WorldWideScience

Sample records for chemically induced tumors

  1. Chemically-induced Mouse Lung Tumors: Applications to Human Health Assessments

    Science.gov (United States)

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbe...

  2. Chemically-induced mouse lung tumors: applications to human health assessments [Poster 2014

    Science.gov (United States)

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to discuss issues related to the use of mouse lung tumor data in human health assessments. Naphthalene, styrene, and ethylbenzene were chosen for the anal...

  3. H-2 restriction of the T cell response to chemically induced tumors: evidence from F1 → parent chimeras

    International Nuclear Information System (INIS)

    It has been well established that T cells that react to tumor antigen on virus-induced tumors must share H-2D or H-2K specificities with the tumor. It has been impossible to perform similar studies with chemically induced tumors because each chemically induced tumor expresses a unique tumor antigen that cannot be studied in association with other H-2 types. This study provies evidence that H-2 recognition is also necessary for recognition of chemically induced tumors. We have found that F1 → parent chimeras preferentially recognize chemically induced tumors of parental H-2 type. C3H/HeJ and C57BL/6 mice were lethally irradiated and restored with (C3H x C57BL/6) F1 hybrid bone marrow. The F1 → C3H chimera but not the F1 → C57BL/6 chimera was able to respond to a C3H fibrosarcoma in mixed lymphocyte-tumor cell culture and also to neutralize the tumor in an in vivo tumor neutralization assay. On the other hand, the F1 → C57BL/6 chimera but not the F1 → C3H chimera was able to kill the C57BL/6 lymphoma EL4 in an in vitro cytotoxicity assay. Both chimeras were tolerant to C3H and C57BL/6 alloantigens but could respond normally to Con A and to BALB/c spleen cells in mixed lymphocyte cultures and cytotoxicity assay

  4. Modulatory influence of Phyllanthus niruri on oxidative stress, antioxidant defense and chemically induced skin tumors.

    Science.gov (United States)

    Sharma, Priyanka; Parmar, Jyoti; Verma, Preeti; Goyal, Pradeep Kumar

    2011-01-01

    The present study evaluates the modulatory potential of Phyllanthus niruri on chemically induced skin carcinogenesis, and its influence on oxidative stress and the antioxidant defense system. Oral administration of P. niruri extract (PNE), during peri- (Gr. III), post- (Gr. IV), or peri- and post- (Gr. V) initiational stages of 7,12-dimethylbenz(a) anthracene (DMBA)-croton oil–induced papillomagenesis considerably reduced tumor burden to 4.20, 4.00, and 3.33(positive control value 6.20); cumulative number of papillomas to 21, 16, and 10, respectively, (positive control value 62); and incidence of mice bearing papillomas to 50, 40, and 30%, respectively (positive control value 100%), but significantly increased the average latent period to 10.14, 10.62, and 11.60, and inhibition of tumor multiplicity to 66, 74,and 83%, respectively. Enzyme analysis of skin and liver showed a significant (p ≤ 0.05, ≤ 0.01, ≤ 0.001) elevation in antioxidant parameters such as superoxide dismutase, catalase, glutathione, and vitamin C in PNE-treated groups (Gr. III–V) when compared with the carcinogen-treated control (Gr. II). The elevated level of lipid peroxidation in the carcinogen-treated positive control group was significantly (p ≤ 0.05, ≤ 0.01, ≤ 0.001) inhibited by PNE administration. These results indicate that P. niruri extract has potentiality to reduce skin papillomas by enhancing antioxidant defense system. PMID:21609315

  5. Slit2 promotes tumor growth and invasion in chemically induced skin carcinogenesis.

    Science.gov (United States)

    Qi, Cuiling; Lan, Haimei; Ye, Jie; Li, Weidong; Wei, Ping; Yang, Yang; Guo, Simei; Lan, Tian; Li, Jiangchao; Zhang, Qianqian; He, Xiaodong; Wang, Lijing

    2014-07-01

    Slit, a neuronal guidance cue, binds to Roundabout (Robo) receptors to modulate neuronal, leukocytic, and endothelial migration. Slit has been reported to have an important effect on tumor growth and metastasis. In the current study, we evaluated the role of Slit2 in skin tumor growth and invasion in mice using a two-step chemical carcinogenesis protocol. We found that Slit2 expression correlated with the loss of basement membrane in the samples of human skin squamous cell carcinoma at different stages of disease progression. Slit2-Tg mice developed significantly more skin tumors than wild-type mice. Furthermore, the skin tumors that occurred in Slit2-Tg mice were significantly larger than those in the wild-type mice 10 weeks after 7,12-dimethylbenz[a]anthracene initiation until the end of the experiment. We also found that pathological development of the wild-type mice was delayed compared with that of Slit2-Tg mice. To further investigate the mechanism of increasing tumors in Slit2-Tg mice, we analyzed the expression of 5-bromo-2'-deoxyuridine (BrdU) in mouse skin lesions and found that the number of BrdU-positive cells and microvessel density in skin lesions were significantly higher in Slit2-Tg mice than in wild-type mice. Histological staining of PAS and type IV collagen and the colocalization of Slit2 and type IV collagen demonstrated varying degrees of loss of the basement membrane in the skin lesions from Slit2-Tg mice that were at the stage of carcinoma in situ. However, the basement membrane was well defined in the wild-type mice. In addition, MMP2, but not MMP9, was upregulated in the skin tissue of Slit2-Tg mice. Interruption of Slit2-Robo1 signaling by the antibody R5 significantly repressed the invasive capability of the squamous cell carcinoma cell line A431. Taken together, our findings reveal that Slit2 promotes DMBA/TPA-induced skin tumorigenesis by increasing cell proliferation, microvessel density, and invasive behavior of cutaneous squamous

  6. Detection and characterization of chemical-induced abnormal tissue and rat tumors at different stages using fluorescence spectroscopy

    Science.gov (United States)

    Chen, Wei R.; Jassemnejad, Baha; Crull, Jason; Knobbe, Edward T.; Nordquist, Robert E.

    1996-04-01

    Fluorescence spectroscopy of diseased tissues, including chemical-induced rat liver, kidney and testis lesions, as well as murine mammary tumor, was studied. The rat liver, kidney and testis tissues were excited by radiation of 350 and 366 nm, which appeared to provide the optimal differentiation between normal and lesion tissues; the tumor tissues were excited by both 350 nm and 775 nm wavelengths. In comparison with normal liver tissue, at (lambda) ex equals 366 nm, the fluorescent spectrum of liver lesion showed a clear red shift around the emission peak of 470 nm, the major native fluorescent peak of organized tissue. When excited by 350 nm wavelength, all the chemically induced lesion tissues (liver, kidney and testis) appeared to cause a significant reduction of emission intensity at the 470 nm peak. While the 775 nm excitation did not reveal any significant difference among tumor, muscle and skin tissues, the 350 nm excitation did provide some interesting features among the tumor tissues at different stages. Compared with muscle tissue, the viable tumor showed an overall reduction of emission intensity around 470 nm. In addition, the viable tumor tissue showed a secondary emission peak at 390 nm with necrotic tumor tissue having a reduced intensity. The histology of both viable and necrotic tumor tissue was examined and appeared to correlate with the results of the fluorescent spectroscopy observation.

  7. Depletion of tumor associated macrophages slows the growth of chemically-induced mouse lung adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Jason M. Fritz

    2014-11-01

    Full Text Available Chronic inflammation is a risk factor for lung cancer, and low dose aspirin intake reduces lung cancer risk. However, the roles that specific inflammatory cells and their products play in lung carcinogenesis have yet to be fully elucidated. In mice, alveolar macrophage numbers increase as lung tumors progress, and pulmonary macrophage programming changes within 2 weeks of carcinogen exposure. To examine how macrophages specifically affect lung tumor progression, they were depleted in mice bearing urethane-induced lung tumors using clodronate-encapsulated liposomes. Alveolar macrophage populations decreased to ≤ 50% of control levels after 4-6 weeks of liposomal clodronate treatment. Tumor burden decreased by 50% compared to vehicle treated mice, and tumor cell proliferation, as measured by Ki67 staining, was also attenuated. Pulmonary fluid levels of IGF-I, CXCL1, IL-6 and CCL2 diminished with clodronate liposome treatment. Tumor associated macrophages expressed markers of both M1 and M2 programming in vehicle and clodronate liposome treated mice. Mice lacking CCR2 (the receptor for macrophage chemotactic factor CCL2 had comparable numbers of alveolar macrophages and showed no difference in tumor growth rates when compared to similarly treated wild-type mice suggesting that while CCL2 may recruit macrophages to lung tumor microenvironments, redundant pathways can compensate when CCL2/CCR2 signaling is inactivated. Depletion of pulmonary macrophages rather than inhibition of their recruitment may be an advantageous strategy for attenuating lung cancer progression.

  8. Targeted expression of tumor necrosis factor-related apoptosis-inducing ligand TRAIL in skin protects mice against chemical carcinogenesis

    Directory of Open Access Journals (Sweden)

    Gronemeyer Hinrich

    2011-04-01

    Full Text Available Abstract Background Gene ablation studies have revealed that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, Apo2L, TNFSF10 plays a crucial role in tumor surveillance, as TRAIL-deficient mice exhibit an increased sensitivity to different types of tumorigenesis. In contrast, possible tumor-protective effect of increased levels of endogenous TRAIL expression in vivo has not been assessed yet. Such models will provide important information about the efficacy of TRAIL-based therapies and potential toxicity in specific tissues. Methods To this aim, we engineered transgenic mice selectively expressing TRAIL in the skin and subjected these mice to a two-step chemical carcinogenesis protocol that generated benign and preneoplastic lesions. We were therefore able to study the effect of increased TRAIL expression at the early steps of skin tumorigenesis. Results Our results showed a delay of tumor appearance in TRAIL expressing mice compared to their wild-type littermates. More importantly, the number of tumors observed in transgenic animals was significantly lower than in the control animals, and the lesions observed were mostly benign. Interestingly, Wnt/β-catenin signaling differed between tumors of wild-type and TRAIL transgenics. Conclusion Altogether, these data reveal that, at least in this model, TRAIL is able on its own to act on pre-transformed cells, and reduce their tumorigenic potential.

  9. The phytoestrogenic Cyclopia extract, SM6Met, increases median tumor free survival and reduces tumor mass and volume in chemically induced rat mammary gland carcinogenesis.

    Science.gov (United States)

    Visser, Koch; Zierau, Oliver; Macejová, Dana; Goerl, Florian; Muders, Michael; Baretton, Gustavo B; Vollmer, Günter; Louw, Ann

    2016-10-01

    SM6Met, a phytoestrogenic extract of Cyclopia subternata indigenous to the Western Cape province of South Africa, displays estrogenic attributes with potential for breast cancer chemoprevention. In this study, we report that SM6Met, in the presence of estradiol, induces a significant cell cycle G0/G1 phase arrest similar to the selective estrogen receptor modulator, tamoxifen. Furthermore, as a proof of concept, in the N-Methyl-N-nitrosourea induced rat mammary gland carcinogenesis model, SM6Met increases tumor latency by 7days and median tumor free survival by 42 days, while decreasing palpable tumor frequency by 32%, tumor mass by 40%, and tumor volume by 53%. Therefore, the current study provides proof of concept that SM6Met has definite potential as a chemopreventative agent against the development and progression of breast cancer. PMID:27142456

  10. Goniothalamin prevents the development of chemically induced and spontaneous colitis in rodents and induces apoptosis in the HT-29 human colon tumor cell line.

    Science.gov (United States)

    Vendramini-Costa, Débora Barbosa; Alcaide, Antonio; Pelizzaro-Rocha, Karin Juliane; Talero, Elena; Ávila-Román, Javier; Garcia-Mauriño, Sofia; Pilli, Ronaldo Aloise; de Carvalho, João Ernesto; Motilva, Virginia

    2016-06-01

    Colon cancer is the third most incident type of cancer worldwide. One of the most important risk factors for colon cancer development are inflammatory bowel diseases (IBD), thus therapies focusing on IBD treatment have great potential to be used in cancer prevention. Nature has been a source of new therapeutic and preventive agents and the racemic form of the styryl-lactone goniothalamin (GTN) has been shown to be a promising antiproliferative agent, with gastroprotective, antinociceptive and anti-inflammatory effects. As inflammation is a well-known tumor promoter, the major goal of this study was to evaluate the therapeutic and preventive potentials of GTN on chemically induced and spontaneous colitis, as well as the cytotoxic effects of GTN on a human colon tumor cell line (HT-29). GTN treatments inhibited TNBS-induced acute and chronic colitis development in Wistar rats, reducing myeloperoxidase levels and inflammatory cells infiltration in the mucosa. In spontaneous-colitis using IL-10 deficient mice (C57BL/6 background), GTN prevented colitis development through downregulation of TNF-α, upregulation of SIRT-1 and inhibition of proliferation (PCNA index), without signs of toxicity after three months of treatment. In HT-29 cells, treatment with 10μM of GTN induced apoptosis by increasing BAX/BCL2, p-JNK1/JNK1, p-P38/P38 ratios as well as through ROS generation. Caspase 8, 9 and 3 activation also occurred, suggesting caspase-dependent apoptotic pathway, culminating in PARP-1 cleavage. Together with previous data, these results show the importance of GTN as a pro-apoptotic, preventive and therapeutic agent for IBD and highlight its potential as a chemopreventive agent for colon cancer.

  11. Anti-tumor activity of Phyllanthus niruri (a medicinal plant) on chemical-induced skin carcinogenesis in mice.

    Science.gov (United States)

    Sharma, Priyanka; Parmar, Jyoti; Verma, Preeti; Sharma, Priyanka; Goyal, P K

    2009-01-01

    Chemoprevention is an important strategy to control the process of carcinogenesis. The potential of using medicinal herbs as cancer chemopreventive nutraceuticals and functional food is promising. Thus, there is a need for exploring drugs/agents which act as chemopreventive agents. Phyllanthus niruri is a well known medicinal plant which has been used in Ayurvedic medicine as hepatoprotective, antiviral, antibacterial, analgesic, antispasmodic and antidiabetic. The present study was carried out to evaluate the anti-tumor activity of a hydro-alcoholic extract of the whole plant, in 7-9 week old male Swiss albino mice, on the two stage process of skin carcinogenesis induced by a single topical application of 7, 12-dimethylbenz (a)anthracene (100 microg/100 microl acetone) and two weeks later promoted by repeated application of croton oil (1% in acetone/three times a week) till the end of experiment (16 weeks). The oral administration of P. niruri at a dose of 1000 mg/kg/b.wt. at peri- (i.e. 7 days before and 7 days after DMBA application) and post- (i.e. starting from the croton oil application) initiational phase of papillomagenesis caused significant reduction in tumor incidence, tumor yield, tumor burden and cumulative number of papillomas as compared to carcinogen-treated controls. Furthermore, the average latent period was significantly increased in the PNE treated group. The results thus suggest that P. niruri extract exhibits significant anti-tumor activity, which supports the traditional medicinal utilization of this plant. PMID:20192590

  12. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    Science.gov (United States)

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-02-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2-), hydroxyl radical (HO.), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO. (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.

  13. Effects of selenium and vitamin B-6 on growth of chemically- induced transplanted tumors in BALB/c inbred mice

    OpenAIRE

    Murphy, Stephanie A.

    1989-01-01

    Male weanling inbred, mice were inoculated with fibrosarcoma cells (hindquarter) originally produced by 2-methylcholanthrene. Before inoculation, mice were randomly divided into three groups of 24 and one of 12 (control). After a one week acclimation period, each group was fed a diet containing either suboptimal vitamin B-6, 0.5 mg/kg diet; adequate, 7.0 mg/kg diet; or excess, 100 mg/kg diet. Controls were fed the adequate vitamin. B-6 diet. Twenty-four hours after tumor cell inocula...

  14. The Possible Effect Of Tamoxifen Vs Whole Body Irradiation Treatment On Thyroid Hormones in Female Rats Bearing Mammary Tumors Chemically Induced

    International Nuclear Information System (INIS)

    Breast cancer is the most common malignancy among women in most developed and developing regions of the world. In women, this drug has tissuespecific effects, acting as an estrogen antagonist on the breast, and as an estrogen agonist on bone, lipid metabolism (increasing high-density lipoprotein cholesterol and decreasing low-density lipoprotein cholesterol), and the endometrium. Thyroid hormones act on almost all organs throughout the body and regulate the basal metabolism of the organism. Thyroid hormone can also stimulate the proliferation in vitro of certain tumor cell lines. The aim of the present study is to evaluate the significant value of tamoxifen and/or irradiation treatment on thyroid hormones in breast cancer bearing female rats. Forty two female Sprague-Dawely rats randomly divided into seven groups and the effect of tamoxifen and post-irradiation was studied on breast cancer chemically induced. The results shows a T4 and estradiol levels not T3 were altered in different experimental groups. It could be concluded that irradiation-induced changes in the composition of the mammary microenvironment promote the expression of neoplastic potential by affecting both estradiol and thyroid hormones, and tamoxifen may alter the thyroid hormones. Irradiation and tamoxifen administration may have worth effects on T4 and estradiol levels and it is recommended to further studies towards the bystander effect of radiation and tamoxifen on the tissue culture and molecular biology scale.

  15. Inducible chemical defences in animals

    OpenAIRE

    Heyttyey, Attila; Tóth, Zoltán; Buskirk, Josh

    2014-01-01

    Phenotypic plasticity is extremely widespread in the behaviour, morphology and life-history of animals. However, inducible changes in the production of defensive chemicals are described mostly in plants and surprisingly little is known about similar plasticity in chemical defences of animals. Inducible chemical defences may be common in animals because many are known to produce toxins, the synthesis of toxins is likely to be costly, and there are a few known cases of animals adjusting their t...

  16. Tumor-induced remote ECM network orientation steers angiogenesis

    NARCIS (Netherlands)

    Balcioglu, H.E.; Water, van de B.; Danen, E.H.

    2016-01-01

    Tumor angiogenesis promotes tumor growth and metastasis. Here, we use automated sequential microprinting of tumor and endothelial cells in extracellular matrix (ECM) scaffolds to study its mechanical aspects. Quantitative reflection microscopy shows that tumor spheroids induce radial orientation of

  17. Mouse Prkar1a haploinsufficiency leads to an increase in tumors in the Trp53+/− or Rb1+/− backgrounds and chemically induced skin papillomas by dysregulation of the cell cycle and Wnt signaling

    Science.gov (United States)

    Almeida, Madson Q.; Muchow, Michael; Boikos, Sosipatros; Bauer, Andrew J.; Griffin, Kurt J.; Tsang, Kit Man; Cheadle, Chris; Watkins, Tonya; Wen, Feng; Starost, Matthew F.; Bossis, Ioannis; Nesterova, Maria; Stratakis, Constantine A.

    2010-01-01

    PRKAR1A inactivation leads to dysregulated cAMP signaling and Carney complex (CNC) in humans, a syndrome associated with skin, endocrine and other tumors. The CNC phenotype is not easily explained by the ubiquitous cAMP signaling defect; furthermore, Prkar1a+/− mice did not develop skin and other CNC tumors. To identify whether a Prkar1a defect is truly a generic but weak tumorigenic signal that depends on tissue-specific or other factors, we investigated Prkar1a+/− mice when bred within the Rb1+/− or Trp53+/− backgrounds, or treated with a two-step skin carcinogenesis protocol. Prkar1a+/− Trp53+/− mice developed more sarcomas than Trp53+/− mice (P < 0.05) and Prkar1a+/− Rb1+/− mice grew more (and larger) pituitary and thyroid tumors than Rb1+/− mice. All mice with double heterozygosity had significantly reduced life-spans compared with their single-heterozygous counterparts. Prkar1a+/− mice also developed more papillomas than wild-type animals. A whole-genome transcriptome profiling of tumors produced by all three models identified Wnt signaling as the main pathway activated by abnormal cAMP signaling, along with cell cycle abnormalities; all changes were confirmed by qRT–PCR array and immunohistochemistry. siRNA down-regulation of Ctnnb1, E2f1 or Cdk4 inhibited proliferation of human adrenal cells bearing a PRKAR1A-inactivating mutation and Prkar1a+/− mouse embryonic fibroblasts and arrested both cell lines at the G0/G1 phase of the cell cycle. In conclusion, Prkar1a haploinsufficiency is a relatively weak tumorigenic signal that can act synergistically with other tumor suppressor gene defects or chemicals to induce tumors, mostly through Wnt-signaling activation and cell cycle dysregulation, consistent with studies in human neoplasms carrying PRKAR1A defects. PMID:20080939

  18. Review of selective accumudation of photosensitizers with different chemical structure in tumor tissue

    Directory of Open Access Journals (Sweden)

    E. A. Machinskaya

    2013-01-01

    Full Text Available The review of available theories explaining mechanisms of photosensitizer selective accumulation in tumor tissue is represented in the article. Variants associated with both targeted delivery of compounds with different chemical structure to tumor and low elimination rate of photosensitizers in the tumor are described. Details of tumor cell up-take of photosensitizer bounded with lipoproteins due to increased expression of low solidity lipoproteins receptors comparing with normal cells; mechanisms of photosensitizer accumulation in tumor tissue due to phagocytosis by macrophages localized in this area; mechanisms of binding of porphyrin-based photosensitizer by collagen fibers, production of which is increased in tumor cells, and other mechanisms are reviewed. Perspectives of practical application of knowledge about mechanisms of selective accumulation for induced increase in selectiveness of photosensitizer accumulation in tumor through targeted delivery of agent to pathological tissues are shown. Analysis of world trends in the search of transport systems for photosensitizers is performed. 

  19. Keratin expression in chemically induced mouse lung adenomas.

    OpenAIRE

    Gunning, W T; Goldblatt, P. J.; Stoner, G D

    1992-01-01

    Chemically induced mouse lung tumors exhibit distinctive growth patterns, characterized by an alveolar or solid appearance, a papillary appearance, or a combination of the two. Lung tumors induced in strain A/J mice by either benzo(a)pyrene (BP) or by N-nitrosoethylurea (ENU) were examined for expression of low- and high-molecular-weight cytokeratins. Simple cytokeratins (low molecular weight) were found in all epithelial cells of the normal mouse lung and in all tumor types, whereas higher-m...

  20. Keratinocyte p38δ loss inhibits Ras-induced tumor formation, while systemic p38δ loss enhances skin inflammation in the early phase of chemical carcinogenesis in mouse skin.

    Science.gov (United States)

    Kiss, Alexi; Koppel, Aaron C; Anders, Joanna; Cataisson, Christophe; Yuspa, Stuart H; Blumenberg, Miroslav; Efimova, Tatiana

    2016-05-01

    p38δ expression and/or activity are increased in human cutaneous malignancies, including invasive squamous cell carcinoma (SCC) and head and neck SCC, but the role of p38δ in cutaneous carcinogenesis has not been well-defined. We have reported that mice with germline loss of p38δ exhibited a reduced susceptibility to skin tumor development compared with wild-type mice in the two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical skin carcinogenesis model. Here, we report that p38δ gene ablation inhibited the growth of tumors generated from v-ras(Ha) -transformed keratinocytes in skin orthografts to nude mice, indicating that keratinocyte-intrinsic p38δ is required for Ras-induced tumorigenesis. Gene expression profiling of v-ras(Ha) -transformed p38δ-null keratinocytes revealed transcriptional changes associated with cellular responses linked to tumor suppression, such as reduced proliferation and increased differentiation, cell adhesion, and cell communications. Notably, a short-term DMBA/TPA challenge, modeling the initial stages of chemical skin carcinogenesis treatment, elicited an enhanced inflammation in p38δ-null skin compared with skin of wild-type mice, as assessed by measuring the expression of pro-inflammatory cytokines, including IL-1β, IL-6, IL-17, and TNFα. Additionally, p38δ-null skin and p38δ-null keratinocytes exhibited increased p38α activation and signaling in response to acute inflammatory challenges, suggesting a role for p38α in stimulating the elevated inflammatory response in p38δ-null skin during the initial phases of the DMBA/TPA treatment compared with similarly treated p38δ(+/+) skin. Altogether, our results indicate that p38δ signaling regulates skin carcinogenesis not only by keratinocyte cell-autonomous mechanisms, but also by influencing the interaction between between the epithelial compartment of the developing skin tumor and its stromal microenvironment.

  1. Changes in liver mitochondrial plasticity induced by brain tumor

    Directory of Open Access Journals (Sweden)

    Debien Emilie

    2006-10-01

    Full Text Available Abstract Background Accumulating data suggest that liver is a major target organ of systemic effects observed in the presence of a cancer. In this study, we investigated the consequences of the presence of chemically induced brain tumors in rats on biophysical parameters accounting for the dynamics of water in liver mitochondria. Methods Tumors of the central nervous system were induced by intraveinous administration of ethylnitrosourea (ENU to pregnant females on the 19th day of gestation. The mitochondrial crude fraction was isolated from the liver of each animal and the dynamic parameters of total water and its macromolecule-associated fraction (structured water, H2Ost were calculated from Nuclear Magnetic Resonance (NMR measurements. Results The presence of a malignant brain tumor induced a loss of water structural order that implicated changes in the physical properties of the hydration shells of liver mitochondria macromolecules. This feature was linked to an increase in the membrane cholesterol content, a way to limit water penetration into the bilayer and then to reduce membrane permeability. As expected, these alterations in mitochondrial plasticity affected ionic exchanges and led to abnormal features of mitochondrial biogenesis and caspase activation. Conclusion This study enlightens the sensitivity of the structured water phase in the liver mitochondria machinery to external conditions such as tumor development at a distant site. The profound metabolic and functional changes led to abnormal features of ion transport, mitochondrial biogenesis and caspase activation.

  2. Evaluation of Elephantopus scaber on the inhibition of chemical carcinogenesis and tumor development in mice.

    Science.gov (United States)

    Geetha, B S; Latha, P G; Remani, P

    2010-03-01

    The effect of the active fraction of Elephantopus scaber L. (Asteraceae) (ES) on skin papillomas induced by 7,12-dimethylbenz(a)anthracene (DMBA) as an initiator and croton oil as promoter was studied in mice. The active fraction of E. scaber (100 mg/kg) on topical application delayed the onset of papilloma formation and reduced the mean number of papillomas and the mean weight of papillomas per mouse. The intraperitoneal administration of the active fraction of E. scaber also had a significant effect on subcutaneous injection of 20-methylcholanthrene (20-MCA)-induced soft tissue sarcomas in mice. It inhibited the incidence of sarcomas and reduced the tumor diameter compared to MCA-treated control animals. The subcutaneous administration of the active fraction of E. scaber significantly inhibited the growth of subcutaneously transplanted DLA and EAC solid tumors, delayed the onset of tumor formation, and increased the life span of tumor bearing mice. The present study thus indicates the tumor inhibitory activity of the active fraction of E. scaber against chemically induced tumors and its ability to inhibit the development of solid tumors. PMID:20645824

  3. Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model

    International Nuclear Information System (INIS)

    Highlights: •IR-induced NO increased tissue perfusion and pO2. •IR increased NO production in tumors without changes in the mRNA and protein levels of NOS isoforms. •NOS activity assay showed that IR upregulated eNOS activity in tumors. •IR-induced NO decreased tumor hypoxia and altered tumor radiosensitivity. -- Abstract: Tumor hypoxia, which occurs mainly as a result of inadequate tissue perfusion in solid tumors, is a well-known challenge for successful radiotherapy. Recent evidence suggests that ionizing radiation (IR) upregulates nitric oxide (NO) production and that IR-induced NO has the potential to increase intratumoral circulation. However, the kinetics of NO production and the responsible isoforms for NO synthase in tumors exposed to IR remain unclear. In this study, we aimed to elucidate the mechanism by which IR stimulates NO production in tumors and the effect of IR-induced NO on tumor radiosensitivity. Hoechst33342 perfusion assay and electron spin resonance oxymetry showed that IR increased tissue perfusion and pO2 in tumor tissue. Immunohistochemical analysis using two different hypoxic probes showed that IR decreased hypoxic regions in tumors; treatment with a nitric oxide synthase (NOS) inhibitor, L-NAME, abrogated the effects of IR. Moreover, IR increased endothelial NOS (eNOS) activity without affecting its mRNA or protein expression levels in SCCVII-transplanted tumors. Tumor growth delay assay showed that L-NAME decreased the anti-tumor effect of fractionated radiation (10 Gy × 2). These results suggested that IR increased eNOS activity and subsequent tissue perfusion in tumors. Increases in intratumoral circulation simultaneously decreased tumor hypoxia. As a result, IR-induced NO increased tumor radiosensitivity. Our study provides a new insight into the NO-dependent mechanism for efficient fractionated radiotherapy

  4. Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model

    Energy Technology Data Exchange (ETDEWEB)

    Nagane, Masaki, E-mail: nagane@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo (Japan); Yasui, Hironobu, E-mail: yassan@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo (Japan); Yamamori, Tohru, E-mail: yamamorit@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo (Japan); Zhao, Songji, E-mail: zsi@med.hokudai.ac.jp [Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Kuge, Yuji, E-mail: kuge@med.hokudai.ac.jp [Central Institute of Isotope Science, Hokkaido University, Sapporo (Japan); Tamaki, Nagara, E-mail: natamaki@med.hokudai.ac.jp [Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Kameya, Hiromi, E-mail: kameya@affrc.go.jp [Food Safety Division, National Food Research Institute, Tsukuba (Japan); Nakamura, Hideo, E-mail: naka@science-edu.org [Department of Chemistry, Hokkaido University of Education, Hakodate (Japan); Fujii, Hirotada, E-mail: hgfujii@sapmed.ac.jp [Center for Medical Education, Sapporo Medical University, Sapporo (Japan); Inanami, Osamu, E-mail: inanami@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo (Japan)

    2013-08-02

    Highlights: •IR-induced NO increased tissue perfusion and pO{sub 2}. •IR increased NO production in tumors without changes in the mRNA and protein levels of NOS isoforms. •NOS activity assay showed that IR upregulated eNOS activity in tumors. •IR-induced NO decreased tumor hypoxia and altered tumor radiosensitivity. -- Abstract: Tumor hypoxia, which occurs mainly as a result of inadequate tissue perfusion in solid tumors, is a well-known challenge for successful radiotherapy. Recent evidence suggests that ionizing radiation (IR) upregulates nitric oxide (NO) production and that IR-induced NO has the potential to increase intratumoral circulation. However, the kinetics of NO production and the responsible isoforms for NO synthase in tumors exposed to IR remain unclear. In this study, we aimed to elucidate the mechanism by which IR stimulates NO production in tumors and the effect of IR-induced NO on tumor radiosensitivity. Hoechst33342 perfusion assay and electron spin resonance oxymetry showed that IR increased tissue perfusion and pO{sub 2} in tumor tissue. Immunohistochemical analysis using two different hypoxic probes showed that IR decreased hypoxic regions in tumors; treatment with a nitric oxide synthase (NOS) inhibitor, L-NAME, abrogated the effects of IR. Moreover, IR increased endothelial NOS (eNOS) activity without affecting its mRNA or protein expression levels in SCCVII-transplanted tumors. Tumor growth delay assay showed that L-NAME decreased the anti-tumor effect of fractionated radiation (10 Gy × 2). These results suggested that IR increased eNOS activity and subsequent tissue perfusion in tumors. Increases in intratumoral circulation simultaneously decreased tumor hypoxia. As a result, IR-induced NO increased tumor radiosensitivity. Our study provides a new insight into the NO-dependent mechanism for efficient fractionated radiotherapy.

  5. Bimatoprost-induced chemical blepharoplasty.

    Science.gov (United States)

    Sarnoff, Deborah S; Gotkin, Robert H

    2015-05-01

    We report significant changes in the appearance of the periorbital area, beyond eyelash enhancement, induced by the topical application of bimatoprost ophthalmic solution, 0.03% (Latisse®, Allergan, Inc., Irvine, CA). To our knowledge, this is the first report in the dermatology or plastic surgery literature describing the rejuvenating effect and overall improvement in the appearance of the periorbital area resulting from applying Latisse to the upper eyelid margins. To date, reports in the literature discuss side-effects and potential complications of topical bimatoprost therapy causing a constellation of findings known as PAP (prostaglandin-associated periorbitopathy). While periorbitopathy implies pathology or a state of disease, we report changes that can be perceived as an improvement in the overall appearance of the periorbital area. We, therefore, propose a name change from PAP to PAPS - prostaglandin- associated periorbital syndrome. This better describes the beneficial, as well as the possible negative effects of topical bimatoprost. Although there is a risk for periorbital disfigurement, when used bilaterally, in properly selected candidates and titrated appropriately, bimatoprost can be beneficial. The striking improvement in the appearance of some individuals warrants further research into the potential use of topical bimatoprost to achieve a "chemical blepharoplasty."

  6. Comparative study of histopathologic characterization of azoxymethane-induced colon tumors in three inbred rat strains

    DEFF Research Database (Denmark)

    Kobaek-Larsen, Morten; Fenger, Claus; Hansen, Ket;

    2002-01-01

    To obtain controlled genetic variation, colon cancer was chemically induced by use of four subcutaneous injections of azoxymethane (15 mg/kg of body weight/wk) to rats of 3 inbred strains (BDIX/OrlIco, F344/NHsd, WAG/Rij). The selection was based on the availability of established colon cancer cell...... characteristics should resemble the corresponding human tumors. The size of the tumors should be at about 1 cm in diameter, as these tumor cells were intended to be used in future transplantation studies. The two experiments yielded highly reproducible results: histologic evaluation of all colon tumors in all...

  7. Expression of Hyaluronidase by Tumor Cells Induces Angiogenesis in vivo

    Science.gov (United States)

    Liu, Dacai; Pearlman, Eric; Diaconu, Eugenia; Guo, Kun; Mori, Hiroshi; Haqqi, Tariq; Markowitz, Sanford; Willson, James; Sy, Man-Sun

    1996-07-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the ``molecular saboteurs'' to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs.

  8. 芥菜籽预防化学诱导小鼠大肠肿瘤的实验研究%The experimental study on chemopreventive effect of mustard seed on chemically induced colorectal tumor in mice

    Institute of Scientific and Technical Information of China (English)

    李新艳; 郭文; 袁海锋; 邱恩祺; 袁葵

    2013-01-01

    目的 评价芥菜籽(MS)对氧化偶氮甲烷(AOM)诱导的小鼠大肠肿瘤的预防作用及其机制.方法 选择60只昆明种小鼠,随机均分为AOM模型组、AOM+5% MS干预组、AOM +10% MS干预组和正常对照组(生理盐水).记录各组小鼠有无肿瘤发生及发生数目、大小和位置,计算平均肿瘤数和肿瘤发生率;HE染色确定肿瘤的组织学类型;免疫组化染色检测肿瘤组织中PCNA蛋白的表达,计算增殖指数(PI);TUNEL染色检测肿瘤组织凋亡情况,计算凋亡指数(AI).结果 正常对照组小鼠无肿瘤发生,AOM模型组、5%MS干预组和10% MS干预组小鼠肿瘤发生率分别为86.7%、60.0%、41.7%,组间差异有统计学意义(P =0.048);5%MS干预组平均肿瘤数为1.07±1.10,10% MS干预组为0.67±0.89,均较AOM模型组的2.20±1.21少(P<0.05);10% MS干预组PI为32.0±3.9,均低于AOM模型组和5% MS干预组的59.9±4.4和41.7±4.9(P <0.05);10% MS干预组AI为15.0±2.4,均高于AOM模型组和5% MS干预组的6.9±1.4和9.3±1.5(P<0.05).结论 MS对AOM诱导的小鼠大肠肿瘤具有化学预防作用,其机制为抑制肿瘤细胞增殖和诱导肿瘤细胞凋亡.%Objective To investigate the chemopreventive effects of mustard seed (MS) on azoxymethane (AOM) induced colorectal tumor in mice and to explore its anticancer-related mechanisms. Methods A total of 60 mice of Kunming species were randomly divided into 4 groups of 15 each: AOM alone, AOM + 5% MS, AOM + 10% MS and the control group ( normal saline). Colorectal tumorigenesis was induced by injecting AOM 10 rag/kg, subcutaneously, once a week for three weeks. Different doses of MS were given in diet during the study. Thirty-six weeks later, mice were sacrificed under cervical dislocation. The large intestine was isolated and flushed with ice-cold normal saline. The site, size and number of tumors were recorded. The incidence, the average number anci the inhibitory rate of

  9. Elevated VEGF-D Modulates Tumor Inflammation and Reduces the Growth of Carcinogen-Induced Skin Tumors.

    Science.gov (United States)

    Honkanen, Hanne-Kaisa; Izzi, Valerio; Petäistö, Tiina; Holopainen, Tanja; Harjunen, Vanessa; Pihlajaniemi, Taina; Alitalo, Kari; Heljasvaara, Ritva

    2016-07-01

    Vascular endothelial growth factor D (VEGF-D) promotes the lymph node metastasis of cancer by inducing the growth of lymphatic vasculature, but its specific roles in tumorigenesis have not been elucidated. We monitored the effects of VEGF-D in cutaneous squamous cell carcinoma (cSCC) by subjecting transgenic mice overexpressing VEGF-D in the skin (K14-mVEGF-D) and VEGF-D knockout mice to a chemical skin carcinogenesis protocol involving 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate treatments. In K14-mVEGF-D mice, tumor lymphangiogenesis was significantly increased and the frequency of lymph node metastasis was elevated in comparison with controls. Most notably, the papillomas regressed more often in K14-mVEGF-D mice than in littermate controls, resulting in a delay in tumor incidence and a remarkable reduction in the total tumor number. Skin tumor growth and metastasis were not obviously affected in the absence of VEGF-D; however, the knockout mice showed a trend for reduced lymphangiogenesis in skin tumors and in the untreated skin. Interestingly, K14-mVEGF-D mice showed an altered immune response in skin tumors. This consisted of the reduced accumulation of macrophages, mast cells, and CD4(+) T-cells and an increase of cytotoxic CD8(+) T-cells. Cytokine profiling by flow cytometry and quantitative real time PCR revealed that elevated VEGF-D expression results in an attenuated Th2 response and promotes M1/Th1 and Th17 polarization in the early stage of skin carcinogenesis, leading to an anti-tumoral immune environment and the regression of primary tumors. Our data suggest that VEGF-D may be beneficial in early-stage tumors since it suppresses the pro-tumorigenic inflammation, while at later stages VEGF-D-induced tumor lymphatics provide a route for metastasis. PMID:27435926

  10. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Energy Technology Data Exchange (ETDEWEB)

    Cannonier, Shellese A.; Sterling, Julie A., E-mail: Julie.sterling@vanderbilt.edu [Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37235 (United States); Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology Vanderbilt University, Nashville, TN 372335 (United States); Department of Cancer Biology, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-08-26

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  11. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    International Nuclear Information System (INIS)

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors

  12. Radiosurgery-induced brain tumor. Case report.

    Science.gov (United States)

    Kaido, T; Hoshida, T; Uranishi, R; Akita, N; Kotani, A; Nishi, N; Sakaki, T

    2001-10-01

    The authors describe a case of glioblastoma multiforme (GBM) associated with previous gamma knife radiosurgery for a cerebral arteriovenous malformation (AVM). A 14-year-old boy had undergone radiosurgery for an AVM, which was performed using a 201-source 60Co gamma knife system at another institution. The maximum and margin radiation doses used in the procedure were 40 and 20 Gy, respectively. One year after radiosurgery, the patient noticed onset of mild left hemiparesis due to radiation necrosis. Six and one-half years after radiosurgery, at the age of 20 years, the patient experienced an attack of generalized tonic-clonic seizure. Magnetic resonance (MR) imaging revealed the existence of a brain tumor in the right parietal lobe. The patient underwent an operation and the histological diagnosis of the lesion was GBM. Ten months following the operation, that is, 99 months postradiosurgery, this patient died. To the best of the authors' knowledge, this is the first reported case of a neoplasm induced by radiosurgery for an AVM and the second case in which it occurred following radiosurgery for intracranial disease.

  13. Chemically Induced Breast Tumors in Rats Are Detectable in Early Stages by Contrast Enhanced Magnetic Resonance Imaging but Not by Changes in the Acute-Phase Reactants in Serum

    Directory of Open Access Journals (Sweden)

    Onn Haji Hashim

    2011-02-01

    Full Text Available The present study was undertaken to develop a rat model for monitoring the early development of breast cancer. Twelve female rats were divided into two groups of six rats that were either treated with N-methyl-N-nitrosourea to induce breast cancer or with bacterial lipopolysaccharide to induce inflammation. Serum samples taken from the rats prior to the treatment were used as controls. By the 14th week, presence of the tumor was detectable by contrast enhanced magnetic resonance imaging and confirmed by histopathology. When the serum proteins of the rats were examined by 2-dimensional electrophoresis (2-DE, no difference could be detected in the profiles of all proteins before and 18 weeks after administration of N-methyl-N-nitrosourea. However, higher expression of alpha-1B glycoprotein was detectable by 2-DE in serum samples of rats at the 18th week post-treatment with lipopolysaccharide.

  14. Tumor irradiation enhances homing of vaccine induced tumor-specific CTLS

    NARCIS (Netherlands)

    Draghiciu, Oana; Walczak, Mateusz; Hoogeboom, Baukje-Nynke; Meijerhof, Tjarko; Nijman, Hans; Daemen, Toos

    2012-01-01

    The recombinant Semliki Forest virus (rSFV) encoding human papilloma virus (HPV)-E6,7 tumor antigens induces both strong, longlasting CTL responses in a mouse model of cervical carcinoma and effective eradication of established tumors of HPV-transformed cells. Current therapeutic approaches of cervi

  15. Radiation-Induced Tumor Lysis Syndrome in Chronic Lymphocytic Leukemia

    Directory of Open Access Journals (Sweden)

    Ali Alkan

    2016-08-01

    Full Text Available Tumor lysis syndrome (TLS is an important oncological emergency that is usually observed with hematological malignancies and rarely with solid tumors. It can be induced either by therapy or spontaneously. Radiotherapy-induced TLS has been rarely reported in the literature. Here we present a patient with a diagnosis of metastatic prostate cancer and chronic lymphocytic leukemia complicated with TLS during palliative radiotherapy.

  16. Radiation-Induced Tumor Lysis Syndrome in Chronic Lymphocytic Leukemia.

    Science.gov (United States)

    Alkan, Ali; Kütük, Tuğçe; Karcı, Ebru; Yaşar, Arzu; Hiçsönmez, Ayşe; Utkan, Güngör

    2016-09-01

    Tumor lysis syndrome (TLS) is an important oncological emergency that is usually observed with hematological malignancies and rarely with solid tumors. It can be induced either by therapy or spontaneously. Radiotherapy-induced TLS has been rarely reported in the literature. Here we present a patient with a diagnosis of metastatic prostate cancer and chronic lymphocytic leukemia complicated with TLS during palliative radiotherapy. PMID:27093891

  17. Laser Induced Surface Chemical Epitaxy

    Science.gov (United States)

    Stinespring, Charter D.; Freedman, Andrew

    1990-02-01

    Studies of the thermal and photon-induced surface chemistry of dimethyl cadmium (DMCd) and dimethyl tellurium (DMTe) on GaAs(100) substrates under ultrahigh vacuum conditions have been performed for substrate temperatures in the range of 123 K to 473 K. Results indicate that extremely efficient conversion of admixtures of DMTe and DMCd to CdTe can be obtained using low power (5 - 10 mJ cm-2) 193 nm laser pulses at substrate temperatures of 123 K. Subsequent annealing at 473 K produces an epitaxial film.

  18. Control of mammalian cell mutagenesis and differentiation by chemicals which initiate or promote tumor formation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C. A.; Huberman, E.

    1980-01-01

    A cell-mediated mutagenesis assay was developed to predict the potential carcinogenic hazard of some environmental chemicals. In this assay, Chinese hamster V79 cells, which are susceptible to mutagenesis, are co-cultivated with cells capable of metabolizing chemical carcinogens. Use of this assay made it possible to demonstrate a relationship between the degree of carcinogenicity and mutagenicity of a series of polycyclic hydrocarbons and nitrosamines and to study the organ specificity exhibited by some chemical carcinogens. However, most short-term in vitro assays are designed to detect mutagenic activity and therefore do not detect tumor promoting agents which are devoid of this activity. By analyzing various markers of terminal differentiation in cultured human melanoma and myeloid leukemia cells, we have established a relationship between the activity of a series of tumor promoting phorbol diesters in the mouse skin and their ability to induce terminal differentiation. We suggest that measuring alterations in the differentiation characteristics of some cultured cells may represent an approach by which environmental tumor promoting agents can be studied and detected.

  19. Radiation and chemical effects on viral transformation and tumor antigen expression. Annual progress report, August 1, 1978--May 1, 1979

    International Nuclear Information System (INIS)

    Studies aimed at the biological, biochemical, and immunologic characterization of fetal antigens (EA) in hamsters and mice and locating and determining the distribution of fetal antigens in tumor tissues and in developing fetuses have been underway for several months. Progress has been made in isolating embryonic or fetal antigens from fetuses and from tumor cells. We have developed and reported a reliable lymphocyte transformation assay (LTA) which meets our needs in routinely assaying cell free tumor associated antigen (TAA) preparations from fetal and tumor cells. The assay correlated with transplantation resistance assays and has appropriate specificity. We have also developed the staph-A protein binding assay utilizing anti-serum derived against embryonic antigens present on SV40 tumor cells. In other studies, we have reported increases and perturbations in thymocytes during viral and chemical oncogenesis in hamsters, have developed a simple technique for preserving functional lymphocytes sensitized against TAA by freezing for use in our model system work, have reported the cross-reactivity of tranplantation resistance antigen on a spectrum of chemically induced tumors previously believed to only contain individually specific TSTAs and have recently reported the cross-reactivity of papovavirus induced transplantation resistance antigen in sarcoma cells induced by different viruses. We have concluded our studies of glycosyltransferases in the membranes of developing fetuses and noted no differences in their levels with advancing days of gestation using whold embryo cell populations

  20. The role of autophagy induced by tumor microenvironment in different cells and stages of cancer

    OpenAIRE

    Yang, Xue; Yu, Dan-Dan; Yan, Fei; Jing, Ying-Ying; Han, Zhi-Peng; Sun, Kai; Liang, Lei; Hou, Jing; Li-xin WEI

    2015-01-01

    Development of a tumor is a very complex process, and invasion and metastasis of malignant tumors are hallmarks and are difficult problems to overcome. The tumor microenvironment plays an important role in controlling tumor fate and autophagy induced by the tumor microenvironment is attracting more and more attention. Autophagy can be induced by several stressors in the tumor microenvironment and autophagy modifies the tumor microenvironment, too. Autophagy has dual roles in tumor growth. In ...

  1. Selenium prevents tumor development in a rat model for chemical carcinogenesis

    DEFF Research Database (Denmark)

    Bjorkhem-Bergman, L.; Torndal, U. B.; Eken, S.;

    2005-01-01

    Previous studies in animals and humans have shown that selenium compounds can prevent cancer development. In this work we studied the tumor preventive effect of selenium supplementation, administrated as selenite, in the initiation, promotion and progression phases in a synchronized rat model for...... chemically induced hepatocarcinogenesis, the resistant hepatocyte model. Selenite in supra-nutritional but subtoxic doses (1 and 5 p.p.m.) was administrated to the animals through the drinking water. Such supplementation during the initiation phase did not have a tumor preventive effect. However, selenite...... treatment during the promotion phase decreased the volume fraction of pre-neoplastic liver nodules from 38% in control animals to 25 (1 p.p.m.) and 14% (5 p.p.m.) in the selenite-supplemented groups. In addition the cell proliferation within the nodules decreased from 42% in the control to 22 (1 p.p.m.) and...

  2. Molecular characterization of radon-induced rat lung tumors

    International Nuclear Information System (INIS)

    The radon gas is a well known lung carcinogenic factor in human at high doses but the cancer risk at low doses is not established. Indeed, epidemiological studies at low doses are difficult to conduct because of the human exposure to other lung carcinogenic factors. These data underlined the necessity to conduct experiments on lung tumors developed on animal model. The aim of this work was to characterize rat lung tumors by working on a series of radon-induced tumors that included adenocarcinomas (A.C.), squamous cell carcinomas (S.C.C.) and adeno-squamous carcinomas (A.S.C.), that are mixed tumors with both A.C. and S.C.C. cellular components. A C.G.H. analysis of the three types of tumors allowed us to define chromosomal recurrent unbalances and to target candidate genes potentially implicated in lung carcinogenesis, as p16Ink4a, p19Arf, Rb1, K-Ras or c-Myc. A more precise analysis of the p16Ink4a/Cdk4/Rb1 and p19Arf/Mdm2/Tp53 pathways was performed and indicated that the Rb1 pathway was frequently inactivated through an absence of p16Ink4a protein expression, indicating that it has a major role in rat lung carcinogenesis. Finally, a comparative transcriptomic analysis of the three types of tumors allowed us to show for the first time that the complex tumors A.S.C. have a transcriptomic profile in accordance with their mixed nature but that they also display their own expression profiles specificities. This work allowed us to find molecular characteristics common to murine and human lung tumors, indicating that the model of lung tumors in rat is pertinent to search for radiation-induced lung tumors specificities and to help for a better molecular identification of this type of tumors in human. (author)

  3. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo.

    OpenAIRE

    D. Liu; Pearlman, E.; Diaconu, E.; Guo, K.; Mori, H.; Haqqi, T; Markowitz, S; Willson, J; Sy, M S

    1996-01-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorect...

  4. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research

    OpenAIRE

    Liu, Yewei; YIN Ting; Feng, Yuanbo; Cona, Marlein Miranda; Huang, Gang; Liu, Jianjun; Song, Shaoli; Jiang, Yansheng; Xia, Qian; Swinnen, Johannes V; Bormans, Guy; Himmelreich, Uwe; Oyen, Raymond; Ni, Yicheng

    2015-01-01

    Compared with transplanted tumor models or genetically engineered cancer models, chemically induced primary malignancies in experimental animals can mimic the clinical cancer progress from the early stage on. Cancer caused by chemical carcinogens generally develops through three phases namely initiation, promotion and progression. Based on different mechanisms, chemical carcinogens can be divided into genotoxic and non-genotoxic ones, or complete and incomplete ones, usually with an organ-spe...

  5. Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression

    Science.gov (United States)

    Martinez-Pastor, Barbara; Ortega-Molina, Ana; Soria, Rebeca; Collado, Manuel; Fernandez-Capetillo, Oscar; Serrano, Manuel

    2009-01-01

    Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability. PMID:19421407

  6. Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression.

    Directory of Open Access Journals (Sweden)

    Alejo Efeyan

    Full Text Available Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability.

  7. Chemical bond cleavage induced by electron heating

    International Nuclear Information System (INIS)

    Gas emissions from titanium-metalloid compounds (titanium nitride and oxide) have been investigated to understand the effects of a microwave field on chemical reactions. We employed a high vacuum system (PO2 = 10−6 Pa) to observe in situ reductions. For titanium oxides, H-field heating significantly differed from conventional one in terms of oxygen emissions. For titanium nitride, the emissions were also induced by microwave heating. These tendencies were observed at temperatures above 1000 °C. A quantum chemical interpretation is provided to explain the emissions of the gases, and the experimental data is in good agreement with results predicted using the electronic energy band structure.

  8. Chemically modified heparins inhibit fibrinogen-bridged indirect adhesion between tumor cells and platelets

    OpenAIRE

    Zheng, Sheng; Liu, Yan; Jiao, Yang; Min WEI; ZENG, XIANLU

    2011-01-01

    The interaction between platelets and tumor cells is critical for the hematogenous metastasis of tumor cells. We recently reported that fibrinogen was capable of bridging and enhancing the interaction of platelets and tumor cells under conditions of physical shear force. In the present study, we aimed to detect the effects of 8 chemically modified heparins on the binding of fibrinogen to platelets or tumor cells using flow cytometry assays, as well as the fibrinogen-bridged adhesion of platel...

