-01

    Graphene has recently generated a lot of interest due to its unique structural and electrical properties. It's micro-scale area and sub-nano-scale thickness coupled with ballistic electronic transport at room temperature, low Johnston noise and low charge scattering, have made it a gold mine for novel applications. Since its discovery in 2004, there have been a plethora of studies on characterizing its unique physical, chemical and electrical properties of graphene as well as on integrating it with various physical/chemical systems to utilize these properties. But there have been limited or no studies on the integration of graphene with living microorganisms or mammalian cells. Here we describe the novel wrapping of a single live bacterium (Bacillus cereus) with a chemically modified graphene sheet functionalized with the protein Concanavalin-A (Con-A) via the highly specific Con-A - Teichoic acid interaction. We are investigating the structural and the electrical properties of these novel bacteria-FCMG ensembles. Further, we are also interested in characterizing this wrapping process in detail by studying the kinetics and the mechanism of action of bacterial-wrapping via 3D modelling. This is a first step towards the live-bio-nano-integration of graphene which would open up avenues for applications as diverse as bio-batteries using the Geobacter to recombinant enzyme compartmentalization.

  16. UV Spectral Analysis of the Chemical Modification and Photolysis of Acetylacetone Modified Alumina Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    Chengbin JING; Xiujian ZHAO; Haizheng TAO; Xina WANG; Aiyun LIU

    2004-01-01

    Acetylacetone was firstly introduced into the aqueous media with the presence of aluminum sec-butoxide and peptizator. It was confirmed that the UV (ultraviolet) absorption band of acetylacetone underwent 14 nm of red-shift due to the formation of the six-membered ring of the complex between alumina and acetylacetone in the aqueous solution. It was also found that the chemical modification can be dissociated by the UV irradiation with a wavelength shorter than 286 nm as a result of the excitation of π-π* transition in the complex.

  17. Modifying culture conditions in chemical library screening identifies alternative inhibitors of mycobacteria.

    Science.gov (United States)

    Miller, Christopher H; Nisa, Shahista; Dempsey, Sandi; Jack, Cameron; O'Toole, Ronan

    2009-12-01

    In this study, application of a dual absorbance/fluorescence assay to a chemical library screen identified several previously unknown inhibitors of mycobacteria. In addition, growth conditions had a significant effect on the activity profile of the library. Some inhibitors such as Se-methylselenocysteine were detected only when screening was performed under nutrient-limited culture conditions as opposed to nutrient-rich culture conditions. We propose that multiple culture condition library screening is required for complete inhibitory profiling and for maximal antimycobacterial compound detection.

  18. Evaluation of alkyne-modified isoprenoids as chemical reporters of protein prenylation.

    Science.gov (United States)

    DeGraw, Amanda J; Palsuledesai, Charuta; Ochocki, Joshua D; Dozier, Jonathan K; Lenevich, Stepan; Rashidian, Mohammad; Distefano, Mark D

    2010-12-01

    Protein prenyltransferases catalyze the attachment of C15 (farnesyl) and C20 (geranylgeranyl) groups to proteins at specific sequences localized at or near the C-termini of specific proteins. Determination of the specific protein prenyltransferase substrates affected by the inhibition of these enzymes is critical for enhancing knowledge of the mechanism of such potential drugs. Here, we investigate the utility of alkyne-containing isoprenoid analogs for chemical proteomics experiments by showing that these compounds readily penetrate mammalian cells in culture and become incorporated into proteins that are normally prenylated. Derivatization via Cu(I) catalyzed click reaction with a fluorescent azide reagent allows the proteins to be visualized and their relative levels to be analyzed. Simultaneous treatment of cells with these probes and inhibitors of prenylation reveals decreases in the levels of some but not all of the labeled proteins. Two-dimensional electrophoretic separation of these labeled proteins followed by mass spectrometric analysis allowed several labeled proteins to be unambiguously identified. Docking experiments and density functional theory calculations suggest that the substrate specificity of protein farnesyl transferase may vary depending on whether azide- or alkyne-based isoprenoid analogs is employed. These results demonstrate the utility of alkyne-containing analogs for chemical proteomic applications.

  19. Improved actuation strain of PDMS-based DEA materials chemically modified with softening agents

    Science.gov (United States)

    Biedermann, Miriam; Blümke, Martin; Wegener, Michael; Krüger, Hartmut

    2015-04-01

    Dielectric elastomer actuators (DEAs) are smart materials that gained much in interest particularly in recent years. One active field of research is the improvement of their properties by modification of their structural framework. The object of this work is to improve the actuation properties of polydimethylsiloxane (PDMS)-based DEAs by covalent incorporation of mono-vinyl-terminated low-molecular PDMS chains into the PDMS network. These low-molecular units act as a kind of softener within the PDMS network. The loose chain ends interfere with the network formation and lower the network's density. PDMS films with up to 50wt% of low-molecular PDMS additives were manufactured and the chemical, mechanical, electrical, and electromechanical properties of these novel materials were investigated.

  20. Preparation and mechanism of calcium phosphate coatings on chemical modified carbon fibers by biomineralization

    Institute of Scientific and Technical Information of China (English)

    HUANG Su-ping; ZHOU Ke-chao; LI Zhi-you

    2008-01-01

    In order to prepare HA coatings on the carbon fibers, chemical modification and biomineralization processes were applied. The phase components, morphologies, and possible growth mechanism of calcium phosphate were studied by infrared spectroscopy(IR), X-ray diffractometry(XRD) and scanning electron microscopy(SEM). The results show that calcium phosphate coating on carbon fibers can be obtained by biomineralization. But the phase components and morphologies of calcium phosphate coatings are different due to different modification methods. Plate-like CaHPO4-2H2O (DCPD) crystals grow from one site of the active centre by HNO3 treatment. While on the para-aminobenzoic acid treated fibers, the coating is composed of nano-structural HA crystal homogeneously. This is because the -COOH functional groups of para-aminobenzoic acid graft on fibers, with negative charge and arranged structure, accelerating the HA crystal nucleation and crystallization on the carbon fibers.

  1. Facile synthesis of graphene oxide-modified lithium hydroxide for low-temperature chemical heat storage

    Science.gov (United States)

    Yang, Xixian; Huang, Hongyu; Wang, Zhihui; Kubota, Mitsuhiro; He, Zhaohong; Kobayashi, Noriyuki

    2016-01-01

    LiOH·H2O nanoparticles supported on graphene oxide (GO) were facilely synthesized by a hydrothermal process. The mean diameter of nanoparticles on the integrated graphene sheet was about 5-10 nm showed by SEM and TEM results. XRD results suggested that the nanoparticles are in good agreement with the data of LiOH·H2O. The as-prepared sample showed a greatly enhanced thermal energy storage density and exhibit higher rate of heat release than pure lithium hydroxide, and thermal conductivity of composites increased due to the introduction of nano carbon. LiOH·H2O/GO nanocomposites are novel chemical heat storage materials for potential highly efficient energy system.

  2. Electrochemical investigation of the surface-modifying roles of guanidine carbonate in chemical mechanical planarization of tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Rock, S.E.; Crain, D.J.; Zheng, J.P. [Department of Physics, Clarkson University, Potsdam, NY 13699-5820 (United States); Pettit, C.M. [Department of Physics, Emporia State University, Emporia, KS 66801-5087 (United States); Roy, D., E-mail: samoy@clarkson.edu [Department of Physics, Clarkson University, Potsdam, NY 13699-5820 (United States)

    2011-10-03

    Highlights: {yields} This work contributes to the development of CMP slurries for Ta and Cu at low pressure. {yields} We present here a model of the chemical mechanism of the CMP of Ta and Cu using guanidine slurries. {yields} Removal of Ta occurs as structurally weak guanidinium-tantalic-acid surface complexes. {yields} The results will be useful for the CMP processing of interconnects with low-k dielectrics. {yields} We demonstrate the utility of electro-analytical techniques in the development of CMP slurries. - Abstract: The fabrication of interconnect structures for semiconductor devices requires low down-pressure chemical mechanical planarization (CMP) of Ta barrier layers. Guanidine carbonate (GC) serves as an effective surface-complexing agent for such CMP applications, where the rate of Ta removal can be chemically controlled through pH-tuned selectivity with respect to the removal of Cu lines. Electrochemical techniques are employed in this work to study the surface-modifying roles of GC that make this chemical an attractive complexing agent for Ta CMP. In addition, the effects of including H{sub 2}O{sub 2} (an oxidizer) and dodecyl benzene sulfonic acid (DBSA, a dissolution inhibitor for Cu) in GC-based CMP solutions are investigated to examine the selective CMP mechanisms of Ta and Cu in these solutions. The results suggest that the removal of Ta is supported in part by structurally weak guanidinium-tantalic-acid surface complexes formed on Ta/Ta{sub 2}O{sub 5}. The bicarbonate/carbonate anions of GC also facilitate Ta removal through the generation of ion-incorporated tantalum pentoxide. DBSA strongly affects the CMP chemistry of Cu, but exhibits relatively weaker effects on the surface activity of Ta, and thus plays a vital role in dictating the selectivity of Ta:Cu polish rates.

  3. Chemical, Physical, and Mechanical Characterization of Isocyanate Cross-linked Amine-Modified Silica Aerogels

    Science.gov (United States)

    Katti, Atul; Shimpi, Nilesh; Roy, Samit; Lu, Hongbing; Fabrizio, Eve F.; Dass, Amala; Capadona, Lynn A.; Leventis, Nicholas

    2006-01-01

    We describe a new mechanically strong lightweight porous composite material obtained by encapsulating the skeletal framework of amine-modified silica aerogels with polyurea. The conformal polymer coating preserves the mesoporous structure of the underlying silica framework and the thermal conductivity remains low at 0.041 plus or minus 0.001 W m(sup -1 K(sup -1). The potential of the new cross-linked silica aerogels for load-carrying applications was determined through characterization of their mechanical behavior under compression, three-point bending, and dynamic mechanical analysis (DMA). A primary glass transition temperature of 130 C was identified through DMA. At room temperature, results indicate a hyperfoam behavior where in compression cross-linked aerogels are linearly elastic under small strains (less than 4%) and then exhibit yield behavior (until 40% strain), followed by densification and inelastic hardening. At room temperature the compressive Young's modulus and the Poisson's ratio were determined to be 129 plus or minus 8 MPa and 0.18, respectively, while the strain at ultimate failure is 77% and the average specific compressive stress at ultimate failure is 3.89 x 10(exp 5) N m kg(sup -1). The specific flexural strength is 2.16 x 10(exp 4) N m kg(sup -1). Effects on the compressive behavior of strain rate and low temperature were also evaluated.

  4. Applicability of Vacuum Impregnation to Modify Physico-Chemical, Sensory and Nutritive Characteristics of Plant Origin Products—A Review

    Directory of Open Access Journals (Sweden)

    Elżbieta Radziejewska-Kubzdela

    2014-09-01

    Full Text Available Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food.

  5. Raman spectra investigation of the defects of chemical vapor deposited multilayer graphene and modified by oxygen plasma treatment

    Science.gov (United States)

    Li, Zongyao; Xu, Yu; Cao, Bing; Qi, Lin; He, Shunyu; Wang, Chinhua; Zhang, Jicai; Wang, Jianfeng; Xu, Ke

    2016-11-01

    Graphene, a two dimensional material, can be modified its properties by defects engineering. Here, we present Raman spectra studies of the multilayer graphene (MLG) fabricated by low-pressure chemical vapor deposition over copper foil, and report that the defects of MLG can be controlled by adjusting methane concentration. Moreover, MLG can be changed from metallic to semiconductoring properties by using oxygen plasma treatment, and we investigate the defects evolution of the graphene after exposing to oxygen plasma by Raman spectra. Our results indicate that the amount of defects in graphene can be changed by regulating the methane concentration and oxygen plasma exposure times, but the primary type of defect in MLG is still boundary-like defect. It is valuable for understanding the physics of defects evolution through artificially generated defects, and such defect engineering will greatly open up the future application of the novel material.

  6. The application of solid sorbents for the purification of aluminum contaminated chemicals used as modifiers in electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Bulska, E; Pyrzyńska, K

    1996-06-01

    Various microcolumns with solid sorbents (ion exchange resins, functionalised cellulose sorbents, chelating resins) have been tested with respect to their ability for the purification of aluminum contaminated chemicals used as modifiers in electrothermal atomic absorption spectrometry. The purification of NaNO(3), Mg(NO(3))(2), K(2)SO(4) and (NH(4))(2)HPO(4) has been the most effective with an almost 100% efficiency, when Spheron-Oxine was used as chelating resin. The sorption of aluminum from KOH solution has been found to be very high (around 90%) for all investigated sorbents. However, the best results have been obtained with anion-exchange resins. It has been difficult to purify concentrated mineral acids (HCl, H(2)SO(4)). A retention of aluminum above 80% has been achieved only when Cellex P, Chelex 100 or Amberlite XAD-2 have been used.

  7. Chemically modified amino porphyrin/TiO2 for the degradation of Acid Black 1 under day light illumination.

    Science.gov (United States)

    Krishnakumar, Balu; Balakrishna, Avula; Arranja, Cláudia T; Dias, Carlos M F; Sobral, Abilio J F N

    2017-04-05

    In this paper, for the first time, chemically modified 5,10,15,20-meso-tetra-(para-amino)-phenyl-porphyrin/TiO2 (TPAPP/TiO2) was prepared and used for the degradation of an azo dye Acid Black 1 (AB 1) under direct sunlight. Initially, TiO2 was prepared by sol-gel method. Before making a TPAPP/TiO2 composite, the surface modification of TiO2 was carried out with glycidoxypropyltrimethoxy silane (GPTMS) which acts as a coupling agent. This is an epoxy terminated silane and could easily bond to the amino group of TPAPP through epoxy cleavage. The formation of TPAPP/TiO2 was confirmed by different characterization techniques such as FT-IR, XRD, SEM and DRS. The photocatalytic activity of TiO2 was highly influenced by TPAPP. A mechanism was proposed for AB 1 degradation by TPAPP/TiO2 under sun light.

  8. Interaction of plasma-generated water cluster ions with chemically-modified Si surfaces investigated by infrared absorption spectroscopy

    Science.gov (United States)

    Hirano-Iwata, Ayumi; Matsumura, Ryosuke; Ma, Teng; Kimura, Yasuo; Niwano, Michio; Nishikawa, Kazuo

    2016-03-01

    We have investigated the interaction of water cluster ions generated by discharge plasma, with chemically modified Si surfaces using infrared absorption spectroscopy in the multiple internal reflection geometry. We observe that water cluster ions readily adsorb on SiO2-covered Si surfaces to form water droplets. We demonstrate that positively- and negatively-charged cluster ions adsorb on the SiO2-covered Si surface in different manners, indicating ionic interaction of the water droplets with the negatively-charged SiO2 surface. Water droplets formed on the protein-coated surface rupture the amide bond of the proteins, suggesting the function of protein decomposition of water cluster ions.

  9. Interaction of plasma-generated water cluster ions with chemically-modified Si surfaces investigated by infrared absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    Ayumi Hirano-Iwata

    2016-03-01

    Full Text Available We have investigated the interaction of water cluster ions generated by discharge plasma, with chemically modified Si surfaces using infrared absorption spectroscopy in the multiple internal reflection geometry. We observe that water cluster ions readily adsorb on SiO2-covered Si surfaces to form water droplets. We demonstrate that positively- and negatively-charged cluster ions adsorb on the SiO2-covered Si surface in different manners, indicating ionic interaction of the water droplets with the negatively-charged SiO2 surface. Water droplets formed on the protein-coated surface rupture the amide bond of the proteins, suggesting the function of protein decomposition of water cluster ions.

  10. Rehabilitation of irradiated patients with chemically modified and conventional SLA implants: five-year follow-up.

    Science.gov (United States)

    Nack, C; Raguse, J-D; Stricker, A; Nelson, K; Nahles, S

    2015-01-01

    The aim of this study is to evaluate the clinical and radiological parameters of standard SLA surface implants compared to chemically modified hydrophilic SLActive implants in irradiated patients after the initial 12-month loading period up to 5 years. Twenty patients with a mean age of 61·1 years were treated with dental implants after ablative surgery and radio-chemotherapy of oral cancer. All patients were non-smokers. The placement of 102 implants (50 SLA, 52 SLActive) was performed bilaterally according to a split-mouth design. Mean crestal bone changes were evaluated using standardised orthopantomographies and clinical parameters. Data were analysed using a Kaplan-Meier curve, Mann-Whitney U-test and two-factorial non-parametric analysis. The average observation period was 60 months. The amount of bone loss at the implant shoulder of SLA implants was mesial and distal 0·7 mm. The SLActive implants displayed a bone loss of mesial 0·6 mm as well as distal 0·7 mm after 5 years. Two SLA implants were lost before loading. One patient lost five implants due to recurrence of a tumour. The overall cumulative 12-month, 3-year and 5-year survival rate of SLA implants was 92%, 80% and 75·8% and of SLActive implants 94·2%, 78·8% and 74·4%, respectively. Eighteen implants were considered lost because the patients had died. Sandblasted acid-etched implants with or without a chemically modified surface can be used in irradiated patients with a high predictability of success. Lower implant survival rates in patients with irradiated oral cancer may be associated with systemic effects rather than peri-implantitis.

  11. Efficient acetone-butanol-ethanol production (ABE) by Clostridium acetobutylicum XY16 immobilized on chemically modified sugarcane bagasse.

    Science.gov (United States)

    Kong, Xiangping; He, Aiyong; Zhao, Jie; Wu, Hao; Jiang, Min

    2015-07-01

    Sugarcane bagasse was chemically modified by polyethylenimine (PEI) and glutaraldehyde (GA) and then used as a support to immobilize Clostridium acetobutylicum XY16 in the process of butanol production. Compared with batch fermentation using unmodified sugarcane bagasse, 22.3 g/L total solvents were produced by cells immobilized on 4 g/L PEI treated sugarcane bagasse with high solvent productivity of 0.62 g/(L h) and glucose consumption rate of 1.67 g/(L h). Improvement of 14, 43, and 37 % in total solvent titer, solvent productivity and glucose consumption rate was observed, respectively. Enhanced solvent production of 25.14 g/L was obtained when using a high concentration of glucose of 80 g/L. Continuous fermentation was studied using PEI/GA modified sugarcane bagasse as immobilization support with a range of dilution which rates from 0.2 to 2.5 to find an optimal condition. The maximum solvent productivity of 11.32 g/(L h) was obtained at a high dilution rate of 2.0 h(-1).

  12. Factors affecting protein transfer into surfactant-isooctane solution: a case study of extraction behavior of chemically modified cytochrome c.

    Science.gov (United States)

    Ono, T; Goto, M

    1998-01-01

    The extraction mechanism of proteins by surfactant molecules in an organic solvent has been investigated using a chemically modified protein. We conducted guanidylation on lysine residues of cytochrome c by replacing their amino groups with homoarginine to enhance the protein-surfactant interaction. Results have shown that guanidylated cytochrome c readily forms a hydrophobic complex with dioleyl phosphoric acid (DOLPA) through hydrogen bonding between the phosphate moiety and the guanidinium groups. Although improved protein-surfactant interaction activated the formation of a hydrophobic complex at the interface, it could not improve the protein transfer in isooctane. It has been established that the protein extraction mechanism using surfactant molecules is mainly governed by two processes: formation of an interfacial complex at the oil-water interface and the subsequent solubilization of the complex into the organic phase. In addition, a kinetic study demonstrated that guanidylation of lysine accelerated the initial extraction rate of cytochrome c. This fact implies that the protein transferability from aqueous phase into organic phase depends on the protein-surfactant interaction which can be modified by protein surface engineering.

  13. Highly Sensitive Bacteria Quantification Using Immunomagnetic Separation and Electrochemical Detection of Guanine-Labeled Secondary Beads

    Directory of Open Access Journals (Sweden)

    Harikrishnan Jayamohan

    2015-05-01

    Full Text Available In this paper, we report the ultra-sensitive indirect electrochemical detection of E. coli O157:H7 using antibody functionalized primary (magnetic beads for capture and polyguanine (polyG oligonucleotide functionalized secondary (polystyrene beads as an electrochemical tag. Vacuum filtration in combination with E. coli O157:H7 specific antibody modified magnetic beads were used for extraction of E. coli O157:H7 from 100 mL samples. The magnetic bead conjugated E. coli O157:H7 cells were then attached to polyG functionalized secondary beads to form a sandwich complex (magnetic bead/E. coli secondary bead. While the use of magnetic beads for immuno-based capture is well characterized, the use of oligonucleotide functionalized secondary beads helps combine amplification and potential multiplexing into the system. The antibody functionalized secondary beads can be easily modified with a different antibody to detect other pathogens from the same sample and enable potential multiplexing. The polyGs on the secondary beads enable signal amplification up to 10\\(^{8}\\ guanine tags per secondary bead (\\(7.5\\times10^{6}\\ biotin-FITC per secondary bead, 20 guanines per oligonucleotide bound to the target (E. coli. A single-stranded DNA probe functionalized reduced graphene oxide modified glassy carbon electrode was used to bind the polyGs on the secondary beads. Fluorescent imaging was performed to confirm the hybridization of the complex to the electrode surface. Differential pulse voltammetry (DPV was used to quantify the amount of polyG involved in the hybridization event with tris(2,2'-bipyridineruthenium(II (Ru(bpy\\(_{3}^{2+}\\ as the mediator. The amount of polyG signal can be correlated to the amount of E. coli O157:H7 in the sample. The method was able to detect concentrations of E. coli O157:H7 down to 3 CFU/100 mL, which is 67 times lower than the most sensitive technique reported in literature. The signal to noise ratio for this work was 3

  14. Physisorption of DNA molecules on chemically modified single-walled carbon nanotubes with and without sonication.

    Science.gov (United States)

    Umemura, Kazuo; Ishibashi, Yu; Oura, Shusuke

    2016-09-01

    We investigated the physisorption phenomenon of single-stranded DNA (ssDNA) molecules onto two types of commercially available chemically functionalized single-walled carbon nanotubes (SWNTs) by atomic force microscopy (AFM) and agarose gel electrophoresis. We found that DNA molecules can adsorb on the water-soluble SWNT surfaces without sonication, although sonication treatment has been used for hybridization of DNA and SWNTs in many previous studies. Using our method, damage of DNA molecules by sonication can be avoided. On the other hand, the amount of DNA molecules adsorbed on SWNT surfaces increased when the samples were sonicated. This fact suggests that the sonication is effective not only at debundling of SWNTs, but also at assisting DNA adsorption. Furthermore, DNA adsorption was affected by the types of functionalized SWNTs. In the case of SWNTs functionalized with polyethylene glycol (PEG-SWNT), physisorption of ssDNA molecules was confirmed only by agarose-gel electrophoresis. In contrast, amino-terminated SWNTs (NH2-SWNTs) showed a change in the height distribution profile based on AFM observations. These results suggest that DNA molecules tended to adsorb to NH2-SWNT surfaces, although DNA molecules can also adsorb on PEG-SWNT surfaces. Our results revealed fundamental information for developing nanobiodevices using hybrids of DNA and SWNTs.

  15. A chemically modified [alpha]-amylase with a molten-globule state has entropically driven enhanced thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Khawar Sohail; Poljak, Anne; De Francisci, Davide; Guerriero, Gea; Pilak, Oliver; Burg, Dominic; Raftery, Mark J.; Parkin, Don M.; Trewhella, Jill; Cavicchioli, Ricardo (Sydney); (New South)

    2010-11-15

    The thermostability properties of TAA were investigated by chemically modifying carboxyl groups on the surface of the enzyme with AMEs. The TAA{sub MOD} exhibited a 200% improvement in starch-hydrolyzing productivity at 60 C. By studying the kinetic, thermodynamic and biophysical properties, we found that TAA{sub MOD} had formed a thermostable, MG state, in which the unfolding of the tertiary structure preceded that of the secondary structure by at least 20 C. The X-ray crystal structure of TAA{sub MOD} revealed no new permanent interactions (electrostatic or other) resulting from the modification. By deriving thermodynamic activation parameters of TAA{sub MOD}, we rationalised that thermostabilisation have been caused by a decrease in the entropy of the transition state, rather than being enthalpically driven. Far-UV CD shows that the origin of decreased entropy may have arisen from a higher helical content of TAA{sub MOD}. This study provides new insight into the intriguing properties of an MG state resulting from the chemical modification of TAA.

  16. Phase Stability of Ce-Modified La2Zr2O7 Coatings and Chemical Compatibility with YSZ

    Science.gov (United States)

    Wu, Qiong; Ji, Xiaojuan; Peng, Haoran; Ren, Xianjing; Yu, Yueguang

    2016-04-01

    Ce-modified La2Zr2O7 powders, i.e., La2Zr2O7 (LZ), La2(Zr0.7Ce0.3)2O7 (LZ7C3), and La2(Zr0.3Ce0.7)2O7 (LZ3C7), were used to produce thermal barrier coatings by atmospheric plasma spray process. The chemical compatibility of the CeO2-doped La2Zr2O7 with the traditional YSZ was investigated in LZ-YSZ powder mixtures and LZ-YSZ bilayer coatings by x-ray diffraction and scanning electron microscope. The powder mixtures and coatings were aged at 1200 and 1300 °C for 100 h. The results showed that LZ and LZ7C3 presented single pyrochlore structure after the heat treatments at both 1200 and 1300 °C. For LZ3C7, however, fluorite structure was observed at 1300 °C, indicating a poor phase stability of LZ3C7 at the elevated temperature. The results further showed that La2(Zr0.3Ce0.7)2O7 reacted with YSZ in the bilayer ceramic coatings due to the diffusion of cerium, zirconium, and yttrium. While for La2Zr2O7(LZ) and La2(Zr0.7Ce0.3)2O7, a better chemical compatibility with YSZ was shown.

  17. A genotype of modified vaccinia Ankara (MVA) that facilitates replication in suspension cultures in chemically defined medium.

    Science.gov (United States)

    Jordan, Ingo; Horn, Deborah; John, Katrin; Sandig, Volker

    2013-01-21

    While vectored vaccines, based on hyperattenuated viruses, may lead to new treatment options against infectious diseases and certain cancers, they are also complex products and sometimes difficult to provide in sufficient amount and purity. To facilitate vaccine programs utilizing host-restricted poxviruses, we established avian suspension cell lines (CR and CR.pIX) and developed a robust, chemically defined, culturing process for production of this class of vectors. For one prominent member, modified vaccinia Ankara (MVA), we now describe a new strain that appears to replicate to greater yields of infectious units, especially in the cell-free supernatant of cultures in chemically defined media. The new strain was obtained by repeated passaging in CR suspension cultures and, consistent with reports on the exceptional genetic stability of MVA, sequencing of 135 kb of the viral genomic DNA revealed that only three structural proteins (A3L, A9L and A34R) each carry a single amino acid exchange (H639Y, K75E and D86Y, respectively). Host restriction in a plaque-purified isolate of the new genotype appears to be maintained in cell culture. Processing towards an injectable vaccine preparation may be simplified with this strain as a complete lysate, containing the main burden of host cell contaminants, may not be required anymore to obtain adequate yields.

  18. Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Zhai, Wen-Lei; Li, Da-Wei; Qu, Lu-Lu; Fossey, John S.; Long, Yi-Tao

    2011-12-01

    A facile and cost-effective approach for the preparation of a surface-enhanced Raman spectroscopy (SERS) substrate through constructing silver nanoparticle/3-aminopropyltriethoxysilane/agarose films (Ag NPs/APTES/Agar film) on various solid supports is described. The SERS performance of the substrate was systematically investigated, revealing a maximum SERS intensity with four layers of the Ag NP deposition. The enhancement factor of the developed substrate was calculated as 1.5 × 107 using rhodamine 6G (R6G) as the probe molecule, and the reproducibility of the SERS signals was established. A high throughput screening platform was designed, manufactured and implemented which utilised the ability to cast agarose to assemble arrays. Quantitative analysis of 4-aminobenzoic acid (4-ABA) and 4-aminothiophenol (4-ATP) was achieved over a ~0.5 nM-0.1 μM range.A facile and cost-effective approach for the preparation of a surface-enhanced Raman spectroscopy (SERS) substrate through constructing silver nanoparticle/3-aminopropyltriethoxysilane/agarose films (Ag NPs/APTES/Agar film) on various solid supports is described. The SERS performance of the substrate was systematically investigated, revealing a maximum SERS intensity with four layers of the Ag NP deposition. The enhancement factor of the developed substrate was calculated as 1.5 × 107 using rhodamine 6G (R6G) as the probe molecule, and the reproducibility of the SERS signals was established. A high throughput screening platform was designed, manufactured and implemented which utilised the ability to cast agarose to assemble arrays. Quantitative analysis of 4-aminobenzoic acid (4-ABA) and 4-aminothiophenol (4-ATP) was achieved over a ~0.5 nM-0.1 μM range. Electronic supplementary information (ESI) available: the chemical structure of agarose, the SEM characterization of the synthesised Ag NPs, the calculation of the EF, the stability of the SERS substrate. See DOI: 10.1039/c1nr10956a

  19. The effect of chemically modified alginates on macrophage phenotype and biomolecule transport.

    Science.gov (United States)

    Bygd, Hannah C; Bratlie, Kaitlin M

    2016-07-01

    Macrophage (MΦ) reprogramming has received significant attention in applications such as cancer therapeutics and tissue engineering where the host immune response to biomaterials is crucial in determining the success or failure of an implanted device. Polymeric systems can potentially be used to redirect infiltrating M1 MΦs toward a proangiogenic phenotype. This work exploits the concept of MΦ reprogramming in the engineering of materials for improving the longevity of tissue engineering scaffolds. We have investigated the effect of 13 different chemical modifications of alginate on MΦ phenotype. Markers of the M1 response-tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase-and the M2 response-arginase-were measured and used to determine the ability of the materials to alter MΦ phenotype. It was found that some modifications were able to reduce the pro-inflammatory response of M1 MΦs, others appeared to amplify the M2 phenotype, and the results for two materials suggested they were able to reprogram a MΦ population from M1 to M2. These findings were supplemented by studies done to examine the permselectivity of the materials. Diffusion of TNF-α was completely prevented through some of these materials, while up to 84% was found to diffuse through others. The diffusion of insulin through the materials was statistically consistent. These results suggest that the modification of these materials might alter mass transport in beneficial ways. The ability to control polarization of MΦ phenotypes with immunoprotective materials has the potential to augment the success of tissue engineering scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1707-1719, 2016.

  20. Electron Transfer Reactivity Patterns at Chemically Modified Electrodes: Fundamentals and Application to the Optimization of Redox Recycling Amplification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Adam Johan [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Electroanalytical chemistry is often utilized in chemical analysis and Fundamental studies. Important advances have been made in these areas since the advent of chemically modified electrodes: the coating of an electrode with a chemical film in order to impart desirable, and ideally, predictable properties. These procedures enable the exploitation of unique reactivity patterns. This dissertation presents studies that investigate novel reaction mechanisms at self-assembled monolayers on gold. In particular, a unique electrochemical current amplification scheme is detailed that relies on a selective electrode to enable a reactivity pattern that results in regeneration of the analyte (redox recycling). This regenerating reaction can occur up to 250 times for each analyte molecule, leading to a notable enhancement in the observed current. The requirements of electrode selectivity and the resulting amplification and detection limit improvements are described with respect to the heterogeneous and homogeneous electron transfer rates that characterize the system. These studies revealed that the heterogeneous electrolysis of the analyte should ideally be electrochemically reversible, while that for the regenerating agent should be held to a low level. Moreover, the homogeneous reaction that recycles the analyte should occur at a rapid rate. The physical selectivity mechanism is also detailed with respect to the properties of the electrode and redox probes utilized. It is shown that partitioning of the analyte into/onto the adlayer leads to the extraordinary selectivity of the alkanethiolate monolayer modified electrode. Collectively, these studies enable a thorough understanding of the complex electrode mechanism required for successful redox recycling amplification systems, Finally, in a separate (but related) study, the effect of the akyl chain length on the heterogeneous electron transfer behavior of solution-based redox probes is reported, where an odd-even oscillation

  1. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Kado, T.; Hidaka, T. [Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Aita, H. [Division of Occlusion and Removable Prosthodontics, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Endo, K. [Division of Biomaterials and Bioengineering, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Furuichi, Y., E-mail: furuichi@hoku-iryo-u.ac.jp [Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Cell-adhesive molecules were covalently immobilized on a Ti surface. Black-Right-Pointing-Pointer Immobilized cell-adhesive molecules maintained native function on the Ti surface. Black-Right-Pointing-Pointer Immobilized collagen enhanced adhesion of periodontal ligament cells to the Ti. - Abstract: A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully

  2. Cobalt as chemical modifier to improve chromium sensitivity and minimize matrix effects in tungsten coil atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sidnei G. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil); Donati, George L., E-mail: georgedonati@yahoo.com.br [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Santos, Luana N. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil); Jones, Bradley T. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Nóbrega, Joaquim A. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil)

    2013-05-30

    Graphical abstract: -- Highlights: •Charge transfer reactions increase the population of Cr{sup +}. •Chromium ions and electrons recombine to form excited-state Cr atoms. •A 10-fold improvement in LOD is observed for Cr emission measurements. •The two-step ionization/excitation mechanism improves sensitivity and accuracy. •High concentrations of Co also minimize matrix effects. -- Abstract: Cobalt is used as chemical modifier to improve sensitivity and minimize matrix effects in Cr determinations by tungsten coil atomic emission spectrometry (WCAES). The atomizer is a tungsten filament extracted from microscope light bulbs. A solid-state power supply and a handheld CCD-based spectrometer are also used in the instrumental setup. In the presence of 1000 mg L{sup −1} Co, WCAES limit of detection for Cr (λ = 425.4 nm) is calculated as 0.070 mg L{sup −1}; a 10-fold improvement compared to determinations without Co modifier. The mechanism involved in such signal enhancement is similar to the one observed in ICP OES and ICP-MS determinations of As and Se in the presence of C. Cobalt increases the population of Cr{sup +} by charge transfer reactions. In a second step, Cr{sup +}/e{sup −} recombination takes place, which results in a larger population of excited-state Cr atoms. This alternative excitation route is energetically more efficient than heat transfer from atomizer and gas phase to analyte atoms. A linear dynamic range of 0.25–10 mg L{sup −1} and repeatability of 3.8% (RSD, n = 10) for a 2.0 mg L{sup −1} Cr solution are obtained with this strategy. The modifier high concentration also contributes to improving accuracy due to a matrix-matching effect. The method was applied to a certified reference material of Dogfish Muscle (DORM-2) and no statistically significant difference was observed between determined and certified Cr values at a 95% confidence level. Spike experiments with bottled water samples resulted in recoveries between 93% and

  3. The effect of different annealing temperatures on tin and cadmium telluride phases obtained by a modified chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Anderson Fuzer [Departamento de Química, CCE, Universidade Federal do Espírito Santo, Campus Goiabeiras, 29075-910 Vitória, Espírito Santo (Brazil); Porto, Arilza de Oliveira, E-mail: arilzaporto@yahoo.com.br [Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Magela de Lima, Geraldo [Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Paniago, Roberto [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Ardisson, José Domingos [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Belo Horizonte, Minas Gerais (Brazil)

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of cadmium and tin telluride. ► Chemical route to obtain pure crystalline cadmium and tin telluride. ► Effect of the annealing temperature on the crystalline phases. ► Removal of tin oxide as side product through thermal treatment. -- Abstract: In this work tin and cadmium telluride were prepared by a modification of a chemical route reported in the literature to obtain metallacycles formed by oxidative addition of tin-tellurium bonds to platinum (II). Through this procedure it was possible to obtain tin and cadmium telluride. X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the crystalline phases obtained as well as the presence of side products. In the case of tin telluride it was identified potassium chloride, metallic tellurium and tin oxide as contaminants. The tin oxidation states were also monitored by {sup 119}Sn Mössbauer spectroscopy. The annealing in hydrogen atmosphere was chosen as a strategy to reduce the tin oxide and promote its reaction with the excess of tellurium present in the medium. The evolution of this tin oxide phase was studied through the annealing of the sample at different temperatures. Cadmium telluride was obtained with high degree of purity (98.5% relative weight fraction) according to the Rietveld refinement of X-ray diffraction data. The modified procedure showed to be very effective to obtain amorphous tin and cadmium telluride and the annealing at 450 °C has proven to be useful to reduce the amount of oxide produced as side product.

  4. Constructing a novel 8-hydroxy-2'-deoxyguanosine electrochemical sensor and application in evaluating the oxidative damages of DNA and guanine.

    Science.gov (United States)

    Guo, Zhipan; Liu, Xiuhui; Liu, Yuelin; Wu, Guofan; Lu, Xiaoquan

    2016-12-15

    8-Hydroxy-2'-deoxyguanosine (8-OHdG) is commonly identified as a biomarker of oxidative DNA damage. In this work, a novel and facile 8-OHdG sensor was developed based on the multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE). It exhibited good electrochemical responses toward the oxidation of 8-OHdG, and the linear ranges were 5.63×10(-8)-6.08×10(-6)M and 6.08×10(-6)-1.64×10(-5)M, with the detection limit of 1.88×10(-8)M (S/N=3). Moreover, the fabricated sensor was applied for the determination of 8-OHdG generated from damaged DNA and guanine, respectively, and the oxidation currents of 8-OHdG increased along with the damaged DNA and guanine within certain concentrations. These results could be used to evaluate the DNA damage, and provide useful information on diagnosing diseases caused by mutation and deficiency of the immunity system.

  5. Eletrodos quimicamente modificados aplicados à eletroanálise: uma breve abordagem Chemically modified electrodes applyes to electroanalysis: a brief presentation

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Brito Souza

    1997-04-01

    Full Text Available Chemically modified electrodes (CMEs have been subject of considerable attention since its inception about 23 years ago. CMEs result of a deliberate immobilization of a modifier agent onto the electrode surface obtained through chemical reactions, chemisorption, composite formation or polymer coating. This immobilization seeks transfer the physicochemical properties of the modifier to the electrode surface and thus to dictate and control the behavior of the electrode/solution interface. In recent years the interest in CMEs has increased particularly to enhance the sensitivity and/or the selectivity of electroanalytical techniques. In general higher sensitivity and/or selectivity may be achieved by exploiting one or more of the following phenomena: electrocatalysis, preconcentration and interferents exclusion. This paper deals with the application of CMEs in electroanalysis, including a brief presentation of the more general procedures that have been employed for the modification of electrode surfaces.

  6. Effect of chemically modified silicas on the properties of hybrid gel electrolyte for Li-ion batteries

    Science.gov (United States)

    Walkowiak, Mariusz; Zalewska, Aldona; Jesionowski, Teofil; Waszak, Daniel; Czajka, Bogdan

    The aim of the presented work was to perform a preliminary study the physico-chemical properties of hybrid organic-inorganic gel electrolytes for Li-ion batteries based on the PVdF-HFP polymeric matrix and surface modified fumed silicas. Modifications were done by means of the so-called dry method using seven different silanes differing in the nature of the principal functional group: N-2-(aminoethyl)-3-amino propyltrimethoxysilane, 3-glycidoxypropyltrimetoxysilane, 3-mercaptopropyltrimetoxysilane, n-octyltriethoxysilane, 3-(chloropropyl)trimethoxysilane, 3-methacryloxypropyltrimetoxysilane, vinyltrimethoxysilane. The PVdF-HFP gels were prepared according to the so-called Bellcore process (two-step method). Impact of the silicas surface functionality on the degree of crystallinity of the polymeric membranes was studied using the differential scanning calorimetry technique. Applicability of the prepared gel electrolytes for the Li-ion technology was estimated on the basis of specific conductivity measurements. It was shown that modification of the silica surface by most of the silanes causes an increase in the gel specific conductivity by about two orders of magnitude as compared to gel with unmodified silica.

  7. Effect of chemically modified silicas on the properties of hybrid gel electrolyte for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Walkowiak, Mariusz; Waszak, Daniel; Czajka, Bogdan [Central Laboratory of Batteries and Cells, ul. Forteczna 12, 61-362 Poznan (Poland); Zalewska, Aldona [Warsaw University of Technology, Department of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw (Poland); Jesionowski, Teofil [Poznan University of Technology, Institute of Chemical Technology and Engineering, Pl. Marii Sklodowskiej-Curie 2, 60-965 Poznan (Poland)

    2006-09-13

    The aim of the presented work was to perform a preliminary study the physico-chemical properties of hybrid organic-inorganic gel electrolytes for Li-ion batteries based on the PVdF-HFP polymeric matrix and surface modified fumed silicas. Modifications were done by means of the so-called dry method using seven different silanes differing in the nature of the principal functional group: N-2-(aminoethyl)-3-amino propyltrimethoxysilane, 3-glycidoxypropyltrimetoxysilane, 3-mercaptopropyltrimetoxysilane, n-octyltriethoxysilane, 3-(chloropropyl)trimethoxysilane, 3-methacryloxypropyltrimetoxysilane, vinyltrimethoxysilane. The PVdF-HFP gels were prepared according to the so-called Bellcore process (two-step method). Impact of the silicas surface functionality on the degree of crystallinity of the polymeric membranes was studied using the differential scanning calorimetry technique. Applicability of the prepared gel electrolytes for the Li-ion technology was estimated on the basis of specific conductivity measurements. It was shown that modification of the silica surface by most of the silanes causes an increase in the gel specific conductivity by about two orders of magnitude as compared to gel with unmodified silica. (author)

  8. Optical properties of carbon nanostructures produced by laser irradiation on chemically modified multi-walled carbon nanotubes

    Science.gov (United States)

    Santiago, Enrique Vigueras; López, Susana Hernández; Camacho López, Marco A.; Contreras, Delfino Reyes; Farías-Mancilla, Rurik; Flores-Gallardo, Sergio G.; Hernández-Escobar, Claudia A.; Zaragoza-Contreras, E. Armando

    2016-10-01

    This research focused on the nanosecond (Nd: YAG-1064 nm) laser pulse effect on the optical and morphological properties of chemically modified multi-walled carbon nanotubes (MWCNT). Two suspensions of MWCNT in tetrahydrofuran (THF) were prepared, one was submitted to laser pulses for 10 min while the other (blank) was only mechanically homogenized during the same time. Following the laser irradiation, the suspension acquired a yellow-amber color, in contrast to the black translucent appearance of the blank. UV-vis spectroscopy confirmed this observation, showing the blank a higher absorption. Additionally, photoluminescence measurements exhibited a broad blue-green emission band both in the blank and irradiated suspension when excited at 369 nm, showing the blank a lower intensity. However, a modification in the excitation wavelength produced a violet to green tuning in the irradiated suspension, which did not occur in the blank. Lastly, the electron microscopy analysis of the treated nanotubes showed the abundant formation of amorphous carbon, nanocages, and nanotube unzipping, exhibiting the intense surface modification produced by the laser pulse. Nanotube surface modification and the coexistence with the new carbon nanostructures were considered as the conductive conditions for optical properties modification.

  9. COL-3, a chemically modified tetracycline, inhibits lipopolysaccharide-induced microglia activation and cytokine expression in the brain.

    Science.gov (United States)

    Edan, Rawan Abdulhameed; Luqmani, Yunus A; Masocha, Willias

    2013-01-01

    Microglia activation results in release of proinflammatory molecules including cytokines, which contribute to neuronal damage in the central nervous system (CNS) if not controlled. Tetracycline antibiotics such as minocycline inhibit microglial activation and cytokine expression during CNS inflammation. In the present study we found that administration of chemically modified tetracycline-3 (COL-3), inhibits lipopolysaccharide (LPS)-induced microglial and p38 MAPK activation, as well as the increase in TNF-α, but not IL-1β expression, in the brains of BALB/c mice. COL-3 has been described to have no antibacterial activity. We observed that COL-3 had no activity against a Gram-negative bacteria, Escherichia coli; however surprisingly, COL-3 had antibacterial activity against a Gram-positive bacteria Staphylococcus aureus, with a minimum inhibitory concentration of 1 mg/ml. Our data show that COL-3 has some antibacterial activity against S. aureus, inhibits LPS-induced neuroinflammation, and displays potential as a therapeutic agent for treatment of conditions involving CNS inflammation.

  10. Comparison of adsorption of Cd(II and Pb(II ions on pure and chemically modified fly ashes

    Directory of Open Access Journals (Sweden)

    Sočo Eleonora

    2016-06-01

    Full Text Available The study investigates chemical modifications of coal fly ash (FA treated with HCl or NH4HCO3 or NaOH or Na2edta, based on the research conducted to examine the behaviour of Cd(II and Pb(II ions adsorbed from water solution on treated fly ash. In laboratory tests, the equilibrium and kinetics were examined applying various temperatures (293 - 333 K and pH (2 - 11 values. The maximum Cd(II and Pb(II ions adsorption capacity obtained at 293 K, pH 9 and mixing time 2 h from the Langmuir model can be grouped in the following order: FA-NaOH > FA-NH4HCO3 > FA > FA-Na2edta > FA-HCl. The morphology of fly ash grains was examined via small-angle X-ray scattering (SAXS and images of scanning electron microscope (SEM. The adsorption kinetics data were well fitted by a pseudo-second-order rate model but showed a very poor fit for the pseudofirst order model. The intra-particle model also revealed that there are two separate stages in the sorption process, i.e. the external diffusion and the inter-particle diffusion. Thermodynamics parameters such as free energy, enthalpy and entropy were also determined. A laboratory test demonstrated that the modified coal fly ash worked well for the Cd(II and Pb(II ion uptake from polluted waters.

  11. COL-3, a chemically modified tetracycline, inhibits lipopolysaccharide-induced microglia activation and cytokine expression in the brain.