  9. Dichloroacetate induces tumor-specific radiosensitivity in vitro but attenuates radiation-induced tumor growth delay in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zwicker, F.; Roeder, F.; Debus, J.; Huber, P.E. [University Hospital Center Heidelberg, Heidelberg (Germany). Dept. of Radiation Oncology; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Clinical Cooperation Unit Molecular Radiation Oncology; Kirsner, A.; Weber, K.J. [University Hospital Center Heidelberg, Heidelberg (Germany). Dept. of Radiation Oncology; Peschke, P. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Clinical Cooperation Unit Molecular Radiation Oncology

    2013-08-15

    Background: Inhibition of pyruvate dehydrogenase kinase (PDK) by dichloroacetate (DCA) can shift tumor cell metabolism from anaerobic glycolysis to glucose oxidation, with activation of mitochondrial activity and chemotherapy-dependent apoptosis. In radiotherapy, DCA could thus potentially enhance the frequently moderate apoptotic response of cancer cells that results from their mitochondrial dysfunction. The aim of this study was to investigate tumor-specific radiosensitization by DCA in vitro and in a human tumor xenograft mouse model in vivo. Materials and methods: The interaction of DCA with photon beam radiation was investigated in the human tumor cell lines WIDR (colorectal) and LN18 (glioma), as well as in the human normal tissue cell lines HUVEC (endothelial), MRC5 (lung fibroblasts) and TK6 (lymphoblastoid). Apoptosis induction in vitro was assessed by DAPI staining and sub-G1 flow cytometry; cell survival was quantified by clonogenic assay. The effect of DCA in vivo was investigated in WIDR xenograft tumors growing subcutaneously on BALB/c-nu/nu mice, with and without fractionated irradiation. Histological examination included TUNEL and Ki67 staining for apoptosis and proliferation, respectively, as well as pinomidazole labeling for hypoxia. Results: DCA treatment led to decreased clonogenic survival and increased specific apoptosis rates in tumor cell lines (LN18, WIDR) but not in normal tissue cells (HUVEC, MRC5, TK6). However, this significant tumor-specific radiosensitization by DCA in vitro was not reflected by the situation in vivo: The growth suppression of WIDR xenograft tumors after irradiation was reduced upon additional DCA treatment (reflected by Ki67 expression levels), although early tumor cell apoptosis rates were significantly increased by DCA. This apparently paradoxical effect was accompanied by a marked DCA-dependent induction of hypoxia in tumor-tissue. Conclusion: DCA induced tumor-specific radiosensitization in vitro but not in vivo

  10. Brain tumors induced in rats by human adenovirus type 12

    Directory of Open Access Journals (Sweden)

    Murao,Tsuyoshi

    1974-02-01

    Full Text Available Oncogenesis of human adenovirus type 12 in the brain of rats was examined. Newborn rats of Sprague-Dawley and Donryu strains were injected intracranially with human adenovirus type 12. The incidence of intracranial tumors was 91% (30/33 in SpragueDawley and 56% (14/25 in Donryu rats. Except for one tumor nodule located in the parietal cortex of a Sprague.Dawley rat, all tumors developed in the paraventricular areas or in the meninges. Tumors were quite similar histologically to those induced in hamsters and mice resembling the undifferentiated human brain tumors such as medulloblastoma, ependymoblastoma and embryonic gliomas. From the histological features and primary sites of tumor development, it is suggested that the tumors in the brain of rats induced by adenovirus type 12 originate from the embryonic cells in the paraventricular area and also from the undifferentiated supporting cells of the peripheral nerves in the leptomeninges.

  11. Study of chemical and radiation induced carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  12. Bone scintigraphic patterns in patients of tumor induced osteomalacia

    International Nuclear Information System (INIS)

    Tumor induced osteomalacia (TIO) or oncogenic osteomalacia is a rare condition associated with small tumor that secretes one of the phosphaturic hormones, i.e., fibroblast growth factor 23, resulting in abnormal phosphate metabolism. Patients may present with non-specific symptoms leading to delay in the diagnosis. Extensive skeletal involvement is frequently seen due to delay in the diagnosis and treatment. The small sized tumor and unexpected location make the identification of tumor difficult even after diagnosis of osteogenic osteomalacia. The bone scan done for the skeletal involvement may show the presence of metabolic features and the scan findings are a sensitive indicator of metabolic bone disorders. We present the bone scan findings in three patients diagnosed to have TIO

  13. Interleukin-13 receptor α2 DNA prime boost vaccine induces tumor immunity in murine tumor models

    Directory of Open Access Journals (Sweden)

    Puri Raj K

    2010-11-01

    Full Text Available Abstract Background DNA vaccines represent an attractive approach for cancer treatment by inducing active T cell and B cell immune responses to tumor antigens. Previous studies have shown that interleukin-13 receptor α2 chain (IL-13Rα2, a tumor-associated antigen is a promising target for cancer immunotherapy as high levels of IL-13Rα2 are expressed on a variety of human tumors. To enhance the effectiveness of DNA vaccine, we used extracellular domain of IL-13Rα2 (ECDα2 as a protein-boost against murine tumor models. Methods We have developed murine models of tumors naturally expressing IL-13Rα2 (MCA304 sarcoma, 4T1 breast carcinoma and D5 melanoma tumors transfected with human IL-13Rα2 in syngeneic mice and examined the antitumor activity of DNA vaccine expressing IL-13Rα2 gene with or without ECDα2 protein mixed with CpG and IFA adjuvants as a boost vaccine. Results Mice receiving IL-13Rα2 DNA vaccine boosted with ECDα2 protein were superior in exhibiting inhibition of tumor growth, compared to mice receiving DNA vaccine alone, in both prophylactic and therapeutic vaccine settings. In addition, prime-boost vaccination significantly prolonged the survival of mice compared to DNA vaccine alone. Furthermore, ECDα2 booster vaccination increased IFN-γ production and CTL activity against tumor expressing IL-13Rα2. The immunohistochemical analysis showed the infiltration of CD4 and CD8 positive T cells and IFN-γ-induced chemokines (CXCL9 and CXCL10 in regressing tumors of immunized mice. Finally, the prime boost strategy was able to reduce immunosuppressive CD4+CD25+Foxp3+ regulatory T cells (Tregs in the spleen and tumor of vaccinated mice. Conclusion These results suggest that immunization with IL-13Rα2 DNA vaccine followed by ECDα2 boost mixed with CpG and IFA adjuvants inhibits tumor growth in T cell dependent manner. Thus our results show an enhancement of efficacy of IL-13Rα2 DNA vaccine with ECDα2 protein boost and offers an

  14. Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors

    Science.gov (United States)

    Zhang, Peisheng; Chen, Lei; Baird, Jason R.; Demidenko, Eugene; Turk, Mary Jo; Hoopes, P. Jack; Conejo-Garcia, Jose R.; Fiering, Steven

    2014-01-01

    Combinatorial use of iron oxide nanoparticles (IONPs) and an alternating magnetic filed (AMF) can induce local hyperthermia in tumors in a controlled and uniform manner. Heating B16 primary tumors at 43°C for 30 minutes activated dendritic cells (DCs) and subsequently CD8+ T cells in the draining lymph node (dLN) and conferred resistance against rechallenge with B16 (but not unrelated Lewis Lung carcinoma) given 7 days post hyperthermia on both the primary tumor side and the contralateral side in a CD8+ T cell-dependent manner. Mice with heated primary tumors also resisted rechallenge given 30 days post hyperthermia. Mice with larger heated primary tumors had greater resistance to secondary tumors. No rechallenge resistance occurred when tumors were heated at 45°C. Our results demonstrate the promising potential of local hyperthermia treatment applied to identified tumors in inducing anti-tumor immune responses that reduce the risk of recurrence and metastasis. PMID:24566274

  15. Tumorer

    DEFF Research Database (Denmark)

    Prause, J.U.; Heegaard, S.

    2005-01-01

    oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer......oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer...

  16. Chemically induced skin carcinogenesis: Updates in experimental models (Review).

    Science.gov (United States)

    Neagu, Monica; Caruntu, Constantin; Constantin, Carolina; Boda, Daniel; Zurac, Sabina; Spandidos, Demetrios A; Tsatsakis, Aristidis M

    2016-05-01

    Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands‑on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro‑inflammatory cytokines, and simultaneous inflammation sustained by pro‑inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology. PMID:26986013

  17. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Directory of Open Access Journals (Sweden)

    Wang Y

    2012-05-01

    Full Text Available Ye Wang,1,2,* Xiao-Yuan Zi,1,* Juan Su,1 Hong-Xia Zhang,1 Xin-Rong Zhang,3 Hai-Ying Zhu,1 Jian-Xiu Li,1 Meng Yin,3 Feng Yang,3 Yi-Ping Hu,11Department of Cell Biology, 2School of Clinical Medicine, 3Department of Pharmaceuticals, Second Military Medical University, Shanghai, People's Republic of China*Authors contributed equally.Abstract: In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy.Keywords: nanomedicine, selective cytotoxicity, apoptosis, cell cycle arrest, mitochondrion-targeted nanomaterials

  18. Molecular imaging of tumors and metastases using chemical exchange saturation transfer (CEST) MRI

    Science.gov (United States)

    Rivlin, Michal; Horev, Judith; Tsarfaty, Ilan; Navon, Gil

    2013-10-01

    The two glucose analogs 2-deoxy-D-glucose (2-DG) and 2-fluoro-2-deoxy-D-glucose (FDG) are preferentially taken up by cancer cells, undergo phosphorylation and accumulate in the cells. Owing to their exchangeable protons on their hydroxyl residues they exhibit significant chemical exchange saturation transfer (CEST) effect in MRI. Here we report CEST-MRI on mice bearing orthotopic mammary tumors injected with 2-DG or FDG. The tumor exhibited an enhanced CEST effect of up to 30% that persisted for over one hour. Thus 2-DG/FDG CEST MRI can replace PET/CT or PET/MRI for cancer research in laboratory animals, but also has the potential to be used in the clinic for the detection of tumors and metastases, distinguishing between malignant and benign tumors and monitoring tumor response to therapy as well as tumors metabolism noninvasively by using MRI, without the need for radio-labeled isotopes.

  19. Acute and subacute chemical-induced lung injuries: HRCT findings

    Energy Technology Data Exchange (ETDEWEB)

    Akira, Masanori, E-mail: Akira@kch.hosp.go.jp [Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai City, Osaka 591-8555 (Japan); Suganuma, Narufumi [Department of Environmental Medicine, Kochi Medical School (Japan)

    2014-08-15

    Lung injury caused by chemicals includes bronchitis, bronchiolitis, chemical pneumonitis, pulmonary edema, acute respiratory distress syndrome, organizing pneumonia, hypersensitivity pneumonitis, acute eosinophilic pneumonia, and sarcoid-like granulomatous lung disease. Each chemical induces variable pathophysiology and the situation resembles to the drug induced lung disease. The HRCT features are variable and nonspecific, however HRCT may be useful in the evaluation of the lung injuries and so we should know about HRCT features of lung parenchymal abnormalities caused by chemicals.

  20. Acute and subacute chemical-induced lung injuries: HRCT findings

    International Nuclear Information System (INIS)

    Lung injury caused by chemicals includes bronchitis, bronchiolitis, chemical pneumonitis, pulmonary edema, acute respiratory distress syndrome, organizing pneumonia, hypersensitivity pneumonitis, acute eosinophilic pneumonia, and sarcoid-like granulomatous lung disease. Each chemical induces variable pathophysiology and the situation resembles to the drug induced lung disease. The HRCT features are variable and nonspecific, however HRCT may be useful in the evaluation of the lung injuries and so we should know about HRCT features of lung parenchymal abnormalities caused by chemicals

  1. Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability--an implication in aneuploid human tumors.

    Directory of Open Access Journals (Sweden)

    Chunyan Dai

    Full Text Available Mitotic chromosomal instability (CIN plays important roles in tumor progression, but what causes CIN is incompletely understood. In general, tumor CIN arises from abnormal mitosis, which is caused by either intrinsic or extrinsic factors. While intrinsic factors such as mitotic checkpoint genes have been intensively studied, the impact of tumor microenvironmental factors on tumor CIN is largely unknown. We investigate if glucose deprivation and lactic acidosis--two tumor microenvironmental factors--could induce cancer cell CIN. We show that glucose deprivation with lactic acidosis significantly increases CIN in 4T1, MCF-7 and HCT116 scored by micronuclei, or aneuploidy, or abnormal mitosis, potentially via damaging DNA, up-regulating mitotic checkpoint genes, and/or amplifying centrosome. Of note, the feature of CIN induced by glucose deprivation with lactic acidosis is similar to that of aneuploid human tumors. We conclude that tumor environmental factors glucose deprivation and lactic acidosis can induce tumor CIN and propose that they are potentially responsible for human tumor aneuploidy.

  2. Chemically induced compaction bands in geomaterials

    Science.gov (United States)

    Stefanou, Ioannis; Sulem, Jean

    2013-04-01

    Compaction bands play an important role in oil production and may provide useful information on various geological processes. Various mechanisms can be involved at different scales: the micro scale (e.g. the grain scale), the meso scale (e.g. the Representative Element Volume) and the macro scale (e.g. the structure). Moreover, hydro-chemo-mechanical couplings might play an important role in triggering instabilities in the form of compaction bands. Compaction bands can be seen as an instability of the underneath mathematical problem leading to localization of deformation [1,2,3]. Here we explore the conditions of compaction banding in quartz-based geomaterials by considering the effect of chemical dissolution and precipitation [4,5]. In due course of the loading process grain crushing affects the residual strength, the porosity and the permeability of the material. Moreover, at the micro-level, grain crushing results in an increase of the grain specific surface, which accelerates the dissolution [6]. Consequently, the silica is removed more rapidly from the grain skeleton and the overall mechanical properties are degraded due to chemical factors. The proposed model accounts for these phenomena. In particular, the diffusion of the diluted in the water silica is considered through the mass balance equation of the porous medium. The reduction of the mechanical strength of the material is described through a macroscopic failure criterion with chemical softening. The grain size reduction is related to the total energy input [7]. A grain size and porosity dependent permeability law is adopted. These degradation mechanisms are coupled with the dissolution/precipitation reaction kinetics. The obtained hydro-chemo-mechanical model is used to investigate the conditions, the material parameters and the chemical factors inducing compaction bands formation. References [1] J.W. Rudnicki, and J.R. Rice. "Conditions for the Localization of Deformation in Pressure

  3. Mitochondrial mutagenesis induced by tumor-specific radiation bystander effects.

    LENUS (Irish Health Repository)

    Gorman, Sheeona

    2012-02-01

    The radiation bystander effect is a cellular process whereby cells not directly exposed to radiation display cellular alterations similar to directly irradiated cells. Cellular targets including mitochondria have been postulated to play a significant role in this process. In this study, we utilized the Random Mutation Capture assay to quantify the levels of random mutations and deletions in the mitochondrial genome of bystander cells. A significant increase in the frequency of random mitochondrial mutations was found at 24 h in bystander cells exposed to conditioned media from irradiated tumor explants (p = 0.018). CG:TA mutations were the most abundant lesion induced. A transient increase in the frequency of random mitochondrial deletions was also detected in bystander cells exposed to conditioned media from tumor but not normal tissue at 24 h (p = 0.028). The increase in both point mutations and deletions was transient and not detected at 72 h. To further investigate mitochondrial dysfunction, mitochondrial membrane potential and reactive oxygen species were assessed in these bystander cells. There was a significant reduction in mitochondrial membrane potential and this was positively associated with the frequency of random point mutation and deletions in bystander cells treated with conditioned media from tumor tissue (r = 0.71, p = 0.02). This study has shown that mitochondrial genome alterations are an acute consequence of the radiation bystander effect secondary to mitochondrial dysfunction and suggests that this cannot be solely attributable to changes in ROS levels alone.

  4. Medical image of the week: tumor-induced hypoglycemia

    Directory of Open Access Journals (Sweden)

    Parashar P

    2015-05-01

    Full Text Available No abstract available. Article truncated after 150 words. A 39 year-old man with a history of widely metastatic (brain, liver and lung nonseminomatous germ cell tumor was admitted to the hospital with severe abdominal pain and altered mental status. A CT of the abdomen and pelvis with IV contrast revealed a marked increase in the size of the liver metastases, portal vein tumor thrombus and changes of pseudocirrhosis. There were numerous large heterogeneously enhancing masses within the liver parenchyma with central necrosis (Figure 1. The patient had significant and sustained hypoglycemia, with the lowest glucose recorded of 30 mg/dl. He required multiple IV doses of 50% dextrose and an infusion of 10% dextrose to maintain a serum glucose level greater than 55 mg/dl. His mental status improved with treatment of the hypoglycemia. The patient decided to pursue a palliative approach to care and was discharged with home hospice services. Tumor-induced hypoglycemia (TIH is a paraneoplastic syndrome that is ...

  5. Paclitaxel-induced macrophage activities in the tumor-bearing host: immunologic implications and therapeutic applications

    OpenAIRE

    Mullins, David Warren

    1998-01-01

    Tumors induce immune dysfunction through the production of soluble factors that subvert macrophage (Mf) function to favor tumor growth. Previous studies suggested that tumor-induced immune cell dysfunction may be reversible through regimens that disrupt tumor cell suppressor mechanisms and concurrently promote tumoricidal activities. Because the antineoplastic agent paclitaxel (TAXOL) activates Mf function, we studied mechanisms of paclitaxel-mediated cytotoxic and immunostimulatory respons...

  6. Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment.

    Science.gov (United States)

    Ivey, Jill W; Bonakdar, Mohammad; Kanitkar, Akanksha; Davalos, Rafael V; Verbridge, Scott S

    2016-09-28

    Tumors are highly heterogeneous at the patient, tissue, cellular, and molecular levels. This multi-scale heterogeneity poses significant challenges for effective therapies, which ideally must not only distinguish between tumorous and healthy tissue, but also fully address the wide variety of tumorous sub-clones. Commonly used therapies either leverage a biological phenotype of cancer cells (e.g. high rate of proliferation) or indiscriminately kill all the cells present in a targeted volume. Tumor microenvironment (TME) targeting represents a promising therapeutic direction, because a number of TME hallmarks are conserved across different tumor types, despite the underlying genetic heterogeneity. Historically, TME targeting has largely focused on the cells that support tumor growth (e.g. vascular endothelial cells). However, by viewing the intrinsic physical and chemical alterations in the TME as additional therapeutic opportunities rather than barriers, a new class of TME-inspired treatments has great promise to complement or replace existing therapeutic strategies. In this review we summarize the physical and chemical hallmarks of the TME, and discuss how these tumor characteristics either currently are, or may ultimately be targeted to improve cancer therapies. PMID:26724680

  7. Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization

    International Nuclear Information System (INIS)

    Patients with pancreatic ductal adenocarcinoma (PDAC) are frequently complicated with metastatic disease or locally advanced tumors, and consequently need chemotherapy. Gemcitabine is commonly used for PDAC treatment, but with limited efficacy. The capacity of gemcitabine to generate reactive oxygen species (ROS) in human pancreatic cancer cells, prompted us to examine its effects on the expression of pro-inflammatory cytokines and chemokines. We observed that gemcitabine enhanced selectively the expression of CXCL8 in human pancreatic cancer cells through ROS generation and NF-κB activation. In vitro blocking of CXCL8 failed to modulate gemcitabine-mediated inhibition of cell proliferation in human pancreatic cancer cells. Gemcitabine also enhanced CXCL8 expression in pancreatic cancer cells in xenografted tumor tissues. Moreover, anti-CXCL8 antibody treatment in vivo attenuated tumor formation as well as intra-tumoral vascularity in nude mice, which were transplanted with Miapaca-2 cells and treated with gemcitabine. Thus, gemcitabine-induced CXCL8 may counteract the drug through inducing neovascularization. - Highlights: • Gemcitabine induced CXCL8 expression in human pancreatic cancer cells. • CXCL8 expression required ROS generation and NF-κB activation. • CXCL8 did not affect in vitro proliferation of human pancreatic cancer cells. • CXCL8 in vivo counteracted gemcitabine by inducing neovascularization

  8. Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yao; Baba, Tomohisa [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Li, Ying-Yi [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Furukawa, Kaoru; Tanabe, Yamato [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); School of Natural System Bioengineering Course, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa (Japan); Matsugo, Seiichi [School of Natural System Bioengineering Course, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa (Japan); Sasaki, Soichiro [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Mukaida, Naofumi, E-mail: mukaida@staff.kanazawa-u.ac.jp [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan)

    2015-03-06

    Patients with pancreatic ductal adenocarcinoma (PDAC) are frequently complicated with metastatic disease or locally advanced tumors, and consequently need chemotherapy. Gemcitabine is commonly used for PDAC treatment, but with limited efficacy. The capacity of gemcitabine to generate reactive oxygen species (ROS) in human pancreatic cancer cells, prompted us to examine its effects on the expression of pro-inflammatory cytokines and chemokines. We observed that gemcitabine enhanced selectively the expression of CXCL8 in human pancreatic cancer cells through ROS generation and NF-κB activation. In vitro blocking of CXCL8 failed to modulate gemcitabine-mediated inhibition of cell proliferation in human pancreatic cancer cells. Gemcitabine also enhanced CXCL8 expression in pancreatic cancer cells in xenografted tumor tissues. Moreover, anti-CXCL8 antibody treatment in vivo attenuated tumor formation as well as intra-tumoral vascularity in nude mice, which were transplanted with Miapaca-2 cells and treated with gemcitabine. Thus, gemcitabine-induced CXCL8 may counteract the drug through inducing neovascularization. - Highlights: • Gemcitabine induced CXCL8 expression in human pancreatic cancer cells. • CXCL8 expression required ROS generation and NF-κB activation. • CXCL8 did not affect in vitro proliferation of human pancreatic cancer cells. • CXCL8 in vivo counteracted gemcitabine by inducing neovascularization.

  9. Inhibitory Effects of Chemical Compounds Isolated from the Rhizome of Smilax glabra on Nitric Oxide and Tumor Necrosis Factor-α Production in Lipopolysaccharide-Induced RAW264.7 Cell

    Directory of Open Access Journals (Sweden)

    Chuan-li Lu

    2015-01-01

    Full Text Available The rhizome of Smilax glabra has been used for a long time as both food and folk medicine in many countries. The present study focused on the active constituents from the rhizome of S. glabra, which possess potential anti-inflammatory activities. As a result, nine known compounds were isolated from the rhizome of S. glabra with the bioassay-guiding, and were identified as syringaresinol (1, lasiodiplodin (2, de-O-methyllasiodiplodin (3, syringic acid (4, 1,4-bis(4-hydroxy-3,5-dimethoxyphenyl-2,3-bis(hydroxymethyl-1,4-butanediol (5, lyoniresinol (6, trans-resveratrol (7, trans-caffeic acid methyl ester (8, and dihydrokaempferol (9. Among these compounds, 2 and 3 were isolated for the first time from S. glabra. In addition, the potential anti-inflammatory activities of the isolated compounds were evaluated in vitro in lipopolysaccharide- (LPS- induced RAW264.7 cells. Results indicated that 4 and 7 showed significant inhibitory effects on NO production of RAW264.7 cells, and 1, 2, 3, and 5 showed moderate suppression effects on induced NO production. 1, 7, and 5 exhibited high inhibitory effects on TNF-α production, with the IC50 values less than 2.3, 4.4, and 16.6 μM, respectively. These findings strongly suggest that compounds 1, 2, 3, 4, 5, 7, and 9 were the potential anti-inflammatory active compositions of S. glabra.

  10. Tumor-infiltrating lymphocyte activity is enhanced in tumors with low IL-10 production in HBV-induced hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yang, E-mail: yangshi_xz@126.com; Song, Qingwei; Hu, Dianhe; Zhuang, Xiaohu; Yu, Shengcai

    2015-05-22

    Hepatocellular carcinoma (HCC) is one of the most common cancers and can be induced by chronic HBV infection. The role of HBV-specific immune responses in mediating tumorigenesis and HCC prognosis is debated. The effect of intratumoral microenvironment on tumor-infiltrating lymphocytes (TILs) is also unclear. Here, we examined resected tumor tissue from 36 patients with HBV-induced HCC. We categorized study cohort based on ex vivo IL-10 secretion by tumor cells into high IL-10-secreting (Hi10) and low IL-10-secreting (Lo10) groups, and found that the Lo10 group was less sensitive to TLR ligand stimulation. TILs from the Lo10 group contained higher frequencies of HBV-specific IFN-g-producing cells and total IFN-g-producing cells, and possessed higher proliferative capacity. Moreover, the proliferative capacity of TILs from the Hi10 group was negatively correlated with IL-10 secretion from tumor cells. Together, our data demonstrated that low IL-10-producing capacity in HBV-induced HCC tumors is associated with enhanced TIL activity. - Highlights: • We examined intratumoral IL-10 production in HBV-induced HCC. • We grouped HCC tumors into Hi10 and Lo10 groups based on their IL-10 production. • Lo10 groups had better IFN-g response by TILs. • Lo10 groups had better TIL proliferative capacity. • Lo10 group tumor cells were refractory to TLR ligand stimulation.

  11. [Research advances of anti-tumor immune response induced by pulse electric field ablation].

    Science.gov (United States)

    Cui, Guang-ying; Diao, Hong-yan

    2015-11-01

    As a novel tumor therapy, pulse electric field has shown a clinical perspective. This paper reviews the characteristics of tumor ablation by microsecond pulse and nanosecond pulse electric field, and the research advances of anti-tumor immune response induced by pulse electric field ablation. Recent researches indicate that the pulse electric field not only leads to a complete ablation of local tumor, but also stimulates a protective immune response, thereby inhibiting tumor recurrence and metastasis. These unique advantages will show an extensive clinical application in the future. However, the mechanism of anti-tumor immune response and the development of related tumor vaccine need further studies.

  12. Numerical simulation of blood flow and interstitial fluid pressure in solid tumor microcirculation based on tumor-induced angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Gaiping Zhao; Jie Wu; Shixiong Xu; M. W. Collins; Quan Long; Carola S. K(o)nig; Yuping Jiang; Jian Wang; A. R. Padhani

    2007-01-01

    A coupled intravascular-transvascular-interstitial fluid flow model is developed to study the distributions of blood flow and interstitial fluid pressure in solid tumor microcirculation based on a tumor-induced microvascular network.This is generated from a 2D nine-point discrete mathematical model of tumor angiogenesis and contains two parent vessels.Blood flow through the microvascular network and interstitial fluid flow in tumor tissues are performed by the extended Poiseuille's law and Darcy's law, respectively, transvascular flow is described by Starling's law; effects of the vascular permeability and the interstitial hydraulic conductivity are also considered. The simulation results predict the heterogeneous blood supply, interstitial hypertension and low convectionon the inside of the tumor, which are consistent with physiological observed facts. These results may provide beneficial information for anti-angiogenesis treatment of tumor and further clinical research.

  13. Numerical simulation of blood flow and interstitial fluid pressure in solid tumor microcirculation based on tumor-induced angiogenesis

    Science.gov (United States)

    Zhao, Gaiping; Wu, Jie; Xu, Shixiong; Collins, M. W.; Long, Quan; König, Carola S.; Jiang, Yuping; Wang, Jian; Padhani, A. R.

    2007-10-01

    A coupled intravascular transvascular interstitial fluid flow model is developed to study the distributions of blood flow and interstitial fluid pressure in solid tumor microcirculation based on a tumor-induced microvascular network. This is generated from a 2D nine-point discrete mathematical model of tumor angiogenesis and contains two parent vessels. Blood flow through the microvascular network and interstitial fluid flow in tumor tissues are performed by the extended Poiseuille’s law and Darcy’s law, respectively, transvascular flow is described by Starling’s law; effects of the vascular permeability and the interstitial hydraulic conductivity are also considered. The simulation results predict the heterogeneous blood supply, interstitial hypertension and low convection on the inside of the tumor, which are consistent with physiological observed facts. These results may provide beneficial information for anti-angiogenesis treatment of tumor and further clinical research.

  14. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Suhail Mahmoud M

    2011-12-01

    Full Text Available Abstract Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp. are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231 and an immortalized normal human breast cell line (MCF10-2A. Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil

  15. Protective antitumor immunity induced by tumor cell lysates conjugated with diphtheria toxin and adjuvant epitope in mouse breast tumor models

    Institute of Scientific and Technical Information of China (English)

    Ze-Yu Wang; Rong-Yue Cao; Jie Wu; Tai-Ming LI; Jing-Jing Liu; Yun Xing; Bin Liu; Lei Lu; Xiao Huang; Chi-Yu Ge; Wen-Jun Yao; Mao-Lei Xu; Zhen-Qiu Gao

    2012-01-01

    Cancer cell vaccine-based immunotherapy has received increasing interest in many clinical trials involving patients with breast cancer.Combining with appropriate adjuvants can enhance the weak immunogenic properties of tumor cell lysates (TCL).In this study,diphtheria toxin (DT) and two tandem repeats of mycobacterial heat shock protein 70 (mHSP70) fragment 407-426 (M2) were conjugated to TCL with glutaraldehyde,and the constructed cancer cell vaccine was named DT-TCL-M2.Subcutaneous injection of DT-TCL-M2 in mice effectively elicited tumor-specific polyclonal immune responses,including humoral and cellular immune responses.High levels of antibodies against TCL were detected in the serum of immunized mice with ELISA and verified with Western blot analyses.The splenocytes from immunized mice showed potent cytotoxicity on Ehrlich ascites carcinoma cells.Moreover,the protective antitumor immunity induced by DT-TCL-M2 inhibited tumor growth in a mouse breast tumor model.DTTCL-M2 also attenuated tumor-induced angiogenesis and slowed tumor growth in a mouse intradermal tumor model.These findings demonstrate that TCL conjugated with appropriate adjuvants induced effective antitumor immunity in vivo.Improvements in potency could further make cancer cell vaccines a useful and safe method for preventing cancer recurrence after resection.

  16. Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses.

    NARCIS (Netherlands)

    Zeelenberg, I.S.; Ostrowski, M.; Krumeich, S.; Bobrie, A.; Jancic, C.; Boissonnas, A.; Delcayre, A.; Pecq, JB Le; Combadiere, B.; Amigorena, S.; Thery, C.

    2008-01-01

    Expression of non-self antigens by tumors can induce activation of T cells in vivo, although this activation can lead to either immunity or tolerance. CD8+ T-cell activation can be direct (if the tumor expresses MHC class I molecules) or indirect (after the capture and cross-presentation of tumor an

  17. Chemically induced intestinal damage models in zebrafish larvae.

    Science.gov (United States)

    Oehlers, Stefan H; Flores, Maria Vega; Hall, Christopher J; Okuda, Kazuhide S; Sison, John Oliver; Crosier, Kathryn E; Crosier, Philip S

    2013-06-01

    Several intestinal damage models have been developed using zebrafish, with the aim of recapitulating aspects of human inflammatory bowel disease (IBD). These experimentally induced inflammation models have utilized immersion exposure to an array of colitogenic agents (including live bacteria, bacterial products, and chemicals) to induce varying severity of inflammation. This technical report describes methods used to generate two chemically induced intestinal damage models using either dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). Methods to monitor intestinal damage and inflammatory processes, and chemical-genetic methods to manipulate the host response to injury are also described.

  18. Overcoming Hypoxic-Resistance of Tumor Cells to TRAIL-Induced Apoptosis through Melatonin

    Directory of Open Access Journals (Sweden)

    You-Jin Lee

    2014-07-01

    Full Text Available A solid tumor is often exposed to hypoxic or anoxic conditions; thus, tumor cell responses to hypoxia are important for tumor progression as well as tumor therapy. Our previous studies indicated that tumor cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL-induced cell apoptosis under hypoxic conditions. Melatonin inhibits cell proliferation in many cancer types and induces apoptosis in some particular cancer types. Here, we examined the effects of melatonin on hypoxic resistant cells against TRAIL-induced apoptosis and the possible mechanisms of melatonin in the hypoxic response. Melatonin treatment increased TRAIL-induced A549 cell death under hypoxic conditions, although hypoxia inhibited TRAIL-mediated cell apoptosis. In a mechanistic study, hypoxia inducible factor-1α and prolyl-hydroxylase 2 proteins, which increase following exposure to hypoxia, were dose-dependently down-regulated by melatonin treatment. Melatonin also blocked the hypoxic responses that reduced pro-apoptotic proteins and increased anti-apoptotic proteins including Bcl-2 and Bcl-xL. Furthermore, melatonin treatment reduced TRAIL resistance by regulating the mitochondrial transmembrane potential and Bax translocation. Our results first demonstrated that melatonin treatment induces apoptosis in TRAIL-resistant hypoxic tumor cells by diminishing the anti-apoptotic signals mediated by hypoxia and also suggest that melatonin could be a tumor therapeutic tool by combining with other apoptotic ligands including TRAIL, particularly in solid tumor cells exposed to hypoxia.

  19. Cisplatin-induced Casepase-3 activation in different tumor cells

    Science.gov (United States)

    Shi, Hua; Li, Xiao; Su, Ting; Zhang, Yu-Hai

    2008-12-01

    Apoptosis plays an essential role in normal organism development which is one of the main types of programmed cell death to help tissues maintain homeostasis. Defective apoptosis can result in cell accumulation and therefore effects on tumor pathogenesis, progression and therapy resistance. A family of proteins, known as caspases, is typically activated in the early stages of apoptosis. Therefore, studying the kinetics of activation of caspases induced by antitumor drugs can contribute to antitumor drug discovery and explanation of the molecular mechanisms. This paper detected the Caspase-3 activity induced by cisplatin in human adenoid cystic carcinoma cell line (ACC-M), human hepatocellular liver carcinoma cell line (HepG2) and human epithelial carcinoma cell line (Hela) with stably expressing ECFP-DEVDDsRed (CD3) probe, a fluorescent probe consisting of Enhanced Cyan Fluorescent Protein (ECFP), red fluorescent protein (DsRed) and a linker with a recognition site of Caspase-3, by using the capillary electrophoresis (CE) and fluorescence resonance energy transfer (FRET) imaging system. Under the same concentration of cisplatin, ACC-M cells responded the most rapidly, and then HepG2 cells and Hela cells, respectively, in the early 30 hours. Later, HepG2 cells represented acceleration in the Caspase-3 activation speed and reached full activation the earliest comparing to other two cell types. The results demonstrated that ACC-M cell is more sensitive than the other two cell types under the treatment of cisplatin.

  20. Hormonal relations of radiation-induced tumors of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    When gamma-irradiated Arabidopsis seed was germinated, tumors appeared on hypocotyls and apical meristems of the resulting plants. Several tumors have been cultured on hormone free medium for over two years since excision from the plants. The tumor lines display a range of phenotypes suggestive of abnormal hormone balance. To determine whether hormone overproduction or hypersensitivity is involved in tumorigenesis, we are measuring hormone levels in the tumor lines and characterizing their response to exogenously supplied growth regulators. Growth of two tumor lines is stimulated by either NAA or BAP, one is stimulated by NAA only, two by BAP only, and one is stimulated by neither. Growth of all lines tested thus far is inhibited by gibberellic acid, ethephon and ACC. The tumor lines appear more sensitive to ACC than normal callus tissue. Most tumors studied to date appear unlikely to have arisen due to increased hormone sensitivity. Experiments are in progress to determine auxin and cytokinin levels in the tumor lines

  1. Radiation-induced chemical evolution of biomolecules

    International Nuclear Information System (INIS)

    Chemical evolution in glycilglycine (Gly2) films irradiated with 146 nm vacuum ultraviolet light was studied. It is found that quantum efficiency of chemical evolution from Gly2 to glycilglycilglycine (Gly3) is smaller than that to glycilglycilglycilglycine (Gly4) due to the multiple step of reaction. Furthermore, we have carried out measurement of soft X-ray natural circular dichroism spectra for serine and alanine films in the energy region of oxygen 1s transition and we report the splitting of 1s→π* transitions.

  2. Transgenic CHD1L expression in mouse induces spontaneous tumors.

    Directory of Open Access Journals (Sweden)

    Muhan Chen

    Full Text Available BACKGROUND: Amplification of 1q21 is the most frequent genetic alteration in hepatocellular carcinoma (HCC, which was detected in 58-78% of primary HCC cases by comparative genomic hybridization (CGH. Using chromosome microdissection/hybrid selection approach we recently isolated a candidate oncogene CHD1L from 1q21 region. Our previous study has demonstrated that CHD1L had strong oncogenic ability, which could be effectively suppressed by siRNA against CHD1L. The molecular mechanism of CHD1L in tumorigenesis has been associated with its role in promoting cell proliferation. METHODOLOGY/PRINCIPAL FINDINGS: To further investigate the in vivo oncogenic role of CHD1L, CHD1L ubiquitous-expression transgenic mouse model was generated. Spontaneous tumor formations were found in 10/41 (24.4% transgenic mice, including 4 HCCs, but not in their 39 wild-type littermates. In addition, alcohol intoxication was used to induce hepatocyte pathological lesions and results found that overexpression of CHD1L in hepatocytes could promote tumor susceptibility in CHD1L-transgenic mice. To address the mechanism of CHD1L in promoting cell proliferation, DNA content between CHD1L-transgenic and wildtype mouse embryo fibroblasts (MEFs was compared by flow cytometry. Flow cytometry results found that CHD1L could facilitate DNA synthesis and G1/S transition through the up-regulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, and CDK4, and down-regulation of Rb, p27(Kip1, and p53. CONCLUSION/SIGNIFICANCE: Taken together, our data strongly support that CHD1L is a novel oncogene and plays an important role in HCC pathogenesis.

  3. Role of the Slug Transcription Factor in Chemically-Induced Skin Cancer

    Directory of Open Access Journals (Sweden)

    Kristine von Maltzan

    2016-02-01

    Full Text Available The Slug transcription factor plays an important role in ultraviolet radiation (UVR-induced skin carcinogenesis, particularly in the epithelial-mesenchymal transition (EMT occurring during tumor progression. In the present studies, we investigated the role of Slug in two-stage chemical skin carcinogenesis. Slug and the related transcription factor Snail were expressed at high levels in skin tumors induced by 7,12-dimethylbenz[α]anthracene application followed by 12-O-tetradecanoylphorbol-13-acetate (TPA treatment. TPA-induced transient elevation of Slug and Snail proteins in normal mouse epidermis and studies in Slug transgenic mice indicated that Slug modulates TPA-induced epidermal hyperplasia and cutaneous inflammation. Although Snail family factors have been linked to inflammation via interactions with the cyclooxygenase-2 (COX-2 pathway, a pathway that also plays an important role in skin carcinogenesis, transient TPA induction of Slug and Snail appeared unrelated to COX-2 expression. In cultured human keratinocytes, TPA induced Snail mRNA expression while suppressing Slug expression, and this differential regulation was due specifically to activation of the TPA receptor. These studies show that Slug and Snail exhibit similar patterns of expression during both UVR and chemical skin carcinogenesis, that Slug and Snail can be differentially regulated under some conditions and that in vitro findings may not recapitulate in vivo results.

  4. Reduction of DMH-induced colon tumors in rats fed psyllium husk or cellulose.

    Science.gov (United States)

    Roberts-Andersen, J; Mehta, T; Wilson, R B

    1987-01-01

    The effect of feeding psyllium husk, a water-soluble fiber, and cellulose, a water-insoluble fiber, against chemically induced colon cancer was investigated in rats. Adult male rats were fed semipurified diets containing 20% fat, no fiber, or 10% psyllium husk or cellulose for 22 weeks. Tumors were induced in one-half of the rats fed each diet by the gastric intubation of 1,2-dimethylhydrazine (DMH) during Weeks 3-11. In terms of the number of animals with tumors in each group, psyllium strongly reduced the tumorigenicity of DMH and cellulose moderately reduced tumorigenicity, whereas the two fibers did not differ significantly from each other with respect to tumorigenicity. Psyllium-fed rats had the highest fecal aerobic counts, lowest beta-glucuronidase, and highest 7-alpha-dehydroxylase activities. The psyllium diet also resulted in increased fecal output and percent moisture. Rats fed cellulose tended to have greater fecal bulk and lower beta-glucuronidase activity compared with rats fed no fiber and lower 7-alpha-dehydroxylase activity compared with rats fed psyllium husk. PMID:2819829

  5. 75 FR 76460 - Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview and Implications for...

    Science.gov (United States)

    2010-12-08

    ... AGENCY Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview and Implications for..., ``Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview and Implications for Risk Assessment.... ADDRESSES: The draft ``Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview...

  6. Tumor-Induced Myeloid-Derived Suppressor Cells.

    Science.gov (United States)

    De Sanctis, Francesco; Bronte, Vincenzo; Ugel, Stefano

    2016-06-01

    Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous, immune-suppressive leukocyte population that develops systemically and infiltrates tumors. MDSCs can restrain the immune response through different mechanisms including essential metabolite consumption, reactive oxygen and nitrogen species production, as well as display of inhibitory surface molecules that alter T-cell trafficking and viability. Moreover, MDSCs play a role in tumor progression, acting directly on tumor cells and promoting cancer stemness, angiogenesis, stroma deposition, epithelial-to-mesenchymal transition, and metastasis formation. Many biological and pharmaceutical drugs affect MDSC expansion and functions in preclinical tumor models and patients, often reversing host immune dysfunctions and allowing a more effective tumor immunotherapy.

  7. Mifepristone inhibits MPA-and FGF2-induced mammary tumor growth but not FGF2-induced mammary hyperplasia

    Directory of Open Access Journals (Sweden)

    Juan P. Cerliani

    2010-12-01

    Full Text Available We have previously demonstrated a crosstalk between fibroblast growth factor 2 (FGF2 and progestins inducing experimental breast cancer growth. The aim of the present study was to compare the effects of FGF2 and of medroxyprogesterone acetate (MPA on the mouse mammary glands and to investigate whether the antiprogestin RU486 was able to reverse the MPA- or FGF2-induced effects on both, mammary gland and tumor growth. We demonstrate that FGF2 administered locally induced an intraductal hyperplasia that was not reverted by RU486, suggesting that FGF2-induced effects are progesterone receptor (PR-independent. However, MPA-induced paraductal hyperplasia was reverted by RU486 and a partial agonistic effect was observed in RU486-treated glands. Using C4-HD tumors which only grow in the presence of MPA, we showed that FGF2 administered intratumorally was able to stimulate tumor growth as MPA. The histology of FGF2-treated tumors showed different degrees of gland differentiation. RU486 inhibited both, MPA or FGF2 induced tumor growth. However, only complete regression was observed in MPA-treated tumors. Our results support the hypothesis that stromal FGF2 activates PR inducing hormone independent tumor growth.

  8. Growing tumors induce a local STING dependent Type I IFN response in dendritic cells.

    Science.gov (United States)

    Andzinski, Lisa; Spanier, Julia; Kasnitz, Nadine; Kröger, Andrea; Jin, Lei; Brinkmann, Melanie M; Kalinke, Ulrich; Weiss, Siegfried; Jablonska, Jadwiga; Lienenklaus, Stefan

    2016-09-15

    The importance of endogenous Type I IFNs in cancer immune surveillance is well established by now. Their role in polarization of tumor-associated neutrophilic granulocytes into anti-tumor effector cells has been recently demonstrated. Yet, the cellular source of Type I IFNs as well as the mode of induction is not clearly defined. Here, we demonstrate that IFN-β is induced by growing murine tumors. Induction is mainly mediated via STING-dependent signaling pathways, suggesting tumor derived DNA as trigger. Transcription factors IRF3 and IRF5 were activated under these conditions which is consistent with tumor infiltrating dendritic cells (DCs) being the major cellular source of IFN-β at the tumor site. Besides DCs, tumor cells themselves are induced to contribute to the production of IFN-β. Taken together, our data provide further information on immune surveillance by Type I IFNs and suggest novel potent cellular targets for future cancer therapy. PMID:27116225

  9. Heat-shocked tumor cell lysate-pulsed dendritic cells induce effective anti-tumor immune response in vivo

    Institute of Scientific and Technical Information of China (English)

    Jian Qiu; Guo-Wei Li; Yan-Fang Sui; Hong-Ping Song; Shao-Yan Si; Wei Ge

    2006-01-01

    AIM: To study whether heat-shocked tumor cells could enhance the effect of tumor cell lysate-pulsed dendritic cells (DCs) in evoking anti-tumor immune response in vivo.METHODS: Mouse undifferentiated colon cancer cells(CT-26) were heated at 42℃ for 1 h and then frozenthawed. The bone marrow-derived DCs pulsed with heatshocked CT-26 cell lysate (HSCT-26 DCs) were recruited to immunize syngeneic naive BALB/c mice. The cytotoxic activity of tumor specific cytotoxic T lymphocytes (CTLs)in mouse spleen was evaluated by IFN-enzyme-linked immunospot (ELISpot) and LDH release assay. The immunoprophylactic effects induced by HSCT-26 DCs in mouse colon cancer model were compared to those induced by single CT-26 cell lysate-pulsed DCs (CT-26DCs) on tumor volume, peritoneal metastasis and survival time of the mice.RESULTS: Heat-treated CT-26 cells showed a higher hsp70 protein expression. Heat-shocked CT-26 cell lysate pulsing elevated the co-stimulatory and MHC-Ⅱ molecule expression of bone marrow-derived DCs as well as interleukin-12 p70 secretion. The IFN-γ secreting CTLs induced by HSCT-26 DCs were significantly more than those induced by CT-26 DCs (P= 0.002). The former CTLs' specific cytotoxic activity was higher than the latter CTLs' at a serial E/T ratio of 10:1, 20:1, and 40:1. Mouse colon cancer model showed that the tumor volume of HSCT-26 DC vaccination group was smaller than that of CT-26 DC vaccination group on tumor volume though there was no statistical difference between them(24 mm3 vs 8 mm3, P= 0.480). The median survival time of mice immunized with HSCT-26 DCs was longer than that of those immunized with CT-26 DCs (57 d vs 43 d,P= 0.0384).CONCLUSION: Heat-shocked tumor cell lysate-pulsed DCs can evoke anti-tumor immune response in vivo effectively and serve as a novel DC-based tumor vaccine.

  10. Androgen via p21 Inhibits Tumor Necrosis Factor α-induced JNK Activation and Apoptosis*

    OpenAIRE

    Tang, Fangming; Kokontis, John; Lin, Yuting; Liao, Shutsung; Lin, Anning; Xiang, Jialing

    2009-01-01

    The male hormone androgen is a growth/survival factor for its target tissues or organs. Yet, the underlying mechanism is incompletely understood. Here, we report that androgen via p21 inhibits tumor necrosis factor α-induced JNK activation and apoptosis. Inhibition by androgen requires the transcription activity of androgen receptor (AR) and de novo protein synthesis. Androgen·AR induces expression of p21 that in turn inhibits tumor necrosis factor α-induced JNK and apoptosis. Furthermore, ge...

  11. Two-dimensional discrete mathematical model of tumor-induced angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Gai-ping ZHAO; Er-yun CHEN; Jie WU; Shi-xiong XU; M.W. Collins; Quan LONG

    2009-01-01

    A 2D discrete mathematical model of a nine-point finite difference scheme is built to simulate tumor-induced angiogenesis. Nine motion directions of an individual endothelial cell and two parent vessels are extended in the present model. The process of tumor-induced angiogenesis is performed by coupling random motility, chemotaxis, and haptotaxis of endothelial cell in different mechanical environments inside and outside the tumor. The results show that nearly realistic tumor microvascular networks with neoplastic pathophysiological characteristics can be generated from the present model. Moreover, the theoretical capillary networks generated in numerical simulations of the discrete model may provide useful information for further clinical research.

  12. E2F1 Induces Pituitary Tumor Transforming Gene (PTTG1) Expression in Human Pituitary Tumors

    OpenAIRE

    Zhou, Cuiqi; Wawrowsky, Kolja; Bannykh, Serguei; Gutman, Shiri; Melmed, Shlomo

    2009-01-01

    Rb/E2F is dysregulated in murine and human pituitary tumors. Pituitary tumor transforming gene (PTTG1), a securin protein, is required for pituitary tumorigenesis, and PTTG1 deletion attenuates pituitary tumor development in Rb+/− mice. E2F1 and PTTG1 were concordantly overexpressed in 29 of 46 Rb+/− murine pituitary tissues and also in 45 of 80 human pituitary tumors (P < 0.05). E2F1 specifically bound the hPTTG1 promoter as assessed by chromatin immunoprecipitation and biotin-streptavidin p...

  13. Antioxidant intervention of smoking-induced lung tumor in mice by vitamin E and quercetin

    International Nuclear Information System (INIS)

    Epidemiological and in vitro studies suggest that antioxidants such as quercetin and vitamin E (VE) can prevent lung tumor caused by smoking; however, there is limited evidence from animal studies. In the present study, Swiss mouse was used to examine the potential of quercetin and VE for prevention lung tumor induced by smoking. Our results suggest that the incidence of lung tumor and tumor multiplicity were 43.5% and 1.00 ± 0.29 in smoking group; Quercetin has limited effects on lung tumor prevention in this in vivo model, as measured by assays for free radical scavenging, reduction of smoke-induced DNA damage and inhibition of apoptosis. On the other hand, vitamin E drastically decreased the incidence of lung tumor and tumor multiplicity which were 17.0% and 0.32 ± 0.16, respectively (p < 0.05); and demonstrated prominent antioxidant effects, reduction of DNA damage and decreased cell apoptosis (p < 0.05). Combined treatment with quercetin and VE in this animal model did not demonstrate any effect greater than that due to vitamin E alone. In addition, gender differences in the occurrence of smoke induced-lung tumor and antioxidant intervention were also observed. We conclude that VE might prevent lung tumor induced by smoking in Swiss mice

  14. Adiponectin deficiency enhances colorectal carcinogenesis and liver tumor formation induced by azoxymethane in mice

    Institute of Scientific and Technical Information of China (English)

    Tamao Nishihara; Shinji Tamura; Norio Hayashi; Hiroyasu Iishi; Iichiro Shimornura; Miyako Baba; Morihiro Matsuda; Masahiro Inoue; Yasuko Nishizawa; Atsunori Fukuhara; Hiroshi Arald; Shinji Kihara; Tohru Funahashi

    2008-01-01

    AIM: To investigate the causal relationship between hypoadiponectinemia and colorectal carcinogenesis in in vivo experimental model, and to determine the con-tribution of adiponectin deficiency to colorectal cancer development and proliferation. METHODS: We examined the influence of adiponectin deficiency on colorectal carcinogenesis induced by the administration of azoxymethane (AOM) (7.5 mg/kg, in-traperitoneal injection once a week for 8 wk), by using adiponectin-knockout (KO) mice. RESULTS: At 53 wk after the first AOM treatment, KOmice developed larger and histologically more progres-sive colorectal tumors with greater frequency com-pared with wild-type (WT) mice, although the tumor incidence was not different between WT and KO mice. KO mice showed increased cell proliferation of colorec-tal tumor cells, which correlated with the expression levels of cyclooxygenase-2 (COX-2) in the colorectal tumors. In addition, KO mice showed higher incidence and frequency of liver tumors after AOI treatment. Thirteen percent of WT mice developed liver tumors, and these WT mice had only a single tumor. In contrast, 50% of K.O mice developed liver tumors, and 58% of these KO mice had multiple tumors. CONCLUSION: Adiponectin deficiency enhances colorectal carcinogenesis and liver tumor formation induced by AOM in mice. This study strongly suggests that hypoadiponectinemia could be involved in the pathogenesis for colorectal cancer and liver tumor in human subjects.

  15. Metastatic Tumor Dormancy in Cutaneous Melanoma: Does Surgery Induce Escape?

    Directory of Open Access Journals (Sweden)

    William W. Tseng

    2011-02-01

    Full Text Available According to the concept of tumor dormancy, tumor cells may exist as single cells or microscopic clusters of cells that are clinically undetectable, but remain viable and have the potential for malignant outgrowth. At metastatic sites, escape from tumor dormancy under more favorable local microenvironmental conditions or through other, yet undefined stimuli, may account for distant recurrence after supposed “cure” following surgical treatment of the primary tumor. The vast majority of evidence to date in support of the concept of tumor dormancy originates from animal studies; however, extensive epidemiologic data from breast cancer strongly suggests that this process does occur in human disease. In this review, we aim to demonstrate that metastatic tumor dormancy does exist in cutaneous melanoma based on evidence from mouse models and clinical observations of late recurrence and occult transmission by organ transplantation. Experimental data underscores the critical role of impaired angiogenesis and immune regulation as major mechanisms for maintenance of tumor dormancy. Finally, we examine evidence for the role of surgery in promoting escape from tumor dormancy at metastatic sites in cutaneous melanoma.

  16. Metastatic Tumor Dormancy in Cutaneous Melanoma: Does Surgery Induce Escape?

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, William W. [Department of Surgery, University of California at San Francisco, 513 Parnassus Avenue, Room S-321, San Francisco, CA 94143 (United States); Fadaki, Niloofar; Leong, Stanley P., E-mail: leongsx@cpmcri.org [Department of Surgery and Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, 2340 Clay Street, 2nd floor, San Francisco, CA 94115 (United States)

    2011-02-21

    According to the concept of tumor dormancy, tumor cells may exist as single cells or microscopic clusters of cells that are clinically undetectable, but remain viable and have the potential for malignant outgrowth. At metastatic sites, escape from tumor dormancy under more favorable local microenvironmental conditions or through other, yet undefined stimuli, may account for distant recurrence after supposed “cure” following surgical treatment of the primary tumor. The vast majority of evidence to date in support of the concept of tumor dormancy originates from animal studies; however, extensive epidemiologic data from breast cancer strongly suggests that this process does occur in human disease. In this review, we aim to demonstrate that metastatic tumor dormancy does exist in cutaneous melanoma based on evidence from mouse models and clinical observations of late recurrence and occult transmission by organ transplantation. Experimental data underscores the critical role of impaired angiogenesis and immune regulation as major mechanisms for maintenance of tumor dormancy. Finally, we examine evidence for the role of surgery in promoting escape from tumor dormancy at metastatic sites in cutaneous melanoma.

  17. Therapeutic tumor-specific cell cycle block induced by methionine starvation in vivo.

    Science.gov (United States)

    Guo, H; Lishko, V K; Herrera, H; Groce, A; Kubota, T; Hoffman, R M

    1993-12-01

    The ability to induce a specific cell cycle block selectively in the tumor could have many uses in chemotherapy. In the present study we have achieved this goal of inducing a tumor-specific cell cycle block in vivo by depriving Yoshida sarcoma-bearing nude mice of dietary methionine. Further, we demonstrate that methionine depletion also causes the tumor to eventually regress. The antitumor effect of methionine depletion resulted in the extended survival of the tumor-bearing mice. The mice on the methionine-deprived diets maintained their body weight for the time period studied, indicating that tumor regression was not a function of body weight loss. The data reported here support future experiments utilizing methionine depletion as a target for tumor-selective cell cycle-dependent therapy.

  18. Rethinking the Stalk Effect: A New Hypothesis Explaining Suprasellar Tumor-Induced Hyperprolactinemia

    OpenAIRE

    Skinner, Donal C.

    2008-01-01

    The pars tuberalis is a distinct subdivision of the pituitary gland but its function remains poorly understood. Suprasellar tumors in this pars tuberalis region are frequently accompanied by hyperprolactinemia. As these tumors do not immunoreact for any of the established pituitary hormones, they are classified as non-secretory. It has been postulated that these suprasellar tumors induce hyperprolactinemia by compressing the pituitary stalk, resulting in impaired dopamine delivery to the pitu...

  19. Somatic mutations in stilbene estrogen-induced Syrian hamster kidney tumors identified by DNA fingerprinting

    Directory of Open Access Journals (Sweden)

    Roy Deodutta

    2004-01-01

    Full Text Available Abstract Kidney tumors from stilbene estrogen (diethylstilbestrol-treated Syrian hamsters were screened for somatic genetic alterations by Random Amplified Polymorphic DNA-polymerase chain-reaction (RAPD-PCR fingerprinting. Fingerprints from tumor tissue were generated by single arbitrary primers and compared with fingerprints for normal tissue from the same animal, as well as normal and tumor tissues from different animals. Sixty one of the arbitrary primers amplified 365 loci that contain approximately 476 kbp of the hamster genome. Among these amplified DNA fragments, 44 loci exhibited either qualitative or quantitative differences between the tumor tissues and normal kidney tissues. RAPD-PCR loci showing decreased and increased intensities in tumor tissue DNA relative to control DNA indicate that loci have undergone allelic losses and gains, respectively, in the stilbene estrogen-induced tumor cell genome. The presence or absence of the amplified DNA fragments indicate homozygous insertions or deletions in the kidney tumor DNA compared to the age-matched normal kidney tissue DNA. Seven of 44 mutated loci also were present in the kidney tissues adjacent to tumors (free of macroscopic tumors. The presence of mutated loci in uninvolved (non-tumor surrounding tissue adjacent to tumors from stilbene estrogen-treated hamsters suggests that these mutations occurred in the early stages of carcinogenesis. The cloning and sequencing of RAPD amplified loci revealed that one mutated locus had significant sequence similarity with the hamster Cyp1A1 gene. The results show the ability of RAPD-PCR to detect and isolate, in a single step, DNA sequences representing genetic alterations in stilbene estrogen-induced cancer cells, including losses of heterozygosity, and homozygous deletion and insertion mutations. RAPD-PCR provides an alternative molecular approach for studying cancer cytogenetics in stilbene estrogen-induced tumors in humans and experimental

  20. Differential inhibition of lipopolysaccharide-induced phenomena by anti-tumor necrosis factor alpha antibody.

    OpenAIRE

    Vogel, S N; Havell, E A

    1990-01-01

    Tumor necrosis factor alpha (TNF alpha) has been implicated as a major mediator of lipopolysaccharide (LPS)-induced phenomena. Administration to mice of a polyclonal, monospecific antibody prepared against recombinant murine TNF alpha abolished detection of LPS-induced TNF alpha activity and significantly reduced levels of LPS-induced colony-stimulating factor but failed to reduce the production of LPS-induced interferon, corticosterone, or LPS-induced hypoglycemia.

  1. Approaches to the evaluation of chemical-induced immunotoxicity.

    OpenAIRE

    Krzystyniak, K; Tryphonas, H; Fournier, M

    1995-01-01

    The immune system plays a crucial role in maintaining health; however, accumulating evidence indicates that this system can be the target for immunotoxic effects caused by a variety of chemicals including the environmental pollutants of polychlorinated biphenyls, chlorinated dibenzo-p-dioxins, pesticides, and heavy metals. Adverse chemical-induced immunomodulation, which is studied within the discipline of immunotoxicology, may be expressed either as immunosuppression/immunodepression or immu...

  2. Topical application of silymarin reduces chemical-induced irritant contact dermatitis in BALB/c mice.

    Science.gov (United States)

    Han, Mi Hwa; Yoon, Won Kee; Lee, Hyunju; Han, Sang-Bae; Lee, Kiho; Park, Song-Kyu; Yang, Kyu-Hwan; Kim, Hwan Mook; Kang, Jong Soon

    2007-12-15

    Irritant contact dermatitis (ICD) is a non-allergic local inflammatory reaction of a skin and one of the most frequent occupational health problems. Silymarin has been clinically used in Europe for a long time to treat liver diseases and also known to have anti-cancer and anti-inflammatory activities. In the present study, we report that topical application of silymarin reduces chemical-induced ICD. Topical application of 2,4-dinitrochlorobenzene (DNCB) induced an ear swelling in BALB/c mice and silymarin suppressed DNCB-induced increase in ear thickness. Prophylactic and therapeutic application of silymarin showed similar effect on DNCB-induced increase in ear thickness and skin water content. In addition, phobor ester- or croton oil-induced increase in ear thickness was also inhibited by silymarin treatment. Silymarin also blocked neutrophil accumulation into the ear induced by these irritants. Further study demonstrated that DNCB-induced tumor necrosis factor-alpha (TNF-alpha) expression in mouse ear was suppressed by silymarin. DNCB-induced expression of KC, one of the main attractors of neutrophil in mice, and adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1) and E-selectin in mouse ear were also inhibited by silymarin. Moreover, TNF-alpha-induced expression of cytokines, such as TNF-alpha and IL-1beta, and a chemokine, IL-8, were suppressed by silymarin treatment in human keratinocyte cell line, HaCaT. Silymarin also blocked TNF-alpha- and DNCB-induced NF-kappaB activation in HaCaT. Collectively, these results demonstrate that topically applied silymarin inhibits chemical-induced ICD in mice and this might be mediated, at least in part, by blocking NF-kappaB activation and consequently inhibiting the expression of cytokines and adhesion molecules. PMID:17996674

  3. Combined TLR2/4-activated dendritic/tumor cell fusions induce augmented cytotoxic T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Shigeo Koido

    Full Text Available Induction of antitumor immunity by dendritic cell (DC-tumor fusion cells (DC/tumor can be modulated by their activation status. In this study, to address optimal status of DC/tumor to induce efficient antigen-specific cytotoxic T lymphocytes (CTLs, we have created various types of DC/tumor: 1 un-activated DC/tumor; 2 penicillin-killed Streptococcus pyogenes (OK-432; TLR4 agonist-activated DC/tumor; 3 protein-bound polysaccharides isolated from Coriolus versicolor (PSK; TLR2 agonist-activated DC/tumor; and 4 Combined OK-432- and PSK-activated DC/tumor. Moreover, we assessed the effects of TGF-β1 derived from DC/tumor on the induction of MUC1-specific CTLs. Combined TLR2- and TLR4-activated DC/tumor overcame immune-suppressive effect of TGF-β1 in comparison to those single activated or un-activated DC/tumor as demonstrated by: 1 up-regulation of MHC class II and CD86 expression on DC/tumor; 2 increased fusion efficiency; 3 increased production of fusions derived IL-12p70; 4 activation of CD4(+ and CD8(+ T cells that produce high levels of IFN-γ; 5 augmented induction of CTL activity specific for MUC1; and 6 superior efficacy in inhibiting CD4(+CD25(+Foxp3(+ T cell generation. However, DC/tumor-derived TGF-β1 reduced the efficacy of DC/tumor vaccine in vitro. Incorporating combined TLRs-activation and TGF-β1-blockade of DC/tumor may enhance the effectiveness of DC/tumor-based cancer vaccines and have the potential applicability to the field of adoptive immunotherapy.

  4. Chemically and biologically synthesized CPP-modified gelonin for enhanced anti-tumor activity.

    Science.gov (United States)

    Shin, Meong Cheol; Zhang, Jian; David, Allan E; Trommer, Wolfgang E; Kwon, Young Min; Min, Kyoung Ah; Kim, Jin H; Yang, Victor C

    2013-11-28

    The ineffectiveness of small molecule drugs against cancer has generated significant interest in more potent macromolecular agents. Gelonin, a plant-derived toxin that inhibits protein translation, has attracted much attention in this regard. Due to its inability to internalize into cells, however, gelonin exerts only limited tumoricidal effect. To overcome this cell membrane barrier, we modified gelonin, via both chemical conjugation and genetic recombination methods, with low molecular weight protamine (LMWP), a cell-penetrating peptide (CPP) which was shown to efficiently ferry various cargoes into cells. Results confirmed that gelonin-LMWP chemical conjugate (cG-L) and recombinant gelonin-LMWP chimera (rG-L) possessed N-glycosidase activity equivalent to that of unmodified recombinant gelonin (rGel); however, unlike rGel, both gelonin-LMWPs were able to internalize into cells. Cytotoxicity studies further demonstrated that cG-L and rG-L exhibited significantly improved tumoricidal effects, with IC50 values being 120-fold lower than that of rGel. Moreover, when tested against a CT26 s.c. xenograft tumor mouse model, significant inhibition of tumor growth was observed with rG-L doses as low as 2 μg/tumor, while no detectable therapeutic effects were seen with rGel at 10-fold higher doses. Overall, this study demonstrated the potential of utilizing CPP-modified gelonin as a highly potent anticancer drug to overcome limitations of current chemotherapeutic agents. PMID:23973813

  5. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia

    DEFF Research Database (Denmark)

    Imel, Erik A; Peacock, Munro; Pitukcheewanont, Pisit;

    2006-01-01

    Tumor-induced osteomalacia (TIO) is a paraneoplastic syndrome of hypophosphatemia, decreased renal phosphate reabsorption, normal or low serum 1,25-dihydryxyvitamin-D concentration, myopathy, and osteomalacia. Fibroblast growth factor 23 (FGF23) is a phosphaturic protein overexpressed in tumors...

  6. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Heriberto Prado-Garcia

    2012-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer.

  7. Noise-induced first-order transition in anti-tumor immunotherapy

    OpenAIRE

    Zhong, Wei-Rong; Shao, Yuan-Zhi; He, Zhen-Hui

    2005-01-01

    We studied the single-variable dynamics model of the tumor growth. A first-order phase transition induced by an additive noise is shown to reproduce the main features of tumor growth under immune surveillance. The critical average cells population has a power-law function relationship with the immune coefficient.

  8. Neuro-immune interactions in chemical-induced airway hyperreactivity.

    Science.gov (United States)

    Devos, Fien C; Boonen, Brett; Alpizar, Yeranddy A; Maes, Tania; Hox, Valérie; Seys, Sven; Pollaris, Lore; Liston, Adrian; Nemery, Benoit; Talavera, Karel; Hoet, Peter H M; Vanoirbeek, Jeroen A J

    2016-08-01

    Asthma may be induced by chemical sensitisers, via mechanisms that are still poorly understood. This type of asthma is characterised by airway hyperreactivity (AHR) and little airway inflammation. Since potent chemical sensitisers, such as toluene-2,4-diisocyanate (TDI), are also sensory irritants, it is suggested that chemical-induced asthma relies on neuro-immune mechanisms.We investigated the involvement of transient receptor potential channels (TRP) A1 and V1, major chemosensors in the airways, and mast cells, known for their ability to communicate with sensory nerves, in chemical-induced AHR.In vitro intracellular calcium imaging and patch-clamp recordings in TRPA1- and TRPV1-expressing Chinese hamster ovarian cells showed that TDI activates murine TRPA1, but not TRPV1. Using an in vivo model, in which an airway challenge with TDI induces AHR in TDI-sensitised C57Bl/6 mice, we demonstrated that AHR does not develop, despite successful sensitisation, in Trpa1 and Trpv1 knockout mice, and wild-type mice pretreated with a TRPA1 blocker or a substance P receptor antagonist. TDI-induced AHR was also abolished in mast cell deficient Kit(Wsh) (/Wsh) mice, and in wild-type mice pretreated with the mast cell stabiliser ketotifen, without changes in immunological parameters.These data demonstrate that TRPA1, TRPV1 and mast cells play an indispensable role in the development of TDI-elicited AHR. PMID:27126687

  9. Chemical changes induced by ultrasound in iron

    Science.gov (United States)

    Albertini, G.; Calbucci, V.; Cardone, F.; Petrucci, A.; Ridolfi, F.

    2014-03-01

    The focus of this work is a careful chemical investigation of structural damage produced by the exposure of an iron bar to pressure waves generated using an ultrasound machine (called the R-1-S reactor). In addition to the emission of neutron bursts, the ultrasound treatment caused the appearance of zones of macroscopic damage (˜1 mm in size) on the exterior of the bar. Reflected-light optical and environmental scanning electron microscopy (ESEM) has shown that these external damage zones are characterized by microcraters and are covered by a thin layer of cracked amorphous material. Under back scattered electron (BSE) observation, this material shows a lower brightness than the intact ferrite surface. In addition, a zone with a high density of deformed cavities (˜1300 per mm2) with irregular walls and a maximum size of 10 μm was found inside the bar. These deformed microcavities are partially filled with a material composed of a chaotic assemblage of submicron-sized (most likely amorphous) particles. A careful compositional investigation of the chaotic material inside the microcavities using the semi-quantitative data obtained with the ESEM X-ray Energy Dispersive System (EDS) has shown that it is primarily composed of carbon, manganese and chromium. These elements are also found in lower amounts within the intact ferrite matrix. In contrast, the damaged surface surrounding the craters is characterized by elements not found in the ferrite at all (i.e., O, Cl, K, Cu); elements the presence of which cannot be attributed to the occurrence of non-metallic inclusions or to contamination during fabrication. These results are also difficult to explain using the generally accepted laws of physics; however, they do appear to agree with a recent theory predicting the deformation of the local spacetime and the violation of the Local Lorentz Invariance. Such a violation should occur following the collapse of micron-sized discontinuities internal to the materials

  10. Physiology of Hormone Autonomous Tissue Lines Derived From Radiation-Induced Tumors of Arabidopsis thaliana.

    Science.gov (United States)

    Campell, B R; Town, C D

    1991-11-01

    gamma-Radiation-induced tumors of Arabidopsis thaliana L. have been produced as a novel approach to isolation of genes that regulate plant development. Tumors excised from irradiated plants are hormone autonomous in culture and have been maintained on hormone-free medium for up to 4 years. Five tumor tissue lines having different morphologies and growth rates were analyzed for auxin, cytokinin, and 1-aminocyclopropane-1-carboxylic acid (ACC) content, ethylene production, and response to exogenous growth regulators. Normal tissues and two crown gall tissue lines were analyzed for comparison. Rosettes and whole seedlings each contained approximately 30 nanograms. (gram fresh weight)(-1) free indoleacetic acid (IAA), 150 nanograms. (gram fresh weight)(-1) ester-conjugated IAA, and 10 to 20 micrograms. (gram fresh weight)(-1) amide-conjugated IAA. The crown gall lines contained similar amounts of free and ester-conjugated IAA but less amide conjugates. Whereas three of the radiation-induced tumor lines had IAA profiles similar to normal tissues, one line had 10- to 100-fold more free IAA and three- to 10-fold less amide-conjugated IAA. The fifth line had normal free IAA levels but more conjugated IAA than control tissues. Whole seedlings contained approximately 2 nanograms. (gram fresh weight)(-1) of both zeatin riboside and isopentenyladenosine. The crown gall lines had 100- to 1000-fold higher levels of each cytokinin. In contrast, the three radiation-induced tumor lines analyzed contained cytokinin levels similar to the control tissue. The radiation-induced tumor tissues produced very little ethylene, although each contained relatively high levels of ACC. Normal callus contained similar amounts of ACC but produced several times more ethylene than the radiation-induced tumor lines. Each of the radiation-induced tumor tissues displayed a unique set of responses to exogenously supplied growth regulators. Only one tumor line showed the same response as normal callus to

  11. Physiology of Hormone Autonomous Tissue Lines Derived From Radiation-Induced Tumors of Arabidopsis thaliana 1

    Science.gov (United States)

    Campell, Bruce R.; Town, Christopher D.

    1991-01-01

    γ-Radiation-induced tumors of Arabidopsis thaliana L. have been produced as a novel approach to isolation of genes that regulate plant development. Tumors excised from irradiated plants are hormone autonomous in culture and have been maintained on hormone-free medium for up to 4 years. Five tumor tissue lines having different morphologies and growth rates were analyzed for auxin, cytokinin, and 1-aminocyclopropane-1-carboxylic acid (ACC) content, ethylene production, and response to exogenous growth regulators. Normal tissues and two crown gall tissue lines were analyzed for comparison. Rosettes and whole seedlings each contained approximately 30 nanograms· (gram fresh weight)−1 free indoleacetic acid (IAA), 150 nanograms· (gram fresh weight)−1 ester-conjugated IAA, and 10 to 20 micrograms· (gram fresh weight)−1 amide-conjugated IAA. The crown gall lines contained similar amounts of free and ester-conjugated IAA but less amide conjugates. Whereas three of the radiation-induced tumor lines had IAA profiles similar to normal tissues, one line had 10- to 100-fold more free IAA and three- to 10-fold less amide-conjugated IAA. The fifth line had normal free IAA levels but more conjugated IAA than control tissues. Whole seedlings contained approximately 2 nanograms· (gram fresh weight)−1 of both zeatin riboside and isopentenyladenosine. The crown gall lines had 100- to 1000-fold higher levels of each cytokinin. In contrast, the three radiation-induced tumor lines analyzed contained cytokinin levels similar to the control tissue. The radiation-induced tumor tissues produced very little ethylene, although each contained relatively high levels of ACC. Normal callus contained similar amounts of ACC but produced several times more ethylene than the radiation-induced tumor lines. Each of the radiation-induced tumor tissues displayed a unique set of responses to exogenously supplied growth regulators. Only one tumor line showed the same response as normal callus to

  12. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    Science.gov (United States)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  13. Tumor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008479 Preliminary study of MR elastography in brain tumors. XU Lei(徐磊), et al.Neurosci Imaging Center, Beijing Tiantan Hosp, Capital Med Univ, Beijing 100050.Chin J Radiol 2008;42(6):605-608. Objective To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years)

  14. Imatinib-Induced Tumor Lysis Syndrome: Report of a Case and Review of the Literature

    OpenAIRE

    Lee-Yung Shih; Hung Chang

    2008-01-01

    Imatinib is a selective tyrosine kinase inhibitor which acts on breakpoint cluster region-Abelson fusion gene (BCR-ABL) positive leukemia including all phases of chronic myeloidleukemia and acute lymphoblastic leukemia. It may induce rapid apoptosis and subsequenttumor lysis syndrome. Only 3 cases of imatinib-induced tumor lysis syndrome have beenreported. We herein described an additional patient with BCR-ABL (e1a2) positive acutelymphoblastic leukemia who developed tumor lysis syndrome afte...

  15. Effects of celecoxib and ibuprofen on metabolic disorders induced by Walker-256 tumor in rats.

    Science.gov (United States)

    de Souza, Camila Oliveira; Kurauti, Mirian Ayumi; de Fatima Silva, Flaviane; de Morais, Hely; Borba-Murad, Glaucia Regina; de Andrade, Fábio Goulart; de Souza, Helenir Medri

    2015-01-01

    The contribution of anti-inflammatory property of celecoxib in the improvement of metabolic disorders in cancer is unknown. The purpose of this study was to compare the effects of celecoxib and ibuprofen, non-steroidal anti-inflammatory drugs (NSAIDs), on several metabolic changes observed in Walker-256 tumor-bearing rats. The effects of these NSAIDs on the tumor growth were also assessed. Celecoxib or ibuprofen (both at 25 mg/Kg) was administered orally for 12 days, beginning on the day the rats were inoculated with Walker-256 tumor cells. Celecoxib treatment prevented the losses in body mass and mass of retroperitoneal adipose tissue, gastrocnemius, and extensor digitorum longus muscles in tumor-bearing rats. Celecoxib also prevented the rise in blood levels of triacylglycerol, urea, and lactate, the inhibition of peripheral response to insulin and hepatic glycolysis, and tended to attenuate the decrease in the food intake, but had no effect on the reduction of glycemia induced by the tumor. In addition, celecoxib treatment increased the number of Walker-256 cells with signs of apoptosis and the tumor necrosis area and prevented the tumor growth. In contrast, ibuprofen treatment had no effect on metabolic parameters affected by the Walker-256 tumor or tumor growth. It can be concluded that celecoxib, unlike ibuprofen, ameliorated several metabolic changes in rats with Walker-256 tumor due to its anti-tumor effect and not its anti-inflammatory property.

  16. Intra-tumor distribution of metallofullerene using micro-particle induced X-ray emission (PIXE)

    International Nuclear Information System (INIS)

    To clarify the intra tumor distribution of gadlinium containing fullerene (Gd@C82), micro particle induced X-ray emission (Micro-PIXE) analysis were performed. The tumor bearing BALB/c mice were injected Gd@C82 and subcutaneous tumors were taken from 48 h after the intravenous injection. Using the Micro-PIXE method, we could visualize Gd intra tumor distribution. Therefore our results indicate the possibility that Micro-PIXE is useful technique for imaging the bioditribution of Gd, and Gd@C82 is potentially useful Gd carrier for NCT

  17. The Chemopreventive Effect of Tamoxifen Combined with Celecoxib on DMBA chemically-Induced Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    Xiaoxu Liu; Huafeng Kang; Xijing Wang; Zhijun Dai; Fengjie Xue; Xinghuan Xue

    2007-01-01

    Objective: To investigate the chemopreventive effect of tamoxifen combined with a COX-2 selective inhibitor, celecoxib, on breast cancer in rats chemically induced by 7,12-dimethylben (a)anthracene (DMBA). Methods:DMBA was irrigated into the stomaches of SD female rats to build breast cancer model. A total of 120 rats were divided into four groups: control group, tamoxifen group, celecoxib group and combined group. The incidence rate, latent period, number and volume of breast cancer were detected and analyzed. Results:The tumor incidence rate of tamoxifen group (48.15%, 13/27) and celecoxib group (50.00%,14/28) were lower than that of control group (85.71%, 24/28), but higher than that of combined group (21.43%, 6/28). The tumor's latent period of tamoxifen group (97.54±1.85 d) and celecoxib group (96.79±2.89 d) were longer than that of control group (89.50±5.99 d), but shorter than that of combined group (103.67±3.39 d). The average tumor number of tamoxifen group (1.77±0.73) and celecoxib group (1.71±0.61) were less than that of control group (3.50±1.62), but more than that of combined group ( 1.17±0.42 ). The average tumor volume of tamoxifen group (1.78±0.71 cm3) and celecoxib group (2.05±1.04 cm3) were smaller than that of control group (6.42±3.96 cm3), but bigger than that of combined group (0.71±0.96 cm3) (P < 0.05 respectively).Conclusion:Celecoxib and tamoxifen are effective drugs in preventing the occurrence of rat breast cancer chemically induced by DMBA. Furthermore, combination of them has better chemopreventive effect.

  18. Extracellular vesicles from malignant effusions induce tumor cell migration: inhibitory effect of LMWH tinzaparin.

    Science.gov (United States)

    Gamperl, Hans; Plattfaut, Corinna; Freund, Annika; Quecke, Tabea; Theophil, Friederike; Gieseler, Frank

    2016-10-01

    Elevated levels of extracellular vesicles (EVs) have been correlated with inflammatory diseases as well as progressive and metastatic cancer. By presenting tissue factor (TF) on their membrane surface, cellular microparticles (MPs) activate both the coagulation system and cell-signaling pathways such as the PAR/ERK pathway. We have shown before that malignant effusions are a rich source of tumor cell-derived EVs. Here, we used EVs from malignant effusions from three different patients after serial low-speed centrifugation steps as recommended by the ISTH (lsEV). Significant migration of human pancreatic carcinoma cells could be induced by lsEVs and was effectively inhibited by pre-incubation with tinzaparin, a low-molecular-weight heparin. Tinzaparin induced tissue factor pathway inhibitor (TFPI) release from tumor cells, and recombinant TFPI inhibited EV-induced tumor cell migration. EVs also induced ERK phosphorylation, whereas inhibitors of PAR2 and ERK suppressed EV-induced tumor cell migration. LsEVs have been characterized by high-resolution flow cytometry and, after elimination of smaller vesicles including exosomes, by further high-speed centrifugation (hsEV). The remaining population consisting primarily of MPs is indeed the main migration-inducing population with tenase activity. Compared to other LMWHs, tinzaparin is suggested to have high potency to induce TFPI release from epithelial cells. The migration-inhibitory effect of TFPI and the interruption of tumor cell migration by inhibitors of PAR2 and ERK suggest that lsEVs induce tumor cell migration by activating the PAR2 signaling pathway. Tinzaparin might inhibit this process at least partly by inducing the release of TFPI from tumor cells, which blocks PAR-activating TF complexes. The clinical relevance of the results is discussed.

  19. Extracellular vesicles from malignant effusions induce tumor cell migration: inhibitory effect of LMWH tinzaparin.

    Science.gov (United States)

    Gamperl, Hans; Plattfaut, Corinna; Freund, Annika; Quecke, Tabea; Theophil, Friederike; Gieseler, Frank

    2016-10-01

    Elevated levels of extracellular vesicles (EVs) have been correlated with inflammatory diseases as well as progressive and metastatic cancer. By presenting tissue factor (TF) on their membrane surface, cellular microparticles (MPs) activate both the coagulation system and cell-signaling pathways such as the PAR/ERK pathway. We have shown before that malignant effusions are a rich source of tumor cell-derived EVs. Here, we used EVs from malignant effusions from three different patients after serial low-speed centrifugation steps as recommended by the ISTH (lsEV). Significant migration of human pancreatic carcinoma cells could be induced by lsEVs and was effectively inhibited by pre-incubation with tinzaparin, a low-molecular-weight heparin. Tinzaparin induced tissue factor pathway inhibitor (TFPI) release from tumor cells, and recombinant TFPI inhibited EV-induced tumor cell migration. EVs also induced ERK phosphorylation, whereas inhibitors of PAR2 and ERK suppressed EV-induced tumor cell migration. LsEVs have been characterized by high-resolution flow cytometry and, after elimination of smaller vesicles including exosomes, by further high-speed centrifugation (hsEV). The remaining population consisting primarily of MPs is indeed the main migration-inducing population with tenase activity. Compared to other LMWHs, tinzaparin is suggested to have high potency to induce TFPI release from epithelial cells. The migration-inhibitory effect of TFPI and the interruption of tumor cell migration by inhibitors of PAR2 and ERK suggest that lsEVs induce tumor cell migration by activating the PAR2 signaling pathway. Tinzaparin might inhibit this process at least partly by inducing the release of TFPI from tumor cells, which blocks PAR-activating TF complexes. The clinical relevance of the results is discussed. PMID:27435911

  20. DNA and RNA induced enantioselectivity in chemical synthesis

    NARCIS (Netherlands)

    Roelfes, Gerard

    2007-01-01

    One of the hallmarks of DNA and RNA structures is their elegant chirality. Using these chiral structures to induce enantioselectivity in chemical synthesis is as enticing as it is challenging. In recent years, three general approaches have been developed to achieve this, including chirality transfer

  1. A model for chemically-induced mechanical loading on MEMS

    DEFF Research Database (Denmark)

    Amiot, Fabien

    2007-01-01

    The development of full displacement field measurements as an alternative to the optical lever technique to measure the mechanical response for microelectro-mechanical systems components in their environment calls for a modeling of chemically-induced mechanical fields (stress, strain, and displac...

  2. Hypoxia-Inducible Regulation of a Prodrug-Activating Enzyme for Tumor-Specific Gene Therapy

    Directory of Open Access Journals (Sweden)

    Toru Shibata

    2002-01-01

    Full Text Available Previous studies have suggested that tumor hypoxia could be exploited for cancer gene therapy. Using hypoxia-responsive elements derived from the human vascular endothelial growth factor gene, we have generated vectors expressing a bacterial nitroreductase. (20NTR gene that can activate the anticancer prodrug CB1954. Stable transfectants of human HT1080 tumor cells with hypoxia-inducible vectors were established with G418 selection. Hypoxic induction of NTR protein correlated with increased sensitivity to in vitro exposure of HT 1080 cells to the prodrug. Growth delay assays were performed with established tumor xenografts derived from the same cells to detect the in vivo efficacy of CB1954 conversion to its cytotoxic form. Significant antitumor effects were achieved with intraperitoneal injections of CB1954 both in tumors that express NTR constitutively or with a hypoxia-inducible promoter. In addition, respiration of 10% O2 increased tumor hypoxia in vivo and enhanced the antitumor effects. Taken together, these results demonstrate that hypoxia-inducible vectors may be useful for tumor-selective gene therapy, although the problem of delivery of the vector to the tumors, particularly to the hypoxic cells in the tumors, is not addressed by these studies.

  3. Stochastic fluctuation induced the competition between extinction and recurrence in a model of tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongxi, E-mail: lidongxi@yahoo.cn [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an, 710072 (China); Xu, Wei; Sun, Chunyan; Wang, Liang [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an, 710072 (China)

    2012-04-30

    We investigate the phenomenon that stochastic fluctuation induced the competition between tumor extinction and recurrence in the model of tumor growth derived from the catalytic Michaelis–Menten reaction. We analyze the probability transitions between the extinction state and the state of the stable tumor by the Mean First Extinction Time (MFET) and Mean First Return Time (MFRT). It is found that the positional fluctuations hinder the transition, but the environmental fluctuations, to a certain level, facilitate the tumor extinction. The observed behavior could be used as prior information for the treatment of cancer. -- Highlights: ► Stochastic fluctuation induced the competition between extinction and recurrence. ► The probability transitions are investigated. ► The positional fluctuations hinder the transition. ► The environmental fluctuations, to a certain level, facilitate the tumor extinction. ► The observed behavior can be used as prior information for the treatment of cancer.

  4. Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer

    OpenAIRE

    Schwab, Luciana P; Peacock, Danielle L.; Majumdar, Debeshi; Ingels, Jesse F; Jensen, Laura C; Smith, Keisha D; Cushing, Richard C; Seagroves, Tiffany N

    2012-01-01

    Introduction Overexpression of the oxygen-responsive transcription factor hypoxia-inducible factor 1α (HIF-1α) correlates with poor prognosis in breast cancer patients. The mouse mammary tumor virus polyoma virus middle T (MMTV-PyMT) mouse is a widely utilized preclinical mouse model that resembles human luminal breast cancer and is highly metastatic. Prior studies in which the PyMT model was used demonstrated that HIF-1α is essential to promoting carcinoma onset and lung metastasis, although...

  5. Studies on apoptosis in bone tumor cells induced by 153Sm

    Institute of Scientific and Technical Information of China (English)

    ZHU Shou-Peng; XIAO Dong; HAN Xiao-Feng

    2004-01-01

    The apoptosis in human bone tumor cells induced by internal irradiation with 153Sm was studied. The morphological changes in bone tumor cells were observed by electronic and fluorescent microscopy, as well as DNA agarose gel eletrophoresis. DNA chain fragmentation, microautoradiographic tracing and the inhibition rate of proliferation in bone tumor cells exposed to 153Sm with different duration time were examined. It was demonstrated that the bone tumor cells exposed to 153Sm displayed nuclear fragmentation, pyknosis, margination of condensed chromatin, and formation of membrane bounded apoptotic bodies, whereas the percentage of DNA chain fragmentation of bone tumor cells increases in direct proportion to the duration of irradiation with 153Sm, as well as DNA ladder formation in apoptotic cells. Also a marked inhibition effect of proliferation in bone tumor cells after exposure with 153Sm was observed.

  6. Production of Nitric Oxide and Expression of Inducible Nitric Oxide Synthase in Ovarian Cystic Tumors

    Directory of Open Access Journals (Sweden)

    Rosekeila Simões Nomelini

    2008-01-01

    Full Text Available Tumor sections from nonneoplastic (n=15, benign (n=28, and malignant ovarian tumors (n=20 were obtained from 63 women. Immunohistochemistry of the tumor sections demonstrated that inducible nitric oxide synthase (iNOS expression was increased in ovarian cancer samples compared to nonneoplastic or benign tumor samples. Using the Griess method, nitric oxide (NO metabolite levels were also found to be elevated in malignant tumor samples compared to benign tumor samples (P80 μM were more frequent than NO levels <80 μM, and iNOS expression in well-differentiated carcinomas was greater than in moderately/poorly differentiated carcinomas (P<.05. These data suggest an important role for NO in ovarian carcinogenesis.

  7. The influence of septal lesions on sodium and water retention induced by Walker 256 tumor

    Directory of Open Access Journals (Sweden)

    F. Guimarães

    1999-03-01

    Full Text Available In the course of studies on the effects of septal area lesions on neuroimmunomodulation and Walker 256 tumor development, it was observed that tumor-induced sodium and water retention was less marked in lesioned than in non-lesioned rats. In the present study possible mechanisms involved in this phenomenon were investigated. The experiments were performed in septal-lesioned (LW; N = 15 and sham-operated (SW; N = 7 8-week-old male Wistar rats, which received multifocal simultaneous subcutaneous (sc inoculations of Walker 256 tumor cells about 30 days after the stereotaxic surgery. Control groups (no tumor, sham-operated food-restricted (SFR, N = 7 and lesioned food-restricted (LFR, N = 10 were subjected to a feeding pattern similar to that observed in tumor-bearing animals. Multifocal inoculation of Walker 256 tumor rapidly induces anorexia, which is paradoxically accompanied by an increase in body weight, as a result of renal Na+ and fluid retention. These effects of the tumor were also seen in LW rats, although the rise in fractional sodium balance during the early clinical period was significantly smaller than in SW rats (day 4: SW = 47.6 ± 6.4% and LW = 13.8 ± 5.2%; day 5: SW = 57.5 ± 3.5% and LW = 25.7 ± 4.8%; day 6: SW = 54.4 ± 3.8% and LW = 32.1 ± 4.4%; P<0.05, suggesting a temporary reduction in tumor-induced sodium retention. In contrast, urine output was significantly reduced in SW rats and increased in LW rats (LW up to -0.85 and SW up to 4.5 ml/100 g body weight, with no change in osmolar excretion. These temporary changes in the tumor's effects on LW rats may reflect a "reversal" of the secondary central antidiuretic response induced by the tumor (from antidiuretic to diuretic.

  8. Apoptosis induced by norcantharidin in human tumor cells

    Institute of Scientific and Technical Information of China (English)

    Zhen Xiao Sun; Qing Wen Ma; Tian De Zhao; Yu Lin Wei; Guang Sheng Wang; Jia Shi Li

    2000-01-01

    @@INTRODUCTION The antitumor activity of norcantharidin (NCTD),the demethylated analogue of cantharidin, was studied in the early 1980s in China. NCTD has no side effects on urinary organs which cantharidin has shown and is easier to synthesize, and it can inhibit the proliferation of several tumor cell lines as well as transplanted tumors. Clinical trials with NCTD as a monotherapeutic agent indicated that NCTD had beneficial effects in patients with different kinds of digestive tract cancers, such as primary hepatoma,carcinomas of esophagus and gastric cancer, but no depressive effect on bone marrow cells. NCTD can increase the white blood cell count by stimulating the bone marrow and has some antagonistic effect against leukopenia caused by other agents. The exact cellular and molecular mechanisms of NCTD on tumor cells have not yet been elucidated to date[1-3].

  9. Histological type of Thorotrast-induced liver tumors associated with the translocation of deposited radionuclides

    International Nuclear Information System (INIS)

    Exposure to internally deposited radionuclides is known to induce malignant tumors of various histological types. Thorotrast, a colloidal suspension of radioactive Thorium dioxide (232ThO2) that emits alpha-particles, was used as a radiographic contrast during World War II. Thorotrast is known to induce liver tumors, particularly intrahepatic cholangiocarcinoma (ICC) and angiosarcoma (AS), decades after injection. Therefore, patients injected with Thorotrast comprise a suitable study group to understand biological effects of internal ionizing radiation injury. Autoradiography and X-ray fluorescence spectrometry (XRF) were carried out on non-tumorous liver sections from Thorotrast-induced ICC (T-ICC) and Thorotrast-induced AS (T-AS). Autoradiography revealed that the slope of the regression line of the number of alpha tracks for the amount of deposited Thorium (232Th) was higher in non-tumorous parts of the liver with T-ICC than those with T-AS. XRF showed that the intensity ratio of Radium (Ra) to Thorium (Th) in non-tumorous liver tissue with T-ICC was significantly higher than that with T-AS. Furthermore, the mean 228Ra/232Th radioactivity ratio at the time of death calculated was also significantly higher in T-ICC cases than in T-AS cases. These suggest that the metabolic behavior of radionuclides such as relocation and excretion, as well as the content of deposited radionuclides, is a major factor in determining the histological type of Thorotrast-induced liver tumors. (author)

  10. Histological type of Thorotrast-induced liver tumors associated with the translocation of deposited radionuclides.

    Science.gov (United States)

    Yamamoto, Yoichiro; Chikawa, Junichi; Uegaki, Yoshinobu; Usuda, Nobuteru; Kuwahara, Yoshikazu; Fukumoto, Manabu

    2010-02-01

    Exposure to internally deposited radionuclides is known to induce malignant tumors of various histological types. Thorotrast, a colloidal suspension of radioactive Thorium dioxide ((232)ThO(2)) that emits alpha-particles, was used as a radiographic contrast during World War II. Thorotrast is known to induce liver tumors, particularly intrahepatic cholangiocarcinoma (ICC) and angiosarcoma (AS), decades after injection. Therefore, patients injected with Thorotrast comprise a suitable study group to understand biological effects of internal ionizing radiation injury. Autoradiography and X-ray fluorescence spectrometry (XRF) were carried out on non-tumorous liver sections from Thorotrast-induced ICC (T-ICC) and Thorotrast-induced AS (T-AS). Autoradiography revealed that the slope of the regression line of the number of alpha tracks for the amount of deposited Thorium ((232)Th) was higher in non-tumorous parts of the liver with T-ICC than those with T-AS. XRF showed that the intensity ratio of Radium (Ra) to Thorium (Th) in non-tumorous liver tissue with T-ICC was significantly higher than that with T-AS. Furthermore, the mean (228)Ra/(232)Th radioactivity ratio at the time of death calculated was also significantly higher in T-ICC cases than in T-AS cases. These suggest that the metabolic behavior of radionuclides such as relocation and excretion, as well as the content of deposited radionuclides, is a major factor in determining the histological type of Thorotrast-induced liver tumors. PMID:19917057

  11. Metastasis-inducing S100A4 and RANTES cooperate in promoting tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Forst

    Full Text Available BACKGROUND: The tumor microenvironment has been described as a critical milieu determining tumor growth and metastases. A pivotal role of metastasis-inducing S100A4 in the development of tumor stroma has been proven in animal models and verified in human breast cancer biopsies. Expression and release of S100A4 has been shown in various types of stroma composing cells, including fibroblasts and immune cells. However, the events implicated in upstream and downstream pathways regulating the activity of the extracellular S100A4 protein in the tumor milieu remain unsolved. METHODOLOGY/PRINCIPAL FINDINGS: We studied the interplay between the tumor cell-derived cytokine regulated-upon-activation, normal T-cell expressed and secreted (RANTES; CCL5 and S100A4 which were shown to be critical factors in tumor progression. We found that RANTES stimulates the externalization of S100A4 via microparticle shedding from the plasma membrane of tumor and stroma cells. Conversely, the released S100A4 protein induces the upregulation of fibronectin (FN in fibroblasts and a number of cytokines, including RANTES in tumor cells as well as stimulates cell motility in a wound healing assay. Importantly, using wild type and S100A4-deficient mouse models, we demonstrated a substantial influence of tumor cell-derived RANTES on S100A4 release into blood circulation which ultimately increases the metastatic burden in mice. CONCLUSIONS/SIGNIFICANCE: Altogether, the data presented strongly validate the pro-metastatic function of S100A4 in the tumor microenvironment and define how the tumor cell-derived cytokine RANTES acts as a critical regulator of S100A4-dependent tumor cell dissemination. Additionally, for the first time we demonstrated the mechanism of S100A4 release associated with plasma membrane microparticle shedding from various cells types.

  12. Immunotherapy-induced CD8+ T Cells Instigate Immune Suppression in the Tumor

    Science.gov (United States)

    McGray, A J Robert; Hallett, Robin; Bernard, Dannie; Swift, Stephanie L; Zhu, Ziqiang; Teoderascu, Florentina; VanSeggelen, Heather; Hassell, John A; Hurwitz, Arthur A; Wan, Yonghong; Bramson, Jonathan L

    2014-01-01

    Despite clear evidence of immunogenicity, cancer vaccines only provide a modest clinical benefit. To evaluate the mechanisms that limit tumor regression following vaccination, we have investigated the weak efficacy of a highly immunogenic experimental vaccine using a murine melanoma model. We discovered that the tumor adapts rapidly to the immune attack instigated by tumor-specific CD8+ T cells in the first few days following vaccination, resulting in the upregulation of a complex set of biological networks, including multiple immunosuppressive processes. This rapid adaptation acts to prevent sustained local immune attack, despite continued infiltration by increasing numbers of tumor-specific T cells. Combining vaccination with adoptive transfer of tumor-specific T cells produced complete regression of the treated tumors but did not prevent the adaptive immunosuppression. In fact, the adaptive immunosuppressive pathways were more highly induced in regressing tumors, commensurate with the enhanced level of immune attack. Examination of tumor infiltrating T-cell functionality revealed that the adaptive immunosuppression leads to a progressive loss in T-cell function, even in tumors that are regressing. These novel observations that T cells produced by therapeutic intervention can instigate a rapid adaptive immunosuppressive response within the tumor have important implications for clinical implementation of immunotherapies. PMID:24196579

  13. Human pontine glioma cells can induce murine tumors

    NARCIS (Netherlands)

    Caretti, V.; Sewing, A.C.; Lagerweij, T.; Schellen, P.; Bugiani, M.; Jansen, M.H.; Vuurden, D.G. van; Navis, A.C.; Horsman, I.; Vandertop, W.P.; Noske, D.P.; Wesseling, P.; Kaspers, G.J.L.; Nazarian, J.; Vogel, H.; Hulleman, E.; Monje, M.; Wurdinger, T.

    2014-01-01

    Diffuse intrinsic pontine glioma (DIPG), with a median survival of only 9 months, is the leading cause of pediatric brain cancer mortality. Dearth of tumor tissue for research has limited progress in this disease until recently. New experimental models for DIPG research are now emerging. To develop

  14. Hypoxia Induced Tumor Metabolic Switch Contributes to Pancreatic Cancer Aggressiveness

    International Nuclear Information System (INIS)

    Pancreatic ductal adenocarcinoma remains one of the most lethal of all solid tumors with an overall five-year survival rate of only 3–5%. Its aggressive biology and resistance to conventional and targeted therapeutic agents lead to a typical clinical presentation of incurable disease once diagnosed. The disease is characterized by the presence of a dense stroma of fibroblasts and inflammatory cells, termed desmoplasia, which limits the oxygen diffusion in the organ, creating a strong hypoxic environment within the tumor. In this review, we argue that hypoxia is responsible for the highly aggressive and metastatic characteristics of this tumor and drives pancreatic cancer cells to oncogenic and metabolic changes facilitating their proliferation. However, the molecular changes leading to metabolic adaptations of pancreatic cancer cells remain unclear. Cachexia is a hallmark of this disease and illustrates that this cancer is a real metabolic disease. Hence, this tumor must harbor metabolic pathways which are probably tied in a complex inter-organ dialog during the development of this cancer. Such a hypothesis would better explain how under fuel source limitation, pancreatic cancer cells are maintained, show a growth advantage, and develop metastasis

  15. Activation-Induced Cytidine Deaminase Contributes to Pancreatic Tumorigenesis by Inducing Tumor-Related Gene Mutations.

    Science.gov (United States)

    Sawai, Yugo; Kodama, Yuzo; Shimizu, Takahiro; Ota, Yuji; Maruno, Takahisa; Eso, Yuji; Kurita, Akira; Shiokawa, Masahiro; Tsuji, Yoshihisa; Uza, Norimitsu; Matsumoto, Yuko; Masui, Toshihiko; Uemoto, Shinji; Marusawa, Hiroyuki; Chiba, Tsutomu

    2015-08-15

    Pancreatic ductal adenocarcinoma (PDAC) develops via an accumulation of various gene mutations. The mechanism underlying the mutations in PDAC development, however, is not fully understood. Recent insight into the close association between the mutation pattern of various cancers and specific mutagens led us to investigate the possible involvement of activation-induced cytidine deaminase (AID), a DNA editing enzyme, in pancreatic tumorigenesis. Our immunohistochemical findings revealed AID protein expression in human acinar ductal metaplasia, pancreatic intraepithelial neoplasia, and PDAC. Both the amount and intensity of the AID protein expression increased with the progression from precancerous to cancerous lesions in human PDAC tissues. To further assess the significance of ectopic epithelial AID expression in pancreatic tumorigenesis, we analyzed the phenotype of AID transgenic (AID Tg) mice. Consistent with our hypothesis that AID is involved in the mechanism of the mutations underlying pancreatic tumorigenesis, we found precancerous lesions developing in the pancreas of AID Tg mice. Using deep sequencing, we also detected Kras and c-Myc mutations in our analysis of the whole pancreas of AID Tg mice. In addition, Sanger sequencing confirmed the presence of Kras, c-Myc, and Smad4 mutations, with the typical mutational footprint of AID in precancerous lesions in AID Tg mice separated by laser capture microdissection. Taken together, our findings suggest that AID contributes to the development of pancreatic precancerous lesions by inducing tumor-related gene mutations. Our new mouse model without intentional manipulation of specific tumor-related genes provides a powerful system for analyzing the mutations involved in PDAC.

  16. TGF-β in jaw tumor fluids induces RANKL expression in stromal fibroblasts

    Science.gov (United States)

    Yamada, Chiaki; Aikawa, Tomonao; Okuno, Emi; Miyagawa, Kazuaki; Amano, Katsuhiko; Takahata, Sosuke; Kimata, Masaaki; Okura, Masaya; Iida, Seiji; Kogo, Mikihiko

    2016-01-01

    Odontogenic tumors and cysts, arising in the jawbones, grow by resorption and destruction of the jawbones. However, mechanisms underlying bone resorption by odontogenic tumors/cysts remain unclear. Odontogenic tumors/cysts comprise odontogenic epithelial cells and stromal fibroblasts, which originate from the developing tooth germ. It has been demonstrated that odontogenic epithelial cells of the developing tooth germ induce osteoclastogenesis to prevent the tooth germ from invading the developing bone to maintain its structure in developing bones. Thus, we hypothesized that odontogenic epithelial cells of odontogenic tumors/cysts induce osteoclast formation, which plays potential roles in tumor/cyst outgrowth into the jawbone. The purpose of this study was to examine osteoclastogenesis by cytokines, focusing on transforming growth factor-β (TGF-β), produced by odontogenic epithelial cells. We observed two pathways for receptor activator of NF-κB ligand (RANKL) induction by keratocystic odontogenic tumor fluid: the cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) pathway through interleukin-1α (IL-1α) signaling and non-COX-2/PGE2 pathway through TGF-β receptor signaling. TGF-β1 and IL-1α produced by odontogenic tumors/cysts induced osteoclastogenesis directly in the osteoclast precursor cells and indirectly via increased RANKL induction in the stroma. PMID:27279422

  17. Roles of interleukin-1 and tumor necrosis factor in lipopolysaccharide-induced hypoglycemia.

    OpenAIRE

    Vogel, S N; Henricson, B E; Neta, R

    1991-01-01

    In this study, hypoglycemia induced by injection of lipopolysaccharide (LPS) or the recombinant cytokine interleukin-1 alpha or tumor necrosis factor alpha (administered alone or in combination) was compared. LPS-induced hypoglycemia was reversed significantly by recombinant interleukin-1 receptor antagonist.

  18. Ibuprofen Inhibits Colitis-Induced Overexpression of TumorRelated Rac1b

    Directory of Open Access Journals (Sweden)

    Paulo Matos

    2013-01-01

    Full Text Available The serrated pathway to colorectal tumor formation involves oncogenic mutations in the BRAF gene, which are sufficient for initiation of hyperplastic growth but not for tumor progression. A previous analysis of colorectal tumors revealed that overexpression of splice variant Rac1b occurs in around 80% of tumors with mutant BRAF and both events proved to cooperate in tumor cell survival. Here, we provide evidence for increased expression of Rac1b in patients with inflamed human colonic mucosa as well as following experimentally induced colitis in mice. The increase of Rac1b in the mouse model was specifically prevented by the nonsteroidal anti-inflammatory drug ibuprofen, which also inhibited Rac1b expression in cultured HT29 colorectal tumor cells through a cyclooxygenase inhibition–independent mechanism. Accordingly, the presence of ibuprofen led to a reduction of HT29 cell survival in vitro and inhibited Rac1b-dependent tumor growth of HT29 xenografts. Together, our results suggest that stromal cues, namely, inflammation, can trigger changes in Rac1b expression in the colon and identify ibuprofen as a highly specific and efficient inhibitor of Rac1b overexpression in colorectal tumors. Our data suggest that the use of ibuprofen may be beneficial in the treatment of patients with serrated colorectal tumors or with inflammatory colon syndromes.

  19. Comparative activation states of tumor-associated and peritoneal macrophages from mice bearing an induced fibrosarcoma.

    Science.gov (United States)

    Valdez, J C; de Alderete, N; Meson, O E; Sirena, A; Perdigon, G

    1990-11-01

    Balb/c mice bearing a methylcholanthrene-induced fibrosarcoma were used to compare the activation levels of tumor-associated and peritoneal macrophages. Two stages of tumor growth were examined, namely "small" and "large" tumors, with average diameters of 10 and 30 mm, respectively. The activation state, determined by measurement of both phagocytic index and beta-glucuronidase content, was found to be markedly higher in tumor-associated macrophages than in their peritoneal counterparts and it was, in addition, independent of tumor progression. The percentage of tumor-associated macrophages, which were detected on the basis of Fc receptor expression, remained constant in the growing neoplasm, at approximately 23% of total cell population. None of these parameters were affected by inoculation with an immunopotentiating dose of heat-killed Candida albicans which, on the other hand, seemed not to alter the course of the tumor. These data suggest that within the tumor microenvironment macrophages would somehow be maintained at a constant proportion and at a highly activated state, while outside the tumor they would be at a lower activation level. Our results also suggest that TAM would not possess antitumor activity in vivo, although we have found this activity in vitro.