    Directory of Open Access Journals (Sweden)

    Rawan Abdulhameed Edan

    Full Text Available Microglia activation results in release of proinflammatory molecules including cytokines, which contribute to neuronal damage in the central nervous system (CNS if not controlled. Tetracycline antibiotics such as minocycline inhibit microglial activation and cytokine expression during CNS inflammation. In the present study we found that administration of chemically modified tetracycline-3 (COL-3, inhibits lipopolysaccharide (LPS-induced microglial and p38 MAPK activation, as well as the increase in TNF-α, but not IL-1β expression, in the brains of BALB/c mice. COL-3 has been described to have no antibacterial activity. We observed that COL-3 had no activity against a Gram-negative bacteria, Escherichia coli; however surprisingly, COL-3 had antibacterial activity against a Gram-positive bacteria Staphylococcus aureus, with a minimum inhibitory concentration of 1 mg/ml. Our data show that COL-3 has some antibacterial activity against S. aureus, inhibits LPS-induced neuroinflammation, and displays potential as a therapeutic agent for treatment of conditions involving CNS inflammation.

  12. Effects of modified atmosphere and vacuum packaging on microbiological and chemical properties of rainbow trout (Oncorynchus mykiss) fillets.

    Science.gov (United States)

    Arashisar, Sükriye; Hisar, Olcay; Kaya, Mükerrem; Yanik, Telat

    2004-12-15

    Microbial (psychrotrophic, mesophilic aerobic bacteria and Enterobacteriacae counts), and chemical analysis [pH, total volatile bases nitrogen (TVB-N), lipid oxidation (Thiobarbituric acid reactive substance, TBARS)] of rainbow trout (Oncorynchus mykiss) fillets in air (control), vacuum and modified atmosphere packaging (MAP) with various gas mixtures conditions at 4+/-1 degrees C were determined. The gas mixtures evaluated were 100% CO2, 2.5% O2+7.5% N2+90% CO2 and 30% O2+30% N2+40% CO2. Psychrotrophic bacteria count was above 1 x 10(7) cfu/g on the 12th day in 100% CO2. However; mesophilic bacteria count was below 1 x 10(6) cfu/g at the end of the 14-day storage period. Enterobacteriaceae count was significantly lower in samples packaged with MAP. Lipid oxidation increased rapidly after 6 days of storage in the samples containing 30% O2. While minimum TBARS values were recorded in fillets containing 100% CO2 and vacuumed fillets, the lowest TVB-N values were obtained in fillets with 100% CO2.

  13. Compositionally and structurally modified SrTiO{sub 3} thin films prepared by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Spitzner, Dirk; Gutmann, Emanuel; Reibold, Marianne; Meyer, Dirk C. [Institut fuer Strukturphysik, Technische Universitaet Dresden (Germany); Mahltig, Boris [GMBU e.V., Arbeitsgruppe Funktionelle Schichten, Dresden (Germany)

    2009-07-01

    For electronic and architectural design of functional electroceramic devices, materials with a perovskite-type of structure play a major role. For high-k dielectric, sensing and thermal switching applications the introduction of Barium into SrTiO{sub 3}(STO) allows tuning the electrical properties by tuning the paraelectric-to-ferroelectric transition temperature. For thin film preparation a classic sol-gel route was modified by refluxing as well as solvothermal treatment of the as-synthesized sols. For treated sols the decomposition, phase evolution and transition behaviour differed and from X-ray diffraction (XRD) we observed a supression of foreign phases and a higher degree of compositional homogeneity. In this context also the homologous series of perovskite-related Ruddlesden-Popper (RP) phases promise an engineering of electrical properties by selecting a specific member. Exemplarily we realised the chemical solution deposition of epitaxial thin films of SrO(SrTiO{sub 3}){sub n} RP phases (n=1,2,3) on STO substrates. Structural characteristics of the films were analysed by means of XRD and HRTEM. An application as buffer layers exhibiting tuneable dielectric properties is conceivable.

  14. Glassy carbon electrode modified with a graphene oxide/poly(o-phenylenediamine) composite for the chemical detection of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Van Hoa [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Department of Chemistry, Nha Trang University, 2 Nguyen Dinh Chieu, Nha Trang (Viet Nam); Tran, Trung Hieu [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Shim, Jae-Jin, E-mail: jjshim@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of)

    2014-11-01

    Conducting poly(o-phenylenediamine) (POPD)/graphene oxide (GO) composites were prepared using a facile and efficient method involving the in-situ polymerization of OPD in the presence of GO in an aqueous medium. Copper sulfate was used as an oxidative initiator for the polymerization of OPD. Scanning electron microscopy and transmission electron microscopy images showed that POPD microfibrils were formed and distributed relatively uniformly with GO sheets in the obtained composites. X-ray diffraction results revealed the highly crystal structure of POPD. This composite exhibited good catalytic activity and stability. These results highlight the potential applications of POPD/GO composites as excellent electrochemical sensors. The composites were used to modify glass carbon electrodes for the chemical detection of hydrogen peroxide in aqueous media. - Highlights: • Graphene oxide/poly(o-phenylenediamine) composites were prepared efficiently. • POPD microfibrils were distributed relatively uniformly with GO sheets. • The composite exhibited good catalytic activity and stability for H{sub 2}O{sub 2} sensing.

  15. Improved properties of chemically modified graphene/poly(methyl methacrylate nanocomposites via a facile in-situ bulk polymerization

    Directory of Open Access Journals (Sweden)

    X. Y. Yuan

    2012-10-01

    Full Text Available The nanosheet of graphene was chemically modified by long alkyl chain for enhanced compatibility with polymer matrix and graphene/poly(methyl methacrylate (PMMA nanocomposites with homogeneous dispersion of the nanosheets and enhanced nanofiller-matrix interfacial interaction were fabricated via a facile in-situ bulk polymerization. The nanocomposites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy and thermogravimetry. The results showed that the graphene nanosheets were fully exfoliated in PMMA matrix and the thermal and mechanical properties of the nanocomposites were significantly improved at low graphene loadings. Large shifts of 15°C in the glass transition temperature and 27°C improvement of onset thermal degradation temperature were achieved with graphene loading as low as 0.07 wt%. A 67% increase in tensile strength was also observed by the addition of only 0.5 wt% graphene. The method used in this study provided a novel route to other graphene-based polymers.

  16. The electrochemical reduction of the purines guanine and adenine at platinum electrodes in several room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Zanoni, Maria Valnice Boldrin, E-mail: boldrinv@iq.unesp.br [Department of Analytical Chemistry, Institute of Chemistry, University of Sao Paulo State, Araraquara, R. Prof. Francisco Degni, CP 355, 14801-970, SP (Brazil); Rogers, Emma I. [Department of Chemistry, Physical and Theoretical Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ (United Kingdom); Hardacre, Christopher, E-mail: c.hardacre@qub.ac.uk [School of Chemistry and Chemical Engineering/QUILL, Queen' s University Belfast, Belfast, Northern Ireland BT9 5AG (United Kingdom); Compton, Richard G., E-mail: richard.compton@chem.ox.ac.uk [Department of Chemistry, Physical and Theoretical Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ (United Kingdom)

    2010-02-05

    The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium bis (trifluoromethanesulfonyl) imide [N{sub 6,2,2,2}][N(Tf){sub 2}], 1-butyl-3-methylimidazolium hexafluorosphosphate [C{sub 4}mim][PF{sub 6}], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C{sub 4}mpyrr][N(Tf){sub 2}], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C{sub 4}mim][N(Tf){sub 2}], N-butyl-N-methyl-pyrrolidinium dicyanamide [C{sub 4}mpyrr][N(NC){sub 2}] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P{sub 14,6,6,6}][FAP] on a platinum microelectrode. In [N{sub 6,2,2,2}][NTf{sub 2}] and [P{sub 14,6,6,6}][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion, which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P{sub 14,6,6,6}][FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N{sub 6,2,2,2}][NTf{sub 2}] and [P{sub 14,6,6,6}][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are

  17. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Charles S. [Instituto Federal Sul-rio-grandense, Câmpus Pelotas, Pelotas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Universidade Federal de Santa Catarina, Departamento de Química, Florianópolis, SC (Brazil); Andrade, Jailson B. [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2015-06-01

    High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg{sup −1} and 4.7 mg kg{sup −1}, respectively. - Highlights: • Ir, Ru and Zr were investigated as permanent modifiers. • Ca, Mg, Pd and Pd/Mg were investigated as modifiers in solution. • Indirect determination of sulfur monitoring the molecular absorbance of the CS • Direct analysis of diesel samples using a dilution in propan-1-ol.

  18. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Minakshi Rana

    2016-07-01

    Full Text Available The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L. enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa extract (CMCE. CMCE (1 or 10 µg/mL; 14 h significantly decreased LPS (50-100 ng/mL induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100 and 300 mg/kg; 10 days p.o. pre-treated and LPS (10 mg/kg challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3 and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia.

  19. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity.

    Science.gov (United States)

    Rana, Minakshi; Maurya, Preeti; Reddy, Sukka S; Singh, Vishal; Ahmad, Hafsa; Dwivedi, Anil K; Dikshit, Madhu; Barthwal, Manoj K

    2016-01-01

    The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L.) enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa) extract (CMCE). CMCE (1 or 10 μg/mL; 14 h) significantly decreased LPS (50-100 ng/mL) induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction, and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100, and 300 mg/kg; 10 days p.o.) pre-treated and LPS (10 mg/kg) challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression, and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3, and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia.

  20. G-quartet type self-assembly of guanine functionalized single-walled carbon nanotubes

    Science.gov (United States)

    Singh, Prabhpreet; Venkatesh, V.; Nagapradeep, N.; Verma, Sandeep; Bianco, Alberto

    2012-03-01

    The simple strategy of linking guanine to single-walled carbon nanotubes (CNTs) through covalent functionalization permitted generation of the alignment of the nanotubes into lozenges reminiscent of guanine quartets (G-quartets) in the presence of potassium ions as observed by atomic force microscopy.The simple strategy of linking guanine to single-walled carbon nanotubes (CNTs) through covalent functionalization permitted generation of the alignment of the nanotubes into lozenges reminiscent of guanine quartets (G-quartets) in the presence of potassium ions as observed by atomic force microscopy. Electronic supplementary information (ESI) available: Experimental procedures for the synthesis and characterization of the precursors and MWCNT conjugates. See DOI: 10.1039/c2nr11849a

  1. Activation of the ERK1/2 Signaling Pathway during the Osteogenic Differentiation of Mesenchymal Stem Cells Cultured on Substrates Modified with Various Chemical Groups

    Directory of Open Access Journals (Sweden)

    Bing Bai

    2013-01-01

    Full Text Available The current study examined the influence of culture substrates modified with the functional groups –OH, –COOH, –NH2, and –CH3 using SAMs technology, in conjunction with TAAB control, on the osteogenic differentiation of rabbit BMSCs. The CCK-8 assay revealed that BMSCs exhibited substrate-dependent cell viability. The cells plated on –NH2- and –OH-modified substrates were well spread and homogeneous, but those on the –COOH- and –CH3-modified substrates showed more rounded phenotype. The mRNA expression of BMSCs revealed that –NH2-modified substrate promoted the mRNA expression and osteogenic differentiation of the BMSCs. The contribution of ERK1/2 signaling pathway to the osteogenic differentiation of BMSCs cultured on the –NH2-modified substrate was investigated in vitro. The –NH2-modified substrate promoted the expression of integrins; the activation of FAK and ERK1/2. Inhibition of ERK1/2 activation by PD98059, a specific inhibitor of the ERK signaling pathway, blocked ERK1/2 activation in a dose-dependent manner, as revealed for expression of Cbfα-1 and ALP. Blockade of ERK1/2 phosphorylation in BMSCs by PD98059 suppressed osteogenic differentiation on chemical surfaces. These findings indicate a potential role for ERK in the osteogenic differentiation of BMSCs on surfaces modified by specific chemical functional groups, indicating that the microenvironment affects the differentiation of BMSCs. This observation has important implications for bone tissue engineering.

  2. Small-molecule inhibitors targeting G-protein-coupled Rho guanine nucleotide exchange factors.

    Science.gov (United States)

    Shang, Xun; Marchioni, Fillipo; Evelyn, Chris R; Sipes, Nisha; Zhou, Xuan; Seibel, William; Wortman, Matthew; Zheng, Yi

    2013-02-19

    The G-protein-mediated Rho guanine nucleotide exchange factor (GEF)-Rho GTPase signaling axis has been implicated in human pathophysiology and is a potential therapeutic target. By virtual screening of chemicals that fit into a surface groove of the DH-PH domain of LARG, a G-protein-regulated Rho GEF involved in RhoA activation, and subsequent validations in biochemical assays, we have identified a class of chemical inhibitors represented by Y16 that are active in specifically inhibiting LARG binding to RhoA. Y16 binds to the junction site of the DH-PH domains of LARG with a ∼80 nM K(d) and suppresses LARG catalyzed RhoA activation dose dependently. It is active in blocking the interaction of LARG and related G-protein-coupled Rho GEFs with RhoA without a detectable effect on other DBL family Rho GEFs, Rho effectors, or a RhoGAP. In cells, Y16 selectively inhibits serum-induced RhoA activity and RhoA-mediated signaling, effects that can be rescued by a constitutively active RhoA or ROCK mutant. By suppressing RhoA activity, Y16 inhibits mammary sphere formation of MCF7 breast cancer cells but does not affect the nontransforming MCF10A cells. Significantly, Y16 works synergistically with Rhosin/G04, a Rho GTPase activation site inhibitor, in inhibiting LARG-RhoA interaction, RhoA activation, and RhoA-mediated signaling functions. Thus, our studies show that Rho GEFs can serve as selective targets of small chemicals and present a strategy of dual inhibition of the enzyme-substrate pair of GEF-RhoA at their binding interface that leads to enhanced efficacy and specificity.

  3. Crystal structure of Leishmania tarentolae hypoxanthine-guanine phosphoribosyltransferase

    Directory of Open Access Journals (Sweden)

    Oliva Glaucius

    2007-09-01

    Full Text Available Abstract Background Hypoxanthine-guanine phosphoribosyltransferase (HGPRT (EC 2.4.2.8 is a central enzyme in the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida cannot synthesize purines de novo and use the salvage pathway to synthesize purine bases, making this an attractive target for antiparasitic drug design. Results The glycosomal HGPRT from Leishmania tarentolae in a catalytically active form purified and co-crystallized with a guanosine monophosphate (GMP in the active site. The dimeric structure of HGPRT has been solved by molecular replacement and refined against data extending to 2.1 Å resolution. The structure reveals the contacts of the active site residues with GMP. Conclusion Comparative analysis of the active sites of Leishmania and human HGPRT revealed subtle differences in the position of the ligand and its interaction with the active site residues, which could be responsible for the different reactivities of the enzymes to allopurinol reported in the literature. The solution and analysis of the structure of Leishmania HGPRT may contribute to further investigations leading to a full understanding of this important enzyme family in protozoan parasites.

  4. Chlamydial entry involves TARP binding of guanine nucleotide exchange factors.

    Directory of Open Access Journals (Sweden)

    B Josh Lane

    2008-03-01

    Full Text Available Chlamydia trachomatis attachment to cells induces the secretion of the elementary body-associated protein TARP (Translocated Actin Recruiting Protein. TARP crosses the plasma membrane where it is immediately phosphorylated at tyrosine residues by unknown host kinases. The Rac GTPase is also activated, resulting in WAVE2 and Arp2/3-dependent recruitment of actin to the sites of chlamydia attachment. We show that TARP participates directly in chlamydial invasion activating the Rac-dependent signaling cascade to recruit actin. TARP functions by binding two distinct Rac guanine nucleotide exchange factors (GEFs, Sos1 and Vav2, in a phosphotyrosine-dependent manner. The tyrosine phosphorylation profile of the sequence YEPISTENIYESI within TARP, as well as the transient activation of the phosphatidylinositol 3-kinase (PI3-K, appears to determine which GEF is utilized to activate Rac. The first and second tyrosine residues, when phosphorylated, are utilized by the Sos1/Abi1/Eps8 and Vav2, respectively, with the latter requiring the lipid phosphatidylinositol 3,4,5-triphosphate. Depletion of these critical signaling molecules by siRNA resulted in inhibition of chlamydial invasion to varying degrees, owing to a possible functional redundancy of the two pathways. Collectively, these data implicate TARP in signaling to the actin cytoskeleton remodeling machinery, demonstrating a mechanism by which C.trachomatis invades non-phagocytic cells.

  5. Theoretical Study of Hydrated Cd~(2+) Interactions with Guanine

    Institute of Scientific and Technical Information of China (English)

    王敏; 洒荣建; 吴克琛; 李巧红; 韦永勤

    2012-01-01

    Theoretical study was performed to investigate how the hydration of cadmium ca-tion influences the structure and properties of guanine.The aqueous environment was simulated by both explicit solvent(1-5 water molecules) model and implicit solvent model.For complexes in which Cd2+ attached to the N(7) and O(6) sites of guanine,energy analysis together with the Natural Bonding Orbital(NBO) analysis were performed to elucidate the bonding characteristics in detail.The most stable structures are penta-coordinate complexes without aqua ligand located at the guanine site.Higher number of water ligands corresponds to higher stabilization energies.Average bonding energies of G-Cd increase with the number of water molecules.Bonding energies of water ligands depend on its position in the complexes.The charge distribution of guanine changed with increasing the number of water ligands,which may also influence the base-pairing pattern of guanine.There is positive charge transfer from guanine to aqua ligand as the number of the hydration waters increases.IEFPCM optimization has results comparable to the [CdG(H2O)5]2+ structure 5a.

  6. Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

    OpenAIRE

    Khan, Shadab Ali; Gambhir, Sanjay; Ahmad, Absar

    2014-01-01

    As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3) nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconj...

  7. Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell.

    Science.gov (United States)

    Duteanu, N; Erable, B; Senthil Kumar, S M; Ghangrekar, M M; Scott, K

    2010-07-01

    The catalytic activity of modified carbon powder (Vulcan XC-72R) for oxygen reduction reaction (ORR) in an air-breathing cathode of a microbial fuel cell (MFC) has been investigated. Chemical modification was carried out by using various chemicals, namely 5% nitric acid, 0.2N phosphoric acid, 0.2N potassium hydroxide and 10% hydrogen peroxide. Electrochemical study was performed for ORR of these modified carbon materials in the buffer solution pH range of 6-7.5 in the anodic compartment. Although, these treatments influenced the surface properties of the carbon material, as evident from the SEM-EDX analysis, treatment with H(2)PO(4), KOH, and H(2)O(2) did not show significant activity during the electrochemical test. The HNO(3) treated Vulcan demonstrated significant ORR activity and when used in the single-chamber MFC cathode, current densities (1115mA/m(2), at 5.6mV) greater than those for a Pt-supported un-treated carbon cathode were achieved. However, the power density for the latter was higher. Such chemically modified carbon material can be a cheaper alternative for expensive platinum catalyst used in MFC cathode construction.

  8. Preparation, Biodegradation of Coconut Oil Driven Chemically Modified Bovine Serum Albumin Microparticles of Encapsulated Cicer arietinum Amylase and Study of Their Application in Washing Detergents

    Directory of Open Access Journals (Sweden)

    Kirti Rani

    2014-10-01

    Full Text Available In present work, Cicer arietinum amylase was encapsulated by emulsification through covalent coupling by glutaraldehyde into chemically modified bovine serum albumin. Biodegradation of coconut oil driven emulsified bovine serum albumin encapsulated Cicer arietinum amylase was carried out by the alkaline protease for its controlled and sustained release of encapsulated enzyme from prepared microparticles of encapsulated Cicer arietinum amylase and its stability increased up to 6 months as compared to free enzyme. Its biodegradation was carried out by the using different concentration of alkaline protease (5U, 10U, 15U, 20U, 25U, 30U, 35U, 40U. Further, this coconut oil driven chemically modified bovine serum albumin microparticles of encapsulated Cicer arietinum amylase with alkaline protease were used with detergents for washing of stained cloths which have rust, gel pen ink, grease and chocolate strains. These chosen strains are very commonly present on uniforms of school going children which are very tough upon drying, hence, not to be easily vanish with well known brand detergents upon in one wash. But, the mixture solution of coconut oil driven chemically modified bovine serum albumin microparticles of encapsulated Cicer arietinum amylase along with alkaline protease were used with detergents powder for washing of these dry tough strains (rust, gel pen ink, grease and chocolate strains leads to vanishing these strains very fast with absolute clear results were found as compared to results of washing of stained cloths with detergents only.

  9. Two-step enzymatic synthesis of guanine arabionside%两步酶法合成阿糖鸟苷

    Institute of Scientific and Technical Information of China (English)

    魏晓琨; 丁庆豹; 欧伶; 张鹭; 王昌禄

    2008-01-01

    The chemical synthesis of Guanine arabinoside (ara-G) is extremely complex, time-consuming, and seriously polluted. A two-step enzymatic synthesis process was developed to acquire ara-G easily. 2,6-Diaminopurine arabinoside (ara-DA) was first synthesized with purine nucleoside phosphorylase and pyrimidine nucleoside phos-phorylase produced by Enterobacter aerogenes DGW-07. The conversion yield of ara-DA could reach above 90% when the reaction liquid contained 30 mmol·L-1 uracil arabinoside as arabinose donor, 10 mmol·L-1 2,6-diaminopurine as arabinose acceptor in pH 7.0 20 mmol·L-1 phosphate buffer, and reacted at 60℃ for 48h. Then, ara-DA was effectively transformed into ara-G with adenylate deaminase produced by Aspergillus oryzae DAW-01. The total process had no complex separation and purification.

  10. Cytologic Effects of Air Force Chemicals

    Science.gov (United States)

    1980-11-01

    amounts of methylated guanine residues in the DNA. The DNA samples were hydrolyzed and chromatographed using high pressure liquid chromatography ( HPLC ...induced in freshly isolated lymphocytes by four chemicals, 4NQO, MMS, HN2 and mitomycin C (MMC). The differences in DRS are probably due to the chemical

  11. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  12. Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Jérôme Mulhbacher

    2010-04-01

    Full Text Available Riboswitches are regulatory elements modulating gene expression in response to specific metabolite binding. It has been recently reported that riboswitch agonists may exhibit antimicrobial properties by binding to the riboswitch domain. Guanine riboswitches are involved in the regulation of transport and biosynthesis of purine metabolites, which are critical for the nucleotides cellular pool. Upon guanine binding, these riboswitches stabilize a 5'-untranslated mRNA structure that causes transcription attenuation of the downstream open reading frame. In principle, any agonistic compound targeting a guanine riboswitch could cause gene repression even when the cell is starved for guanine. Antibiotics binding to riboswitches provide novel antimicrobial compounds that can be rationally designed from riboswitch crystal structures. Using this, we have identified a pyrimidine compound (PC1 binding guanine riboswitches that shows bactericidal activity against a subgroup of bacterial species including well-known nosocomial pathogens. This selective bacterial killing is only achieved when guaA, a gene coding for a GMP synthetase, is under the control of the riboswitch. Among the bacterial strains tested, several clinical strains exhibiting multiple drug resistance were inhibited suggesting that PC1 targets a different metabolic pathway. As a proof of principle, we have used a mouse model to show a direct correlation between the administration of PC1 and the reduction of Staphylococcus aureus infection in mammary glands. This work establishes the possibility of using existing structural knowledge to design novel guanine riboswitch-targeting antibiotics as powerful and selective antimicrobial compounds. Particularly, the finding of this new guanine riboswitch target is crucial as community-acquired bacterial infections have recently started to emerge.

  13. Design and synthesis of novel adenine fluorescence probe based on Eu(III) complexes with dtpa-bis(guanine) ligand.

    Science.gov (United States)

    Tian, Fengyun; Jiang, Xiaoqing; Dou, Xuekai; Wu, Qiong; Wang, Jun; Song, Youtao

    2017-02-24

    A novel adenine (Ad) fluorescence probe (Eu(III)-dtpa-bis(guanine)) was designed and synthesized by improving experimental method based on the Eu(III) complex and dtpa-bis(guanine) ligand. The dtpa-bis(guanine) ligand was first synthesized by the acylation action between dtpaa and guanine (Gu), and the corresponding Eu(III) complex was successfully prepared through heat-refluxing method with dtpa-bis(guanine) ligand. As a novel fluorescence probe, the Eu(III)-dtpa-bis(guanine) complex can detect adenine (Ad) with characteristics of strong targeting, high specificity and high recognition ability. The detection mechanism of the adenine (Ad) using this probe in buffer solution was studied by ultraviolet-visible (UV-vis) and fluorescence spectroscopy. When the Eu(III)-dtpa-bis(guanine) was introduced to the adenine (Ad) solution, the fluorescence emission intensity was significantly enhanced. However, adding other bases such as guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) with similar composition and structure to that of adenine (Ad) to the Eu(III)-dtpa-bis(guanine) solution, the fluorescence emission intensities are nearly invariable. Meanwhile, the interference of guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) on the detection of the adenine using Eu(III)-dtpa-bis(guanine) probe was also studied. It was found that presence of these bases does not affect the detection of adenine (Ad). A linear response of fluorescence emission intensities of Eu(III)-dtpa-bis(guanine) at 570nm as a function of adenine (Ad) concentration in the range of 0.00-5.00×10(-5)molL(-1) was observed. The detection limit is about 4.70×10(-7)molL(-1).

  14. INFLUENCE OF PACKAGING MATERIAL AND STORAGE TIME ON PHYSICAL, CHEMICAL AND MICROBIOLOGICAL PROPERTIES OF SET YOGURT: A COMPARATIVE STUDY BETWEEN MODIFIED BIODEGRADABLE POLY(LACTIC ACID AND POLYPROPYLENE

    Directory of Open Access Journals (Sweden)

    NAWADON PETCHWATTANA

    2016-10-01

    Full Text Available The current paper investigates the influence of storage time and type of polymeric packaging material on the chemical, physical and microbiological properties of set yogurt. Firstly, poly(lactic acid (PLA was modified by using a core-shell rubber (CSR and an acrylic processing aid (PA to produce PLA with high toughness and good processability. Secondly, an appropriate PLA/PA/CSR composition was selected and fabricated to yogurt cup. The yogurt was stored in both modified PLA and polypropylene (PP packages to observe some physical, chemical and biological changes. Finally, the biodegradation test was made on both packages and compared with that cellulose. Experimental results revealed that adding 5wt% CSR gave PLA/PA as tough as PP. Types of packaging material and storage time did not change the color of yogurt. The number of lactic acid bacteria grew significantly after they had been incubated for 6 days. The bacterial viability decreased dramatically due to the increased acidity and the decreased pH. A positive impact on the viability of bacterial growth was found when yogurt was stored in modified PLA package. This made yogurt had more health benefits than stored in PP package. The biodegradation test results indicated that the modified PLA degraded at a rapid rate. It achieved approximately 50% biodegradation within 40 days which was comparable to the time required to degrade the cellulose, whereas PP was non-biodegradable over the period studied. In summary, substitution conventional PP by a novel modified PLA seems to be a better way for both the health and the environment benefits.

  15. Complex conformational heterogeneity of the highly flexible O6-benzyl-guanine DNA adduct.

    Science.gov (United States)

    Wilson, Katie A; Wetmore, Stacey D

    2014-07-21

    The conformational preference of the O6-benzyl-guanine (BzG) adduct was computationally examined using nucleoside, nucleotide, and DNA models, which provided critical information about the potential mutagenic consequences and toxicity of the BzG adduct in our cells. Substantial conformational flexibility of the BzG moiety, including rotation of the bulky group with respect to the base and the internal conformation of the bulk moiety, is seen in the nucleoside and nucleotide models. This large conformational flexibility suggests the conformation adopted by BzG is dependent on the local environment of the BzG adduct. Upon incorporation of the adduct into the DNA helix, the BzG conformational flexibility is maintained. The range of BzG conformations adopted in DNA likely arises due to a combination of the long and flexible (-CH2-) linker, the small adduct size, and the lack of discrete interactions between the bulky moiety and G. Because of the conformational flexibility of the adduct, many DNA conformations are observed for BzG adducted DNA, including those not previously reported in the literature, and thus, a modified nomenclature for adducted DNA conformations is presented. Furthermore, the preferred conformation of BzG adducted DNA is greatly dependent on a number of factors, including the pairing nucleotide, the discrete interactions in the helix, and the solvation of the benzyl moiety. These factors in turn lead to a complicated mutagenic and toxic profile that may invoke pairing with natural C, mispairs, or deletion mutations, which is supported by previously reported experimental biochemical studies. Despite this complex mutagenic profile, pairing with C leads to the most stable helical structure, which is the first combined structural and energetic explanation for experimental studies reporting a higher rate of C incorporation than any other nucleobase upon BzG replication.

  16. Guanine-based structural coloration as an indicator of oxidative stress in a cichlid fish.

    Science.gov (United States)

    Cahn, Matthew D; Brown, Alexandria C; Clotfelter, Ethan D

    2015-07-01

    Vertebrate pigmentation is known to be influenced by oxidative stress, but few studies have tested the hypothesis that structural coloration can be similarly affected. We tested whether fish iridophores, which produce structural color using guanine stacks, might be affected by the prooxidant-antioxidant balance of the animal. Specifically, we hypothesized that convict cichlids (Amatitlania nigrofasciata) metabolize guanine present in iridophores to uric acid, an antioxidant, in response to oxidative damage. We used Hunter's contrast gloss and high performance liquid chromatography to determine whether dietary guanine supplementation allows fish to maintain their structural coloration despite oxidative stress induced via ultraviolet-B (UV-B) radiation. We found that dietary guanine was associated with greater skin gloss, and that exposure to UV-B light reduced glossiness. UV-B exposure did not increase oxidative damage (acrolein) or total antioxidant capacity in the skin or liver. Our experiment did not detect effects of dietary guanine or UV-B light on uric acid, but uric acid was positively related to antioxidant capacity. Our results support the hypothesis that structural color in fish may be altered by environmental stressors such as exposure to UV light, and highlight the need for future studies to consider the role of iridophores in condition-dependent visual signaling.

  17. [Effects of Different Modifier Concentrations on Lead-Zinc Tolerance, Subcellular Distribution and Chemical Forms for Four Kinds of Woody Plants].

    Science.gov (United States)

    Chen, Yong-hua; Zhang, Fu-yun; Wu, Xiao-fu; Liang, Xi; Yuan, Si-wen

    2015-10-01

    Four kinds of lead-zinc tolerant woody plants: Nerium oleander, Koelreuteria paniculata, Paulownia and Boehmeria were used as materials to estimate their enrichment and transferable capacity of lead (Pb) and zinc (Zn) and analyze the subcellular distribution and chemical speciation of Zn and Ph in different parts of plants, under different modifier concentrations (CK group: 100% lead-zinc slag plus a small amount of phosphate fertilizer, improved one: 85% of lead-zinc slag ± 10% peat ± 5% bacterial manure plus a small amount of phosphate fertilizer, improved two: 75% lead-zinc slag ± 20% peat ± 5% bacterial manure ± a small amount of phosphate). Results showed that: (1) The content of Pb, Zn in matrix after planting four kinds of plants was lower than before, no significant difference between improved one and improved two of Nerium oleander and Boehmeria was found, but improved two was better than improved one of Paulownia, while improved one was better than improved two of Koelreuteria paniculata; Four plants had relatively low aboveground enrichment coefficient of Pb and Zn, but had a high transfer coefficient, showed that the appropriate modifier concentration was able to improve the Pb and Zn enrichment and transfer ability of plants. (2) In subcellular distribution, most of Pb and Zn were distributed in plant cell wall components and soluble components while the distribution in cell organelles such as mitochondria, chloroplasts and nucleus component were less. Compared with CK group, two improved group made soluble components of the cell walls of Pb fixation and retention of zinc role in the enhancement. (3) As for the chemical forms of Pb and Zn in plants, the main chemical forms of Pb were hydrochloric acid, sodium chloride and ethanol extractable forms, while other chemical form contents were few, the main chemical forms of Zn were different based on plant type. Compared with CK group, the proportion of the active Pb chemical form in different plant

  18. Enzymatically hydrolysed, acetylated and dually modified corn starch: physico-chemical, rheological and nutritional properties and effects on cake quality.

    Science.gov (United States)

    Sahnoun, Mouna; Ismail, Nouha; Kammoun, Radhouane

    2016-01-01

    Corn starch was treated by enzymatic hydrolysis with Aspergillus oryzae S2 α-amylase, acetylation with vinyl acetate, and dual modification. The dual modified starch displayed a higher substitution degree than the acetylated starch and lower reducing sugar content than the hydrolysed starch. The results revealed that the cooling viscosity and amylose content of those products decrease (P cake formulations at 5 and 10 % concentrations on a wheat flour basis and compared to native starch. The results revealed that when applied at 5 % concentrations, the modified starches reduced the hardness, cohesion, adhesion and chewiness of baked cakes and enhanced their elasticity, volume, height, crust color, and appearance as compared to native starch. These effects were more pronounced for the cake incorporating the dually modified starch.

  19. Hypoxanthine-guanine phosophoribosyltransferase (HPRT deficiency: Lesch-Nyhan syndrome

    Directory of Open Access Journals (Sweden)

    Puig Juan G

    2007-12-01

    Full Text Available Abstract Deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT activity is an inborn error of purine metabolism associated with uric acid overproduction and a continuum spectrum of neurological manifestations depending on the degree of the enzymatic deficiency. The prevalence is estimated at 1/380,000 live births in Canada, and 1/235,000 live births in Spain. Uric acid overproduction is present inall HPRT-deficient patients and is associated with lithiasis and gout. Neurological manifestations include severe action dystonia, choreoathetosis, ballismus, cognitive and attention deficit, and self-injurious behaviour. The most severe forms are known as Lesch-Nyhan syndrome (patients are normal at birth and diagnosis can be accomplished when psychomotor delay becomes apparent. Partial HPRT-deficient patients present these symptoms with a different intensity, and in the least severe forms symptoms may be unapparent. Megaloblastic anaemia is also associated with the disease. Inheritance of HPRT deficiency is X-linked recessive, thus males are generally affected and heterozygous female are carriers (usually asymptomatic. Human HPRT is encoded by a single structural gene on the long arm of the X chromosome at Xq26. To date, more than 300 disease-associated mutations in the HPRT1 gene have been identified. The diagnosis is based on clinical and biochemical findings (hyperuricemia and hyperuricosuria associated with psychomotor delay, and enzymatic (HPRT activity determination in haemolysate, intact erythrocytes or fibroblasts and molecular tests. Molecular diagnosis allows faster and more accurate carrier and prenatal diagnosis. Prenatal diagnosis can be performed with amniotic cells obtained by amniocentesis at about 15–18 weeks' gestation, or chorionic villus cells obtained at about 10–12 weeks' gestation. Uric acid overproduction can be managed by allopurinol treatment. Doses must be carefully adjusted to avoid xanthine lithiasis. The

  20. Fatigue behavior of Ti–6Al–4V alloy in saline solution with the surface modified at a micro- and nanoscale by chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Claros, Cesar Adolfo Escobar; Oliveira, Diego Pedreira; Campanelli, Leonardo Contri; Pereira da Silva, Paulo Sergio Carvalho; Bolfarini, Claudemiro

    2016-10-01

    This work evaluated the influence of the surface modification using acid etching combined with alkaline treatment on the fatigue strength of Ti–6Al–4V ELI alloy. The topography developed by chemical surface treatments (CST) was examined by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Increased roughness and effective surface area were investigated and compared with the Ti–6Al–4V samples without modification. Surface composition was analyzed by energy dispersive X-ray spectroscopy (EDS). Axial fatigue resistance of polished and modified surfaces was determined by stepwise load increase tests and staircase test method. Light microscopy and SEM were employed to examine the fracture surface of the tested specimens. According to the results, a similar fatigue behavior was found and a negligible difference in the fatigue crack nucleation was observed for the Ti–6Al–4V with CST in comparison to the samples without treatment. - Highlights: • Fatigue behavior of Ti–6Al–4V with the surface modified by chemical treatments • The topography developed did not induce differences in the fatigue resistance. • Untreated and chemically treated surfaces presented fractographic similarities.

  1. A study comparing chemical peeling using modified jessner′s solution and 15% trichloroacetic acid versus 15% trichloroacetic acid in the treatment of melasma

    Directory of Open Access Journals (Sweden)

    Safoury Omar

    2009-01-01

    Full Text Available Background: Melasma is a symmetric progressive hyperpigmentation of the facial skin that occurs in all races but has a predilection for darker skin phenotypes. Depigmenting agents, laser and chemical peeling as classic Jessner′s solution, modified Jessner′s solution and trichloroacetic acid have been used alone and in combination in the treatment of melasma. Objectives: The aim of the study was to compare the therapeutic effect of combined 15% Trichloroacetic acid (TCA and modified Jessner′s solution with 15% TCA on melasma. Materials and Methods: Twenty married females with melasma (epidermal type, with a mean age of 38.25 years, were included in this study. All were of skin type III or IV. Fifteen percent TCA was applied to the whole face, with the exception of the left malar area to which combined TCA 15% and modified Jessner′s solution was applied. Results: Our results revealed statistically highly significant difference between MASI Score (Melasma Area and Severity Index between the right malar area and the left malar area. Conclusion: Modified Jessner′s solution proved to be useful as an adjuvant treatment with TCA in the treatment of melasma, improving the results and minimizing postinflammatory hyperpigmentation.

  2. A STUDY COMPARING CHEMICAL PEELING USING MODIFIED JESSNER'S SOLUTION AND 15%TRICHLOROACETIC ACID VERSUS 15% TRICHLOROACETIC ACID IN THE TREATMENT OF MELASMA

    Science.gov (United States)

    Safoury, Omar Soliman; Zaki, Nagla Mohamed; El Nabarawy, Eman Ahmad; Farag, Eman Abas

    2009-01-01

    Background: Melasma is a symmetric progressive hyperpigmentation of the facial skin that occurs in all races but has a predilection for darker skin phenotypes. Depigmenting agents, laser and chemical peeling as classic Jessner's solution, modified Jessner's solution and trichloroacetic acid have been used alone and in combination in the treatment of melasma. Objectives: The aim of the study was to compare the therapeutic effect of combined 15% Trichloroacetic acid (TCA) and modified Jessner's solution with 15% TCA on melasma. Materials and Methods: Twenty married females with melasma (epidermal type), with a mean age of 38.25 years, were included in this study. All were of skin type III or IV. Fifteen percent TCA was applied to the whole face, with the exception of the left malar area to which combined TCA 15% and modified Jessner's solution was applied. Results: Our results revealed statistically highly significant difference between MASI Score (Melasma Area and Severity Index) between the right malar area and the left malar area. Conclusion: Modified Jessner's solution proved to be useful as an adjuvant treatment with TCA in the treatment of melasma, improving the results and minimizing postinflammatory hyperpigmentation. PMID:20049268

  3. Enzymatically hydrolysed, acetylated and dually modified corn starch: physico-chemical, rheological and nutritional properties and effects on cake quality

    OpenAIRE

    Sahnoun, Mouna; Ismail, Nouha; Kammoun, Radhouane

    2015-01-01

    Corn starch was treated by enzymatic hydrolysis with Aspergillus oryzae S2 α-amylase, acetylation with vinyl acetate, and dual modification. The dual modified starch displayed a higher substitution degree than the acetylated starch and lower reducing sugar content than the hydrolysed starch. The results revealed that the cooling viscosity and amylose content of those products decrease (P 

  4. Rheological and chemical evaluation on the ageing properties of SBS polymer modified bitumen: From the laboratory to the field

    NARCIS (Netherlands)

    Liu, G.; Nielsen, E.; Komacka, J.; Greet, L.; Ven, M.V.D.

    2014-01-01

    This study investigated the ageing properties of the styrene-butadiene- styrene polymer modified bitumen (SBS PMB) from the laboratory to the field. The virgin SBS PMB had been kept for 23 years and its field-aged binder was extracted from the reclaimed stone matrix asphalt (SMA) after the 22-year s

  5. Surface Structure and Photocatalytic Properties of Bi2WO6 Nanolatelets Modified by Molybdena Islands from Chemical Vapor Deposition

    NARCIS (Netherlands)

    Dittmer, A.; Menze, J.; Mei, B.T.; Strunk, J.; Luftman, H.S.; Gutkowski, R.; Wachs, I.E.; Schuhmann, W.; Muhler, M.

    2016-01-01

    We report on a novel route of preparing molybdena-modified bismuth tungstates and their successful application in the photocatalytic oxygen evolution reaction and the oxidation of glycerol. Hierarchically assembled monocrystalline Bi2WO6 nanoplatelets with a specific surface area of 10 m2/g were obt

  6. Chemically modified polymeric resins for separation of cations, organic acids, and small polar moleculea by high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.B.

    1993-07-01

    This thesis is divided into 4 parts: a review, ion chromatography of metal cations on carboxylic resins, separation of hydrophilic organic acids and small polar compounds on macroporous resin columns, and use of eluent modifiers for liquid chromatographic separation of carboxylic acids using conductivity detection.

  7. Synthesis of a Pseudodisaccharide α-C-Glycosidically Linked to an 8-Alkylated Guanine

    Directory of Open Access Journals (Sweden)

    Jan Duchek

    2013-04-01

    Full Text Available The synthesis of stable guanofosfocin analogues has attracted considerable attention in the past 15 years. Several guanofosfocin analogues mimicking the three constitutional elements of mannose, ribose, and guanine were designed and synthesized. Interest in ether-linked pseudodisaccharides and 8-alkylated guanines is increasing, due to their potential applications in life science. In this article, a novel guanofosfocin analogue 6, an ether-linked pseudodisaccharide connected α-C-glycosidically to an 8-alkylated guanine, was synthesized in a 10-longest linear step sequence from known diol 13, resulting in an overall yield of 26%. The key steps involve the ring-opening of cyclic sulfate 8 by alkoxide generated from 7 and a reductive cyclization of 4-N-acyl-2,4-diamino-5-nitrosopyrimidine 19 to form compound 6.

  8. One-pot chemical synthesis of small ubiquitin-like modifier protein-peptide conjugates using bis(2-sulfanylethyl)amido peptide latent thioester surrogates.

    Science.gov (United States)

    Boll, Emmanuelle; Drobecq, Hervé; Ollivier, Nathalie; Blanpain, Annick; Raibaut, Laurent; Desmet, Rémi; Vicogne, Jérôme; Melnyk, Oleg

    2015-02-01

    Small ubiquitin-like modifier (SUMO) post-translational modification (PTM) of proteins has a crucial role in the regulation of important cellular processes. This protocol describes the chemical synthesis of functional SUMO-peptide conjugates. The two crucial stages of this protocol are the solid-phase synthesis of peptide segments derivatized by thioester or bis(2-sulfanylethyl)amido (SEA) latent thioester functionalities and the one-pot assembly of the SUMO-peptide conjugate by a sequential native chemical ligation (NCL)/SEA native peptide ligation reaction sequence. This protocol also enables the isolation of a SUMO SEA latent thioester, which can be attached to a target peptide or protein in a subsequent step. It is compatible with 9-fluorenylmethoxycarbonyl (Fmoc) chemistry, and it gives access to homogeneous, reversible and functional SUMO conjugates that are not easily produced using living systems. The synthesis of SUMO-peptide conjugates on a milligram scale takes 20 working days.

  9. Towards combined electrochemistry and surface-enhanced resonance Raman of heme proteins: Improvement of diffusion electrochemistry of cytochrome c at silver electrodes chemically modified with 4-mercaptopyridine.

    Science.gov (United States)

    Millo, Diego; Ranieri, Antonio; Koot, Wynanda; Gooijer, Cees; van der Zwan, Gert

    2006-08-01

    To date, a successful combination of surface-enhanced resonance Raman spectroscopy (SERRS) and electrochemistry to study heme proteins is inhibited by the problems raised by the prerequisite to use silver as electrode metal. This paper indicates an approach to overcome these problems. It describes a quick and reproducible procedure to prepare silver electrodes chemically modified with 4-mercaptopyridine suitable to perform diffusion electrochemistry of cytochrome c (cyt c). The method involves the employment of a mechanical and a chemical treatment and avoids the use of alumina slurries and any electrochemical pretreatment. Cyclic voltammetry (CV) was used to test the electrochemical response of cyt c, and the CV signals were found identical with those obtained on gold electrodes under the same experimental conditions. Compared to previous literature, a significant improvement of the CV signal of cyt c at silver electrodes was achieved. Preliminary results show that this treatment can be also successfully employed for the preparation of SERRS-active electrodes.

  10. Advance in researches on chemically modified starch used in food%变性淀粉在食品中的应用研究进展

    Institute of Scientific and Technical Information of China (English)

    张静静; 梁艳; 宫丽华; 崔波

    2014-01-01

    Starch has become a kind of important industrial raw material as renewable natural resources . Because many inherent qualities of the original starch( infusibility in cold water,instability of paste liquid in acid,heat and shearing action)limit its industrial application.So people developed modified technology according to the starch structure and physical and chemical properties ,named modified starch .With many good properties of the modified starch ,its application in food industry is becoming more and more widely at home and abroad.This paper introduces preparation methods of modified starch,domain,and prospects the development of modified starch.%淀粉作为一种可再生的天然资源,已成为重要的工业原料。由于原淀粉的许多固有性质(冷水不溶性,糊液在酸、热、剪切作用下不稳定)限定了淀粉的工业应用,人们根据淀粉的结构和理化性质开发了淀粉的变性技术,即变性淀粉。随着变性淀粉诸多优良性质的显现,其在国内外食品行业的应用也越来越广泛。本文介绍了变性淀粉的制备方法及应用领域,并对变性淀粉的发展做了展望。

  11. Development of a virus concentration method using lanthanum-based chemical flocculation coupled with modified membrane filtration procedures.