  20. Protective effect of silymarin against chemical-induced cardiotoxicity

    Directory of Open Access Journals (Sweden)

    Bibi Marjan Razavi

    2016-09-01

    Full Text Available Cardiac disorders remain one of the most important causes of death in the world. Oxidative stress has been suggested as one of the molecular mechanisms involved in drug-induced cardiac toxicity. Recently, several natural products have been utilized in different studies with the aim to protect the progression of oxidative stress-induced cardiac disorders. There is a large body of evidence that administration of antioxidants may be useful in ameliorating cardiac toxicity. Silymarin, a polyphenolic flavonoid has been shown to have utility in several cardiovascular disorders. In this review, various studies in scientific databases regarding the preventive effects of silymarin against cardiotoxicity induced by chemicals were introduced. Although there are many studies representing the valuable effects of silymarin in different diseases, the number of researches relating to the possible cardiac protective effects of silymarin against drugs induced toxicity is rather limited. Results of these studies show that silymarin has a broad spectrum of cardiac protective activity against toxicity induced by some chemicals including metals, environmental pollutants, oxidative agents and anticancer drugs. Further studies are needed to establish the utility of silymarin in protection against cardiac toxicity.

  1. Equine estrogen-induced mammary tumors in rats

    OpenAIRE

    Okamoto, Yoshinori; Liu, Xiaoping; Suzuki, Naomi; OKAMOTO, KANAKO; Kim, Hyo Jeong; Santosh Laxmi, Y. R.; Sayama, Kazutoshi; Shibutani, Shinya

    2010-01-01

    Long-term hormone replacement therapy is associated with an increased risk of breast, ovarian and endometrial cancers in women. Equine estrogens are a principal component of hormone replacement therapy; however, their tumorigenic potential toward mammary tissue and reproductive organs has not been extensively explored. A pellet containing equilin was inserted under the skin of female ACI rats and the development of mammary tumors was monitored. Histological examination revealed premalignant l...

  2. Dysfunction of Murine Dendritic Cells Induced by Incubation with Tumor Cells

    Institute of Scientific and Technical Information of China (English)

    Fengguang Gao; Xin Hui; Xianghuo He; Dafang Wan; Jianren Gu

    2008-01-01

    In vivo studies showed that dendritic cell (DC) dysfunction occurred in tumor microcnvironment. As tumors were composed of many kinds of cells, the direct effects of tumor cells on immature DCs (imDCs) are needed for further studies in vitro. In the present study, bone marrow-derived imDCs were incubated with lymphoma, hepatoma and menaloma cells in vitro and surface molecules in imDCs were determined by flow cytometry. Then, imDCs incubated with tumor cells or control imDCs were further pulsed with tumor lysates and then incubated with splenocytes to perform mixed lymphocyte reaction. The DC-dependent tumor antigen-specific T cell proliferation,and IL-12 secretion were determined by flow cytometry, and enzyme-linked immunosorbent assay respectively.Finally, the DC-dependent tumor-associated antigen-specific CTL was determined by enzyme-linked immunospot assay. The results showed that tumor cell-DC incubation down-regulated the surface molecules in imDCs, such as CD80, CD54, CDllb, CD11a and MHC class Ⅱ molecules. The abilities of DC-dependent antigen-specific T cell proliferation and IL-12 secretion were also decreased by tumor cell incubation in vitro. Most importantly, the ability for antigenic-specific CTL priming of DCs was also decreased by incubation with tumor cells. In the present in vitro study demonstrated that the defective abilities of DCs induced by tumor cell co-incubation and the co-incubation system might be useful for future study of tumor-immune cells direct interaction and for drug screen of immune-modulation.

  3. Impacts of autophagy-inducing ingredient of areca nut on tumor cells.

    Directory of Open Access Journals (Sweden)

    Ching-Yu Yen

    Full Text Available Areca nut (AN is a popular carcinogen used by about 0.6-1.2 billion people worldwide. Although AN contains apoptosis-inducing ingredients, we previously demonstrated that both AN extract (ANE and its 30-100 kDa fraction (ANE 30-100K predominantly induce autophagic cell death in both normal and malignant cells. In this study, we further explored the action mechanism of ANE 30-100K-induced autophagy (AIA in Jurkat T lymphocytes and carcinoma cell lines including OECM-1 (mouth, CE81T/VGH (esophagus, SCC25 (tongue, and SCC-15 (tongue. The results showed that chemical- and small hairpin RNA (shRNA-mediated inhibition of AMP-activated protein kinase (AMPK resulted in the attenuation of AIA in Jurkat T but not in OECM-1 cells. Knockdown of Atg5 and Beclin 1 expressions ameliorated AIA in OECM-1/CE81T/VGH/Jurkat T and OECM-1/SCC25/SCC-15, respectively. Furthermore, ANE 30-100K could activate caspase-3 after inhibition of Beclin 1 expression in OECM-1/SCC25/SCC15 cells. Meanwhile, AMPK was demonstrated to be the upstream activator of the extracellular-regulated kinase (ERK in Jurkat T cells, and inhibition of MEK attenuated AIA in Jurkat T/OECM-1/CE81T/VGH cells. Finally, we also found that multiple myeloma RPMI8226, lymphoma U937, and SCC15 cells survived from long-term non-cytotoxic ANE 30-100K treatment exhibited stronger resistance against serum deprivation through upregulated autophagy. Collectively, our studies indicate that Beclin-1 and Atg5 but not AMPK are commonly required for AIA, and MEK/ERK pathway is involved in AIA. Meanwhile, it is also suggested that long-term AN usage might increase the resistance of survived tumor cells against serum-limited conditions.

  4. Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Di Paolo, T.; Falardeau, P.

    1987-08-31

    The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p < 0.001). Competition for (/sup 3/H)-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-(..beta..-..gamma..-imino)triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables.

  5. Chemically induced electric field: flat band potential engineering

    Science.gov (United States)

    Bak, T.; Guo, Z.; Li, W.; Atanacio, A. J.; Nowotny, J.

    2012-10-01

    The present work considers engineering of the flat band potential, FBP, of metal oxides in a controlled manner. The aim is to minimise the energy losses related to recombination. The related experimental approaches include imposition of a chemically-induced electric field using the phenomena of segregation, diffusion and the formation of multilayer systems. This paper considers several basic phenomena that allow the modification of the surface charge and the space charge at the gas/solid and solid/liquid interfaces.

  6. Laser-Induced Chemical Vapour Deposition of Silicon Carbonitride

    OpenAIRE

    Besling, W.; van der Put, P.; Schoonman, J.

    1995-01-01

    Laser-induced Chemical Vapour Deposition of silicon carbonitride coatings and powders has been investigated using hexamethyldisilazane (HMDS) and ammonia as reactants. An industrial CW CO2-laser in parallel configuration has been used to heat up the reactant gases. HMDS dissociates in the laser beam and reactive radicals are formed which increase rapidly in molecular weight by an addition mechanism. Dense polymer-like silicon carbonitride thin films and nanosized powders are formed depending ...

  7. Pulmonary tumor thrombotic microangiopathy induced by gastric carcinoma: Morphometric and immunohistochemical analysis of six autopsy cases

    OpenAIRE

    Shinozaki Minoru; Sasai Daisuke; Hiruta Nobuyuki; Abe Fumihito; Yokose Tomoyuki; Nemoto Tetsuo; Kitahara Kanako; Wakayama Megumi; Okubo Yoichiro; Nakayama Haruo; Ishiwatari Takao; Shibuya Kazutoshi

    2011-01-01

    Abstract Background Pulmonary tumor thrombotic microangiopathy (PTTM) has been known as a rare and serious cancer-related pulmonary complication. However, the pathogenesis and pathophysiology of this debilitating condition still remains obscure and no effective management was recommended. The present study aims to elucidate the pathophysiology of PTTM. Methods Autopsy records were searched to extract cases of pulmonary tumor embolism induced by metastasis of gastric carcinoma in the Toho Univ...

  8. [Role of HIF-induced EMT in invasion and
metastasis of tumor].

    Science.gov (United States)

    Chen, Yang; Shi, Yan; Dai, Guanghai

    2016-08-01

    Hypoxia plays a vital role in tumor metabolism, proliferation, apoptosis, invasion and metastasis via hypoxia-inducible factor (HIF). Epithelial to mesenchymal transition (EMT) is a crucial process to metastasis, which could be triggered by hypoxia. EMT could be regulated by HIF via multiple pathways including TGF-β, Notch, and Wnt/β-catenin. It has been shown that anti-HIF drugs combined with anti-EMT therapies could be a promising strategy for tumor therapy. PMID:27600018

  9. Atm-haploinsufficiency enhances susceptibility to carcinogen-induced mammary tumors.

    OpenAIRE

    Lu, Shu; Shen, Kate; Wang, Yaolin; Santner, Steven J.; Chen, Jie; Brooks, S. C.; Wang, Y. Alan

    2006-01-01

    Biomarkers of exposure & effect:: validationBiomarker: A-T carriersExposure/effect represented: DMBAStudy type (in vitro, animals, humans): Atm male miceMode of exposure (if in vivo) (acute, chronic, root of exposure): administration by oral gavageMethod of analysis: PCRDose-response: Nearly twice as many Atm heterozygotes developed mammary tumors (64.7%) as the wild-type mice (37.5%). RR for DMBA-induced mammary tumors is 1.7 for Atm heterozygotesAtm heterozygotes developed mammary tumors wi...

  10. Tumor cells prevent mouse dendritic cell maturation induced by TLR ligands.

    Science.gov (United States)

    Idoyaga, Juliana; Moreno, José; Bonifaz, Laura

    2007-08-01

    Tumor cells can evade the immune system through several mechanisms, one of which is to block DC maturation. It has been suggested that signaling via Toll-like receptors (TLR) may be involved in the induction of prophylactic anti-cancer immunity and in the treatment of established tumors. In the present study we found that high numbers of tumor cells interfere with BMDC activation induced by the TLR ligands LPS and poly IC. Tumor cells blocked TLR3- and TLR4-mediated induction of MHCII and the co-stimulatory molecules CD40 and CD86, as well as the cytokines IL-12, TNF-alpha and IL-6. Importantly, tumor cells induced inhibitory molecules (B7-DC, B7-H1 and CD80) on spleen DC in vivo and on BMDC, even in the presence of TLR ligands. Moreover, after a long exposure with tumor cells, purified BMDC were unable to respond to a second challenge with TLR ligands. The failure of tumor exposed-BMDC to express co-stimulatory molecules and cytokines in the presence of TLR ligands has implications for the future development of DC-based cancer immune therapies using TLR ligands as adjuvants for the activation of DC.

  11. Failure of the cultivated mushroom (Agaricus bisporus) to induce tumors in the A/J mouse lung tumor model

    DEFF Research Database (Denmark)

    Pilegaard, Kirsten; Kristiansen, E.; Meyer, Otto A.;

    1997-01-01

    We studied whether the cultivated mushroom (Agaricus bisporus) or 4-(carboxy)phenylhydrazine (CP) induce lung adenomas in the A/J mouse lung tumor model. For 26 weeks female mice were fed a semisynthetic diet where 11 or 22% of the diet was replaced by freeze-dried mushrooms. The intake of the mu......We studied whether the cultivated mushroom (Agaricus bisporus) or 4-(carboxy)phenylhydrazine (CP) induce lung adenomas in the A/J mouse lung tumor model. For 26 weeks female mice were fed a semisynthetic diet where 11 or 22% of the diet was replaced by freeze-dried mushrooms. The intake...... of the mushroom diets was equivalent to an intake of agaritine, the major phenylhydrazine derivative occurring in the mushroom, of 92 or 166 mg/kg body weight per day. The intake of CP was 106 mg/kg body weight per day. Neither the;freeze-dried mushroom nor CP induced statistically significant increased numbers...

  12. Attenuated recombinant vaccinia virus expressing oncofetal antigen (tumor-associated antigen) 5T4 induces active therapy of established tumors.

    Science.gov (United States)

    Mulryan, Kate; Ryan, Matthew G; Myers, Kevin A; Shaw, David; Wang, Who; Kingsman, Susan M; Stern, Peter L; Carroll, Miles W

    2002-10-01

    The human oncofetal antigen 5T4 (h5T4) is a transmembrane glycoprotein overexpressed by a wide spectrum of cancers, including colorectal, ovarian, and gastric, but with a limited normal tissue expression. Such properties make 5T4 an excellent putative target for cancer immunotherapy. The murine homologue of 5T4 (m5T4) has been cloned and characterized, which allows for the evaluation of immune intervention strategies in "self-antigen" in vivo tumor models. We have constructed recombinant vaccinia viruses based on the highly attenuated and modified vaccinia virus ankara (MVA strain), expressing h5T4 (MVA-h5T4), m5T4 (MVA-m5T4), and Escherichia coli LacZ (MVA-LacZ). Immunization of BALB/c and C57BL/6 mice with MVA-h5T4 and MVA-m5T4 constructs induced antibody responses to human and mouse 5T4, respectively. C57BL/6 and BALB/c mice vaccinated with MVA-h5T4 were challenged with syngeneic tumor line transfectants, B16 melanoma, and CT26 colorectal cells that express h5T4. MVA-h5T4-vaccinated mice showed significant tumor retardation compared with mice vaccinated with MVA-LacZ or PBS. In active treatment studies, inoculation with MVA-h5T4 was able to treat established CT26-h5T4 lung tumor and to a lesser extent B16.h5T4 s.c. tumors. Additionally, when C57BL/6 mice vaccinated with MVA-m5T4 were challenged with B16 cells expressing m5T4, resulting growth of the tumors was significantly retarded compared with control animals. Furthermore, mice vaccinated with MVA-m5T4 showed no signs of autoimmune toxicity. These data support the use of MVA-5T4 for tumor immunotherapy. PMID:12481437

  13. Macrophage inflammatory protein-2 contributes to liver resection-induced acceleration of hepatic metastatic tumor growth

    Institute of Scientific and Technical Information of China (English)

    Otto Kollmar; Michael D Menger; Martin K Schilling

    2006-01-01

    AIM: To study the role of macrophage inflammatory protein (MIP)-2 in liver resection-induced acceleration of tumor growth in a mouse model of hepatic metastasis.METHODS: After a 50% hepatectomy, 1×105 CT26.WT cells were implanted into the left liver lobe of syngeneic balb/c mice (PHx). Additional animals were treated with a monoclonal antibody (MAB452) neutralizing MIP-2(PHx+mAB). Non-resected and non-mAB-treated mice (Con) served as controls. After 7 d, tumor angiogenesis and microcirculation as well as cell proliferation, tumor growth, and CXCR-2 expression were analyzed using intravital fluorescence microscopy, histology, immunohistochemistry, and flow cytometry.RESULTS: Partial hepatectomy increased (P<0.05) the expression of the MIP-2 receptor CXCR-2 on tumor cells when compared with non-resected controls, and markedly accelerated (P<0.05) angiogenesis and metastatic tumor growth. Neutralization of MIP-2 by MAB452 treatment significantly (P<0.05) depressed CXCR-2 expression. Further, the blockade of MIP-2 reduced the angiogenic response (P<0.05) and inhibited tumor growth (P< 0.05). Of interest, liver resection-induced hepatocyte proliferation was not effected by anti-MIP-2 treatment.CONCLUSION: MIP-2 significantly contributes to liver resection-induced acceleration of colorectal CT26.WT hepatic metastasis growth.

  14. Use of a chemically induced-colon carcinogenesis-prone Apc-mutant rat in a chemotherapeutic bioassay

    Directory of Open Access Journals (Sweden)

    Yoshimi Kazuto

    2012-10-01

    Full Text Available Abstract Background Chemotherapeutic bioassay for colorectal cancer (CRC with a rat model bearing chemically-induced CRCs plays an important role in the development of new anti-tumor drugs and regimens. Although several protocols to induce CRCs have been developed, the incidence and number of CRCs are not much enough for the efficient bioassay. Recently, we established the very efficient system to induce CRCs with a chemically induced-colon carcinogenesis-prone Apc-mutant rat, Kyoto Apc Delta (KAD rat. Here, we applied the KAD rat to the chemotherapeutic bioassay for CRC and showed the utility of the KAD rat. Methods The KAD rat has been developed by the ENU mutagenesis and carries a homozygous nonsense mutation in the Apc gene (S2523X. Male KAD rats were given a single subcutaneous injection of AOM (20 mg/kg body weight at 5 weeks of age. Starting at 1 week after the AOM injection, they were given 2% DSS in drinking water for 7 days. Tumor-bearing KAD rats were divided into experimental and control groups on the basis of the number of tumors observed by endoscopy at week 8. The 5-fluorouracil (5-FU was administrated intravenously a dose of 50 or 75 mg/kg weekly at week 9, 10, and 11. After one-week interval, the 5-FU was given again at week 13, 14, and 15. At week 16, animals were sacrificed and tumor number and volume were measured macroscopically and microscopically. Results In total 48 tumors were observed in 27 KAD rats with a 100% incidence at week 8. The maximum tolerated dose for the KAD rat was 50 mg/kg of 5-FU. Macroscopically, the number or volume of tumors in the 5-FU treated rats was not significantly different from the control. Microscopically, the number of adenocarcinoma in the 5-FU treated rats was not significantly different (p Conclusion The use of the AOM/DSS-treated tumor-bearing KAD rats could shorten the experimental period and reduce the number of animals examined in the chemotherapeutic bioassay. The

  15. Use of a chemically induced-colon carcinogenesis-prone Apc-mutant rat in a chemotherapeutic bioassay

    International Nuclear Information System (INIS)

    Chemotherapeutic bioassay for colorectal cancer (CRC) with a rat model bearing chemically-induced CRCs plays an important role in the development of new anti-tumor drugs and regimens. Although several protocols to induce CRCs have been developed, the incidence and number of CRCs are not much enough for the efficient bioassay. Recently, we established the very efficient system to induce CRCs with a chemically induced-colon carcinogenesis-prone Apc-mutant rat, Kyoto Apc Delta (KAD) rat. Here, we applied the KAD rat to the chemotherapeutic bioassay for CRC and showed the utility of the KAD rat. The KAD rat has been developed by the ENU mutagenesis and carries a homozygous nonsense mutation in the Apc gene (S2523X). Male KAD rats were given a single subcutaneous injection of AOM (20 mg/kg body weight) at 5 weeks of age. Starting at 1 week after the AOM injection, they were given 2% DSS in drinking water for 7 days. Tumor-bearing KAD rats were divided into experimental and control groups on the basis of the number of tumors observed by endoscopy at week 8. The 5-fluorouracil (5-FU) was administrated intravenously a dose of 50 or 75 mg/kg weekly at week 9, 10, and 11. After one-week interval, the 5-FU was given again at week 13, 14, and 15. At week 16, animals were sacrificed and tumor number and volume were measured macroscopically and microscopically. In total 48 tumors were observed in 27 KAD rats with a 100% incidence at week 8. The maximum tolerated dose for the KAD rat was 50 mg/kg of 5-FU. Macroscopically, the number or volume of tumors in the 5-FU treated rats was not significantly different from the control. Microscopically, the number of adenocarcinoma in the 5-FU treated rats was not significantly different (p < 0.02) from that of the control. However, the volume of adenocarcinomas was significantly lower than in the control. Anticancer effect of the 5-FU could be obtained only after the 16 weeks of experimental period. The use of the AOM/DSS-treated tumor

  16. Cyclin D expression in plutonium-induced lung tumors in F344 rats

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, F.F.; Kelly, G. [SouthWest Scientific Resources, Inc., Albuquerque, NM (United States)

    1995-12-01

    The genetic mechanisms responsible for {alpha}-radiation-induced lung cancer in rats following inhalation of {sup 239}Pu is an ongoing area of research in our laboratory. Previous studies have examined the status of the p53 gene by immunohistochemistry. Only two tumors (2/26 squamous cell carcinomas) exhibited detectable levels of p53 products. Both were the result of mutations in codons 280 and 283. More recent studies of X-ray-induced lung tumors in rats showed a similar lack of involvement of p53. In conclusion, we found that {alpha}-radiation-induced rat lung tumors have a high incidence (31 of 39) of cyclin D{sub 1} overexpression.

  17. Gene expression array analyses predict increased proto-oncogene expression in MMTV induced mammary tumors.

    Science.gov (United States)

    Popken-Harris, Pamela; Kirchhof, Nicole; Harrison, Ben; Harris, Lester F

    2006-08-01

    Exogenous infection by milk-borne mouse mammary tumor viruses (MMTV) typically induce mouse mammary tumors in genetically susceptible mice at a rate of 90-95% by 1 year of age. In contrast to other transforming retroviruses, MMTV acts as an insertional mutagen and under the influence of steroid hormones induces oncogenic transformation after insertion into the host genome. As these events correspond with increases in adjacent proto-oncogene transcription, we used expression array profiling to determine which commonly associated MMTV insertion site proto-oncogenes were transcriptionally active in MMTV induced mouse mammary tumors. To verify our gene expression array results we developed real-time quantitative RT-PCR assays for the common MMTV insertion site genes found in RIII/Sa mice (int-1/wnt-1, int-2/fgf-3, int-3/Notch 4, and fgf8/AIGF) as well as two genes that were consistently up regulated (CCND1, and MAT-8) and two genes that were consistently down regulated (FN1 and MAT-8) in the MMTV induced tumors as compared to normal mammary gland. Finally, each tumor was also examined histopathologically. Our expression array findings support a model whereby just one or a few common MMTV insertions into the host genome sets up a dominant cascade of events that leave a characteristic molecular signature.

  18. Chemoprevention with Acetylsalicylic Acid, Vitamin D and Calcium Reduces Risk of Carcinogen-induced Lung Tumors

    DEFF Research Database (Denmark)

    Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, J;

    2013-01-01

    Background/Aim: Research has shown that chemoprevention may be effective against the development of lung cancer. The purpose of the present study was to evaluate the effect of oral chemoprevention in a mouse model of tobacco carcinogen-induced lung tumor.......Background/Aim: Research has shown that chemoprevention may be effective against the development of lung cancer. The purpose of the present study was to evaluate the effect of oral chemoprevention in a mouse model of tobacco carcinogen-induced lung tumor....

  19. Transcriptomic profiling of human peritumoral neocortex tissues revealed genes possibly involved in tumor-induced epilepsy.

    Directory of Open Access Journals (Sweden)

    Charles E Niesen

    Full Text Available The molecular mechanism underlying tumor-induced epileptogenesis is poorly understood. Alterations in the peritumoral microenvironment are believed to play a significant role in inducing epileptogenesis. We hypothesize that the change of gene expression in brain peritumoral tissues may contribute to the increased neuronal excitability and epileptogenesis. To identify the genes possibly involved in tumor-induced epilepsy, a genome-wide gene expression profiling was conducted using Affymetrix HG U133 plus 2.0 arrays and RNAs derived from formalin-fixed paraffin embedded (FFPE peritumoral cortex tissue slides from 5-seizure vs. 5-non-seizure low grade brain tumor patients. We identified many differentially expressed genes (DEGs. Seven dysregulated genes (i.e., C1QB, CALCRL, CCR1, KAL1, SLC1A2, SSTR1 and TYRO3 were validated by qRT-PCR, which showed a high concordance. Principal Component Analysis (PCA showed that epilepsy subjects were clustered together tightly (except one sample and were clearly separated from the non-epilepsy subjects. Molecular functional categorization showed that significant portions of the DEGs functioned as receptor activity, molecular binding including enzyme binding and transcription factor binding. Pathway analysis showed these DEGs were mainly enriched in focal adhesion, ECM-receptor interaction, and cell adhesion molecules pathways. In conclusion, our study showed that dysregulation of gene expression in the peritumoral tissues may be one of the major mechanisms of brain tumor induced-epilepsy. However, due to the small sample size of the present study, further validation study is needed. A deeper characterization on the dysregulated genes involved in brain tumor-induced epilepsy may shed some light on the management of epilepsy due to brain tumors.

  20. TRIADIMEFON INDUCES RAT THYROID TUMORS THROUGH A NON-TSH MEDIATED MODE OF ACTION

    Science.gov (United States)

    Conazoles are a class of fungicides used as agricultural and pharmaceutical products which inhibit ergosterol biosynthesis. Members of this class are hepatotoxic and cause mouse hepatocellular tumors and/or rat thyroid follicular cell tumors. Triadimefon-induced rat thyroid tumor...

  1. Discriminating Gene Expression Signature of Radiation-Induced Thyroid Tumors after Either External Exposure or Internal Contamination

    Directory of Open Access Journals (Sweden)

    Sylvie Chevillard

    2011-12-01

    Full Text Available Both external radiation exposure and internal radionuclide contamination are well known risk factors in the development of thyroid epithelial tumors. The identification of specific molecular markers deregulated in radiation-induced thyroid tumors is important for the etiological diagnosis since neither histological features nor genetic alterations can discriminate between sporadic and radiation-induced tumors. Identification of highly discriminating markers in radiation-induced tumors is challenging as it relies on the ability to identify marker deregulation which is associated with a cellular stress that occurred many years before in the thyroid cells. The existence of such a signature is still controversial, as it was not found in several studies while a highly discriminating signature was found in both post-radiotherapy and post-Chernobyl series in other studies. Overall, published studies searching for radiation-induced thyroid tumor specificities, using transcriptomic, proteomic and comparative genomic hybridization approaches, and bearing in mind the analytical constraints required to analyze such small series of tumors, suggest that such a molecular signature could be found. In comparison with sporadic tumors, we highlight molecular similarities and specificities in tumors occurring after high-dose external radiation exposure, such as radiotherapy, and in post-Chernobyl tumors that occurred after internal 131I contamination. We discuss the relevance of signature extrapolation from series of tumors developing after high and low doses in the identification of tumors induced at very low doses of radiation.

  2. Discriminating gene expression signature of radiation-induced thyroid tumors after either external exposure or internal contamination.

    Science.gov (United States)

    Ory, Catherine; Ugolin, Nicolas; Schlumberger, Martin; Hofman, Paul; Chevillard, Sylvie

    2011-12-21

    Both external radiation exposure and internal radionuclide contamination are well known risk factors in the development of thyroid epithelial tumors. The identification of specific molecular markers deregulated in radiation-induced thyroid tumors is important for the etiological diagnosis since neither histological features nor genetic alterations can discriminate between sporadic and radiation-induced tumors. Identification of highly discriminating markers in radiation-induced tumors is challenging as it relies on the ability to identify marker deregulation which is associated with a cellular stress that occurred many years before in the thyroid cells. The existence of such a signature is still controversial, as it was not found in several studies while a highly discriminating signature was found in both post-radiotherapy and post-Chernobyl series in other studies. Overall, published studies searching for radiation-induced thyroid tumor specificities, using transcriptomic, proteomic and comparative genomic hybridization approaches, and bearing in mind the analytical constraints required to analyze such small series of tumors, suggest that such a molecular signature could be found. In comparison with sporadic tumors, we highlight molecular similarities and specificities in tumors occurring after high-dose external radiation exposure, such as radiotherapy, and in post-Chernobyl tumors that occurred after internal 131I contamination. We discuss the relevance of signature extrapolation from series of tumors developing after high and low doses in the identification of tumors induced at very low doses of radiation.

  3. Ionizing radiation induces tumor cell lysyl oxidase secretion

    DEFF Research Database (Denmark)

    Shen, Colette J; Sharma, Ashish; Vuong, Dinh-Van;

    2014-01-01

    BACKGROUND: Ionizing radiation (IR) is a mainstay of cancer therapy, but irradiation can at times also lead to stress responses, which counteract IR-induced cytotoxicity. IR also triggers cellular secretion of vascular endothelial growth factor, transforming growth factor beta and matrix...

  4. Identification and localization of transformed cells in agrobacterium tumefaciens-induced plant tumors

    Science.gov (United States)

    Rezmer; Schlichting; Wachter; Ullrich

    1999-10-01

    Agrobacterium tumefaciens-induced tumors of dicotyledonous plants consist of well-defined vascular bundle-like structures originating from transformed cells. The current view that 25% of the tumor cells are transformed has been re-investigated by using beta-glucuronidase (gus)-gene-containing wild-type bacteria (A281 p35S gus-int). Regularly growing stem and leaf tumors showed irregular GUS-staining patterns in the different plant species, Ricinus communis L., Cucurbita maxima L., Vicia faba L. and Kalanchoe daigremontiana Hamet et Perrier. Variable staining and inconsistency between staining and tumor growth suggested an inhibition of gus expression. By polymerase chain reaction (PCR) and reverse transcriptase-PCR analyses it became evident that gus is also integrated into the DNA of unstainable tumor parts but not expressed. These results and area calculations of tissues unable to contain the bacterial transferred-DNA with gus provide strong evidence that in A. tumefaciens-induced tumors most cells, or even all, are transformed, i.e. ca. 100%. PMID:10550620

  5. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Directory of Open Access Journals (Sweden)

    Yoichi Takakusagi

    Full Text Available BACKGROUND: TH-302 is a hypoxia-activated prodrug (HAP of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. METHODOLOGY/RESULTS: The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2, with minimal effect under aerobic conditions (21% O2. Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3, significantly delayed tumor growth. CONCLUSIONS/SIGNIFICANCE: Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the

  6. Role of Acid Sphingomyelinase-Induced Signaling in Melanoma Cells for Hematogenous Tumor Metastasis

    Directory of Open Access Journals (Sweden)

    Alexander Carpinteiro

    2016-01-01

    Full Text Available Background: Hematogenous metastasis of malignant tumor cells is a multistep process that requires release of tumor cells from the local tumor mass, interaction of the tumor cells with platelets in the blood, and adhesion of either the activated tumor cells or the complexes of platelets and tumor cells to the endothelial cells of the target organ. We have previously shown that the interaction of melanoma cells with platelets results in the release of acid sphingomyelinase (Asm from activated platelets. Secreted platelet-derived Asm acts on malignant tumor cells to cluster and activate integrins; such clustering and activation are necessary for tumor cell adhesion to endothelial cells and for metastasis. Methods: We examined the response of tumor cells to treatment with extracellular sphingomyelinase or co-incubation with wild-type and Asm-deficient platelets. We determined the phosphorylation and activation of several intracellular signaling molecules, in particular p38 kinase (p38K, phospholipase Cγ (PLCγ, ezrin, and extracellular signal-regulated kinases. Results: Incubation of B16F10 melanoma cells with Asm activates p38 MAP kinase (p38K, phospholipase Cγ (PLCγ, ezrin, and extracellular signal-regulated kinases. Co-incubation of B16F10 melanoma cells with wild-type or Asm-deficient platelets showed that the phosphorylation/activation of p38K is dependent on Asm. Pharmacological blockade of p38K prevents activation of β1 integrin and adhesion in vitro. Most importantly, inhibition of p38K activity in B16F10 melanoma cells prevents tumor cell adhesion and metastasis to the lung in vivo, a finding indicating the importance of p38K for metastasis. Conclusions: Asm, secreted from activated platelets after tumor cell-platelet contact, induces p38K phosphorylation in tumor cells. This in turn stimulates β1 integrin activation that is necessary for adhesion and subsequent metastasis of tumor cells. Thus, inhibition of p38K might be a novel

  7. Inhibition of autophagy stimulate molecular iodine-induced apoptosis in hormone independent breast tumors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Preeti [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow (India); Godbole, Madan, E-mail: madangodbole@yahoo.co.in [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow (India); Rao, Geeta [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow (India); Annarao, Sanjay [Centre of Biomedical Magnetic Resonance, Lucknow (India); Mitra, Kalyan [Electron Microscopy Unit, Central Drug Research Institute, Lucknow (India); Roy, Raja [Centre of Biomedical Magnetic Resonance, Lucknow (India); Ingle, Arvind [Advanced Centre for Treatment Research and Education in Cancer, Mumbai (India); Agarwal, Gaurav; Tiwari, Swasti [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow (India)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Molecular iodine (I{sub 2}) causes non-apoptotic cell death in MDA-MB231 breast tumor cells. Black-Right-Pointing-Pointer Autophagy is activated as a survival mechanism in response to I{sub 2} in MDA-MB231. Black-Right-Pointing-Pointer Autophagy inhibition sensitizes tumor cells to I{sub 2}-induced apoptotic cell death. Black-Right-Pointing-Pointer Autophagy inhibitor potentiates apoptosis and tumor regressive effects of I{sub 2} in mice. -- Abstract: Estrogen receptor negative (ER{sup -ve}) and p53 mutant breast tumors are highly aggressive and have fewer treatment options. Previously, we showed that molecular Iodine (I{sub 2}) induces apoptosis in hormone responsive MCF-7 breast cancer cells, and non-apoptotic cell death in ER{sup -ve}-p53 mutant MDA-MB231 cells (Shrivastava, 2006). Here we show that I{sub 2} (3 {mu}M) treatment enhanced the features of autophagy in MDA-MB231 cells. Since autophagy is a cell survival response to most anti-cancer therapies, we used both in vitro and in vivo systems to determine whether ER{sup -ve} mammary tumors could be sensitized to I{sub 2}-induced apoptosis by inhibiting autophagy. Autophagy inhibition with chloroquine (CQ) and inhibitors for PI3K (3MA, LY294002) and H+/ATPase (baflomycin) resulted in enhanced cell death in I{sub 2} treated MDA-MB231 cells. Further, CQ (20 {mu}M) in combination with I{sub 2}, showed apoptotic features such as increased sub-G1 fraction ({approx}5-fold), expression of cleaved caspase-9 and -3 compared to I{sub 2} treatment alone. Flowcytometry of I{sub 2} and CQ co-treated cells revealed increase in mitochondrial membrane permeability (p < 0.01) and translocation of cathepsin D activity to cytosol relative to I{sub 2} treatment. For in vivo studies ICRC mice were transplanted subcutaneously with MMTV-induced mammary tumors. A significant reduction in tumor volumes, as measured by MRI, was found in I{sub 2} and CQ co-treated mice relative to I{sub 2} or

  8. Second primary tumor and radiation induced neoplasma in the uterine cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Tomoyasu; Nishio, Masamichi; Kagami, Yoshikazu; Murakami, Yoshitaka; Narimatsu, Naoto; Kanemoto, Toshitaka (National Hospital of Sapporo (Japan))

    1984-09-01

    This report is concerned with multiple primary cancers developing in invasive uterine cancer. Second primary tumors were recorded 27 women with a total of 30 non-uterine cancer (exception of radiation-induced cancer). 17 patients of radiation-induced neoplasm were observed (Rectal cancer 4, soft part sarcoma 4, cancer of urinary bladder 3, bone tumor 3, uterin cancer 2 and cancer of Vulva 1). One case is 4 legions (corpus, sigma, thymoma and stomach), 2 cases are 3 lesions (uterine cervix, stomach and maxillay siuis: uterine cervix, thyroidal gland and radiation-induced soft part sarcoma). Only 5 of these 17 patients were known irradiated dose (50 Gy--55 Gy), however others unknown. The mean latent periods of 17 cases of radiation induced neoplasms are 19.4 years. 16 patients of late second cancers of the cervix appearing from 11 to 36 years (average 19.5 years) after initial radiotherapy were recorded.

  9. Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li Dongxi, E-mail: lidongxi@mail.nwpu.edu.c [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Xu Wei; Guo, Yongfeng; Xu Yong [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-01-31

    We investigate a stochastic model of tumor growth derived from the catalytic Michaelis-Menten reaction with positional and environmental fluctuations under subthreshold periodic treatment. Firstly, the influences of environmental fluctuations on the treatable stage are analyzed numerically. Applying the standard theory of stochastic resonance derived from the two-state approach, we derive the signal-to-noise ratio (SNR) analytically, which is used to measure the stochastic resonance phenomenon. It is found that the weak environmental fluctuations could induce the extinction of tumor cells in the subthreshold periodic treatment. The positional stability is better in favor of the treatment of the tumor cells. Besides, the appropriate and feasible treatment intensity and the treatment cycle should be highlighted considered in the treatment of tumor cells.

  10. Chemically induced magnetism in atomically precise gold clusters.

    Science.gov (United States)

    Krishna, Katla Sai; Tarakeshwar, Pilarisetty; Mujica, Vladimiro; Kumar, Challa S S R

    2014-03-12

    Comparative theoretical and experimental investigations are reported into chemically induced magnetism in atomically-precise, ligand-stabilized gold clusters Au25 , Au38 and Au55 . The results indicate that [Au25 (PPh3 )10 (SC12 H25 )5 Cl2 ](2+) and Au38 (SC12 H25 )24 are diamagnetic, Au25 (SC2 H4 Ph)18 is paramagnetic, and Au55 (PPh3 )12 Cl6 , is ferromagnetic at room temperature. Understanding the magnetic properties resulting from quantum size effects in such atomically precise gold clusters could lead to new fundamental discoveries and applications.

  11. Severe hypoxia induces chemo-resistance in clinical cervical tumors through MVP over-expression

    International Nuclear Information System (INIS)

    Oxygen molecule modulates tumour response to radiotherapy. Higher radiation doses are required under hypoxic conditions to induce cell death. Hypoxia may inhibit the non-homologous end-joining DNA repair through down regulating Ku70/80 expression. Hypoxia induces drug resistance in clinical tumours, although the mechanism is not clearly elucidated. Vaults are ribonucleoprotein particles with a hollow barrel-like structure composed of three proteins: major vault protein (MVP), vault poly(ADP-ribose) polymerase, and telomerase associated protein-1 and small untranslated RNA. Over-expression of MVP has been associated with chemotherapy resistance. Also, it has been related to poor outcome in patients treated with radiotherapy alone. The aim of the present study was to assess the relation of Major Vault Protein expression and tumor hypoxia in clinical cervical tumors. MVP, p53 and angiogenesis, together with tumor oxygenation, were determined in forty-three consecutive patients suffering from localized cervix carcinoma. High MVP expression was related to severe hypoxia compared to low MVP expressing tumors (p = 0.022). Tumors over-expressing MVP also showed increased angiogenesis (p = 0.003). Besides it, in this study we show for the first time that severe tumor hypoxia is associated with high MVP expression in clinical cervical tumors. Up-regulation of MVP by hypoxia is of critical relevance as chemotherapy is currently a standard treatment for those patients. From our results it could be suggested that hypoxia not only induces increased genetic instability, oncogenic properties and metastatization, but through the correlation observed with MVP expression, another pathway of chemo and radiation resistance could be developed

  12. Pulmonary Tumor Thrombotic Microangiopathy Induced by Ureteral Carcinoma: A Necropsy Case Report

    OpenAIRE

    Marumo, Satoshi; Sakaguchi, Masahiro; TERANISHI, TAKASHI; HIGAMI, YUICHI; Koshimo, Yoshiyuki; Kato, Motokazu

    2014-01-01

    Background Pulmonary tumor thrombotic microangiopathy (PTTM) is a fatal cancer-related pulmonary complication with rapidly progressing dyspnea and pulmonary hypertension that occasionally induces sudden death. We report the first case of PTTM induced by ureter carcinoma. Case Presentation The patient was an 80-year-old Japanese female with chief complaints of dry cough and dyspnea. An echocardiogram revealed severe pulmonary hypertension. A chest radiograph showed ground glass opacity of bila...

  13. Hsp70 confines tumor progression of rat histiocytoma and impedes the cytotoxicity induced by natural killer cells and peritoneal macrophages

    Institute of Scientific and Technical Information of China (English)

    Amere Subbarao Sreedhar

    2010-01-01

    Objective:To study the role of inducible form of heat shock protein 70 (Hsp70) in the host tumor regression of rat tumor model.Methods: We examined the role of Hsp70 in host tumorigenicity andin vitro cellular cytotoxicity using a rat histocytoma. The differential tumor growth and regression kinetics were studied and correlated with the expression of Hsp70, activation of macrophages and natural killer (NK) cells, and circulating or tumor infiltrating immune molecules in the host system.Results: The sub cuteaneous (s.c.) tumor regression was correlated with increased serum cytokines such as IL-12, TNFα,IFNγ and Hsp70. Despite of similar increase of Hsp70 in intraperitoneal (i.p.) tumor implanted animals, animals succumb to tumor growth, further, evidently, no immune molecule activation was observed. The viral promoter driven Hsp70 over expression in these tumor cells restrained solid tumor growth, however, failed to inhibit ascites growth. The NK cells from s.c. immunized animals induces cytotoxicity in the presence of anti-tumor antibody, which necessitated CD40-L expression, conversely, NK cells from i.p. immunized animals failed to induce cytotoxicity. The NK cells from s.c. or i.p. implanted animals with Hsp70 positive tumor cells failed to induce such cytotoxicity. The peritoneal macrophages isolated from s.c. tumor implanted animals when co-cultured with parental BC-8 cells lyses tumor cells, nevertheless entail macrophage specific TNFα expression. On the contrary, Hsp70 expressing BC-8 tumor cells were resistant to peritoneal macrophage induced cytolysis.Conclusions:This study brings out that Hsp70 possibly involved in regulating the host tumor response and cellular cytotoxicity.

  14. Obesity decreases serum selenium levels in DMBA-induced mammary tumor using Obese Zucker Rat Model

    Science.gov (United States)

    Recently, we reported that obese Zucker rats had increased susceptibility to DMBA-induced mammary tumors compared to lean Zucker rats. Several studies suggest that lower serum selenium may play an important role in increasing the risk of several types of cancers (e.g, colon, breast and prostate canc...

  15. Correlation of drug-induced sister chromatid exchanges in vitro with in vivo tumor response

    International Nuclear Information System (INIS)

    A spontaneous hepatocarcinoma (HCa) grown in C/sub 3/Hf/Kam mice was used to investigate the ability of the in vitro sister chromatid exchange (SCE) assay to predict in vivo tumor sensitivity to 3 chemotherapeutic agents: melphalan, cis-Platinum, and BCNU. For HCa cells grown in monolayer culture, melphalan was the most efficient at inducing SCEs, followed by cis-Platinum, with BCNU inducing the least. According to in vitro cell survival curves, HCa was most sensitive to melphalan, less sensitive to cis-Platinum, and essentially resistant to BCNU. The relative antineoplastic effects of melphalan, cis-Platinum, and BCNU in vivo were compared by the response of artificial and spontaneous pulmonary metastases and solid tumors to these agents. BCNU had no effect on the number of artificial metastases, while there was a dose-dependent decrease in the number of lung nodules in mice treated with melphalan or cis-Platinum, with melphalan being the more effective. Spontaneous pulmonary metastases generated from HCa leg tumors were reduced in those mice treated with melphalan, unaffected by cis-Platinum, and increased by BCNU. In HCa leg tumors (5 to 6 mm in diameter), melphalan induced the longest growth delay, with cis-Platinum inducing less, and BCNU the least. Thus, the relative effects produced by these 3 drugs in vivo were the same as predicted by SCE assay in vitro

  16. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells.

    Directory of Open Access Journals (Sweden)

    Pawan Kaler

    Full Text Available BACKGROUND: We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells. PRINCIPAL FINDINGS: Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL. SIGNIFICANCE: We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3 halts this amplifying loop by interfering with the release of IL-1beta from macrophages

  17. The hypoxia-inducible factor-1α activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia

    Science.gov (United States)

    Zhang, Qian; Doucet, Michele; Tomlinson, Ryan E; Han, Xiaobin; Quarles, L Darryl; Collins, Michael T; Clemens, Thomas L

    2016-01-01

    Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome in which ectopic production of fibroblast growth factor 23 (FGF23) by non-malignant mesenchymal tumors causes phosphate wasting and bone fractures. Recent studies have implicated the hypoxia-inducible factor-1α (HIF-1α) in other phosphate wasting disorders caused by elevated FGF23, including X-linked hypophosphatemic rickets and autosomal dominant hypophosphatemia. Here we provide evidence that HIF-1α mediates aberrant FGF23 in TIO by transcriptionally activating its promoter. Immunohistochemical studies in phosphaturic mesenchymal tumors resected from patients with documented TIO showed that HIF-1α and FGF23 were co-localized in spindle-shaped cells adjacent to blood vessels. Cultured tumor tissue produced high levels of intact FGF23 and demonstrated increased expression of HIF-1α protein. Transfection of MC3T3-E1 and Saos-2 cells with a HIF-1α expression construct induced the activity of a FGF23 reporter construct. Prior treatment of tumor organ cultures with HIF-1α inhibitors decreased HIF-1α and FGF23 protein accumulation and inhibited HIF-1α-induced luciferase reporter activity in transfected cells. Chromatin immunoprecipitation assays confirmed binding to a HIF-1α consensus sequence within the proximal FGF23 promoter, which was eliminated by treatment with a HIF-1α inhibitor. These results show for the first time that HIF-1α is a direct transcriptional activator of FGF23 and suggest that upregulation of HIF-1α activity in TIO contributes to the aberrant FGF23 production in these patients. PMID:27468359

  18. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    International Nuclear Information System (INIS)

    Cinnamomum cassia bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde), tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8+ T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model. Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography) analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer in vitro and in vivo mouse melanoma model. Cinnamon extract strongly inhibited tumor cell proliferation in vitro and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as Bcl-2, BcL-xL and survivin. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed in vitro. Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes in vitro and in vivo mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative medicine for the treatment of diverse cancers

  19. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    Directory of Open Access Journals (Sweden)

    Lee Sung

    2010-07-01

    Full Text Available Abstract Background Cinnamomum cassia bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde, tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8+ T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model. Methods Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer in vitro and in vivo mouse melanoma model. Results Cinnamon extract strongly inhibited tumor cell proliferation in vitro and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as Bcl-2, BcL-xL and survivin. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed in vitro. Conclusion Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes in vitro and in vivo mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative

  20. The microtubule stabilizer patupilone counteracts ionizing radiation-induced matrix metalloproteinase activity and tumor cell invasion

    International Nuclear Information System (INIS)

    Ionizing radiation (IR) in combination with microtubule stabilizing agents (MSA) is a promising combined treatment modality. Supra-additive treatment responses might result from direct tumor cell killing and cooperative indirect, tumor cell-mediated effects on the tumor microenvironment. Here we investigated deregulation of matrix metalloproteinase (MMP) activity, as an important component of the tumor microenvironment, by the combined treatment modality of IR with the clinically relevant MSA patupilone. Expression, secretion and activity of MMPs and related tissue inhibitors of metalloproteinases (TIMPs) were determined in cell extracts and conditioned media derived from human fibrosarcoma HT1080 and human glioblastoma U251 tumor cells in response to treatment with IR and the MSA patupilone. Treatment-dependent changes of the invasive capacities of these tumor cell lines were analysed using a Transwell invasion assay. Control experiments were performed using TIMP-directed siRNA and TIMP-directed inhibitory antibodies. Enzymatic activity of secreted MMPs was determined after treatment with patupilone and irradiation in the human fibrosarcoma HT1080 and the human glioblastoma U251 tumor cell line. IR enhanced the activity of secreted MMPs up to 2-fold and cellular pretreatment with low dose patupilone (0.05-0.2 nM) counteracted specifically the IR-induced MMP activity. The cell invasive capacity of HT1080 and U251 cells was increased after irradiation with 2 Gy by 30% and 50%, respectively, and patupilone treatment completely abrogated IR-induced cell invasion. Patupilone did not alter the level of MMP expression, but interestingly, the protein level of secreted TIMP-1 and TIMP-2 was lower after combined treatment than after irradiation treatment alone. Furthermore, siRNA depletion of TIMP-1 or TIMP-2 prevented IR-mediated induction of MMP activity and cell invasion. These results indicate that patupilone counteracts an IR-induced MMP activation process by the

  1. A high-throughput chemically induced inflammation assay in zebrafish

    Directory of Open Access Journals (Sweden)

    Liebel Urban

    2010-12-01

    Full Text Available Abstract Background Studies on innate immunity have benefited from the introduction of zebrafish as a model system. Transgenic fish expressing fluorescent proteins in leukocyte populations allow direct, quantitative visualization of an inflammatory response in vivo. It has been proposed that this animal model can be used for high-throughput screens aimed at the identification of novel immunomodulatory lead compounds. However, current assays require invasive manipulation of fish individually, thus preventing high-content screening. Results Here we show that specific, noninvasive damage to lateral line neuromast cells can induce a robust acute inflammatory response. Exposure of fish larvae to sublethal concentrations of copper sulfate selectively damages the sensory hair cell population inducing infiltration of leukocytes to neuromasts within 20 minutes. Inflammation can be assayed in real time using transgenic fish expressing fluorescent proteins in leukocytes or by histochemical assays in fixed larvae. We demonstrate the usefulness of this method for chemical and genetic screens to detect the effect of immunomodulatory compounds and mutations affecting the leukocyte response. Moreover, we transformed the assay into a high-throughput screening method by using a customized automated imaging and processing system that quantifies the magnitude of the inflammatory reaction. Conclusions This approach allows rapid screening of thousands of compounds or mutagenized zebrafish for effects on inflammation and enables the identification of novel players in the regulation of innate immunity and potential lead compounds toward new immunomodulatory therapies. We have called this method the chemically induced inflammation assay, or ChIn assay. See Commentary article: http://www.biomedcentral.com/1741-7007/8/148.

  2. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    Sudin eBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  3. Tumor-induced rickets in a child with a central giant cell granuloma: a case report.

    Science.gov (United States)

    Fernández-Cooke, Elisa; Cruz-Rojo, Jaime; Gallego, Carmen; Romance, Ana Isabel; Mosqueda-Peña, Rocio; Almaden, Yolanda; Sánchez del Pozo, Jaime

    2015-06-01

    Tumor-induced osteomalacia/rickets is a rare paraneoplastic disorder associated with a tumor-producing fibroblast growth factor 23 (FGF23). We present a child with symptoms of rickets as the first clinical sign of a central giant cell granuloma (CGCG) with high serum levels of FGF23, a hormone associated with decreased phosphate resorption. A 3-year-old boy presented with a limp and 6 months later with painless growth of the jaw. On examination gingival hypertrophy and genu varum were observed. Investigations revealed hypophosphatemia, normal 1,25 and 25 (OH) vitamin D, and high alkaline phosphatase. An MRI showed an osteolytic lesion of the maxilla. Radiographs revealed typical rachitic findings. Incisional biopsy of the tumor revealed a CGCG with mesenchymal matrix. The CGCG was initially treated with calcitonin, but the lesions continued to grow, making it necessary to perform tracheostomy and gastrostomy. One year after onset the hyperphosphaturia worsened, necessitating increasing oral phosphate supplements up to 100 mg/kg per day of elemental phosphorus. FGF23 levels were extremely high. Total removal of the tumor was impossible, and partial reduction was achieved after percutaneous computed tomography-guided radiofrequency, local instillation of triamcinolone, and oral propranolol. Compassionate use of cinacalcet was unsuccessful in preventing phosphaturia. The tumor slowly regressed after the third year of disease; phosphaturia improved, allowing the tapering of phosphate supplements, and FGF23 levels normalized. Tumor-induced osteomalacia/rickets is uncommon in children and is challenging for physicians to diagnose. It should be suspected in patients with intractable osteomalacia or rickets. A tumor should be ruled out if FGF23 levels are high.

  4. MR-guided laser-induced thermotherapy in recurrent extrahepatic abdominal tumors

    Energy Technology Data Exchange (ETDEWEB)

    Mack, M.G.; Straub, R.; Eichler, K.; Boettger, M.; Woitaschek, D.; Vogl, T.J. [Dept. of Diagnostic and Interventional Radiology, University of Frankfurt (Germany); Roggan, A. [LMTB GmbH, Berlin (Germany)

    2001-10-01

    The aim of this study was to evaluate the feasibility of MR-guided laser-induced thermotherapy (LITT) for treatment of recurrent extrahepatic abdominal tumors. In 11 patients (6 women and 5 men; mean age 53 years, age range 29-67 years) with 14 lesions the following tumors were treated in this study: paravertebral recurrence of hypernephroma (n=1); recurrence of uterus carcinoma (n=1); recurrence of chondrosarcoma of the pubic bone (n=1); presacral recurrence of rectal carcinoma (n=1); recurrent anal cancer (n=1); metastases in the abdominal wall (n=1); and lymph node metastases from colorectal cancer (n=8). A total of 27 laser applications were performed. A fast low-angle shot 2D sequence (TR/TE/flip angle=102 ms/8 ms/70 ) was used for nearly real-time monitoring during treatment. All patients had no other treatment option. Seventeen LITT sessions were performed using a conventional laser system with a mean laser power of 5.2 W (range 4.5-5.7 W), and 10 LITT session were performed using a power laser system with a mean laser power of 28.0 W. In 10 lesions total destruction could be achieved. In the remaining recurrent tumors, significant reduction of tumor volume by 60-80% was obtained. All patients tolerated the procedure well under local anesthesia. No complications occurred during treatment. Laser-induced thermotherapy is a practicable, minimally invasive, well-tolerated technique that can produce large areas of necrosis within recurrent tumors, substantially reducing active tumor volume if not resulting in outright destruction of tumor. (orig.)

  5. Withaferin-A suppress AKT induced tumor growth in colorectal cancer cells.

    Science.gov (United States)

    Suman, Suman; Das, Trinath P; Sirimulla, Suman; Alatassi, Houda; Ankem, Murali K; Damodaran, Chendil

    2016-03-22

    The oncogenic activation of AKT gene has emerged as a key determinant of the aggressiveness of colorectal cancer (CRC); hence, research has focused on targeting AKT signaling for the treatment of advanced stages of CRC. In this study, we explored the anti-tumorigenic effects of withaferin A (WA) on CRC cells overexpressing AKT in preclinical (in vitro and in vivo) models. Our results indicated that WA, a natural compound, resulted in significant inhibition of AKT activity and led to the inhibition of cell proliferation, migration and invasion by downregulating the epithelial to mesenchymal transition (EMT) markers in CRC cells overexpressing AKT. The oral administration of WA significantly suppressed AKT-induced aggressive tumor growth in a xenograft model. Molecular analysis revealed that the decreased expression of AKT and its downstream pro-survival signaling molecules may be responsible for tumor inhibition. Further, significant inhibition of some important EMT markers, i.e., Snail, Slug, β-catenin and vimentin, was observed in WA-treated human CRC cells overexpressing AKT. Significant inhibition of micro-vessel formation and the length of vessels were evident in WA-treated tumors, which correlated with a low expression of the angiogenic marker RETIC. In conclusion, the present study emphasizes the crucial role of AKT activation in inducing cell proliferation, angiogenesis and EMT in CRC cells and suggests that WA may overcome AKT-induced cell proliferation and tumor growth in CRC. PMID:26883103

  6. Chinese medicinal herb, Acanthopanax gracilistylus, extract induces cell cycle arrest of human tumor cells in vitro.

    Science.gov (United States)

    Shan, B E; Zeki, K; Sugiura, T; Yoshida, Y; Yamashita, U

    2000-04-01

    We investigated the effect of a Chinese medicinal herb, Acanthopanax gracilistylus (AG), extract (E) on the growth of human tumor cell lines in vitro. AGE markedly inhibited the proliferation of several tumor cell lines such as MT-2, Raji, HL-60, TMK-1 and HSC-2. The activity was associated with a protein of 60 kDa, which was purified by gel-filtration chromatography. Cell viability analyses indicated that the treatment with AGE inhibits cell proliferation, but does not induce cell death. The mechanism of AGE-induced inhibition of tumor cell growth involves arrest of the cell cycle at the G(0) / G(1) stage without a direct cytotoxic effect. The cell cycle arrest induced by AGE was accompanied by a decrease of phosphorylated retinoblastoma (Rb) protein. Furthermore, cyclin-dependent kinases 2 and 4 (Cdk2 and Cdk4), which are involved in the phosphorylation of Rb, were also decreased. These results suggest that AGE inhibits tumor cell growth by affecting phosphorylated Rb proteins and Cdks. PMID:10804285

  7. Chemically Induced and Light-Independent Cryptochrome Photoreceptor Activation

    Institute of Scientific and Technical Information of China (English)

    Gesa Rosenfeldt; Rafael Mu(n)oz Viana; Henning D.Mootz; Albrecht G.Von Arnim; Alfred Batschauer

    2008-01-01

    The cryptochrome photoreceptors of higher plants are dimeric proteins. Their N-terminal photosensory domain mediates dimerization, and the unique C-terminal extension (CCT) mediates signaling. We made use of the human FK506-binding protein (FKBP) that binds with high affinity to rapamycin or rapamycin analogs (rapalogs). The FKBP-rapamycin complex is recognized by another protein, FRB, thus allowing rapamycin-induced dimerization of two target proteins. Here we demonstrate by bioluminescence resonance energy transfer (BRET) assays the applicability of this regulated dimerization system to plants. Furthermore, we show that fusion proteins consisting of the C-terminal domain of Arabidopsis cryptochrome 2 fused to FKBP and FRB and coexpressed in Arabidopsis cells specifically induce the expression of cryptochrome-controlled reporter and endogenous genes in darkness upon incubation with the rapalog. These results demonstrate that the activation of cryptochrome signal transduction can be chemically induced in a dose-dependent fashion and uncoupled from the light signal, and provide the groundwork for gain-of-function experiments to study specifically the role of photoreceptors in darkness or in signaling cross-talk even under light conditions that activate members of all photoreceptor families.

  8. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity

    DEFF Research Database (Denmark)

    Mathiassen, Søren; Lauemøller, S L; Ruhwald, Morten;

    2001-01-01

    Defined tumor-associated antigens (TAA) are attractive targets for anti-tumor immunotherapy. Here, we describe a novel genome-wide approach to identify multiple TAA from any given tumor. A panel of transplantable thymomas was established from an inbred p53-/- mouse strain. The resulting tumors were...... imprints, which may be used to identify patient-specific arrays of TAA. This may enable a multi-epitope based immunotherapy with improved prospects of clinical tumor rejection....

  9. Clinical experiences with a chemical radioprotector in tumor radiotherapy: WR-2721

    International Nuclear Information System (INIS)

    Since cysteine was found to protect lethally irradiated rats, sulfhydryl compounds that provide protection of laboratory animals against lethal doses of ionizing radiations have also been given much attention. The SH compounds have been the most extensively investigated, and β-aminoethylisothiouronium (AET) and cysteamine have been selected as being representative of those drugs that are highly protective. However, clinical application is limited, as the toxicity of these compounds is high. In a series of experiments to reevaluate radioprotective agents with low toxicity, the authors found that 2-mercaptopropionylglycine (MPG) and adrenochrome monoguangylhydrazone methanesulfonate (AMM) have a potent radioprotector effect in a dose far below their toxic doses in both mice and humans. Recently, the development of effective thiophosphate derivatives of cysteamine, namely WR-2721 [S-2-(3-amino-propylaminoethyl)phosphorothioate] by the U.S. Army Medical Research and Development Commands, led to a reevaluation of these compounds and their potential in radiotherapy. Initial investigations indicated that WR-2721 provided a considerable degree of radioprotection to normal tissues. This compound provided excellent protection for normal tissues (DMF = 2-2.5) but little protection for the transplanted tumor. Thus this drug may have a differential protection in vivo and may be useful for improving the therapeutic ratio in cancer radiotherapy. The results of animal and chemical experiments in Japan are summarized herein

  10. The neuroimmune changes induced by cohabitation with an Ehrlich tumor-bearing cage mate rely on olfactory information.

    Science.gov (United States)

    Alves, Glaucie J; Ribeiro, Alison; Palermo-Neto, João

    2012-01-01

    Cohabitation for 14 days with Ehrlich tumor-bearing mice was shown to increase locomotor activity, to decrease hypothalamic noradrenaline (NA) levels, to increase NA turnover and to decrease innate immune responses and decrease the animals' resistance to tumor growth. Cage mates of a B16F10 melanoma-bearer mice were also reported to show neuroimmune changes. Chemosignals released by Ehrlich tumor-bearing mice have been reported to be relevant for the neutrophil activity changes induced by cohabitation. The present experiment was designed to further analyze the effects of odor cues on neuroimmune changes induced by cohabitation with a sick cage mate. Specifically, the relevance of chemosignals released by an Ehrlich tumor-bearing mouse was assessed on the following: behavior (open-field and plus maze); hypothalamic NA levels and turnover; adrenaline (A) and NA plasmatic levels; and host resistance induced by tumor growth. To comply with such objectives, devices specifically constructed to analyze the influence of chemosignals released from tumor-bearing mice were employed. The results show that deprivation of odor cues released by Ehrlich tumor-bearing mice reversed the behavioral, neurochemical and immune changes induced by cohabitation. Mice use scents for intraspecies communication in many social contexts. Tumors produce volatile organic compounds released into the atmosphere through breath, sweat, and urine. Our results strongly suggest that volatile compounds released by Ehrlich tumor-injected mice are perceived by their conspecifics, inducing the neuroimmune changes reported for cohabitation with a sick companion.

  11. Selenium Induces an Anti-tumor Effect Via Inhibiting Intratumoral Angiogenesis in a Mouse Model of Transplanted Canine Mammary Tumor Cells.

    Science.gov (United States)

    Li, Wenyu; Guo, Mengyao; Liu, Yuzhu; Mu, Weiwei; Deng, Ganzhen; Li, Chengye; Qiu, Changwei

    2016-06-01

    Selenium (Se) has been widely reported to possess anti-tumor effects. Angiogenesis is the formation of new blood vessels and is required to supply oxygen, nutrients, and growth factors for tumor growth, progression, and metastasis. To explore whether the anti-tumor effect of Se was associated with angiogenesis in vivo, we studied the effects of sodium selenite (Sel) and methylseleninic acid (MSA) on tumors induced by canine mammary tumor cells (CMT1211) in mice; cyclophosphamide (CTX) served as a positive control. The results showed that the Se content was significantly increased in the Sel and MSA groups. Se significantly inhibited the tumor weights and volumes. Large necrotic areas and scattered and abnormal small necrotic areas were observed in the Se treatment group. Immunofluorescence double staining showed a reduction in the microvessel density (MVD) and increment in the vessel maturation index (VMI) compared with the untreated control group. As expected, the protein and mRNA levels of the angiogenesis factors angiopoietin-2 (Ang-2), platelet-derived growth factor (PDGF), and vascular endothelial growth factor (VEGF) were decreased in the Se-treated tumors by IHC, as shown by western blotting and RT-QPCR. We also found that organic Se MSA provided stronger inhibition of tumor growth compared with inorganic sodium selenite (Sel). Altogether, our results indicated that Se exerted anti-tumor effects in vivo at least partially by inhibiting angiogenic factors. PMID:26507439

  12. Tumor-induced osteomalacia with elevated fibroblast growth factor 23: a case of phosphaturic mesenchymal tumor mixed with connective tissue variants and review of the literature

    Institute of Scientific and Technical Information of China (English)

    Fang-Ke Hu; Fang Yuan; Cheng-Ying Jiang; Da-Wei Lv; Bei-Bei Mao; Qiang Zhang; Zeng-Qiang Yuan; Yan Wang

    2011-01-01

    Tumor-induced osteomalacia (TIO),or oncogenic osteomalacia (OOM),is a rare acquired paraneoplastic disease characterized by renal phosphate wasting and hypophosphatemia.Recent evidence shows that tumor-overexpressed fibroblast growth factor 23 (FGF23) is responsible for the hypophosphatemia and osteomalacia.The tumors associated with TIO are usually phosphaturic mesenchymal tumor mixed connective tissue variants (PMTMCT).Surgical removal of the responsible tumors is clinically essential for the treatment of TIO.However,identifying the responsible tumors is often difficult.Here,we report a case of a TIO patient with elevated serum FGF23 levels suffering from bone pain and hypophosphatemia for more than three years.A tumor was finally located in first metacarpal bone by octreotide scintigraphy and she was cured by surgery.After complete excision of the tumor,serum FGF23 levels rapidly decreased,dropping to 54.7% of the preoperative level one hour after surgery and eventually to a little below normal.The patient's serum phosphate level rapidly improved and returned to normal level in four days.Accordingly,her clinical symptoms were greatly improved within one month after surgery.There was no sign of tumor recurrence during an 18-month period of follow-up.According to pathology,the tumor was originally diagnosed as “glomangioma” based upon a biopsy sample,“proliferative giant cell tumor of tendon sheath” based upon sections of tumor,and finally diagnosed as PMTMCT by consultation one year after surgery.In conclusion,although an extremely rare disease,clinicians and pathologists should be aware of the existence of TIO and PMTMCT,respectively.

  13. Peroxisome Proliferator-Activated Receptors (PPARs as Potential Inducers of Antineoplastic Effects in CNS Tumors

    Directory of Open Access Journals (Sweden)

    Lars Tatenhorst

    2008-01-01

    Full Text Available The peroxisome proliferator-activated receptors (PPARs are ligand-inducible transcription factors which belong to the superfamily of nuclear hormone receptors. In recent years it turned out that natural as well as synthetic PPAR agonists exhibit profound antineoplastic as well as redifferentiation effects in tumors of the central nervous system (CNS. The molecular understanding of the underlying mechanisms is still emerging, with partially controverse findings reported by a number of studies dealing with the influence of PPARs on treatment of tumor cells in vitro. Remarkably, studies examining the effects of these drugs in vivo are just beginning to emerge. However, the agonists of PPARs, in particular the thiazolidinediones, seem to be promising candidates for new approaches in human CNS tumor therapy.

  14. Mediastinal Yolk Sac Tumor Producing Protein Induced by Vitamin K Absence or Antagonist-II.

    Science.gov (United States)

    Akutsu, Noriyuki; Adachi, Yasushi; Isosaka, Mai; Mita, Hiroaki; Takagi, Hideyasu; Sasaki, Shigeru; Yamamoto, Hiroyuki; Arimura, Yoshiaki; Ishii, Yoshifumi; Masumori, Naoya; Endo, Takao; Shinomura, Yasuhisa

    2015-01-01

    Extragonadal yolk sac tumors (YSTs) are rare. We herein report the case of a 66-year-old man with mediastinal, lung and liver tumors. The largest mass was located in the liver and contained a high concentration of protein induced by vitamin K absence or antagonist-II (PIVKA-II) and alpha-fetoprotein. Therefore, the lesion was difficult to distinguish from hepatocellular carcinoma. Finally, YST was diagnosed based on the results of a liver biopsy. Although chemotherapy was effective, the patient died of respiratory failure. The autopsy revealed primary mediastinal YST. In the current report, we describe this case of PIVKA-II-producing YST and review previous cases of PIVKA-II-producing tumors other than hepatoma.

  15. Mediastinal Yolk Sac Tumor Producing Protein Induced by Vitamin K Absence or Antagonist-II.

    Science.gov (United States)

    Akutsu, Noriyuki; Adachi, Yasushi; Isosaka, Mai; Mita, Hiroaki; Takagi, Hideyasu; Sasaki, Shigeru; Yamamoto, Hiroyuki; Arimura, Yoshiaki; Ishii, Yoshifumi; Masumori, Naoya; Endo, Takao; Shinomura, Yasuhisa

    2015-01-01

    Extragonadal yolk sac tumors (YSTs) are rare. We herein report the case of a 66-year-old man with mediastinal, lung and liver tumors. The largest mass was located in the liver and contained a high concentration of protein induced by vitamin K absence or antagonist-II (PIVKA-II) and alpha-fetoprotein. Therefore, the lesion was difficult to distinguish from hepatocellular carcinoma. Finally, YST was diagnosed based on the results of a liver biopsy. Although chemotherapy was effective, the patient died of respiratory failure. The autopsy revealed primary mediastinal YST. In the current report, we describe this case of PIVKA-II-producing YST and review previous cases of PIVKA-II-producing tumors other than hepatoma. PMID:26073245

  16. Light-induced chemical vapour deposition painting with titanium dioxide

    Science.gov (United States)

    Halary-Wagner, E.; Bret, T.; Hoffmann, P.

    2003-03-01

    Light-induced chemical vapour deposits of titanium dioxide are obtained from titanium tetra-isopropoxide (TTIP) in an oxygen and nitrogen atmosphere with a long pulse (250 ns) 308 nm XeCl excimer laser using a mask projection set-up. The demonstrated advantages of this technique are: (i) selective area deposition, (ii) precise control of the deposited thickness and (iii) low temperature deposition, enabling to use a wide range of substrates. A revolving mask system enables, in a single reactor load, to deposit shapes of controlled heights, which overlap to build up a complex pattern. Interferential multi-coloured deposits are achieved, and the process limitations (available colours and resolution) are discussed.

  17. Quantum measurement corrections to chemically induced dynamic nuclear polarization

    CERN Document Server

    Kominis, I K

    2013-01-01

    Chemically induced dynamic nuclear polarization has emerged as a universal signature of spin order in photosynthetic reaction centers. Such polarization, significantly enhanced above thermal equilibrium, is known to result from the nuclear spin sorting inherent in the radical pair mechanism underlying long-lived charge-separated states in photosynthetic reaction centers. We will here show that the recently understood fundamental quantum dynamics of radical-ion-pair reactions open up a new and completely unexpected venue towards obtaining CIDNP signals. The fundamental decoherence mechanism inherent in the recombination process of radical pairs is shown to produce nuclear spin polarizations on the order of $10^4$ times or more higher than thermal equilibrium values at low fields relevant to natural photosynthesis in earth's magnetic field. This opens up the possibility of a fundamentally new exploration of the biological significance of high nuclear polarizations in photosynthesis.

  18. Eugenol precludes cutaneous chemical carcinogenesis in mouse by preventing oxidative stress and inflammation and by inducing apoptosis.

    Science.gov (United States)

    Kaur, Gurpreet; Athar, Mohammad; Alam, M Sarwar

    2010-03-01

    The present study was designed to investigate the protective efficacy of eugenol against skin cancer and probe into the mechanistic aspects. Skin tumors were initiated by applying 160 nmol DMBA and promoted by twice weekly applications of 8.5 nmol TPA for 28 wk. All mice developed tumors by 13 wk of promotion. However, in mice pretreated with 30 microL eugenol, no tumors were detected until 8 wk (following anti-initiation protocol) and until 14 wk (following antipromotion protocol) of tumor promotion. PCNA and TUNEL immunohistochemistry of tumors revealed eugenol to ameliorate cell proliferation and elevate apoptosis respectively. The effect of eugenol was assessed on specific stages of carcinogenesis. Initiation with DMBA led to a significant upregulation of p53 expression with a concomitant increase in p21(WAF1) levels in epidermal cells indicating induction of damage to the DNA. However, pretreatment with eugenol led to overexpression of these genes, which probably helped stimulate apoptosis of the initiated cells. To ascertain the molecular mechanisms implicated in the antitumor promoting activity of eugenol, its effect was investigated on markers of tumor promotion and inflammation: ODC activity and iNOS and COX-2 expression, and on levels of proinflammatory cytokines (IL-6, TNF-alpha, and PGE(2)). Eugenol markedly inhibited all. Eugenol also inhibited the upstream signaling molecule: NF-kappaB, which regulates the expression of these genes. TPA-induced depletion of cutaneous GSH and antioxidant enzymes armory was also precluded by eugenol. From these results, it could be concluded that eugenol markedly protects against chemically induced skin cancer and acts possibly by virtue of its antiproliferative, anti-inflammatory, and antioxidant activities. PMID:20043298

  19. Eugenol precludes cutaneous chemical carcinogenesis in mouse by preventing oxidative stress and inflammation and by inducing apoptosis.

    Science.gov (United States)

    Kaur, Gurpreet; Athar, Mohammad; Alam, M Sarwar

    2010-03-01

    The present study was designed to investigate the protective efficacy of eugenol against skin cancer and probe into the mechanistic aspects. Skin tumors were initiated by applying 160 nmol DMBA and promoted by twice weekly applications of 8.5 nmol TPA for 28 wk. All mice developed tumors by 13 wk of promotion. However, in mice pretreated with 30 microL eugenol, no tumors were detected until 8 wk (following anti-initiation protocol) and until 14 wk (following antipromotion protocol) of tumor promotion. PCNA and TUNEL immunohistochemistry of tumors revealed eugenol to ameliorate cell proliferation and elevate apoptosis respectively. The effect of eugenol was assessed on specific stages of carcinogenesis. Initiation with DMBA led to a significant upregulation of p53 expression with a concomitant increase in p21(WAF1) levels in epidermal cells indicating induction of damage to the DNA. However, pretreatment with eugenol led to overexpression of these genes, which probably helped stimulate apoptosis of the initiated cells. To ascertain the molecular mechanisms implicated in the antitumor promoting activity of eugenol, its effect was investigated on markers of tumor promotion and inflammation: ODC activity and iNOS and COX-2 expression, and on levels of proinflammatory cytokines (IL-6, TNF-alpha, and PGE(2)). Eugenol markedly inhibited all. Eugenol also inhibited the upstream signaling molecule: NF-kappaB, which regulates the expression of these genes. TPA-induced depletion of cutaneous GSH and antioxidant enzymes armory was also precluded by eugenol. From these results, it could be concluded that eugenol markedly protects against chemically induced skin cancer and acts possibly by virtue of its antiproliferative, anti-inflammatory, and antioxidant activities.

  20. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in glioma U87 cells

    Institute of Scientific and Technical Information of China (English)

    Fei Zhong; Xiangyuan Wu; Chunkui Shao; Qu Lin; Min Dong; Jingyun Wen; Xiaokun Ma; Li Wei

    2010-01-01

    Studies have shown that tumor necrosis factor-related apoptosis-inducing ligand(TRAIL)exhibits strong induction of apoptosis in human glioma cells.It remains unclear whether the mitochondrion pathway,an important apoptosis signaling pathway,is involved in TRAIL-induced glioma cell apoptosis.In the present study,in vitro cultured human glioma U87 cells were treated with human recombinant soluble TRAIL.Apoptosis of glioma U87 cells,mitochondrial transmembrane potential(Δψm),cytoplasmic cytochrome c concentration and changes in caspase-3,-8 and-9 activity following human recombinant soluble TRAIL treatment were investigated to determine the mechanism of glioma U87 cell apoptosis induced by TRAIL.Additionally,blocking caspase-8resulted in TRAIL-induced mitochondrion pathway activation,suggesting that TRAIL,through activating caspase-8,initiated a series of mitochondrial events and resulted in apoptosis of glioma U87 cells.

  1. T cell receptor transgenic lymphocytes infiltrating murine tumors are not induced to express foxp3

    Directory of Open Access Journals (Sweden)

    Quatromoni Jon G

    2011-11-01

    Full Text Available Abstract Regulatory T cells (Treg that express the transcription factor Foxp3 are enriched within a broad range of murine and human solid tumors. The ontogeny of these Foxp3 Tregs - selective accumulation or proliferation of natural thymus-derived Treg (nTreg or induced Treg (iTreg converted in the periphery from naïve T cells - is not known. We used several strains of mice in which Foxp3 and EGFP are coordinately expressed to address this issue. We confirmed that Foxp3-positive CD4 T cells are enriched among tumor-infiltrating lymphocytes (TIL and splenocytes (SPL in B16 murine melanoma-bearing C57BL/6 Foxp3EGFP mice. OT-II Foxp3EGFP mice are essentially devoid of nTreg, having transgenic CD4 T cells that recognize a class II-restricted epitope derived from ovalbumin; Foxp3 expression could not be detected in TIL or SPL in these mice when implanted with ovalbumin-transfected B16 tumor (B16-OVA. Likewise, TIL isolated from B16 tumors implanted in Pmel-1 Foxp3EGFP mice, whose CD8 T cells recognize a class I-restricted gp100 epitope, were not induced to express Foxp3. All of these T cell populations - wild-type CD4, pmel CD8 and OTII CD4 - could be induced in vitro to express Foxp3 by engagement of their T cell receptor (TCR and exposure to transforming growth factor β (TGFβ. B16 melanoma produces TGFβ and both pmel CD8 and OTII CD4 express TCR that should be engaged within B16 and B16-OVA respectively. Thus, CD8 and CD4 transgenic T cells in these animal models failed to undergo peripheral induction of Foxp3 in a tumor microenvironment.

  2. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism

    Science.gov (United States)

    Sanchez-Alvarez, Rosa; Martinez-Outschoorn, Ubaldo E.; Lin, Zhao; Lamb, Rebecca; Hulit, James; Howell, Anthony; Sotgia, Federica; Rubin, Emanuel; Lisanti, Michael P.

    2013-01-01

    Little is known about how alcohol consumption promotes the onset of human breast cancer(s). One hypothesis is that ethanol induces metabolic changes in the tumor microenvironment, which then enhances epithelial tumor growth. To experimentally test this hypothesis, we used a co-culture system consisting of human breast cancer cells (MCF7) and hTERT-immortalized fibroblasts. Here, we show that ethanol treatment (100 mM) promotes ROS production and oxidative stress in cancer-associated fibroblasts, which is sufficient to induce myofibroblastic differentiation. Oxidative stress in stromal fibroblasts also results in the onset of autophagy/mitophagy, driving the induction of ketone body production in the tumor microenvironment. Interestingly, ethanol has just the opposite effect in epithelial cancer cells, where it confers autophagy resistance, elevates mitochondrial biogenesis and induces key enzymes associated with ketone re-utilization (ACAT1/OXCT1). During co-culture, ethanol treatment also converts MCF7 cells from an ER(+) to an ER(-) status, which is thought to be associated with “stemness,” more aggressive behavior and a worse prognosis. Thus, ethanol treatment induces ketone production in cancer-associated fibroblasts and ketone re-utilization in epithelial cancer cells, fueling tumor cell growth via oxidative mitochondrial metabolism (OXPHOS). This “two-compartment” metabolic model is consistent with previous historical observations that ethanol is first converted to acetaldehyde (which induces oxidative stress) and then ultimately to acetyl-CoA (a high-energy mitochondrial fuel), or can be used to synthesize ketone bodies. As such, our results provide a novel mechanism by which alcohol consumption could metabolically convert “low-risk” breast cancer patients to “high-risk” status, explaining tumor recurrence or disease progression. Hence, our findings have clear implications for both breast cancer prevention and therapy. Remarkably, our results

  3. Soy isoflavone exposure through all life stages accelerates 17β-estradiol-induced mammary tumor onset and growth, yet reduces tumor burden, in ACI rats.

    Science.gov (United States)

    Möller, Frank Josef; Pemp, Daniela; Soukup, Sebastian T; Wende, Kathleen; Zhang, Xiajie; Zierau, Oliver; Muders, Michael H; Bosland, Maarten C; Kulling, Sabine E; Lehmann, Leane; Vollmer, Günter

    2016-08-01

    There is an ongoing debate whether the intake of soy-derived isoflavones (sISO) mediates beneficial or adverse effects with regard to breast cancer risk. Therefore, we investigated whether nutritional exposure to a sISO-enriched diet from conception until adulthood impacts on 17β-estradiol (E2)-induced carcinogenesis in the rat mammary gland (MG). August-Copenhagen-Irish (ACI) rats were exposed to dietary sISO from conception until postnatal day 285. Silastic tubes containing E2 were used to induce MG tumorigenesis. Body weight, food intake, and tumor growth were recorded weekly. At necropsy, the number, position, size, and weight of each tumor were determined. Plasma samples underwent sISO analysis, and the morphology of MG was analyzed. Tumor incidence and multiplicity were reduced by 20 and 56 %, respectively, in the sISO-exposed rats compared to the control rats. Time-to-tumor onset was shortened from 25 to 20 weeks, and larger tumors developed in the sISO-exposed rats. The histological phenotype of the MG tumors was independent of the sISO diet received, and it included both comedo and cribriform phenotypes. Morphological analyses of the whole-mounted MGs also showed no diet-dependent differences. Lifelong exposure to sISO reduced the overall incidence of MG carcinomas in ACI rats, although the time-to-tumor was significantly shortened. PMID:26861028

  4. Low-dose steroid-induced tumor lysis syndrome in a hepatocellular carcinoma patient.

    Science.gov (United States)

    Kim, Jin Ok; Jun, Dae Won; Tae, Hye Jin; Lee, Kang Nyeong; Lee, Hang Lak; Lee, Oh Young; Choi, Ho Soon; Yoon, Byung Chul; Hahm, Joon Soo

    2015-03-01

    Tumor lysis syndrome is rare in hepatocellular carcinoma (HCC), but it has been reported more frequently recently in response to treatments such as transcatheter arterial chemoembolization (TACE), radiofrequency thermal ablation (RFTA), and sorafenib. Tumor lysis syndrome induced by low-dose steroid appears to be very unusual in HCC. We report a patient with hepatitis-C-related liver cirrhosis and HCC in whom tumor lysis syndrome occurred due to low-dose steroid (10 mg of prednisolone). The patient was a 90-year-old male who presented at the emergency room of our hospital with general weakness and poor oral intake. He had started to take prednisolone to treat adrenal insufficiency 2 days previously. Laboratory results revealed hyperuricemia, hyperphosphatemia, and increased creatinine. These abnormalities fulfilled the criteria in the Cairo-Bishop definition of tumor lysis syndrome. Although the patient received adequate hydration, severe metabolic acidosis and acute kidney injury progressed unabated. He finally developed multiple organ failure, and died 3 days after admission. This was a case of tumor lysis syndrome caused by administration of low-dose steroid in a patient with HCC. PMID:25834806

  5. Charged impurity-induced scatterings in chemical vapor deposited graphene

    Science.gov (United States)

    Li, Ming-Yang; Tang, Chiu-Chun; Ling, D. C.; Li, L. J.; Chi, C. C.; Chen, Jeng-Chung

    2013-12-01

    We investigate the effects of defect scatterings on the electric transport properties of chemical vapor deposited (CVD) graphene by measuring the carrier density dependence of the magneto-conductivity. To clarify the dominant scattering mechanism, we perform extensive measurements on large-area samples with different mobility to exclude the edge effect. We analyze our data with the major scattering mechanisms such as short-range static scatters, short-range screened Coulomb disorders, and weak-localization (WL). We establish that the charged impurities are the predominant scatters because there is a strong correlation between the mobility and the charge impurity density. Near the charge neutral point (CNP), the electron-hole puddles that are induced by the charged impurities enhance the inter-valley scattering, which is favorable for WL observations. Away from the CNP, the charged-impurity-induced scattering is weak because of the effective screening by the charge carriers. As a result, the local static structural defects govern the charge transport. Our findings provide compelling evidence for understanding the scattering mechanisms in graphene and pave the way for the improvement of fabrication techniques to achieve high-quality CVD graphene.

  6. Chemopreventive effect of Quercus infectoria against chemically induced renal toxicity and carcinogenesis

    OpenAIRE

    Rehman, Muneeb U.; Mir Tahir, Farrah Ali; Wajhul Qamar; Rehan Khan; Abdul Quaiyoom Khan; Abdul Lateef; Oday-O-Hamiza; Sarwat Sultana

    2012-01-01

    In this study we have shown that Quercus infectoria attenuates Fe- NTA induced renal oxidative stress, hyperproliferative response and renal carcinogenesis in rats. Fe-NTA promoted DEN (N-diethyl nitrosamine) initiated renal carcinogenesis by increasing the percentage incidence of tumors and induces early tumor markers viz. ornithine decarboxylase (ODC) level and PCNA expression. Fe- NTA (9 mg Fe/kg body weight, intraperitoneally) enhances renal Malondialdehyde, xanthine oxidase and hydrogen ...

  7. Simultaneous Targeting of Tumor Antigens and the Tumor Vasculature using T Lymphocyte Transfer Synergize to Induce Regression of Established Tumors in Mice

    Science.gov (United States)

    Chinnasamy, Dhanalakshmi; Tran, Eric; Yu, Zhiya; Morgan, Richard A.; Restifo, Nicholas P.; Rosenberg, Steven A.

    2013-01-01

    Most systemic cancer therapies target tumor cells directly though there is increasing interest in targeting the tumor stroma that can comprise a substantial portion of the tumor mass. We report here a synergy between two T cell therapies, one directed against the stromal tumor vasculature and the other directed against antigens expressed on the tumor cell. Simultaneous transfer of genetically engineered syngeneic T cells expressing a chimeric antigen receptor targeting the Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2; KDR) that is over expressed on tumor vasculature and T cells specific for the tumor antigens gp100 (PMEL), TRP-1 (TYRP1), or TRP-2 (DCT) synergistically eradicated established B16 melanoma tumors in mice and dramatically increased the tumor-free survival of mice compared to treatment with either cell type alone or T cells coexpressing these two targeting molecules. Host lymphodepletion prior to cell transfer was required to mediate the anti-tumor effect. The synergistic antitumor response was accompanied by a significant increase in the infiltration and expansion and/or persistence of the adoptively transferred tumor antigen-specific T cells in the tumor microenvironment and thus enhanced their anti-tumor potency. The data presented here emphasize the possible beneficial effects of combining anti-angiogenic with tumor-specific immunotherapeutic approaches for the treatment of patients with cancer. PMID:23633494

  8. Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation.

    Directory of Open Access Journals (Sweden)

    Adam D Cohen

    Full Text Available In vivo GITR ligation has previously been shown to augment T-cell-mediated anti-tumor immunity, yet the underlying mechanisms of this activity, particularly its in vivo effects on CD4+ foxp3+ regulatory T cells (Tregs, have not been fully elucidated. In order to translate this immunotherapeutic approach to the clinic it is important gain better understanding of its mechanism(s of action. Utilizing the agonist anti-GITR monoclonal antibody DTA-1, we found that in vivo GITR ligation modulates regulatory T cells (Tregs directly during induction of melanoma tumor immunity. As a monotherapy, DTA-1 induced regression of small established B16 melanoma tumors. Although DTA-1 did not alter systemic Treg frequencies nor abrogate the intrinsic suppressive activity of Tregs within the tumor-draining lymph node, intra-tumor Treg accumulation was significantly impaired. This resulted in a greater Teff:Treg ratio and enhanced tumor-specific CD8+ T-cell activity. The decreased intra-tumor Treg accumulation was due both to impaired infiltration, coupled with DTA-1-induced loss of foxp3 expression in intra-tumor Tregs. Histological analysis of B16 tumors grown in Foxp3-GFP mice showed that the majority of GFP+ cells had lost Foxp3 expression. These "unstable" Tregs were absent in IgG-treated tumors and in DTA-1 treated TDLN, demonstrating a tumor-specific effect. Impairment of Treg infiltration was lost if Tregs were GITR(-/-, and the protective effects of DTA-1 were reduced in reconstituted RAG1(-/- mice if either the Treg or Teff subset were GITR-negative and absent if both were negative. Our results demonstrate that DTA-1 modulates both Teffs and Tregs during effective tumor treatment. The data suggest that DTA-1 prevents intra-tumor Treg accumulation by altering their stability, and as a result of the loss of foxp3 expression, may modify their intra-tumor suppressive capacity. These findings provide further support for the continued development of agonist

  9. Peroxisome Proliferator-Activated Receptors (PPARs) as Potential Inducers of Antineoplastic Effects in CNS Tumors

    OpenAIRE

    Lars Tatenhorst; Eric Hahnen; Heneka, Michael T

    2008-01-01

    The peroxisome proliferator-activated receptors (PPARs) are ligand-inducible transcription factors which belong to the superfamily of nuclear hormone receptors. In recent years it turned out that natural as well as synthetic PPAR agonists exhibit profound antineoplastic as well as redifferentiation effects in tumors of the central nervous system (CNS). The molecular understanding of the underlying mechanisms is still emerging, with partially controverse findings reported by a number of studie...

  10. Xanthogranulomatous pseudotumor of stomach induced by perforated peptic ulcer mimicking a stromal tumor.

    Science.gov (United States)

    Lai, Hsin-Yi; Chen, Jeon-Hor; Chen, Chi-Kuan; Chen, Yung-Fang; Ho, Yung-Jen; Yang, Mei-Due; Shen, Wu-Chung

    2006-10-01

    Perforation is a serious complication of peptic ulcer disease occurring in 5% of such patients. Occasionally, the perforation may be sealed off by the omentum or the adjacent organs. Sealed perforated ulcer with pseudotumor formation is very rarely encountered. Here we present a case of gastric pseudotumor induced by perforation of a peptic ulcer. The imaging features in a barium sulfate study and computed tomography mimic an intramural tumor of the stomach.

  11. Cellular Mechanism of Newly Synthesized Indoledione Derivative-induced Immunological Death of Tumor Cell

    OpenAIRE

    Oh, Su-Jin; Ryu, Chung-Kyu; Baek, So-Young; Lee, Hyunah

    2011-01-01

    Background EY-6 is one of the newly synthesized indoledione derivatives to induce tumor cell-specific cell death. In this study, we investigated the mechanism of immunological death induced by EY-6 at mouse colon cancer cell as well as at the normal immune cell represented by dendritic cell. Methods C57BL/6 mouse syngeneic colon cancer cell MC38 was treated with EY-6, and analyzed by MTT for viability test, flow cytometry for confirming surface expressing molecules and ELISA for detection of ...

  12. ANTICANCER EFFECTS OF CARICA PAPAYA IN EXPERIMENTAL INDUCED MAMMARY TUMORS IN RATS

    Directory of Open Access Journals (Sweden)

    Gurudatta M, Deshmukh YA, Naikwadi A A

    2015-07-01

    Full Text Available Objective: To evaluate the anticancer effect of Carica papaya in DMBA induced mammary tumors in rats. Methods: Wistar rats were divided in to five groups (n=6, Group-I (Normal control administered vehicle olive oil, Group-II, Group-III ,Group-IV and V induced mammary tumors by administering single dose of DMBA (7,12 Dimethyl benz(Aanthracene orally 65 mg/kg. Group-III was administered aqueous leaf extract of Carica papaya (ALQECP in a dose of 200 mg/kg body wt for a period of 3 months, group-IV has given ALQECP 200 mg/kg body wt for a period of 21 days post 3 months of tumor induction, group-V rats were administered a small dose of Carica papaya extract intra tumor locally in the region of tumor. Results: Values of CA15-3 were increased in group-II rats (tumor control significantly, whereas in group-III (prevention group the levels of CA15-3 were found to be reduced substantially and the P value < 0.001. Similarly, CA-15-3 levels were reduced significantly in group-IV (treatment groupand P<0.005. The levels of LDH were seen to be increased in group-II, where as in group-III LDH levels were decreased and P<0.001.similarly group-IV LDH levels also reduced significantly but not to the level of group-III. Conclusion: Among the various markers for the detection of cancer antigen-15(CA15-3 and lactate dehydrogenase (LDH are important biochemical parameters that give a clear understanding of the progression and proliferation of cancer cells. In this study it was found that there is increase in the levels of markers such as CA15-3 and LDH and also the tumor volume in tumor control, these marker levels were decreased by the administration of aqueous leaf extract of Carica papaya in a dose of 200 mg/kg body wt. ALQECP not only prevented the progression of cancer growth but also has significant effect in reducing the both CA15-3 and LDH levels in treatment group.

  13. Effect of oral Lactococcus lactis containing endostatin on 1,2-dimethvlhvdrazine-induced colon tumor in rats

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Chong-Bi Li

    2005-01-01

    AIM: To investigate the effects of oral Lactococcus lactis (Llactis) containing endostatin on 1, 2-dimethylhydrazine (DMH)-induced rat colorectal cancer.METHODS: Recombinant endostatin was produced by the expression of L lactis NZ9000. Sixty male Wistar rats were injected with DMH (40 mg/kg body weight) subcutaneously once a week for 10 wk to induce colorectal cancer. The rats were gavaged with 1 mL of endostatin at a dose of 1×108/d and fed with the basal diet. The animals were killed after 22 wk for histopathological examination. The total time of experimental observation was 58 wk.RESULTS: Rat endostatin protein was expressed in L lactis. Recombinant endostatin exhibited a significant effect on colorectal cancer (P<0.05). Furthermore, the mean survival time of the rats treated with endostatin was longer than that of the animals treated with DMH.There was no statistically significant difference between the rats treated with endostatin and those treated with DMH. The results showed that endostatin could not result in complete cure.CONCLUSION: Oral endostatin exerts an influence on the progression of chemically induced colon tumors.

  14. Effects of 900 MHz GSM wireless communication signals on DMBA-induced mammary tumors in rats.

    Science.gov (United States)

    Yu, Da; Shen, Yonghao; Kuster, Niels; Fu, Yiti; Chiang, Huai

    2006-02-01

    The purpose of the study was to investigate whether exposure to 900 MHz GSM wireless communication signals enhances mammary tumor development and growth induced by low-dose DMBA. Five hundred female Sprague-Dawley rats were treated with a single dose of 35 mg/kg DMBA and then divided into five groups in a blinded fashion: one cage control group and four exposure groups, including three microwave exposure groups and one sham exposure with specific absorption rates (SARs) of 4.0, 1.33, 0.44 and 0 W/kg, respectively. Exposure started on the day after DMBA administration and lasted 4 h/day, 5 days/week for 26 weeks. Rats were weighed and palpated weekly for the presence of tumors and were killed humanely at the end of the 26-week exposure period. All mammary glands were examined histologically. There were no statistically significant differences in body weight between sham- and GSM microwave-exposed groups. No significant differences in overall mammary tumor incidence, latency to tumor onset, tumor multiplicity, or tumor size were observed between microwave- and sham-exposed groups. There was a tendency for reduction of mammary adenocarcinoma incidence in the lowest microwave exposure group (0.44 W/ kg) compared with the sham-exposed group (P = 0.058). Additionally, a higher incidence of adenocarcinoma was noticed in the 4.0 W/kg group from the 15th to 26th weeks, especially in the 19th week (P = 0.358 compared to sham). However, neither tendency was statistically significant; thus this study does not provide evidence that GSM microwave exposure promotes mammary tumor development in rats. In the present study there were significant differences between the cage controls and the experimental groups (sham and exposure). Body weight and mammary tumor (malignant plus benign) incidence in the cage control group were significantly higher than in the sham- and GSM microwave-exposed groups. The latency to the mammary tumor onset was significantly shorter in the cage control

  15. Staphylococcus aureus - induced tumor necrosis factor - related apoptosis - inducing ligand expression mediates apoptosis and caspase-8 activation in infected osteoblasts

    Directory of Open Access Journals (Sweden)

    Bost Kenneth L

    2003-04-01

    Full Text Available Abstract Background Staphylococcus aureus infection of normal osteoblasts induces expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Results Normal osteoblasts were incubated in the presence of purified bacterial products over a range of concentrations. Results demonstrate that purified surface structures and a selected superantigen present in the extracellular environment are not capable of inducing TRAIL expression by osteoblasts. Osteoblasts were co-cultured with S. aureus at various multiplicities of infection utilizing cell culture chamber inserts. Results of those experiments suggest that direct contact between bacteria and osteoblasts is necessary for optimal TRAIL induction. Finally, S. aureus infection of osteoblasts in the presence of anti-TRAIL antibody demonstrates that TRAIL mediates caspase-8 activation and apoptosis of infected cells. Conclusions Collectively, these findings suggest a mechanism whereby S. aureus mediates bone destruction via induction of osteoblast apoptosis.

  16. Host genetic influence on papillomavirus-induced tumors in the horse.

    Science.gov (United States)

    Staiger, Elizabeth A; Tseng, Chia T; Miller, Donald; Cassano, Jennifer M; Nasir, Lubna; Garrick, Dorian; Brooks, Samantha A; Antczak, Douglas F

    2016-08-15

    The common equine skin tumors known as sarcoids have been causally associated with infection by bovine papillomavirus (BPV). Additionally, there is evidence for host genetic susceptibility to sarcoids. We investigated the genetic basis of susceptibility to sarcoid tumors on a cohort of 82 affected horses and 270 controls genotyped on a genome-wide platform and two custom panels. A Genome Wide Association Study (GWAS) identified candidate regions on six chromosomes. Bayesian probability analysis of the same dataset verified only the regions on equine chromosomes (ECA) 20 and 22. Fine mapping using custom-produced SNP arrays for ECA20 and ECA22 regions identified two marker loci with high levels of significance: SNP BIEC2-530826 (map position 32,787,619) on ECA20 in an intron of the DQA1 gene in the Major Histocompatibility Complex (MHC) class II region (p = 4.6e-06), and SNP BIEC2-589604 (map position 25,951,536) on ECA22 in a 200 kb region containing four candidate genes: PROCR, EDEM2, EIF6 and MMP24 (p = 2.14e-06). The marker loci yielded odds ratios of 5.05 and 4.02 for ECA20 and ECA22, respectively. Associations between genetic MHC class II variants and papillomavirus-induced tumors have been reported for human papillomavirus and cottontail rabbit papillomavirus infections. This suggests a common mechanism for susceptibility to tumor progression that may involve subversion of the host immune response. This study also identified a genomic region other than MHC that influenced papillomavirus-induced tumor development in the studied population. PMID:27037728

  17. Dexamethasone-induced enhancement of resistance to ionizing radiation and chemotherapeutic agents in human tumor cells

    International Nuclear Information System (INIS)

    Background: Dexamethasone-induced changes in radioresistance have previously been observed by several authors. Here, we examined effects of dexamethasone on resistance to ionizing radiation in 10 additional human cell lines and strains, and on resistance to carboplatin and paclitaxel in 13 fresh tumor samples. Material and Methods: Eight human carcinoma cell lines, a glioblastoma cell line and a strain of normal human diploid fibroblasts were arbitrarily chosen for these in-vitro studies. Effects on radiosensitivity were assessed using a conventional colony formation assay. Effects on resistance to the drugs were investigated prospectively (ATP cell viability assay) using 13 fresh tumor samples from consecutive patients operated for ovarian cancer within the context of a Swiss nation-wide randomized prospective clinical trial (SAKK 45/94). Results: Dexamethasone promoted proliferation of 1 of the cell lines without affecting radiosensitivity, while it completely inhibited proliferation of another cell line (effects on radiosensitivity could thus not be examined). Furthermore, dexamethasone induced enhanced radioresistance in 1 of the 8 carcinoma cell lines examined. In the glioblastoma cell line, there was no effect on growth or radioresistance, nor in the fibroblasts. Treatment with dexamethasone enhanced resistance of the malignant cells to carboplatin in 4 of the 13 fresh tumor samples examined, while no enhancement in resistance to paclitaxel was observed. Conclusions: In agreement with previous reports, we found that dexamethasone may induce radioresistance in human carcinoma cells. Including the published data from the literature, dexamethasone induced enhancement in radioresistance in 4 of 12 carcinoma cell lines (33%), but not in 3 glioblastoma cell lines, nor in 3 fibroblast strains. Dexamethasone also induced enhanced resistance to carboplatin with a similar probability in fresh samples of ovarian cancer evaluated prospectively (in 4 of 13 samples; 31

  18. Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells.

    Science.gov (United States)

    Lindner, Stefanie; Dahlke, Karen; Sontheimer, Kai; Hagn, Magdalena; Kaltenmeier, Christof; Barth, Thomas F E; Beyer, Thamara; Reister, Frank; Fabricius, Dorit; Lotfi, Ramin; Lunov, Oleg; Nienhaus, G Ulrich; Simmet, Thomas; Kreienberg, Rolf; Möller, Peter; Schrezenmeier, Hubert; Jahrsdörfer, Bernd

    2013-04-15

    The pathogenic impact of tumor-infiltrating B cells is unresolved at present, however, some studies suggest that they may have immune regulatory potential. Here, we report that the microenvironment of various solid tumors includes B cells that express granzyme B (GrB, GZMB), where these B cells can be found adjacent to interleukin (IL)-21-secreting regulatory T cells (Treg) that contribute to immune tolerance of tumor antigens. Because Tregs and plasmacytoid dendritic cells are known to modulate T-effector cells by a GrB-dependent mechanism, we hypothesized that a similar process may operate to modulate regulatory B cells (Breg). IL-21 induced outgrowth of B cells expressing high levels of GrB, which thereby limited T-cell proliferation by a GrB-dependent degradation of the T-cell receptor ζ-chain. Mechanistic investigations into how IL-21 induced GrB expression in B cells to confer Breg function revealed a CD19(+)CD38(+)CD1d(+)IgM(+)CD147(+) expression signature, along with expression of additional key regulatory molecules including IL-10, CD25, and indoleamine-2,3-dioxygenase. Notably, induction of GrB by IL-21 integrated signals mediated by surface immunoglobulin M (B-cell receptor) and Toll-like receptors, each of which were enhanced with expression of the B-cell marker CD5. Our findings show for the first time that IL-21 induces GrB(+) human Bregs. They also establish the existence of human B cells with a regulatory phenotype in solid tumor infiltrates, where they may contribute to the suppression of antitumor immune responses. Together, these findings may stimulate novel diagnostic and cell therapeutic approaches to better manage human cancer as well as autoimmune and graft-versus-host pathologies. PMID:23384943

  19. M-CSF from Cancer Cells Induces Fatty Acid Synthase and PPARβ/δ Activation in Tumor Myeloid Cells, Leading to Tumor Progression

    Directory of Open Access Journals (Sweden)

    Jonghanne Park

    2015-03-01

    Full Text Available We investigate crosstalk between cancer cells and stromal myeloid cells. We find that Lewis lung carcinoma cells significantly induce PPARβ/δ activity in myeloid cells in vitro and in vivo. Myeloid cell-specific knockout of PPARβ/δ results in impaired growth of implanted tumors, and this is restored by adoptive transfer of wild-type myeloid cells. We find that IL-10 is a downstream effector of PPARβ/δ and facilitates tumor cell invasion and angiogenesis. This observation is supported by the finding that the CD11blowIL-10+ pro-tumoral myeloid cell is scarcely detected in tumors from myeloid-cell-specific PPARβ/δ knockout mice, where vessel densities are also decreased. Fatty acid synthase (FASN is shown to be an upstream regulator of PPARβ/δ in myeloid cells and is induced by M-CSF secreted from tumor cells. Our study gives insight into how cancer cells influence myeloid stromal cells to get a pro-tumoral phenotype.

  20. A chemical energy approach of avascular tumor growth: multiscale modeling and qualitative results.

    Science.gov (United States)

    Ampatzoglou, Pantelis; Dassios, George; Hadjinicolaou, Maria; Kourea, Helen P; Vrahatis, Michael N

    2015-01-01

    In the present manuscript we propose a lattice free multiscale model for avascular tumor growth that takes into account the biochemical environment, mitosis, necrosis, cellular signaling and cellular mechanics. This model extends analogous approaches by assuming a function that incorporates the biochemical energy level of the tumor cells and a mechanism that simulates the behavior of cancer stem cells. Numerical simulations of the model are used to investigate the morphology of the tumor at the avascular phase. The obtained results show similar characteristics with those observed in clinical data in the case of the Ductal Carcinoma In Situ (DCIS) of the breast. PMID:26558163

  1. (--Pentazocine induces visceral chemical antinociception, but not thermal, mechanical, or somatic chemical antinociception, in μ-opioid receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Satoh Masamichi

    2011-04-01

    Full Text Available Abstract Background (--Pentazocine has been hypothesized to induce analgesia via the κ-opioid (KOP receptor, although the involvement of other opioid receptor subtypes in the effects of pentazocine remains unknown. In this study, we investigated the role of the μ-opioid (MOP receptor in thermal, mechanical, and chemical antinociception induced by (--pentazocine using MOP receptor knockout (MOP-KO mice. Results (--Pentazocine-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice. The results obtained from the (--pentazocine-induced mechanical and somatic chemical antinociception experiments, which used the hind-paw pressure and formalin tests, were similar to the results obtained from the thermal antinociception experiments in these mice. However, (--pentazocine retained its ability to induce significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice, an effect that was completely blocked by pretreatment with nor-binaltorphimine, a KOP receptor antagonist. In vitro binding and cyclic adenosine monophosphate assays showed that (--pentazocine possessed higher affinity for KOP and MOP receptors than for δ-opioid receptors. Conclusions The present study demonstrated the abolition of the thermal, mechanical, and somatic chemical antinociceptive effects of (--pentazocine and retention of the visceral chemical antinociceptive effects of (--pentazocine in MOP-KO mice. These results suggest that the MOP receptor plays a pivotal role in thermal, mechanical, and somatic chemical antinociception induced by (--pentazocine, whereas the KOP receptor is involved in visceral chemical antinociception induced by (--pentazocine.

  2. Oncogenic signaling pathways and origins of tumor-initiating stem-like cells of hepatocellular carcinomas induced by hepatitis C virus, alcohol and/or obesity.

    Science.gov (United States)

    Chen, Chia-Lin; Tsukamoto, Hidekazu; Machida, Keigo

    2014-07-01

    This review article discusses the importance and oncogenic signaling pathways of tumor-initiating cells (TICs) in several etiologies of hepatocellular carcinomas (HCCs) induced by hepatitis C virus (HCV), alcohol, obesity and/or chemicals. Stem cells may be present in cancer tissue, and a hierarchy of cells is formed, as is the case for normal tissue. Tumor formation, growth and propagation are maintained by a small proportion of cells with stem cell-like properties. TICs are present in alcohol-fed HCV transgenic mice, diethylnitrosamine/phenobarbital-treated mice (chemical carcinogenesis) and Spnb2 +/- mice (defective TGF-β signal). Alcohol/obesity-associated endotoxemia induces the stem cell marker Nanog through TLR4 signaling to generate TICs and liver tumors in several HCC models. The oncogenic pathway (such as the STAT3 and TLR4-NANOG pathway) and mechanism of generation of TICs of HCCs associated with HCV, alcohol and obesity are discussed. Understanding the molecular stemness signaling and cellular hierarchy and defining key TIC-specific genes will accelerate the development of novel biomarkers and treatment strategies. This review highlights recent advances in understanding the pathogenesis of liver TICs and discusses unanswered questions about the concept of liver TICs. (This project was supported by NIH grants 1R01AA018857 and P50AA11999).