    Science.gov (United States)

    Zhang, Yanyan; Riley, Lela K; Lin, Mengshi; Purdy, Gregory A; Hu, Zhiqiang

    2013-06-01

    Direct membrane filtration is often used to concentrate viruses in water but it may suffer from severe membrane fouling and clogging. Here, a lanthanum-based flocculation method coupled with modified membrane filtration procedures was developed and evaluated to detect viruses in large volume (40 L) water samples. The lanthanum-based flocculation method could easily reduce the water sample volume by a factor of 40. Additional volume reduction was achieved by a two-step membrane filtration approach. First, selected membrane filters (including 1MDS electropositive filters and nitrocellulose electronegative filters-Millipore HATF filters) were used to reduce water sample volume further and compare their efficiencies in virus recovery. The Mg²⁺-modified HATF membrane performed better on MS2 retention with an average virus recovery of 83.4% (±4.5% [standard deviation]). After HATF membrane filtration and elution, centrifugal ultrafiltration through a 30 kDa cut-off membrane resulted in an overall concentration factor of 20,000. Results from the infectivity assay showed that the MS2 recovery efficiencies from the NanoCeram- and 1MDS-based direct filtration and the lanthanum-based concentration coupled with the modified filtration procedure were 10.1% (±1.0%), 3.3% (±0.1%), and 17.5% (±1.1%), respectively. Results from the PCR analysis showed that the virus recoveries of the lanthanum-based method were 20.6% (±2.9%) and 19.5% (±3.4%) for MS2 and adenovirus, respectively, while no adenovirus could be detected through the NanoCeram- and 1MDS-based direct filtration. The lanthanum-based concentration method coupled with modified membrane filtration procedures is therefore a promising method for detecting waterborne viruses.

  12. Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism

    NARCIS (Netherlands)

    Ottink, O.M.; Rampersad, S.M.; Tessari, M.; Zaman, G.J.; Heus, H.A.; Wijmenga, S.S.

    2007-01-01

    All known guanine-sensing riboswitches regulate gene expression by specifically binding to guanine (G) or related analogs with high affinity to switch off transcription. The aptamers of this class of riboswitches are characterized by three helices (P1-P3), surrounding a central core of phylogenetica

  13. Effects of a Modified Through-Mask Drinking System (MDS) on Fluid Intake During Exercise in Chemical Protective Gear

    Science.gov (United States)

    1989-10-12

    in chemical protective gear. METHODS Test Subiects: Eighteen (18) unacclimated male volunteers were recruited from the military population at USARIEM...hydration status, a pretest urine sample was analyzed for specific gravity ( refractometry ) and no significant difference was observed between the two

  14. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization.

    Science.gov (United States)

    Yamamoto, Yuhei; Shirasaki, Toshihiro; Yonetani, Akira; Imai, Shoji

    2015-01-01

    The measurement conditions for determining boron using graphite furnace-atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L(-1) when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS.

  15. Use of sodium tungstate as a permanent chemical modifier for slurry sampling electrothermal atomic absorption spectrometric determination of indium in soils

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, Ignacio; Rivas, Ricardo E.; Hernandez-Cordoba, Manuel [University of Murcia, Department of Analytical Chemistry, Faculty of Chemistry, Murcia (Spain)

    2008-06-15

    A number of chemical modifiers have been assessed for the direct determination of indium in soils using electrothermal atomic absorption spectrometry and slurry sampling. The best results were obtained when the graphite atomizer was impregnated with sodium tungstate, which acts as a permanent chemical modifier. Slurries were prepared by suspending 100 mg sample in a solution containing 1% (v/v) concentrated nitric acid and 10% (v/v) concentrated hydrofluoric acid and then 15-{mu}L aliquots were directly introduced into the atomizer. Standard indium solutions prepared in the suspension medium in the range 4-80 {mu}g L{sup -1} indium were used for calibration. The relative standard deviation for ten consecutive measurements of a 40 {mu}g L{sup -1} indium solution was 2.8%. The limit of detection in soils was 0.1 {mu}g g{sup -1}. The reliability of the procedures was confirmed by analysing two standard reference materials and by using an alternative procedure. (orig.)

  16. Electrochemical properties of the hexacyanoferrate(II)–ruthenium(III) complex immobilized on silica gel surface chemically modified with zirconium(IV) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Panice, Lucimara B.; Oliveira, Elisangela A. de; Filho, Ricardo A.D. Molin; Oliveira, Daniela P. de [Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR (Brazil); Lazarin, Angélica M., E-mail: amlazarin2@uem.br [Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR (Brazil); Andreotti, Elza I.S.; Sernaglia, Rosana L. [Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR (Brazil); Gushikem, Yoshitaka [Instituto de Química, Universidade Estadual de Campinas, Caixa Postal 6154, 13084-971 Campinas, São Paulo (Brazil)

    2014-10-15

    Highlights: • The cyano-bridged mixed valence ruthenium composite material was synthesized. • This newly synthesized compound was incorporated into a carbon paste electrode. • The electrode did not show significant changes in response after six months of use. • The modified electrode is very stable and reproducible. • The electrode sensor was successfully applied for ascorbic acid determination. - Abstract: The chemically modified silica gel with zirconium(IV) oxide was used to immobilize the [Fe(CN){sub 6}]{sup 4−} complex ion initially. The reaction of this material with [Ru(edta)H{sub 2}O]{sup −} complex ion formed the immobilized cyano-bridged mixed valence ruthenium complex, (≡Zr){sub 5}[(edta)RuNCFe(CN){sub 5}]. This material was incorporated into a carbon paste electrode and, its electrochemical properties were investigated. However, for an ascorbic acid solution, an enhancement of the anodic peak current was detected due to electrocatalytic oxidation. The electrode presented the same response for at least 150 successive measurements, with a good repeatability. The modified electrode is very stable and reproducible. The sensor was applied for ascorbic acid determination in pharmaceutical preparation with success.

  17. Application of chemical modified starch in adhesives%经化学改性后淀粉在胶粘剂中的应用

    Institute of Scientific and Technical Information of China (English)

    姜青松; 黄庆东; 李广源; 韦志福; 李军生; 胡孝勇

    2015-01-01

    The starch adhesives is a kind of environment friendly and renewable biomass products, which have broad application prospects. Starch has the disadvantages of low bond strength, poor water resistance, slow drying rate, etc,. and needs to be modified. In this paper, using the oxidation, esterification, crosslinking and grafting as the chemical methods to modify starch, the applications of the modified starch in adhesives and their development trend were reviewed.%淀粉胶粘剂是一种环保型、可再生型生物质产品,具有广阔应用前景。淀粉具有粘接强度低、耐水性差、干燥速度慢等缺点,需对其进行化学改性。本文综述了淀粉经氧化、酯化、交联化、接枝化等化学手段改性后在胶粘剂中的应用以及发展趋势。

  18. Electrochemical behavior of folic acid at calixarene based chemically modified electrodes and its determination by adsorptive stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Vaze, Vishwanath D. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Srivastava, Ashwini K. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India)], E-mail: aksrivastava@chem.mu.ac.in

    2007-12-31

    Voltammetric behavior of folic acid at plain carbon paste electrode and electrode modified with calixarenes has been studied. Two peaks for irreversible oxidation were observed. Out of the three calixarenes chosen for modification of the electrodes, p-tert-butyl-calix[6]arene modified electrode (CME-6) was found to have better sensitivity for folic acid. Chronocoulometric and differential pulse voltammetric studies reveal that folic acid can assemble at CME-6 to form a monolayer whose electron transfer rate is 0.00273 s{sup -1} with 2-electron/2-proton transfer for the peak at +0.71 V against SCE. An adsorption equilibrium constant of 5 x 10{sup 3} l/mol for maximum surface coverage of 2.89 x 10{sup -10} mol/cm{sup 2} was obtained. The current is found to be rectilinear with concentration by differential pulse voltammetry. However, linearity in the lower range of concentration 8.79 x 10{sup -12} M to 1.93 x 10{sup -9} M with correlation coefficient of 0.9920 was achieved by adsorptive stripping voltammetry. The limit of detection obtained was found to be 1.24 x 10{sup -12} M. This method was used for the determination of folic acid in a variety of samples, viz. serum, asparagus, spinach, oranges and multivitamin preparations.

  19. Relative embryotoxicity of two classes of chemicals in a modified zebrafish embryotoxicity test and comparison with their in vivo potencies.

    Science.gov (United States)

    Hermsen, Sanne A B; van den Brandhof, Evert-Jan; van der Ven, Leo T M; Piersma, Aldert H

    2011-04-01

    The zebrafish embryotoxicity test (ZET) is a fast and simple method to study chemical toxicity after exposure of the complete vertebrate embryo during embryogenesis in ovo. We developed a novel quantitative evaluation method to assess the development of the zebrafish embryo based on specific endpoints in time, the general morphology score (GMS) system. For teratogenic effects a separate scoring list was developed. The relative effects of eight glycol ethers and six 1,2,4-triazole anti-fungals were evaluated in this system and results were compared with in vivo developmental toxicity potencies. Methoxyacetic acid and ethoxyacetic acid appeared as the most potent glycol ether metabolites, inducing growth retardation and malformations. Other glycol ethers showed no developmental toxicity. Flusilazole appeared the most potent triazole, followed by hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole, respectively. In general, the potency ranking of the compounds within their class in the ZET was comparable to their in vivo ranking. In conclusion, the ZET with the GMS system appears an efficient and useful test system for screening embryotoxic properties of chemicals within the classes of compounds tested. This alternative test method may also be useful for the detection of embryotoxic properties of other classes of chemicals.

  20. Expression systems for industrial Gram-positive bacteria with low guanine and cytosine content

    NARCIS (Netherlands)

    Vos, Willem M. de; Kleerebezem, Michiel; Kuipers, Oscar P.

    1997-01-01

    Recent years have seen an increase in the development of gene expression systems for industrial Gram-positive bacteria with low guanine and cytosine content that belong to the genera Bacillus, Clostridium, Lactococcus, Lactobacillus, Staphylococcus and Streptococcus. In particular, considerable adva

  1. Mechanism of repair of acrolein- and malondialdehyde-derived exocyclic guanine adducts by the α-ketoglutarate/Fe(II) dioxygenase AlkB.

    Science.gov (United States)

    Singh, Vipender; Fedeles, Bogdan I; Li, Deyu; Delaney, James C; Kozekov, Ivan D; Kozekova, Albena; Marnett, Lawrence J; Rizzo, Carmelo J; Essigmann, John M

    2014-09-15

    The structurally related exocyclic guanine adducts α-hydroxypropano-dG (α-OH-PdG), γ-hydroxypropano-dG (γ-OH-PdG), and M1dG are formed when DNA is exposed to the reactive aldehydes acrolein and malondialdehyde (MDA). These lesions are believed to form the basis for the observed cytotoxicity and mutagenicity of acrolein and MDA. In an effort to understand the enzymatic pathways and chemical mechanisms that are involved in the repair of acrolein- and MDA-induced DNA damage, we investigated the ability of the DNA repair enzyme AlkB, an α-ketoglutarate/Fe(II) dependent dioxygenase, to process α-OH-PdG, γ-OH-PdG, and M1dG in both single- and double-stranded DNA contexts. By monitoring the repair reactions using quadrupole time-of-flight (Q-TOF) mass spectrometry, it was established that AlkB can oxidatively dealkylate γ-OH-PdG most efficiently, followed by M1dG and α-OH-PdG. The AlkB repair mechanism involved multiple intermediates and complex, overlapping repair pathways. For example, the three exocyclic guanine adducts were shown to be in equilibrium with open-ring aldehydic forms, which were trapped using (pentafluorobenzyl)hydroxylamine (PFBHA) or NaBH4. AlkB repaired the trapped open-ring form of γ-OH-PdG but not the trapped open-ring of α-OH-PdG. Taken together, this study provides a detailed mechanism by which three-carbon bridge exocyclic guanine adducts can be processed by AlkB and suggests an important role for the AlkB family of dioxygenases in protecting against the deleterious biological consequences of acrolein and MDA.

  2. Guanine-containing copper(II) complexes: synthesis, X-ray structures and magnetic properties.

    Science.gov (United States)

    Mastropietro, Teresa F; Armentano, Donatella; Grisolia, Ettore; Zanchini, Claudia; Lloret, Francesc; Julve, Miguel; De Munno, Giovanni

    2008-01-28

    Three new compounds of formula {[Cu(gua)(H(2)O)(3)](BF(4))(SiF(6))(1/2)}(n) (1), {[Cu(gua)(H(2)O)(3)](CF(3)SO(3))(2).H(2)O}(n) (2) and [Cu(gua)(2)(H(2)O)(HCOO)]ClO(4).H(2)O.1/2HCOOH] (3) [gua = 2-amino-1H-purin-6(9H)-one] showing the unprecedented coordination of neutral guanine, have been synthesised and structurally characterized. The structures of the compounds 1 and 2 contain uniform copper(II) chains of formula [Cu(gua)(H(2)O)(3)](n)(2n+), where the copper atoms are bridged by guanine ligands coordinated via N(3) and N(7). The electroneutrality is achieved by uncoordinated tetrafluoroborate and hexafluorosilicate (1) and triflate (2). Each copper atom in 1 and 2 is five-coordinated in a distorted square pyramidal environment: two water molecules in trans positions and the N(3) and N(7a) nitrogen atoms of two guanine ligands build the basal plane whereas a water molecule fills the axial position. The values of the copper-copper separation across the bridging guanine ligand are 7.183(1) (1) and 7.123(1) A (2). is an ionic salt whose structure is made up of mononuclear [Cu(gua)(2)(H(2)O)(HCOO)](+) cations and perchlorate anions plus water and formic acid as crystallization molecules. The two guanine ligands in the cation are coordinated to the copper centre through the N(9) atom. The copper atom in 3 is four-coordinated with two monodentate guanine molecules in the trans position, a water molecule and a monodenate formate ligand building a quasi square planar surrounding. Magnetic susceptibility measurements for 1 and 2 in the temperature range 1.9-300 K show the occurrence of significant intrachain antiferromagnetic interactions between the copper(ii) ions across the guanine bridge [J = -9.6(1) (1) and -10.3(1) cm(-1) (2) with H = -J summation operator(i)S(i).S(i+1)].

  3. Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs

    Energy Technology Data Exchange (ETDEWEB)

    He Ying, E-mail: yinghe@staff.shu.edu.c [Shanghai University, Department of Polymer Materials, School of Materials Science and Engineering (China); Wang Junan [Shanghai University, Institute of Materials, School of Materials Science and Engineering (China); Pei Changlong; Song Jizhong; Zhu Di; Chen Jie [Shanghai University, Department of Polymer Materials, School of Materials Science and Engineering (China)

    2010-10-15

    A novel high transparent thermolytic epoxy-silicone for high-brightness light-emitting diode (HB-LED) is introduced, which was synthesized by polymerization using silicone matrix via diglycidyl ether bisphenol-A epoxy resin (DGEBA) as reinforcing agent, and filling ZnO nanowires to modify thermal conductivity and control refractive index of the hybrid material. The interactions of ZnO nanowires with polymers are mediated by the ligands attached to the nanoparticles. Thus, the ligands markedly influence the properties of ZnO nanowires/epoxy-silicone composites. The refractive indices of the prepared hybrid adhesives can be tuned by the ZnO nanowires from 1.4711 to 1.5605. Light transmittance can be increased by 20% from 80 to 95%. The thermal conductivity of the transparent packaging adhesives is 0.89-0.90 W/mK.

  4. Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs

    Science.gov (United States)

    He, Ying; Wang, Jun-An; Pei, Chang-Long; Song, Ji-Zhong; Zhu, Di; Chen, Jie

    2010-10-01

    A novel high transparent thermolytic epoxy-silicone for high-brightness light-emitting diode (HB-LED) is introduced, which was synthesized by polymerization using silicone matrix via diglycidyl ether bisphenol-A epoxy resin (DGEBA) as reinforcing agent, and filling ZnO nanowires to modify thermal conductivity and control refractive index of the hybrid material. The interactions of ZnO nanowires with polymers are mediated by the ligands attached to the nanoparticles. Thus, the ligands markedly influence the properties of ZnO nanowires/epoxy-silicone composites. The refractive indices of the prepared hybrid adhesives can be tuned by the ZnO nanowires from 1.4711 to 1.5605. Light transmittance can be increased by 20% from 80 to 95%. The thermal conductivity of the transparent packaging adhesives is 0.89-0.90 W/mK.

  5. Chemically modified polymeric resins for solid-phase extraction and group separation prior to analysis by liquid or gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, L.W.

    1993-07-01

    Polystyrene divinylbenzene was modified by acetyl, sulfonic acid, and quaternary ammonium groups. A resin functionalized with an acetyl group was impregnated in a PTFE membrane and used to extract and concentrate phenolic compounds from aqueous samples. The acetyl group created a surface easily wetted, making it an efficient adsorbent for polar compounds in water. The membrane stabilized the resin bed. Partially sulfonated high surface area resins are used to extract and group separate an aqueous mixture of neutral and basic organics; the bases are adsorbed electrostatically to the sulfonic acid groups, while the neutraons are adsorbed hydrophobically. A two-step elution is then used to separate the two fractions. A partially functionalized anion exchange resin is used to separate organic acids and phenols from neutrals in a similar way. Carboxylic acids are analyzed by HPLC and phenols by GC.

  6. Hydrogen-bonded proton transfer in the protonated guanine-cytosine (GC+H)+ base pair.

    Science.gov (United States)

    Lin, Yuexia; Wang, Hongyan; Gao, Simin; Schaefer, Henry F

    2011-10-13

    The single proton transfer at the different sites of the Watson-Crick (WC) guanine-cytosine (GC) DNA base pair are studied here using density functional methods. The conventional protonated structures, transition state (TS) and proton-transferred product (PT) structures of every relevant species are optimized. Each transition state and proton-transferred product structure has been compared with the corresponding conventional protonated structure to demonstrate the process of proton transfer and the change of geometrical structures. The relative energies of the protonated tautomers and the proton-transfer energy profiles in gas and solvent are analyzed. The proton-transferred product structure G(+H(+))-H(+)C(N3)(-H(+))(PT) has the lowest relative energy for which only two hydrogen bonds exist. Almost all 14 isomers of the protonated GC base pair involve hydrogen-bonded proton transfer following the three pathways, with the exception of structure G-H(+)C(O2). When the positive charge is primarily "located" on the guanine moiety (H(+)G-C, G-H(+)C(C4), and G-H(+)C(C6)), the H(1) proton transfers from the N(1) site of guanine to the N(3) site of cytosine. The structures G-H(+)C(C5) and G-H(+)C(C4) involve H(4a) proton transfer from the N(4) of cytosine to the O(6) site of guanine. H(2a) proton transfer from the N(2) site of guanine to the O(2) site of cytosine is found only for the structure G-H(+)C(C4). The structures to which a proton is added on the six-centered sites adjoining the hydrogen bonds are more prone to proton transfer in the gas phase, whereas a proton added on the minor groove and the sites adjoining the hydrogen bonds is favorable to the proton transfer in energy in the aqueous phase.

  7. Directly coupled high-performance liquid chromatography-accelerator mass spectrometry measurement of chemically modified protein and peptides.

    Science.gov (United States)

    Thomas, Avi T; Stewart, Benjamin J; Ognibene, Ted J; Turteltaub, Kenneth W; Bench, Graham

    2013-04-02

    Quantitation of low-abundance protein modifications involves significant analytical challenges, especially in biologically important applications, such as studying the role of post-translational modifications in biology and measurement of the effects of reactive drug metabolites. (14)C labeling combined with accelerator mass spectrometry (AMS) provides exquisite sensitivity for such experiments. Here, we demonstrate real-time (14)C quantitation of high-performance liquid chromatography (HPLC) separations by liquid sample accelerator mass spectrometry (LS-AMS). By enabling direct HPLC-AMS coupling, LS-AMS overcomes several major limitations of conventional HPLC-AMS, where individual HPLC fractions must be collected and converted to graphite before measurement. To demonstrate LS-AMS and compare the new technology to traditional solid sample AMS (SS-AMS), reduced and native bovine serum albumin (BSA) was modified by (14)C-iodoacetamide, with and without glutathione present, producing adducts on the order of 1 modification in every 10(6) to 10(8) proteins. (14)C incorporated into modified BSA was measured by solid carbon AMS and LS-AMS. BSA peptides were generated by tryptic digestion. Analysis of HPLC-separated peptides was performed in parallel by LS-AMS, fraction collection combined with SS-AMS, and (for peptide identification) electrospray ionization and tandem mass spectrometry (ESI-MS/MS). LS-AMS enabled (14)C quantitation from ng sample sizes and was 100 times more sensitive to (14)C incorporated in HPLC-separated peptides than SS-AMS, resulting in a lower limit of quantitation of 50 zmol (14)C/peak. Additionally, LS-AMS turnaround times were minutes instead of days, and HPLC trace analyses required 1/6th the AMS instrument time required for analysis of graphite fractions by SS-AMS.

  8. Nano-hydroxyapatite colloid suspension coated on chemically modified porous silicon by cathodic bias: a suitable surface for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Alejandra [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Gonzalez, Jerson [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Garcia-Pineres, Alfonso [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Investigacion en Biologia Celular y Molecular (CIBCM), Universidad de Costa Rica, 2060 (Costa Rica); Montero, Mavis L. [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Centro de Ciencia e Ingenieria en Materiales (CICIMA), Universidad de Costa Rica, 2060 (Costa Rica)

    2011-06-15

    The properties of porous silicon make it an interesting material for biological applications. However, porous silicon is not an appropriate surface for cell growth. Surface modification is an alternative that could afford a bioactive material. In this work, we report a method to yield materials by modification of the porous silicon surface with hydroxyapatite of nanometric dimensions, produced using an electrochemical process and coated on macroporous silicon substrates by cathodic bias. The chemical nature of the calcium phosphate deposited on the substrates after the experimental process and the amount of cell growth on these surfaces were characterized. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Application of Nation/Cobalt Hexacyanoferrate Chemically Modified Electrodes for the Determination of Electroinactive Cations by Ion Chromatography

    Institute of Scientific and Technical Information of China (English)

    XU,Ji-Ming(徐继明); XIAN,Yue-Zhong(鲜跃仲); SHI,Guo-Yue(施国跃); LI,Jin-Hua(李金花); JIN Li-Tong(金利通)

    2002-01-01

    An amperometric detector based on the chemical modification of Nafion and cobalt(H) hexacyanoferrate(Ⅱ, Ⅲ) thin film (Nafion/Co-CN-Fe) onto a glassy carbon (GC) electrode was firslly developed for the determination of electroinactive cations (Li+, Na+, K+, Rb+, Cs+ and NH4+) in single column ion chromatography. A set of well-defined peaks of electroinactive cation was obtained. The relative standard deviations (RSDs)of - peak height (nA) for these cations were all below 3.8%. The cations were detected conveniently in the linear concentration range of 6.0× 10-6-5.0 × 10-3 mol/L and their correlation coefficients were all above 0.99. Tne detection limiits of the cations were 9.2 × 10- 6 mol/L for Li + , 3.4 ×10-6 mol/L for Na+ , 6.3 × 10-7 mol/L for K+ , 7.8 × 10-7 mol/L for Rb+ , 6.2 × 10-7 mol/L for Cs+ and 6.2 × 10-6 mol/L for NH4+ , at a signal-noise ratio of 3. The method was quick, sensitive, simple and was successfully applied to the analysis of rainwater samples. The electrode was stable for a 2 week period of operation with no evidence of chemical or mechanical deterioration.

  10. Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study.

    Science.gov (United States)

    Jain, Swapan S; Sonavane, Uddhavesh B; Uppuladinne, Mallikarjunachari V N; McLaughlin, Emily C; Wang, Weiqing; Black, Sheneil; Joshi, Rajendra R

    2015-01-01

    Ligand recognition in purine riboswitches is a complex process requiring different levels of conformational changes. Recent efforts in the area of purine riboswitch research have focused on ligand analogue binding studies. In the case of the guanine xanthine phosphoribosyl transferase (xpt) riboswitch, synthetic analogues that resemble guanine have the potential to tightly bind and subsequently influence the genetic expression of xpt mRNA in prokaryotes. We have carried out 25 ns Molecular Dynamics (MD) simulation studies of the aptamer domain of the xpt G-riboswitch in four different states: guanine riboswitch in free form, riboswitch bound with its cognate ligand guanine, and with two guanine analogues SJ1 and SJ2. Our work reveals novel interactions of SJ1 and SJ2 ligands with the binding core residues of the riboswitch. The ligands proposed in this work bind to the riboswitch with greater overall stability and lower root mean square deviations and fluctuations compared to guanine ligand. Reporter gene assay data demonstrate that the ligand analogues, upon binding to the RNA, lower the genetic expression of the guanine riboswitch. Our work has important implications for future ligand design and binding studies in the exciting field of riboswitches.

  11. Adhesion of nitrile rubber to UV-assisted surface chemical modified PET fabric, part II: Interfacial characterization of MDI grafted PET

    Energy Technology Data Exchange (ETDEWEB)

    Razavizadeh, Mahmoud; Jamshidi, Masoud, E-mail: mjamshidi@iust.ac.ir

    2016-08-30

    Highlights: • In this research UV-irradiated PET fabric was chemically modified. • The fabric at first carboxylated under UV irradiation using glutaric anhydride, then it was grafted using isocyanate (i.e. MDI). • The surface of the fabric was characterized before and after each treating satge. • The composite samples were prepared and tested for T-Peel test. The surfaces of the fabrics were surface characterized to understand. - Abstract: Fiber to rubber adhesion is an important subject in rubber industry. It is well known that surface treatment (i.e. physical, mechanical and chemical) is an effective method to improve interfacial bonding of fibers and/or fabrics to rubbers. UV irradiation is an effective method which has been used to increase fabric-rubber interfacial interactions. In this research UV assisted chemical modification of PET fabrics was used to increase PET to nitrile rubber (NBR) adhesion. Nitrile rubber is a perfect selection as fuel and oil resistant rubber. However it has weak bonding to PET fabric. For this purpose PET fabric was carboxylated under UV irradiation and then methylenediphenyl diisocyanate (MDI) was grafted on carboxylated PET. The chemical composition of the fabric before and after surface treatment was investigated by X-ray photoelectron spectroscopy (XPS). The sectional morphology of the experimental PET fibers and the interface between rubber compound and PET fabric was studied using scanning electron microscope (SEM). The morphology and structure of the product were analyzed by an energy dispersive X-ray spectrometer (EDX). FTIR-ATR and H NMR analysis were used to assess surface modifications on the PET irradiated fabrics.

  12. Long-Term Performance of Chemically and Physically Modified Activated Carbons in Air Cathodes of Microbial Fuel Cells

    KAUST Repository

    Zhang, Xiaoyuan

    2014-07-31

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Activated carbon (AC) is a low-cost and effective catalyst for oxygen reduction in air cathodes of microbial fuel cells (MFCs), but its performance must be maintained over time. AC was modified by three methods: 1)pyrolysis with iron ethylenediaminetetraacetic acid (AC-Fe), 2)heat treatment (AC-heat), and 3)mixing with carbon black (AC-CB). The maximum power densities after one month with these AC cathodes were 35% higher with AC-Fe (1410±50mW m-2) and AC-heat (1400±20mW m-2), and 16% higher with AC-CB (1210±30mW m-2) than for plain AC (1040±20mW m-2), versus 1270±50mW m-2 for a Pt control. After 16months, the Pt cathodes produced only 250±10mW m-2. However, the AC-heat and AC-CB cathodes still produced 960-970mW m-2, whereas plain AC produced 860±60mW m-2. The performance of the AC cathodes was restored to >85% of the initial maximum power densities by cleaning with a weak acid solution. Based on cost considerations among the AC materials, AC-CB appears to be the best choice for long-term performance.

  13. Chemically modified tetracycline (COL-3) improves survival if given 12 but not 24 hours after cecal ligation and puncture.

    Science.gov (United States)

    Halter, Jeffrey M; Pavone, Lucio A; Steinberg, Jay M; Gatto, Louis A; DiRocco, Joseph; Landas, Steve; Nieman, Gary F

    2006-12-01

    Sepsis can result in excessive and maladaptive inflammation that is responsible for more than 215,00 deaths per year in the United State alone. Current strategies for reducing the morbidity and mortality associated with sepsis rely on treatment of the syndrome rather than prophylaxis. We have been investigating a modified tetracycline, COL-3, which can be given prophylactically to patients at high risk for developing sepsis. Our group has shown that COL-3 is very effect at preventing the sequelae of sepsis if given before or immediately after injury in both rat and porcine sepsis models. In this study, we wanted to determine the "treatment window" for COL-3 after injury at which it remains protective. Sepsis was induced by cecal ligation and puncture (CLP). Rats were anesthetized and placed into five groups: CLP (n = 20) = CLP without COL-3, sham (n = 5) = surgery without CLP or COL-3, COL3@6h (n = 10) = COL-3 given by gavage 6 h after CLP, COL3@12h (n = 10) = COL-3 given by gavage 12 h after CLP, and COL3@24h (n = 20) = COL-3 given by gavage 24 h after CLP. COL-3 that was given at 6 and 12 h after CLP significantly improved survival as compared with the CLP and the CLP@24h groups. Improved survival was associated with a significant improvement in lung pathology assessed morphologically. These data suggest that COL-3 can be given up to 12 h after trauma and remain effective.

  14. Chemical analyses of hydroxyapatite formation on SAM surfaces modified with COOH, NH(2), CH(3), and OH functions.

    Science.gov (United States)

    Hirata, Isao; Akamatsu, Mai; Fujii, Eri; Poolthong, Suchit; Okazaki, Masayuki

    2010-08-01

    Hydroxyapatite formation was examined at the surface of self-assembled monolayers (SAMs) modified with four functional groups, -COOH, -NH(2), -CH(3), and -OH. For COOH-SAM and NH(2)-SAM, scanning electron spectroscopic observation showed that flake-like sheet crystals covered the whole wafer and small broccoli-like crystals were observed occasionally on the flake-like crystal base layer. For CH(3)-SAM and OH-SAM, no flake-like sheet crystals were observed; broccoli-like crystals were observed in a dispersed manner for CH(3)-SAM, but in localized spots for OH-SAM. X-ray diffraction patterns showed a strong apatite pattern oriented toward the c-axis direction for COOH-SAM. ESCA analysis revealed distinct Ca, P, O peaks for COOH-, NH(2)-, CH(3)-, and OH-SAM. Surface plasmon resonance (SPR) analysis indicated that during the supply of supersaturated calcium phosphate solution, the deposition of precipitates increased monotonically with time for COOH-SAM, increased slightly for NH(2)-SAM, but little increase in deposition was detected for CH(3)-SAM and OH-SAM.

  15. The prebiotic synthesis of modified purines and their potential role in the RNA world

    Science.gov (United States)

    Levy, M.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Modified purines are found in all organisms in the tRNA, rRNA, and even DNA, raising the possibility of an early role for these compounds in the evolution of life. These include N6-methyladenine, 1-methyladenine, N6,N6-dimethyladenine, 1-methylhypoxanthine, 1-methylguanine, and N2-methylguanine. We find that these bases as well as a number of nonbiological modified purines can be synthesized from adenine and guanine by the simple reaction of an amine or an amino group with adenine and guanine under the concentrated conditions of the drying-lagoon or drying-beach model of prebiotic synthesis with yields as high as 50%. These compounds are therefore as prebiotic as adenine and guanine and could have played an important role in the RNA world by providing additional functional groups in ribozymes, especially for the construction of hydrophobic binding pockets.

  16. Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol.

    Science.gov (United States)

    Khan, Shadab Ali; Gambhir, Sanjay; Ahmad, Absar

    2014-01-01

    As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3) nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconjugate in the treatment of cancer. The biosynthesized Gd2O3 nanoparticles were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS). The Gd2O3-taxol bioconjugate was confirmed by UV-vis spectroscopy and fluorescence microscopy and was purified by using high performance liquid chromatography (HPLC).

  17. Extracellular biosynthesis of gadolinium oxide (Gd2O3 nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

    Directory of Open Access Journals (Sweden)

    Shadab Ali Khan

    2014-03-01

    Full Text Available As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3 nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconjugate in the treatment of cancer. The biosynthesized Gd2O3 nanoparticles were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM, X-ray diffraction (XRD and X-ray photoemission spectroscopy (XPS. The Gd2O3–taxol bioconjugate was confirmed by UV–vis spectroscopy and fluorescence microscopy and was purified by using high performance liquid chromatography (HPLC.

  18. Metal modified graphite. An innovative material for systems converting electro-chemical energy; Metallmodifizierter Graphit. Ein innovativer Werkstoff fuer Systeme zur elektrochemischen Energieumwandlung

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Peter

    2007-07-23

    The work deals with metal modification of graphite electrodes in a water-acid electrolyte solution. The target is to improve the catalytic properties of graphite electrodes as they are applied in redox storage batteries for storing electric energy. Different carbon and graphite materials were used and coated electro-chemically with different metals. After being coated with metal the graphite and carbon electrodes were investigated in terms of changing their catalytic properties by means of impedance measurements. It was shown, a metal coating without a prior activation with electro-chemical oxidation-reduction cycles only results in a low or zero increase of the catalytic properties. Investigations at the electrode material glass carbon showed, a prior activation of the electrode surface by means of electro-chemical oxidation-reduction cycles decreases the penetration resistance. The activation of the glass carbon surface prior to the surface coating with metal is favourable to the electro-chemical properties of the metal-modified electrode. All carbon types, which were used in this work, could be activated at a different level by means of electro-chemical oxidation-reduction cycles depending on the carbon type. The investigations further showed that the edge levels of the carbon were activated by means of the electro-chemical oxidation-reduction cycles. The metal precipitation favourably occurs at the activated positions. (orig.) [German] Die Arbeit befasst sich mit der Metallmodifizierung von Graphitelektroden in waessriger saurer Elektrolytloesung. Ziel ist es die katalytischen Eigenschaften von Graphitelektroden wie sie in Redoxspeicherbatterien zur Speicherung von elektrischer Energie eingesetzt werden zu verbessern. Fuer die Untersuchungen wurden unterschiedliche Kohlenstoff und Graphitmaterialien eingesetzt, die elektrochemisch mit verschiedenen Metallen belegt wurden. Die Graphit- und Kohlenstoffelektroden wurden nach der Metallbelegung durch

  19. Template-free TiO2 photoanodes for dye-sensitized solar cell via modified chemical route.

    Science.gov (United States)

    Gaikwad, M A; Mane, A A; Desai, S P; Moholkar, A V

    2017-02-15

    Surfactant and template-free Titanium dioxide (TiO2) spheres have been deposited via ultrasonic rinsing assisted modified successive ionic layer adsorption and reaction (M-SILAR) method. The effect of M-SILAR cycle variation on the growth of TiO2 films and power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs) has been reported. Also, the significant influence of the dye adsorption time of photoelectrodes on the overall PCE of TiO2 based DSSCs has been investigated systematically. The SEM images reveal that the TiO2 microspheres are made up of densely packed and interconnected nanospheres. After dye loading maximum absorption peak around 500nm is seen with broader coverage in the visible region of the solar spectrum. The excess amount of dye for dye loading time 15h did not contribute to current and is suspected to be present either in multilayers or physisorbed on the surface of TiO2. The DSSC prepared using photoelectrode TO125 and dye loading time of 12h exhibited the highest power conversion efficiency (PCE) of 1.16% with short-circuit current density (Jsc) of 8.17mA/cm(2), open circuit voltage (Voc) of 0.42V and fill factor of 0.34. The PCE is attributed to the large molecular interconnected TiO2 spheres diffusing visible light to enhance the light absorption. Also, it possesses relatively superior 3-D microsphere like structure and thus provides the effective pathway to the photogenerated electrons with low recombination rate, leading to attaining the high PCE.

  20. Determination of Atropine Sulfate in Human Urines by Capillary Electrophoresis Using Chemical Modified Electrode as Electrochemiluminescence Sensor

    Directory of Open Access Journals (Sweden)

    Min Zhou

    2011-01-01

    Full Text Available A Ru(bpy3 2+-based electrochemiluminescence (ECL detection coupled with capillary electrophoresis (CE was developed for the determination of atropine sulfate on the basis of an Eu-PB modified platinum electrode as the working electrode. The analyte was injected to separation capillary of 50 cm length (25 μm i.d., 360 μm o.d. by electrokinetic injection for 10 s at 10 kV. Parameters related to the separation and detection were discussed and optimized. It was proved that 10 mM phosphate buffer at pH 8.0 could achieve the most favorable resolution, and the high sensitivity of detection was obtained by using the detection potential at 1.15 V and 5 mM Ru(bpy3 2+ in 80 mM phosphate buffer at pH 8.0 in the detection reservoir. Under the optimized conditions, the ECL peak area was in proportion to atropine sulfate concentration in the range from 0.08 to 20 μg⋅mL−1 with a detection limit of 50 ng⋅mL−1 (3σ. The relative standard derivations of migration time and peak area were 0.81 and 3.19%, respectively. The developed method was successfully applied to determine the levels of atropine sulfate in urine samples of patients with recoveries between 90.9 and 98.6%.

  1. Modified growth of Ge quantum dots using C{sub 2}H{sub 4} mediation by ultra-high vacuum chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.W. [Institute of Materials Science and Engineering, National Central University, Jhong-Li 32001, Taiwan (China)], E-mail: swlee@ncu.edu.tw; Chen, P.S. [Department of Materials Science and Engineering, Minghsin University of Science and Technology, Hsinchu 30401, Taiwan (China); Cheng, S.L. [Institute of Materials Science and Engineering, National Central University, Jhong-Li 32001, Taiwan (China); Department of Chemical and Materials Engineering, National Central University, Jhong-Li 32001, Taiwan (China); Lee, M.H. [Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 11677, Taiwan (China); Chang, H.T. [Institute of Materials Science and Engineering, National Central University, Jhong-Li 32001, Taiwan (China); Lee, C.-H.; Liu, C.W. [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2008-07-30

    C{sub 2}H{sub 4} mediations were used to modify the Stranski-Krastanow growth mode of Ge dots on Si(0 0 1) at 550 deg. C by ultra-high vacuum chemical vapor deposition. With appropriate C{sub 2}H{sub 4}-mediation to modify the Si surface, the elongated Ge hut clusters can be transformed to highly uniform Ge domes with a high Ge composition at the core. These C{sub 2}H{sub 4}-mediated Ge dots, almost bounded by {l_brace}1 1 3{r_brace} facets, have an average diameter and height of 55 and 9 nm, respectively. We propose two major mechanisms to depict the formation of these C{sub 2}H{sub 4}-mediated Ge dots: (i) an almost hydrogen-passivated Si surface to limit the nucleation sites for dot formation, and (ii) the incorporation of Ge atoms, repelled by the C-rich areas, into the existing Ge dots. This work provides a useful scheme to tune the topography of Ge dots in an UHV/CVD condition for possible optoelectronic applications.

  2. Incorporation of post-translational modified amino acids as an approach to increase both chemical and biological diversity of conotoxins and conopeptides.

    Science.gov (United States)

    Espiritu, Michael J; Cabalteja, Chino C; Sugai, Christopher K; Bingham, Jon-Paul

    2014-01-01

    Bioactive peptides from Conus venom contain a natural abundance of post-translational modifications that affect their chemical diversity, structural stability, and neuroactive properties. These modifications have continually presented hurdles in their identification and characterization. Early endeavors in their analysis relied on classical biochemical techniques that have led to the progressive development and use of novel proteomic-based approaches. The critical importance of these post-translationally modified amino acids and their specific assignment cannot be understated, having impact on their folding, pharmacological selectivity, and potency. Such modifications at an amino acid level may also provide additional insight into the advancement of conopeptide drugs in the quest for precise pharmacological targeting. To achieve this end, a concerted effort between the classical and novel approaches is needed to completely elucidate the role of post-translational modifications in conopeptide structure and dynamics. This paper provides a reflection in the advancements observed in dealing with numerous and multiple post-translationally modified amino acids within conotoxins and conopeptides and provides a summary of the current techniques used in their identification.

  3. Measurement of beta-glucuronidase in effluent of perifused alveolar macrophages challenged with chemically modified chrysotile asbestos.

    Science.gov (United States)

    Forget, G; Lacroix, M J; Calvert, R; Sirois, P

    1984-06-01

    Chrysotile asbestos has been implicated with lung disorders, notably fibrotic lesions and cancer. In vitro, chrysotile fibers are cytotoxic to lung macrophages and stimulate the release of inflammatory mediators. Reports to the effect that chemical modifications of asbestos fibers reduce their cytotoxic and inflammatory potential initiated the present study of three fiber modifications. The cytotoxic and inflammatory effects of magnesium-leached chrysotile, POCL3-treated chrysotile, and CaO-treated chrysotile were studied in a perifused rat alveolar macrophage culture system, relative to untreated fibers. Natural Canadian chrysotile (UICC "B") caused dose-dependent cell mortality and clumping. The release of beta-glucuronidase (beta-Glu), a lysosomal enzyme, was also dose dependent. Rhodesian chrysotile (UICC "A") caused similar cytotoxic and inflammatory effects. However, magnesium-leached chrysotile was less cytotoxic (39% less) and had a lesser clumping capacity (31% less) than untreated chrysotile. Total secretion of beta-Glu elicited by magnesium-leached chrysotile was reduced by 43% from the untreated sample, but kinetic monitoring indicates that this reduction in inflammatory potential is only significant during the first 12 h of an 18-h culture period. POCl3 treatment of chrysotile fibers produced differing effects depending on the length of the fibers under study. Treating fibers with a mean length of 8 micron produced a secretion pattern similar to that produced by acid leaching. The total output for the treated sample was 44% lower than with untreated chrysotile; the difference was only significant during the first 12 h of perifusion. Cell mortality and aggregation were not reduced in any important way with POCl3 treatment of these longer fibers. When ultra-short fibers (mean length = 0.8 micron) were treated with POCl3, the total decrease in beta-Glu output was equal to 41%, and the release of enzyme was significantly lower during the whole 18-h

  4. Coal-smoke pollution modifies physio-chemical characteristics of tissues during the ontogeny of Peristrophe bicalyculata

    Energy Technology Data Exchange (ETDEWEB)

    Nighat, F.; Iqbal, M. [Jamia Hamdard, New Delhi (India). Dept. of Botany

    2008-12-15

    Coal-smoke emissions of a thermal power plant affected the physio-chemical status of Peristrophe bicalyculata (Reth) Nees, as observed at the pre-flowering, flowering and post-flowering stages of plant growth. The nitrate level was raised while nitrate reductase activity, and the soluble protein content of leaf declined heavily at the polluted site during different stages of plant growth, compared to the control. The rate of photosynthesis also decreased under the pollution stress. Sugar level in root, stem and leaves increased with growing age of the plant but was always lower at the polluted site than at the reference site. In roots, the difference was marginal till flowering stage and quite conspicuous afterwards; stems showed a reverse pattern of variation. Sulphur content was higher at the polluted site in all the organs and at each stage of the plant life. The Zn and Fe concentrations were reduced in all plant parts under the pollution stress. Copper content in root was consistently low at the polluted site. In the stem and leaves, however, it was almost equal on both the sites at the pre-flowering stage but showed a wide difference during the later part of plant ontogeny.

  5. Chemically-modified polysaccharide extract derived from Leucaena leucocephala alters Raw 264.7 murine macrophage functions.

    Science.gov (United States)

    Gamal-Eldeen, Amira M; Amer, Hassan; Helmy, Wafaa A; Talaat, Roba M; Ragab, Halla

    2007-06-01

    In this study, a chemical modification of the polysaccharides extract (E) derived from Leucaena leucocephala seeds was performed to prepare C-glycosidic 2-propanol derivative (PE), and its sulphated derivative (SPE). This study aimed to characterize immunomodulatory activities of the original extract and its derivatives by exploring their effects on Raw macrophage 264.7 functions and their antioxidant activity. Our results indicated that PE was an effective radical scavenger to hydroxyl, peroxyl, and superoxide anion radicals, and SPE was a peroxyl radical scavenger. PE and SPE were found to influence the macrophage functions. Both of PE and SPE enhanced the macrophage proliferation and phagocytosis of FITC-zymosan; PE inhibited nitric oxide (NO) generation and tumor necrosis factor-alpha (TNF-alpha) secretion in lipopolysaccharide (LPS)-stimulated Raw macrophage 264.7. In contrast, SPE over-induced NO generation and TNF-alpha secretion. Moreover, PE strongly inhibited the binding affinity of FITC-LPS to Raw 264.7, as indicated by flow cytometry analysis. These findings revealed that PE may act as a potent anti-inflammatory agent; however SPE may act as an inducer of macrophage functions against pathogens.

  6. Selective adsorption of molybdenum(VI) from Mo-Re bearing effluent by chemically modified astringent persimmon.

    Science.gov (United States)

    Xiong, Ying; Wang, Haitao; Lou, Zhenning; Shan, Weijun; Xing, Zhiqiang; Deng, Guichun; Wu, Dongbei; Fang, Dawei; Biswas, Biplob Kumar

    2011-02-28

    Astringent persimmon was chemically cross-linked by formaldehyde to obtain a novel kind of adsorption gel, which was named as APF gel. The adsorption behaviors of Mo(VI) and Re(VII) along with other coexisting metals onto the APF gel were studied in the present paper. The APF gel was found to be effective for the adsorption of Mo(VI) while the gel is almost completely inert toward rhenium and calcium over the whole hydrochloric acid concentration region. The APF gel has a low affinity for iron, copper, lead, nickel, manganese and zinc ions when the concentration of HCl is higher than 1 mol/L. The gel exhibited selectivity only for Mo(VI) with a remarkably high adsorption capacity 1.05 mol/kg, and the adsorption behavior obeys the Langmuir model. According to the thermodynamic and kinetic studies, the endothermic adsorption process followed pseudo-second order kinetics. Also, its excellent adsorption characteristics for Mo(VI) were confirmed by the adsorption and elution tests using a column packed with the APF gel. The result provides a new approach for the recovery of Mo(VI) from a industrial waste effluent.