  3. Role of Tertiary Lymphoid Structures (TLS in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Directory of Open Access Journals (Sweden)

    Erica M. Pimenta

    2014-04-01

    Full Text Available Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin® and rituximab (Rituxan® and the first approved cancer vaccine, Provenge® (sipuleucel-T, investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS within the tumor microenvironment may be used to enhance immunotherapy response.

  4. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Erica M. [Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States); Barnes, Betsy J., E-mail: barnesbe@njms.rutgers.edu [Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States)

    2014-04-23

    Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin{sup ®}) and rituximab (Rituxan{sup ®})) and the first approved cancer vaccine, Provenge{sup ®} (sipuleucel-T), investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS) within the tumor microenvironment may be used to enhance immunotherapy response.

  5. A dicyanotriterpenoid induces cytoprotective enzymes and reduces multiplicity of skin tumors in UV-irradiated mice

    International Nuclear Information System (INIS)

    Inducible phase 2 enzymes constitute a primary line of cellular defense. The oleanane dicyanotriterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-onitrile (TP-225) is a very potent inducer of these systems. Topical application of TP-225 to SKH-1 hairless mice increases the levels of NAD(P)H-quinone acceptor oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO-1) and protects against UV radiation-induced dermal thickening. Daily topical treatments of 10 nmol of TP-225 to the backs of mice that were previously subjected to low-level chronic UVB radiation (30 mJ/cm2/session, twice a week for 17 weeks), led to 50% reduction in multiplicity of skin tumors. In addition, the total tumor burden of squamous cell carcinomas was reduced by 5.5-fold. The identification of new agents for protection against UV radiation-induced skin cancer and understanding of their mechanism(s) of action is especially important in view of the fact that human skin cancers represent a significant source of increasing morbidity and mortality

  6. Volume changes of A-Mel 3 tumor cells induced by photodynamic treatment

    International Nuclear Information System (INIS)

    PhotoDynamic Therapy has shown promising results in treatment of super-ficial malignant T1/T2 tumors through combining systematically administered photosensitizing HematoPorhyrin-Derivative and local application of light. Mechanisms leading to tumor destruction during PDT are still not completely understood. Generation of singlet oxygen by a type II photochemical reaction is reported to be primarily responsible for the cytotoxicity induced by PDT. Besides significant effects on microcirculation damage to plasma membranes, cytoplasmic organelles and enzymes, as well as to nuclear structures and enzymes, was observed following exposure cells to PDT. A phenomenon probably proceeding these events might be cell swelling. Already Meyer-Betz showed that a time- and dose-dependent swelling and edema formation of healthy skin occurs after PDT. Direct correlation between ear swelling response of albino mice and the concentration of Photofrin II in the blood at the same time of light exposure has been reported recently. Various studies indicating tumor tissue swelling following PDT without being able to discriminate if this is due to cell swelling or interstitial fluid accumulation. Therefore the influence was studied of treatment with HPD and laser light on volume changes of tumor cells and its relation to cell viability. (author). 20 refs

  7. Novel allelic mutations in murine Serca2 induce differential development of squamous cell tumors.

    Science.gov (United States)

    Toki, Hideaki; Minowa, Osamu; Inoue, Maki; Motegi, Hiromi; Karashima, Yuko; Ikeda, Ami; Kaneda, Hideki; Sakuraba, Yoshiyuki; Saiki, Yuriko; Wakana, Shigeharu; Suzuki, Hiroshi; Gondo, Yoichi; Shiroishi, Toshihiko; Noda, Tetsuo

    2016-08-01

    Dominant mutations in the Serca2 gene, which encodes sarco(endo)plasmic reticulum calcium-ATPase, predispose mice to gastrointestinal epithelial carcinoma [1-4] and humans to Darier disease (DD) [14-17]. In this study, we generated mice harboring N-ethyl-N-nitrosourea (ENU)-induced allelic mutations in Serca2: three missense mutations and one nonsense mutation. Mice harboring these Serca2 mutations developed tumors that were categorized as either early onset squamous cell tumors (SCT), with development similar to null-type knockout mice [2,4] (aggressive form; M682, M814), or late onset tumors (mild form; M1049, M1162). Molecular analysis showed no aberration in Serca2 mRNA or protein expression levels in normal esophageal cells of any of the four mutant heterozygotes. There was no loss of heterozygosity at the Serca2 locus in the squamous cell carcinomas in any of the four lines. The effect of each mutation on Ca(2+)-ATPase activity was predicted using atomic-structure models and accumulated mutated protein studies, suggesting that putative complete loss of Serca2 enzymatic activity may lead to early tumor onset, whereas mutations in which Serca2 retains residual enzymatic activity result in late onset. We propose that impaired Serca2 gene product activity has a long-term effect on squamous cell carcinogenesis from onset to the final carcinoma stage through an as-yet unrecognized but common regulatory pathway. PMID:27131742

  8. Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Hidehito Saito

    2016-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs derived from somatic cells of patients hold great promise for autologous cell therapies. One of the possible applications of iPSCs is to use them as a cell source for producing autologous lymphocytes for cell-based therapy against cancer. Tumor-infiltrating lymphocytes (TILs that express programmed cell death protein-1 (PD-1 are tumor-reactive T cells, and adoptive cell therapy with autologous TILs has been found to achieve durable complete response in selected patients with metastatic melanoma. Here, we describe the derivation of human iPSCs from melanoma TILs expressing high level of PD-1 by Sendai virus-mediated transduction of the four transcription factors, OCT3/4, SOX2, KLF4, and c-MYC. TIL-derived iPSCs display embryonic stem cell-like morphology, have normal karyotype, express stem cell-specific surface antigens and pluripotency-associated transcription factors, and have the capacity to differentiate in vitro and in vivo. A wide variety of T cell receptor gene rearrangement patterns in TIL-derived iPSCs confirmed the heterogeneity of T cells infiltrating melanomas. The ability to reprogram TILs containing patient-specific tumor-reactive repertoire might allow the generation of patient- and tumor-specific polyclonal T cells for cancer immunotherapy.

  9. Inhibition of cellular proliferation by the Wilms tumor suppressor WT1 requires association with the inducible chaperone Hsp70

    OpenAIRE

    Maheswaran, Shyamala; Englert, Christoph; Zheng, Gang; Lee, Sean Bong; Wong, Jenise; Harkin, D Paul; Bean, James; Ezzell, Robert; Garvin, A. Julian; McCluskey, Robert T.; DeCaprio, James A.; Haber, Daniel A.

    1998-01-01

    The Wilms tumor suppressor WT1 encodes a zinc finger transcription factor that is expressed in glomerular podocytes during a narrow window in kidney development. By immunoprecipitation and protein microsequencing analysis, we have identified a major cellular protein associated with endogenous WT1 to be the inducible chaperone Hsp70. WT1 and Hsp70 are physically associated in embryonic rat kidney cells, in primary Wilms tumor specimens and in cultured cells with inducible expression of WT1. Co...

  10. Increased Neuronal Hypoxic Tolerance Induced by Repetitive Chemical Hypoxia

    Institute of Scientific and Technical Information of China (English)

    李红戈; 刘昌勤; 孙圣刚

    2002-01-01

    Summary: To investigate the effects of time interval and cumulative dosage of repetitive mild cellular hypoxia on shape of neurodegeneration and neuroprotection in mice, population spike amplitude (PSA) was measured during hypoxia and posthypoxic recovery in hippocampal slices from untreated control and mice pretreated in vivo with a single or repeatedly intraperitoneal injection of 3-nitropropi onate (3-NP). Posthypoxic recovery of PSA was dose-dependent in single pretreated slices, with maximal recovery on pretreatment attained with 20 mg/kg 3-NP (82±32%, P< 0. 01). Upon 5 and 9 treatments with 20 mg/kg 3-NP (dosage interval 3 days), PSA recovered to (38±9) % with the difference being not significant vs control group and (72±45) % with the difference being signif icant (P< 0. 05 to control, P<0.05 to 5 treatments), respectively. In contrast, with 2 days time interval, recovery after 5 and 9 treatments was (30±25) % and (16±14) %, respectively (without significant difference from control). Continued neuroprotection was also observed upon increase of dosage interval to 4 and 5 days. It was suggested that repetitive chemical hypoxia is a model for neu rodegenerative disease and continued neuroprotection depending on time interval between repetitive hypoxic episodes rather than cumulative dosage. At appropriate time intervals increased neuronal hy-poxic tolerance could be induced with number of hypoxic episodes.

  11. Ursolic acid-loaded chitosan nanoparticles induce potent anti-angiogenesis in tumor.

    Science.gov (United States)

    Jin, Hua; Pi, Jiang; Yang, Fen; Wu, Chaomin; Cheng, Xueli; Bai, Haihua; Huang, Dan; Jiang, Jinhuan; Cai, Jiye; Chen, Zheng W

    2016-08-01

    Angiogenesis provides necessary nutrients and oxygen for tumor growth and metastasis; thus, every stage of angiogenesis process is the potential target for cancer therapies. Ursolic acid (UA) is reported to decrease tumor burden through anti-angiogenesis pathway, but its poor water solubility greatly limits its efficiency and clinical application. Here, a simple method for preparing UA-loaded chitosan nanoparticles (CH-UA-NPs) with anti-angiogenesis and anti-tumor activity was demonstrated. In vitro, CH-UA-NPs could significantly inhibit the proliferation, migration, and tube formation of human umbilical vascular endothelial cells (HUVECs). After uptake by HUVECs, CH-UA-NPs were mainly localized in lysosomes and mitochondria, but not nuclei. CH-UA-NPs induced the destruction of lysosome membrane integrity, collapse of mitochondrial membrane potential, and reorganization of cell cytoskeleton. All these changes led to the apoptosis or necrosis in HUVECs. In vivo, CH-UA-NPs could inhibit the angiogenesis in chicken chorioallantoic membrane (CAM) model and H22 xenograft model. Notably, comparing with free UA, such synthesized CH-UA-NPs could save about tenfold of UA doses, implying that this could significantly decrease the side effects induced by high doses of UA in biological organism. Our data showed that CH-UA-NPs and this nanoparticle-based drug delivery system could be as a potential drug candidate for anti-angiogenesis treatment. PMID:26883344

  12. Crocin suppresses tumor necrosis factor-alpha-induced cell death of neuronally differentiated PC-12 cells.

    Science.gov (United States)

    Soeda, S; Ochiai, T; Paopong, L; Tanaka, H; Shoyama, Y; Shimeno, H

    2001-11-01

    Crocus sativus L. is used in Chinese traditional medicine to treat some disorders of the central nervous system. Crocin is an ethanol-extractable component of Crocus sativus L.; it is reported to prevent ethanol-induced impairment of learning and memory in mice. In this study, we demonstrate that crocin suppresses the effect of tumor necrosis factor (TNF)-alpha on neuronally differentiated PC-12 cells. PC-12 cells dead from exposure to TNF-alpha show apoptotic morphological changes and DNA fragmentation. These hallmark features of cell death did not appear in cells treated in the co-presence of 10 microM crocin. Moreover, crocin suppressed the TNF-alpha-induced expression of Bcl-Xs and LICE mRNAs and simultaneously restored the cytokine-induced reduction of Bcl-X(L) mRNA expression. The modulating effects of crocin on the expression of Bcl-2 family proteins led to a marked reduction of a TNF-alpha-induced release of cytochrome c from the mitochondria. Crocin also blocked the cytochrome c-induced activation of caspase-3. To learn how crocin exhibits these anti-apoptotic actions in PC-12 cells, we tested the effect of crocin on PC-12 cell death induced by daunorubicin. We found that crocin inhibited the effect of daunorubicin as well. Our findings suggest that crocin inhibits neuronal cell death induced by both internal and external apoptotic stimuli.

  13. Amplification of tumor inducing putative cancer stem cells (CSCs) by vitamin A/retinol from mammary tumors

    International Nuclear Information System (INIS)

    Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibit mammary stem cell specific CD29hi/CD49fhi/CD24hi markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance

  14. Molecular and cytogenetic characterization of radon-induced lung tumors in the rat

    International Nuclear Information System (INIS)

    Radon is a natural radioactive gas. This radioelement, which is an α-particle emitter, is omnipresent in the environment. Inhalation of atmospheric radon is the major exposure route in man of natural radioactivity which results in respiratory tract contamination. An increased lung cancer risk associated with radon inhalation has been shown both in humans and animals by epidemiological and experimental studies, respectively. In rats, characterization of dose-effect relationships has led to the construction of statistical models that may help theoretically in the prediction of human health involvements of both occupational and domestic chronic exposure to radon. However, little is known about the cellular and molecular mechanisms of radon-induced lung carcinogenesis. In the laboratory, a model of lung cancers induced in rats after radon inhalation is available. This model represents a good tool to identify and characterize the genetic events contributing to the development of radon-induced lung tumors. Carrying out a global approach based on the combined use of classical and molecular cytogenetic methods, the analysis of 17 neoplasms allowed the identification of chromosomal regions frequently altered in these tumors. Numerous similarities have been found between our results and the cytogenetic data for human lung cancers, suggesting common underlying genetic molecular mechanisms for lung cancer development in both species. Moreover, our study has allowed to point to tumor suppressor genes and proto-oncogenes potentially involved in radon-induced lung carcinogenesis. Thus, our results may aid further molecular studies aimed either at confirming the role of these candidate genes or at demonstrating the involvement of yet to be identified genes. (author)

  15. Novel molecular and computational methods improve the accuracy of insertion site analysis in Sleeping Beauty-induced tumors.

    Directory of Open Access Journals (Sweden)

    Benjamin T Brett

    Full Text Available The recent development of the Sleeping Beauty (SB system has led to the development of novel mouse models of cancer. Unlike spontaneous models, SB causes cancer through the action of mutagenic transposons that are mobilized in the genomes of somatic cells to induce mutations in cancer genes. While previous methods have successfully identified many transposon-tagged mutations in SB-induced tumors, limitations in DNA sequencing technology have prevented a comprehensive analysis of large tumor cohorts. Here we describe a novel method for producing genetic profiles of SB-induced tumors using Illumina sequencing. This method has dramatically increased the number of transposon-induced mutations identified in each tumor sample to reveal a level of genetic complexity much greater than previously appreciated. In addition, Illumina sequencing has allowed us to more precisely determine the depth of sequencing required to obtain a reproducible signature of transposon-induced mutations within tumor samples. The use of Illumina sequencing to characterize SB-induced tumors should significantly reduce sampling error that undoubtedly occurs using previous sequencing methods. As a consequence, the improved accuracy and precision provided by this method will allow candidate cancer genes to be identified with greater confidence. Overall, this method will facilitate ongoing efforts to decipher the genetic complexity of the human cancer genome by providing more accurate comparative information from Sleeping Beauty models of cancer.

  16. Dynamic Contrast-Enhanced Magnetic Resonance Imaging of Vascular Changes Induced by Sunitinib in Papillary Renal Cell Carcinoma Xenograft Tumors

    Directory of Open Access Journals (Sweden)

    Gilda G. Hillman

    2009-09-01

    Full Text Available To investigate further the antiangiogenic potential of sunitinib for renal cell carcinoma (RCC treatment, its effects on tumor vasculature were monitored by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI using an orthotopic KCI-18 model of human RCC xenografts in nude mice. Tumor-bearing mice were treated with various doses of sunitinib, and vascular changes were assessed by DCE-MRI and histologic studies. Sunitinib induced dose-dependent vascular changes, which were observed both in kidney tumors and in normal kidneys by DCE-MRI. A dosage of 10 mg/kg per day caused mild changes in Gd uptake and clearance kinetics in kidney tumors. A dosage of 40 mg/kg per day induced increased vascular tumor permeability with Gd retention, probably resulting from the destruction of tumor vasculature, and also caused vascular alterations of normal vessels. However, sunitinib at 20 mg/kg per day caused increased tumor perfusion and decreased vascular permeability associated with thinning and regularization of tumor vessels while mildly affecting normal vessels as confirmed by histologic diagnosis. Alterations in tumor vasculature resulted in a significant inhibition of KCI-18 RCC tumor growth at sunitinib dosages of 20 and 40 mg/kg per day. Sunitinib also exerted a direct cytotoxic effect in KCI-18 cells in vitro. KCI-18 cells and tumors expressed vascular endothelial growth factor receptor 2 and platelet-derived growth factor receptor β molecular targets of sunitinib that were modulated by the drug treatment. These data suggest that a sunitinib dosage of 20 mg/kg per day, which inhibits RCC tumor growth and regularizes tumor vessels with milder effects on normal vessels, could be used to improve blood flow for combination with chemotherapy. These studies emphasize the clinical potential of DCE-MRI in selecting the dose and schedule of antiangiogenic compounds.

  17. Active adjoint modeling method in microwave induced thermoacoustic tomography for breast tumor.

    Science.gov (United States)

    Zhu, Xiaozhang; Zhao, Zhiqin; Wang, Jinguo; Chen, Guoping; Liu, Qing Huo

    2014-07-01

    To improve the model-based inversion performance of microwave induced thermoacoustic tomography for breast tumor imaging, an active adjoint modeling (AAM) method is proposed. It aims to provide a more realistic breast acoustic model used for tumor inversion as the background by actively measuring and reconstructing the structural heterogeneity of human breast environment. It utilizes the reciprocity of acoustic sensors, and adapts the adjoint tomography method from seismic exploration. With the reconstructed acoustic model of breast environment, the performance of model-based inversion method such as time reversal mirror is improved significantly both in contrast and accuracy. To prove the advantage of AAM, a checkerboard pattern model and anatomical realistic breast models have been used in full wave numerical simulations. PMID:24956614

  18. Paradoxical Reaction to Golimumab: Tumor Necrosis Factor α Inhibitor Inducing Psoriasis Pustulosa

    Directory of Open Access Journals (Sweden)

    Marien Siqueira Soto Lopes

    2013-11-01

    Full Text Available Importance: Golimumab is a human monoclonal antibody, used for rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis. Adverse reactions are increasing with this class of medication (tumor necrosis factor α inhibitors. Observations: The authors present a case of a female patient who presented with psoriasis pustulosa after the use of golimumab for rheumatoid arthritis. Conclusions and Relevance: Paradoxically, in this case, golimumab, which is used for psoriasis, induced the pustular form of this disease. We are observing an increasing number of patients who develop collateral effects with tumor necrosis factor α inhibitors, and the understanding of the mechanism of action and how these adverse reactions occur may contribute to avoid these sometimes severe situations.

  19. A Case of Acute Prosthesis Migration after Femoral Head Replacement due to Osteomalacia by FGF23-Induced Tumor

    Directory of Open Access Journals (Sweden)

    Shinya Hayashi

    2012-01-01

    Full Text Available Fibroblast growth factor 23 (FGF23 was recently identified as an important factor involved in the development of hypophosphatemic rickets and osteomalacia. We experienced a rare case of acute prosthesis migration after hemihip arthroplasty due to FGF23-induced tumor. The patient underwent femoral head replacement because of femoral neck fracture, but prosthesis migration was occurred at 1 week after operation. The patient took various examinations, and FGF23-induced tumor was found in his right wrist. The tumor was resected, and he underwent total hip arthroplasty 8 month later. Finally, he was able to obtain free gait without pain.

  20. Electron microscopic observations and DNA chain fragmentation studies on apoptosis in bone tumor cells induced by 153Sm—EDTMP

    Institute of Scientific and Technical Information of China (English)

    ZhuShou-Peng; XiaoDong; 等

    1997-01-01

    The morphological changes observed by electron microscopy indicate that after internal irradiation with 153Sm-ESTMP bone tumor cells displayed feature of apoptosis,such as margination of condensed chromatin,chromatin fragmentation.as well as the membranebouded apoptotic bodies formation.THe quantification analysis of fragmentation DNA for bone tumor cells induced by 153Sm-EDTMP shows that the DNA fragmentation is enhanced with the prolongation of internally irradiated time.These characteristics suggest that 153Sm-EDTMP internal irradiation could induce bone tumor cells to go9 to apoptosis.

  1. Mitochondrial-derived ROS in edelfosine-induced apoptosis in yeasts and tumor cells

    Institute of Scientific and Technical Information of China (English)

    Hui ZHANG; Consuelo GAJATE; Li-ping YU; Yun-xiang FANG; Faustino MOLLINEDO

    2007-01-01

    Aim: To investigate whether a similar process mediates cytotoxicity of 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET- 18-OCH3, edelfosine) in both yeasts and human tumor cells.Methods: A modified version of a previously described assay for the intracellular conversion of nitro blue tetrazolium to formazan by superoxide anion was used to measure the generation of reactive oxygen spe-cies (ROS). Apoptotic yeast cells were detected using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. DNA fragmenta-tion and the generation of ROS were measured by cytofluorimetric analysis in Jurkat cells.Results: Edelfosine induced apoptosis in Saccharomyces cerevisiae,as assessed by TUNEL assay. Meanwhile, edelfosine induced a time- and con-centration-dependent generation of ROS in yeasts. Rotenone, an inhibitor of the mitochondrial electron transport chain, prevented ROS generation and apoptosis in response to edelfosine in S cerevisiae, α-Tocopherol abrogated the edelfosine-induced generation of intracellular ROS and apoptosis. Edelfosine also induced an increase of ROS in human leukemic cells that preceded apoptosis. The overexpression of Bcl-2 by gene transfer abrogated both ROS generation and apoptosis induced by edelfosine in leukemic cells. Changes in the relative mito-chondrial membrane potential were detected in both yeasts and Jurkat cells.Conclusion: These results indicate that edelfosine induces apoptosis in yeasts in addition to human tumor cells, and this apoptotic process involves mitochondria,likely through mitochondrial-derived ROS. These data also suggest that yeasts can be used as a suitable cell model in elucidating the antitumor mechanism of action of edelfosine.

  2. Chemical gas-generating nanoparticles for tumor-targeted ultrasound imaging and ultrasound-triggered drug delivery.

    Science.gov (United States)

    Min, Hyun Su; Son, Sejin; You, Dong Gil; Lee, Tae Woong; Lee, Jangwook; Lee, Sangmin; Yhee, Ji Young; Lee, Jaeyoung; Han, Moon Hee; Park, Jae Hyung; Kim, Sun Hwa; Choi, Kuiwon; Park, Kinam; Kim, Kwangmeyung; Kwon, Ick Chan

    2016-11-01

    Although there is great versatility of ultrasound (US) technologies in the real clinical field, one main technical challenge is the compromising of high quality of echo properties and size engineering of ultrasound contrast agents (UCAs); a high echo property is offset by reducing particle size. Herein, a new strategy for overcoming the dilemma by devising chemical gas (CO2) generating carbonate copolymer nanoparticles (Gas-NPs), which are clearly distinguished from the conventional gas-encapsulated micro-sized UCAs. More importantly, Gas-NPs could be readily engineered to strengthen the desirable in vivo physicochemical properties for nano-sized drug carriers with higher tumor targeting ability, as well as the high quality of echo properties for tumor-targeted US imaging. In tumor-bearing mice, anticancer drug-loaded Gas-NPs showed the desirable theranostic functions for US-triggered drug delivery, even after i.v. injection. In this regard, and as demonstrated in the aforementioned study, our technology could serve a highly effective platform in building theranostic UCAs with great sophistication and therapeutic applicability in tumor-targeted US imaging and US-triggered drug delivery. PMID:27619240

  3. Molecular analysis of tumor-promoting CD8+ T cells in two-stage cutaneous chemical carcinogenesis.

    Science.gov (United States)

    Kwong, Bernice Y; Roberts, Scott J; Silberzahn, Tobias; Filler, Renata B; Neustadter, Jason H; Galan, Anjela; Reddy, Swapna; Lin, William M; Ellis, Peter D; Langford, Cordelia F; Hayday, Adrian C; Girardi, Michael

    2010-06-01

    T-pro are tumor-infiltrating TCRalphabeta(+)CD8(+) cells of reduced cytotoxic potential that promote experimental two-stage chemical cutaneous carcinogenesis. Toward understanding their mechanism of action, this study uses whole-genome expression analysis to compare T-pro with systemic CD8(+) T cells from multiple groups of tumor-bearing mice. T-pro show an overt T helper 17-like profile (high retinoic acid-related orphan receptor-(ROR)gammat, IL-17A, IL-17F; low T-bet and eomesodermin), regulatory potential (high FoxP3, IL-10, Tim-3), and transcripts encoding epithelial growth factors (amphiregulin, Gro-1, Gro-2). Tricolor flow cytometry subsequently confirmed the presence of TCRbeta(+) CD8(+) IL-17(+) T cells among tumor-infiltrating lymphocytes (TILs). Moreover, a time-course analysis of independent TIL isolates from papillomas versus carcinomas exposed a clear association of the "T-pro phenotype" with malignant progression. This molecular characterization of T-pro builds a foundation for elucidating the contributions of inflammation to cutaneous carcinogenesis, and may provide useful biomarkers for cancer immunotherapy in which the widely advocated use of tumor-specific CD8(+) cytolytic T cells should perhaps accommodate the cells' potential corruption toward the T-pro phenotype. The data are also likely germane to psoriasis, in which the epidermis may be infiltrated by CD8(+) IL-17-producing T cells.

  4. Advances in identification and application of tumor antigen inducing anti-cancer responses

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Tumor antigen is one of the important bases of tumor immunotherapy[1]. With the discovery of novel tumor antigens, interest in specific immunotherapy for treatment of malignancies has increased substantially. Nowadays more and more scientists paid close attention to various tumor antigens with their roles or/and applications in anti-cancer immune responses, immune tolerance, tumor markers, tumor immunotherapy and so on. Here we discussed the classification of tumor antigens and summarized the technologies of identification and application of tumor antigens.

  5. Metronomic topotecan impedes tumor growth of MYCN-amplified neuroblastoma cells in vitro and in vivo by therapy induced senescence.

    Science.gov (United States)

    Taschner-Mandl, Sabine; Schwarz, Magdalena; Blaha, Johanna; Kauer, Maximilian; Kromp, Florian; Frank, Nelli; Rifatbegovic, Fikret; Weiss, Tamara; Ladenstein, Ruth; Hohenegger, Martin; Ambros, Inge M; Ambros, Peter F

    2016-01-19

    Poor prognosis and frequent relapses are major challenges for patients with high-risk neuroblastoma (NB), especially when tumors show MYCN amplification. High-dose chemotherapy triggers apoptosis, necrosis and senescence, a cellular stress response leading to permanent proliferative arrest and a typical senescence-associated secretome (SASP). SASP components reinforce growth-arrest and act immune-stimulatory, while others are tumor-promoting. We evaluated whether metronomic, i.e. long-term, repetitive low-dose, drug treatment induces senescence in vitro and in vivo. And importantly, by using the secretome as a discriminator for beneficial versus adverse effects of senescence, drugs with a tumor-inhibiting SASP were identified.We demonstrate that metronomic application of chemotherapeutic drugs induces therapy-induced senescence, characterized by cell cycle arrest, p21(WAF/CIP1) up-regulation and DNA double-strand breaks selectively in MYCN-amplified NB. Low-dose topotecan (TPT) was identified as an inducer of a favorable SASP while lacking NFKB1/p50 activation. In contrast, Bromo-deoxy-uridine induced senescent NB-cells secret a tumor-promoting SASP in a NFKB1/p50-dependent manner. Importantly, TPT-treated senescent tumor cells act growth-inhibitory in a dose-dependent manner on non-senescent tumor cells and MYCN expression is significantly reduced in vitro and in vivo. Furthermore, in a mouse xenotransplant-model for MYCN-amplified NB metronomic TPT leads to senescence selectively in tumor cells, complete or partial remission, prolonged survival and a favorable SASP.This new mode-of-action of metronomic TPT treatment, i.e. promoting a tumor-inhibiting type of senescence in MYCN-amplified tumors, is clinically relevant as metronomic regimens are increasingly implemented in therapy protocols of various cancer entities and are considered as a feasible maintenance treatment option with moderate adverse event profiles. PMID:26657295

  6. Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumor specific cytotoxic T lymphocyte responses.

    Directory of Open Access Journals (Sweden)

    Li-Xin Wang

    Full Text Available Lack of immunogenicity of cancer cells has been considered a major reason for their failure in induction of a tumor specific T cell response. In this paper, we present evidence that decitabine (DAC, a DNA methylation inhibitor that is currently used for the treatment of myelodysplastic syndrome (MDS, acute myeloid leukemia (AML and other malignant neoplasms, is capable of eliciting an anti-tumor cytotoxic T lymphocyte (CTL response in mouse EL4 tumor model. C57BL/6 mice with established EL4 tumors were treated with DAC (1.0 mg/kg body weight once daily for 5 days. We found that DAC treatment resulted in infiltration of IFN-γ producing T lymphocytes into tumors and caused tumor rejection. Depletion of CD8(+, but not CD4(+ T cells resumed tumor growth. DAC-induced CTL response appeared to be elicited by the induction of CD80 expression on tumor cells. Epigenetic evidence suggests that DAC induces CD80 expression in EL4 cells via demethylation of CpG dinucleotide sites in the promoter of CD80 gene. In addition, we also showed that a transient, low-dose DAC treatment can induce CD80 gene expression in a variety of human cancer cells. This study provides the first evidence that epigenetic modulation can induce the expression of a major T cell co-stimulatory molecule on cancer cells, which can overcome immune tolerance, and induce an efficient anti-tumor CTL response. The results have important implications in designing DAC-based cancer immunotherapy.

  7. Three-dimensional imaging of the metabolic state of c-MYC-induced mammary tumor with the cryo-imager

    Science.gov (United States)

    Zhang, Zhihong; Liu, Qian; Luo, Qingming; Zhang, Min Z.; Blessington, Dana M.; Zhou, Lanlan; Chodosh, Lewis A.; Zheng, Gang; Chance, Britton

    2003-07-01

    This study imaged the metabolic state of a growing tumor and the relationship between energy metabolism and the ability of glucose uptake in whole tumor tissue with cryo-imaging at 77° K. A MTB/TOM mouse model, bearing c-MYC-induced mammary tumor, was very rapidly freeze-trapped 2 hrs post Pyro-2DG injection. The fluorescence signals of oxidized flavoprotein (Fp), reduced pyridine nucleotide (PN), pyro-2DG, and the reflection signal of deoxy-hemoglobin were imaged every 100 μm from the top surface to the bottom of the tumor sequentially, 9 sections in total. Each of the four signals was constructed into 3D images with Amira software. Both Fp and PN signals could be detected in the growing tumor regions, and a higher reduction state where was shown in the ratio images. The necrotic tumor regions displayed a very strong Fp signal and weak PN signal. In the bloody extravasation regions, Fp and PN signals were observably diminished. Therefore, the regions of high growth and necrosis in the tumor could be determined according to the Fp and PN signals. The content of deoxy-hemoglobin (Hb) in the tumor was positively correlated with the reduced PN signal. Pyro-2DG signal was only evident in the growing condition region in the tumor. Normalized 3D cross-correlation showed that Pyro-2DG signal was similar to the redox ratio. The results indicated that glucose uptake in the tumor was consistent with the redox state of the tumor. And both Pyro-2DG and mitochondrial NADH fluorescence showed bimodal histograms suggesting that the two population of c-MYC induced mammary tumor, one of which could be controlled by c-MYC transgene.

  8. The inducible costimulator augments Tc17 cell responses to self and tumor tissue

    OpenAIRE

    Nelson, Michelle H.; Kundimi, Sreenath; Bowers, Jacob S.; Rogers, Carolyn E.; Huff, Logan W.; Schwartz, Kristina M.; Thyagarajan, Krishnamurthy; Little, Elizabeth C.; Mehrotra, Shikhar; Cole, David J.; Rubinstein, Mark P.; Paulos, Chrystal M.

    2015-01-01

    The inducible costimulator (ICOS) plays a key role in CD4+ Th17 cell development, but its role in CD8+ Tc17 cell development and self/tumor immunity remains unknown. We found that ICOS co-stimulation was important for the functional maintenance but not differentiation of Tc17 cells in vitro. Blocking the ICOS pathway using an antagonist antibody or by using mice genetically deficient in the ICOS ligand (ICOSL) reduced the antitumor activity of adoptively transferred Tc17 cells. Conversely, ac...

  9. Apoptosis of HL—60 cells induced by anti—tumor fraction from China cobra venom

    Institute of Scientific and Technical Information of China (English)

    LinZT; ZengYY

    2002-01-01

    An anti-tumor fraction from Chinese cobra venom can induce typical morphological changes and flows-cytometrical plots of apoptosis and DNA fragmentation in HL-60 cells in relation to the concentration of the fraction and its treatment time.When the dose is over 20mg·L-1,however,the fraction mainly caused the necrosis in HL-60 cells.By using RT-PCR method,it was found that the apoptosis was related to the inhibition of bcl-2 gene expression in HL-60 cells.

  10. Amplification of tumor inducing putative cancer stem cells (CSCs) by vitamin A/retinol from mammary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rohit B. [Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261 (United States); Wang, Qingde [Department of Surgery, University of Pittsburgh, PA 15261 (United States); Khillan, Jaspal S., E-mail: khillan@pitt.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261 (United States)

    2013-07-12

    Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibit mammary stem cell specific CD29{sup hi}/CD49f{sup hi}/CD24{sup hi} markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance.

  11. Human tumor-derived genomic DNA transduced into a recipient cell induces tumor-specific immune responses ex vivo

    OpenAIRE

    Whiteside, Theresa L.; Gambotto, Andrea; Albers, Andreas; Stanson, Joanna; Cohen, Edward P.

    2002-01-01

    This article describes a DNA-based vaccination strategy evaluated ex vivo with human cells. The vaccine was prepared by transferring tumor-derived genomic DNA to PCI-13 cells, a highly immunogenic tumor cell line (“recipient cell”), which had been genetically modified to secrete IL-2 (PCI-13/IL-2). PCI-13 cells expressed class I MHC determinants (HLA-A2) shared with the tumor from which the DNA was obtained as well as allogeneic determinants. DNA from a gp100+ melanoma ce...

  12. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    Energy Technology Data Exchange (ETDEWEB)

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta [Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India); Bodipati, Naganjaneyulu; Krishna Peddinti, Rama [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India); Roy, Partha, E-mail: paroyfbs@iitr.ernet.in [Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India)

    2014-01-15

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC{sub 50}=25±0.38) when compared to reference compound PTER (IC{sub 50}=65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene.

  13. Granuloma induced by sustained-release fluorouracil implants misdiagnosed as a hepatic tumor: A case report.

    Science.gov (United States)

    Bai, Dou-Sheng; Jin, Sheng-Jie; He, Rong; Jiang, Guo-Qing; Yao, Jie

    2014-08-01

    Sustained-release fluorouracil (FU) implants have been extensively used in peritoneal interstitial chemotherapy, and during surgery for gastrointestinal tumors, breast cancer and hepatic tumors. Currently, studies regarding the complications associated with sustained-release FU implants are rare. The present study describes the case of a 61-year-old male who presented with a space-occupying lesion of the left lobe of the liver six months after undergoing a radical total gastrectomy. Thus, laparoscopic exploration was performed to remove the tumor. Postoperative histological examination demonstrated that the lesion in the left lobe comprised of necrotic tissue with granulation tissue hyperplasia. Based on the surgical and postoperative histological findings, the mass was proposed to be due to a high concentration of local sustained-release FU implants. Furthermore, the drug was partially surrounded and had been insufficiently metabolized over a long time period, which was proposed to have caused necrosis, proliferation and fibrillation, and induced granuloma. In conclusion, local high concentrations of sustained-release FU implants may be associated with granuloma and this finding may enable improved management of sustained-release FU implants during surgery. PMID:25013494

  14. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    International Nuclear Information System (INIS)

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway

  15. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Qing [School of Life Sciences, Tsinghua University, Beijing, 100084 (China); Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China); Tou, Fangfang [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China); Su, Hong; Wu, Xiaoyong [First Affiliated Hospital, Guiyang College of Traditional Chinese Medicine, Guiyang, 550002 (China); Chen, Xinyi [Department of Hematology and Oncology, Beijing University of Chinese Medicine, Beijing, 100029 (China); Zheng, Zhi, E-mail: zheng_sheva@hotmail.com [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China)

    2015-06-19

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.

  16. Detection of irradiation-induced, membrane heat shock protein 70 (Hsp70) in mouse tumors using Hsp70 Fab fragment

    International Nuclear Information System (INIS)

    Background and purpose: The major stress-inducible heat shock protein 70 (Hsp70) is frequently overexpressed in highly aggressive tumors, and elevated intracellular Hsp70 levels mediate protection against apoptosis. Following therapeutic intervention, such as ionizing irradiation, translocation of cytosolic Hsp70 to the plasma membrane is selectively increased in tumor cells and therefore, membrane Hsp70 might serve as a therapy-inducible, tumor-specific target structure. Materials and methods: Based on the IgG1 mouse monoclonal antibody (mAb) cmHsp70.1, we produced the Hsp70-specific recombinant Fab fragment (Hsp70 Fab), as an imaging tool for the detection of membrane Hsp70 positive tumor cells in vitro and in vivo. Results: The binding characteristics of Hsp70 Fab towards mouse colon (CT26) and pancreatic (1048) carcinoma cells at 4 deg. C were comparable to that of cmHsp70.1 mAb, as determined by flow cytometry. Following a temperature shift to 37 deg. C, Hsp70 Fab rapidly translocates into subcellular vesicles of mouse tumor cells. Furthermore, in tumor-bearing mice Cy5.5-conjugated Hsp70 Fab, but not unrelated IN-1 control Fab fragment (IN-1 ctrl Fab), gradually accumulates in CT26 tumors between 12 and 55 h after i.v. injection. Conclusions: In summary, the Hsp70 Fab provides an innovative, low immunogenic tool for imaging of membrane Hsp70 positive tumors, in vivo.

  17. Anti-tumor activity of Aloe vera against DMBA/croton oil-induced skin papillomagenesis in Swiss albino mice.

    Science.gov (United States)

    Saini, M; Goyal, Pradeep Kumar; Chaudhary, Geeta

    2010-01-01

    Human populations are increasingly exposed to various carcinogens such as chemicals, radiation, and viruses in the environment. Chemopreventive drugs of plant origin are a promising strategy for cancer control because they are generally nontoxic or less toxic than synthetic che-mopreventive agents, and can be effective at different stages of carcinogenesis. The present investigation was undertaken to explore the antitumor activity of topical treatment with aloe vera (Aloe vera) gel, oral treatment with aloe vera extract, and topical and oral treatment with both gel and extract in stage-2 skin carcinogenesis in Swiss albino mice induced by 7,12-dim ethylbenz(a)anthracene (DMBA) and promoted croton (Croton tiglium) oil. The animals were randomly divided into 4 groups and treated as follows: Group I, DMBA + croton oil only (controls); Group II, DMBA + croton oil + topical aloe vera gel; Group III, DMBA + croton oil + oral aloe vera extract; Group I V, DMBA + croton oil + topical aloe vera gel + oral aloe vera extract. Results showed that body weight was significantly increased from 78.6% in the control group (Group I) to 92.5%, 87.5%, and 90.0% in Groups II, III, and I V, respectively. A 100% incidence of tumor development was noted in Group I, which was decreased to 50%, 60%, and 40% in Groups II, III, and I V, respectively. Also in Groups II, III, and IV, the cumulative number of papillomas was reduced significantly from 36 to 12, 15, and 11; tumor yield from 3.6 to 1.2, 1.5, and 1.1; and tumor burden from 3.6 to 2.4, 2.50, and 2.75, respectively, after treatment with aloe vera. Conversely, the average latent period increased significantly from 4.9 (Group I) to 5.23, 5.0, and 6.01 weeks in Groups II, III, and I V, respectively. We conclude that aloe vera protects mice against DMBA/croton oil-induced skin papillomagenesis, likely due to the chemopreventive activity of high concentrations of antioxidants such as vitamins A, C, and E; glutathione peroxidase; several

  18. Chemical Profiles and Protective Effect of Hedyotis diffusa Willd in Lipopolysaccharide-Induced Renal Inflammation Mice.

    Science.gov (United States)

    Ye, Jian-Hong; Liu, Meng-Hua; Zhang, Xu-Lin; He, Jing-Yu

    2015-01-01

    Protective effect of Hedyotis diffusa (H. diffusa) Willd against lipopolysaccharide (LPS)-induced renal inflammation was evaluated by the productions of cytokines and chemokine, and the bioactive constituents of H. diffusa were detected by the ultra-fast liquid chromatography-diode array detector-quadrupole-time of flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) method. As the results showed, water extract of H. diffusa (equal to 5.0 g/kg body weight) obviously protected renal tissues, significantly suppressed the productions of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1, as well as significantly promoted the production of IL-10 in serum and renal tissues. According the chemical profiles of H. diffusa, flavonoids, iridoid glycosides and anthraquinones were greatly detected in serum from H. diffusa extract treatment mice. Two main chemotypes, including eight flavonoids and four iridoid glycosides were found in renal tissues from H. diffusa extract treatment mice. The results demonstrated that water extract of H. diffusa had protective effect on renal inflammation, which possibly resulted from the bioactive constituents consisting of flavonoids, iridoids and anthraquinones. PMID:26580602

  19. Chemical Profiles and Protective Effect of Hedyotis diffusa Willd in Lipopolysaccharide-Induced Renal Inflammation Mice

    Directory of Open Access Journals (Sweden)

    Jian-Hong Ye

    2015-11-01

    Full Text Available Protective effect of Hedyotis diffusa (H. diffusa Willd against lipopolysaccharide (LPS-induced renal inflammation was evaluated by the productions of cytokines and chemokine, and the bioactive constituents of H. diffusa were detected by the ultra-fast liquid chromatography -diode array detector-quadrupole-time of flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS method. As the results showed, water extract of H. diffusa (equal to 5.0 g/kg body weight obviously protected renal tissues, significantly suppressed the productions of tumor necrosis factor-α (TNF-α, interleukin (IL-1β, IL-6, and monocyte chemoattractant protein (MCP-1, as well as significantly promoted the production of IL-10 in serum and renal tissues. According the chemical profiles of H. diffusa, flavonoids, iridoid glycosides and anthraquinones were greatly detected in serum from H. diffusa extract treatment mice. Two main chemotypes, including eight flavonoids and four iridoid glycosides were found in renal tissues from H. diffusa extract treatment mice. The results demonstrated that water extract of H. diffusa had protective effect on renal inflammation, which possibly resulted from the bioactive constituents consisting of flavonoids, iridoids and anthraquinones.

  20. Chemical -induced apoptotic cell death in tomato cells : involvement of caspase-like proteases

    NARCIS (Netherlands)

    Jong, de A.J.; Hoeberichts, F.A.; Yakimova, E.T.; Maximova, E.; Woltering, E.J.

    2000-01-01

    A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the characte

  1. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    DEFF Research Database (Denmark)

    Greenberger, Lee M; Horak, Ivan D; Filpula, David;

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that plays a critical role in angiogenesis, survival, metastasis, drug resistance, and glucose metabolism. Elevated expression of the alpha-subunit of HIF-1 (HIF-1alpha), which occurs in response to hypoxia or activation of growth factor...... pathways, is associated with poor prognosis in many types of cancer. Therefore, down-regulation of HIF-1alpha protein by RNA antagonists may control cancer growth. EZN-2968 is a RNA antagonist composed of third-generation oligonucleotide, locked nucleic acid, technology that specifically binds and inhibits...... the expression of HIF-1alpha mRNA. In vitro, in human prostate (15PC3, PC3, and DU145) and glioblastoma (U373) cells, EZN-2968 induced a potent, selective, and durable antagonism of HIF-1 mRNA and protein expression (IC(50), 1-5 nmol/L) under normoxic and hypoxic conditions associated with inhibition of tumor...

  2. 68Ga DOTA-TATE PET/CT allows tumor localization in patients with tumor-induced osteomalacia but negative 111In-octreotide SPECT/CT.

    Science.gov (United States)

    Breer, Stefan; Brunkhorst, Thomas; Beil, F Timo; Peldschus, Kersten; Heiland, Max; Klutmann, Susanne; Barvencik, Florian; Zustin, Jozef; Gratz, Klaus-Friedrich; Amling, Michael

    2014-07-01

    Tumor-induced osteomalacia (TIO) is a paraneoplastic syndrome characterized by renal phosphate wasting, hypophosphatemia and low calcitriol levels as well as clinical symptoms like diffuse bone and muscle pain, fatigue fractures or increased fracture risk. Conventional imaging methods, however, often fail to detect the small tumors. Lately, tumor localization clearly improved by somatostatin-receptor (SSTR) imaging, such as octreotide scintigraphy or octreotide SPECT/CT. However, recent studies revealed that still a large number of tumors remained undetected by octreotide imaging. Hence, studies focused on different SSTR imaging methods such as 68Ga DOTA-NOC, 68Ga DOTA-TOC and 68Ga DOTA-TATE PET/CT with promising first results. Studies comparing different SSTR imaging methods for tumor localization in TIO are rare and thus little is known about diagnostic alternatives once a particular method failed to detect a tumor in patients with TIO. Here, we report the data of 5 consecutive patients suffering from TIO, who underwent both 111Indium-octreotide scintigraphy (111In-OCT) SPECT/CT as well as 68Ga DOTA-TATE PET/CT for tumor detection. While 111In-OCT SPECT/CT allowed tumor detection in only 1 of 5 patients, 68Ga DOTA-TATE PET/CT was able to localize the tumor in all patients. Afterwards, anatomical imaging of the region of interest was performed with CT and MRI. Thus, successful surgical resection of the tumor was achieved in all patients. Serum phosphate levels returned to normal and all patients reported relief of symptoms within weeks. Moreover, an iliac crest biopsy was obtained from every patient and revealed marked osteomalacia in all cases. Follow-up DXA revealed an increase in BMD of up to 34.5% 1-year postoperative, indicating remineralization. No recurrence was observed. In conclusion our data indicates that 68Ga DOTA-TATE PET/CT is an effective and promising diagnostic tool in the diagnosis of TIO, even in patients in whom 111In-OCT prior failed to detect

  3. Effect of local hyperthermia induced by nanometer magnetic fluid on the rabbit VX2 liver tumor model

    Institute of Scientific and Technical Information of China (English)

    Lehui Du; Jumei Zhou; Xiaowen Wang; Lin Sheng; Guihua Wang; Xiaoxue Xie; Guoquan Xu; Lingyun Zhao; Yuping Liao; Jingtian Tang

    2009-01-01

    Hyperthermia induced by magnetic nanoparticles is a recent therapeutic approach for local targeting of hyperthermia and thermoablation and is a promising treatment of malignant tumors.The purpose of this study is to evaluate the potential and therapeutic effect of magnetic fluid hyperthermia on the rabbit VX2 liver tumor model.Rabbits bearing liver tumors 14 days after tumor implantation were randomly divided into five groups of 10 cases each,including three control groups and two hyperthermia groups.Hyperthermia was carried out immediately after a single intratumoral injection of uncoated water-based Fe3O4 magnetic fluid under an alternating magnetic field only once as one hyperthermia group and repeated hyperthermia after 5 days as the other treated group.The distribution of magnetic fluid was evaluated by CT scanning.All animals were sacrificed 4 weeks after tumor implantation.The therapeutic effect was determined by tumor size and macroscopic and pathological examination of the liver tumor.The local higher density imaging of intratumoral magnetic fluid deposits compared to the surrounding tissue was clearly observed by CT scanning.Twenty-eight days after tumor implantation,the tumor maximal diameter and tumor volume of two hyperthermia were both significantly less than those of control groups (P<0.05).Tumor volume inhibition by single or repeated hyperthermia compared to the three control groups was 71.93-79.91% and 92.34-94.46% (P<0.05),respectively.Under a microscope,coagulation necrosis was observed in the heated area,which had a clear boundary line with the surrounding tissue.The intratumoral distribution of magnetic nanoparticles,especially in the area of necrosis,appeared much more homogenous than in the untreated ones.This study demonstrates that hyperthermia induced by direct intratumoral injection of magnetic fluid can be used safely,and a well-homogenized distribution of high intratumoral temperature without heating adjacent to normal tissue can

  4. INDUCEMENT OF ANTITUMOR-IMMUNITY BY DC ACTIVATED BY HSP70-H22 TUMOR ANTIGEN PEPTIDE

    Institute of Scientific and Technical Information of China (English)

    冯作化; 黄波; 张桂梅; 李东; 王洪涛

    2003-01-01

    Objective: To investigate the feasibility of decreasing the dosage of tumor antigen peptides by dendritic cell (DC)-presenting and the characteristics of modification of DC by heat shock protein (Hsp70) and antigen peptides. Methods: Peptides were bound to Hsp70 and used to modify DC in vitro. The metabolism of the modified DC and the cytokines secreted by the modified DC were determined. The activation of lymphocytes by the modified DC and Hsp70-H22 peptides was tested. The cytotoxicity of the activated lymphocytes to H22 tumor cells was analyzed. The inhibitory effect of tumor in mice by the injection of DC and Hsp70-H22 peptides was tested. Results: 0.15μg of H22 peptides bound with Hsp70 could make 2×105 DC mature. 4×103 matured DC could activate 2×106 lymphocytes. The same amount of lymphocytes could be activated to produce similar cytotoxicity to tumor cells by either DC modified by 0.003μg of peptides bound with Hsp70 or by direct stimulation with 0.15μg of peptides bound with Hsp70. The dosage of peptides could be reduced by about 50 folds if the modified DC was used for injection instead of Hsp70-peptides. Peptides from normal hepatocytes, bound with Hsp70, could not make DC mature, nor activate lymphocytes through DC. Conclusion: The dosage of Hsp70-H22 peptides can be reduced significantly by DC-presenting to activate lymphocytes. Peptides from normal cells could not activate lymphocytes by either Hsp70-presenting or DC-presenting and they have little chance to induce autoimmunity.

  5. Syrbactin Structural Analog TIR-199 Blocks Proteasome Activity and Induces Tumor Cell Death.

    Science.gov (United States)

    Bachmann, André S; Opoku-Ansah, John; Ibarra-Rivera, Tannya R; Yco, Lisette P; Ambadi, Sudhakar; Roberts, Christopher C; Chang, Chia-En A; Pirrung, Michael C

    2016-04-15

    Multiple myeloma is an aggressive hematopoietic cancer of plasma cells. The recent emergence of three effective FDA-approved proteasome-inhibiting drugs, bortezomib (Velcade®), carfilzomib (Kyprolis®), and ixazomib (Ninlaro®), confirms that proteasome inhibitors are therapeutically useful against neoplastic disease, in particular refractory multiple myeloma and mantle cell lymphoma. This study describes the synthesis, computational affinity assessment, and preclinical evaluation of TIR-199, a natural product-derived syrbactin structural analog. Molecular modeling and simulation suggested that TIR-199 covalently binds each of the three catalytic subunits (β1, β2, and β5) and revealed key interaction sites. In vitro and cell culture-based proteasome activity measurements confirmed that TIR-199 inhibits the proteasome in a dose-dependent manner and induces tumor cell death in multiple myeloma and neuroblastoma cells as well as other cancer types in the NCI-60 cell panel. It is particularly effective against kidney tumor cell lines, with >250-fold higher anti-tumor activities than observed with the natural product syringolin A. In vivo studies in mice revealed a maximum tolerated dose of TIR-199 at 25 mg/kg. The anti-tumor activity of TIR-199 was confirmed in hollow fiber assays in mice. Adverse drug reaction screens in a kidney panel revealed no off-targets of concern. This is the first study to examine the efficacy of a syrbactin in animals. Taken together, the results suggest that TIR-199 is a potent new proteasome inhibitor with promise for further development into a clinical drug for the treatment of multiple myeloma and other forms of cancer.

  6. Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression

    International Nuclear Information System (INIS)

    Hypoxia-inducible factor 1 alpha (HIF-1α) is involved in processes promoting carcinogenesis of many tumors. However, its role in the development of colorectal cancer is unknown. To investigate the significance of HIF-1α during colorectal carcinogenesis and progression we examined its expression in precursor lesions constituting the conventional and serrated pathways, as well as in non-metastatic and metastatic adenocarcinomas. Immunohistochemistry and Western blot is used to analyse HIF-1α expression in normal colonic mucosa, hyperplastic polyps (HPP), sessile serrated adenomas (SSA), low-grade (TA-LGD) and high-grade (TA-HGD) traditional adenomas as well as in non-metastatic and metastatic colorectal adenocarcinomas. Eight colorectal carcinoma cell lines are tested for their HIF-1α inducibility after lipopolysaccharide (LPS) stimulation using western blot and immunocytochemistry. In normal mucosa, HPP and TA-LGD HIF-1α was not expressed. In contast, perinuclear protein accumulation and nuclear expression of HIF-1α were shown in half of the examined SSA and TA-HGD. In all investigated colorectal carcinomas a significant nuclear HIF-1α overexpression compared to the premalignant lesions was observed but a significant correlation with the metastatic status was not found. Nuclear HIF-1α expression was strongly accumulated in perinecrotic regions. In these cases HIF-1α activation was seen in viable cohesive tumor epithelia surrounding necrosis and in dissociated tumor cells, which subsequently die. Enhanced distribution of HIF-1α was also seen in periiflammatory regions. In additional in vitro studies, treatment of diverse colorectal carcinoma cell lines with the potent pro-inflammatory factor lipopolysaccharide (LPS) led to HIF-1α expression and nuclear translocation. We conclude that HIF-1α expression occurs in early stages of colorectal carcinogenesis and achieves a maximum in the invasive stage independent of the metastatic status. Perinecrotic

  7. Chemically and temperature-induced phase transformations of metal vanadates

    Science.gov (United States)

    Patridge, Christopher James

    Metal vanadates contain a diverse family of compounds due to the facile accessibility of different vanadium oxidation states and local coordination environments. Though these systems present a number of applications in catalysis and electronics, there may exist untapped physical phenomena that only reveal themselves when scaling these materials to nanoscale dimensions. Finite-size effects result from a number of factors including surface energy structural instabilities, nanostructure "self-purification," and physical constraints on mechanistic or conductive pathways. The MxV2O 5 bronze materials possess non-stoichiometry and this interesting property has hindered synthetic techniques to procure perfect crystalline material which is needed to expose the true physical properties. Through hydrothermal synthesis methods, pseudo one---dimensional nanostructures of Mx V2O5 display fascinating new properties and may be model systems for studying fundamentals associated with correlated electron dynamics in solid-state physics. Electron microscopy and powder X-ray diffraction reveal the near-perfect crystalline nanostructures. X-ray absorption spectroscopy studies show strong evidence for the localization of electron density and long-range crystal structure alignment of the nanowires. Single-nanowire electron transport measurements for the beta'-CuxV2O5 and the delta-KxV2O5 data shows novel temperature-induced reversible metal---insulator transition (MIT) near room temperature. The unprecedented magnitude (˜105) and discontinuous nature of the MIT suggests a mechanism closely associated with correlated electron motion. Additionally, the MIT can be induced by voltage ramping. The simultaneous temperature/voltage studies of single-nanowire transport support the existence of a critical threshold to overcome in order to facilitate instability in the insulating phase and transition to a metallic phase for the delta-KxV2O5 bronze. The MIT transition magnitudes of several

  8. Epithelial-mesenchymal transition induces endoplasmic-reticulum-stress response in human colorectal tumor cells.

    Directory of Open Access Journals (Sweden)

    Evelyn Zeindl-Eberhart

    Full Text Available Tumor cells are stressed by unfavorable environmental conditions like hypoxia or starvation. Driven by the resulting cellular stress tumor cells undergo epithelial-mesenchymal transition. Additionally, cellular stress is accompanied by endoplasmic reticulum-stress which induces an unfolded protein response. It is unknown if epithelial-mesenchymal transition and endoplasmic reticulum-stress are occurring as independent parallel events or if an interrelationship exists between both of them. Here, we show that in colorectal cancer cells endoplasmic reticulum-stress depends on the induction of ZEB-1, which is a main factor of epithelial-mesenchymal transition. In the absence of ZEB-1 colorectal cancer cells cannot mount endoplasmic reticulum-stress as a reaction on cellular stress situations like hypoxia or starvation. Thus, our data suggest that there is a hierarchy in the development of cellular stress which starts with the presence of environmental stress that induces epithelial-mesenchymal transition which allows finally endoplasmic reticulum-stress. This finding highlights the central role of epithelial-mesenchymal transition during the process of tumorigenesis as epithelial-mesenchymal transition is also associated with chemoresistance and cancer stemness. Consequently, endoplasmic reticulum-stress might be a well suited target for chemotherapy of colorectal cancers.

  9. Type-1-cytokines synergize with oncogene inhibition to induce tumor growth arrest

    Science.gov (United States)

    Acquavella, Nicolas; Clever, David; Yu, Zhiya; Roelke-Parker, Melody; Palmer, Douglas C.; Xi, Liqiang; Pflicke, Holger; Ji, Yun; Gros, Alena; Hanada, Ken-ichi; Goldlust, Ian S.; Mehta, Gautam U.; Klebanoff, Christopher A.; Crompton, Joseph G.; Sukumar, Madhusudhanan; Morrow, James J.; Franco, Zulmarie; Gattinoni, Luca; Liu, Hui; Wang, Ena; Marincola, Francesco; Stroncek, David F.; Lee, Chyi-Chia R.; Raffeld, Mark; Bosenberg, Marcus W.; Roychoudhuri, Rahul; Restifo, Nicholas P.

    2014-01-01

    Both targeted inhibition of oncogenic driver mutations and immune-based therapies show efficacy in treatment of patients with metastatic cancer but responses can be either short-lived or incompletely effective. Oncogene inhibition can augment the efficacy of immune-based therapy but mechanisms by which these two interventions might cooperate are incompletely resolved. Using a novel transplantable BRAFV600E-mutant murine melanoma model (SB-3123), we explore potential mechanisms of synergy between the selective BRAFV600E inhibitor vemurafenib and adoptive cell transfer (ACT)-based immunotherapy. We found that vemurafenib cooperated with ACT to delay melanoma progression without significantly affecting tumor infiltration or effector function of endogenous or adoptively transferred CD8+ T cells as previously observed. Instead, we found that the T-cell cytokines IFNγ and TNFα synergized with vemurafenib to induce cell-cycle arrest of tumor cells in vitro. This combinatorial effect was recapitulated in human melanoma-derived cell lines and was restricted to cancers bearing a BRAFV600E-mutation. Molecular profiling of treated SB-3123 indicated that the provision of vemurafenib promoted the sensitization of SB-3123 to the anti-proliferative effects of T-cell effector cytokines. The unexpected finding that immune cytokines synergize with oncogene inhibitors to induce growth arrest have major implications for understanding cancer biology at the intersection of oncogenic and immune signaling and provides a basis for design of combinatorial therapeutic approaches for patients with metastatic cancer. PMID:25358764

  10. Clonal T cell expansion induced by interleukin 2 therapy in blood and tumors.

    Science.gov (United States)

    Kumar, A; Farace, F; Gaudin, C; Triebel, F

    1996-01-01

    In a phase I clinical trial on the effects of preoperative adjuvant IL-2 therapy given to patients undergoing hepatic resection of colorectal adenocarcinoma metastases, we monitored the putative induction of T cell clonal expansion in both tissues and blood. The presence of T cell clonotypes was analyzed with a PCR-based method that determines V-D-J junction size patterns in T cell receptor (TCR) V beta subfamilies in samples before and after a 5-d IL-2 infusion. This high resolution method analyzing CDR3 sizes of TCR transcripts was used in conjunction with FACS analysis of the corresponding T cell subpopulations with TCR V beta-specific mAb. At time of surgery (day 8 after starting IL-2), we found in the three patients analyzed with V beta-C beta primers multiple dominant T cell clonotypes in the tumor and peritumoral tissues which had probably expanded as a result of therapy. In three control patients not treated with IL-2, multiple oligoclonal patterns were not observed with this set of primers. In the fourth control patient a unique V beta 21-C beta CDR3 pattern which corresponds to two dominant clonotypes was found in the tumor. The same dominant clonotypes identified in the tumor after IL-2 were also detectable in the blood and comparison of the profiles obtained before and after IL-2 therapy indicates that they were induced by IL-2. The relative expansion of the corresponding T cell subpopulations was maintained for varying periods of time after surgery (4-7 d and almost 2 yr in one case). Together, these results indicate that IL-2 induces marked expansion of several T cell clones. Systemic IL-2 administration may represent, either alone or as a vaccine adjuvant, an appropriate way of boosting antigen-specific immune responses. PMID:8636433

  11. Repercussion of mitochondria deformity induced by anti-Hsp90 drug 17AAG in human tumor cells

    KAUST Repository

    Vishal, Chaturvedi

    2011-06-07

    Inhibiting Hsp90 chaperone roles using 17AAG induces cytostasis or apoptosis in tumor cells through destabilization of several mutated cancer promoting proteins. Although mitochondria are central in deciding the fate of cells, 17AAG induced effects on tumor cell mitochondria were largely unknown. Here, we show that Hsp90 inhibition with 17AAG first affects mitochondrial integrity in different human tumor cells, neuroblastoma, cervical cancer and glial cells. Using human neuroblastoma tumor cells, we found the early effects associated with a change in mitochondrial membrane potential, elongation and engorgement of mitochondria because of an increased matrix vacuolization. These effects are specific to Hsp90 inhibition as other chemotherapeutic drugs did not induce similar mitochondrial deformity. Further, the effects are independent of oxidative damage and cytoarchitecture destabilization since cytoskeletal disruptors and mitochondrial metabolic inhibitors also do not induce similar deformity induced by 17AAG. The 1D PAGE LC MS/ MS mitochondrial proteome analysis of 17AAG treated human neuroblastoma cells showed a loss of 61% proteins from membrane, metabolic, chaperone and ribonucleoprotein families. About 31 unmapped protein IDs were identified from proteolytic processing map using Swiss-Prot accession number, and converted to the matching gene name searching the ExPASy proteomics server. Our studies display that Hsp90 inhibition effects at first embark on mitochondria of tumor cells and compromise mitochondrial integrity. the author(s), publisher and licensee Libertas Academica Ltd.

  12. Matrix metalloproteinase 13 is induced in fibroblasts in polyomavirus middle T antigen-driven mammary carcinoma without influencing tumor progression

    DEFF Research Database (Denmark)

    Nielsen, Boye S; Egeblad, Mikala; Rank, Fritz;

    2008-01-01

    intraepithelial neoplasias. To determine if MMP13 plays a role in tumor progression, we crossed MMTV-PyMT mice with Mmp13 deficient mice. The absence of MMP13 did not influence tumor growth, vascularization, progression to more advanced tumor stages, or metastasis to the lungs, and the absence of MMP13 was not......Matrix metalloproteinase (MMP) 13 (collagenase 3) is an extracellular matrix remodeling enzyme that is induced in myofibroblasts during the earliest invasive stages of human breast carcinoma, suggesting that it is involved in tumor progression. During progression of mammary carcinomas in the...... polyoma virus middle T oncogene mouse model (MMTV-PyMT), Mmp13 mRNA was strongly upregulated concurrently with the transition to invasive and metastatic carcinomas. As in human tumors, Mmp13 mRNA was found in myofibroblasts of invasive grade II and III carcinomas, but not in benign grade I and II mammary...

  13. Suppression of tumor necrosis factor receptor-associated protein 1 expression induces inhibition of cell proliferation and tumor growth in human esophageal cancer cells.

    Science.gov (United States)

    Tian, Xin; Ma, Ping; Sui, Cheng-Guang; Meng, Fan-Dong; Li, Yan; Fu, Li-Ye; Jiang, Tao; Wang, Yang; Jiang, You-Hong

    2014-06-01

    Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a molecular chaperone involved in multidrug resistance and antiapoptosis in some human tumors, but its regulatory mechanisms have not been revealed in esophageal squamous cell carcinoma (ESCC). In this study, 138 specimens of ESCC were analyzed. TRAP1 was overexpressed in ESCC, particularly in poorly differentiated tumors. To further explore the molecular regulatory mechanism, we constructed specific small interfering RNA-expressing vectors targeting Trap1, and knocked down Trap1 expression in the esophageal cancer cell lines ECA109 and EC9706. Knockdown of Trap1 induced increases in reactive oxygen species and mitochondrial depolarization, which have been proposed as critical regulators of apoptosis. The cell cycle was arrested in G2/M phase, and in vitro inhibition of cell proliferation was confirmed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and bromodeoxyuridine assays. Furthermore, re-expression of TRAP1 in Trap1 small interfering RNA-transfected ESCC cells restored cell proliferation and cell apoptosis. Bioluminescence of subcutaneously xenografted ESCC tumor cells demonstrated significant inhibition of in vivo tumor growth by Trap1 knockdown. This study shows that TRAP1 was overexpressed in most patients with ESCC, and caused an increase in antiapoptosis potency. TRAP1 may be regarded as a target in ESCC biotherapy.

  14. AKT1E17K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer

    Science.gov (United States)

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype. PMID:26859676

  15. Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through Toll Like Receptor 9

    Science.gov (United States)

    Liu, Yao; Yan, Wei; Tohme, Samer; Chen, Man; Fu, Yu; Tian, Dean; Lotze, Michael; Tang, Daolin; Tsung, Allan

    2015-01-01

    Background and aims The mechanisms of hypoxia-induced tumor growth remain unclear. Hypoxia induces intracellular translocation and release of a variety of damage associated molecular patterns (DAMPs) such as nuclear HMGB1 and mitochondrial DNA (mtDNA). In inflammation, Toll-like receptor (TLR)-9 activation by DNA-containing immune complexes has been shown to be mediated by HMGB1. We thus hypothesize that HMGB1 binds mtDNA in the cytoplasm of hypoxic tumor cells and promotes tumor growth through activating TLR9 signaling pathways. Methods C57BL6 mice were injected with Hepa1-6 cancer cells. TLR9 and HMGB1 were inhibited using shRNA or direct antagonists. Huh7 and Hepa1-6 cancer cells were investigated in vitro to investigate how the interaction of HMGB1 and mtDNA activates TLR9 signaling pathways. Results During hypoxia, HMGB1 translocates from the nucleus to the cytosol and binds to mtDNA released from damaged mitochondria. This complex subsequently activates TLR9 signaling pathways to promote tumor cell proliferation. Loss of HMGB1 or mtDNA leads to a defect in TLR9 signaling pathways in response to hypoxia, resulting in decreased tumor cell proliferation. Also, the addition of HMGB1 and mtDNA leads to the activation of TLR-9 and subsequent tumor cell proliferation. Moreover, TLR9 is overexpressed in both hypoxic tumor cells in vitro and in human hepatocellular cancer (HCC) specimens; and, knockdown of either HMGB1 or TLR9 from HCC cells suppressed tumor growth in vivo after injection in mice. Conclusions Our data reveals a novel mechanism by which the interactions of HMGB1 and mtDNA activate TLR9 signaling during hypoxia to induce tumor growth. PMID:25681553

  16. Carcinogenic alterations in murine liver, lung, and uterine tumors induced by in utero exposure to ionizing radiation.

    Science.gov (United States)

    Lumniczky, K; Antal, S; Unger, E; Wunderlich, L; Hidvégi, E J; Sáfrány, G

    1998-02-01

    The atomic bombing of Hiroshima and Nagasaki and the nuclear accident at Chernobyl raised the question of prenatal sensitivity to ionizing radiation-induced cancer. In this study, mice were exposed to single doses of gamma-radiation (0.2-2.0 Gy) at different embryonic stages. The tumor incidence increased with dose from 15% in control mice to 35% in mice irradiated with 2.0 Gy on 18 d of prenatal life. Various oncogenic events were investigated in lymphoid, liver, lung, and uterine tumors. We observed threefold to fivefold increases in myc expression in 25% of the lymphomas, and the expression of Ha-ras and p53 genes decreased in 40% and 60% of the lung tumors by twofold to fivefold. Point mutations were tissue specific: Ha-ras codon 61 mutations were found in about 40% of the liver adenocarcinomas, Ki-ras codon 12 mutations in about 17% of lung tumors, and p53 mutations in about 15% of the lymphomas. Amplification and rearrangement of the p53, myc, and Ha-, Ki- and N-ras genes were not detected. Loss of heterozygosity on chromosome 4 at the multiple tumor suppressor 1 and 2 genes was observed in all types of malignancies. Allelic losses on chromosome 11 at the p53 locus were found in lymphoid, liver, and lung tumors, but they were absent from uterine tumors. Multiple oncogenic changes were often detected. The frequency of carcinogenic alterations was similar in spontaneous and radiation-induced lymphoid, liver, and uterine tumors. In radiation-induced lung adenocarcinomas, however, the incidences of many oncogenic changes were different from those found in their spontaneous counterparts. This suggests that different oncogenic pathways are activated during spontaneous and in utero gamma-radiation-induced murine lung carcinogenesis. PMID:9496910

  17. Gastrointestinal stromal tumor of the pelvic soft tissue presenting with symptomatic hypoglycemia: A case report and brief review of current literature of non-islet cell tumor-induced hypoglycemia

    OpenAIRE

    Dean, Kathleen; Hsieh, Jessica; Morosky, Christopher; Hoffman, James

    2012-01-01

    ► Presentation of a rare case of pelvic gastrointestinal stromal tumor. ► Non-islet cell induced hypoglycemia causing severe hypoglycemia. ► The pathogenesis of non-islet cell induced hypoglycemia due to over-production of precursors of insulin-like growth factor-II. ► Complete resolution of hypoglycemia following resection of the tumor.

  18. Experimental study on radiation-inducible expression and anti-tumor effect of pEgr-IFN γ recombinant plasmid

    International Nuclear Information System (INIS)

    Objective: To study the radiation-inducible expression and the anti-tumor effect of pEgr-IFN γ recombinant plasmid in mice bearing melanoma. Methods: The pEgr-IFN γ plasmid was injected locally into the tumor in the mice, and the tumors were irradiated with X-rays 36 hours later. The tumor growth rate at different times and mean survival period of the mice were observed. The IFN γmRNA level in the tumor was detected with RT-PCR, 3 days after irradiation, and the concentration of IFNγ in the serum of the mice was detected by ELISA 1, 3 and 5 days after irradiation. Results: The IFNγ mRNA level in the tumor of mice in the gene-radiotherapy group was significantly higher than that in the recombinant plasmid group 3 days after irradiation. The IFNγ concentration in the serum of mice in the gene-radiotherapy group was higher than that in the recombinant plasmid group and the control group 1 and 3 days after irradiation. The tumor growth rate in the group of plasmid injection followed by 5 Gy irradiation for four times was significantly lower than that in the group of plasmid injection followed by 20 Gy irradiation 9-15 days after irradiation, and the mean survival period was also longer. Conclusions: The anti-tumor effect of plasmid injection followed by lower dose irradiation for several times is better than that by higher dose irradiation. By inducing higher expression of IFNγ gene in the tumor, pEgr-IFN γ gene-radiotherapy could increase the concentration of IFNγ in the serum, and therefore the body's immunologic function and anti-tumor ability are enhanced

  19. Hypoxia upregulates Bcl-2 expression and suppresses interferon-gamma induced antiangiogenic activity in human tumor derived endothelial cells.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    BACKGROUND: Hypoxia in solid tumors potentially stimulates angiogenesis by promoting vascular endothelial growth factor (VEGF) production and upregulating VEGF receptor expression. However, it is unknown whether hypoxia can modulate the effect of anti-angiogenic treatment on tumor-derived endothelium. METHODS: Human tumor-derived endothelial cells (HTDEC) were freshly isolated from surgically removed human colorectal tumors by collagenase\\/DNase digestion and Percol gradient sedimentation. Cell proliferation was assessed by measuring BrdU incorporation, and capillary tube formation was measured using Matrigel. Cell apoptosis was assessed by flow cytometry and ELISA, and Bcl-2 expression was detected by Western blot analysis. RESULTS: Under aerobic culture conditions (5% CO2 plus 21% O2) HTDEC expressed less Bcl-2 and were more susceptible to IFN-gamma-induced apoptosis with significant reductions in both cell proliferation and capillary tube formation, when compared with normal human macrovascular and microvascular EC. Following exposure of HTDEC to hypoxia (5% CO2 plus 2% O2), IFN-gamma-induced cell apoptosis, and antiangiogenic activity (i.e. an inhibition in cell proliferation and capillary tube formation) in HTDEC were markedly attenuated. This finding correlated with hypoxia-induced upregulation of Bcl-2 expression in HTDEC. CONCLUSIONS: These results indicate that hypoxia can protect HTDEC against IFN-gamma-mediated cell death and antiangiogenic activity, and suggest that improvement of tumor oxygenation may potentiate the efficacy of anti-cancer therapies specifically targeting the inhibition of tumor angiogenesis.

  20. Staphylococcal Entertotoxins of the Enterotoxin Gene Cluster (egcSEs Induce Nitrous Oxide- and Cytokine Dependent Tumor Cell Apoptosis in a Broad Panel of Human Tumor Cells

    Directory of Open Access Journals (Sweden)

    David eTerman

    2013-08-01

    Full Text Available The egcSEs comprise five genetically linked staphylococcal enterotoxins, SEG, SEI, SElM, SElN and SElO and two pseudotoxins which constitute an operon present in up to 80% of Staphylococcus aureus isolates. A preparation containing theses proteins was recently used to treat advanced lung cancer with pleural effusion. We investigated the hypothesis that egcSEs induce nitrous oxide (NO and associated cytokine production and that these agents may be involved in tumoricidal effects against a broad panel of clinically relevant human tumor cells. Preliminary studies showed that egcSEs and SEA activated T cells (range: 11-25% in a concentration dependent manner. Peripheral blood mononuclear cells (PBMCs stimulated with equimolar quantities of egcSEs expressed NO synthase and generated robust levels of nitrite (range: 200-250 µM, a breakdown product of NO; this reaction was inhibited by NG-monomethyl-L-arginine (L-NMMA (0.3 mM, an NO synthase antagonist. Cell free supernatants (CSFs of all egcSE-stimulated PBMCs were also equally effective in inducing concentration dependent tumor cell apoptosis in a broad panel of human tumor cells. The latter effect was due in part to the generation of NO and TNF-α since it was significantly abolished by L-NMMA, anti-TNF-α antibodies respectively and a combination thereof. A hierarchy of tumor cell sensitivity to these CFSs was as follows: lung carcinoma>osteogenic sarcoma>melanoma>breast carcinoma>neuroblastoma. Notably, SEG induced robust activation of NO/TNFα-dependent tumor cell apoptosis comparable to the other egcSEs and SEA despite TNF-α and IFN-γ levels that were 2 and 8 fold lower respectively than the other egcSEs and SEA. Thus, egcSEs produced by S. aureus induce NO synthase and the increased NO formation together with TNF-α appear to contribute to egcSE-mediated apoptosis against a broad panel of human tumor cells.

  1. Spectroscopic Observation of Chemical Interaction Between Impact-induced Vapor Clouds and the Ambient Atmosphere

    Science.gov (United States)

    Sugita, S.; Heineck, J. T.; Schultz, P. H.

    2000-01-01

    Chemical reactions within impact-induced vapor clouds were observed in laboratory experiments using a spectroscopic method. The results indicate that projectile-derived carbon-rich vapor reacts intensively with atmospheric nitrogen.

  2. Oncogenic EGFR Represses the TET1 DNA Demethylase to Induce Silencing of Tumor Suppressors in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Matteo Forloni

    2016-07-01

    Full Text Available Oncogene-induced DNA methylation-mediated transcriptional silencing of tumor suppressors frequently occurs in cancer, but the mechanism and functional role of this silencing in oncogenesis are not fully understood. Here, we show that oncogenic epidermal growth factor receptor (EGFR induces silencing of multiple unrelated tumor suppressors in lung adenocarcinomas and glioblastomas by inhibiting the DNA demethylase TET oncogene family member 1 (TET1 via the C/EBPα transcription factor. After oncogenic EGFR inhibition, TET1 binds to tumor suppressor promoters and induces their re-expression through active DNA demethylation. Ectopic expression of TET1 potently inhibits lung and glioblastoma tumor growth, and TET1 knockdown confers resistance to EGFR inhibitors in lung cancer cells. Lung cancer samples exhibited reduced TET1 expression or TET1 cytoplasmic localization in the majority of cases. Collectively, these results identify a conserved pathway of oncogenic EGFR-induced DNA methylation-mediated transcriptional silencing of tumor suppressors that may have therapeutic benefits for oncogenic EGFR-mediated lung cancers and glioblastomas.

  3. Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis

    DEFF Research Database (Denmark)

    Zhuang, Hongqin; Jiang, Weiwei; Cheng, Wei;

    2010-01-01

    Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) has recently emerged as a cancer therapeutic agent because it preferentially induces apoptosis in human cancer over normal cells. Most tumor cells, including lung cancer cell line A549, unfortunately, are resistant to TRAIL...... siRNA on drug sensitization of A549 cells to TRAIL treatment. The results showed that treatment of A549 cells with HSP27 siRNA down-regulated HSP27 expression but did not induce significant apoptosis. However, combination of HSP27 siRNA with TRAIL-induced significant apoptosis in TRAIL-resistant A549...... cells. In addition to inducing caspases activation and apoptosis, combined treatment with HSP27 siRNA and TRAIL also increased JNK and p53 expression and activity. Collectively, these findings provide a conclusion that siRNA targeting of the HSP27 gene specifically down-regulated HSP27 expression in A...

  4. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity

    DEFF Research Database (Denmark)

    Mathiassen, S; Lauemøller, S L; Ruhwald, M;

    2001-01-01

    to identify TAA, mice were immunized with mixtures of peptides representing putative cytotoxic T cell epitopes derived from one of the gene products. Indeed, such immunized mice were partially protected against subsequent tumor challenge. Despite being immunized with bona fide self antigens, no...

  5. Tumor cell death induced by the inhibition of mitochondrial electron transport: The effect of 3-hydroxybakuchiol

    Energy Technology Data Exchange (ETDEWEB)

    Jaña, Fabián [Clinical and Molecular Pharmacology Program, University of Chile, Santiago (Chile); Faini, Francesca [Department of Chemistry, Faculty of Sciences, University of Chile, Santiago (Chile); Lapier, Michel; Pavani, Mario [Clinical and Molecular Pharmacology Program, University of Chile, Santiago (Chile); Kemmerling, Ulrike [Anatomy and Developmental Biology Program, ICBM, Faculty of Medicine, University of Chile, Santiago (Chile); Morello, Antonio; Maya, Juan Diego; Jara, José [Clinical and Molecular Pharmacology Program, University of Chile, Santiago (Chile); Parra, Eduardo [Laboratory of Experimental Biomedicine, University of Tarapaca, Campus Esmeralda, Iquique (Chile); Ferreira, Jorge, E-mail: jferreir@med.uchile.cl [Clinical and Molecular Pharmacology Program, University of Chile, Santiago (Chile)

    2013-10-15

    Changes in mitochondrial ATP synthesis can affect the function of tumor cells due to the dependence of the first step of glycolysis on mitochondrial ATP. The oxidative phosphorylation (OXPHOS) system is responsible for the synthesis of approximately 90% of the ATP in normal cells and up to 50% in most glycolytic cancers; therefore, inhibition of the electron transport chain (ETC) emerges as an attractive therapeutic target. We studied the effect of a lipophilic isoprenylated catechol, 3-hydroxybakuchiol (3-OHbk), a putative ETC inhibitor isolated from Psoralea glandulosa. 3-OHbk exerted cytotoxic and anti-proliferative effects on the TA3/Ha mouse mammary adenocarcinoma cell line and induced a decrease in the mitochondrial transmembrane potential, the activation of caspase-3, the opening of the mitochondrial permeability transport pore (MPTP) and nuclear DNA fragmentation. Additionally, 3-OHbk inhibited oxygen consumption, an effect that was completely reversed by succinate (an electron donor for Complex II) and duroquinol (electron donor for Complex III), suggesting that 3-OHbk disrupted the electron flow at the level of Complex I. The inhibition of OXPHOS did not increase the level of reactive oxygen species (ROS) but caused a large decrease in the intracellular ATP level. ETC inhibitors have been shown to induce cell death through necrosis and apoptosis by increasing ROS generation. Nevertheless, we demonstrated that 3-OHbk inhibited the ETC and induced apoptosis through an interaction with Complex I. By delivering electrons directly to Complex III with duroquinol, cell death was almost completely abrogated. These results suggest that 3-OHbk has antitumor activity resulting from interactions with the ETC, a system that is already deficient in cancer cells. - Highlights: • We studied the anticancer activity of a natural compound, 3-OHbk, on TA3/Ha cells. • 3-OHbk inhibited mitochondrial electron flow by interacting with Complex I. • Complex I inhibition did

  6. Microarray analysis of tumor necrosis factor α induced gene expression in U373 human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Prüllage Maria

    2003-11-01

    Full Text Available Abstract Background Tumor necrosis factor α (TNF is able to induce a variety of biological responses in the nervous system including inflammation and neuroprotection. Human astrocytoma cells U373 have been widely used as a model for inflammatory cytokine actions in the nervous system. Here we used cDNA microarrays to analyze the time course of the transcriptional response from 1 h up to 12 h post TNF treatment in comparison to untreated U373 cells. TNF activated strongly the NF-κB transcriptional pathway and is linked to other pathways via the NF-κB target genes JUNB and IRF-1. Part of the TNF-induced gene expression could be inhibited by pharmacological inhibition of NF-κB with pyrrolidine-dithiocarbamate (PDTC. NF-κB comprises a family of transcription factors which are involved in the inducible expression of genes regulating neuronal survival, inflammatory response, cancer and innate immunity. Results In this study we show that numerous genes responded to TNF (> 880 from 7500 tested with a more than two-fold induction rate. Several novel TNF-responsive genes (about 60% of the genes regulated by a factor ≥ 3 were detected. A comparison of our TNF-induced gene expression profiles of U373, with profiles from 3T3 and Hela cells revealed a striking cell-type specificity. SCYA2 (MCP-1, CCL2, MCAF was induced in U373 cells in a sustained manner and at the highest level of all analyzed genes. MCP-1 protein expression, as monitored with immunofluorescence and ELISA, correlated exactly with microarray data. Based on these data and on evidence from literature we suggest a model for the potential neurodegenerative effect of NF-κB in astroglia: Activation of NF-κB via TNF results in a strongly increased production of MCP-1. This leads to a exacerbation of neurodegeneration in stoke or Multiple Sclerosis, presumably via infiltration of macrophages. Conclusions The vast majority of genes regulated more than 3-fold were previously not linked to

  7. Tumor vaccines

    International Nuclear Information System (INIS)

    Tumor vaccines have several potential advantages over standard anticancer regiments. They represent highly specific anticancer therapy. Inducing tumor-specific memory T-lymphocytes, they have potential for long-lived antitumor effects. However, clinical trials, in which cancer patients were vaccinated with tumor vaccines, have been so far mainly disappointing. There are many reasons for the inefficiency of tumor vaccines. Most cancer antigens are normal self-molecules to which immune tolerance exists. That is why the population of tumor-specific lymphocytes is represented by a small number of low-affinity T-lymphocytes that induce weak antitumor immune response. Simultaneously, tumors evolve many mechanisms to actively evade immune system, what makes them poorly immunogenic or even tolerogenic. Novel immunotherapeutic strategies are directed toward breaking immune tolerance to tumor antigens, enhancing immunogenicity of tumor vaccines and overcoming mechanisms of tumor escape. There are several approaches, unfortunately, all of them still far away from an ideal tumor vaccine that would reject a tumor. Difficulties in the activation of antitumor immune response by tumor vaccines have led to the development of alternative immunotherapeutic strategies that directly focus on effector mechanisms of immune system (adoptive tumor- specific T-lymphocyte transfer and tumor specific monoclonal antibodies). (author)

  8. Human relevance framework for rodent liver tumors induced by the insecticide sulfoxaflor.

    Science.gov (United States)

    LeBaron, Matthew J; Gollapudi, B Bhaskar; Terry, Claire; Billington, Richard; Rasoulpour, Reza J

    2014-05-01

    Sulfoxaflor, a novel active substance that targets sap-feeding insects, induced rodent hepatotoxicity when administered at high dietary doses. Specifically, hepatocellular adenomas and carcinomas increased after 18 months in male and female CD-1 mice at 750 and 1250 ppm, respectively, and hepatocellular adenomas increased after 2 years in male F344 rats at 500 ppm. Studies to determine the mode of action (MoA) for these liver tumors were performed in an integrated and prospective manner as part of the standard battery of toxicology studies such that the MoA data were available prior to, or by the time of, the completion of the carcinogenicity studies. Sulfoxaflor is not genotoxic and the MoA data support the following key events in the etiology of the rodent liver tumors: (1) CAR nuclear receptor activation and (2) hepatocellular proliferation. The MoA data were evaluated in a weight of evidence approach using the Bradford Hill criteria for causation and were found to align with dose and temporal concordance, biological plausibility, coherence, strength, consistency, and specificity for a CAR-mediated MoA while excluding other alternate MoAs. The available data include: activation of CAR, Cyp2b induction, hepatocellular hypertrophy and hyperplasia, absence of liver effects in KO mice, absence of proliferation in humanized mice, and exclusion of other possible mechanisms (e.g., genotoxicity, cytotoxicity, AhR, or PPAR activation), and indicate that the identified rodent liver tumor MoA for sulfoxaflor would not occur in humans. In this case, sulfoxaflor is considered not to be a potential human liver carcinogen. PMID:24832551

  9. Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization.

    Directory of Open Access Journals (Sweden)

    Ara G Hovanessian

    Full Text Available BACKGROUND: Nucleolin is one of the major proteins of the nucleolus, but it is also expressed on the cell surface where is serves as a binding protein for variety of ligands implicated in tumorigenesis and angiogenesis. Emerging evidence suggests that the cell-surface expressed nucleolin is a strategic target for an effective and nontoxic cancer therapy. METHODOLOGY/PRINCIPAL FINDINGS: By monitoring the expression of nucleolin mRNA, and by measuring the level of nucleolin protein recovered from the surface and nucleus of cells, here we show that the presence of nucleolin at the cell surface is dependent on the constant induction of nucleolin mRNA. Indeed, inhibitors of RNA transcription or translation block expression of surface nucleolin while no apparent effect is observed on the level of nucleolin in the nucleus. The estimated half-life of surface nucleolin is less than one hour, whereas that of nuclear nucleolin is more than 8 hours. Nucleolin mRNA induction is reduced markedly in normal fibroblasts that reach confluence, while it occurs continuously even in post-confluent epithelial tumor cells consistent with their capacity to proliferate without contact inhibition. Interestingly, cold and heat shock induce nucleolin mRNA concomitantly to enhanced mRNA expression of the heat shock protein 70, thus suggesting that surface nucleolin induction also occurs in response to an environmental insult. At the cell surface, one of the main functions of nucleolin is to shuttle specific extracellular ligands by an active transport mechanism, which we show here to be calcium dependent. CONCLUSION/SIGNIFICANCE: Our results demonstrate that the expression of surface nucleolin is an early metabolic event coupled with tumor cell proliferation and stress response. The fact that surface nucleolin is constantly and abundantly expressed on the surface of tumor cells, makes them a preferential target for the inhibitory action of anticancer agents that target

  10. Radiation-Inducible Caspase-8 Gene Therapy for Malignant Brain Tumors

    International Nuclear Information System (INIS)

    Purpose: Patients with malignant gliomas have a poor prognosis. To explore a novel and more effective approach for the treatment of patients with malignant gliomas, we designed a strategy that combines caspase-8 (CSP8) gene therapy and radiation treatment (RT). In addition, the specificity of the combined therapy was investigated to decrease the unpleasant effects experienced by the surrounding normal tissue. Methods and Materials: We constructed the plasmid pEGR-green fluorescence protein that included the radiation-inducible early growth response gene-1 (Egr-1) promoter and evaluated its characteristics. The pEGR-CSP8 was constructed and included the Egr-1 promoter and CSP8 complementary DNA. Assays that evaluated the apoptosis inducibility and cytotoxicity caused by CSP8 gene therapy combined with RT were performed using U251 and U87 glioma cells. The pEGR-CSP8 was transfected into the subcutaneous U251 glioma cells of nude mice by means of in vivo electroporation. The in vivo effects of CSP8 gene therapy combined with RT were evaluated. Results: The Egr-1 promoter yielded a better response with fractionated RT than with single-dose RT. In the assay of apoptosis inducibility and cytotoxicity, pEGR-CSP8 showed response for RT. The pEGR-CSP8 combined with RT is capable of inducing cell death effectively. In mice treated with pEGR-CSP8 and RT, apoptotic cells were detected in pathologic sections, and a significant difference was observed in tumor volumes. Conclusions: Our results indicate that radiation-inducible gene therapy may have great potential because this can be spatially or temporally controlled by exogenous RT and is safe and specific

  11. Sequence tags of provirus integration sites in DNAs of tumors induced by the murine retrovirus SL3-3.

    OpenAIRE

    Sørensen, A B; Duch, M.; Amtoft, H W; Jørgensen, P; Pedersen, F S

    1996-01-01

    The murine retrovirus SL3-3 is a potent inducer of T-cell lymphomas when inoculated into susceptible newborn mice. The proviral integration site sequences were surveyed in tumor DNAs by a simple two-step PCR method. From 20 SL3-3-induced tumors a total of 39 provirus-host junctions were amplified and sequenced. Seven showed homology to known sequences. These included the known common integration site c-myc as well as genes not previously identified as targets of provirus integration, namely N...

  12. Human Adipose Derived Stem Cells Induced Cell Apoptosis and S Phase Arrest in Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2015-01-01

    Full Text Available The aim of this study was to determine the effect of human adipose derived stem cells (ADSCs on the viability and apoptosis of human bladder cancer cells. EJ and T24 cells were cocultured with ADSCs or cultured with conditioned medium of ADSCs (ADSC-CM, respectively. The cell counting and colony formation assay showed ADSCs inhibited the proliferation of EJ and T24 cells. Cell viability assessment revealed that the secretions of ADSCs, in the form of conditioned medium, were able to decrease cancer cell viability. Wound-healing assay suggested ADSC-CM suppressed migration of T24 and EJ cells. Moreover, the results of the flow cytometry indicated that ADSC-CM was capable of inducing apoptosis of T24 cells and inducing S phase cell cycle arrest. Western blot revealed ADSC-CM increased the expression of cleaved caspase-3 and cleaved PARP, indicating that ADSC-CM induced apoptosis in a caspase-dependent way. PTEN/PI3K/Akt pathway and Bcl-2 family proteins were involved in the mechanism of this reaction. Our study indicated that ADSCs may provide a promising and practicable manner for bladder tumor therapy.

  13. Tumor Necrosis Factor-α-Induced Ototoxicity in Mouse Cochlear Organotypic Culture.

    Directory of Open Access Journals (Sweden)

    Qian Wu

    Full Text Available Tumor necrosis factor (TNF-α is a cytokine involved in acute inflammatory phase reactions, and is the primary upstream mediator in the cochlear inflammatory response. Treatment of the organ of Corti with TNF-α can induce hair cell damage. However, the resulting morphological changes have not been systematically examined. In the present study, cochlear organotypic cultures from neonatal mice were treated with various concentrations and durations of TNF-α to induce inflammatory responses. Confocal microscopy was used to evaluate the condition of hair cells and supporting cells following immunohistochemical staining. In addition, the ultrastructure of the stereocilia bundle, hair cells, and supporting cells were examined by scanning and transmission electron microscopy. TNF-α treatment resulted in a fusion and loss of stereocilia bundles in hair cells, swelling of mitochondria, and vacuolation and degranulation of the endoplasmic reticulum. Disruption of tight junctions between hair cells and supporting cells was also observed at high concentrations. Hair cell loss was preceded by apoptosis of Deiters' and pillar cells. Taken together, these findings detail the morphological changes in the organ of Corti after TNF-α treatment, and provide an in vitro model of inflammatory-induced ototoxicity.

  14. Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity

    Directory of Open Access Journals (Sweden)

    Ashley Richard A

    2009-03-01

    Full Text Available Abstract Background Originating from Africa, India, and the Middle East, frankincense oil has been important both socially and economically as an ingredient in incense and perfumes for thousands of years. Frankincense oil is prepared from aromatic hardened gum resins obtained by tapping Boswellia trees. One of the main components of frankincense oil is boswellic acid, a component known to have anti-neoplastic properties. The goal of this study was to evaluate frankincense oil for its anti-tumor activity and signaling pathways in bladder cancer cells. Methods Frankincense oil-induced cell viability was investigated in human bladder cancer J82 cells and immortalized normal bladder urothelial UROtsa cells. Temporal regulation of frankincense oil-activated gene expression in bladder cancer cells was identified by microarray and bioinformatics analysis. Results Within a range of concentration, frankincense oil suppressed cell viability in bladder transitional carcinoma J82 cells but not in UROtsa cells. Comprehensive gene expression analysis confirmed that frankincense oil activates genes that are responsible for cell cycle arrest, cell growth suppression, and apoptosis in J82 cells. However, frankincense oil-induced cell death in J82 cells did not result in DNA fragmentation, a hallmark of apoptosis. Conclusion Frankincense oil appears to distinguish cancerous from normal bladder cells and suppress cancer cell viability. Microarray and bioinformatics analysis proposed multiple pathways that can be activated by frankincense oil to induce bladder cancer cell death. Frankincense oil might represent an alternative intravesical agent for bladder cancer treatment.

  15. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors

    Energy Technology Data Exchange (ETDEWEB)

    Daya-Grosjean, Leela [Laboratory of Genetic Instability and Cancer, UPR2169 CNRS, IFR 54, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex (France)]. E-mail: daya@igr.fr; Sarasin, Alain [Laboratory of Genetic Instability and Cancer, UPR2169 CNRS, IFR 54, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex (France)

    2005-04-01

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis.

  16. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors

    International Nuclear Information System (INIS)

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis

  17. Phosphoinositide 3-kinase accelerates postoperative tumor growth by inhibiting apoptosis and enhancing resistance to chemotherapy-induced apoptosis. Novel role for an old enemy.

    LENUS (Irish Health Repository)

    Coffey, J Calvin

    2012-02-03

    Tumor removal remains the principal treatment modality in the management of solid tumors. The process of tumor removal may potentiate the resurgent growth of residual neoplastic tissue. Herein, we describe a novel murine model in which flank tumor cytoreduction is followed by accelerated local tumor recurrence. This model held for primary and recurrent tumors generated using a panel of human and murine (LS174T, DU145, SW480, SW640, and 3LL) cell lines and replicated accelerated tumor growth following excisional surgery. In investigating this further, epithelial cells were purified from LS174T primary and corresponding recurrent tumors for comparison. Baseline as well as tumor necrosis factor apoptosis-inducing ligand (TRAIL)-induced apoptosis were significantly reduced in recurrent tumor epithelia. Primary and recurrent tumor gene expression profiles were then compared. This identified an increase and reduction in the expression of p110gamma and p85alpha class Ia phosphoinositide 3-kinase (PI3K) subunits in recurrent tumor epithelia. These changes were further confirmed at the protein level. The targeting of PI3K ex vivo, using LY294002, restored sensitivity to TRAIL in recurrent tumor epithelia. In vivo, adjuvant LY294002 prolonged survival and significantly attenuated recurrent tumor growth by greatly enhancing apoptosis levels. Hence, PI3K plays a role in generating the antiapoptotic and chemoresistant phenotype associated with accelerated local tumor recurrence.

  18. Rapamycin Impairs Antitumor CD8+ T-cell Responses and Vaccine-Induced Tumor Eradication.

    Science.gov (United States)

    Chaoul, Nada; Fayolle, Catherine; Desrues, Belinda; Oberkampf, Marine; Tang, Alexandre; Ladant, Daniel; Leclerc, Claude

    2015-08-15

    The metabolic sensor mTOR broadly regulates cell growth and division in cancer cells, leading to a significant focus on studies of rapamycin and its analogues as candidate anticancer drugs. However, mTOR inhibitors have failed to produce useful clinical efficacy, potentially because mTOR is also critical in T cells implicated in immunosurveillance. Indeed, recent studies using rapamycin have demonstrated the important role of mTOR in differentiation and induction of the CD8+ memory in T-cell responses associated with antitumor properties. In this study, we demonstrate that rapamycin harms antitumor immune responses mediated by T cells in the setting of cancer vaccine therapy. Specifically, we analyzed how rapamycin affects the antitumor efficacy of a human papilloma virus E7 peptide vaccine (CyaA-E7) capable of eradicating tumors in the TC-1 mouse model of cervical cancer. In animals vaccinated with CyaA-E7, rapamycin administration completely abolished recruitment of CD8+ T cells into TC-1 tumors along with the ability of the vaccine to reduce infiltration of T regulatory cells and myeloid-derived suppressor cells. Moreover, rapamycin completely abolished vaccine-induced cytotoxic T-cell responses and therapeutic activity. Taken together, our results demonstrate the powerful effects of mTOR inhibition in abolishing T-cell-mediated antitumor immune responses essential for the therapeutic efficacy of cancer vaccines.

  19. Optical signature of multicellular tumor spheroid using index-mismatch-induced spherical aberrations

    Science.gov (United States)

    Le Corre, G.; Weiss, P.; Ducommun, B.; Lorenzo, C.

    2014-02-01

    The development of new cancer treatments and the early prediction of their therapeutic potential are often made difficult by the lack of predictive pharmacological models. The 3D multicellular tumor spheroid (MCTS) model offers a level of complexity that recapitulates the three-dimensional organization of a tumor and appears to be fairly predictive of therapeutic efficiency. The use of spheroids in large-scale automated screening was recently reported to link the power of a high throughput analysis to the predictability of a 3D cell model. The spheroid has a radial symmetry; this simple geometry allows establishing a direct correlation between structure and function. The outmost layers of MCTS are composed of proliferating cells and form structurally uniform domain with an approximate thickness of 100 microns. The innermost layers are composed of quiescent cells. Finally, cells in the center of the spheroid can form a necrotic core. This latest region is structurally heterogeneous and is poorly characterized. These features make the spheroid a model of choice and a paradigm to study the optical properties of various epithelial tissues. In this study, we used an in-vitro optical technique for label-free characterization of multicellular systems based on the index- mismatch induced spherical aberrations. We achieve to monitor and characterize the optical properties of MCTS. This new and original approach might be of major interest for the development of innovative screening strategies dedicated to the identification of anticancer drugs.

  20. Doxycyclin ameliorates a starvation-induced germline tumor in C. elegans daf-18/PTEN mutant background.

    Science.gov (United States)

    Wolf, Tim; Qi, Wenjing; Schindler, Verena; Runkel, Eva Diana; Baumeister, Ralf

    2014-08-01

    Managing available resources is a key necessity of each organism to cope with the environment. The nematode C. elegans responds to nutritional deprivation or harsh environmental conditions with a multitude of developmental adaptations, among them a starvation-induced quiescence at early larval development (L1). daf-18, the C. elegans homolog of the human tumor suppressor gene PTEN, is essential for the maintenance of survival and germline stem cell arrest during the L1 diapause. We show here that daf-18 mutants, independently to their failure to maintain G2 arrest of the primordial germ cells, develop a gonad phenotype after refeeding. This highly penetrant gonadal phenotype is further enhanced by a mutation in shc-1, encoding a protein homologous to the human adaptor ShcA. Features of this phenotype are a tumor-like phenotype encompassing hyper-proliferation of germ cell nuclei and disruption/invasion of the basement membrane surrounding the gonad. The penetrance of this phenotype is reduced by decreasing starvation temperature. In addition, it is also ameliorated in a dose-dependent way by exposure to the antibiotic doxycyclin either during starvation or during subsequent refeeding. Since, in eukaryotic cells, doxycyclin specifically blocks mitochondrial translation, our results suggest that daf-18 and shc-1;daf-18 mutants fail to adapt mitochondrial activity to reduced nutritional availability during early larval developing. PMID:24746511

  1. Low-temperature plasma-induced antiproliferative effects on multi-cellular tumor spheroids

    Science.gov (United States)

    Plewa, Joseph-Marie; Yousfi, Mohammed; Frongia, Céline; Eichwald, Olivier; Ducommun, Bernard; Merbahi, Nofel; Lobjois, Valérie

    2014-04-01

    Biomedical applications of low-temperature plasmas are of growing interest, especially in the field of plasma-induced anti-tumor effects. The present work is aimed at investigating the regionalized antiproliferative effects of low-temperature plasmas on a multicellular tumor spheroid (MCTS), a model that mimics the 3D organization and regionalization of a microtumor region. We report that a low-temperature plasma jet, using helium flow in open air, inhibits HCT116 colon carcinoma MCTS growth in a dose-dependent manner. This growth inhibition is associated with the loss of Ki67, and the regionalized accumulation of DNA damage detected by histone H2AX phosphorylation. This regionalized genotoxic effect leads to massive cell death and loss of the MCTS proliferative region. The use of reactive oxygen species (ROS), scavenger N-acetyl cysteine (NAC) and plasma-conditioned media demonstrate that the ROS generated in the media after exposure to low-temperature plasma play a major role in these observed effects. These findings strengthen the interest in the use of MCTS for the evaluation of antiproliferative strategies, and open new perspectives for studies dedicated to demonstrate the potential of low-temperature plasma in cancer therapy.

  2. Chlorine Dioxide Induced Multiple Chemical Sensitivity: MMPI Validity Problems.

    Science.gov (United States)

    Tentoni, Stuart C.

    This paper discusses Minnesota Multiphasic Personality Inventory (MMPI) data obtained from individuals exposed to chlorine dioxide in the workplace who developed Multiple Chemical Sensitivity Syndrome. The paper explores current research on chlorine dioxide exposed persons who were misdiagnosed on the basis of MMPI interpretations. Difficulties…

  3. Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells.

    Science.gov (United States)

    Park, Jaesook; Estrada, Arnold; Sharp, Kelly; Sang, Krystina; Schwartz, Jon A; Smith, Danielle K; Coleman, Chris; Payne, J D; Korgel, Brian A; Dunn, Andrew K; Tunnell, James W

    2008-02-01

    Gold nanoshells (dielectric silica core/gold shell) are a novel class of hybrid metal nanoparticles whose unique optical properties have spawned new applications including more sensitive molecular assays and cancer therapy. We report a new photo-physical property of nanoshells (NS) whereby these particles glow brightly when excited by near-infrared light. We characterized the luminescence brightness of NS, comparing to that of gold nanorods (NR) and fluorescent beads (FB). We find that NS are as bright as NR and 140 times brighter than FB. To demonstrate the potential application of this bright two-photon-induced photoluminescence (TPIP) signal for biological imaging, we imaged the 3D distribution of gold nanoshells targeted to murine tumors. PMID:18542237

  4. Sophoridinol derivative 05D induces tumor cells apoptosis by topoisomerase1-mediated DNA breakage

    Directory of Open Access Journals (Sweden)

    Zhao W

    2016-05-01

    Full Text Available Wuli Zhao, Caixia Zhang, Chongwen Bi, Cheng Ye, Danqing Song, Xiujun Liu, Rongguang Shao Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China Abstract: Sophoridine is a quinolizidine natural product of Sophora alopecuroides and has been applied for treatment of malignant trophoblastic tumors. Although characterized by low toxicity, the limited-spectrum antitumor activity hinders its further applications. 05D, a derivative of sophoridine, exhibits a better anticancer activity on diverse cancer cells, including solid tumors, and hematologic malignancy. It could inhibit topoisomerase 1 (top1 activity by stabilizing DNA–top1 complex and induce mitochondria-mediated apoptosis by promoting DNA single- and double-strand breakage mediated by top1. Also, 05D induced HCT116 cells arrest at G1 phase by inactivating CDK2/CDK4–Rb–E2F and cyclinD1–CDK4–p21 checkpoint signal pathways. 05D suppressed the ataxia telangiectasia mutated (ATM and ATM and Rad3-related (ATR activation and decreased 53BP level, which contributed to DNA damage repair, suggesting that the novel compound 05D might be helpful to improve the antitumor activity of DNA damaging agent by repressing ATM and ATR activation and 53BP level. In addition, the priorities in molecular traits and druggability, such as a simple structure and formulation for oral administration, further prove 05D to be a promising targeting topoisomerase agent. Keywords: topoisomerase inhibitor, topoisomerase 1, DNA breakage, sophoridinol, anticancer, apoptosis, cell cycle

  5. Activated neu oncogene sequences in primary tumors of the peripheral nervous system induced in rats by transplacental exposure to ethylnitrosourea

    Energy Technology Data Exchange (ETDEWEB)

    Perantoni, A.O.; Rice, J.M.; Reed, C.D.; Watatani, M.; Wenk, M.L.