  7. Photocatalysis-triggered ion rectification in artificial nanochannels based on chemically modified asymmetric TiO2 nanotubes.

    Science.gov (United States)

    Hu, Ziying; Zhang, Qianqian; Gao, Jun; Liu, Zhaoyue; Zhai, Jin; Jiang, Lei

    2013-04-16

    Ion rectification is one of the important characteristics of biological ion channels. Inspired by the function of biological ion channels, creation of artificial nanochannels that show analogous ion rectification characteristics has attracted a great interest recently. Herein, we demonstrate a new type of artificial solid-state nanochannel with ion rectification characteristics. The creation of artificial nanochannels includes the formation of asymmetric TiO2 nanotubes by electrochemical anodization of Ti metal, followed by chemical modification with octadecyltrimethoxysilane (OTS) molecules. The carboxylic groups are introduced onto the tip side of TiO2 nanotubes via photocatalytic decomposition of OTS molecules by TiO2 photocatalysis under ultraviolet light. When the radius of tip side of TiO2 nanotubular channels is comparable to the thickness of electric double layer, the negatively charged surface in neutral electrolyte in combination with the asymmetric pore geometry contributes to the ion rectification characteristics. Compared with previous artificial nanochannels, our new type of artificial nanochannel is more facile to fabricate and behaves as a diode that rectifies the ion transport, which also shows some other potential applications, such as sensor and separation materials.

  8. Pt(Ⅱ), Pd(Ⅱ) and Ni(Ⅱ) Complexes Binding to the N(7) Position of Guanine: Influence on the Guanine and Watson-crick GC Base Pair

    Institute of Scientific and Technical Information of China (English)

    章志强; 周立新; 和芹; 赵亚英

    2005-01-01

    Comprehensive ab initio calculations were performed on the coordination of Pt(II), Pd(II) and Ni(II) adducts to the N(7) of guanine and guanine-cytosine (GC) base pair at the DFT level. The fully optimized geometries of the metal complexes were obtained and the stabilization energies of the interaction between metal adducts and nucleobase were calculated with B3LYP method by using 6-31* basis set for the light atom. While the effective core potential (ECP) is used for metal cation. The results show that both cispalladium and cisnickel cause similar geometric changes of the base pair as cisplatin. For the coordination of metal adducts to guanine, platinum adduct possesses the highest stabilization energy; but the interaction between metal-guanine and cytosine for nickel is larger than that for platinum and palladium. It is worthy to note that hydrolysis effect can also cause significant changes in H-bonds.

  9. Single probe nucleic acid immobilization on chemically modified single protein by controlling ionic strength and pH.

    Science.gov (United States)

    Yamasaki, Ryujiroh; Ito, Masateru; Lee, BongKuk; Jung, HoSup; Lee, HeaYeon; Kawai, Tomoji

    2007-11-05

    In an effort toward determining the feasibility of single molecule analysis, we describe a case whereby the binding of one biotinylated DNA to one streptavidin molecule via electrostatic interactions was controlled by altering in pH 4.0-9.0 and 0.16 of the ion strength. The quantitative analysis of immobilized probe ssDNA was realized in real-time via a quartz crystal microbalance (QCM) and electrochemical (EC) measurement in the range 100 pM to 50 microM of probe oligonucleotide concentration. The variation amount of biotinylated ssDNA immobilized on the streptavidin-modified surface at pH 7.5 was about 0.16 pmol, giving a ratio of streptavidin to biotinylated ssDNA of about 1:1.1. On the other hand, at pH 4.9, it was immobilized about 0.29 pmol. From the shape of the Langmuir plot and QCM, the immobilization efficiency of biotinylated DNA via streptavidin at pH 4.9 was approximately twofold that at pH 7.5. In view points of the reaction velocity, it was increased with decreasing buffer solution pH, indicating a strong interaction of negatively charged probe DNA with the positively charged streptavidin. And also the EC response value of deltaI/I(streptavidin) for the immobilized biotinylated ssDNA in pH 4.9 was about 49%, while the corresponding value for the pH 7.5 was approximately 34%. As DNA molecules possess negative charges, electrostatic repulsion occurred between streptavidin and biotinylated ssDNA at pH 7.5. At pH 4.9, the attraction between the biotinylated ssDNA and streptavidin resulted in increased adsorption which has an isoelectric point of about 5.9. It was deduced that the binding of biotinylated ssDNA to one or two of the four binding sites of streptavidin can be controlled by adjusting the pH-controlled electrostatic interaction.

  10. Chemical responses to modified lignin composition in tension wood of hybrid poplar (Populus tremula x Populus alba).

    Science.gov (United States)

    Al-Haddad, Jameel M; Kang, Kyu-Young; Mansfield, Shawn D; Telewski, Frank W

    2013-04-01

    The effect of altering the expression level of the F5H gene was investigated in three wood tissues (normal, opposite and tension wood) in 1-year-old hybrid poplar clone 717 (Populus tremula × Populus alba L.), containing the F5H gene under the control of the C4H promoter. Elevated expression of the F5H gene in poplar has been previously reported to increase the percent syringyl content of lignin. The wild-type and three transgenic lines were inclined 45° for 3 months to induce tension wood formation. Tension and opposite wood from inclined trees, along with normal wood from control trees, were analyzed separately for carbohydrates, lignin, cellulose crystallinity and microfibril angle (MFA). In the wild-type poplar, the lignin in tension wood contained a significantly higher percentage of syringyl than normal wood or opposite wood. However, there was no significant difference in the percent syringyl content of the three wood types within each of the transgenic lines. Increasing the F5H gene expression caused an increase in the percent syringyl content and a slight decrease in the total lignin in normal wood. In tension wood, the addition of a gelatinous layer in the fiber walls resulted in a consistently lower percentage of total lignin in the tissue. Acid-soluble lignin was observed to increase by up to 2.3-fold in the transgenic lines. Compared with normal wood and opposite wood, cell wall crystallinity in tension wood was higher and the MFA was smaller, as expected, with no evidence of an effect from modifying the syringyl monomer ratio. Tension wood in all the lines contained consistently higher total sugar and glucose percentages when compared with normal wood within the respective lines. However, both sugar and glucose percentages were lower in the tension wood of transgenic lines when compared with the tension wood of wild-type trees. Evaluating the response of trees with altered syringyl content to gravity will improve our understanding of the changes

  11. Potassium selective chemically modified field effect transistors based on AlGaN/GaN two-dimensional electron gas heterostructures.

    Science.gov (United States)

    Alifragis, Y; Volosirakis, A; Chaniotakis, N A; Konstantinidis, G; Adikimenakis, A; Georgakilas, A

    2007-06-15

    We investigate the use of the AlGaN/GaN high electron mobility transistor (HEMT) as a novel transducer for the development of ion-selective chemically modified HEMT sensors (ChemHEMTs). For this, polyvinyl chloride (PVC) membrane doped with ion-selective ionophores is deposited onto the area of the gate for the chemical recognition step, while the AlGaN/GaN HEMT is used as the transducer. In particular, the use of a valinocycin doped membrane with thickness of 50 microm generates a sensor with excellent analytical characteristics for the monitoring of K(+). The K(+)-ChemHEMT has sensitivity of 52.4 mV/pK(+)in the linear range of 10(-5) to 10(-2)M, while the detection limit is in the order of 3.1 x 10(-6)M. Also, the sensor shows selectivity similar to valinomycin-based ISEs, while the signal stability over time and the measurement to measurement reproducibility are very good.

  12. Evaluation of a synergetic effect between Rh as permanent chemical modifier and acetylacetone as complexing agent in Sc determination in sediment slurry samples by ETAAS

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Araceli Veronica [Departamento de Quimica Analitica, Instituto de Quimica, Universidade Estadual de Campinas, P.O. Box 6154, 13084 971 Campinas, Sao Paulo (Brazil); Perez, Carlos Alberto [Laboratorio Nacional de Luz Sincrotron, P.O. Box 6192, 13084 971 Campinas, Sao Paulo (Brazil); Arruda, Marco Aurelio Zezzi [Departamento de Quimica Analitica, Instituto de Quimica, Universidade Estadual de Campinas, P.O. Box 6154, 13084 971 Campinas, Sao Paulo (Brazil)]. E-mail: zezzi@iqm.unicamp.br

    2005-02-14

    In the present work, scandium was determined in sediment slurry samples (from three different rivers) by electrothermal atomic absorption spectrometry (ETAAS). Slurries were prepared by weighting 100 mg of dry sediment samples ({<=}53 {mu}m particle sizes) and adding 6 ml of HCl:HNO{sub 3}:HF (3:1:2, v/v). Accurate results were only possible due to the synergetic effect between Rh as permanent chemical modifier and acetylacetone (Acac) as complexing agent. The same platform was used for 400 heating cycles. The performance of the chemical modification was evaluated by using scanning electron microscopy (SEM), synchrotron radiation X-ray fluorescence (SRXRF) and some figures of merit (precision and detectability). The best analytical conditions were attained using 1500 and 2550 deg. C as pyrolysis and atomization temperatures. The scandium content in the liquid phase of the slurries ranged from 61 to 73%, thus indicating, in this study, that both liquid and solid phases play an important role in slurry analyses. An amount of 5.0-20.0 {mu}g l{sup -1} Sc linear range as well as LOD and LOQ of 0.19 and 0.62 {mu}g l{sup -1}, respectively, were obtained under these conditions. The accuracy was checked by using microwave-assisted decomposition, and the results compared to those obtained with the proposed methodology (slurry analysis). By checking both sets of the results, there is no statistical difference at the 95% confidence levels.

  13. KARAKTERISTIK FISIK DAN KIMIA PATI GANYONG DAN GADUNG TERMODIFIKASI METODE IKATAN SILANG Physical and Chemical Characteristics of Canna edulis Kerr and Dioscorea hispida Dennst Modified Starch with Cross Linking Method

    OpenAIRE

    Budi Santoso; Filli Pratama; Basuni Hamzah; Rindit Pambayun

    2015-01-01

    The research aimed to know physical and chemical characteristics of Canna edulis Kerr and Dioscorea hispida Dennst unmodified and modified starch with cross-linking method. This research was divided into two stages. The first stage of the research was characterization of starch from Canna edulis Kerr and Dioscorea hispida Dennst and the second stage of the research was processing of modified starch from Canna edulis Kerr and Dioscorea hispida Dennst through crosslinking by using POCl at the c...

  14. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    Science.gov (United States)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  15. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    Science.gov (United States)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-01-01

    Inosine-5′-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. PMID:26558346

  16. A Minimal Rac Activation Domain in the Unconventional Guanine Nucleotide Exchange Factor Dock180†

    OpenAIRE

    Xin WU; Ramachandran, Sekar; Cerione, Richard A.; Erickson, Jon W.

    2011-01-01

    Guanine nucleotide exchange factors (GEFs) activate Rho GTPases by catalyzing the exchange of bound GDP for GTP, thereby resulting in downstream effector recognition. Two metazoan families of GEFs have been described: Dbl-GEF family members that share conserved Dbl homology (DH) and Pleckstrin homology (PH) domains and the more recently described Dock180 family members that share little sequence homology with the Dbl family and are characterized by conserved Dock homology regions 1 and 2 (DHR...

  17. Structure-function Relationships in Human Hypoxanthine-guanine Phosphoribosyltransferase (HGPRT) by Random Mutagenesis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Introduction Hypoxanthine-guanine phosphoribosyltransferase ( HGPRT, EC 2.4.2.8 ) is a key enzyme of the purine salvage pathway, which allows recycling of purine bases into DNA and RNA. It is widely distributed in nature and has been studied both in prokaryotes and eukaryotes. In humans, a complete lack of HGPRT activity causes the Lesch-Nyhan syndrome, which is characterized by hyperuricaemia and neural disorders, including mental retardation and compulsive self-mutilation behavior[1].

  18. A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange

    OpenAIRE

    Rossman, Kent L.; Worthylake, David K.; Snyder, Jason T; Siderovski, David P.; Campbell, Sharon L; Sondek, John

    2002-01-01

    Dbl-related oncoproteins are guanine nucleotide exchange factors (GEFs) specific for Rho guanosine triphosphatases (GTPases) and invariably possess tandem Dbl (DH) and pleckstrin homology (PH) domains. While it is known that the DH domain is the principal catalytic subunit, recent biochemical data indicate that for some Dbl-family proteins, such as Dbs and Trio, PH domains may cooperate with their associated DH domains in promoting guanine nucleotide exchange of Rho GTPases. In order to gain ...

  19. N7-(carboxymethyl)guanine-Lithium Crystalline Complex: A Bioinspired Solid Electrolyte

    Science.gov (United States)

    Dutta, Dipak; Nagapradeep, N.; Zhu, Haijin; Forsyth, Maria; Verma, Sandeep; Bhattacharyya, Aninda J.

    2016-04-01

    Electrochemical device with components having direct significance to biological life processes is a potent futuristic strategy for the realization of all-round green and sustainable development. We present here synthesis design, structural analysis and ion transport of a novel solid organic electrolyte (G7Li), a compound reminiscent of ion channels, derived from regioisomeric N7-guanine-carboxylate conjugate and Li-ions. G7Li, with it’s in-built supply of Li+-ions, exhibited remarkably high lithium-ion transference number (= 0.75) and tunable room temperature ionic conductivity spanning three decades (≈10-7 to 10-3 Ω-1 cm-1) as a function of moisture content. The ionic conductivity show a distinct reversible transition around 80-100 °C, from a dual Li+ and H+ (100 °C). Systematic studies reveal a transition from water-assisted Li-ion transport to Li hopping-like mechanism involving guanine-Li coordination. While as-synthesized G7Li has potential in humidity sensors, the anhydrous G7Li is attractive for rechargeable batteries.

  20. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Midori de Oliveira, Fernanda; Gava Segatelli, Mariana [Departamento de Química, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário, Londrina, PR CEP 86051-990 (Brazil); Tarley, César Ricardo Teixeira, E-mail: ctarleyquim@yahoo.com.br [Departamento de Química, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário, Londrina, PR CEP 86051-990 (Brazil); Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalítica, Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Departamento de Química Analítica, Cidade Universitária Zeferino Vaz s/n, CEP 13083-970 Campinas, SP (Brazil)

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium (pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers. - Highlights: • The molecularly imprinted hybrid polymer showed high adsorption capacity for folic acid. • The molecularly imprinted hybrid polymer showed high selectivity for folic acid. • The molecularly imprinted hybrid polymer modified with GPTMS excludes higher amount of BSA.

  1. Effect of Modified Atmosphere Packaging on Aril Physico-chemical and Microbial Properties of Two Pomegranate Cultivars (Punica granatum L. Grown in Iran

    Directory of Open Access Journals (Sweden)

    Sedighe Tavasoli Talarposhti

    2016-10-01

    Full Text Available Background and Objectives: Edible parts of pomegranate fruits are a rich source of bioactive compounds. The present research examines the effect of modified atmosphere packaging on the fruit physico-chemical and microbial properties of two commercial pomegranate cultivars grown in Iran. Materials and Methods: The arils were packaged and stored under four different atmospheres. All of the packaged samples were stored at 4 °C for 15 days. Results: The results revealed an increase in total acidity of all treatments. The highest total soluble solid (TSS was observed in ‘Yousef-Khani’­ stored in 10% O2 + 15% CO2, while ‘Malas-e-Saveh’ treated with 20% O2 + 5% CO2 showed the highest degree of TSS. The mean value of a* in ‘Malas-e-Saveh’ arils packed with normal and (15% O2 + 10% CO2 + 75% N2 atmosphere increased significantly. The L* showed a decrease in ‘Yousef-Khani’­. Total phenolic compounds gradually increased during storage. After storage, decreases in total anthocyanin contents ranged from 12 to 30% for ‘Yousef-Khani’­. The overall antioxidant activity of arils in ‘Yousef-Khani’ showed a 6-15% increase during storage. However, a reverse effect was observed for ‘Malas-e-Saveh’. The lowest microbial counts were recorded under the atmosphere containing 10 and 15% CO2. Conclusions: Packaging of ‘Malas-e-Saveh’ arils in 15% O2 + 10% CO2 and ‘Yousef-Khani’ in 15% O2 + 10% CO2 or 10% O2 + 15% CO2 is recommended to extend the shelf-life of ready-to-eat arils. Keywords: Pomegranate, Modified atmosphere, Phenolic compounds, Anthocyanin, Antioxidant activity

  2. Chemically modified carbon paste and membrane sensors for the determination of benzethonium chloride and some anionic surfactants (SLES, SDS, and LABSA): Characterization using SEM and AFM.

    Science.gov (United States)

    Issa, Yousry M; Mohamed, Sabrein H; Baset, Mohamed Abd-El

    2016-08-01

    Chemically modified carbon-paste (CMCP) and membrane- sensors based on incorporating benzothonium-tetraphenylborate (BT-TPB) were constructed for the analysis of benzethonium chloride, and some other surfactants such as sodium lauryl ether sulphate (SLES), sodium dodecyl sulphate (SDS), and linear alkylbenzene sulphonic acid (LABSA). All sensors showed good sensitivity and reverse wide linearity over a concentration range of 5.97×10(-7) to 1.00×10(-3) and 5.96×10(-7) to 3.03×10(-3)molL(-1) with limit of detection of 3.92×10(-7)and 3.40×10(-7)molL(-1) for membrane and chemically modified carbon paste sensors, respectively, with respect to benzethonium chloride (BT.Cl). They could be used over a wide pH range of 2.0-10.0. The thermal coefficients of membrane and CMCP sensors are 5.40×10(-4), 1.17×10(-4)V/°C, respectively. The sensors indicated a wide selectivity over different inorganic cations. The effect of soaking on the surface morphology of the membrane sensor was studied using EDX-SEM and AFM techniques. The response time was <10s The freshly prepared, exhausted membrane, and CMCP sensors were successfully applied for the potentiometric determination of the pure BT.Cl solution. They were also used for the determination of its pharmaceutical formulation Dermoplast(®) antibacterial spray (20% benzocaine+0.2% benzethonium chloride) with recovery values ranging from 97.54±1.70 to 101.25±1.12 and from 96.32±2.49 to 101.23±2.15%. The second goal of these sensors is the potentiometric determination of different surfactants such as SLES, SDS, and LABSA with good recovery values using BT.Cl as a titrant in their pure forms, and in samples containing one of them (shampoo, Touri(®) dishwashing liquid, and waste water). The statistical analysis of the obtained data was studied.

  3. Effect of modified atmosphere and vacuum packaging on selected chemical parameters of rainbow trout (Oncorhynchus mykiss and carp (Cyprinus carpio cuts freshness

    Directory of Open Access Journals (Sweden)

    Babić Jelena A.

    2014-01-01

    Full Text Available The purpose of food packing in modified atmosphere is to extend its sustainability by preventing both biochemical processes and growth of spoilage bacteria. Gases or their mixtures which are mostly used in the modified atmosphere food packing technology are carbon-dioxide (CO2, oxygen (O2 and nitrogen (N2. The aim of our research was to examine the influence of packaging in modified atmosphere and vacuum on the total volatile basic nitrogen (TVB-N content and pH in muscle of rainbow trout (Oncorhynchus mykiss and common carp (Cyprinus carpio, as well as to determine the most suitable gas mixtures for packing of these freshwater species. Three sample groups of trout and carp cuts were investigated. The first two groups were packaged in modified atmosphere with different gas ratios: 60%CO2+40%N2 (I group and 40%CO2+60%N2 (II group, whereas the samples from third, control group, (III group were vacuum packaged. During trials samples were stored in refrigerator at +3°C. Determination of TVB-N and pH was performed on 1st, 7th and 14th day of storage. The obtained results indicate that the investigated mixtures of gases and vacuum as well had a significant influence on the values of TVB-N in trout and carp cuts samples. The lowest increase in TVB-N was established in trout and carp cuts samples from the group I, whereas the highest increase was established in samples from group III. Statistical significant difference (p < 0,001 between the average values of TVB-N for trout (I group: 18,17 ± 0,93; II group: 20,90 ± 0,81 and III group: 36,18 ± 2,65 mg N/100 g and carp cuts (I group: 26,74 ± 1,48; II group: 30,02 ± 0,31 and III group: 35,10 ± 1,75 mg N/100 g was established on 14th day. The lowest pH value was established in samples packaged in modified atmosphere with 60% CO2 +40% N2 (I group. On 14th day of testing the obtained value was 6,15 ± 0,09 for trout and 5,94 ± 1,11 for carp samples. Increase in pH value in trout samples packed in

  4. Synthesis of chemically-modified single-walled carbon nanotubes by counter-current ammonia gas injection into the induction thermal plasma process

    Science.gov (United States)

    Shahverdi, Ali

    Pristine single-walled carbon nanotubes (SWCNTs) are poorly dispersible and insoluble in many solvents and need to be chemically modified prior to their use in many applications. This work is focused on the investigation of the synthesis of chemically modified SWCNTs material through an in situ approach. The main objectives of the presented research are: 1) to explore the in situ chemical process during the synthesis of SWCNT and 2) to closely examine the effect of a reactive environment on SWCNTs. Effects of the catalyst type and content on the SWCNTs final product, synthesized by induction thermal plasma (ITP), were studied to replace toxic cobalt (Co) in the feedstock. In this regard, three different catalyst mixtures (i.e. Ni-Y2O3, Ni-Co-Y2O3, and Ni-Mo-Y2O3) were used. Experimental results showed that the catalyst type affects the quality of the SWCNT final product. Similar quality SWCNTs can be produced when the same amount of Co was replaced by Ni. Moreover, the results observed in this experimental work were further explained by thermodynamic calculation results. Thermogravimetry (TG) was used throughout the work to characterize the SWCNTs product. TG was firstly standardized by studying the effects of three main instrumental parameters (temperature ramp, TR, initial mass of the sample, IM, and gas flow rate, FR) on the Tonset and full-width half maximum (FWHM) obtained from TG and derivative TG graphs of carbon black, respectively. Therefore, a two-level factorial statistical design was performed. The statistical analysis showed that the effect of TR, IM, and to a lower extent, FR, is significant on FWHM and insignificant on Tonset. A methodology was then developed based upon the SWCNTs synthesis using the ITP system, through an in situ chemistry approach. Ammonia (NH3) was selected and counter-currently injected into the ITP reactor at three different flow rates and by four different nozzle designs. Numerical simulation indicated a better mixing of NH3 in

  5. Spectrofluorimetric determination of stoichiometry and association constants of the complexes of harmane and harmine with beta-cyclodextrin and chemically modified beta-cyclodextrins.

    Science.gov (United States)

    Martín, L; León, A; Olives, A I; Del Castillo, B; Martín, M A

    2003-06-13

    The association characteristics of the inclusion complexes of the beta-carboline alkaloids harmane and harmine with beta-cyclodextrin (beta-CD) and chemically modified beta-cyclodextrins such as hydroxypropyl-beta-cyclodextrin (HPbeta-CD), 2,3-di-O-methyl-beta-cyclodextrin (DMbeta-CD) and 2,3,6-tri-O-methyl-beta-cyclodextrin (TMbeta-CD) are described. The association constants vary from 112 for harmine/DMbeta-CD to 418 for harmane/HPbeta-CD. The magnitude of the interactions between the host and the guest molecules depends on the chemical and geometrical characteristics of the guest molecules and therefore the association constants vary for the different cyclodextrin complexes. The steric hindrance is higher in the case of harmine due to the presence of methoxy group on the beta-carboline ring. The association obtained for the harmane complexes is stronger than the one observed for harmine complexes except in the case of harmine/TMbeta-CD. Important differences in the association constants were observed depending on the experimental variable used in the calculations (absolute value of fluorescence intensity or the ratio between the fluorescence intensities corresponding to the neutral and cationic forms). When fluorescence intensity values were considered, the association constants were higher than when the ratio of the emission intensity for the cationic and neutral species was used. These differences are a consequence of the co-existence of acid-base equilibria in the ground and in excited states together with the complexation equilibria. The existence of a proton transfer reaction in the excited states of harmane or harmine implies the need for the experimental dialysis procedure for separation of the complexes from free harmane or harmine. Such methodology allows quantitative results for stoichiometry determinations to be obtained, which show the existence of both 1:1 and 1:2 beta-carboline alkaloid:CD complexes with different solubility properties.

  6. Effect of modified atmosphere packaging on the course of physical and chemical changes in chilled muscle tissue of silver carp (Hypophthalmichthys molitrix, V.).

    Science.gov (United States)

    Jezek, F; Buchtová, H

    2012-01-01

    The effect of two types of modified atmosphere (MA1: 69% N2, 25% CO2, 5% O2, 1% CO; MA2: 70% N2, 30% CO2) on changes in physical and chemical parameters (pH, a(w)--water activity, TVBN - total volatile basic nitrogen, TMA - trimethylamine, FFA - free fatty acids, PV - peroxide value, TBA--thiobarbituric acid) in muscle tissues of the silver carp was monitored in the study. The samples were stored at temperatures +2 +/- 2 degrees C for 18 days. Changes in gas volumes (CO2 and O2) in MAs were also monitored. CO2 levels increased in MA1 but decreased in MA2. At the end of 18 days of storage, a significantly (P TVBN and TMA levels in samples packaged under the two types of MAs remained almost identical until day 9 of the experiment. Later, however, significantly (P TVBN as a suitable indicator of freshness, and TBA assay as a suitable indicator of the extent of oxidative processes.

  7. Assessment of a modified and optimised method for determining chemical oxygen demand of solid substrates and solutions with high suspended solid content.

    Science.gov (United States)

    Raposo, F; de la Rubia, M A; Borja, R; Alaiz, M

    2008-07-15

    A modified approach to determine the chemical oxygen demand (COD) of solid substrates based on the DIN 38414-S9 standard method is proposed. The adapted procedure is assessed and compared with standard methods widely used for water and wastewater such as the American Public Health Association-American Water Works Association-Water Pollution Control Federation (APHA-AWWA-WPCF) standard methods 5220 B-open reflux (SM-OR) and 5220 D-closed reflux colorimetric (SM-CR). Solutions with high suspended concentration of solids, as well as digestates from an anaerobic reactor, were used during the comparative test. For solid substrates, the COD recovery was about 100% when the proposed method was used. For solutions with solid content higher than 20 g TS L(-1), the recovery was only completed when the proposed method was used, showing that the methods traditionally employed are not very appropriate for samples with the described characteristics. For instance, percentages of COD recovery in the ranges of 77.3-87.1% and 89.4-94.1% were achieved when the SM-OR and SM-CR methods were used, respectively.

  8. Monocyte/macrophage and protein interactions with non-fouling plasma polymerized tetraglyme and chemically modified polystyrene surfaces: In vitro and in vivo studies

    Science.gov (United States)

    Shen, Mingchao

    2001-07-01

    Biomaterials become encapsulated by fibrous tissues after implantation in soft tissues. Monocytes and macrophages are believed to play important roles in this response. The hypothesis tested in this dissertation is that material surface chemistry determines the amount of adsorbed proteins, which mediate monocyte adhesion, activation, and the foreign body response. On chemically modified polystyrene surfaces, monocyte adhesion in vitro was promoted by preadsorbed fibrinogen, fibronectin, and IgG, and increased with increasing amount of adsorbed fibrinogen. Adsorbed proteins and material surface chemistry mediated monocyte activation. TNFalpha release, procoagulant activity, and multinucleated foreign body giant cell (FBGC) formation was at least two-fold higher on IgG than other protein adsorbed surfaces. Adsorbed IgG and fibrinogen triggered monocyte intracellular calcium changes. FBGC formation was the highest on the hydrophobic polystyrene surface. Materials that greatly reduce non-specific protein adsorption may reduce the foreign body response to implanted materials. Radio-frequency plasma polymerized tetraglyme (CH3O(CH2CH2O)4CH 3) surfaces contained PEO-like chemical species and reduced fibrinogen adsorption to less than 10 ng/cm2. Monocyte adhesion to tetraglyme in vitro was also greatly reduced. Monocyte adhesion correlated linearly to the amount of adsorbed fibrinogen on a series of tetraglyme surfaces deposited at different plasma powers. Multivariate analysis using partial least squares regression identified the key surface spectra variables from electron spectroscopy for chemical analysis (ESCA) and time of flight secondary ion mass spectrometry (ToF-SIMS) that contributed to the non-fouling properties of tetraglyme. However, leukocyte adhesion to surfaces implanted subcutaneously in mice for 1 or 28 days did not correlate with protein adsorption and was higher on tetraglyme than the FEP control. Fibrous encapsulation to tetraglyme implanted for 28 days

  9. Identification of the Structural Features of Guanine Derivatives as MGMT Inhibitors Using 3D-QSAR Modeling Combined with Molecular Docking

    Directory of Open Access Journals (Sweden)

    Guohui Sun

    2016-06-01

    Full Text Available DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT, which plays an important role in inducing drug resistance against alkylating agents that modify the O6 position of guanine in DNA, is an attractive target for anti-tumor chemotherapy. A series of MGMT inhibitors have been synthesized over the past decades to improve the chemotherapeutic effects of O6-alkylating agents. In the present study, we performed a three-dimensional quantitative structure activity relationship (3D-QSAR study on 97 guanine derivatives as MGMT inhibitors using comparative molecular field analysis (CoMFA and comparative molecular similarity indices analysis (CoMSIA methods. Three different alignment methods (ligand-based, DFT optimization-based and docking-based alignment were employed to develop reliable 3D-QSAR models. Statistical parameters derived from the models using the above three alignment methods showed that the ligand-based CoMFA (Qcv2 = 0.672 and Rncv2 = 0.997 and CoMSIA (Qcv2 = 0.703 and Rncv2 = 0.946 models were better than the other two alignment methods-based CoMFA and CoMSIA models. The two ligand-based models were further confirmed by an external test-set validation and a Y-randomization examination. The ligand-based CoMFA model (Qext2 = 0.691, Rpred2 = 0.738 and slope k = 0.91 was observed with acceptable external test-set validation values rather than the CoMSIA model (Qext2 = 0.307, Rpred2 = 0.4 and slope k = 0.719. Docking studies were carried out to predict the binding modes of the inhibitors with MGMT. The results indicated that the obtained binding interactions were consistent with the 3D contour maps. Overall, the combined results of the 3D-QSAR and the docking obtained in this study provide an insight into the understanding of the interactions between guanine derivatives and MGMT protein, which will assist in designing novel MGMT inhibitors with desired activity.

  10. Identification of the Structural Features of Guanine Derivatives as MGMT Inhibitors Using 3D-QSAR Modeling Combined with Molecular Docking.

    Science.gov (United States)

    Sun, Guohui; Fan, Tengjiao; Zhang, Na; Ren, Ting; Zhao, Lijiao; Zhong, Rugang

    2016-06-23

    DNA repair enzyme O⁶-methylguanine-DNA methyltransferase (MGMT), which plays an important role in inducing drug resistance against alkylating agents that modify the O⁶ position of guanine in DNA, is an attractive target for anti-tumor chemotherapy. A series of MGMT inhibitors have been synthesized over the past decades to improve the chemotherapeutic effects of O⁶-alkylating agents. In the present study, we performed a three-dimensional quantitative structure activity relationship (3D-QSAR) study on 97 guanine derivatives as MGMT inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. Three different alignment methods (ligand-based, DFT optimization-based and docking-based alignment) were employed to develop reliable 3D-QSAR models. Statistical parameters derived from the models using the above three alignment methods showed that the ligand-based CoMFA (Qcv² = 0.672 and Rncv² = 0.997) and CoMSIA (Qcv² = 0.703 and Rncv² = 0.946) models were better than the other two alignment methods-based CoMFA and CoMSIA models. The two ligand-based models were further confirmed by an external test-set validation and a Y-randomization examination. The ligand-based CoMFA model (Qext² = 0.691, Rpred² = 0.738 and slope k = 0.91) was observed with acceptable external test-set validation values rather than the CoMSIA model (Qext² = 0.307, Rpred² = 0.4 and slope k = 0.719). Docking studies were carried out to predict the binding modes of the inhibitors with MGMT. The results indicated that the obtained binding interactions were consistent with the 3D contour maps. Overall, the combined results of the 3D-QSAR and the docking obtained in this study provide an insight into the understanding of the interactions between guanine derivatives and MGMT protein, which will assist in designing novel MGMT inhibitors with desired activity.

  11. N,N,O and N,O,N Meridional cis Coordination of Two Guanines to Copper(II) by d(CGCGCG)2.

    Science.gov (United States)

    Rohner, Melanie; Medina-Molner, Alfredo; Spingler, Bernhard

    2016-06-20

    Many research groups study the generation of supramolecular n-dimensional arrays by combining metals with DNA building blocks. Most of the time, the natural nucleobases are modified to obtain higher-affinity metal binding sites. Using unmodified nucleobases avoids a potentially difficult synthesis; however, they have the possible disadvantage of a less defined and/or weaker coordination mode of the metal. Structural studies on the behavior of copper(II) as a linking metal and guanine as the natural ligand for metals in unmodified DNA are reported. Previously, the ability of mono- and dinuclear metal complexes to induce Z-DNA has been explored [Medina-Molner, A.; Spingler, B. Chem. Commun. 2012, 48, 1961; Medina-Molner, A.; Rohner, M.; Pandiarajan, D.; Spingler, B. Dalton Trans. 2015, 44, 3664]. Herein, X-ray crystallographic studies of the structures resulting from the combination of copper(II) ions with DNA hexamers of the general sequence d(CG)3 are presented. Three different packing motifs were observed in three crystal structures with resolutions ranging from 2.15 to 1.45 Å. The motifs are dependent upon other cations being present and/or the crystallization conditions. The first examples of intramolecular O6,N7-chelates of a neutral purine nucleobase to copper(II) were obtained as well as the first meridional N,N,O and N,O,N coordination modes of two guanines to copper(II). The fascinating coordination chemistry of copper(II) complexes generated by the Z-DNA oligonucleotides and the differences to simple nucleobases complexes with copper(II) are discussed in detail.

  12. Topoisomerase IB of Deinococcus radiodurans resolves guanine quadruplex DNA structures in vitro

    Indian Academy of Sciences (India)

    Swathi Kota; Hari S Misra

    2015-12-01

    Deinococcus radiodurans genome contains a large number of guanine repeats interrupted by a few non-guanine bases, termed G motifs. Some of these G motifs were shown forming guanine quadruplex (G4) DNA structure in vitro. How is the formation and relaxation of G4 DNA regulated in the genome of D. radiodurans is not known and is worth investigating. Here, we showed that the topoisomerase lb of D. radiodurans (DraTopolB) could change the electrophoretic mobility of fast migrating intramolecular rec-G4 DNA into the slow migrating species. DraTopolB also reduced the positive ellipticity in circular diachroism (CD) spectra of intramolecular rec-G4 DNA structures stabilized by K+. On the contrary, when DraTopolB is incubated with G-motifs annealed without K+, it showed neither any change in electrophoretic mobility nor was ellipticity of the CD spectra affected. DNA synthesis by Taq DNA polymerase through G4 DNA structure was attenuated in the presence of G4 DNA binding drugs, which was abrogated by DraTopolB. This implies that DraTopolB could destabilize the G4 DNA structure, which is required for G4 drugs binding and stabilization. Camptothecin treatment inhibited DraTopolB activity on intramolecular G4 DNA structures. These results suggested that DraTopolB can relax intramolecular G4 DNA structure in vitro and it may be one such protein that could resolve G4 DNA under normal growth conditions in D. radiodurans.

  13. Ab Initio Study of the Electron Transfer in an Ionized Stacked Complex of Guanines

    Science.gov (United States)

    Cauët, Emilie; Liévin, Jacques

    2009-08-01

    The charge transfer process in an ionized stacking of two consecutive guanines (G5'G3')+ has been studied by means of state-averaged CASSCF/MRCI and RASSCF/RASPT2 calculations. The ground and two first excited states of the radical cation have been characterized, and the topology of the corresponding potential energy surfaces (PESs) has been studied as a function of all intermolecular geometrical parameters. The results demonstrate that the charge transfer process in (G5'G3')+ is governed by the avoiding crossing between the ground and first excited states of the complex. Relative translation motions of both guanines in their molecular planes are shown to lead to the charge migration between G5' and G3'. Five stationary points (three minima and two saddle points) have been characterized along the reaction path describing the passage of the positive charge from G5' to G3'. The global minimum on the PES is found to correspond to the charge configuration G5'+G3'. The existence of an intermediate minimum along the reaction path has been established, characterizing a structure where the positive charge is equally distributed between the two guanines. The calculated energy profile allowed us to determine the height of the potential energy barrier (7.33 kcal/mol) and to evaluate the electronic coupling at a geometry close to the avoiding crossing (3.6 kcal/mol). Test calculations showed that the topology of the ground state PES of the complex GG+ is qualitatively conserved upon optimization of the intramolecular geometrical parameters of the stationary points.

  14. Effect of hydration on the lowest singlet PiPi* excited-state geometry of guanine: a theoretical study.

    Science.gov (United States)

    Shukla, M K; Leszczynski, Jerzy

    2005-09-15

    An ab-initio computational study was performed to investigate the effect of explicit hydration on the ground and lowest singlet PiPi* excited-state geometry and on the selected stretching vibrational frequencies corresponding to the different NH sites of the guanine acting as hydrogen-bond donors. The studied systems consisted of guanine interacting with one, three, five, six, and seven water molecules. Ground-state geometries were optimized at the HF level, while excited-state geometries were optimized at the CIS level. The 6-311G(d,p) basis set was used in all calculations. The nature of potential energy surfaces was ascertained via the harmonic vibrational frequency analysis; all structures were found minima at the respective potential energy surfaces. The changes in the geometry and the stretching vibrational frequencies of hydrogen-bond-donating sites of the guanine in the ground and excited state consequent to the hydration are discussed. It was found that the first solvation shell of the guanine can accommodate up to six water molecules. The addition of the another water molecule distorts the hydrogen-bonding network by displacing other neighboring water molecules away from the guanine plane.

  15. Experimental treatment of Staphylococcus aureus bovine intramammary infection using a guanine riboswitch ligand analog.

    Science.gov (United States)

    Ster, C; Allard, M; Boulanger, S; Lamontagne Boulet, M; Mulhbacher, J; Lafontaine, D A; Marsault, E; Lacasse, P; Malouin, F

    2013-02-01

    Staphylococcus aureus is a leading cause of intramammary infections (IMI). We recently demonstrated that Staph. aureus strains express the gene guaA during bovine IMI. This gene codes for a guanosine monophosphate synthetase and its expression is regulated by a guanine riboswitch. The guanine analog 2,5,6-triaminopyrimidine-4-one (PC1) is a ligand of the guanine riboswitch. Interactions between PC1 and its target result in inhibition of guanosine monophosphate synthesis and subsequent death of the bacterium. The present study describes the investigational use of PC1 for therapy of Staph. aureus IMI in lactating cows. The in vitro minimal inhibitory concentration of PC1 ranged from 0.5 to 4 μg/mL for a variety of Staph. aureus and Staphylococcus epidermidis strains and required a reducing agent for stability and full potency. A safety assessment study was performed, whereby the healthy quarters of 4 cows were infused with increasing doses of PC1 (0, 150, 250, and 500 mg). Over the 44 h following infusions, no obvious adverse effect was observed. Ten Holstein multiparous cows in mid lactation were then experimentally infused into 3 of the quarters with approximately 50 cfu of Staph. aureus strain SHY97-3906 and infection was allowed to progress for 2 wk before starting PC1 treatment. Bacterial counts reached then about 10(3) to 10(4) cfu/mL of milk. Infected quarters were treated with 1 of 3 doses of PC1 (0, 250, or 500 mg) after each morning and evening milking for 7d (i.e., 14 intramammary infusions of PC1). During the treatment period, milk from PC1-treated quarters showed a significant reduction in bacterial concentrations. However, this reduction of Staph. aureus count in milk was not maintained during the 4 wk following the end of the treatment and only 15% of the PC1-treated quarters underwent bacteriological cure. The somatic cell count and the quarter milk production were not affected by treatments. Although bacterial clearance was not achieved following

  16. Direct electrical communication between chemically modified enzymes and metal electrodes. 1. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Degani, Y.; Heller, A.

    1987-03-12

    Glucose-reduced glucose oxidase does not directly transfer electrons to conventional electrodes because the distance between its redox centers and the electrode surface exceeds, even on closest approach, the distance across which electrons are transferred at sufficient rates. Therefore, electrical communication between the redox centers of this enzyme and electrodes required either the presence, and diffusion to and from the enzyme's redox center, of O/sub 2/ and H/sub 2/O/sub 2/, or the presence of members of a redox couple, or the use of special electrodes like TTF/TCNQ. They show here that direct electrical communication between the redox center of a large enzyme molecule and a simple metal electrode can be established through chemical modification of the enzyme. When a sufficient number of electron-relaying centers are attached through covalent bonding to the protein of glucose oxidase, electrons are transferred from the enzyme's redox centers to relays that are closer to the periphery of the enzyme. Because some of the relays are located sufficiently close to the enzyme's surface, electrons are transferred at practical rates to the electrode. As a result, a glucose-concentration-dependent current flows in an electrochemical cell made with conventional electrodes when the electrolytic solution contains the relay-modified enzyme. Such a current does not flow when the solution contains the natural enzyme. Specifically, electrical communication is established between the FAD/FADH/sub 2/ centers of glucose oxidase and gold, platinum, or carbon electrodes through the covalent bonding of an average of 12 molecules of ferrocenecarboxylic acid per glucose oxidase molecule.

  17. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    Science.gov (United States)

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers.

  18. Oxidation of Guanine by Carbonate Radicals Derived from Photolysis of Carbonatotetramminecobalt(III) Complexes and the pH Dependence of Intrastrand DNA Cross-links Mediated by Guanine Radical Reactions

    OpenAIRE

    Crean, Conor; Lee, Young Ae; Yun, Byeong Hwa; Geacintov, Nicholas E.; Shafirovich, Vladimir

    2008-01-01

    The carbonate radical anion CO3•− is a decomposition product of nitrosoperoxycarbonate derived from the combination of carbon dioxide and peroxynitrite, an important biological byproduct of the inflammatory response. The selective oxidation of guanine in DNA by CO3•− radicals is known to yield spiroiminodihydantoin (Sp), guanidinohydantoin (Gh), and a novel intrastrand cross-linked product, 5’-d(CCATCG*CT*ACC) between guanine C8 (G*) and thymine N3 (T*) atoms in the oligonucleotide (Crean et ...

  19. Electrocatalytic activity of oxidation products of guanine and 5'-GMP towards the oxidation of NADH

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Alvarez, Noemi de los; Lobo-Castanon, Maria Jesus; Miranda-Ordieres, Arturo J. [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Tunon-Blanco, Paulino [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)], E-mail: ptb@uniovi.es

    2007-12-01

    We have studied the potential electrocatalytic activity towards the oxidation of NADH of several oxidation products of guanine and its derivative guanosine-5'-monophosphate (5'-GMP) on pyrolytic graphite electrodes (PGE). The distribution of products generated strongly depends on the experimental conditions. Our investigations focused on the oxidation products that are adsorbed on the electrode surface, are redox active and, exhibited electrocatalytic activity toward the oxidation of NADH. These compounds were electrochemically and kinetically characterized in terms of dependence of the formal potential on pH and electron transfer rate constant (k{sub s}). The voltammetric and catalytic behavior of both guanine and 5'-GMP oxidation products was compared with that of other guanine derivatives we have previously studied. Some mechanistic aspects concerning the generation of the catalysts are also discussed.

  20. N7-guanine adducts of the epoxy metabolites of 1,3-butadiene in mice lung.

    Science.gov (United States)

    Koivisto, P; Peltonen, K

    2001-06-01

    Epoxy metabolites of 1,3-butadiene are electrophilic and can bind to nucleophilic sites in DNA forming DNA adducts. In this study, guanine N7 adducts of epoxy butene and guanine N7 adducts of epoxy butanediol were measured in lung tissues of mice inhalation exposed to various concentrations of 1,3-butadiene. 32P-postlabeling of DNA adducts were used to demonstrate that the DNA adducts derived from epoxybutene and epoxybutanediol were formed in a dose dependent manner. More than 98% of all adducts detected were formed from epoxybutanediol. Enantiomeric distribution of the adducts formed in vivo differs from that of in vitro experiments demonstrated before. In the case of epoxybutene most of the adducts were formed to the terminal carbon of the S-epoxybutene enantiomer. Most of the adducts derived from epoxybutanediol were formed from the 2S-3R enantiomer. The data demonstrates that enzymatic processes involved with activation and/or detoxification of the metabolites are enantiospecific and/or DNA repair machinery repairs the damage with stereochemical considerations. These are the crucial factors if interspecies differences in tumor sensitiveness is concerned.

  1. New investigations of the guanine trichloro cuprate(II) complex crystal

    Science.gov (United States)

    Fabijanić, Ivana; Matković-Čalogović, Dubravka; Pilepić, Viktor; Ivanišević, Irena; Mohaček-Grošev, Vlasta; Sanković, Krešimir

    2017-01-01

    Crystals of the guanine trichloro cuprate(II) complex, (HGua)2[Cu2Cl6]·2H2O (HGua = protonated guanine), were prepared and analysed by spectroscopic (IR, Raman) and computational methods. A new single-crystal X-ray diffraction analysis was conducted to obtain data with lower standard uncertainties than those in the previously published structure. Raman and IR spectroscopy and quantum-mechanical analysis gave us new insight into the vibrational states of the (HGua)2[Cu2Cl6]·2H2O crystal. The vibrational spectra of the crystal were assigned by performing a normal coordinate analysis for a free dimer with a centre of inversion as the only symmetry element. The stretching vibration observed at 279 cm-1 in the infrared spectrum corresponds to the N-Cu bond. The noncovalent interaction (NCI) plots and quantum theory of atoms in molecules (QTAIM) analysis of the electron density obtained from periodic DFT calculations elucidated the interactions that exist within the crystal structure. Closed-shell ionic attractions, as well as weak and medium strength hydrogen bonds, prevailed in the crystal packing.

  2. The Emerging Role of Guanine Exchange Factors in ALS and other neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Cristian eDroppelmann

    2014-09-01

    Full Text Available Small GTPases participate in a broad range of cellular processes such as proliferation, differentiation and migration. The exchange of GDP for GTP resulting in the activation of these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange factors (GEFs, of which two classes: Dbl-related exchange factors and the more recently described Dock family exchange factors. Increasingly, deregulation of normal GEF activity or function has been associated with a broad range of disease states, including neurodegeneration and neurodevelopmental disorders. In this review, we examine this evidence with special emphasis on the novel role of Rho guanine nucleotide exchange factor (RGNEF/p190RhoGEF in the pathogenesis of amyotrophic lateral sclerosis (ALS. RGNEF is the first neurodegeneration-linked GEF that regulates not only RhoA GTPase activation but also functions as an RNA binding protein that directly acts with low molecular weight neurofilament (NEFL mRNA 3’UTR to regulate its stability. This dual role for RGNEF, coupled with the increasing understanding of the key role for GEFs in modulating the GTPase function in cell survival suggests a prominent role for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which, when disturbed, contributes to neuronal loss.

  3. Polymerase recognition of 2-thio-iso-guanine·5-methyl-4-pyrimidinone (iGs·P)--A new DD/AA base pair.

    Science.gov (United States)

    Lee, Dong-Kye; Switzer, Christopher

    2016-02-15

    Polymerase specificity is reported for a previously unknown base pair with a non-standard DD/AA hydrogen bonding pattern: 2-thio-iso-guanine·5-methyl-4-pyrimidinone. Our findings suggest that atomic substitution may provide a solution for low fidelity previously associated with enzymatic copying of iso-guanine.

  4. Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene/Guanine Interface - A Proposal for High Mobility, Organic Graphene Field Effect Transistors

    Science.gov (United States)

    2015-07-01

    AFRL-AFOSR-UK-TR-2015-0034 Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene/Guanine...April 2015 4. TITLE AND SUBTITLE Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene/Guanine Interface - A

  5. The influence of surface microstructure and chemical composition on corrosion behaviour in fuel-grade bio-ethanol of low-alloy steel modified by plasma nitro-carburizing and post-oxidizing

    Science.gov (United States)

    Boniatti, Rosiana; Bandeira, Aline L.; Crespi, Ângela E.; Aguzzoli, Cesar; Baumvol, Israel J. R.; Figueroa, Carlos A.

    2013-09-01

    The interaction of bio-ethanol on steel surfaces modified by plasma-assisted diffusion technologies is studied for the first time. The influence of surface microstructure and chemical composition on corrosion behaviour of AISI 4140 low-alloy steel in fuel-grade bio-ethanol was investigated. The steel surfaces were modified by plasma nitro-carburizing followed plasma oxidizing. X-ray diffraction, scanning electron microscopy, optical microscopy, X-ray dispersive spectroscopy, and glow-discharge optical emission spectroscopy were used to characterize the modified surface before and after immersion tests in bio-ethanol up to 77 days. The main corrosion mechanism is pit formation. The pit density and pit size were measured in order to quantify the corrosion resistance which was found to depend more strongly on microstructure and morphology of the oxide layer than on its thickness. The best corrosion protection was observed for samples post-oxidized at 480 °C and 90 min.

  6. Pathways of arachidonic acid peroxyl radical reactions and product formation with guanine radicals.

    Science.gov (United States)

    Crean, Conor; Geacintov, Nicholas E; Shafirovich, Vladimir

    2008-02-01

    Peroxyl radicals were derived from the one-electron oxidation of polyunsaturated fatty acids by sulfate radicals that were generated by the photodissociation of peroxodisulfate anions in air-equilibrated aqueous solutions. Reactions of these peroxyl and neutral guanine radicals, also generated by oxidation with sulfate radicals, were investigated by laser kinetic spectroscopy, and the guanine oxidation products were identified by HPLC and mass spectrometry methods. Sulfate radicals rapidly oxidize arachidonic (ArAc), linoleic (LnAc), and palmitoleic (PmAc) acids with similar rate constants, (2-4) x 10 (9) M (-1) s (-1). The C-centered radicals derived from the oxidation of ArAc and LnAc include nonconjugated Rn(.) ( approximately 80%) and conjugated bis-allylic Rba(.) ( approximately 20%) radicals. The latter were detectable in the absence of oxygen by their prominent, narrow absorption band at 280 nm. The Rn(.) radicals of ArAc (containing three bis-allylic sites) transform to the Rba(.) radicals via an intramolecular H-atom abstraction [rate constant (7.5 +/- 0.7) x 10 (4) s (-1)]. In contrast, the Rn(.) radicals of LnAc that contain only one bis-allylic site do not transform intramolecularly to the Rba(.) radicals. In the case of PmAc, which contains only one double bond, the Rba(.) radicals are not observed. The Rn(.) radicals of PmAc rapidly combine with oxygen with a rate constant of (3.8 +/- 0.4) x 10(9) M(-1) s(-1). The Rba(.) radicals of ArAc are less reactive and react with oxygen with a rate constant of (2.2 +/- 0.2) x 10 (8) M (-1) s (-1). The ArAc peroxyl radicals formed spontaneously eliminate superoxide radical anions [rate constant = (3.4 +/- 0.3) x 10 (4) M (-1) s (-1)]. The stable oxidative lesions derived from the 2',3',5'-tri- O-acetylguanosine or 2',3',5'-tri- O-acetyl-8-oxo-7,8-dihydroguanosine radicals and their subsequent reactions with ArAc peroxyl radicals were also investigated. The major products found were the 2,5-diamino-4 H

  7. Hydroxyl radical (OH•) reaction with guanine in an aqueous environment: a DFT study.

    Science.gov (United States)

    Kumar, Anil; Pottiboyina, Venkata; Sevilla, Michael D

    2011-12-22

    The reaction of hydroxyl radical (OH(•)) with DNA accounts for about half of radiation-induced DNA damage in living systems. Previous literature reports point out that the reaction of OH(•) with DNA proceeds mainly through the addition of OH(•) to the C═C bonds of the DNA bases. However, recently it has been reported that the principal reaction of OH(•) with dGuo (deoxyguanosine) is the direct hydrogen atom abstraction from its exocyclic amine group rather than addition of OH(•) to the C═C bonds. In the present work, these two reaction pathways of OH(•) attack on guanine (G) in the presence of water molecules (aqueous environment) are investigated using the density functional theory (DFT) B3LYP method with 6-31G* and 6-31++G** basis sets. The calculations show that the initial addition of the OH(•) at C(4)═C(5) double bond of guanine is barrier free and the adduct radical (G-OH(•)) has only a small activation barrier of ca. 1-6 kcal/mol leading to the formation of a metastable ion-pair intermediate (G(•+)---OH(-)). The formation of ion-pair is a result of the highly oxidizing nature of the OH(•) in aqueous media. The resulting ion-pair (G(•+)---OH(-)) deprotonates to form H(2)O and neutral G radicals favoring G(N(1)-H)(•) with an activation barrier of ca. 5 kcal/mol. The overall process from the G(C(4))-OH(•) (adduct) to G(N(1)-H)(•) and water is found to be exothermic in nature by more than 13 kcal/mol. (G-OH(•)), (G(•+)---OH(-)), and G(N(1)-H)(•) were further characterized by the CAM-B3LYP calculations of their UV-vis spectra and good agreement between theory and experiment is achieved. Our calculations for the direct hydrogen abstraction pathway from N(1) and N(2) sites of guanine by the OH(•) show that this is also a competitive route to produce G(N(2)-H)(•), G(N(1)-H)(•) and H(2)O.

  8. The guanine cation radical: investigation of deprotonation states by ESR and DFT.

    Science.gov (United States)

    Adhikary, Amitava; Kumar, Anil; Becker, David; Sevilla, Michael D

    2006-11-30

    This work reports ESR studies that identify the favored site of deprotonation of the guanine cation radical (G*+) in an aqueous medium at 77 K. Using ESR and UV-visible spectroscopy, one-electron oxidized guanine is investigated in frozen aqueous D2O solutions of 2'-deoxyguanosine (dGuo) at low temperatures at various pHs at which the guanine cation radical, G*+ (pH 3-5), singly deprotonated species, G(-H)* (pH 7-9), and doubly deprotonated species, G(-2H)*- (pH > 11), are found. C-8-deuteration of dGuo to give 8-D-dGuo removes the major proton hyperfine coupling at C-8. This isolates the anisotropic nitrogen couplings for each of the three species and aids our analyses. These anisotropic nitrogen couplings were assigned to specific nitrogen sites by use of 15N-substituted derivatives at N1, N2, and N3 atoms in dGuo. Both ESR and UV-visible spectra are reported for each of the species: G*+, G(-H)*, and G(-2H)*-. The experimental anisotropic ESR hyperfine couplings are compared to those obtained from DFT calculations for the various tautomers of G(-H)*. Using the B3LYP/6-31G(d) method, the geometries and energies of G*+ and its singly deprotonated state in its two tautomeric forms, G(N1-H)* and G(N2-H)*, were investigated. In a nonhydrated state, G(N2-H)* is found to be more stable than G(N1-H)*, but on hydration with seven water molecules G(N1-H)* is found to be more stable than G(N2-H)*. The theoretically calculated hyperfine coupling constants (HFCCs) of G*+, G(N1-H)*, and G(-2H)*- match the experimentally observed HFCCs best on hydration with seven or more waters. For G(-2H)*-, the hyperfine coupling constant (HFCC) at the exocyclic nitrogen atom (N2) is especially sensitive to the number of hydrating water molecules; good agreement with experiment is not obtained until nine or 10 waters of hydration are included.

  9. Dictyostelium Ric8 is a nonreceptor guanine exchange factor for heterotrimeric G proteins and is important for development and chemotaxis

    NARCIS (Netherlands)

    Kataria, Rama; Xu, Xuehua; Fusetti, Fabrizia; Keizer-Gunnink, Ineke; Jin, Tian; van Haastert, Peter J M; Kortholt, Arjan

    2013-01-01

    Heterotrimeric G proteins couple external signals to the activation of intracellular signal transduction pathways. Agonist-stimulated guanine nucleotide exchange activity of G-protein-coupled receptors results in the exchange of G-protein-bound GDP to GTP and the dissociation and activation of the c

  10. Acyclic Immucillin Phosphonates. Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Hazelton, Keith Z. [Yeshiva Univ., New York, NY (United States); Ho, Meng-Chaio [Yeshiva Univ., New York, NY (United States); Cassera, Maria B. [Yeshiva Univ., New York, NY (United States); Clinch, Keith [Industrial Research Ltd., Lower Hutt (New Zealand); Crump, Douglas R. [Industrial Research Ltd., Lower Hutt (New Zealand); Rosario Jr., Irving [Yeshiva Univ., New York, NY (United States); Merino, Emilio F. [Yeshiva Univ., New York, NY (United States); Almo, Steve C. [Yeshiva Univ., New York, NY (United States); Tyler, Peter C. [Industrial Research Ltd., Lower Hutt (New Zealand); Schramm, Vern L. [Yeshiva Univ., New York, NY (United States)

    2012-06-22

    We found that Plasmodium falciparum is the primary cause of deaths from malaria. It is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. We present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPs are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.

  11. Simultaneous determination of adenine and guanine in ruminant bacterial pellets by ion-pair HPLC.

    Science.gov (United States)

    García del Moral, Pilar; Arín, María Jesús; Resines, José Antonio; Díez, María Teresa

    2005-11-05

    An ion-pair reversed-phase high-performance liquid chromatography with gradient elution and UV detection was used to measure adenine (A) and guanine (G) in lyophilized bacterial pellets from ruminants using allopurinol as internal standard. The separation was performed on a Symmetry C18 column and the detection was monitored at 280 nm. Calibration curves were found to be linear in the concentration range from 5 to 50 mg/l with correlation coefficients (r2)>0.999. Mean recoveries of A and G standards added to bacterial samples were 102.2 and 98.2, respectively. The method proposed yielded sharp, well-resolved peaks within 25 min and was successfully applied for the determination of A and G in bacterial pellets.

  12. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells

    Energy Technology Data Exchange (ETDEWEB)

    Palella, T.D.; Silverman, L.J.; Schroll, C.T.; Homa, F.L.; Levine, M.; Kelley, W.N.

    1988-01-01

    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolation of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.

  13. Hepatitis B virus X protein interacts with β5 subunit of heterotrimeric guanine nucleotide binding protein

    Directory of Open Access Journals (Sweden)

    Chen Wei

    2005-08-01

    Full Text Available Abstract Background To isolate cellular proteins interacting with hepatitis B virus X protein (HBX, from HepG2 cells infected with hepatitis B virus (HBV. Results HBV particles were produced in culture medium of HepG2 cells transfected with the mammalian expression vector containing the linear HBV genome, as assessed by commercially available ELISA assay. A cDNA library was made from these cells exposed to HBV. From yeast two hybrid screening with HBX as bait, human guanine nucleotide binding protein β subunit 5L (GNβ5 was isolated from the cDNA library constructed in this study as a new HBX-interacting protein. The HBX-GNβ5 interaction was further supported by mammalian two hybrid assay. Conclusion The use of a cDNA library constructed from HBV-transfected HepG2 cells has resulted in the isolation of new cellular proteins interacting with HBX.

  14. INTRACELLULAR Leishmania amazonensis KILLING INDUCED BY THE GUANINE NUCLEOSIDE 8-BROMOGUANOSINE

    Directory of Open Access Journals (Sweden)

    GIORGIO Selma

    1998-01-01

    Full Text Available In this study we investigated the effect of 8-Bromoguanosine, an immunostimulatory compound, on the cytotoxicity of macrophages against Leishmania amazonensis in an in vitro system. The results showed that macrophages treated with 8-Bromoguanosine before or after infection are capable to reduce parasite load, as monitored by the number of amastigotes per macrophage and the percentage of infected cells (i.e. phagocytic index. Since 8-Bromoguanosine was not directly toxic to the promastigotes, it was concluded that the ribonucleoside induced macrophage activation. Presumably, 8-Bromoguanosine primed macrophages by inducing interferon alpha and beta which ultimately led to L. amazonensis amastigote killing. The results suggest that guanine ribonucleosides may be useful to treat infections with intracellular pathogens.

  15. Guanine holes are prominent targets for mutation in cancer and inherited disease.

    Directory of Open Access Journals (Sweden)

    Albino Bacolla

    Full Text Available Single base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G • C bp in the context of all 64 5'-NGNN-3' motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials. Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease.

  16. Circular dichroism anisotrophy of DNA with different modifications at N7 of guanine.

    Science.gov (United States)

    Zavriev, S K; Minchenkova, L E; Vorlícková, M; Kolchinsky, A M; Volkenstein, M V; Ivanov, V I

    1979-09-27

    The complexex DNA-Ag1+, DNA-Cu1+, protonated DNA and DNA methylated at N7 of guanine were oriented by pumping the solutions through a multicapillary cell in the direction of a light beam. The CD components along the DNA axis, delta epsilon parallel, and normal to it, 2 delta epsilon perpendicular, were calculated from the CD spectra of the oriented samples by the method of Chung and Holzwarth, (1975) J. Mol. Biol. 92, 449--466. It was shown that in most cases, except that of the protonated DNA, the degree of orientation was only slightly less than that for pure DNA. This demonstrated the absence of aggregation and of appreciable denaturation. In all cases the modifications of DNA give rise to a negative component 2 delta epsilon perpendicular, whose magnitude increased as the extent of modification increased. From both the CD spectra of non-oriented samples and the absorption spectra, an inference is drawn that Ag1+ and Cu1+ are attached to the same site as CH3 groups i.e., to the N7 atom of guanine. Proton transfer along the H-bond from the N1 atom of G to the N3 atom of the complementary cytosine is suggested to be a result of the modifications, although the case of H+-DNA may differ from the others. Based on the CD spectra for the anisotropic components, delta epsilon parallel and 2 delta epsilon perpendicular, it is proposed that ligand binding is accompanied by winding of the DNA helix.

  17. 表面活性剂改性沸石对水中酚类化合物吸附性能研究%Adsorption of Phenol Chemicals by Surfactant-Modified Zeolites

    Institute of Scientific and Technical Information of China (English)

    谢杰; 王哲; 吴德意; 李春杰

    2012-01-01

    Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently.Surfactant-modified zeolites were studied for adsorption of phenol chemicals(phenol,p-chlorphenol,bisphenol A).It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification.The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm.For the two surfactant-surfactant modified zeolites,the maximum adsorption amounts of phenol,p-chlorphenol,and bisphenol A calculated from the Langmuir equation were 37.7,52.36,90.9 mg·g-1 and 10.7,22.83,56.8 mg·g-1,respectively.When pH values of solutions were higher than the pKa values of phenol chemicals,the removal efficiencies were getting higher with the increase of pH values.The octanol/water partition coefficient(Kow) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites.Higher Kow value,which means the greater hydrophobicity of the chemicals,resulted in a higher removal.%使用表面活性剂对2种粉煤灰合成沸石进行改性处理,研究改性沸石对酚类化合物(苯酚、对氯酚和双酚A)的吸附特性.吸附试验结果表明,合成沸石经过阳离子表面活性剂十六烷基三甲基溴化铵改性后,对酚类化合物的吸附性能均有大幅提升,吸附等温线模型均较符合Langmuir模型.2种改性沸石对酚类化合物(苯酚、对氯酚和双酚A)的Langmuir理论最大吸附量分别可达37.7、52.36、90.9 mg.g-1和10.71、22.83、56.8 mg.g-1.当溶液pH值高于酚类化合物的解离系数pKa时,吸附效果随pH升高而增加.结果还表明,酚类化合物的疏水性(辛醇/水分配系数Kow)越强,改性沸石的吸附能力也越高.

  18. Investigation of base pairs containing oxidized guanine using ab initio method and ABEEMσπ polarizable force field.

    Science.gov (United States)

    Liu, Cui; Wang, Yang; Zhao, Dongxia; Gong, Lidong; Yang, Zhongzhi

    2014-02-01

    The integrity of the genetic information is constantly threatened by oxidizing agents. Oxidized guanines have all been linked to different types of cancers. Theoretical approaches supplement the assorted experimental techniques, and bring new sight and opportunities to investigate the underlying microscopic mechanics. Unfortunately, there is no specific force field to DNA system including oxidized guanines. Taking high level ab initio calculations as benchmark, we developed the ABEEMσπ fluctuating charge force field, which uses multiple fluctuating charges per atom. And it was applied to study the energies, structures and mutations of base pairs containing oxidized guanines. The geometries were obtained in reference to other studies or using B3LYP/6-31+G* level optimization, which is more rational and timesaving among 24 quantum mechanical methods selected and tested by this work. The energies were determined at MP2/aug-cc-pVDZ level with BSSE corrections. Results show that the constructed potential function can accurately simulate the change of H-bond and the buckled angle formed by two base planes induced by oxidized guanine, and it provides reliable information of hydrogen bonding, stacking interaction and the mutation processes. The performance of ABEEMσπ polarizable force field in predicting the bond lengths, bond angles, dipole moments etc. is generally better than those of the common force fields. And the accuracy of ABEEMσπ PFF is close to that of the MP2 method. This shows that ABEEMσπ model is a reliable choice for further research of dynamics behavior of DNA fragment including oxidized guanine.

  19. Comparison of action of mixed permanent chemical modifiers for cadmium and lead determination in sediments and soils by slurry sampling graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dobrowolski, Ryszard; Adamczyk, Agnieszka; Otto, Magdalena

    2010-09-15

    Slurry sampling atomic absorption spectrometry with electrothermal atomization was used to the determination of cadmium (Cd) and lead (Pb) in soils and sediments using permanent modifiers. Comparison of action of mixed permanent modifiers niobium (Nb)/iridium (Ir) and tungsten (W)/iridium (Ir) were studied in detail. The effect of amount of Ir, W and Nb on analytical signals of Cd and Pb was examined. The optimal amounts of modifiers for Cd and Pb determination were stated. Niobium carbide formation on graphite surface was studied for different pyrolysis temperatures. Finally for Cd determination in sediments and soils 200 microg of Nb mixed with 5 microg of Ir was used as permanent modifiers and 15 microg of Nb mixed with 200 microg of Ir for Pb determination. Suspensions were prepared in 5% HNO(3). The analytical procedure was optimized carefully basing on data from pyrolysis and atomization curves studies. Ammonium dihydrogen phosphate was used additionally as matrix modifier during Cd determination in samples in order to prevent interferences coming from matrix components. The analysis of CRMs confirmed the reliability of the proposed approach. The precision and accuracy of Cd and Pb determination by the described method for soils and sediments were acceptable.

  20. Panels of chemically-modified heparin polysaccharides and natural heparan sulfate saccharides both exhibit differences in binding to Slit and Robo, as well as variation between protein binding and cellular activity.

    Science.gov (United States)

    Ahmed, Yassir A; Yates, Edwin A; Moss, Diana J; Loeven, Markus A; Hussain, Sadaf-Ahmahni; Hohenester, Erhard; Turnbull, Jeremy E; Powell, Andrew K

    2016-10-20

    Heparin/heparan sulfate (HS) glycosaminoglycans are required for Slit-Robo cellular responses. Evidence exists for interactions between each combination of Slit, Robo and heparin/HS and for formation of a ternary complex. Heparin/HS are complex mixtures displaying extensive structural diversity. The relevance of this diversity has been studied to a limited extent using a few select chemically-modified heparins as models of HS diversity. Here we extend these studies by parallel screening of structurally diverse panels of eight chemically-modified heparin polysaccharides and numerous natural HS oligosaccharide chromatographic fractions for binding to both Drosophila Slit and Robo N-terminal domains and for activation of a chick retina axon response to the Slit fragment. Both the polysaccharides and oligosaccharide fractions displayed variability in binding and cellular activity that could not be attributed solely to increasing sulfation, extending evidence for the importance of structural diversity to natural HS as well as model modified heparins. They also displayed differences in their interactions with Slit compared to Robo, with Robo preferring compounds with higher sulfation. Furthermore, the patterns of cellular activity across compounds were different to those for binding to each protein, suggesting that biological outcomes are selectively determined in a subtle manner that does not simply reflect the sum of the separate interactions of heparin/HS with Slit and Robo.

  1. Panels of chemically-modified heparin polysaccharides and natural heparan sulfate saccharides both exhibit differences in binding to Slit and Robo, as well as variation between protein binding and cellular activity† †Electronic supplementary information (ESI) available: NMR chemical shift characterisation of modified heparins, protein sequence alignment methodology and data, protein binding and activity assay dose-response curves. See DOI: 10.1039/c6mb00432f Click here for additional data file.

    Science.gov (United States)

    Ahmed, Yassir A.; Yates, Edwin A.; Moss, Diana J.; Loeven, Markus A.; Hussain, Sadaf-Ahmahni; Hohenester, Erhard; Turnbull, Jeremy E.

    2016-01-01

    Heparin/heparan sulfate (HS) glycosaminoglycans are required for Slit–Robo cellular responses. Evidence exists for interactions between each combination of Slit, Robo and heparin/HS and for formation of a ternary complex. Heparin/HS are complex mixtures displaying extensive structural diversity. The relevance of this diversity has been studied to a limited extent using a few select chemically-modified heparins as models of HS diversity. Here we extend these studies by parallel screening of structurally diverse panels of eight chemically-modified heparin polysaccharides and numerous natural HS oligosaccharide chromatographic fractions for binding to both Drosophila Slit and Robo N-terminal domains and for activation of a chick retina axon response to the Slit fragment. Both the polysaccharides and oligosaccharide fractions displayed variability in binding and cellular activity that could not be attributed solely to increasing sulfation, extending evidence for the importance of structural diversity to natural HS as well as model modified heparins. They also displayed differences in their interactions with Slit compared to Robo, with Robo preferring compounds with higher sulfation. Furthermore, the patterns of cellular activity across compounds were different to those for binding to each protein, suggesting that biological outcomes are selectively determined in a subtle manner that does not simply reflect the sum of the separate interactions of heparin/HS with Slit and Robo. PMID:27502551

  2. Synthesis of PET probe O(6)-[(3-[(11)C]methyl)benzyl]guanine by Pd(0)-mediated rapid C-[(11)C]methylation toward imaging DNA repair protein O(6)-methylguanine-DNA methyltransferase in glioblastoma.

    Science.gov (United States)

    Koyama, Hiroko; Ikenuma, Hiroshi; Toda, Hiroshi; Kondo, Goro; Hirano, Masaki; Kato, Masaya; Abe, Junichiro; Yamada, Takashi; Wakabayashi, Toshihiko; Ito, Kengo; Natsume, Atsushi; Suzuki, Masaaki

    2017-03-18

    O(6)-Benzylguanine (O(6)-BG) is a substrate of O(6)-methylguanine-DNA methyltransferase (MGMT), which is involved in drug resistance of chemotherapy in the majority of glioblastoma multiform. For clinical diagnosis, it is hoped that the MGMT expression level could be determined by a noninvasive method to understand the detailed biological properties of MGMT-specific tumors. We synthesized (11)C-labeled O(6)-[(3-methyl)benzyl]guanine ([(11)C]mMeBG) as a positron emission tomography probe. Thus, a mixed amine-protected stannyl precursor, N(9)-(tert-butoxycarbonyl)-O(6)-[3-(tributylstannyl)benzyl]-N(2)-(trifluoroacetyl)guanine, was subjected to rapid C-[(11)C]methylation under [(11)C]CH3I/[Pd2(dba)3]/P(o-CH3C6H4)3/CuCl/K2CO3 in NMP, followed by quick deprotection with LiOH/H2O, giving [(11)C]mMeBG with total radioactivity of 1.34GBq and ≥99% radiochemical and chemical purities.

  3. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    Science.gov (United States)

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  4. Oxidation of guanine by carbonate radicals derived from photolysis of carbonatotetramminecobalt(III) complexes and the pH dependence of intrastrand DNA cross-links mediated by guanine radical reactions.

    Science.gov (United States)

    Crean, Conor; Lee, Young Ae; Yun, Byeong Hwa; Geacintov, Nicholas E; Shafirovich, Vladimir

    2008-08-11

    The carbonate radical anion CO(3)(*-) is a decomposition product of nitrosoperoxycarbonate derived from the combination of carbon dioxide and peroxynitrite, an important biological byproduct of the inflammatory response. The selective oxidation of guanine in DNA by CO(3)(*-) radicals is known to yield spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh) products, and also a novel intrastrand cross-linked product: 5'-d(CCATCG*CT*ACC), featuring a linkage between guanine C8 (G*) and thymine N3 (T*) atoms in the oligonucleotide (Crean et al., Nucleic Acids Res. 2008, 36, 742-755). Involvement of the T-N3 (pK(a) of N3-H is 9.67) suggests that the formation of 5'-d(CCATCG*CT*ACC) might be pH-dependent. This hypothesis was tested by generating CO(3)(*-) radicals through the photodissociation of carbonatotetramminecobalt(III) complexes by steady-state UV irradiation, which allowed for studies of product yields in the pH 5.0-10.0 range. The yield of 5'-d(CCATCG*CT*ACC) at pH 10.0 is approximately 45 times greater than at pH 5.0; this is consistent with the proposed mechanism, which requires N3(H) thymine proton dissociation followed by nucleophilic addition to the C8 guanine radical.

  5. Modified cyanobacteria

    Science.gov (United States)

    Vermaas, Willem F J.

    2014-06-17

    Disclosed is a modified photoautotrophic bacterium comprising genes of interest that are modified in terms of their expression and/or coding region sequence, wherein modification of the genes of interest increases production of a desired product in the bacterium relative to the amount of the desired product production in a photoautotrophic bacterium that is not modified with respect to the genes of interest.

  6. Synthesis of adenine, guanine, cytosine, and other nitrogen organic compounds by a Fischer-Tropsch-like process.

    Science.gov (United States)

    Yang, C. C.; Oro, J.

    1971-01-01

    Study of the formation of purines, pyrimidines, and other bases from CO, H2, and NH3 under conditions similar to those used in the Fischer-Tropsch process. It is found that industrial nickel/iron alloy catalyzes the synthesis of adenine, guanine, cytosine, and other nitrogenous compounds from mixtures of CO, H2, and NH3 at temperatures of about 600 C. Sufficient sample was accumulated to isolate as solid products adenine, guanine, and cytosine, which were identified by infrared spectrophotometry. In the absence of nickel/iron catalyst, at 650 C, or in the presence of this catalyst, at 450 C, no purines or pyrimidines were synthesized. These results confirm and extend some of the work reported by Kayatsu et al. (1968).

  7. Automated quantum chemistry based molecular dynamics simulations of electron ionization induced fragmentations of the nucleobases Uracil, Thymine, Cytosine, and Guanine.

    Science.gov (United States)

    Grimme, Stefan; Bauer, Christopher Alexander

    2015-01-01

    The gas-phase decomposition pathways of electron ionization (EI)-induced radical cations of the nucleobases uracil, thymine, cytosine, and guanine are investigated by means of mixed quantum-classical molecular dynamics. No preconceived fragmentation channels are used in the calculations. The results compare well to a plethora of experimental and theoretical data for these important biomolecules. With our combined stochastic and dynamic approach, one can access in an unbiased way the energetically available decomposition mechanisms. Additionally, we are able to separate the EI mass spectra of different tautomers of cytosine and guanine. Our method (previously termed quantum chemistry electron ionization mass spectra) reproduces free nucleobase experimental mass spectra well and provides detailed mechanistic in-sight into high-energy unimolecular decomposition processes.

  8. Crystal structures of Apo and GMP bound hypoxanthine-guanine phosphoribosyltransferase from Legionella pneumophila and the implications in gouty arthritis.

    Science.gov (United States)

    Zhang, Nannan; Gong, Xiaojian; Lu, Min; Chen, Xiaofang; Qin, Ximing; Ge, Honghua

    2016-06-01

    Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) (EC 2.4.2.8) reversibly catalyzes the transfer of the 5-phophoribosyl group from 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP) to hypoxanthine or guanine to form inosine monophosphate (IMP) or guanosine monophosphate (GMP) in the purine salvage pathway. To investigate the catalytic mechanism of this enzyme in the intracellular pathogen Legionella pneumophila, we determined the crystal structures of the L. pneumophila HGPRT (LpHGPRT) both in its apo-form and in complex with GMP. The structures reveal that LpHGPRT comprises a core domain and a hood domain which are packed together to create a cavity for GMP-binding and the enzymatic catalysis. The binding of GMP induces conformational changes of the stable loop II. This new binding site is closely related to the Gout arthritis-linked human HGPRT mutation site (Ser103Arg). Finally, these structures of LpHGPRT provide insights into the catalytic mechanism of HGPRT.

  9. Nuclear magnetic resonance solution structure of an N(2)-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: intercalation from the minor groove with ruptured Watson-Crick base pairing.

    Science.gov (United States)

    Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H; Cai, Yuqin; Rodriguez, Fabian A; Sayer, Jane M; Jerina, Donald M; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E

    2012-12-04

    The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the nonplanar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14 position with the exocyclic amino group of guanine. Here, we present the first nuclear magnetic resonance solution structure of a DB[a,l]P-derived adduct, the 14R-(+)-trans-anti-DB[a,l]P-N(2)-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N(2)-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3'-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3'-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE-DNA adduct conformation differs from (1) the classical intercalation motif in which Watson-Crick base pairing is intact at the lesion site and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix. The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed.

  10. Myosin II directly binds and inhibits Dbl family guanine nucleotide exchange factors: a possible link to Rho family GTPases

    OpenAIRE

    Lee, Chan-Soo; Choi, Chang-Ki; Shin, Eun-Young; Schwartz, Martin Alexander; Kim, Eung-Gook

    2010-01-01

    Cell migration requires the coordinated spatiotemporal regulation of actomyosin contraction and cell protrusion/adhesion. Nonmuscle myosin II (MII) controls Rac1 and Cdc42 activation, and cell protrusion and focal complex formation in migrating cells. However, these mechanisms are poorly understood. Here, we show that MII interacts specifically with multiple Dbl family guanine nucleotide exchange factors (GEFs). Binding is mediated by the conserved tandem Dbl homology–pleckstrin homology modu...

  11. The minimal autoinhibited unit of the guanine nucleotide exchange factor intersectin.

    Directory of Open Access Journals (Sweden)

    K Farid Ahmad

    Full Text Available Intersectin-1L is a member of the Dbl homology (DH domain guanine nucleotide exchange factors (GEF which control Rho-family GTPase signaling. Intersectin-1L is a GEF that is specific for Cdc42. It plays an important role in endocytosis, and is regulated by several partners including the actin regulator N-WASP. Intact intersectin-1L shows low Cdc42 exchange activity, although the isolated catalytic DH domain shows high activity. This finding suggests that the molecule is autoinhibited. To investigate the mechanism of autoinhibition we have constructed a series of domain deletions. We find that the five SH3 domains of intersectin are important for autoinhibition, with the fifth domain (SH3(E being sufficient for the bulk of the autoinhibitory effect. This SH3 domain appears to primarily interact with the DH domain. We have determined the crystal structure of the SH3(E-DH domain construct, which shows a domain swapped arrangement in which the SH3 from one monomer interacts with the DH domain of the other monomer. Analytical ultracentrifugation and gel filtration, however, show that under biochemical concentrations, the construct is fully monomeric. Thus we propose that the actual autoinhibited structure contains the related intramolecular SH3(E-DH interaction. We propose a model in which this intramolecular interaction may block or distort the GTPase binding region of the DH domain.

  12. Ric-8A, a Gα protein guanine nucleotide exchange factor potentiates taste receptor signaling

    Directory of Open Access Journals (Sweden)

    Claire J Fenech

    2009-10-01

    Full Text Available Taste receptors for sweet, bitter and umami tastants are G-protein coupled receptors (GPCRs. While much effort has been devoted to understanding G-protein-receptor interactions and identifying the components of the signalling cascade downstream of these receptors, at the level of the G-protein the modulation of receptor signal transduction remains relatively unexplored. In this regard a taste-specific regulator of G-protein signaling (RGS, RGS21, has recently been identified. To study whether guanine nucleotide exchange factors (GEFs are involved in the transduction of the signal downstream of the taste GPCRs we investigated the expression of Ric-8A and Ric-8B in mouse taste cells and their interaction with G-protein subunits found in taste buds. Mammalian Ric-8 proteins were initially identified as potent GEFs for a range of Gα subunits and Ric-8B has recently been shown to amplify olfactory signal transduction. We find that both Ric-8A and Ric-8B are expressed in a large portion of taste bud cells and that most of these cells contain IP3R-3 a marker for sweet, umami and bitter taste receptor cells. Ric-8A interacts with Gα-gustducin and Gαi2 through which it amplifies the signal transduction of hTas2R16, a receptor for bitter compounds. Overall, these findings are consistent with a role for Ric-8 in mammalian taste signal transduction.

  13. Guanine nucleotide binding protein-like 3 is a potential prognosis indicator of gastric cancer.

    Science.gov (United States)

    Chen, Jing; Dong, Shuang; Hu, Jiangfeng; Duan, Bensong; Yao, Jian; Zhang, Ruiyun; Zhou, Hongmei; Sheng, Haihui; Gao, Hengjun; Li, Shunlong; Zhang, Xianwen

    2015-01-01

    Guanine nucleotide binding protein-like 3 (GNL3) is a GIP-binding nuclear protein that has been reported to be involved in various biological processes, including cell proliferation, cellular senescence and tumorigenesis. This study aimed to investigate the expression level of GNL3 in gastric cancer and to evaluate the relationship between its expression and clinical variables and overall survival of gastric cancer patients. The expression level of GNL3 was examined in 89 human gastric cancer samples using immunohistochemistry (IHC) staining. GNL3 in gastric cancer tissues was significantly upregulated compared with paracancerous tissues. GNL3 expression in adjacent non-cancerous tissues was associated with sex and tumor size. Survival analyses showed that GNL3 expression in both gastric cancer and adjacent non-cancerous tissues were not related to overall survival. However, in the subgroup of patients with larger tumor size (≥ 6 cm), a close association was found between GNL3 expression in gastric cancer tissues and overall survival. GNL3-positive patients had a shorter survival than GNL3-negative patients. Our study suggests that GNL3 might play an important role in the progression of gastric cancer and serve as a biomarker for poor prognosis in gastric cancer patients.

  14. Crystal Structure of a Replicative DNA Polymerase Bound to the Oxidized Guanine Lesion Guanidinohydantoin

    Energy Technology Data Exchange (ETDEWEB)

    Aller, Pierre; Ye, Yu; Wallace, Susan S.; Burrows, Cynthia J.; Doubli, Sylvie (Vermont); (Utah)

    2010-04-12

    The oxidation of guanine generates one of the most common DNA lesions, 8-oxo-7,8-dihydroguanine (8-oxoG). The further oxidation of 8-oxoG can produce either guanidinohydantoin (Gh) in duplex DNA or spiroiminodihydantoin (Sp) in nucleosides and ssDNA. Although Gh can be a strong block for replicative DNA polymerases such as RB69 DNA polymerase, this lesion is also mutagenic: DNA polymerases bypass Gh by preferentially incorporating a purine with a slight preference for adenine, which results in G {center_dot} C {yields} T {center_dot} A or G {center_dot} C {yields} C {center_dot} G transversions. The 2.15 {angstrom} crystal structure of the replicative RB69 DNA polymerase in complex with DNA containing Gh reveals that Gh is extrahelical and rotated toward the major groove. In this conformation Gh is no longer in position to serve as a templating base for the incorporation of an incoming nucleotide. This work also constitutes the first crystallographic structure of Gh, which is stabilized in the R configuration in the two polymerase/DNA complexes present in the crystal asymmetric unit. In contrast to 8-oxoG, Gh is found in a high syn conformation in the DNA duplex and therefore presents the same hydrogen bond donor and acceptor pattern as thymine, which explains the propensity of DNA polymerases to incorporate a purine opposite Gh when bypass occurs.

  15. Characterization of leukemia-associated Rho guanine nucleotide exchange factor (LARG) expression during murine development.

    Science.gov (United States)

    Becknell, Brian; Shen, Tiansheng; Maghraby, Eman; Taya, Shinichiro; Kaibuchi, Kozo; Caligiuri, Michael A; Marcucci, Guido

    2003-12-01

    LARG (leukemia-associated Rho guanine nucleotide exchange factor, ARHGEF12) was originally identified as a fusion partner of the MLL gene at 11q23 in human acute myeloid leukemia. We have previously demonstrated that the LARG protein activates RhoA, a member of the Rho family of small GTPases, by catalyzing the exchange of GTP for GDP. Experiments in Drosophila melanogaster have implicated RhoA and its regulators in a spectrum of developmental processes-including gastrulation, neurite outgrowth, and epidermal morphogenesis; however, the role of these genes during mammalian development is incompletely understood. Herein, we investigate the expression of the murine LARG homologue during embryogenesis and in adult animals, by a combination of mRNA in situ hybridization and immunohistochemical detection of the LARG protein. We observe that LARG transcript and protein are undetectable prior to embryonic day 14. Beginning at this stage, LARG is expressed in the skin, intestinal epithelium, and smooth muscle layers of the intestine, bronchi, and vasculature. This specific distribution is maintained at later stages of development and into adulthood. Finally, we demonstrate colocalization of the LARG protein with the insulin-like growth factor-I (IGF-1) receptor, suggesting a potential physiologic role for LARG as an activator of RhoA in response to IGF-1.

  16. Disruption of oligomerization induces nucleocytoplasmic shuttling of leukemia-associated rho Guanine-nucleotide exchange factor.

    Science.gov (United States)

    Grabocka, Elda; Wedegaertner, Philip B

    2007-10-01

    The rgsRhoGEFs comprise a subfamily of three guanine nucleotide exchange factors, which function in linking heterotrimeric G-proteins to the monomeric RhoGTPase. Here, we reveal the novel finding that oligomerization of leukemia-associated RhoGEF (LARG) functions to prevent nucleocytoplasmic shuttling and to retain LARG in the cytoplasm. We establish that oligomerization is mediated by a predicted coiled-coil sequence (amino acids 1507-1520) in the extreme C terminus of LARG and that substitution of isoleucines 1507/1510 with alanines disrupts homo-oligomerization and leads to nucleocytoplasmic shuttling via the CRM1 nuclear transport pathway. In addition, we demonstrate that induced dimerization of an otherwise nuclear monomeric LARG mutant promotes cytoplasmic localization. Furthermore, we establish that nuclear import of monomeric LARG is mediated by the nuclear localization sequence (29)PTDKKQK(35) in the extreme N terminus. We propose that nucleocytoplasmic shuttling provides a mechanism for spatially regulating the activity of LARG toward its cytoplasmic targets and potentially new nuclear targets.

  17. Crystal structures and inhibition of Trypanosoma brucei hypoxanthine–guanine phosphoribosyltransferase

    Science.gov (United States)

    Terán, David; Hocková, Dana; Česnek, Michal; Zíková, Alena; Naesens, Lieve; Keough, Dianne T.; Guddat, Luke W.

    2016-01-01

    Human African Trypanosomiasis (HAT) is a life-threatening infectious disease caused by the protozoan parasite, Trypanosoma brucei (Tbr). Due to the debilitating side effects of the current therapeutics and the emergence of resistance to these drugs, new medications for this disease need to be developed. One potential new drug target is 6-oxopurine phosphoribosyltransferase (PRT), an enzyme central to the purine salvage pathway and whose activity is critical for the production of the nucleotides (GMP and IMP) required for DNA/RNA synthesis within this protozoan parasite. Here, the first crystal structures of this enzyme have been determined, these in complex with GMP and IMP and with three acyclic nucleoside phosphonate (ANP) inhibitors. The Ki values for GMP and IMP are 30.5 μM and 77 μM, respectively. Two of the ANPs have Ki values considerably lower than for the nucleotides, 2.3 μM (with guanine as base) and 15.8 μM (with hypoxanthine as base). The crystal structures show that when two of the ANPs bind, they induce an unusual conformation change to the loop where the reaction product, pyrophosphate, is expected to bind. This and other structural differences between the Tbr and human enzymes suggest selective inhibitors for the Tbr enzyme can be designed. PMID:27786284

  18. How not to do kinetics: examples involving GTPases and guanine nucleotide exchange factors.

    Science.gov (United States)

    Goody, Roger S

    2014-01-01

    Guanine nucleotide exchange factors (GEFs) are crucial regulators of the action of GTPases in signal transduction and cellular regulation. Although their basic mechanism of action has been apparent for almost 20 years, there are still misconceptions concerning their properties, and these are confounded by superficial or incorrect interpretation of experimental results in individual cases. Here, an example is described in which an incorrect mechanism was derived because of an inadequate analysis of kinetic results. In a second example, a case is discussed where certain GTP analogs were erroneously described as being able to function as low molecular mass GEFs. In both cases, a lack of distinction between rates, rate constants, and apparent rate constants, together with a disregard of relative signal amplitudes, led to the misinterpretations. In a final example, it is shown how the lack of an appropriate kinetic investigation led to the false conclusion that a secreted protein from Legionella pneumophila can act not only as a GEF towards eukaryotic Rab1 but also as a factor that is able to actively dissociate the stable complex between Rab1 and GDP dissociation inhibitor.

  19. The Guanine Nucleotide Exchange Factor ARNO mediates the activation of ARF and phospholipase D by insulin

    Directory of Open Access Journals (Sweden)

    Fluharty Eric

    2003-09-01

    Full Text Available Abstract Background Phospholipase D (PLD is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. Results Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: ΔCC-ARNO and CC-ARNO were partially translocated to the membranes while ΔPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. Conclusions Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor.

  20. The Guanine Nucleotide Exchange Factor ARNO mediates the activation of ARF and phospholipase D by insulin

    Science.gov (United States)

    Li, Hai-Sheng; Shome, Kuntala; Rojas, Raúl; Rizzo, Mark A; Vasudevan, Chandrasekaran; Fluharty, Eric; Santy, Lorraine C; Casanova, James E; Romero, Guillermo

    2003-01-01

    Background Phospholipase D (PLD) is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF) family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs) of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. Results Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: ΔCC-ARNO and CC-ARNO were partially translocated to the membranes while ΔPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. Conclusions Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor. PMID:12969509

  1. The experimental and theoretical gas phase acidities of adenine, guanine, cytosine, uracil, thymine and halouracils

    Science.gov (United States)

    Chen, Edward C. M.; Herder, Charles; Chen, Edward S.

    2006-10-01

    The gas phase acidities GPA (Δ H (298) for deprotonation) of the most stable tautomers of adenine, guanine, cytosine, uracil and thymine are evaluated. New GPA are obtained from electron impact spectra and acid dissociation constants measured in dimethylsulfoxide for A, U and 5-FU. The average experimental GPA are: [N1 sbnd H] C 340(2); T 333(2); U 333(2); 5-FU 329(4); [N9 sbnd H] A 333(1); G 332(4); all in kcal/mol. Only cytosine is a weaker acid than HCl in the gas phase. The most acidic hydrogens in the nucleotides are replaced by the sugar in DNA and RNA. The experimental N3 sbnd H GPA are G 334(4); U 347(2), T 347(4), while the predicted N3 sbnd H 5-FU GPA is 343 kcal/mol. The NH sbnd H GPA are: C 346(4); A 352(2); G 336(4) (all in kcal/mol). These are supported by semi-empirical multiconfiguration configuration interaction calculations. The predicted C8 sbnd H acidities of G and A and the C6 sbnd H of T are about the same, 360(2) kcal/mol. The remaining CH acidities are 370-380 kcal/mol. The 5-halouracils are predicted to be more acidic than HCl.

  2. ATRX promotes gene expression by facilitating transcriptional elongation through guanine-rich coding regions.

    Science.gov (United States)

    Levy, Michael A; Kernohan, Kristin D; Jiang, Yan; Bérubé, Nathalie G

    2015-04-01

    ATRX is a chromatin remodeling protein involved in deposition of the histone variant H3.3 at telomeres and pericentromeric heterochromatin. It also influences the expression level of specific genes; however, deposition of H3.3 at transcribed genes is currently thought to occur independently of ATRX. We focused on a set of genes, including the autism susceptibility gene Neuroligin 4 (Nlgn4), that exhibit decreased expression in ATRX-null cells to investigate the mechanisms used by ATRX to promote gene transcription. Overall TERRA levels, as well as DNA methylation and histone modifications at ATRX target genes are not altered and thus cannot explain transcriptional dysregulation. We found that ATRX does not associate with the promoter of these genes, but rather binds within regions of the gene body corresponding to high H3.3 occupancy. These intragenic regions consist of guanine-rich DNA sequences predicted to form non-B DNA structures called G-quadruplexes during transcriptional elongation. We demonstrate that ATRX deficiency corresponds to reduced H3.3 incorporation and stalling of RNA polymerase II at these G-rich intragenic sites. These findings suggest that ATRX promotes the incorporation of histone H3.3 at particular transcribed genes and facilitates transcriptional elongation through G-rich sequences. The inability to transcribe genes such as Nlgn4 could cause deficits in neuronal connectivity and cognition associated with ATRX mutations in humans.

  3. Structural and energetic heterogeneities of canonical and oxidized central guanine triad of B-DNA telomeric fragments.

    Science.gov (United States)

    Cysewski, Piotr; Czeleń, Przemysław

    2009-06-01

    The intermolecular interaction energies in central guanine triad of telomeric B-DNA were estimated based on ab initio quantum chemistry calculations on the MP2/aDZ level of theory. The source of structural information was molecular dynamics simulation of both canonical (AGGGTT) and oxidized (AG8oxoGGTT) telomere units. Our calculations demonstrate that significant stiffness of central triad occurs if 8oxoG is present. The origin of such feature is mainly due to the increase of stacking interactions of 8oxoG with neighbouring guanine molecules and stronger hydrogen bonding formation of 8oxoG with cytosine if compared with canonical guanine. Another interesting observation is the context independence of stacking interactions of 8oxoG. Unlike to 5'-G2/G3-3' and 5'-G3/G4-3' sequences which are energetically different, 5'-G2/8oxoG3-3' and 5'-8oxoG3/G4-3' sequences are almost iso-energetic.

  4. Sequence-selective binding of phenazinium dyes phenosafranin and safranin O to guanine-cytosine deoxyribopolynucleotides: spectroscopic and thermodynamic studies.

    Science.gov (United States)

    Saha, Ishita; Hossain, Maidul; Suresh Kumar, Gopinatha

    2010-11-25

    The sequence selectivity of the DNA binding of the phenazinium dyes phenosafranin and safranin O have been investigated with four sequence-specific deoxyribopolynucleotides from spectroscopic and calorimetric studies. The alternating guanine-cytosine sequence selectivity of the dyes has been revealed from binding affinity values, circular dichroism, thermal melting, competition dialysis, and calorimetric results. The binding affinities of both the dyes to the polynucleotides were of the order of 10(5) M(-1), but the values were higher for the guanine-cytosine polynucleotides over adenine-thymine ones. Phenosafranin had a higher binding affinity compared to safranin O. Isothermal titration calorimetric studies revealed that the binding reactions were exothermic and favored by negative enthalpy and predominantly large positive entropy contributions in all cases except poly(dA)·poly(dT) where the profile was anomalous. Although charged, nonpolyelectrolytic contribution was revealed to be dominant to the free energy of binding. The negative heat capacity values obtained from the temperature dependence of enthalpy changes, which were higher for phenosafranin compared to safranin O, suggested significant hydrophobic contribution to the binding process. In aggregate, the data presents evidence for the alternating guanine-cytosine base pair selectivity of these phenazinium dyes and a stronger binding of phenosafranin over safranin O.

  5. 覆膜长周期光纤光栅在生化分析中的应用及研究进展%Applications and progress of nanofilm-modified long period fiber grating in biological and chemical analysis

    Institute of Scientific and Technical Information of China (English)

    张帆; 李秋顺; 姚卫国; 郑晖; 马耀宏; 董文飞

    2014-01-01

    总结了纳米薄膜修饰的长周期光纤光栅在折射率生物传感器方面的研究进展,重点介绍了纳米薄膜对长周期光纤光栅折射率传感性能的影响,详细阐述了覆膜长周期光纤光栅在生化分析检测领域的应用,并对其在折射率传感方面的应用前景作了展望。%This review focuses on the nanofilm-modified Long Period Fiber Grating ( LPFG) and makes a brief presentation for progress of its applications in refractive index biosensor .The influence of nanomembranes on refractive index sensing performance of LPFG is elaborated .Furthermore , applications of nanofilm-modified LPFG in the field of biological and chemical analysis are discussed in detail .At last , the further development and application of nanofilm-modified LPFG refractive index sensor are prospected .

  6. Adhesion of nitrile rubber to UV-assisted surface chemical modified PET fabric, part II: Interfacial characterization of MDI grafted PET

    Science.gov (United States)

    Razavizadeh, Mahmoud; Jamshidi, Masoud

    2016-08-01

    Fiber to rubber adhesion is an important subject in rubber industry. It is well known that surface treatment (i.e. physical, mechanical and chemical) is an effective method to improve interfacial bonding of fibers and/or fabrics to rubbers. UV irradiation is an effective method which has been used to increase fabric-rubber interfacial interactions. In this research UV assisted chemical modification of PET fabrics was used to increase PET to nitrile rubber (NBR) adhesion. Nitrile rubber is a perfect selection as fuel and oil resistant rubber. However it has weak bonding to PET fabric. For this purpose PET fabric was carboxylated under UV irradiation and then methylenediphenyl diisocyanate (MDI) was grafted on carboxylated PET. The chemical composition of the fabric before and after surface treatment was investigated by X-ray photoelectron spectroscopy (XPS). The sectional morphology of the experimental PET fibers and the interface between rubber compound and PET fabric was studied using scanning electron microscope (SEM). The morphology and structure of the product were analyzed by an energy dispersive X-ray spectrometer (EDX). FTIR-ATR and H NMR analysis were used to assess surface modifications on the PET irradiated fabrics.

  7. Chemical and biochemical study of industrially produced San Simón da Costa smoked semi-hard cow's milk cheeses: Effects of storage under vacuum and different modified atmospheres.

    Science.gov (United States)

    Garabal, J I; Rodríguez-Alonso, P; Franco, D; Centeno, J A

    2010-05-01

    Two batches of smoked, semi-hard (ripened for 45 d) San Simón da Costa cow's milk cheeses with Protected Designation of Origin were used to investigate the chemical, biochemical, and sensorial parameters that may be affected by modified-atmosphere packaging. Cheeses were packaged for 45 d as follows: vacuum packaging, packaging in 100% N(2), packaging in a gas mixture of 20% CO(2)/80% N(2), and packaging in a gas mixture of 50% CO(2)/50% N(2). The San Simón da Costa cheeses were characterized by high contents of lactic, oxalic, and citric organic acids. The main free amino acids found were isoleucine, phenylalanine, serine, valine, lysine, and glutamic acid, and the most abundant volatile compounds included ethanol, diacetyl, 2-butanol, isopropyl alcohol, furfural, acetaldehyde, 2-butanone, acetone, and 2-methylfuran. Modified atmospheres appeared to alter the ripening processes by affecting lipolysis, as indicated by the lower concentrations of butyric and propionic acids compared with control cheeses. In addition, modified-atmosphere packaging altered the proteolysis processes, yielding higher amounts of branched-chain alcohols. The results revealed that storage under modified atmosphere contributes to the accumulation of several compounds probably derived from smoke, including aldehydes such as 2-furancarboxaldehyde (furfural), alcohols such as 2-methoxyphenol (guaiacol), ketones such as 2-cyclopenten-1-one, and esters such as methyl furancarboxylate, which were negatively correlated with flavor. Vacuum packaging was the most useful technique in terms of preserving the sensory quality of San Simón da Costa Protected Designation of Origin cheeses. Considering the current demands for packaged portions of food at the distribution and retail levels and the potential health risks associated with some smoke-derived compounds usually present in some smoked foods, the results obtained in this study may be of special interest to the cheese industry.

  8. Microbial fuel cell anode modified by chemical oxidation%化学氧化改性微生物燃料电池阳极

    Institute of Scientific and Technical Information of China (English)

    周宇; 刘中良; 侯俊先; 杨斯琦; 李艳霞; 邱文革

    2015-01-01

    浓HNO3和酸性K2Cr2O7都具有一定的氧化性,分别利用浓HNO3和酸性K2Cr2O7对阳极碳布进行氧化改性处理。通过红外光谱测试显示,碳布表面附着了羟基(—OH)和羧基(—COOH)。通过扫描电镜观察,碳布经过氧化改性后表面明显变粗糙。同时,循环伏安曲线(CV)和交流阻抗曲线(EIS)测试表明,经过改性后的碳布具有良好的电化学特性。分别以经过浓HNO3和酸性K2Cr2O7改性处理后的碳布作为微生物燃料电池(MFC)的阳极,获得的最大功率密度分别为291.11 mW·m−2和438.08 mW·m−2,比未经过改性处理的碳布阳极的功率密度分别提升了21%和82%。%Oxidants of nitric acid and acidic potassium dichromate were used to modify anode carbon cloths. Modification was completed by first putting the carbon cloth into nitric acid or acidic potassium dichromate at a given temperature, soaking for 30 min and then rinsing with de-ionized water until no variation in pH and finally putting into a vacuum dryer, drying for 12 h. Fourier transform infrared spectroscopy measurements indicated that many hydroxyls and carboxyls were attached on the carbon cloth surface after modification. SEM results showed that the surface of carbon cloth became rougher than the unmodified one. In addition, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements demonstrated that both modified anodes had excellent electrochemical properties. Using the modified carbon cloths as microbial fuel cell (MFC) anodes respectively, such MFCs yielded maximum power densities of 291.11 mW·m−2 and 438.08 mW·m−2, 21%and 82%higher than that of the MFC with unmodified carbon cloth anode respectively.

  9. Pre-thymic somatic mutation leads to high mutant frequency at hypoxanthine-guanine phosphoribosyltransferase gene

    Energy Technology Data Exchange (ETDEWEB)

    Jett, J. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    While characterizing the background mutation spectrum of the Hypoxathine-guanine phosphoribosyltransferase (HPRT) gene in a healthy population, an outlier with a high mutant frequency of thioguanine resistant lymphocytes was found. When studied at the age of 46, this individual had been smoking 60 cigarettes per day for 38 years. His mutant frequency was calculated at 3.6 and 4.2x10{sup {minus}4} for two sampling periods eight months apart. Sequencing analysis of the HPRT gene in his mutant thioguanine resistant T lymphocytes was done to find whether the cells had a high rate of mutation, or if the mutation was due to a single occurrence of mutation and, if so, when in the T lymphocyte development the mutation occurred. By T-cell receptor analysis it has been found that out of 35 thioguanine resistant clones there was no dominant gamma T cell receptor gene rearrangement. During my appointment in the Science & Engineering Research Semester, I found that 34 of those clones have the same base substitution of G{yields}T at cDNA position 197. Due to the consistent mutant frequency from both sampling periods and the varying T cell receptors, the high mutant frequency cannot be due to recent proliferation of a mature mutant T lymphocyte. From the TCR and DNA sequence analysis we conclude that the G{yields}T mutation must have occurred in a T lymphocyte precursor before thymic differentiation so that the thioguanine resistant clones share the same base substitution but not the same gamma T cell receptor gene.

  10. The guanine nucleotide exchange factor RIC8 regulates conidial germination through Gα proteins in Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Carla J Eaton

    Full Text Available Heterotrimeric G protein signaling is essential for normal hyphal growth in the filamentous fungus Neurospora crassa. We have previously demonstrated that the non-receptor guanine nucleotide exchange factor RIC8 acts upstream of the Gα proteins GNA-1 and GNA-3 to regulate hyphal extension. Here we demonstrate that regulation of hyphal extension results at least in part, from an important role in control of asexual spore (conidia germination. Loss of GNA-3 leads to a drastic reduction in conidial germination, which is exacerbated in the absence of GNA-1. Mutation of RIC8 leads to a reduction in germination similar to that in the Δgna-1, Δgna-3 double mutant, suggesting that RIC8 regulates conidial germination through both GNA-1 and GNA-3. Support for a more significant role for GNA-3 is indicated by the observation that expression of a GTPase-deficient, constitutively active gna-3 allele in the Δric8 mutant leads to a significant increase in conidial germination. Localization of the three Gα proteins during conidial germination was probed through analysis of cells expressing fluorescently tagged proteins. Functional TagRFP fusions of each of the three Gα subunits were constructed through insertion of TagRFP in a conserved loop region of the Gα subunits. The results demonstrated that GNA-1 localizes to the plasma membrane and vacuoles, and also to septa throughout conidial germination. GNA-2 and GNA-3 localize to both the plasma membrane and vacuoles during early germination, but are then found in intracellular vacuoles later during hyphal outgrowth.

  11. Haploinsufficiency of the Sec7 guanine nucleotide exchange factor gea1 impairs septation in fission yeast.

    Directory of Open Access Journals (Sweden)

    Alan M Eckler

    Full Text Available Membrane trafficking is essential to eukaryotic life and is controlled by a complex network of proteins that regulate movement of proteins and lipids between organelles. The GBF1/GEA family of Guanine nucleotide Exchange Factors (GEFs regulates trafficking between the endoplasmic reticulum and Golgi by catalyzing the exchange of GDP for GTP on ADP Ribosylation Factors (Arfs. Activated Arfs recruit coat protein complex 1 (COP-I to form vesicles that ferry cargo between these organelles. To further explore the function of the GBF1/GEA family, we have characterized a fission yeast mutant lacking one copy of the essential gene gea1 (gea1+/-, the Schizosaccharomyces pombe ortholog of GBF1. The haploinsufficient gea1+/- strain was shown to be sensitive to the GBF1 inhibitor brefeldin A (BFA and was rescued from BFA sensitivity by gea1p overexpression. No overt defects in localization of arf1p or arf6p were observed in gea1+/- cells, but the fission yeast homolog of the COP-I cargo sac1 was mislocalized, consistent with impaired COP-I trafficking. Although Golgi morphology appeared normal, a slight increase in vacuolar size was observed in the gea1+/- mutant strain. Importantly, gea1+/- cells exhibited dramatic cytokinesis-related defects, including disorganized contractile rings, an increased septation index, and alterations in septum morphology. Septation defects appear to result from altered secretion of enzymes required for septum dynamics, as decreased secretion of eng1p, a β-glucanase required for septum breakdown, was observed in gea1+/- cells, and overexpression of eng1p suppressed the increased septation phenotype. These observations implicate gea1 in regulation of septum breakdown and establish S. pombe as a model system to explore GBF1/GEA function in cytokinesis.

  12. Theoretical Studies on the Interaction between Metal Cations and Cytosine, Guanine

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ya-Ying; ZHOU Li-Xin; WAN Hua-Ping

    2005-01-01

    The interaction of tetra- and hexa-coordinated compounds of cytosine(C) and guanine(G) with metal cations Ca2+, Mg2+, Mn2+, Ni2+, Cu2+, and Zn2+ have been calculated by using the B3LYP/6-31G method at the 6-31G(d, p) basis set, while the remaining coordination bonds are saturated by water molecules ((H2O)4).All geometries were optimized without symmetry restrictions.Comparing the interaction energies we obtained the orders of selectivity of C and G for the above metal ions as follows: aCu2+>aNi2+>aZn2+>aMg2+>bCu2+>aMn2+>bZn2+>bNi2+ and aCu2+> aNi2+>aZn2+>aMg2+>bCu2+>aMn2+>bZn2+>bNi2, respectively (a, b represent tetra- and hexa-coordinated, respectively), which are in good agreement with the experimental facts.Interaction energies of complexes provide a comparatively reliable quantification of the selectivity of dimethyl phosphate anion for the studied metal ions.In addition, the influence of coordination number and coordination structure on the interaction energy and the variation of ionic energy were discussed sufficiently.After analyzing the interaction energies of two kinds of complexes, the "mutual selectivity"as well as the nature of the interaction between metal ions and ligands was revealed.

  13. Catching Functional Modes and Structural Communication in Dbl Family Rho Guanine Nucleotide Exchange Factors.

    Science.gov (United States)

    Raimondi, Francesco; Felline, Angelo; Fanelli, Francesca

    2015-09-28

    Computational approaches such as Principal Component Analysis (PCA) and Elastic Network Model-Normal Mode Analysis (ENM-NMA) are proving to be of great value in investigating relevant biological problems linked to slow motions with no demand in computer power. In this study, these approaches have been coupled to the graph theory-based Protein Structure Network (PSN) analysis to dissect functional dynamics and structural communication in the Dbl family of Rho Guanine Nucleotide Exchange Factors (RhoGEFs). They are multidomain proteins whose common structural feature is a DH-PH tandem domain deputed to the GEF activity that makes them play a central role in cell and cancer biology. While their common GEF action is accomplished by the DH domain, their regulatory mechanisms are highly variegate and depend on the PH and the additional domains as well as on interacting proteins. Major evolutionary-driven deformations as inferred from PCA concern the α6 helix of DH that dictates the orientation of the PH domain. Such deformations seem to depend on the mechanisms adopted by the GEF to prevent Rho binding, i.e. functional specialization linked to autoinhibition. In line with PCA, ENM-NMA indicates α6 and the linked PH domain as the portions of the tandem domain holding almost the totality of intrinsic and functional dynamics, with the α6/β1 junction acting as a hinge point for the collective motions of PH. In contrast, the DH domain holds a static scaffolding and hub behavior, with structural communication playing a central role in the regulatory actions by other domains/proteins. Possible allosteric communication pathways involving essentially DH were indeed found in those RhoGEFs acting as effectors of small or heterotrimeric RasGTPases. The employed methodology is suitable for deciphering structure/dynamics relationships in large sets of homologous or analogous proteins.

  14. Bone response to endosseous titanium implants surface-modified by blasting and chemical treatment: a histomorphometric study in the rabbit femur.

    Science.gov (United States)

    Park, Jin-Woo; Jang, Il-Sung; Suh, Jo-Young

    2008-02-01

    This study evaluated the effects of the addition of oxide structure with submicron-scale porous morphology on the periimplant bone response around titanium (Ti) implants with microroughened surfaces. Hydroxyapatite-blasted Ti implants with (experimental) and without (control) a porous oxide structure produced by chemical treatment were investigated in a rabbit femur model. Surface characterizations and in vivo bone response at 4 and 8 weeks after implantation were compared. The experimental implants had submicron-scale porous surface structure consisted of anatase and rutile phase, and the original R(a) values produced by blasting were preserved. The histomorphometric evaluation demonstrated statistically significantly increased bone-to-implant contact (BIC) for experimental implants, both in the three best consecutive threads (p < 0.01) and all threads (p < 0.05) at 4 weeks. There was no remarkable difference in the BIC% or bone area percentage between the two groups at 8 weeks. The porous Ti oxide surface enhanced periimplant bone formation around the Ti implants with microroughened surfaces at the early healing stage. Based on the results of this study, the addition of crystalline Ti oxide surface with submicron-sized porous morphology produced by chemical treatment may be an effective approach for enhancing the osseointegration of Ti implants with microroughened surfaces by increasing early bone-implant contact.

  15. Resonance Raman spectroscopy of chemically modified and isotopically labelled purple membranes: I. A critical examination of the carbon-nitrogen vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Ehrenberg, B. (Cornell Univ., Ithaca, NY); Lemley, A.T.; Lewis, A.; Zastrow, M.V.; Crespi, H.L.

    1980-01-01

    Resonance Raman spectra of bacteriorhodopsin are compared to the spectra of this protein modified in the following ways: (1) selective deuteration at the C-15 carbon atom of retinal, (2) full deuteration of the retinal, (3) the addition of a conjugated double bond in the ..beta..-ionone ring (3-dehydroretinal), (4) full deuteration of the protein and lipid components, (5) /sup 15/N enrichment of the entire membrane and (6) deuteration of the entire membrane. A detailed comparison of the /sup 15/N-enriched membrane and naturally occurring purple membrane from 800 cm/sup -1/ to 1700 cm/sup -1/ reveals that /sup 15/N enrichment affects the frequency of only two vibrational modes. These occur at 1642 cm/sup -1/ and 1620 cm/sup -1/ in naturally occurring purple membrane and at 1628 cm/sup -1/ and 1615 cm/sup -1/ in the /sup 15/N-enriched samples. Therefore, this pair of bands reflects the states of protonation of the Schiff base.

  16. Extraction of metal ions using chemically modified silica gel covalently bonded with 4,4'-diaminodiphenylether and 4,4'-diaminodiphenylsulfone-salicylaldehyde Schiff bases.

    Science.gov (United States)

    Dey, R K; Jha, Usha; Singh, A C; Samal, S; Ray, Alok R

    2006-08-01

    Two new chelating materials (Si-DDE-o-HB, and Si-DDS-o-HB) were synthesized by modifying the activated silica gel phase with Schiff bases of 4,4'-diaminodiphenylether (DDE)/4,4'-diaminodiphenylsulfone (DDS) and o-hydroxybenzaldehyde (o-HB). The synthesized materials were characterized by FTIR and BET surface area measurement techniques. The extraction of metal ions such as Zn2+, Mn2+ and Cr3+ by the chelating material Si-DDE-o-HB was found to be higher than that by Si-DDS-o-HB. The order of metal sorption was found to be Zn2+ > Mn2+ > Cr3+. The correlation coefficients for Freundlich and Langmuir adsorption isotherms were compared for the sorption of Zn2+ onto the chelating material. The loading and elution of the metal ion solution was examined at optimum pH 7.5 and 0.5 cm3 min-1 flow rate of the solution using a column technique. The preconcentration factor for the elution of Zn2+ using dilute HNO3 was found to be 66.2 with a breakthrough volume of 15 cm3. The data obtained for the preconcentration of Zn2+ by the column technique suggested that the material Si-DDE-o-HB can find industrial applications.

  17. Estudo teórico de propriedades ópticas não-lineares de nanotubos de carbono de parede única quimicamente modificados Theoretical analysis of non-linear optical properties for chemically modified single wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Antônio M. Da Silva Jr.

    2009-01-01

    Full Text Available Structure and first hyperpolarizability for a series of armchair a(5,5 chemically modified carbon nanotubes (CNT were calculated at semiempirical and density functional levels of theory. The 4,4´-substituted stilbenes were selected as chromophore with substituents at position 4´ set to X=NO2, H, Cl, OH and NH2. The calculated values for static first hyperpolarizability (β were almost linearly dependent on the electronic effect of the group X, increasing from NO2 to NH2. At DFT level the effect of inserting the chromophore in the CNT surface was to enhance the β value up to 70% relative to the free 4,4´-substituted stilbene.

  18. In vivo formation of N7-guanine DNA adduct by safrole 2',3'-oxide in mice.

    Science.gov (United States)

    Shen, Li-Ching; Chiang, Su-Yin; Lin, Ming-Huan; Chung, Wen-Sheng; Wu, Kuen-Yuh

    2012-09-18

    Safrole, a naturally occurring product derived from spices and herbs, has been shown to be associated with the development of hepatocellular carcinoma in rodents. Safrole 2',3'-oxide (SFO), an electrophilic metabolite of safrole, was shown to react with DNA bases to form detectable DNA adducts in vitro, but not detected in vivo. Therefore, the objective of this study was to investigate the formation of N7-(3-benzo[1,3]dioxol-5-yl-2-hydroxypropyl)guanine (N7γ-SFO-Gua) resulting from the reaction of SFO with the most nucleophilic site of guanine in vitro and in vivo with a newly developed isotope-dilution high performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) method. N7γ-SFO-Gua and [(15)N(5)]-N7-(3-benzo[1,3]dioxol-5-yl-2-hydroxypropyl)guanine ([(15)N(5)]-N7γ-SFO-Gua) were first synthesized, purified, and characterized. The HPLC-ESI-MS/MS method was developed to measure N7γ-SFO-Gua in calf thymus DNA treated with 60 μmol of SFO for 72 h and in urine samples of mice treated with a single dose of SFO (30 mg/kg body weight, intraperitoneally). In calf thymus DNA, the level of N7γ-SFO-Gua was 2670 adducts per 10(6)nucleotides. In urine of SFO-treated mice, the levels of N7γ-SFO-Gua were 1.02±0.14 ng/mg creatinine (n=4) on day 1, 0.73±0.68 ng/mg creatinine (n=4) on day 2, and below the limit of quantitation on day 3. These results suggest that SFO can cause in vivo formation of N7γ-SFO-Gua, which may then be rapidly depurinated from the DNA backbone and excreted through urine.

  19. The effect of chemically modified electrospun silica nanofiber on the mRNA and miRNA expression profile of neural stem cell differentiation.

    Science.gov (United States)

    Mercado, Augustus T; Yeh, Jui-Ming; Chin, Ting Yu; Chen, Wen Shuo; Chen-Yang, Yui Whei; Chen, Chung-Yung

    2016-11-01

    A detailed genomic and epigenomic analyses of neural stem cells (NSCs) differentiation in synthetic microenvironments is essential for the advancement of regenerative medicine and therapeutic treatment of diseases. This study identified the changes in mRNA and miRNA expression profile during NSC differentiation on an artificial matrix. NSCs were grown on a surface-modified, electrospun tetraethyl-orthosilicate nanofiber (designated as SNF-AP) by providing a 3D-environment for cell growth and differentiation. Differentially expressed mRNAs and miRNAs of NSC differentiated in this microenvironment were identified through microarray analysis. The genes and miRNA targets responsible for the differentiation fate of NSCs and neuron development process were determined using Ingenuity Pathway Analysis (IPA). SNF-AP enhanced the expression of genes that activates the proliferation, development, and outgrowth of neurons, differentiation and generation of cells, neuritogenesis, outgrowth of neurites, microtubule dynamics, formation of cellular protrusions, and long-term potentiation during NSC differentiation. On the other hand, PDL inhibited neuritogenesis, microtubule dynamics, and proliferation and differentiation of cells and activated the apoptosis function. Moreover, the nanomaterial promoted the expression of more let-7 miRNAs, which have vital roles in NSC differentiation. Overall, SNF-AP is biocompatible and applicable scaffold for NSC differentiation in the development of neural tissue engineering. These findings are useful in enhancing in vitro NSC differentiation potential for preclinical studies and future clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2730-2743, 2016.

  20. 基于石墨烯化学修饰电极的适体传感器%Aptasensor Based on Graphene Chemically Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    王延平; 肖迎红; 吴敏; 陆天虹; 杨小弟

    2012-01-01

    采用石墨烯(RGO)作载体,凝血酶适体(TBA)作探针,凝血酶为目标蛋白,电化学阻抗谱(EIS)为检测技术,建立了检测蛋白质的新方法.由于RGO可增大电极有效表面积并提高电极表面电子传输速率以及TBA的特异性识别能力,此方法具有较高的灵敏度和良好的选择性.采用本方法检测凝血酶的线性范围为0.3~10 fmol/L,检出限为0.26 fmol/L.本研究将RGO应用于电化学适体传感器,证实了RGO修饰电极在电化学适体传感器领域中潜在的应用价值.%By using graphene (RGO) as supporter, molecular recognition substance TBA as probe, thrombin as objective protein, electrochemical impedance spectroscopy ( EIS) as determination technique, a method for the determination of proteins was developed. Because RGO can improve effective surface area of electrodes and accelerate electron transfer rate at electrode/electrolyte interface as well as TBA has the molecular recognition ability with the high specificity, this determination method possesses the high sensitivity and good specificity. In the linear range from 0. 3 to 10 fmol/L for thrombin determination, the detection limit is 0. 26 fmol/L. In this study, RGO was applied to the electrochemical aptasensor for the first time, demonstrating that RGO-modified electrode has the great potential for the application in the electrochemical aptasensor.

  1. New Inorganic-organic Hybrid Compound Containing One Dimensional Keggin Polyoxometalate[SiW11O39Co]6- Chains:Preparation,Characterization and Application in Chemically Bulk-modified Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-li; LIN Hong-yan; LIU Guo-cheng; CHEN Bao-kuan; BI Yan-feng

    2008-01-01

    A new inorganic-organic hybrid compound based on polyoxometalate and organic ligand formulated as (H2bpp)3[SiW11O39Co]~2H2O(1)[bpp=1,3-bis(4-pyridyl)propane]was hydrothermally synthesized and structurally characterized by elemental analysis,single-crystal X-ray diffraction,IR,TG,and cyclic voltammetry.Single-crystal X-ray diffraction analysis reveals that compound 1 consists of interesting cobalt-monosubstituted POMs one dimensional chain together with protonated bpp ligands.Additionally,the polyoxoanions combined with the discrete organic substrates by hydrogen bond interactions to afford a supramolecular 3D network structure.The hybrid compound 1 was used as a bulk modifier to fabricate a three-dimensional chemically modified carbon paste electrode(1-CPE)by direct mixing.The electrochemical behavior and electrocatalysis of 1-CPE were studied in detail.The results indicate that 1-CPE has good electrocatalytic activities toward the reduction of nitrite or bromate in 1mol/L H2SO4 aqueous solution.1-CPE shows remarkable stability that can be ascribed to the insolubility of compound 1 and the supramolecular interactions existed between 1D POM anion chains and organic ligand bpp,which is very important for practical applications in electrode modification.

  2. Inclusion Behavior of Chemical Modified β-cyclodextrin in Alcohol/Water Mixed Solvents%化学修饰环糊精在醇/水混合溶剂中的包结行为

    Institute of Scientific and Technical Information of China (English)

    解宏智; 吴世康

    2000-01-01

    A comparative study on the fluorescence behavior of the chemical modified β -cyclodextrin appended a N,N-dimethylamino-chalcone group (DMAC-CD) and the non-modified β-CD mixed with free dimethylamino-chalcone (DMAC+ CD) in alcohol/water mixed solvents have been carried out in this work.The fluorescence data obtained— — maximum peak wavelength and emission intensity— — indicates that the inclusion behavior of the above-mentioned systems is obviously different in mixed alcohol/water solvents.The solvent-induced multi-component complex formation and dissociation and the effect of polarity and size of alcohol used have been also studied carefully by variation of the fluorescence spectroscopic characters.The result indicates that the self-inclusion complex of DMAC-CD has a higher stability in mixed alcohol/water solvents than that in the DMAC + β -CD system.The obtained results and the observed phenomena have been discussed in details.

  3. O emprego de quitosana quimicamente modificada com anidrido succínico na adsorção de azul de metileno The use of chemical modified chitosam with succinic anhydride in the methylene blue adsorption

    Directory of Open Access Journals (Sweden)

    Ilauro S. Lima

    2006-06-01

    Full Text Available The adsorption capacity of alpha-chitosan and its modified form with succinic anhydride was compared with the traditional adsorbent active carbon by using the dye methylene blue, employed in the textile industry. The isotherms for both biopolymers were classified as SSA systems in the Giles model, more specifically in L class and subgroup 3. The dye concentration in the supernatant in the adsorption assay was determined through electronic spectroscopy. By calorimetric titration thermodynamic data of the interaction between methyene blue and the chemically modified chitosan at the solid/liquid interface were obtained. The enthalpy of the dye/chitosan interaction gave 2.47 ± 0.02 kJ mol-1 with an equilibrium constant of 7350 ± 10 and for the carbon/dye interaction this constant gave 5951 ± 8. The spontaneity of these adsorptions are reflected by the free Gibbs energies of -22.1 ± 0.4 and -21.5 ± 0.2 kJ mol-1, respectively, found for these systems. This new adsorbent derived from a natural polysaccharide is as efficient as activated carbon. However 97% of the bonded dye can be eluted by sodium chloride solution, while this same operation elutes only 42% from carbon. Chitosan is efficient in dye removal with the additional advantage of being cheap, non-toxic, biocompatible and biodegradable.

  4. Changes in the microbiological and chemical characteristics of white bread during storage in paper packages modified with Ag/TiO2-SiO2, Ag/N-TiO2 or Au/TiO2.

    Science.gov (United States)

    Peter, Anca; Mihaly-Cozmuta, Leonard; Mihaly-Cozmuta, Anca; Nicula, Camelia; Ziemkowska, Wanda; Basiak, Dariusz; Danciu, Virginia; Vulpoi, Adriana; Baia, Lucian; Falup, Anca; Craciun, Grigore; Ciric, Alexandru; Begea, Mihaela; Kiss, Claudia; Vatuiu, Daniela

    2016-04-15

    Microbiological and chemical characteristics of white bread during storage in paper-packages modified with Ag/TiO2-SiO2, Ag/N-TiO2 or Au/TiO2 were investigated. The whiteness and the water retention of the modified packages were slightly superior to those exhibited by the reference sample, as the color of the composite was lighter. The water retention was very good especially for the Ag/TiO2-SiO2-paper. These improvements can be associated with the high specific surface area and with the low agglomeration tendency of Ag nanoparticles in comparison with the Au ones. The preservation activity of the composites for the bread storage is positively influenced by photoactivity and presence of nano-Ag. Packages Ag/TiO2-SiO2-paper and Ag/N-TiO2-paper can find their applicability for extending the shelf life of bread by 2 days as compared with the unmodified paper-package. No influence of the Au/TiO2 on the extending the shelf life of bread was observed.

  5. Gene-Specific Assessment of Guanine Oxidation as an Epigenetic Modulator for Cardiac Specification of Mouse Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Joonghoon Park

    Full Text Available Epigenetics have essential roles in development and human diseases. Compared to the complex histone modifications, epigenetic changes on mammalian DNA are as simple as methylation on cytosine. Guanine, however, can be oxidized as an epigenetic change which can undergo base-pair transversion, causing a genetic difference. Accumulating evidence indicates that reactive oxygen species (ROS are important signaling molecules for embryonic stem cell (ESC differentiation, possibly through transient changes on genomic DNA such as 7,8-dihydro-8-oxoguanine (8-oxoG. Technical limitations on detecting such DNA modifications, however, restrict the investigation of the role of 8-oxoG in ESC differentiation. Here, we developed a Hoogsteen base pairing-mediated PCR-sequencing assay to detect 8-oxoG lesions that can subsequently cause G to T transversions during PCR. We then used this assay to assess the epigenetic and transient 8-oxoG formation in the Tbx5 gene of R1 mouse ESCs subjected to oxidative stress by removing 2-mercaptoethanol (2ME from the culture media. To our surprise, significantly higher numbers of 8-oxoG-mediated G∙C to C∙G transversion, not G∙C to T∙A, were detected at 7th and 9th base position from the transcription start site of exon 1 of Tbx5 in ESCs in the (-2ME than (+2ME group (p < 0.05. This was consistent with the decrease in the amount of amplifiable of DNA harboring the 8-oxoG lesions at the Tbx5 promoter region in the oxidative stressed ESCs. The ESCs responded to oxidative stress, possibly through the epigenetic effects of guanine oxidation with decreased proliferation (p < 0.05 and increased formation of beating embryoid bodies (EBs; p < 0.001. Additionally, the epigenetic changes of guanine induced up-regulation of Ogg1 and PolB, two base excision repairing genes for 8-oxoG, in ESCs treated with (-2ME (p < 0.01. Together, we developed a gene-specific and direct quantification assay for guanine oxidation. Using oxidative

  6. Kinetics of the interactions between yeast elongation factors 1A and 1Balpha, guanine nucleotides, and aminoacyl-tRNA

    DEFF Research Database (Denmark)

    Gromadski, Kirill B; Schümmer, Tobias; Strømgaard, Anne;

    2007-01-01

    of guanine nucleotides. At the concentrations of nucleotides and factors prevailing in the cell, the overall exchange rate is expected to be in the range of 6 s(-1), which is compatible with the rate of protein synthesis in the cell. eEF1A.GTP binds Phe-tRNA(Phe) with a K(d) of 3 nm, whereas eEF1A.GDP shows...... no significant binding, indicating that eEF1A has similar tRNA binding properties as its prokaryotic homolog, EF-Tu. Udgivelsesdato: 2007-Dec-7...

  7. Evaluation of chemically modified Ti–5Mo–3Fe alloy surface: Electrochemical aspects and in vitro bioactivity on MG63 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. Madhan [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Sudhagar, P. [Energy Materials Laboratory, WCU Program Department of Energy Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Ramakrishna, Suresh [Graduate School of Biomedical Science and Engineering/College of Medicine, Hanyang University, Sungdong-gu, Seoul (Korea, Republic of); Kang, Yong Soo [Energy Materials Laboratory, WCU Program Department of Energy Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Hyongbum [Graduate School of Biomedical Science and Engineering/College of Medicine, Hanyang University, Sungdong-gu, Seoul (Korea, Republic of); Gasem, Zuhair M. [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Rajendran, N., E-mail: nrajendran@annauniv.edu [Department of Chemistry, Anna University, Chennai (India)

    2014-07-01

    Ti–5Mo–3Fe (TMF) alloy is a newly developed β-titanium alloy with low modulus, and it has been deemed as suitable material for dental or orthopaedic implant. The aim of the present study is to evaluate the effect of alkali and hydrogen peroxide treatment on the corrosion and biological performance of TMF surface. The phases, morphology with chemical composition and topography of the treated surface were examined by X-ray diffraction, scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDAX) analysis and atomic force microscopy (AFM), respectively. Micro hardness of treated substrates was measured using Vicker's micro hardness method. The electrochemical studies were carried out using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) measurements. In order to describe the bio-activity, contact angle measurements, in vitro characterisation and cell culture studies were performed for treated TMF surfaces in simulated body fluid (SBF) and MG63 cells. All these observations showed that the NaOH treatment is the most appropriate method for TMF alloy which exhibited superior biocompatibility and enhanced corrosion protection performance due to their hydrophilic, smooth, compact porous surface morphology than that of other substrates.

  8. Chemical oxygen demand, total organic carbon and colour reduction in slaughterhouse wastewater by unmodified and iron-modified clinoptilolite-rich tuff.

    Science.gov (United States)

    Torres-Pérez, J; Solache-Ríos, M; Martínez-Miranda, V

    2014-01-01

    In this study, reduction of chemical oxygen demand (COD), colour, and total organic carbon in effluents from a slaughterhouse in central Mexico was performed using clinoptilolite-rich tuff. The experimental parameters considered were initial concentration of the adsorbate, pH, adsorbent dosage, and contact time. Surface morphology of the materials was tested by using scanning electron microscopy. Specific surface area was analysed by using Brunauer-Emmett-Teller (BET) and phase composition was analysed by using X-ray diffraction. The experimental adsorption data were fitted to the first- and pseudo-second-order kinetic models. The highest COD removal was observed in slightly acidic pH conditions. The maximum reduction efficiency of COD was accomplished with unmodified clinoptilolite-rich tuff at a contact time of 1440 min. In these conditions, the adsorbent was efficient for treating wastewater from a slaughterhouse. Moreover, after several regeneration cycles with Fenton reagent or hydrogen peroxide, the regenerated zeolite with H2O2 (3%) showed the best reduction efficiencies.

  9. Trp(56) of rac1 specifies interaction with a subset of guanine nucleotide exchange factors.

    Science.gov (United States)

    Gao, Y; Xing, J; Streuli, M; Leto, T L; Zheng, Y

    2001-12-14

    Signaling specificity of Rho GTPase pathways is achieved in part by selective interaction between members of the Dbl family guanine nucleotide exchange factors (GEFs) and their Rho GTPase substrates. For example, Trio, GEF-H1, and Tiam1 are a subset of GEFs that specifically activate Rac1 but not the closely related Cdc42. The Rac1 specificity of these GEFs appears to be governed by Rac1-GEF binding interaction. To understand the detailed mechanism underlying the GEF specificity issue, we have analyzed a panel of chimeras made between Rac1 and Cdc42 and examined a series of point mutants of Rac1 made at the switch I, switch II, and beta(2)/beta(3) regions for their ability to interact with and to be activated by the GEFs. The results reveal that Rac1 residues of both the switch I and switch II regions are involved in GEF docking and GEF-mediated nucleotide disruption, because mutation of Asp(38), Asn(39), Gln(61), Tyr(64), or Arg(66)/Leu(67) into Ala results in the loss of GEF binding, whereas mutation at Tyr(32), Asp(65), or Leu(70)/Ser(71) leads to the loss of GEF catalysis while retaining the binding capability. The region between amino acids 53-72 of Rac1 is required for specific recognition and activation by the GEFs, and Trp(56) in beta(3) appears to be the critical determinant. Introduction of Trp(56) to Cdc42 renders it fully responsive to the Rac-specific GEF in vitro and in cells. Further, a polypeptide derived from the beta(3) region of Rac1 including the Trp(56) residue serves as a specific inhibitor for Rac1 interaction with the GEFs. Taken together, these results indicate that Trp(56) is the necessary and sufficient determinant of Rac1 for discrimination by the subset of Rac1-specific GEFs and suggest that a compound mimicking Trp(56) action could be explored as an interfering reagent specifically targeting Rac1 activation.

  10. Multilayer fiber optic chemical sensors employing organically modified SiO2 and mixed TiO2/SiO2 sol gel membranes

    Science.gov (United States)

    Nivens, Delana A.; Schiza, Maria V.; Angel, S. M.

    1997-05-01

    Fiber-optic sensors have been developed that incorporate multi-layer organically modified silica sol-gel membranes. pH sensors use a single layer hydrophilic organo-silica sol-gel membrane with a covalently attached pH sensitive dye, hydroxypyrene trisulfonic acid. The hydrophilic coating is made by copolymerizing silanol-terminated polydimethylsiloxane and tetraethylorthosilicate with 3-aminopropyltriethoxysilane. Unlike previous methods, which use acid as a catalyst, we have found that a base catalyst produces optically transparent gels. The sol-gel coated sensors are simple to make and require drying and aging times of as little as one day. Sensors made using these gels exhibit very good long-term stability, fast response times and no dye leaching. pCO2 sensors were fabricated using the same pH sensitive sol-gel layer overcoated with a hydrophobic high organic content sol- gel membrane. The response of the pH and pCO2 sensors is very fast due to the high porosity of the sol-gel membranes. Although in-situ sensors have been described for a number of organic and inorganic species, many volatile organochloride compounds (VOCs), such as perchloroethylene (PCE) and trichloroethylene (TCE), have been difficult to measure using current fiber-optic sensor transduction schemes. One of the optical sensors described here is a multilayer (3-4) sol-gel system that incorporates a TiO2/SiO2 membrane to degrade VOCs into smaller, detectable products. Upon exposure to UV light, TiO2, a semiconductor with a bandgap of 3.2 eV, produces highly reactive electron-hole pairs that are capable of photodegrading most organic compounds. The VOCs mentioned above are sensitive to degradative oxidation on TiO2 surfaces. During photodegradation of VOCs a number of products are formed including H+, HCl, CO2 and a number of smaller hydrocarbons. These products are produced in the TiO2 membrane and on TiO2 surfaces and the products diffuse into the nearby indicator membrane where they are

  11. Differential effects of natural palm oil, chemically- and enzymatically-modified palm oil on weight gain, blood lipid metabolites and fat deposition in a pediatric pig model

    Directory of Open Access Journals (Sweden)

    Dunshea Frank R

    2011-05-01

    Full Text Available Abstract Background Increasing prevalence of obesity and overweight in the Western world, continue to be a major health threat and is responsible for increased health care costs. Dietary intervention studies show a strong positive association between saturated fat intake and the development of obesity and cardiovascular disease. This study investigated the effect of positional distribution of palmitic acid (Sn-1, 2 & 3 of palm oil on cardiovascular health and development of obesity, using weaner pigs as a model for young children. Methods Male and female weaner piglets were randomly allocated to 4 dietary treatment groups: 1 pork lard (LRD; 2 natural palm olein (NPO; 3 chemically inter-esterified PO (CPO and 4 enzymatically inter-esterified PO (EnPO as the fat source. Diets were formulated with 11% lard or with palm olein in order to provide 31% of digestible energy from fat in the diet and were balanced for cholesterol, protein and energy across treatments. Results From 8 weeks onwards, pigs on EnPO diet gained (P Conclusions The observations on plasma TG, muscle and adipose tissue saturated fatty acid contents and back fat (subcutaneous thickness suggest that natural palm oil may reduce deposition of body fat. In addition, dietary supplementation with natural palm oil containing palmitic acid at different positions in meat producing animals may lead to the production of meat and meat products with lower saturated fats. An increase in fat content and a decrease in lean content in female pigs resulted in an increased body fat:lean ratio but gender had no effect on blood lipid parameters or insulin concentrations.

  12. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae

    Energy Technology Data Exchange (ETDEWEB)

    Montazer-Rahmati, Mohammad Mehdi, E-mail: mrahmati@ut.ac.ir [School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran 4563 (Iran, Islamic Republic of); Rabbani, Parisa; Abdolali, Atefeh [School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran 4563 (Iran, Islamic Republic of); Keshtkar, Ali Reza [Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, P.O. Box: 11365-8486, Tehran (Iran, Islamic Republic of)

    2011-01-15

    Research highlights: {yields} The present study deals with the evaluation of biosorptive removal of Cd (II), Ni (II) and Pb (II) ions by both intact and pre-treated brown marine algae: Cystoseira indica, Sargassum glaucescens, Nizimuddinia zanardini and Padina australis treated with formaldehyde (FA), glutaraldehyde (GA), polyethylene imine (PEI), calcium chloride (CaCl{sub 2}) and hydrochloric acid (HCl). From the results obtained, chemically modification leads to higher capacity of biosorption. {yields} The equilibrium experimental data were tested using the most common isotherms. The results are best fitted by the Freundlich model among two-parameter models and the Toth, Khan and Radke-Prausnitz models among three-parameter isotherm models for Cd (II), Ni (II) and Pb (II), respectively. {yields} One-way ANOVA and one sample t-tests were performed on experimental data to evaluate the statistical significance of biosorption capacities after five cycles of sorption and desorption. {yields} The kinetic data were fitted by models including pseudo-first-order and pseudo-second-order. From the results obtained, the pseudo-second-order kinetic model describes best the biosorption of cadmium, nickel and lead ions. - Abstract: The present study deals with the evaluation of biosorptive removal of Cd (II), Ni (II) and Pb (II) ions by both intact and pre-treated brown marine algae: Cystoseira indica, Sargassum glaucescens, Nizimuddinia zanardini and Padina australis treated with formaldehyde (FA), glutaraldehyde (GA), polyethylene imine (PEI), calcium chloride (CaCl{sub 2}) and hydrochloric acid (HCl). Batch shaking adsorption experiments were performed in order to examine the effects of pH, contact time, biomass concentration, biomass treatment and initial metal concentration on the removal process. The optimum sorption conditions for each heavy metal are presented. One-way ANOVA and one sample t-tests were performed on experimental data to evaluate the statistical

  13. The Crystal Structure of Cdc42 in Complex with Collybisin II, a Gephyrin-Interacting Guanine Nucleotide Exchange Factor

    Energy Technology Data Exchange (ETDEWEB)

    Xiang,S.; Kim, E.; Connelly, J.; Nassar, N.; Kirsch, J.; WinkingSchwartz, G.; Schindelin, H.

    2006-01-01

    The synaptic localization of ion channel receptors is essential for efficient synaptic transmission and the precise regulation of diverse neuronal functions. In the central nervous system, ion channel receptors reside in the postsynaptic membrane where they are juxtaposed to presynaptic terminals. For proper function, these ion channels have to be anchored to the cytoskeleton, and in the case of the inhibitory glycine and {gamma}-amino-butyric acid type A (GABA{sub A}) receptors this interaction is mediated by a gephyrin centered scaffold. Highlighting its central role in this receptor anchoring scaffold, gephyrin interacts with a number of proteins, including the neurospecific guanine nucleotide exchange factor collybistin. Collybistin belongs to the Dbl family of guanine nucleotide exchange factors, occurs in multiple splice variants, and is specific for Cdc42, a small GTPase belonging to the Rho family. The 2.3 Angstroms resolution crystal structure of the Cdc42--collybistin II complex reveals a novel conformation of the switch I region of Cdc42. It also provides the first direct observation of structural changes in the relative orientation of the Dbl-homology domain and the pleckstrin-homology domain in the same Dbl family protein. Biochemical data indicate that gephyrin negatively regulates collybistin activity.

  14. Role of aspartate 143 in Escherichia coli tRNA-guanine transglycosylase: alteration of heterocyclic substrate specificity.

    Science.gov (United States)

    Todorov, Katherine Abold; Garcia, George A

    2006-01-17

    tRNA-guanine transglycosylase (TGT) is a key enzyme involved in the post-transcriptional modification of certain tRNAs in their anticodon wobble positions with queuine. To maintain the correct Watson-Crick base pairing properties of the wobble base (and hence proper translation of the genetic code), TGT must recognize its heterocyclic substrate with high specificity. The X-ray crystal structure of a eubacterial TGT bound to preQ1 [Romier, C., et al. (1996) EMBO J. 15, 2850-2857] suggested that aspartate 143 (Escherichia coli TGT numbering) was involved in heterocyclic substrate recognition. Subsequent mutagenic and computational modeling studies from our lab [Todorov, K. A., et al. (2005) Biophys. J. 89 (3), 1965-1977] provided experimental evidence supporting this hypothesis. Herein, we report further studies probing the differential heterocyclic substrate recognition properties of the aspartate 143 mutant TGTs. Our results are consistent with one of the mutants exhibiting an inversion of substrate recognition preference (xanthine vs guanine) relative to that of the wild type, as evidenced by Km values. This confirms the key role of aspartate 143 in maintaining the anticodon identities of the queuine-containing tRNAs and suggests that TGT mutants could be developed that would alter the tRNA wobble base base pairing properties.

  15. ARHGEF7 (Beta-PIX acts as guanine nucleotide exchange factor for leucine-rich repeat kinase 2.

    Directory of Open Access Journals (Sweden)

    Karina Haebig

    Full Text Available BACKGROUND: Mutations within the leucine-rich repeat kinase 2 (LRRK2 gene are a common cause of familial and sporadic Parkinson's disease. The multidomain protein LRRK2 exhibits overall low GTPase and kinase activity in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that the rho guanine nucleotide exchange factor ARHGEF7 and the small GTPase CDC42 are interacting with LRRK2 in vitro and in vivo. GTPase activity of full-length LRRK2 increases in the presence of recombinant ARHGEF7. Interestingly, LRRK2 phosphorylates ARHGEF7 in vitro at previously unknown phosphorylation sites. We provide evidence that ARHGEF7 might act as a guanine nucleotide exchange factor for LRRK2 and that R1441C mutant LRRK2 with reduced GTP hydrolysis activity also shows reduced binding to ARHGEF7. CONCLUSIONS/SIGNIFICANCE: Downstream effects of phosphorylation of ARHGEF7 through LRRK2 could be (i a feedback control mechanism for LRRK2 activity as well as (ii an impact of LRRK2 on actin cytoskeleton regulation. A newly identified familial mutation N1437S, localized within the GTPase domain of LRRK2, further underlines the importance of the GTPase domain of LRRK2 in Parkinson's disease pathogenesis.

  16. Iodide transporter NIS regulates cancer cell motility and invasiveness by interacting with the Rho guanine nucleotide exchange factor LARG.

    Science.gov (United States)

    Lacoste, Claire; Hervé, Julie; Bou Nader, Myriam; Dos Santos, Alexandre; Moniaux, Nicolas; Valogne, Yannick; Montjean, Rodrick; Dorseuil, Olivier; Samuel, Didier; Cassio, Doris; Portulano, Carla; Carrasco, Nancy; Bréchot, Christian; Faivre, Jamila

    2012-11-01

    A number of solute carrier (SLC) proteins are subject to changes in expression and activity during carcinogenesis. Whether these changes play a role in carcinogenesis is unclear, except for some nutrients and ion carriers whose deregulation ensures the necessary reprogramming of energy metabolism in cancer cells. In this study, we investigated the functional role in tumor progression of the sodium/iodide symporter (NIS; aka SLC5A5), which is upregulated and mislocalized in many human carcinomas. Notably, we found that NIS enhanced cell migration and invasion without ion transport being involved. These functions were mediated by NIS binding to leukemia-associated RhoA guanine exchange factor, a Rho guanine exchange factor that activates the small GTPase RhoA. Sequestering NIS in intracellular organelles or impairing its targeting to the cell surface (as observed in many cancers) led to a further increase in cell motility and invasiveness. In sum, our results established NIS as a carrier protein that interacts with a major cell signaling hub to facilitate tumor cell locomotion and invasion.

  17. Conformational change upon ligand binding and dynamics of the PDZ domain from leukemia-associated Rho guanine nucleotide exchange factor.

    Science.gov (United States)

    Liu, Jiangxin; Zhang, Jiahai; Yang, Yinshan; Huang, Hongda; Shen, Weiqun; Hu, Qi; Wang, Xingsheng; Wu, Jihui; Shi, Yunyu

    2008-06-01

    Leukemia-associated Rho guanine nucleotide exchange factor (LARG) is a RhoA-specific guanine nucleotide exchange factor (GEF) that can activate RhoA. The PDZ (PSD-95/Disc-large/ZO-1 homology) domain of LARG interacts with membrane receptors, which can relay extracellular signals to RhoA signal transduction pathways. Until now there is no structural and dynamic information about these interactions. Here we report the NMR structures of the LARG PDZ in the apo form and in complex with the plexin-B1 C-terminal octapeptide. Unobservable resonances of the residues in betaB/betaC and betaE/alphaB loops in apo state were observed in the complex state. A distinct region of the binding groove in the LARG PDZ was found to undergo conformational change compared with other PDZs. Analysis of the (15)N relaxation data using reduced spectral density mapping shows that the apo LARG PDZ (especially its ligand-binding groove) is flexible and exhibits internal motions on both picosecond to nanosecond and microsecond to millisecond timescales. Mutagenesis and thermodynamic studies indicate that the conformation of the betaB/betaC and betaE/alphaB loops affects the PDZ-peptide interaction. It is suggested that the conformational flexibility could facilitate the change of structures upon ligand binding.

  18. Higher order structural effects stabilizing the reverse watson-crick guanine-cytosine base pair in functional RNAs

    KAUST Repository

    Chawla, Mohit

    2013-10-10

    The G:C reverse Watson-Crick (W:W trans) base pair, also known as Levitt base pair in the context of tRNAs, is a structurally and functionally important base pair that contributes to tertiary interactions joining distant domains in functional RNA molecules and also participates in metabolite binding in riboswitches. We previously indicated that the isolated G:C W:W trans base pair is a rather unstable geometry, and that dicationic metal binding to the Guanine base or posttranscriptional modification of the Guanine can increase its stability. Herein, we extend our survey and report on other H-bonding interactions that can increase the stability of this base pair. To this aim, we performed a bioinformatics search of the PDB to locate all the occurencies of G:C trans base pairs. Interestingly, 66% of the G:C trans base pairs in the PDB are engaged in additional H-bonding interactions with other bases, the RNA backbone or structured water molecules. High level quantum mechanical calculations on a data set of representative crystal structures were performed to shed light on the structural stability and energetics of the various crystallographic motifs. This analysis was extended to the binding of the preQ1 metabolite to a preQ1-II riboswitch. 2013 The Author(s).

  19. Quadruplexes of human telomere dG{sub 3}(TTAG{sub 3}){sub 3} sequences containing guanine abasic sites

    Energy Technology Data Exchange (ETDEWEB)

    Skolakova, Petra; Bednarova, Klara; Vorlickova, Michaela [Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-612 65 Brno (Czech Republic); Sagi, Janos, E-mail: jans@rimstonelab.com [Rimstone Laboratory, RLI, 29 Lancaster Way, Cheshire, CT 06410 (United States)

    2010-08-20

    Research highlights: {yields} Loss of a guanine base does not hinder the formation of G-quadruplex of human telomere sequence. {yields} Each depurination strongly destabilizes the quadruplex of dG{sub 3}(TTAG{sub 3}){sub 3} in NaCl and KCl. {yields} Conformational change of the abasic analogs of dG{sub 3}(TTAG{sub 3}){sub 3} is inhibited in KCl. {yields} The effects abasic sites may affect telomere-end structures in vivo. -- Abstract: This study was performed to evaluate how the loss of a guanine base affects the structure and stability of the three-tetrad G-quadruplex of 5'-dG{sub 3}(TTAG{sub 3}){sub 3}, the basic quadruplex-forming unit of the human telomere DNA. None of the 12 possible abasic sites hindered the formation of quadruplexes, but all reduced the thermodynamic stability of the parent quadruplex in both NaCl and KCl. The base loss did not change the Na{sup +}-stabilized intramolecular antiparallel architecture, based on CD spectra, but held up the conformational change induced in dG{sub 3}(TTAG{sub 3}){sub 3} in physiological concentration of KCl. The reduced stability and the inhibited conformational transitions observed here in vitro for the first time may predict that unrepaired abasic sites in G-quadruplexes could lead to changes in the chromosome's terminal protection in vivo.

  20. Catalytic activity of the mouse guanine nucleotide exchanger mSOS is activated by Fyn tyrosine protein kinase and the T-cell antigen receptor in T cells.

    OpenAIRE

    1996-01-01

    mSOS, a guanine nucleotide exchange factor, is a positive regulator of Ras. Fyn tyrosine protein kinase is a potential mediator in T-cell antigen receptor signal transduction in subsets of T cells. We investigated the functional and physical interaction between mSOS and Fyn in T-cell hybridoma cells. Stimulation of the T-cell antigen receptor induced the activation of guanine nucleotide exchange activity in mSOS immunoprecipitates. Overexpression of Fyn mutants with an activated kinase mutati...

  1. A highly specific and sensitive electroanalytical strategy for microRNAs based on amplified silver deposition by the synergic TiO2 photocatalysis and guanine photoreduction using charge-neutral probes.

    Science.gov (United States)

    Li, Rui; Li, Shuying; Dong, Minmin; Zhang, Liyan; Qiao, Yuchun; Jiang, Yao; Qi, Wei; Wang, Hua

    2015-11-18

    TiO2 photocatalysis and guanine photoreduction were synergically combined for amplifying silver deposition for the electroanalysis of short-chain microRNAs with guanine bases using charge-neutral probes. It could allow for the highly specific and sensitive detection of microRNAs in the blood as well as the identification of their mutant levels.

  2. Modified Ureterosigmoidostomy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To introduce an operation procedure and evaluate the coutinence diversion results of the modified ureterosigmoidostomy after radical cystectomy. Methods Fourteen cases of bladder cancer or prostate carcinoma were operated on with modified Sigma pouch from Feb, 1998 to Dec, 1999. A longitudinal incision about 25 cm on the sigmoid uall was done to form a low pressure pouch. The vertex of the new pouch was fixed to sacrum. Both ends of ureters were anastomosed side to side and to form a big nipple and inserted into the top of pouch for 2 to 3 centimeters. Results It took about sixty five minutes to create a new low pressure pouch after radical cystectomy. Early complication of was found in two cases postoperatively, and cured with temporary colonostomy. Hydronephrosis and hypokalemia in one patient were cured by percutaneous anterograde ureter dilatation with balloon and oral replacement of potassium salt. All patients displayed urinary continence. No symptomatic renal infection or hypercholoraemic acidosis occurred. Conclusion Modified ureterosigmoidostomy is a safe procedure of urinary diversion and provides a big volume, low intravesical pressure pouch. The patients are free from the troublesome urine-bag, intermittert catheterization , and upper urinary tracts are protected effectively. The quality of life is satisfied.

  3. Physico-chemical Properties and Structure of Modified Dietary Fiber from Grape Pomace%改性葡萄皮渣膳食纤维的理化特性和结构

    Institute of Scientific and Technical Information of China (English)

    陶姝颖; 郭晓晖; 令博; 明建

    2012-01-01

    In the present study,dietary fiber from grape pomace was subjected to modification by ultrafine grinding alone or in combination with extrusion.The changes in the composition,physico-chemical properties,morphology and structure of the dietary fiber before and after modification were explored to evaluate the effectiveness of both treatments.The results showed that both treatments could increase the content of soluble dietary fiber effectively and result in changes of its physico-chemical properties.Ultrafine grinding alone could improve the cation exchange capacity and antioxidant activity of dietary fiber,however,ultrafine grinding after extrusion processing could improve the water-holding capacity,swelling capacity and cation exchange capacity of dietary fiber,and decrease its antioxidant activity.Morphological and structural analysis revealed that modified dietary fiber had sharply reduced particle size and showed basically no change in the major components and chemical structure.%以酿酒葡萄皮渣为原料,并以葡萄皮渣中的膳食纤维为研究对象,采用超微粉碎和挤压超微粉碎技术对其进行改性处理。通过测定改性前后葡萄皮渣膳食纤维的组成、物化性质及纤维颗粒的形貌结构变化,研究不同处理对膳食纤维的改性效果。结果表明:两种改性处理均能有效增加葡萄皮渣膳食纤维中水溶性纤维的含量,并使其理化性质发生显著改变。其中超微粉碎处理有助于增强膳食纤维的阳离子交换能力与抗氧化活性,而挤压超微粉碎处理则有利于提高纤维的持水力、膨胀力及阳离子交换能力,但其抗氧化活性则显著降低。形貌结构分析结果显示,改性后纤维颗粒的粒度急剧减小,但其主要成分及化学结构基本未受影响。

  4. Structural Transformations in Chemically Modified Graphene

    Science.gov (United States)

    2012-07-16

    H.G. Craighead, P.L. McEuen, Science 315 (2007) 490–493. [22] P.M. Morse, K.U. Ingard , Bars, membranes, and plates, Theoretical Acoustics, Princeton...University Press, Princeton, NJ, 1968, pp. 209–211. [23] P.M. Morse, K.U. Ingard , Bars, membranes, and plates, Theoretical Acoustics, Princeton...University Press, Princeton, NJ, 1968, pp. 213–216. [24] P.M. Morse, K.U. Ingard , Bars, membranes, and plates, Theoretical Acoustics, Princeton University

  5. RHEOLOGY OF CHEMICALLY MODIFIED TRIGLYCERIDES. (R829576)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. Leukemia-associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G(12) family to Rho.

    Science.gov (United States)

    Fukuhara, S; Chikumi, H; Gutkind, J S

    2000-11-24

    A putative guanine nucleotide exchange factor (GEF), termed leukemia-associated RhoGEF (LARG), was recently identified upon fusion to the coding sequence of the MLL gene in acute myeloid leukemia. Although the function of LARG is still unknown, it exhibits a number of structural domains suggestive of a role in signal transduction, including a PDZ domain, a LH/RGS domain, and a Dbl homology/pleckstrin homology domain. Here, we show that LARG can activate Rho in vivo. Furthermore, we present evidence that LARG is an integral component of a novel biochemical route whereby G protein-coupled receptors (GPCRs) and heterotrimeric G proteins of the G alpha(12) family stimulate Rho-dependent signaling pathways.

  7. Spectroscopic (UV/VIS, Raman) and Electrophoresis Study of Cytosine-Guanine Oligonucleotide DNA Influenced by Magnetic Field.

    Science.gov (United States)

    Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Boon Tong, Goh; Abdul Rahman, Saadah

    2016-01-01

    Studying the effect of a magnetic field on oligonucleotide DNA can provide a novel DNA manipulation technique for potential application in bioengineering and medicine. In this work, the optical and electrochemical response of a 100 bases oligonucleotides DNA, cytosine-guanine (CG100), is investigated via exposure to different magnetic fields (250, 500, 750, and 1000 mT). As a result of the optical response of CG100 to the magnetic field, the ultra-violet-visible spectrum indicated a slight variation in the band gap of CG100 of about 0.3 eV. Raman spectroscopy showed a significant deviation in hydrogen and phosphate bonds' vibration after exposure to the magnetic field. Oligonucleotide DNA mobility was investigated in the external electric field using the gel electrophoresis technique, which revealed a small decrease in the migration of CG100 after exposure to the magnetic field.

  8. Fluorescence properties of 8-(2-pyridyl)guanine "2PyG" as compared to 2-aminopurine in DNA.

    Science.gov (United States)

    Dumas, Anaëlle; Luedtke, Nathan W

    2011-09-05

    Because of their environment-sensitive fluorescence quantum yields, base analogues such as 2-aminopurine (2AP), 6-methylisoxanthopterin (6-MI), and 3-methylisoxanthopterin (3-MI) are widely used in nucleic-acid folding and catalysis assays. Emissions from these guanine mimics are quenched by base-stacking interactions and collisions with purine residues. Fluorescent base analogues that remain highly emissive in folded nucleic acids can provide sensitive means to differentiate DNA/RNA structures by participating in energy transfer from proximal ensembles of unmodified nucleobases. The development of new, highly emissive guanine mimics capable of proper base stacking and base-pairing interactions is an important prerequisite to this approach. Here we report a comparison of the most commonly used probe, 2-aminopurine (2AP), to 8-(2-pyridyl)-2'-deoxyguanosine (2PyG). The photophysical properties of these purine derivatives are very different. 2PyG exhibits enhanced fluorescence quantum yields upon its incorporation into folded nucleic acids--approximately 50-fold brighter fluorescence intensity than 2AP in the context of duplex DNA. Due to its bright fluorescence and compatibility with proper DNA folding, 2PyG can be used to accurately quantify energy-transfer efficiencies, whereas 2AP is much less sensitive to structure-specific trends in energy transfer. When using nucleoside monomers, Stern-Volmer plots of 2AP fluorescence revealed upward curvature of F(0) /F upon titration of guanosine monophoshate (GMP), whereas 2PyG exhibited unusual downward curvature of F(0) /F that resulted in a recovery of fluorescence at high GMP concentrations. These results are consistent with the trends observed for 2PyG- and 2AP-containing oligonucleotides, and furthermore suggest that solutions containing high concentrations of GMP can, in some ways, mimic the high local nucleobase densities of folded nucleic acids.

  9. Enhanced Molecular Recognition between Nucleobases and Guanine-5'-monophosphate-disodium (GMP) by Surfactant Aggregates in Aqueous Solution.

    Science.gov (United States)

    Liu, Zhang; Wang, Dong; Cao, Meiwen; Han, Yuchun; Xu, Hai; Wang, Yilin

    2015-07-15

    Only specific base pairs on DNA can bind with each other through hydrogen bonds, which is called the Watson-Crick (W/C) pairing rule. However, without the constraint of DNA chains, the nucleobases in bulk aqueous solution usually do not follow the W/C pairing rule anymore because of the strong competitive effect of water and the multi-interaction edges of nucleobases. The present work applied surfactant aggregates noncovalently functionalized by nucleotide to enhance the recognition between nucleobases without DNA chains in aqueous solution, and it revealed the effects of their self-assembling ability and morphologies on the recognition. The cationic ammonium monomeric, dimeric, and trimeric surfactants DTAB, 12-3-12, and 12-3-12-3-12 were chosen. The surfactants with guanine-5'-monophosphate-disodium (GMP) form micelles, vesicles, and fingerprint-like and plate-like aggregates bearing the hydrogen-bonding sites of GMP, respectively. The binding parameters of these aggregates with adenine (A), uracil (U), guanine (G), and cytosine(C) indicate that the surfactants can promote W/C recognitions in aqueous solution when they form vesicles (GMP/DTAB) or plate-like aggregates (GMP/12-3-12) with proper molecular packing compactness, which not only provide hydrophobic environments but also shield non-W/C recognition edges. However, the GMP/12-3-12 micelles with loose molecular packing, the GMP/12-3-12 fingerprint-like aggregates where the hydrogen bond sites of GMP are occupied by itself, and the GMP/12-3-12-3-12 vesicles with too strong self-assembling ability cannot promote W/C recognition. This work provides insight into how to design self-assemblies with the performance of enhanced molecule recognition.

  10. Influence of morphine on levels of type Ⅱ inhibitory guanine nucleotide binding protein in primary hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Qinghua Wu; Qiang Fu; Xinhua Wang; Jianhua Zhao; Liwei Liu; Shirong Tang

    2008-01-01

    BACKGROUND: The pharmacological action of opioid drugs is related to signal transduction of inhibitory guanine nucleotide binding protein.OBJECTIVE: To quantitatively and qualitatively analyze the influence of morphine on levels of type Ⅱ inhibitory guanine nucleotide binding protein (Gi2 protein) in primary cultured hippocampal neurons at different time points.DESIGN, TIME AND SETTING: A randomized controlled study, which was performed at the Department of Neurobiology, Changzheng Hospital, Second Military Medical University of Chinese PLA between September 2002 and March 2004.MATERIALS: Cerebral hippocampal neurons were obtained from newborn SD rats at 1-2 days of age. Biotin-antibody Ⅱ-avidin fluorescein isothiocyanate (Avidin-FITC) was purchased from Sigma Company (USA) and the Gi2 protein polyclonal antibody from Santa Cruz Biochemistry Company (USA).METHODS: Seven days after culture, mature hippocampal neurons were randomly divided into six groups: 4-, 8-, 16-, 24-, and 48-hour morphine groups, and a blank control group. Neurons in the morphine groups Received morphine (10μmol/L), which could cause alterations of G-protein mRNA and cAMP expression in the prefrontal cortex. Neurons in the blank control group were given the same volume of saline.MAIN OUTCOME MEASURES: Gi2 protein levels were detected by an immunofluorescence technique, and were analyzed by the image analytic system with the use of green fluorescence intensity.RESULTS: Gi2 protein levels in hippocampal neurons gradually decreased in the 4-, 8-, 16-, 24-, and 48-hour morphine groups. In particular, Gi2 protein levels in the 16-, 24-, and 48-hour morphine groups were significantly lower than that in the blank control group (P<0.05-0.01).CONCLUSION: Morphine may decrease Gi2 protein level in primary hippocampal neurons, and the decreasing trend is positively related to morphine-induced time.

  11. Guanine-nucleotide exchange on ribosome-bound elongation factor G initiates the translocation of tRNAs

    Directory of Open Access Journals (Sweden)

    Ehrenberg Måns

    2005-06-01

    Full Text Available Abstract Background During the translation of mRNA into polypeptide, elongation factor G (EF-G catalyzes the translocation of peptidyl-tRNA from the A site to the P site of the ribosome. According to the 'classical' model, EF-G in the GTP-bound form promotes translocation, while hydrolysis of the bound GTP promotes dissociation of the factor from the post-translocation ribosome. According to a more recent model, EF-G operates like a 'motor protein' and drives translocation of the peptidyl-tRNA after GTP hydrolysis. In both the classical and motor protein models, GDP-to-GTP exchange is assumed to occur spontaneously on 'free' EF-G even in the absence of a guanine-nucleotide exchange factor (GEF. Results We have made a number of findings that challenge both models. First, free EF-G in the cell is likely to be in the GDP-bound form. Second, the ribosome acts as the GEF for EF-G. Third, after guanine-nucleotide exchange, EF-G in the GTP-bound form moves the tRNA2-mRNA complex to an intermediate translocation state in which the mRNA is partially translocated. Fourth, subsequent accommodation of the tRNA2-mRNA complex in the post-translocation state requires GTP hydrolysis. Conclusion These results, in conjunction with previously published cryo-electron microscopy reconstructions of the ribosome in various functional states, suggest a novel mechanism for translocation of tRNAs on the ribosome by EF-G. Our observations suggest that the ribosome is a universal guanosine-nucleotide exchange factor for EF-G as previously shown for the class-II peptide-release factor 3.

  12. Guanine-nucleotide exchange on ribosome-bound elongation factor G initiates the translocation of tRNAs

    Science.gov (United States)

    Zavialov, Andrey V; Hauryliuk, Vasili V; Ehrenberg, Måns

    2005-01-01

    Background During the translation of mRNA into polypeptide, elongation factor G (EF-G) catalyzes the translocation of peptidyl-tRNA from the A site to the P site of the ribosome. According to the 'classical' model, EF-G in the GTP-bound form promotes translocation, while hydrolysis of the bound GTP promotes dissociation of the factor from the post-translocation ribosome. According to a more recent model, EF-G operates like a 'motor protein' and drives translocation of the peptidyl-tRNA after GTP hydrolysis. In both the classical and motor protein models, GDP-to-GTP exchange is assumed to occur spontaneously on 'free' EF-G even in the absence of a guanine-nucleotide exchange factor (GEF). Results We have made a number of findings that challenge both models. First, free EF-G in the cell is likely to be in the GDP-bound form. Second, the ribosome acts as the GEF for EF-G. Third, after guanine-nucleotide exchange, EF-G in the GTP-bound form moves the tRNA2-mRNA complex to an intermediate translocation state in which the mRNA is partially translocated. Fourth, subsequent accommodation of the tRNA2-mRNA complex in the post-translocation state requires GTP hydrolysis. Conclusion These results, in conjunction with previously published cryo-electron microscopy reconstructions of the ribosome in various functional states, suggest a novel mechanism for translocation of tRNAs on the ribosome by EF-G. Our observations suggest that the ribosome is a universal guanosine-nucleotide exchange factor for EF-G as previously shown for the class-II peptide-release factor 3. PMID:15985150

  13. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  14. 40 CFR 721.6493 - Amidoamine modified polyethylene glycol (generic).

    Science.gov (United States)

    2010-07-01

    ... Specific Chemical Substances § 721.6493 Amidoamine modified polyethylene glycol (generic). (a) Chemical... as an amidoamine modified polyethylene glycol (PMN P-99-0645) is subject to reporting under this... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amidoamine modified...

  15. 40 CFR 721.4380 - Modified hydrocarbon resin.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified hydrocarbon resin. 721.4380... Substances § 721.4380 Modified hydrocarbon resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified hydrocarbon resin (P-91-1418)...

  16. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section...

  17. 40 CFR 721.9499 - Modified silicone resin.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified silicone resin. 721.9499... Substances § 721.9499 Modified silicone resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified silicone resin (PMN P-96-1649)...

  18. 40 CFR 721.5908 - Modified phenolic resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified phenolic resin (generic). 721... Substances § 721.5908 Modified phenolic resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as modified phenolic resin (PMN...

  19. 40 CFR 721.5905 - Modified phenolic resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified phenolic resin (generic). 721... Substances § 721.5905 Modified phenolic resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified phenolic resin...

  20. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this...

  1. New Dihydro OO'Bis(Salicylidene 2,2' Aminobenzothiazolyl Borate Complexes: Kinetic and Voltammetric Studies of Dimethyltin Copper Complex with Guanine, Adenine, and Calf Thymus DNA

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The newly synthesized ligand, dihydro OO'bis(salicylidene 2,2' aminobenzothiazolyl borate (2, was derived from the reaction of Schiff base of 2-aminobenzothiazole and salicylaldehyde with KBH 4 . Cu II (3 and Zn II (4 complexes of (2 were synthesized and further metallated with dimethyltindichloride to yield heterobimetallic complexes (5 and (6. All complexes have been thoroughly characterized by elemental analysis, and IR, NMR, EPR, and UV-Vis spectroscopy and conductance measurements. The spectroscopic data support square planar environment around the Cu II atom, while the Sn IV atom acquires pentacoordinate geometry. The interaction of complex (5 with guanine, adenine, and calf thymus DNA was studied by spectrophotometric, electrochemical, and kinetic methods. The absorption spectra of complex (5 exhibit a remarkable "hyperchromic effect" in the presence of guanine and calf thymus DNA. Indicative of strong binding of the complex to calf thymus DNA preferentially binds through N 7 position of guanine base, while the adenine shows binding to a lesser extent. The kinetic data were obtained from the rate constants, k obs , values under pseudo-first-order conditions. Cyclic voltammetry was employed to study the interaction of complex (5 with guanine, adenine, and calf thymus DNA. The CV of complex (5 in the absence and in the presence of guanine and calf thymus DNA altered drastically, with a positive shift in formal peak potential E pa and E pc values and a significant increase in peak current. The positive shift in formal potentials with increase in peak current favours strong interaction of complex (5 with calf thymus DNA. The net shift in E 1/2 has been used to estimate the ratio of equilibrium constants for the binding of Cu(II and Cu(I complexes to calf thymus DNA.

  2. New Dihydro OO'Bis(Salicylidene) 2,2' Aminobenzothiazolyl Borate Complexes: Kinetic and Voltammetric Studies of Dimethyltin Copper Complex with Guanine, Adenine, and Calf Thymus DNA.

    Science.gov (United States)

    Arjmand, Farukh; Mohani, Bhawana; Parveen, Shamima

    2006-01-01

    The newly synthesized ligand, dihydro OO'bis(salicylidene) 2,2' aminobenzothiazolyl borate (2), was derived from the reaction of Schiff base of 2-aminobenzothiazole and salicylaldehyde with KBH(4). Cu(II) (3) and Zn(II) (4) complexes of (2) were synthesized and further metallated with dimethyltindichloride to yield heterobimetallic complexes (5) and (6). All complexes have been thoroughly characterized by elemental analysis, and IR, NMR, EPR, and UV-Vis spectroscopy and conductance measurements. The spectroscopic data support square planar environment around the Cu(II) atom, while the Sn(IV) atom acquires pentacoordinate geometry. The interaction of complex (5) with guanine, adenine, and calf thymus DNA was studied by spectrophotometric, electrochemical, and kinetic methods. The absorption spectra of complex (5) exhibit a remarkable "hyperchromic effect" in the presence of guanine and calf thymus DNA. Indicative of strong binding of the complex to calf thymus DNA preferentially binds through N(7) position of guanine base, while the adenine shows binding to a lesser extent. The kinetic data were obtained from the rate constants, k(obs), values under pseudo-first-order conditions. Cyclic voltammetry was employed to study the interaction of complex (5) with guanine, adenine, and calf thymus DNA. The CV of complex (5) in the absence and in the presence of guanine and calf thymus DNA altered drastically, with a positive shift in formal peak potential E(pa) and E(pc) values and a significant increase in peak current. The positive shift in formal potentials with increase in peak current favours strong interaction of complex (5) with calf thymus DNA. The net shift in E(1/2) has been used to estimate the ratio of equilibrium constants for the binding of Cu(II) and Cu(I) complexes to calf thymus DNA.

  3. Performance characteristics of guanine incorporated PVDF-HFP/PEO polymer blend electrolytes with binary iodide salts for dye-sensitized solar cells

    Science.gov (United States)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.; Arof, A. K.

    2016-08-01

    In this work, we have investigated the influence of guanine as an organic dopant in dye-sensitized solar cell (DSSC) based on poly(vinylidinefluoride-co-hexafluoropropylene) (PVDF-HFP)/polyethylene oxide (PEO) polymer blend electrolyte along with binary iodide salts (potassium iodide (KI) and tetrabutylammonium iodide (TBAI)) and iodine (I2). The PVDF-HFP/KI + TBAI/I2, PVDF-HFP/PEO/KI + TBAI/I2 and guanine incorporated PVDF-HFP/PEO/KI + TBAI/I2 electrolytes were prepared by solution casting technique using DMF as solvent. The PVDF-HFP/KI + TBAI/I2 electrolyte showed an ionic conductivity value of 9.99 × 10-5 Scm-1, whereas, it was found to be increased to 4.53 × 10-5 Scm-1 when PEO was blended with PVDF-HFP/KI + TBAI/I2 electrolyte. However, a maximum ionic conductivity value of 3.67 × 10-4 Scm-1 was obtained for guanine incorporated PVDF-HFP/PEO/KI + TBAI/I2 blend electrolyte. The photovoltaic properties of all these polymer electrolytes in DSSCs were characterized. As a consequence, the power conversion efficiency of the guanine incorporated PVDF-HFP/PEO/KI + TBAI/I2 electrolyte based DSSC was significantly improved to 4.98% compared with PVDF-HFP/PEO/KI + TBAI/I2 electrolyte based DSSC (2.46%). These results revealed that the guanine can be an effective organic dopant to enhance the performance of DSSCs.

  4. Temperature effects on chemically modified Pt electrode sensing paracetamol%化学修饰铂电极传感扑热息痛中的温度效应

    Institute of Scientific and Technical Information of China (English)

    于丽波; 杨国程; 杨颖姝; 赵振波; 周德凤

    2012-01-01

    通过电化学方法制备了3类化学修饰电极:电化学氧化法将4-氨基苯甲酸(4-Amino-benzoic acid,4-ABA)共价修饰到铂电极上,形成单分子层膜修饰电极(4-ABA/Pt);恒电位沉积法将铂纳米粒子(Nanoparticles,NPs)修饰到铂电极上,形成NPs修饰电极(PtNPs/Pt);先恒电位,然后循环伏安将3-噻吩丙二酸(3-Thiophenemalonic acid,3-TMA)聚合到铂电极上,形成聚合物薄膜修饰电极(poly(3-TMA)/Pt)。线性伏安法测试3种修饰电极在不同温度下传感扑热息痛(Paracetamol,PCT),得出PCT在较宽浓度范围内都与其氧化峰电流呈良好的线性关系,但在不同温度条件下灵敏度是不同的。通过分析温度对PCT活度、离子导体和电子导体电阻的影响,对这一结果给出合理的解释。%Three kinds of chemically modified electrode(CME) are prepared with electrochemical method.With electrochemical oxidation,4-aminobenzoic acid(4-ABA) is covalently modified on Pt electrode to form the 4-ABA/Pt.With the potentiostatic method,the Pt nanoparticles(NPs) are electrodeposited on Pt electrode to form the PtNPs/Pt.With the potentiostatic process followed by cyclic voltammetry method,3-thiophenemalonic acid(3-TMA) is electropolymerized on Pt electrode to form the poly(3-TMA)/Pt.CMEs are applied to sense paracetamol(PCT) at different temperatures.The results show that the PCT concentration has a linear relationship with the oxidation peak current in a wide concentration range but the sensitivity is different at different temperature.The temperature effect on the PCT activity and resistance of ionic conductor and electronic conductor can be used to explain the result.

  5. 基于水泥修饰的赤铁矿载氧体污泥化学链燃烧特性研究%Chemical looping combustion of sewage sludge with oxygen carrier of cement-modified hematite

    Institute of Scientific and Technical Information of China (English)

    牛欣; 沈来宏; 肖军; 蒋守席; 顾海明

    2015-01-01

    采用水泥修饰赤铁矿来提高载氧体的反应活性。实验在1 kWth串行流化床上进行,研究了添加水泥对污泥化学链燃烧特性的影响,考察其长期运行的物化性能。结果表明,在实验工况下,赤铁矿添加水泥后,出口的未燃气体浓度明显下降。燃料反应器温度低于870℃时,水泥的添加使污泥的碳转化率和燃烧效率显著升高。在10 h长期运行后,一部分污泥灰沉积在载氧体表面。虽然在反应过程中部分的Fe2 O3被深度还原,但在长期运行中未出现流化问题和烧结现象。%Chemical looping combustion ( CLC) for sewage sludge has a relatively low efficiency using hematite as oxygen carrier. The experiments on improving the reactivity of hematite with cement modified for CLC of sewage sludge in a 1 kWth continuous CLC unit were carried out. Compared to hematite oxygen carrier, the concentrations of unconverted combustible gas rapidly decrease when the cement-hematite is used. Moreover, both carbon conversion and combustion efficiency increase when the cement is added. Although some ash particles deposit on the surface of oxygen carrier and a part of Fe2 O3 is reduced to FeO, there are no defluidization and sintering problems.

  6. Does the G.G*syn DNA mismatch containing canonical and rare tautomers of the guanine tautomerise through the DPT? A QM/QTAIM microstructural study

    Science.gov (United States)

    Brovarets', Ol'ha O.; Hovorun, Dmytro M.

    2014-12-01

    We have established that the asynchronous concerted double proton transfer (DPT), moving with a time gap and without stable intermediates, is the underlying mechanism for the tautomerisation of the G.G*syn DNA base mispair (C1 symmetry), formed by the keto and enol tautomers of the guanine in the anti- and syn-configurations, into the G*.G*syn base mispair (C1), formed by the enol and imino tautomers of the G base, using quantum-mechanical calculations and Bader's quantum theory of atoms in molecules. By constructing the sweeps of the geometric, electron-topological, energetic, polar and natural bond orbital properties along the intrinsic reaction coordinate of the G.G*syn↔G*.G*syn DPT tautomerisation, the nine key points, that are critical for the atomistic understanding of the tautomerisation reaction, were set and comprehensively analysed. It was found that the G.G*syn mismatch possesses pairing scheme with the formation of the O6...HO6 (7.01) and N1H...N7 (6.77) H-bonds, whereas the G*.G*syn mismatch - of the O6H...O6 (10.68) and N1...HN7 (9.59 kcal mol-1) H-bonds. Our results highlight that these H-bonds are significantly cooperative and mutually reinforce each other in both mismatches. The deformation energy necessary to apply for the G.G*syn base mispair to acquire the Watson-Crick sizes has been calculated. We have shown that the thermodynamically stable G*.G*syn base mispair is dynamically unstable structure with a lifetime of 4.1 × 10-15 s and any of its six low-lying intermolecular vibrations can develop during this period of time. These data exclude the possibility to change the tautomeric status of the bases under the dissociation of the G.G*syn mispair into the monomers during DNA replication. Finally, it has been made an attempt to draw from the physico-chemical properties of all four incorrect purine-purine DNA base pairs a general conclusion, which claims the role of the transversions in spontaneous point mutagenesis.

  7. A Theoretical Study of the Binding of [Re6Se8(OH2(H2O4] Rhenium Clusters to DNA Purine Base Guanine

    Directory of Open Access Journals (Sweden)

    Leonor Alvarado-Soto

    2015-06-01

    Full Text Available Hexanuclear rhenium complexes are promising candidates for use as antitumor drugs. However, to date, there has been no investigation into the nature of their binding to DNA. In this study, density functional theory (DFT was used to examine the binding of [Re6Se8(OH2(H2O4] to the DNA purine base guanine. The geometrical structures of cluster-guanine adducts in water were modeled at the zero order regular approximation (ZORA-PW91 level. Calculating the bond energies allowed us to compare the cis and trans forms of the cluster, and a possible manners of interaction between [Re6Se8(OH2(H2O3] clusters and DNA was obtained and explained.

  8. Multiscale QM/MM Molecular Dynamics Study on the First Steps of Guanine-Damage by Free Hydroxyl Radicals in Solution

    CERN Document Server

    Abolfath, Ramin M; Rajnarayanam, R; Brabec, Thomas; Kodym, Reinhard; Papiez, Lech

    2012-01-01

    Understanding the damage of DNA bases from hydrogen abstraction by free OH radicals is of particular importance to reveal the effect of hydroxyl radicals produced by the secondary effect of radiation. Previous studies address the problem with truncated DNA bases as ab-initio quantum simulation required to study such electronic spin dependent processes are computationally expensive. Here, for the first time, we employ a multiscale and hybrid Quantum-Mechanical-Molecular-Mechanical simulation to study the interaction of OH radicals with guanine-deoxyribose-phosphate DNA molecular unit in the presence of water where all the water molecules and the deoxyribose-phosphate fragment are treated with the simplistic classical Molecular-Mechanical scheme. Our result illustrates that the presence of water strongly alters the hydrogen-abstraction reaction as the hydrogen bonding of OH radicals with water restricts the relative orientation of the OH-radicals with respective to the the DNA base (here guanine). This results ...

  9. Voltammetric and electrochemical gravimetric selective detection of interactions between Tl(I) and guanine and the influence on activity of DNA drug-intercalators.

    Science.gov (United States)

    Nowicka, Anna M; Mackiewicz, Marcin; Matysiak, Edyta; Krasnodebska-Ostrega, Beata; Stojek, Zbigniew

    2013-03-15

    The interactions of Tl(I), a well known toxic species, with selected oligonucleotides were examined. The oligonucleotide sequences selected for the investigation were taken from gene hOGG1 responsible for repairing of DNA damage. Cyclic voltammetry was particularly useful, since nitrogen N-7 in guanine can be electrooxidized while its binding with Tl(I) leads to the loss of electroactivity. So, this selected interaction could be quantitatively used in drawing Scatchard's plot and calculating the binding constants and the number of active sites in guanine molecules occupied by one metal ion. Further, we have shown that the presence of Tl(I) leads to a decrease in activity of doxorubicin (DOX), a popular anticancer drug, vs. DNA. The obtained circular dichroism (CD) spectra and the measurements with an electrochemical quartz crystal microbalance (EQCM) led to a conclusion that in the presence of monovalent thallium cations the DNA double helix was neither damaged/oxidized nor its conformation changed substantially.

  10. Eletrodeposição de irídio em tubo de grafite como modificador químico permanente em espectrometria de absorção atômica Electrodeposition of iridium in graphite tube as permanent chemical modifier in atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Juliana Naozuka

    2003-12-01

    Full Text Available A tubular electrochemical flow-cell for iridium deposition on the inner surface of pyrolytic graphite tube for permanent chemical modification is proposed. A transversal heated graphite tube was used as working electrode, a cylindrical piece of graphite inserted into the graphite tube as auxiliary electrode, and a micro Ag/AgCl(sat as reference electrode. Iridium solution in 1.0 mol L-1 HCl, flowing at 0.55 mL min-1 for 60 min was used to perform the electrochemical modification. The applied potential to the flow-cell was - 0.700 V vs Ag/AgCl. Scanning electron microscopy images were taken for thermal and electrochemical modified graphite surface in order to evaluate the iridium distribution. Selenium hydride trapping was used to verify the performance of the proposed permanent chemical modifier.

  11. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

    Science.gov (United States)

    López-Cruz, Roberto I.; Crocker, Daniel E.; Gaxiola-Robles, Ramón; Bernal, Jaime A.; Real-Valle, Roberto A.; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  12. A High-Throughput Assay for Rho Guanine Nucleotide Exchange Factors Based on the Transcreener GDP Assay.

    Science.gov (United States)

    Reichman, Melvin; Schabdach, Amanda; Kumar, Meera; Zielinski, Tom; Donover, Preston S; Laury-Kleintop, Lisa D; Lowery, Robert G

    2015-12-01

    Ras homologous (Rho) family GTPases act as molecular switches controlling cell growth, movement, and gene expression by cycling between inactive guanosine diphosphate (GDP)- and active guanosine triphosphate (GTP)-bound conformations. Guanine nucleotide exchange factors (GEFs) positively regulate Rho GTPases by accelerating GDP dissociation to allow formation of the active, GTP-bound complex. Rho proteins are directly involved in cancer pathways, especially cell migration and invasion, and inhibiting GEFs holds potential as a therapeutic strategy to diminish Rho-dependent oncogenesis. Methods for measuring GEF activity suitable for high-throughput screening (HTS) are limited. We developed a simple, generic biochemical assay method for measuring GEF activity based on the fact that GDP dissociation is generally the rate-limiting step in the Rho GTPase catalytic cycle, and thus addition of a GEF causes an increase in steady-state GTPase activity. We used the Transcreener GDP Assay, which relies on selective immunodetection of GDP, to measure the GEF-dependent stimulation of steady-state GTP hydrolysis by small GTPases using Dbs (Dbl's big sister) as a GEF for Cdc42, RhoA, and RhoB. The assay is well suited for HTS, with a homogenous format and far red fluorescence polarization (FP) readout, and it should be broadly applicable to diverse Rho GEF/GTPase pairs.

  13. Myosin II directly binds and inhibits Dbl family guanine nucleotide exchange factors: a possible link to Rho family GTPases.

    Science.gov (United States)

    Lee, Chan-Soo; Choi, Chang-Ki; Shin, Eun-Young; Schwartz, Martin Alexander; Kim, Eung-Gook

    2010-08-23

    Cell migration requires the coordinated spatiotemporal regulation of actomyosin contraction and cell protrusion/adhesion. Nonmuscle myosin II (MII) controls Rac1 and Cdc42 activation, and cell protrusion and focal complex formation in migrating cells. However, these mechanisms are poorly understood. Here, we show that MII interacts specifically with multiple Dbl family guanine nucleotide exchange factors (GEFs). Binding is mediated by the conserved tandem Dbl homology-pleckstrin homology module, the catalytic site of these GEFs, with dissociation constants of approximately 0.3 microM. Binding to the GEFs required assembly of the MII into filaments and actin-stimulated ATPase activity. Binding of MII suppressed GEF activity. Accordingly, inhibition of MII ATPase activity caused release of GEFs and activation of Rho GTPases. Depletion of betaPIX GEF in migrating NIH3T3 fibroblasts suppressed lamellipodial protrusions and focal complex formation induced by MII inhibition. The results elucidate a functional link between MII and Rac1/Cdc42 GTPases, which may regulate protrusion/adhesion dynamics in migrating cells.

  14. Human T cell recognition of the blood stage antigen Plasmodium hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT in acute malaria

    Directory of Open Access Journals (Sweden)

    Woodberry Tonia

    2009-06-01

    Full Text Available Abstract Background The Plasmodium purine salvage enzyme, hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT can protect mice against Plasmodium yoelii pRBC challenge in a T cell-dependent manner and has, therefore, been proposed as a novel vaccine candidate. It is not known whether natural exposure to Plasmodium falciparum stimulates HGXPRT T cell reactivity in humans. Methods PBMC and plasma collected from malaria-exposed Indonesians during infection and 7–28 days after anti-malarial therapy, were assessed for HGXPRT recognition using CFSE proliferation, IFNγ ELISPOT assay and ELISA. Results HGXPRT-specific T cell proliferation was found in 44% of patients during acute infection; in 80% of responders both CD4+ and CD8+ T cell subsets proliferated. Antigen-specific T cell proliferation was largely lost within 28 days of parasite clearance. HGXPRT-specific IFN-γ production was more frequent 28 days after treatment than during acute infection. HGXPRT-specific plasma IgG was undetectable even in individuals exposed to malaria for at least two years. Conclusion The prevalence of acute proliferative and convalescent IFNγ responses to HGXPRT demonstrates cellular immunogenicity in humans. Further studies to determine minimal HGXPRT epitopes, the specificity of responses for Plasmodia and associations with protection are required. Frequent and robust T cell proliferation, high sequence conservation among Plasmodium species and absent IgG responses distinguish HGXPRT from other malaria antigens.

  15. RINL, guanine nucleotide exchange factor Rab5-subfamily, is involved in the EphA8-degradation pathway with odin.

    Directory of Open Access Journals (Sweden)

    Hiroaki Kajiho

    Full Text Available The Rab family of small guanosine triphosphatases (GTPases plays a vital role in membrane trafficking. Its active GTP-bound state is driven by guanine nucleotide-exchange factors (GEFs. Ras and Rab interactor (or Ras interaction/interference-like (RINL, which contains a conserved VPS9 domain critical for GEF action, was recently identified as a new Rab5 subfamily GEF in vitro. However, its detailed function and interacting molecules have not yet been fully elucidated. Here we found that RINL has GEF activity for the Rab5 subfamily proteins by measuring their GTP-bound forms in cultured cells. We also found that RINL interacts with odin, a member of the ankyrin-repeat and sterile-alpha motif (SAM domain-containing (Anks protein family. In addition, the Eph tyrosine kinase receptor EphA8 formed a ternary complex with both RINL and odin. Interestingly, RINL expression in cultured cells reduced EphA8 levels in a manner dependent on both its GEF activity and interaction with odin. In addition, knockdown of RINL increased EphA8 level in HeLa cells. Our findings suggest that RINL, as a GEF for Rab5 subfamily, is implicated in the EphA8-degradation pathway via its interaction with odin.

  16. A new rapid amplification of cDNA ends method for extremely guanine plus cytosine-rich genes.

    Science.gov (United States)

    Shi, Xianzong; Jarvis, Donald L

    2006-09-15

    Rapid amplification of cDNA ends (RACE) is widely used to determine the 5'- and 3'-terminal nucleotide sequences of genes. Many different RACE methods have been developed to meet various requirements, but none addresses the difficult problems that arise when trying to isolate the ends of extremely guanine plus cytosine (GC)-rich genes. In this study, we found that we were unable to isolate the correct 5' or 3' end of an insect gene, which appeared to include extremely GC-rich sequences, using current RACE methods. Thus, we developed a new RACE method that can be used for this purpose. This new method entails first-strand cDNA synthesis at 70 degrees C with Thermo-X reverse transcriptase in the presence of homoectoine, followed by a polymerase chain reaction with 98 degrees C denaturation steps and Phusion DNA polymerase in the presence of 1M betaine and 5% dimethyl sulfoxide (DMSO). The use of these conditions yielded 5'- and 3'-RACE products that were approximately 80% GC over 213 and 162bp, respectively, and included shorter internal regions of 82 to 89% GC.

  17. Differential Distortion of Purine Substrates by Human and Plasmodium falciparum Hypoxanthine-Guanine Phosphoribosyltransferase to Catalyse the Formation of Mononucleotides.

    Science.gov (United States)

    Karnawat, Vishakha; Gogia, Spriha; Balaram, Hemalatha; Puranik, Mrinalini

    2015-07-20

    Plasmodium falciparum (Pf) hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is a potential therapeutic target. Compared to structurally homologous human enzymes, it has expanded substrate specificity. In this study, 9-deazapurines are used as in situ probes of the active sites of human and Pf HGPRTs. Through the use of these probes it is found that non-covalent interactions stabilise the pre-transition state of the HGPRT-catalysed reaction. Vibrational spectra reveal that the bound substrates are extensively distorted, the carbonyl bond of nucleobase moiety is weakened and the substrate is destabilised along the reaction coordinate. Raman shifts of the human and Pf enzymes are used to quantify the differing degrees of hydrogen bonding in the homologues. A decreased Raman cross-section in enzyme-bound 9-deazaguanine (9DAG) shows that the phenylalanine residue (Phe186 in human and Phe197 in Pf) of HGPRT stacks with the nucleobase. Differential loss of the Raman cross-section suggests that the active site is more compact in human HGPRT as compared to the Pf enzyme, and is more so in the phosphoribosyl pyrophosphate (PRPP) complex 9DAG-PRPP-HGPRT than in 9-deazahypoxanthine (9DAH)-PRPP-HGPRT.

  18. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    Science.gov (United States)

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements.

  19. Evidence that Natural Selection is the Primary Cause of the Guanine-cytosine Content Variation in Rice Genes

    Institute of Scientific and Technical Information of China (English)

    Xiaoli Shi; Xiyin Wang; Zhe Li; Qihui Zhu; Ji Yang; Song Ge; Jingchu Luo

    2007-01-01

    Cereal genes are classified into two distinct classes according to the guanine-cytosine (GC) content at the third codon sites (GC3). Natural selection and mutation bias have been proposed to affect the GC content. However, there has been controversy about the cause of GC variation. Here, we characterized the GC content of 1 092 paralogs and other single-copy genes in the duplicated chromosomal regions of the rice genome (ssp. indica) and classified the paralogs into GC3-rich and GC3-poor groups. By referring to out-group sequences from Arabidopsis and maize, we confirmed that the average synonymous substitution rate of the GC3-rich genes is significantly lower than that of the GC3-poor genes. Furthermore,we explored the other possible factors corresponding to the GC variation including the length of coding sequences, the number of exons in each gene, the number of genes in each family, the location of genes on chromosomes and the protein functions. Consequently, we propose that natural selection rather than mutation bias was the primary cause of the GC variation.

  20. DPT tautomerisation of the wobble guanine·thymine DNA base mispair is not mutagenic: QM and QTAIM arguments.

    Science.gov (United States)

    Brovarets', Ol'ha O; Zhurakivsky, Roman O; Hovorun, Dmytro M

    2015-01-01

    We have shown for the first time, connecting QM methods with QTAIM analysis and using the methodology of the sweeps of the energetical, electron-topological and geometrical parameters, that the tautomerisation of the wobble guanine·thymine (wG·T) DNA base mispair into the wG(*)·T(*) base mispair induced by the double proton transfer (DPT), which undergoes a concerted asynchronous pathway, is not mutagenic. The wG·T → wG(*)·T(*) DPT tautomerisation does not result in the transition of the G base into its mutagenic tautomeric form G(*) able to mispair with the T base within the Watson-Crick base pairing scheme. This observation is explained by the so-called quantum protection of the wG·T DNA base mispair from its mutagenic tautomerisation - the dynamical non-stability of the tautomerised wG(*)·T(*) base mispair and significantly negative value of the Gibbs free energy of activation for the reverse reaction of the wG·T → wG(*)·T(*) DPT tautomerisation.

  1. Molecular cloning of Ras cDNA from Penaeus japonicus (Crustacea, decapoda): geranylgeranylation and guanine nucleotide binding.

    Science.gov (United States)

    Huang, C F; Chuang, N N

    1998-12-11

    A cDNA was isolated from the shrimp Penaeus japonicus by homology cloning. The shrimp hepatopancreas cDNA encodes a 187-residue polypeptide whose predicted amino acid sequence shares 85% homology with mammalian K-Ras 4B protein and demonstrates identity in the guanine nucleotide binding domains. Expression of the shrimp cDNA in Escherichia coli yielded a 21-kDa polypeptide with a positive reactivity towards the monoclonal antibodies against mammalian Ras. The GTP binding of the shrimp ras-encoded fusion protein was approximated to be 30000units/mg of protein, whereas the binding for GDP was 5000units/mg of protein. Fluorography analysis demonstrated that the prenylation of both shrimp Ras GDP and shrimp Ras GTP by protein geranylgeranyltransferase I of shrimp Penaeus japonicus exceeded the shrimp Ras nucleotide-free form by 10-fold, and fourfold, respectively; that is, the shrimp protein geranylgeranyltransferase I prefers to react with the shrimp ras-encoded p25 fusion protein in the GDP-bound form.

  2. Mammalian Mon2/Ysl2 regulates endosome-to-Golgi trafficking but possesses no guanine nucleotide exchange activity toward Arl1 GTPase

    Science.gov (United States)

    Mahajan, Divyanshu; Boh, Boon Kim; Zhou, Yan; Chen, Li; Cornvik, Tobias Carl; Hong, Wanjin; Lu, Lei

    2013-11-01

    Arl1 is a member of Arf family small GTPases that is essential for the organization and function of Golgi complex. Mon2/Ysl2, which shares significant homology with Sec7 family Arf guanine nucleotide exchange factors, was poorly characterized in mammalian cells. Here, we report the first in depth characterization of mammalian Mon2. We found that Mon2 localized to trans-Golgi network which was dependent on both its N and C termini. The depletion of Mon2 did not affect the Golgi localized or cellular active form of Arl1. Furthermore, our in vitro assay demonstrated that recombinant Mon2 did not promote guanine nucleotide exchange of Arl1. Therefore, our results suggest that Mon2 could be neither necessary nor sufficient for the guanine nucleotide exchange of Arl1. We demonstrated that Mon2 was involved in endosome-to-Golgi trafficking as its depletion accelerated the delivery of furin and CI-M6PR to Golgi after endocytosis.

  3. Implant materials modified by colloids

    Directory of Open Access Journals (Sweden)

    Zboromirska-Wnukiewicz Beata

    2016-03-01

    Full Text Available Recent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.

  4. Enzyme-catalyzed Synthesis of Vitamin E Succinate Using a Chemically Modified Novozym-435%化学修饰Novozym-435酶催化合成维生素E琥珀酸酯的研究

    Institute of Scientific and Technical Information of China (English)

    尹春华; 张聪; 高明

    2011-01-01

    Vitamin E succinate was synthesized in organic solvents using a modified Novozym-435 as catalyst. In order to improve the catalytic performance of Novozym-435, the enzyme was modified using acetic anhydride, propionic anhydride and succinic anhydride separately. We found that both the hydrolytic activity and the thermal stability of the modified Novozym-435 were enhanced compared with the unmodified enzyme. The modified Novozym-435 catalysts were used to synthesize the succinate derivative of vitamin E. Compared with the native Novozym-435, the catalytic activity of the modified novozym-435 in promoting the synthesis of vitamin E succinate was dramatically increased, with the novozym-435 modified with succinic anhydride (N435-S) as the most active catalyst. Conditions for the synthesis of vitamin E succinate were also optimized. A mixture of tert-butanol and DMSO (volume ratio of 2: 3) was the most suitable medium for the reaction, whereas the appropriate molar ratio of vitamin E to succinic anhydride and reaction temperature were 1: 5 and 40 ℃, respectively. Under these reaction conditions, the yield of vitamin E succinate reached 94.4%. N435-S could be reused for five batches.

  5. Electrochemical determination of the anticancer drug taxol at a ds-DNA modified pencil-graphite electrode and its application as a label-free electrochemical biosensor.

    Science.gov (United States)

    Tajik, Somayeh; Taher, Mohammad Ali; Beitollahi, Hadi; Torkzadeh-Mahani, Mosoud

    2015-03-01

    In this study a novel biosensor for determination of taxol is described. The interaction of taxol with salmon-sperm double-stranded DNA (ds-DNA) based on the decreasing of the oxidation signals of guanine and adenine bases was studied electrochemically with a pencil-graphite electrode (PGE) using a differential pulse voltammetry (DPV) method. The decreases in the intensity of the guanine and adenine oxidation signals after interaction with taxol were used as indicator signals for the sensitive determination of taxol. DPV exhibits a linear dynamic range of 2.0×10(-7)-1.0×10(-5) M for taxol with a detection limit of 8.0×10(-8) M. Finally, this modified electrode was used for determination of taxol in some real samples.

  6. Removal of heavy metals from water by zeolite mineral chemically modified. Mercury as a particular case; Remocion de metales pesados del agua por mineral zeolitico quimicamente modificado. Mercurio como un caso particular

    Energy Technology Data Exchange (ETDEWEB)

    Gebremedhin H, T

    2002-07-01

    Research works on the removal of mercury from water by zeolite minerals show that a small quantity of this element is sorbed. In this work the mercury sorption from aqueous solutions in the presence and absence of Cu(l l), Ni(l l) and/or Zn(l l) by a Mexican zeolite mineral, natural and modified by cisteaminium chloride or cistaminium dichloride, was investigated in acidic p H. The zeolite minerals were characterized by X- Ray diffraction Ftir, scanning electron microscopy and semiquantitative elemental analysis (EDS), surface area analysis (BET) and thermogravimetric analysis (TGA). Mercury from aqueous solutions was quantified by Atomic absorption spectroscopy. The amount of sulphur on the zeolite samples treated with Na CI and modified with cisteaminium chloride (0.375 mmol/g) or cistaminium dichloride(0.475 mmol/g) was found to be higher than that of the zeolite minerals modified with cisteaminium chloride and cistaminium dichloride without treating them with Na CI. The amount of sulphur on the zeolite minerals modified with thiourea was the lowest. The diffusion coefficients and sorption isotherms for mercury were determined in the natural, treated with Na CI and, treated with Na CI and then modified with the cisteaminium chloride or cistaminium dichloride zeolite samples. The retention of mercury was the highest for the zeolite minerals treated Na CI and then modified with cisteaminium chloride or cistaminium dichloride, with adsorption capacity of 0.0511 and 0.0525 mmol Hg/g, respectively. In this research work, it was found that the retention of mercury by the modified minerals was not affected by the presence of Cu (Il), Zn(l l) y Ni (I l) under the experimental conditions. (Author)

  7. The leukemia-associated Rho guanine nucleotide exchange factor LARG is required for efficient replication stress signaling.

    Science.gov (United States)

    Beveridge, Ryan D; Staples, Christopher J; Patil, Abhijit A; Myers, Katie N; Maslen, Sarah; Skehel, J Mark; Boulton, Simon J; Collis, Spencer J

    2014-01-01

    We previously identified and characterized TELO2 as a human protein that facilitates efficient DNA damage response (DDR) signaling. A subsequent yeast 2-hybrid screen identified LARG; Leukemia-Associated Rho Guanine Nucleotide Exchange Factor (also known as Arhgef12), as a potential novel TELO2 interactor. LARG was previously shown to interact with Pericentrin (PCNT), which, like TELO2, is required for efficient replication stress signaling. Here we confirm interactions between LARG, TELO2 and PCNT and show that a sub-set of LARG co-localizes with PCNT at the centrosome. LARG-deficient cells exhibit replication stress signaling defects as evidenced by; supernumerary centrosomes, reduced replication stress-induced γH2AX and RPA nuclear foci formation, and reduced activation of the replication stress signaling effector kinase Chk1 in response to hydroxyurea. As such, LARG-deficient cells are sensitive to replication stress-inducing agents such as hydroxyurea and mitomycin C. Conversely we also show that depletion of TELO2 and the replication stress signaling kinase ATR leads to RhoA signaling defects. These data therefore reveal a level of crosstalk between the RhoA and DDR signaling pathways. Given that mutations in both ATR and PCNT can give rise to the related primordial dwarfism disorders of Seckel Syndrome and Microcephalic osteodysplastic primordial dwarfism type II (MOPDII) respectively, which both exhibit defects in ATR-dependent checkpoint signaling, these data also raise the possibility that mutations in LARG or disruption to RhoA signaling may be contributory factors to the etiology of a sub-set of primordial dwarfism disorders.

  8. The domain architecture of large guanine nucleotide exchange factors for the small GTP-binding protein Arf

    Directory of Open Access Journals (Sweden)

    Geldner Niko

    2005-02-01

    Full Text Available Abstract Background Small G proteins, which are essential regulators of multiple cellular functions, are activated by guanine nucleotide exchange factors (GEFs that stimulate the exchange of the tightly bound GDP nucleotide by GTP. The catalytic domain responsible for nucleotide exchange is in general associated with non-catalytic domains that define the spatio-temporal conditions of activation. In the case of small G proteins of the Arf subfamily, which are major regulators of membrane trafficking, GEFs form a heterogeneous family whose only common characteristic is the well-characterized Sec7 catalytic domain. In contrast, the function of non-catalytic domains and how they regulate/cooperate with the catalytic domain is essentially unknown. Results Based on Sec7-containing sequences from fully-annotated eukaryotic genomes, including our annotation of these sequences from Paramecium, we have investigated the domain architecture of large ArfGEFs of the BIG and GBF subfamilies, which are involved in Golgi traffic. Multiple sequence alignments combined with the analysis of predicted secondary structures, non-structured regions and splicing patterns, identifies five novel non-catalytic structural domains which are common to both subfamilies, revealing that they share a conserved modular organization. We also report a novel ArfGEF subfamily with a domain organization so far unique to alveolates, which we name TBS (TBC-Sec7. Conclusion Our analysis unifies the BIG and GBF subfamilies into a higher order subfamily, which, together with their being the only subfamilies common to all eukaryotes, suggests that they descend from a common ancestor from which species-specific ArfGEFs have subsequently evolved. Our identification of a conserved modular architecture provides a background for future functional investigation of non-catalytic domains.

  9. Overexpression of GEFT, a Rho family guanine nucleotide exchange factor, predicts poor prognosis in patients with rhabdomyosarcoma.

    Science.gov (United States)

    Sun, Chao; Liu, Chunxia; Li, Shugang; Li, Hongan; Wang, Yuanyuan; Xie, Yuwen; Li, Bingcheng; Cui, Xiaobin; Chen, Yunzhao; Zhang, Wenjie; Li, Feng

    2014-01-01

    Rhabdomyosarcoma (RMS) is one of the most common soft-tissue sarcomas in children and adolescents with poor prognosis. Yet, there is lack of effective prognostic biomarkers for RMS. The present study, therefore, aimed to explore potential biomarkers for RMS based on our previous findings using array comparative genomic hybridization. We investigated guanine nucleotide exchange factor, GEFT, at expression level in 45 RMS patients and 36 normal striated muscle controls using immunohistochemistry using tissue microarrays. The expression rate of GEFT in RMS samples (42/45, 93.33%) was significantly higher (Prate of GEFT in RMS (31/45, 68.89%) was also significantly higher (P<0.05) than that in normal controls (0/36, 0.00%). Increased expression of GEFT correlated significantly with advanced disease stages (stages III/IV) (P=0.001), lymph node metastasis (P=0.019), and distant metastasis (P=0.004), respectively, in RMS patients. In addition, RMS patients having overexpressed GEFT experienced worse overall survival (OS) than those having low levels of GEFT (P=0.001). GEFT overexpression was determined to be an independent prognostic factor for poor OS in RMS patients (hazard ratio: 3.491, 95% confidence interval: 1.121-10.871, P=0.004). In conclusion, these observations provide the first evidence of GEFT overexpression in RMS and its correlations with disease aggressiveness and metastasis. These findings suggest that GEFT may serve as a promising biomarker predicting poor prognosis in RMS patients, thus implying its potential as a therapeutic target.

  10. Modulation of B-cell receptor and microenvironment signaling by a guanine exchange factor in B-cell malignancies

    Institute of Scientific and Technical Information of China (English)

    Wei Liao; Sanjai Sharma

    2016-01-01

    Objective: Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cells over-express a guanine exchange factor (GEF), Rasgrf-1. This GEF increases active Ras as it catalyzes the removal of GDP from Ras so that GTP can bind and activate Ras. This study aims to study the mechanism of action of Rasgrf-1 in B-cell malignancies. Methods: N-terminus truncated Rasgrf-1 variants have a higher GEF activity as compared to the full-length transcript therefore a MCL cell line with stable over-expression of truncated Rasgrf-1 was established. The B-cell receptor (BCR) and chemokine signaling pathways were compared in the Rasgrf-1 over-expressing and a control transfected cell line. Results: Cells over-expressing truncated form of Rasgrf-1 have a higher proliferative rate as compared to control transfected cells. BCR was activated by lower concentrations of anti-IgM antibody in Rasgrf-1 over-expressing cells as compared to control cells indicating that these cells are more sensitive to BCR signaling. BCR signaling also phosphorylates Rasgrf-1 that further increases its GEF function and amplifies BCR signaling. This activation of Rasgrf-1 in over-expressing cells resulted in a higher expression of phospho-ERK, AKT, BTK and PKC-alpha as compared to control cells. Besides BCR, Rasgrf-1 over-expressing cells were also more sensitive to microenvironment stimuli as determined by resistance to apoptosis, chemotaxis and ERK pathway activation. Conclusions: This GEF protein sensitizes B-cells to BCR and chemokine mediated signaling and also upregulates a number of other signaling pathways which promotes growth and survival of these cells.

  11. Metabolomics of Genetically Modified Crops

    OpenAIRE

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resul...

  12. Determination of Human-Health Pharmaceuticals in Filtered Water by Chemically Modified Styrene-Divinylbenzene Resin-Based Solid-Phase Extraction and High-Performance Liquid Chromatography/Mass Spectrometry

    Science.gov (United States)

    Furlong, Edward T.; Werner, Stephen L.; Anderson, Bruce D.; Cahill, Jeffery D.

    2008-01-01

    In 1999, the Methods Research and Development Program of the U.S. Geological Survey National Water Quality Laboratory began the process of developing a method designed to identify and quantify human-health pharmaceuticals in four filtered water-sample types: reagent water, ground water, surface water minimally affected by human contributions, and surface water that contains a substantial fraction of treated wastewater. Compounds derived from human pharmaceutical and personal-care product use, which enter the environment through wastewater discharge, are a newly emerging area of concern; this method was intended to fulfill the need for a highly sensitive and highly selective means to identify and quantify 14 commonly used human pharmaceuticals in filtered-water samples. The concentrations of 12 pharmaceuticals are reported without qualification; the concentrations of two pharmaceuticals are reported as estimates because long-term reagent-spike sample recoveries fall below acceptance criteria for reporting concentrations without qualification. The method uses a chemically modified styrene-divinylbenzene resin-based solid-phase extraction (SPE) cartridge for analyte isolation and concentration. For analyte detection and quantitation, an instrumental method was developed that used a high-performance liquid chromatography/mass spectrometry (HPLC/MS) system to separate the pharmaceuticals of interest from each other and coextracted material. Immediately following separation, the pharmaceuticals are ionized by electrospray ionization operated in the positive mode, and the positive ions produced are detected, identified, and quantified using a quadrupole mass spectrometer. In this method, 1-liter water samples are first filtered, either in the field or in the laboratory, using a 0.7-micrometer (um) nominal pore size glass-fiber filter to remove suspended solids. The filtered samples then are passed through cleaned and conditioned SPE cartridges at a rate of about 15

  13. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this...

  14. 40 CFR 721.10073 - Modified alkyl acrylamide (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified alkyl acrylamide (generic... Specific Chemical Substances § 721.10073 Modified alkyl acrylamide (generic). (a) Chemical substance and... acrylamide (PMN P-05-536) is subject to reporting under this section for the significant new uses...

  15. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Science.gov (United States)

    2010-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this...

  16. Chemical Emergencies

    Science.gov (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  17. Improving peroxidase-like activity of hemoglobin by recombining hemoglobin using chemically modified heme%修饰血红素提高血红蛋白类过氧化物酶活性

    Institute of Scientific and Technical Information of China (English)

    凌辉生; 李阳; 封琳; 李任强

    2011-01-01

    The phenol or 4-biphenylol was used to modify the heme. The modified hemin group was recombined with apo-hemoglobin to prepare novel artificial hemoglobin. Absorption spectral sean demonstrated that the artificial recombined hemoglobins with modified heme were obtained. Experimental resultsshowed that the peroxidase-like activity of modified hemoglobins was enhanced compared with that of native hemoglobin. And the enzymatic activity of modified hemoglobin with 4-biphenylol modified heme was as about 1.6 folds than that of the native hemoglobin.%利用苯酚或对羟基联苯时血红蛋白的血红素辅基进行化学修饰,将修饰后的血红素与脱辅基血红蛋白进行重组得到新的血红蛋白.以光吸收扫描分析修饰血红素和重组血红蛋白,证明新的重组血红蛋白构建成功.酶活力测定表明,修饰血红素得到的重组血红蛋白的类过氧化物酶活性都比天然血红蛋白的酶活力高,用对羟基联笨修饰血红素得到的重组血红蛋白的酶活提高明显,约是天然血红蛋白的1.6倍.

  18. Investigation of specificity determinants in bacterial tRNA-guanine transglycosylase reveals queuine, the substrate of its eucaryotic counterpart, as inhibitor.

    Directory of Open Access Journals (Sweden)

    Inna Biela

    Full Text Available Bacterial tRNA-guanine transglycosylase (Tgt catalyses the exchange of the genetically encoded guanine at the wobble position of tRNAs(His,Tyr,Asp,Asn by the premodified base preQ1, which is further converted to queuine at the tRNA level. As eucaryotes are not able to synthesise queuine de novo but acquire it through their diet, eucaryotic Tgt directly inserts the hypermodified base into the wobble position of the tRNAs mentioned above. Bacterial Tgt is required for the efficient pathogenicity of Shigella sp, the causative agent of bacillary dysentery and, hence, it constitutes a putative target for the rational design of anti-Shigellosis compounds. Since mammalian Tgt is known to be indirectly essential to the conversion of phenylalanine to tyrosine, it is necessary to create substances which only inhibit bacterial but not eucaryotic Tgt. Therefore, it seems of utmost importance to study selectivity-determining features within both types of proteins. Homology models of Caenorhabditis elegans Tgt and human Tgt suggest that the replacement of Cys158 and Val233 in bacterial Tgt (Zymomonas mobilis Tgt numbering by valine and accordingly glycine in eucaryotic Tgt largely accounts for the different substrate specificities. In the present study we have created mutated variants of Z. mobilis Tgt in order to investigate the impact of a Cys158Val and a Val233Gly exchange on catalytic activity and substrate specificity. Using enzyme kinetics and X-ray crystallography, we gained evidence that the Cys158Val mutation reduces the affinity to preQ1 while leaving the affinity to guanine unaffected. The Val233Gly exchange leads to an enlarged substrate binding pocket, that is necessary to accommodate queuine in a conformation compatible with the intermediately covalently bound tRNA molecule. Contrary to our expectations, we found that a priori queuine is recognised by the binding pocket of bacterial Tgt without, however, being used as a substrate.

  19. Modified monolithic silica capillary for preconcentration of catecholamines

    Institute of Scientific and Technical Information of China (English)

    Wei Chang; Tusyo-shi Komazu

    2009-01-01

    Preconcentration of catecholamines by the modified monolithic silica in the capillary was investigated in this study. In order to achieve a microchip-based method for determining catecholamines in the saliva, the monolithic silica was fabricated in the capillary and the monolithic silica was chemically modified by on-column reaction with phenylboronate. Different modified methods were compared. The concentration conditions were optimized. This study indicates the applicability of the modified monolithic silica capillary when it was used to concentrate catecholamines.

  20. Modified monolithic silica capillary for preconcentration of catecholamines

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Preconcentration of catecholamines by the modified monolithic silica in the capillary was investigated in this study. In order to achieve a microchip-based method for determining catecholamines in the saliva,the monolithic silica was fabricated in the capillary and the monolithic silica was chemically modified by on-column reaction with phenylboronate. Different modified methods were compared. The concentration conditions were optimized. This study indicates the applicability of the modified monolithic sili...

  1. The glycine brace: a component of Rab, Rho, and Ran GTPases associated with hinge regions of guanine- and phosphate-binding loops

    Directory of Open Access Journals (Sweden)

    Neuwald Andrew F

    2009-03-01

    Full Text Available Abstract Background Ras-like GTPases function as on-off switches in intracellular signalling pathways and include the Rab, Rho/Rac, Ran, Ras, Arf, Sar and Gα families. How these families have evolutionarily diverged from each other at the sequence level provides clues to underlying mechanisms associated with their functional specialization. Results Bayesian analysis of divergent patterns within a multiple alignment of Ras-like GTPase sequences identifies a structural component, termed here the glycine brace, as the feature that most distinguishes Rab, Rho/Rac, Ran and (to some degree Ras family GTPases from other Ras-like GTPases. The glycine brace consists of four residues: An aromatic residue that forms a stabilizing CH-π interaction with a conserved glycine at the start of the guanine-binding loop; a second aromatic residue, which is nearly always a tryptophan, that likewise forms stabilizing CH-π and NH-π interactions with a glycine at the start of the phosphate-binding P-loop; and two other residues (typically an aspartate and a serine or threonine that, together with a conserved buried water molecule, form a network of interactions connecting the two aromatic residues. Conclusion It is proposed that the two glycine residues function as hinges and that the glycine brace influences guanine nucleotide binding and release by interacting with these hinges.

  2. Specific and nonspecific metal ion-nucleotide interactions at aqueous/solid interfaces functionalized with adenine, thymine, guanine, and cytosine oligomers.

    Science.gov (United States)

    Holland, Joseph G; Malin, Jessica N; Jordan, David S; Morales, Esmeralda; Geiger, Franz M

    2011-03-02

    This article reports nonlinear optical measurements that quantify, for the first time directly and without labels, how many Mg(2+) cations are bound to DNA 21-mers covalently linked to fused silica/water interfaces maintained at pH 7 and 10 mM NaCl, and what the thermodynamics are of these interactions. The overall interaction of Mg(2+) with adenine, thymine, guanine, and cytosine is found to involve -10.0 ± 0.3, -11.2 ± 0.3, -14.0 ± 0.4, and -14.9 ± 0.4 kJ/mol, and nonspecific interactions with the phosphate and sugar backbone are found to contribute -21.0 ± 0.6 kJ/mol for each Mg(2+) ion bound. The specific and nonspecific contributions to the interaction energy of Mg(2+) with oligonucleotide single strands is found to be additive, which suggests that within the uncertainty of these surface-specific experiments, the Mg(2+) ions are evenly distributed over the oligomers and not isolated to the most strongly binding nucleobase. The nucleobases adenine and thymine are found to bind only three Mg(2+) ions per 21-mer oligonucleotide, while the bases cytosine and guanine are found to bind eleven Mg(2+) ions per 21-mer oligonucleotide.

  3. Specificities and pH profiles of adenine and hypoxanthine-guanine-xanthine phosphoribosyltransferases (nucleotide synthases) of the thermoacidophile archaeon Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Jensen, Kristine Steen; Rasmussen, Mads Skytte;

    2014-01-01

    Two open reading frames in the genome of Sulfolobus solfataricus (SSO2341 and SSO2424) were cloned and expressed in E. coli. The protein products were purified and their enzymatic activity characterized. Although SSO2341 was annotated as a gene (gpT-1) encoding a 6-oxopurine phosphoribosyltransfe......Two open reading frames in the genome of Sulfolobus solfataricus (SSO2341 and SSO2424) were cloned and expressed in E. coli. The protein products were purified and their enzymatic activity characterized. Although SSO2341 was annotated as a gene (gpT-1) encoding a 6-oxopurine...... phosphoribosyltransferase (PRTase), the protein product turned out to be a PRTase highly specific for adenine and we suggest that the reading frame should be renamed apT. The other reading frame SSO2424 (gpT-2) proved to be a true 6-oxopurine PRTase active with hypoxanthine, xanthine and guanine as substrates, and we...... suggest that the gene should be renamed gpT. Both enzymes exhibited unusual profiles of activity versus pH. The adenine PRTase showed the highest activity at pH 7.5-8.5, but had a distinct peak of activity also at pH 4.5. The 6-oxo PRTase showed maximal activity with hypoxanthine and guanine around pH 4...

  4. Isolation of a gene encoding a developmentally regulated T cell-specific protein with a guanine nucleotide triphosphate-binding motif

    Energy Technology Data Exchange (ETDEWEB)

    Carlow, D.A.; Teh, H.S.; Marth, J. [Univ. of British Columbia, Vancouver (Canada)] [and others

    1995-02-15

    In this study, we describe a novel full length cDNA clone designated Tgtp that encodes a predicted 415-amino acid a T cell-specific guanine nucleotide triphosphate-binding protein (TGTP) bearing the characteristic motifs of a guanine nucleotide triphosphate (GTP) binding protein. Tgtp is expressed preferentially, if not exclusively, in T cells, and is up-regulated in both unfractionated and in purified CD4{sup +}8{sup +} thymocytes upon TCR cross-linking. In contrast, expression of Tgtp in peripheral T cells is maintained at relatively high levels and is not grossly affected by TCR cross-linking. Antiserum generated against synthetic peptides from the predicted TGTP amino acid sequence recognized a single protein with a molecular mass of {approx}50 kDa, corresponding well with the computed molecular mass of 47 kDa. The only known relative of Tgtp is MUSGTP, which is reportedly expressed in B cells and bears a GTP binding motif. Thus, the discovery of Tgtp resolves a subfamily of molecules with GTP binding motifs and apparent lymphoid lineage-restricted expression. Given the restricted expression pattern in T cells, the up-regulated expression observed in response to TCR signaling in immature thymocytes, and the presence of the motifs characteristic of GTP binding proteins, we suggest that TGTP may have an important function in T cell development and/or T cell activation. 51 refs., 6 figs.

  5. 40 CFR 721.630 - Salt of a modified tallow alkylenediamine (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Salt of a modified tallow... Specific Chemical Substances § 721.630 Salt of a modified tallow alkylenediamine (generic). (a) Chemical... as a salt of a modified tallow alkylenediamine (PMN P-96-1425) is subject to reporting under...

  6. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  7. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and...

  8. Prepareation on Curdlan Modified by Sulphonic Acid and Study on its Physical and Chemical Properties%可德胶的磺酸化改性及产物物化性能的研究

    Institute of Scientific and Technical Information of China (English)

    钱涛涛; 何欣芝; 梁洒洒; 潘泉泉; 孙燕

    2012-01-01

    为了提高可德胶的水溶性,对其进行磺酸化改性研究。本实验是在氮气保护下,以二甲亚砜作溶剂,选择不同水浴温度(如:40℃、50℃、60℃、70℃)下持续搅拌9h,然后加入O.5g三氧化硫一吡啶,继续搅拌2h后,用0.5mol/L的NaOH中和后于去离子水中进行透析,最后在50℃下旋转蒸发浓缩。结果表明:当反应温度65℃(4#)时,所制得的磺酸化改性可德胶具有较好的溶解性。%In order to improve the water-soluble properties of curdlan, the curdlan modified by sulfonated was prepared. In this experiment, under the protection of nitrogen, curdlan was dissolved in dimethyl sulfoxide, then 0.5 g sulfur trioxide-pyridine was added to curdlan with continuous stirring for another 2 h, finally neutralized with 0.5 mol/L NaOH. Then deionized water was used to do dialysis, finally at 50 ℃, curdlan modified by sulphonic acid was obtained by rotary evaporation. When at 65℃(4 #), curdlan modified by sulfonated acid had much better solubility.

  9. The Toolbox for Modified Aptamers.

    Science.gov (United States)

    Lapa, Sergey A; Chudinov, Alexander V; Timofeev, Edward N

    2016-02-01

    Aptamers are nucleic acid-based scaffolds that can bind with high affinity to a variety of biological targets. Aptamers are identified from large DNA or RNA libraries through a process of directed molecular evolution (SELEX). Chemical modification of nucleic acids considerably increases the functional and structural diversity of aptamer libraries and substantially increases the affinity of the aptamers. Additionally, modified aptamers exhibit much greater resistance to biodegradation. The evolutionary selection of modified aptamers is conditioned by the possibility of the enzymatic synthesis and replication of non-natural nucleic acids. Wild-type or mutant polymerases and their non-natural nucleotide substrates that can support SELEX are highlighted in the present review. A focus is made on the efforts to find the most suitable type of nucleotide modifications and the engineering of new polymerases. Post-SELEX modification as a complementary method will be briefly considered as well.

  10. Poliuretanos elastoméricos obtenidos a partir de aceite de ricino y almidón de yuca original y modificado con anhídrido propiónico: síntesis, propiedades fisicoquímicas y fisicomecánicas Polyurethane elastomers from castor oil and chemically modified yucca starch: synthesis and physical-chemical, physical-mechanical and thermical properties

    Directory of Open Access Journals (Sweden)

    Manuel F. Valero

    2010-01-01

    Full Text Available Chemical modification of cassava starch was conducted through an acylation reaction by using pyridine and propionic anhydride to replace the functional groups of starch. Polyurethane elastomers were prepared using suspensions of the mixture obtained from castor oil and yucca starch that was modified by a propionic anhydride reaction. The suspensions were characterized by means of tests based on The Fourier Transform Infrared Spectroscopy and the Hydroxyl Index. The castor oil-AMP suspensions were used for the PU synthesis. The PUs were characterized by their physical-mechanical properties like tension- deformation and Shore A. hardness, thermal gravimetric analysis and swelling test. The density cross-linking of from swelling tests was determined by applying the Flory-Rehner equation.

  11. A bionics chemical synapse.

    Science.gov (United States)

    Thanapitak, Surachoke; Toumazou, Christofer

    2013-06-01

    Implementation of the current mode CMOS circuit for chemical synapses (AMPA and NMDA receptors) with dynamic change of glutamate as the neurotransmitter input is presented in this paper. Additionally, circuit realisation for receptor GABA(A) and GABA(B) with an electrical signal which symbolises γ-Aminobutyric Acid (GABA) perturbation is introduced. The chemical sensor for glutamate sensing is the modified ISFET with enzyme (glutamate oxidase) immobilisation. The measured results from these biomimetics chemical synapse circuits closely match with the simulation result from the mathematical model. The total power consumption of the whole chip (four chemical synapse circuits and all auxiliary circuits) is 168.3 μW. The total chip area is 3 mm(2) in 0.35-μm AMS CMOS technology.

  12. Modeling the effects of type and concentration of organic modifiers, column type and chemical structure of analytes on the retention in reversed phase liquid chromatography using a single model.

    Science.gov (United States)

    Jouyban, Abolghasem; Soltani, Somaieh; Shayanfar, Ali; Pappa-Louisi, Adriani

    2011-09-16

    A previously proposed model for representing the retention factor (k) of an analyte in mixed solvent mobile phases was extended to calculate the k of different analytes with respect to the nature of analyte, organic modifier, its concentration and type of the stationary phase. The accuracy of the proposed method was evaluated by calculating mean percentage deviation (MPD) as accuracy criterion. The predicted vs. observed plots were also provided as goodness of fit criteria. The developed model prediction capability compared with a number of previous models (i.e. LSER, general LSER and Oscik equation) through MPD and fitting plots. The proposed method provided acceptable predictions with the advantage of modeling the effects of organic modifiers, mobile phase compositions, columns and analytes using a single equation. The accuracy of developed model was checked using the one column and one analyte out cross validation analyses and the results showed that the developed model was able to predict the unknown analyte retention and the analytes retentions on unknown column accurately.

  13. Effect of Zinc Sulfate on Physical and Chemical Properties of Enzymatic Modified Fermented Sausage%硫酸锌对酶法改性发酵香肠理化特性的影响

    Institute of Scientific and Technical Information of China (English)

    薛力荔; 杨胜荣; 朱秋劲

    2011-01-01

    This study was performed to compare physicochemical properties of fermented sausages made using the traditional natural fermentation process alone and in combination of the additions of bromelain and transglutaminase together(modified process I) or both of them plus ZnSO4(modified process II) as an inhibitor of bromelain.The results showed that: 1) with prolonged fermentation time,water content and pH of all the kinds of sausages prepared by different processes revealed a decrease trend;the contents of protein,TVB-N,amino nitrogen,fat and POV value exhibited a gradual increase trend;2) the content of total protein in the two modified processes was lower than that the traditional process,whereas the TVB-N and amino nitrogen contents were higher than those in the traditional process;3) the pH and protein content in the modified process II were higher than those in the modified process I,while the TVB-N and amino nitrogen contents were relatively lower;4) no significant difference in the POV values of fermented sausages prepared using the three processes was observed.%以干发酵肠为研究对象,在传统自然发酵的工艺基础上,以不同的组合方式添加菠萝蛋白酶、谷氨酰胺转氨酶和ZnSO4,比较这3种组合的发酵肠之间各项理化指标的差异。结果显示:随着发酵时间的延长,3组工艺发酵肠中的水分含量、pH值呈下降趋势;蛋白质、挥发性盐基氮(TVB-N)、氨基态氮及脂肪含量和过氧化值(POV)值逐渐升高。在发酵过程中,Ⅱ组(酶+ZnSO4)和Ⅲ组(加酶)总蛋白质含量低于Ⅰ组(传统工艺),挥发性盐基氮与氨基态氮含量高于Ⅰ组(传统工艺)。而Ⅱ组(酶+ZnSO4)和Ⅲ组(加酶)工艺相比较,Ⅱ组(酶+ZnSO4)pH值、蛋白质含量高于Ⅲ组(加酶),挥发性盐基氮和氨基态氮含量却相对较低。3种组合工艺发酵肠之间的POV值差异不显著。

  14. Metabolomics of genetically modified crops.

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-10-20

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  15. Metabolomics of Genetically Modified Crops

    Directory of Open Access Journals (Sweden)

    Carolina Simó

    2014-10-01

    Full Text Available Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  16. Metabolomics of Genetically Modified Crops

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  17. SUMMARY OF 2009 RHEOLOGY MODIFIER PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.

    2009-12-08

    testing each rheology modifier, hence based on the changes in rheology for a given rheology modifier, rheology modifiers were either dropped or added between simulants. Three rheology modifiers were used on all simulants. The results from this testing indicate that citric acid or polycarboxylate based rheology modifiers are the most effective in reducing the yield stress, by as much as 70% at the higher rheology modifier additions and were effective on most of the tested simulants. These rheology modifiers are organic, hence the can also be used as reductants in melter operations. The most effective non-organic rheology modifiers, sodium metasilicate reduced the yield stress by 10%. It is recommended that both citric acid and commercially available polycarboxylate rheology modifiers be further investigated. Different molecular weight polycarboxylates and different types of polycarboxylates used in other industries must be considered. These polycarboxylates are extensively utilized in the cement, ceramic, and water treatment processes, hence readily available. Future work on DWPF melter feeds involving rheology modifiers should include, assuming the present method of processing sludge through DPWF does not change, is: (1) Investigate the use of polycarboxylate in various processes and procure polycarboxylates for testing. Limit rheology modifier selection and future testing between four and eight different types. (2) Test rheology modifiers on at least two different chemical types or bounding DWPF SME product simulants. Test to include the impact of boiling and the effectiveness in reducing water content via rheology versus weight percent curves. (3) Based on selected modifiers, perform testing on actual radioactive melter feed based on results from simulant testing.

  18. Computational Studies of the Binding of Ligands to the Guanine Riboswitch Aptamer%鸟嘌呤核糖开关识别配体小分子