    1987-09-01

    Neurogenic tumors were selectively induced in high incidence in F344 rats by a single transplacental exposure to the direct-acting alkylating agent N-ethyl-N-nitrosourea (EtNU). The authors prepared DNA for transfection of NIH 3T3 cells from primary glial tumors of the brain and form schwannomas of the cranial and spinal nerves that developed in the transplacentally exposed offspring between 20 and 40 weeks after birth. DNA preparations from 6 of 13 schwannomas, but not from normal liver, kidney, or intestine of tumor-bearing rats, transformed NIH 3T3 cells. NIH 3T3 clones transformed by schwannoma DNA contained rat repetitive DNA sequences, and all isolates contained rat neu oncogene sequences. A point mutation in the transmembrane region of the putative protein product of neu was identified in all six transformants and in the primary tumors from which they were derived as well as in 5 of 6 schwannomas tested that did not transform NIH 3T3 cells. Of 59 gliomas, only one yielded transforming DNA, and an activated N-ras oncogen was identified. The normal cellular neu sequence for the transmembrane region, but not the mutated sequence, was identified in DNA from all 11 gliomas surveyed by oligonucleotide hybridization. Activation of the neu oncogene, originally identified in cultured cell lines derived from EtNU-induced neurogenic tumors appears specifically associated with tumors of the peripheral nervous system in the F344 inbred strain.

  6. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    Science.gov (United States)

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-06-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers.

  7. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation.

    Science.gov (United States)

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X

    2016-01-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient's own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers. PMID:27256519

  8. Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells

    Directory of Open Access Journals (Sweden)

    Tao Yan-Fang

    2012-12-01

    Full Text Available Abstract Background Survivin, a member of the family of inhibitor of apoptosis proteins, functions as a key regulator of mitosis and programmed cell death. YM155, a novel molecular targeted agent, suppresses survivin, which is overexpressed in many tumor types. The aim of this study was to determine the antitumor activity of YM155 in SK-NEP-1 cells. Methods SK-NEP-1 cell growth in vitro and in vivo was assessed by MTT and nude mice experiments. Annexin V/propidium iodide staining followed by flow cytometric analysis was used to detect apoptosis in cell culture. Then gene expression profile of tumor cells treated with YM155 was analyzed with real-time PCR arrays. We then analyzed the expression data with MEV (Multi Experiment View cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis tool. Results YM155 treatment resulted in inhibition of cell proliferation of SK-NEP-1cells in a dose-dependent manner. Annexin V assay, cell cycle, and activation of caspase-3 demonstrates that YM155 induced apoptosis in SK-NEP-1 cells. YM155 significantly inhibited growth of SK-NEP-1 xenografts (YM155 5 mg/kg: 1.45 ± 0.77 cm3; YM155 10 mg/kg: 0.95 ± 0.55 cm3 compared to DMSO group (DMSO: 3.70 ± 2.4 cm3 or PBS group cells (PBS: 3.78 ± 2.20 cm3, ANOVA P Conclusions The present study demonstrates that YM155 treatment resulted in apoptosis and inhibition of cell proliferation of SK-NEP-1cells. YM155 had significant role and little side effect in the treatment of SK-NEP-1 xenograft tumors. Real-time PCR array analysis firstly showed expression profile of genes dyes-regulated after YM155 treatment. IPA analysis also represents new molecule mechanism of YM155 treatment, such as NR3C1 and dexamethasone may be new target of YM155. And our results may provide new clues of molecular mechanism of apoptosis induced by YM155.

  9. Hazard classification of chemicals inducing haemolytic anaemia: An EU regulatory perspective.

    NARCIS (Netherlands)

    Muller, Andre; Jacobsen, Helene; Healy, Edel; McMickan, Sinead; Istace, Fréderique; Blaude, Marie-Noëlle; Howden, Peter; Fleig, Helmut; Schulte, Agnes

    2006-01-01

    Haemolytic anaemia is often induced following prolonged exposure to chemical substances. Currently, under EU Council Directive 67/548/EEC, substances which induce such effects are classified as dangerous and assigned the risk phrase R48 'Danger of serious damage to health by prolonged exposure.' Whi

  10. Human Cytomegalovirus Infection of Tumor Cells Downregulates NCAM (CD56: A Novel Mechanism for Virus-Induced Tumor Invasiveness'

    Directory of Open Access Journals (Sweden)

    Roman A. Blaheta

    2004-07-01

    Full Text Available Pathologic data indicate that human cytomegalovirus (HCMV infection might be associated with the pathogenesis of several human malignancies. However, no definitive evidence of a causal link between HCMV infection and cancer dissemination has been established to date. This study describes the modulation of the invasive behavior of NCAM-expressing tumor cell lines by HCMV. Neuroblastoma (NB cells, persistently infected with the HCMV strain AD169 (UKF-NB-4AD169 and MHH-NB-11AD169, were added to endothelial cell monolayers and adhesion and penetration kinetics were measured. The 140- and 180-kDa isoforms of the adhesion receptor NCAM were evaluated by flow cytometry, Western blot, and reverse transcriptionpolymerase chain reaction (RT-PCR. The relevance of NCAM for tumor cell binding was proven by treating NB with NCAM antisense oligonucleotides or NCAM transfection. HCMV infection profoundly increased the number of adherent and penetrated NB, compared to controls. Surface expression of NCAM was significantly lower on UKF-NB-4AD169 and MHH-NB-11AD169, compared to mock-infected cells. Western-blot and RT-PCR demonstrated reduced protein and RNA levels of the 140- and 180-kDa isoform. An inverse correlation between NCAM expression and adhesion capacity of NB has been shown by antisense and transfection experiments. We conclude that HCMV infection leads to downregulation of NCAM receptors, which is associated with enhanced tumor cell invasiveness.

  11. Inhibition of chemically induced carcinogenesis by drugs used in homeopathic medicine.

    Science.gov (United States)

    Kumar, K B Hari; Sunila, E S; Kuttan, Girija; Preethi, K C; Venugopal, C Nimita; Kuttan, Ramadasan

    2007-01-01

    Homeopathy is considered as one modality for cancer therapy. However, there are only very few clinical reports on the activity of the drugs, as well as in experimental animals. Presently we have evaluated the inhibitory effects of potentized homeopathic preparations against N'-nitrosodiethylamine (NDEA) induced hepatocellular carcinoma in rats as well as 3-methylcholanthrene-induced sarcomas in mice. We have used Ruta, Hydrastis, Lycopodium and Thuja, which are commonly employed in homeopathy for treating cancer. Administration of NDEA in rats resulted in tumor induction in the liver and elevated marker enzymes such as gamma-glutamyl transpeptidase, glutamate pyruvate transaminase, glutamate oxaloacetate transaminase and alkaline phosphatase in the serum and in liver. Concomitant administration of homeopathic drugs retarded the tumor growth and significantly reduced the elevated marker enzymes level as revealed by morphological, biochemical and histopathological evaluation. Out of the four drugs studied, Ruta 200c showed maximum inhibition of liver tumor development. Ruta 200c and phosphorus 1M were found to reduce the incidence of 3-methylcholanthrene-induced sarcomas and also increase the life span of mice harboring the tumours. These studies demonstrate that homeopathic drugs, at ultra low doses, may be able to decrease tumor induction by carcinogen administration. At present we do not know the mechanisms of action of these drugs useful against carcinogenesis. PMID:17477781

  12. Chemical products induce resistance to Xanthomonas perforans in tomato

    Directory of Open Access Journals (Sweden)

    Adriana Terumi Itako

    2015-09-01

    Full Text Available The bacterial spot of tomato, caused by Xanthomonas spp., is a very important disease, especially in the hot and humid periods of the year. The chemical control of the disease has not been very effective for a number of reasons. This study aimed to evaluate, under greenhouse conditions, the efficacy of leaf-spraying chemicals (acibenzolar-S-methyl (ASM (0.025 g.L−1, fluazinam (0.25 g.L−1, pyraclostrobin (0.08 g.L−1, pyraclostrobin + methiran (0.02 g.L−1 + 2.2 g.L−1, copper oxychloride (1.50 g.L−1, mancozeb + copper oxychloride (0.88 g.L−1 + 0.60 g.L−1, and oxytetracycline (0.40 g.L−1 on control of bacterial spot. Tomatoes Santa Clara and Gisele cultivars were pulverized 3 days before inoculation with Xanthomonas perforans. The production of enzymes associated with resistance induction (peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, β-1,3-glucanase, and protease was quantified from leaf samples collected 24 hours before and 24 hours after chemical spraying and at 1, 2, 4, 6, and 8 days after bacterial inoculation. All products tested controlled bacterial spot, but only ASM, pyraclostrobin, and pyraclostrobin + metiram increased the production of peroxidase in the leaves of the two tomato cultivars, and increased the production of polyphenol oxidase and β-1,3-glucanase in the Santa Clara cultivar.

  13. NUMERICAL SIMULATION OF HEMODYNAMICS IN THE HOST BLOOD VESSEL AND MICROVASCULAR NETWORK GENERATED FROM TUMOR-INDUCED ANGIOGENESIS

    Institute of Scientific and Technical Information of China (English)

    ZHAO Gai-ping; WU Jie; XU Shi-xiong; COLLINS M.W.; JIANG Yu-ping; WANG Jian

    2006-01-01

    Numerical simulation of hemodynamics under the combined effects of both the host blood vessel and the microvascular network,which is based on a 2-D tumor inside and outside vascular network generated from a discrete mathematical model of tumor-induced angiogenesis, is performed systemically. And a "microvascular network-transport across microvascular network-flow in interstitium" model is developed to study the flow in solid tumor. Simulations are carried out to examine the effects of the variations of the inlet Reynolds number in the host blood vessel, the hydraulic conductivity of the microvascular wall, and interstitial hydraulic conductivity coefficient on the fluid flow in tumor microcirculation. The results are consistent with data obtained in terms of physiology. These results may provide some theoretical references and the bases for further clinical experimental research.

  14. Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells.

    Science.gov (United States)

    Noman, Muhammad Zaeem; Buart, Stéphanie; Romero, Pedro; Ketari, Sami; Janji, Bassam; Mari, Bernard; Mami-Chouaib, Fathia; Chouaib, Salem

    2012-09-15

    Hypoxia in the tumor microenvironment plays a central role in the evolution of immune escape mechanisms by tumor cells. In this study, we report the definition of miR-210 as a miRNA regulated by hypoxia in lung cancer and melanoma, documenting its involvement in blunting the susceptibility of tumor cells to lysis by antigen-specific cytotoxic T lymphocytes (CTL). miR-210 was induced in hypoxic zones of human tumor tissues. Its attenuation in hypoxic cells significantly restored susceptibility to autologous CTL-mediated lysis, independent of tumor cell recognition and CTL reactivity. A comprehensive approach using transcriptome analysis, argonaute protein immunoprecipitation, and luciferase reporter assay revealed that the genes PTPN1, HOXA1, and TP53I11 were miR-210 target genes regulated in hypoxic cells. In support of their primary importance in mediating the immunosuppressive effects of miR-210, coordinate silencing of PTPN1, HOXA1, and TP53I11 dramatically decreased tumor cell susceptibility to CTL-mediated lysis. Our findings show how miR-210 induction links hypoxia to immune escape from CTL-mediated lysis, by providing a mechanistic understanding of how this miRNA mediates immunosuppression in oxygen-deprived regions of tumors where cancer stem-like cells and metastatic cellular behaviors are known to evolve. PMID:22962263

  15. Feeding mice with Aloe vera gel diminishes L-1 sarcoma-induced early neovascular response and tumor growth.

    Science.gov (United States)

    Kocik, Janusz; Bałan, Barbara Joanna; Zdanowski, Robert; Jung, Leszek; Skopińska-Różewska, Ewa; Skopiński, Piotr

    2014-01-01

    Aloe vera (Aloe arborescens, aloe barbadensis) is a medicinal plant belonging to the Liliaceae family. Aloe vera gel prepared from the inner part of Aloe leaves is increasingly consumed as a beverage dietary supplement. Some data suggest its tumor growth modulatory properties. The aim of the present study was to evaluate in Balb/c mice the in vivo influence of orally administered Aloe vera drinking gel on the syngeneic L-1 sarcoma tumor growth and its vascularization: early cutaneous neovascular response, tumor-induced angiogenesis (TIA test read after 3 days), and tumor hemoglobin content measured 14 days after L-1 sarcoma cell grafting. Feeding mice for 3 days after tumor cell grafting with 150 μl daily dose of Aloe vera gel significantly diminished the number of newly-formed blood vessels in comparison to the controls. The difference between the groups of control and Aloe-fed mice (150 μl daily dose for 14 days) with respect to the 14 days' tumor volume was on the border of statistical significance. No difference was observed in tumor hemoglobin content.

  16. Feeding mice with Aloe vera gel diminishes L-1 sarcoma-induced early neovascular response and tumor growth.

    Science.gov (United States)

    Kocik, Janusz; Bałan, Barbara Joanna; Zdanowski, Robert; Jung, Leszek; Skopińska-Różewska, Ewa; Skopiński, Piotr

    2014-01-01

    Aloe vera (Aloe arborescens, aloe barbadensis) is a medicinal plant belonging to the Liliaceae family. Aloe vera gel prepared from the inner part of Aloe leaves is increasingly consumed as a beverage dietary supplement. Some data suggest its tumor growth modulatory properties. The aim of the present study was to evaluate in Balb/c mice the in vivo influence of orally administered Aloe vera drinking gel on the syngeneic L-1 sarcoma tumor growth and its vascularization: early cutaneous neovascular response, tumor-induced angiogenesis (TIA test read after 3 days), and tumor hemoglobin content measured 14 days after L-1 sarcoma cell grafting. Feeding mice for 3 days after tumor cell grafting with 150 μl daily dose of Aloe vera gel significantly diminished the number of newly-formed blood vessels in comparison to the controls. The difference between the groups of control and Aloe-fed mice (150 μl daily dose for 14 days) with respect to the 14 days' tumor volume was on the border of statistical significance. No difference was observed in tumor hemoglobin content. PMID:26155093

  17. Accurate sequential detection of primary tumor and metastatic lymphatics using a temperature-induced phase transition nanoparticulate system

    Directory of Open Access Journals (Sweden)

    Oh KS

    2014-06-01

    Full Text Available Keun Sang Oh,1 Ji Young Yhee,2 Dong-Eun Lee,3 Kwangmeyung Kim,2 Ick Chan Kwon,2 Jae Hong Seo,4 Sang Yoon Kim,5 Soon Hong Yuk1,4 1College of Pharmacy, Korea University, Sejong, 2Biomedical Research Center, Korea Institute of Science and Technology, Seoul, 3Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeonbuk, 4Biomedical Research Center, Korea University Guro Hospital, Seoul, 5Department of Otolaryngology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea Abstract: Primary tumor and tumor-associated metastatic lymphatics have emerged as new targets for anticancer therapy, given that these are difficult to treat using traditional chemotherapy. In this study, docetaxel-loaded Pluronic nanoparticles with Flamma™ (FPR-675, fluorescence molecular imaging dye; DTX/FPR-675 Pluronic NPs were prepared using a temperature-induced phase transition for accurate detection of metastatic lymphatics. Significant accumulation was seen at the primary tumor and in metastatic lymph nodes within a short time. Particle size, maximum drug loading capacity, and drug encapsulation efficiency of the docetaxel-loaded Pluronic NPs were approximately 10.34±4.28 nm, 3.84 wt%, and 94±2.67 wt%, respectively. Lymphatic tracking after local and systemic delivery showed that DTX/FPR-675 Pluronic NPs were more potent in tumor-bearing mice than in normal mice, and excised mouse lymphatics showed stronger near-infrared fluorescence intensity on the tumor-bearing side than on the non-tumor-bearing side at 60 minutes post-injection. In vivo cytotoxicity and efficacy data for the NPs demonstrated that the systemically administered NPs caused little tissue damage and had minimal side effects in terms of slow renal excretion and prolonged circulation in tumor-bearing mice, and rapid renal excretion in non-tumor-bearing mice using an in vivo real-time near-infrared fluorescence imaging system. These results

  18. Noise-induced multistability in chemical systems: Discrete versus continuum modeling.

    Science.gov (United States)

    Duncan, Andrew; Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek; Grima, Ramon

    2015-04-01

    The noisy dynamics of chemical systems is commonly studied using either the chemical master equation (CME) or the chemical Fokker-Planck equation (CFPE). The latter is a continuum approximation of the discrete CME approach. It has recently been shown that for a particular system, the CFPE captures noise-induced multistability predicted by the CME. This phenomenon involves the CME's marginal probability distribution changing from unimodal to multimodal as the system size decreases below a critical value. We here show that the CFPE does not always capture noise-induced multistability. In particular we find simple chemical systems for which the CME predicts noise-induced multistability, whereas the CFPE predicts monostability for all system sizes.

  19. Noise-induced multistability in chemical systems: Discrete versus continuum modeling.

    Science.gov (United States)

    Duncan, Andrew; Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek; Grima, Ramon

    2015-04-01

    The noisy dynamics of chemical systems is commonly studied using either the chemical master equation (CME) or the chemical Fokker-Planck equation (CFPE). The latter is a continuum approximation of the discrete CME approach. It has recently been shown that for a particular system, the CFPE captures noise-induced multistability predicted by the CME. This phenomenon involves the CME's marginal probability distribution changing from unimodal to multimodal as the system size decreases below a critical value. We here show that the CFPE does not always capture noise-induced multistability. In particular we find simple chemical systems for which the CME predicts noise-induced multistability, whereas the CFPE predicts monostability for all system sizes. PMID:25974443

  20. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney

    OpenAIRE

    Kerstin Stemmer; Diego Perez-Tilve; Gayathri Ananthakrishnan; Anja Bort; Seeley, Randy J.; Tschöp, Matthias H.; Dietrich, Daniel R.; Pfluger, Paul T.

    2012-01-01

    SUMMARY Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO) promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens) or partially r...

  1. Effect of peripheral benzodiazepine receptor ligands on lipopolysaccharide-induced tumor necrosis factor activity in thioglycolate-treated mice.

    OpenAIRE

    Matsumoto, T.; Ogata, M.; Koga, K.; Shigematsu, A

    1994-01-01

    To investigate the effect of peripheral and central benzodiazepine receptor ligands on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF) activity in mouse macrophages, three types of ligands, 4'-chlorodiazepam (pure peripheral), midazolam (mixed), and clonazepam (pure central), were compared. Midazolam and 4'-chlorodiazepam significantly suppressed LPS (1-microgram/ml)-induced TNF activity in thioglycolate-elicited mouse macrophages. In every concentration examined (0.001 to 100 mi...

  2. Tunicamycin-induced inhibition of a glycolipid:GalNAc-transferase in guinea pig tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Das, K.K.; Basu, M.; Basu, S.

    1986-05-01

    It is not known how many glycosyltransferases are glycoprotein or phosphoprotein in nature. Post-translational modification of the glycosyltransferases and their regulation in normal and tumor cells are of the present interest. Recently, the authors established the biosynthesis in vitro of GbOse4Cer and GbOse5Cer from GbOse3Cer by two different GalNAc-transferases (GalNAcT-2 and GalNAcT-3) isolated from chemically transformed guinea pig tumor cells (104Cl and 106B). When these cells were incubated in the presence of tunicamycin (0.2-2 ..mu..g/ml), the activity of GalNAcT-2 (UDP-GalNAc:GbOse3Cer(..beta..1-3)GalNAcT) was inhibited (90%), whereas GalT-4 (UDP-Gal:LcOse3Cer(..beta..1-4)GalT) and GalT-5 (UDP-Gal:LcOse5Cer(..cap alpha..1-3)GalT) remained unchanged. The effect of tunicamycin was minimal within 6 hrs of treatment. However, 50% and 75% inhibition was observed after treatment of these cells for 12 and 24 hr, respectively. The inhibitory effect of tunicamycin on GalNAcT-2 can be reversed after 12-24 hr of its removal from the medium. The incorporation of (/sup 3/H)-leucine in total protein remained unchanged during tunicamycin treatment. The inhibition of glycoproteins was further confirmed by the inhibition (95%) of (2-/sup 3/H)Man incorporation in the acid precipitable material. When cells were grown in the presence of insulin, the GalNAcT-2 activity increased 2-fold. Involvement of a glycoprotein catalytic subunit or a modifier protein in the GalNAcT-2 catalyzed reaction is under investigation.

  3. Tumor Necrosis Factor Induces Developmental Stage-Dependent Structural Changes in the Immature Small Intestine

    Directory of Open Access Journals (Sweden)

    Kathryn S. Brown

    2014-01-01

    Full Text Available Background. Premature infants are commonly subject to intestinal inflammation. Since the human small intestine does not reach maturity until term gestation, premature infants have a unique challenge, as either acute or chronic inflammation may alter the normal development of the intestinal tract. Tumor necrosis factor (TNF has been shown to acutely alter goblet cell numbers and villus length in adult mice. In this study we tested the effects of TNF on villus architecture and epithelial cells at different stages of development of the immature small intestine. Methods. To examine the effects of TNF-induced inflammation, we injected acute, brief, or chronic exposures of TNF in neonatal and juvenile mice. Results. TNF induced significant villus blunting through a TNF receptor-1 (TNFR1 mediated mechanism, leading to loss of villus area. This response to TNFR1 signaling was altered during intestinal development, despite constant TNFR1 protein expression. Acute TNF-mediated signaling also significantly decreased Paneth cells. Conclusions. Taken together, the morphologic changes caused by TNF provide insight as to the effects of inflammation on the developing intestinal tract. Additionally, they suggest a mechanism which, coupled with an immature immune system, may help to explain the unique susceptibility of the immature intestine to inflammatory diseases such as NEC.

  4. ANTI-TUMOR ACTIVITY AND IMMUNE RESPONSES INDUCED BY HUMAN CANCER-ASSOCIATED MUCIN CORE PEPTIDE

    Institute of Scientific and Technical Information of China (English)

    Ma Yunguo; Yuan Mei; Fei Lihua; Li Li

    1998-01-01

    Objective: To investigate the immune responses induced by apomucin which is a mixture of mucin core peptide, in mice for elucidating the role of mucin core peptide in the modulation of cancers. Methods:Apomucin was isolated from human pancreatic cancer cell line SW1990. The mice were immunized with this apomucin (10μg/time×6) plus DETOX. Results: When immunized, all mice developed delayed-type hypersensitivity (DTH) after challenged with apomucin or synthetic peptide MUC-2 or MUC-3, while the mice immunized with apomucin alone did not develop DTH.No antibodies were detected by ELISA after immunization. When the spleen cells of vaccinated mice were cocultured with this apomucin (10-50μg/ml) and rhIL-2(50U/ml) in vitro, the proliferated lymphocytes showed cytotoxicity against human cancer cells, including colon cancer, gastric cancer, pancreatic cancer and leukemia as measured by Cr-51 release assay. Antibodies against MUC-2 and MUC-3 could block the cytotoxicity. Conclusion: It was identified that a vaccine combined of apomucin and immune adjuvant DETOX can induce cellular immune response and anti-tumor cytotoxicity in mice.

  5. Novel role for tumor-induced expansion of myeloid-derived cells in cancer cachexia.

    Science.gov (United States)

    Cuenca, Alex G; Cuenca, Angela L; Winfield, Robert D; Joiner, Dallas N; Gentile, Lori; Delano, Matthew J; Kelly-Scumpia, Kindra M; Scumpia, Philip O; Matheny, Michael K; Scarpace, Philip J; Vila, Lizette; Efron, Philip A; LaFace, Drake M; Moldawer, Lyle L

    2014-06-15

    Cancer progression is associated with inflammation, increased metabolic demand, infection, cachexia, and eventually death. Myeloid-derived suppressor cells (MDSCs) commonly expand during cancer and are associated with adaptive immune suppression and inflammatory metabolite production. We propose that cancer-induced cachexia is driven at least in part by the expansion of MDSCs. MDSC expansion in 4T1 mammary carcinoma-bearing hosts is associated with induction of a hepatic acute-phase protein response and altered host energy and fat metabolism, and eventually reduced survival to polymicrobial sepsis and endotoxemia. Similar results are also seen in mice bearing a Lewis lung carcinoma and a C26 colon adenocarcinoma. However, a similar cachexia response is not seen with equivalent growth of the 66C4 subclone of 4T1, in which MDSC expansion does not occur. Importantly, reducing MDSC numbers in 4T1-bearing animals can ameliorate some of these late responses and reduce susceptibility to inflammation-induced organ injury and death. In addition, administering MDSCs from both tumor- and nontumor-bearing mice can produce an acute-phase response. Thus, we propose a previously undescribed mechanism for the development of cancer cachexia, whereby progressive MDSC expansion contributes to changes in host protein and energy metabolism and reduced resistance to infection.

  6. Novel Principles of Gamma-Retroviral Insertional Transcription Activation in Murine Leukemia Virus-induced End-stage Tumors

    DEFF Research Database (Denmark)

    Sokol, Martin; Wabl, Matthias; Rius Ruiz, Irene;

    2014-01-01

    Background Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of retroviral-based gene therapies. In previous studies, the assignment of mouse genes to individual retroviral integration sites has b......, and for understanding fundamental cellular regulatory principles and retroviral biology....

  7. Caspase-2 deficiency accelerates chemically induced liver cancer in mice.

    Science.gov (United States)

    Shalini, S; Nikolic, A; Wilson, C H; Puccini, J; Sladojevic, N; Finnie, J; Dorstyn, L; Kumar, S

    2016-10-01

    Aberrant cell death/survival has a critical role in the development of hepatocellular carcinoma (HCC). Caspase-2, a cell death protease, limits oxidative stress and chromosomal instability. To study its role in reactive oxygen species (ROS) and DNA damage-induced liver cancer, we assessed diethylnitrosamine (DEN)-mediated tumour development in caspase-2-deficient (Casp2(-/-)) mice. Following DEN injection in young animals, tumour development was monitored for 10 months. We found that DEN-treated Casp2(-/-) mice have dramatically elevated tumour burden and accelerated tumour progression with increased incidence of HCC, accompanied by higher oxidative damage and inflammation. Furthermore, following acute DEN injection, liver injury, DNA damage, inflammatory cytokine release and hepatocyte proliferation were enhanced in mice lacking caspase-2. Our study demonstrates for the first time that caspase-2 limits the progression of tumourigenesis induced by an ROS producing and DNA damaging reagent. Our findings suggest that after initial DEN-induced DNA damage, caspase-2 may remove aberrant cells to limit liver damage and disease progression. We propose that Casp2(-/-) mice, which are more susceptible to genomic instability, are limited in their ability to respond to DNA damage and thus carry more damaged cells resulting in accelerated tumourigenesis.

  8. Interleukin 19 reduces inflammation in chemically induced experimental colitis.

    Science.gov (United States)

    Matsuo, Yukiko; Azuma, Yasu-Taka; Kuwamura, Mitsuru; Kuramoto, Nobuyuki; Nishiyama, Kazuhiro; Yoshida, Natsuho; Ikeda, Yoshihito; Fujimoto, Yasuyuki; Nakajima, Hidemitsu; Takeuchi, Tadayoshi

    2015-12-01

    Inflammatory bowel disease results from chronic dysregulation of the mucosal immune system and aberrant activation of both the innate and adaptive immune responses. Interleukin (IL)-19, a member of the IL-10 family, functions as an anti-inflammatory cytokine. Here, we investigated the contribution of IL-19 to intestinal inflammation in a model of T cell-mediated colitis in mice. Inflammatory responses in IL-19-deficient mice were assessed using the 2,4,6-trinitrobenzene sulfonic acid (TNBS) model of acute colitis. IL-19 deficiency aggravated TNBS-induced colitis and compromised intestinal recovery in mice. Additionally, the exacerbation of TNBS-induced colonic inflammation following genetic ablation of IL-19 was accompanied by increased production of interferon-gamma, IL-12 (p40), IL-17, IL-22, and IL-33, and decreased production of IL-4. Moreover, the exacerbation of colitis following IL-19 knockout was also accompanied by increased production of CXCL1, G-CSF and CCL5. Using this model of induced colitis, our results revealed the immunopathological relevance of IL-19 as an anti-inflammatory cytokine in intestinal inflammation in mice.

  9. Prediction of microvascular invasion of hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging: Impact of intra-tumoral fat detected on chemical-shift images

    Energy Technology Data Exchange (ETDEWEB)

    Min, Ji Hye [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Young Kon, E-mail: jmyr@dreamwiz.com [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Lim, Sanghyeok [Department of Radiology, Guri Hospital, Hanyang University College of Medicine, Guri (Korea, Republic of); Jeong, Woo Kyoung; Choi, Dongil; Lee, Won Jae [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    Highlights: • Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC. • Alfa-fetoprotein, tumor size, and fat component were associated with MVI of HCC. • Chemical shift MRI should be considered for the evaluation of HCC. - Abstract: Purpose: To investigate the impact of intra-tumoral fat detected by chemical-shift MR imaging in predicting the MVI of HCC. Materials and methods: Gadoxetic acid-enhanced MR imaging of 365 surgically proven HCCs from 365 patients (306 men, 59 women; mean age, 55.6 years) were evaluated. HCCs were classified into two groups, fat-containing and non-fat-containing, based on the presence of fat on chemical-shift images. Fat-containing HCCs were subdivided into diffuse or focal fatty change groups. Logistic regression analyses were used to identify clinical and MR findings associated with MVI. Results: Based on MR imaging, 66 tumors were classified as fat-containing HCCs and 299 as non-fat-containing HCCs. Among the 66 fat-containing HCCs, 38 (57.6%) showed diffuse fatty changes and 28 (42.4%) showed focal fatty changes. MVI was present in 18 (27.3%) fat-containing HCCs and in 117 (39.1%) non-fat-containing HCCs (P = 0.07). Univariate analysis revealed that serum alpha-fetoprotein (AFP) and tumor size were significantly associated with MVI (P < 0.001). A multiple logistic regression analysis showed that log AFP (odds ratio 1.178, P = 0.0016), tumor size (odds ratio 1.809, P < 0.001), and intra-tumoral fat (odds ratio 0.515, P = 0.0387) were independent variables associated with MVI. Conclusion: Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC and, therefore, a possibly more favorable prognosis, but the clinical value of this finding is uncertain.

  10. Expression of tumor necrosis factor related apoptosis inducing ligand receptor in glioblastoma

    Institute of Scientific and Technical Information of China (English)

    Dongling Gao; Zhongwei Zhao; Hongxin Zhang; Lan Zhang; Kuisheng Chen; Yunhan Zhang

    2008-01-01

    BACKGROUND: Receptors for tumor necrosis factor related apoptosis inducing ligand (TRAIL) include death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2. Activation of death receptor 4 and 5 selectively kills tumor cells.OBJECTIVE: To detect TRAIL receptor expression in glioblastoma by immunohistochemistry and RT-PCR and to compare this expression to that in normal brain tissue.DESIGN: Observational analysis.SETTING: Department of Pathology, the First Affiliated Hospital of Zhengzhou University; Henan Tumor Pathology Key Laboratory.PARTICIPANTS: Twenty-five patients (17 males and 8 females) who received glioblastoma resection were selected from the Fifth Affiliated Hospital of Zhengzhou University, between September 2003 to June 2004. All glioblastoma samples were diagnosed pathologically. Twenty patients (12 males and 8 females) with craniocerebral injury who received normal brain tissue resection were selected in the same time period. There were no significant differences in sex and age between glioblastoma patients or between craniocerebral injury patients (P>0.05). All patients and appropriate relatives provided informed consent, and this study was approved by the local research ethics committee.METHODS: Polyclonal antibody against TRAIL receptors and an immunohistochemical kit (batch number: 200502) were purchased from Boster Company, Wuhan. Immunohistochemistry: Expression of death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2 were observed in both glioblastoma and normal brain tissue. The experiment was performed according to the kit instructions, and positive staining was brown-yellow. Assessment: There were no positive signals (-); weakly positive signals, positive cells75% (++++). Evaluation: Expression levels of TRAIL receptors were estimated in both normal brain tissue and glioblastoma. Expression of decoy receptor 1 and decoy receptor 2 mRNA in glioblastoma were detected by reverse transcription polymerase

  11. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    International Nuclear Information System (INIS)

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC

  12. Expression of dynamin immunoreactivity in experimental pancreatic tumors induced in rat by mancozeb-nitrosomethylurea.

    Science.gov (United States)

    Valentich, M A; Cook, T; Urrutia, R

    1996-04-19

    Dynamins are GTPases which support receptor-mediated endocytosis and bind to several tyrosine kinase receptor-associated proteins known to mediate cell proliferation and differentiation. We have recently established that dynamin expression correlates with normal neuronal (Torre et al., J. Biol. Chem., 269 (1994) 32411-32417) and acinar pancreatic cell differentiation (Cook et al., Mol. Biol. Cell, 6 (1995) 405a). To begin to understand the role of dynamin in neoplastic pancreatic cell differentiation, we have followed the expression of this protein by immunohistochemistry during the development of pancreatic tumors in a mancozeb-nitrosomethylurea (NMU)-based carcinogenesis model recently developed in our laboratory (Monis and Valentich, Carcinogenesis, 14 (1993) 929-933). After a single intraperitoneal injection (50 mg/g body wt) of this carcinogen, rats fed with mancozeb develop pancreatic focal acinar hyperplasia (FACH), dysplastic foci (DYF) displaying acinar-like and ductular-like structures, and ductular-like carcinoma in situ (CIS). After histochemical staining using a monoclonal anti-dynamin antibody, high levels of this protein are consistently observed in well-differentiated acinar tumors (FACH). In contrast, dynamin immunoreactivity is almost undetectable in more advanced lesions showing a ductular-like phenotype (ductular-like DYF and CIS). This change in the expression pattern of dynamin during the progression of acinar into ductular-like DYF and CIS lesions correlates with recent findings from our laboratory showing a differential expression pattern for dynamin in pancreatic cells during embryonic development, with ductular-like precursor cells expressing low levels of this protein. Based upon these results, we conclude that more advanced ductular-like neoplastic cells induced by the carcinogen NMU in rat pancreas behave phenotypically like pancreatic precursor cells in their pattern of expression for dynamin. PMID:8603375

  13. Pulmonary tumor thrombotic microangiopathy induced by gastric carcinoma: Morphometric and immunohistochemical analysis of six autopsy cases

    Directory of Open Access Journals (Sweden)

    Shinozaki Minoru

    2011-03-01

    Full Text Available Abstract Background Pulmonary tumor thrombotic microangiopathy (PTTM has been known as a rare and serious cancer-related pulmonary complication. However, the pathogenesis and pathophysiology of this debilitating condition still remains obscure and no effective management was recommended. The present study aims to elucidate the pathophysiology of PTTM. Methods Autopsy records were searched to extract cases of pulmonary tumor embolism induced by metastasis of gastric carcinoma in the Toho University Omori Medical Center from 2000 to 2006. And then, tissue sections of extracted cases were prepared for not only light microscopic observation but morphometric analysis with the use of selected PTTM cases. Results Six autopsies involved PTTM and clinicopathological data of them were summarized. There was a significant negative association between pulmonary arterial diameter and stenosis rate in four cases. Although all cases showed an increase of stenosis rate to some degree, the degree of stenosis rate varied from case to case. Significant differences were found for average stenosis rate between the under 100 micrometer group or the 100 to 300 micrometer group and the 300 micrometer group in four cases. However, no significant differences were found for average stenosis rate between the under 100 micrometer group and the 100 to 300 micrometer group in all cases. Meanwhile, all cases showed positive reactivity for tissue factor (TF, five showed positive reactivity for vascular endothelial growth factor (VEGF, and three showed positive reactivity for osteopontin (OPN. Conclusions In the present study, we revealed that the degree of luminal narrowing of the pulmonary arteries varied from case to case, and our results suggested that pulmonary hypertension in PTTM occurs in selected cases which have a widespread pulmonary lesion with severe luminal narrowing in the smaller arteries. Furthermore, our immunohistochemical examination indicated that gastric

  14. Methylation of the estrogen receptor CpG island distinguishes spontaneous and plutonium-induced tumors from nitrosamine-induced lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Belinsky, S.A.; Baylin, S.B.; Issa, J.J. [Johns Hopkins Univ., Baltimore, MD (United States)

    1995-12-01

    CpG islands located in the promoter region of genes constitute one mechanism for regulating transcription. These islands are normally free of methylation, regardless of the expression state of the gene. Hypermethylation of CpG islands, the addition of a methyl group to the internal cytosine within CpG dinucleotides, can cause silencing of a gene. Hypermethylation has been detected as an early event at specific chromosome loci during the development of colon cancer and represents one mechanism used by neoplatic cells to inactivate tumor suppressor genes. Recent studies have demonstrated this mechanism in inactivation of the VHL tumor suppressor gene in 19% of sporadic renal tumors and the p16 {sup INK4a} tumor suppressor gene in 30% of non-small cell lung cancers. A recent report indicates that the estrogen receptor gene could also be inactivated through methylation. In addition, estrogen receptor CpG island methylation arises as a direct function of age in normal colonic mucosa and is present in virtually all colonic tumors. In cultured colon cancer cells, methylation-associated loss of expression of the estrogen receptor gene results in deregulated growth, suggesting a role for the estrogen receptor in colon cancer development. These results provide further evidence that gene silencing through methylation could be a predominant epigenetic mechanism underlying the development of many different types of cancer. The purpose of the current investigation was to determine whether estrogen receptor CpG island methylation is involved in the development of lung cancer. The frequency for methylation of the estrogen receptor CpG island in rodent lung tumors is summarized.

  15. DHA effect on chemotherapy-induced body weight loss: an exploratory study in a rodent model of mammary tumors.

    Science.gov (United States)

    Hajjaji, Nawale; Couet, Charles; Besson, Pierre; Bougnoux, Philippe

    2012-01-01

    Body weight loss during the course of cancer disease has been associated with poor prognosis. Beside cancer-associated cachexia, weight loss can also result from chemotherapy. This work explored whether a model of mammary tumors in female Sprague Dawley rats could be appropriate to study the effect of doxorubicin on body weight, described weight change in this model, and assessed the effect of DHA on weight during chemotherapy. After tumor induction, rats were randomly assigned to a control or a DHA-enriched diet, and treated with doxorubicin or placebo twice a week for 2.5 wk (n = 6 in each group). Body weight, food intake, and tumor growth were monitored. Neither the induction of tumors nor their initial development impaired body weight gain. No reduction in food intake was observed. Tumor growth was similar between groups from day 1 to day 11. Although doxorubicin induced body weight loss from day 4 compared to placebo (Pweight loss in rats fed the DHA-enriched diet (P = 0.02), indicating that DHA had a protective effect. These results indicate that doxorubicin can induce body weight loss in this model and that a DHA-enriched diet can prevent this effect.

  16. Electron microscopic features of a brain tumor induced in hamster by BK virus, a human papova virus.

    Directory of Open Access Journals (Sweden)

    Tsuboi,Masahiro

    1979-12-01

    Full Text Available In order to locate the target cells for malignant transformation by BK virus (a human papova virus in hamster brain, electron microscopic observation of tumor originally induced in hamster brain by BK virus was performed. With light microscopy, the BK virus-induced tumor (Vn 17 bore a close resemblance to human malignant ependymoma. Under the electron microscope, numerous microvilli and few cilia were visible on the surface of the tumor cells. These tumor cells were joined to each other by desmosomes. Gap junctions were not observed. Multilayered cuboidal cells were observed around the lumen and blood vessels in the tumor. With regard to fine structure, three types of Vn 17 cells were recognized; ependymal like cells, tanycytes with prominent cell processes, and undifferentiated cells with few cytoplasmic organelles. There was no basal lamina between the ependymal cells and the connective tissue stroma. The Vn 17 cells showed some similarity to the ultrastructural features of the epemdymal cells of newborn rabbits, suggesting that the target cells for Vn 17 may be cells related to ependyma. Malignant transformation of the cells would be initiated in the early stages after BK virus inoculation into the brain of newborn hamsters.

  17. Butylated Hydroxyanisole Blocks the Occurrence of Tumor Associated Macrophages in Tobacco Smoke Carcinogen-Induced Lung Tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Choksi, Swati; Liu, Zheng-Gang, E-mail: zgliu@helix.nih.gov [Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-12-04

    Tumor-associated macrophages (TAMs) promote tumorigenesis because of their proangiogenic and immune-suppressive functions. Here, we report that butylated hydroxyanisole (BHA) blocks occurrence of tumor associated macrophages (TAMs) in tobacco smoke carcinogen-induced lung tumorigenesis. Continuous administration of butylated hydroxyanisole (BHA), a ROS inhibitor, before or after NNK treatment significantly blocked tumor development, although less effectively when BHA is administered after NNK treatment. Strikingly, BHA abolished the occurrence of F4/80{sup +} macrophages with similar efficiency no matter whether it was administered before or after NNK treatment. Detection of cells from bronchioalveolar lavage fluid (BALF) confirmed that BHA markedly inhibited the accumulation of macrophages while slightly reducing the number of lymphocytes that were induced by NNK. Immunohistological staining showed that BHA specifically abolished the occurrence of CD206{sup +} TAMs when it was administered before or after NNK treatment. Western blot analysis of TAMs markers, arginase I and Ym-1, showed that BHA blocked NNK-induced TAMs accumulation. Our study clearly demonstrated that inhibiting the occurrence of TAMs by BHA contributes to the inhibition of tobacco smoke carcinogen-induced tumorigenesis, suggesting ROS inhibitors may serve as a therapeutic target for treating smoke-induced lung cancer.

  18. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors

    Directory of Open Access Journals (Sweden)

    Olga eSedlakova

    2014-01-01

    Full Text Available Acidic tissue microenvironment contributes to tumor progression via multiple effects including the activation of angiogenic factors and proteases, reduced cell-cell adhesion, increased migration and invasion, etc. In addition, intratumoral acidosis can influence the uptake of anticancer drugs and modulate the response of tumors to conventional therapy. Acidification of the tumor microenvironment often develops due to hypoxia-triggered oncogenic metabolism, which leads to the extensive production of lactate, protons and carbon dioxide. In order to avoid intracellular accumulation of the acidic metabolic products, which is incompatible with the survival and proliferation, tumor cells activate molecular machinery that regulates pH by driving transmembrane inside-out and outside-in ion fluxes. Carbonic anhydrase IX (CA IX is a hypoxia-induced catalytic component of the bicarbonate import arm of this machinery. Through its catalytic activity, CA IX directly participates in many acidosis-induced features of tumor phenotype as demonstrated by manipulating its expression and/or by in vitro mutagenesis. CA IX can function as a survival factor protecting tumor cells from hypoxia and acidosis, as a pro-migratory factor facilitating cell movement and invasion, as a signaling molecule transducing extracellular signals to intracellular pathways (including major signaling and metabolic cascades and converting intracellular signals to extracellular effects on adhesion, proteolysis and other processes. These functional implications of CA IX in cancer are supported by numerous clinical studies demonstrating the association of CA IX with various clinical correlates and markers of aggressive tumor behavior. Although our understanding of the many faces of CA IX is still incomplete, existing knowledge supports the view that CA IX is a biologically and clinically relevant molecule, exploitable in anticancer strategies aimed at targeting adaptive responses to hypoxia

  19. Surfactant functionalization induces robust, differential adhesion of tumor cells and blood cells to charged nanotube-coated biomaterials under flow.

    Science.gov (United States)

    Mitchell, Michael J; Castellanos, Carlos A; King, Michael R

    2015-07-01

    The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion.

  20. Participation of the NO/cGMP/K+ATP pathway in the antinociception induced by Walker tumor bearing in rats

    International Nuclear Information System (INIS)

    Implantation of Walker 256 tumor decreases acute systemic inflammation in rats. Inflammatory hyperalgesia is one of the most important events of acute inflammation. The L-arginine/NO/cGMP/K+ATP pathway has been proposed as the mechanism of peripheral antinociception mediated by several drugs and physical exercise. The objective of this study was to investigate a possible involvement of the NO/cGMP/K+ATP pathway in antinociception induced in Walker 256 tumor-bearing male Wistar rats (180-220 g). The groups consisted of 5-6 animals. Mechanical inflammatory hypernociception was evaluated using an electronic version of the von Frey test. Walker tumor (4th and 7th day post-implantation) reduced prostaglandin E2- (PGE2, 400 ng/paw; 50 µL; intraplantar injection) and carrageenan-induced hypernociception (500 µg/paw; 100 µL; intraplantar injection). Walker tumor-induced analgesia was reversed (99.3% for carrageenan and 77.2% for PGE2) by a selective inhibitor of nitric oxide synthase (L-NAME; 90 mg/kg, ip) and L-arginine (200 mg/kg, ip), which prevented (80% for carrageenan and 65% for PGE2) the effect of L-NAME. Treatment with the soluble guanylyl cyclase inhibitor ODQ (100% for carrageenan and 95% for PGE2; 8 µg/paw) and the ATP-sensitive K+ channel (KATP) blocker glibenclamide (87.5% for carrageenan and 100% for PGE2; 160 µg/paw) reversed the antinociceptive effect of tumor bearing in a statistically significant manner (P < 0.05). The present study confirmed an intrinsic peripheral antinociceptive effect of Walker tumor bearing in rats. This antinociceptive effect seemed to be mediated by activation of the NO/cGMP pathway followed by the opening of KATP channels

  1. The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis

    International Nuclear Information System (INIS)

    Osteosarcoma is the most frequent primary malignant bone tumor, notorious for its lung metastasis. Shikonin, an effective constituent extracted from Chinese medicinal herb, was demonstrated to induce necroptosis in some cancers. MTT assay was performed to detect cell survival rate in vitro. Flow cytometry was used to analyze cell cycle and cell death. Western blot was performed to determine the expression levels of RIP1, RIP3, caspase-3, caspase-6 and PARP. The tibial primary and lung metastatic osteosarcoma models were used to evaluate the anti-tumor effect of shikonin in vivo. The cell survival rate was decreased in a dose and time dependent manner when treated with shikonin. No major change in cell cycle was observed after shikonin treatment. The cell death induced by shikonin could be mostly rescued by specific necroptosis inhibitor necrostatin-1, but not by general caspase inhibitor Z-VAD-FMK. The number of necrotic cells caused by shikonin was decreased after being pretreated with Nec-1 detected by flow cytometry in K7 cells. After 8-hour treatment of shikonin, the expression levels of RIP1 and RIP3 were increased while caspase-3, caspase-6 and PARP were not activated in K7 and U2OS cells determined by Western blot. Size of primary tumor and lung metastasis in shikonin treated group were significantly reduced. The protein levels of RIP1 and RIP3 in primary tumor tissues were increased by shikonin. The overall survival of lung metastatic models was longer compared with control group (p < 0.001). Shikonin had prompt but profound anti-tumor effect on both primary and metastatic osteosarcoma, probably by inducing RIP1 and RIP3 dependent necroptosis. Shikonin would be a potential anti-tumor agent on the treatment of primary and metastatic osteosarcoma

  2. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    International Nuclear Information System (INIS)

    Highlights: ► miR-21 modulates hADSC-induced increase of tumor growth. ► The action is mostly mediated by the modulation of TGF-β signaling. ► Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-β increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  3. Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor

    OpenAIRE

    Lihong Wang; Liping Liu; Yan Shi; Hanwei Cao; Rupesh Chaturvedi; M Wade Calcutt; Tianhui Hu; Xiubao Ren; Wilson, Keith T.; D. Brent Polk; Fang Yan

    2012-01-01

    Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently been shown to suppress growth of several tumor cell lines, information regarding the effect of berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying the effects of berberine on regulating the fate of colon tumor cells, specifically the mouse immorto-Min colonic epithelial (IM...

  4. Down-expression of tumor protein p53-induced nuclear protein 1 in human gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Pei-Hong Jiang; Yoshiharu Motoo; Stéphane Garcia; Juan Lucio Iovanna; Marie-Josèphe Pébusque; Norio Sawabu

    2006-01-01

    AIM: Overexpression of tumor protein p53-induced nuclear protein 1 (TP53INP1) induces G1 cell cycle arrest and increases p53-mediated apoptosis. To clarify the clinical importance of TP53INP1, we analyzed TP53INP1and p53 expression in gastric cancer.METHODS: TP53INP1 and p53 expression were examined using immunohistochemistry in 142 cases of gastric cancer. The apoptosis of gastric cancer cells was analyzed using the TUNEL method. The relationship between the expression of TP53INP1 and clinicopathological factors was statistically analyzed.RESULTS: TP53INP1 was expressed in 98% (139/142cases) of non-cancerous gastric tissues and was downexpressed in 64% (91/142 cases) of gastric cancer lesions from the same patients. TP53INP1 expression was significantly decreased (43.9%) in poorly differentiated adenocarcinoma compared with well or moderately differentiated adenocarcinoma (81.6%).Cancers invading the submucosa or deeper showed lower positively (59.1%) compared with mucosal cancers (85.2%). Decrease or loss of TP53INP1 expression was significantly correlated with lymphatic invasion (54.3%vs 82.0% without lymphatic invasion) and node-positive patients (31.3% vs 68.3% in node-negative patients).P53 was expressed in 68 (47.9%) patients of gastric cancer, whereas it was absent in normal gastric tissues.A significant association was also observed between TP53INP1 status and the level of apoptosis in tumor cells: the apoptotic index in TP53INP1-positive tissues was significantly higher than that in TP53INP1-negative portions. Finally, when survival data were analyzed,loss of TP53INP1 expression had a significant effect in predicting a poor prognosis (P= 0.0006).CONCLUSION: TP53INP1-positive rate decreases with the progression of gastric cancer. TP53INP1 protein negativity is significantly associated with aggressive pathological phenotypes of gastric cancer. TP53INP1is related to the apoptosis of gastric cancer cells. The decreased expression of the TP53INP1 protein may

  5. Bleomycin-induced pulmonary fibrosis after tumor lysis syndrome in a case of advanced yolk sac tumor treated with bleomycin, etoposide and cisplatin (BEP) chemotherapy.

    Science.gov (United States)

    Doi, Mihoko; Okamoto, Yohei; Yamauchi, Masami; Naitou, Hiroyuki; Shinozaki, Katsunori

    2012-10-01

    Ovarian yolk sac tumor (YST) is a highly aggressive malignancy arising in young women. Chemotherapy has dramatically improved the prognosis, and bleomycin, etoposide, and cisplatin (BEP) combination chemotherapy appears to be the most effective combination regimen. A 23-year-old woman was admitted to our hospital with worsening abdominal distention and a lower abdominal mass. She was diagnosed with a stage IIIc pure YST of the right ovary, and right salpingo-oophorectomy was performed; there were numerous disseminated peritoneal tumors within the abdominal cavity. A few days postoperatively, massive ascites developed, and right hydronephrosis occurred. Chemotherapy with BEP was started, and after 24 h of administration, oliguria and tumor lysis syndrome (TLS) developed. Continuous hemodiafiltration was started, and hemodialysis was initiated following full-dose standard cisplatin and etoposide on days 2-5 of the 1st cycle. After the electrolyte abnormalities and the elevation of creatinine became normal, the patient received an additional three cycles of BEP and achieved complete remission. However, she also suffered from severe non-hematological toxicities, including grade 3 left ventricular dysfunction and grade 4 pulmonary fibrosis. In the case of rapidly progressing and high-volume YST treated with BEP chemotherapy, special attention should be paid to bleomycin-induced pulmonary toxicity following TLS. Further study is required to optimize drug exposure to ensure efficacy and reduce the risk of side effects in this population. PMID:22127348

  6. Distinct malignant behaviors of mouse myogenic tumors induced by different oncogenetic lesions.

    Directory of Open Access Journals (Sweden)

    Simone eHettmer

    2015-02-01

    Full Text Available Rhabdomyosarcomas (RMS are heterogeneous cancers with myogenic differentiation features. The cytogenetic and mutational aberrations in RMS are diverse. This study examined differences in the malignant behavior of two genetically distinct and disease-relevant mouse myogenic tumor models. Kras; p1619null myogenic tumors, initiated by expression of oncogenic Kras in p16p19null mouse satellite cells, were metastatic to the lungs of the majority of tumor-bearing animals and repopulated tumors in 7 of 9 secondary recipients. In contrast, SmoM2 tumors, initiated by ubiquitous expression of a mutant Smoothened allele, did not metastasize and repopulated tumors in 2 of 18 recipients only. In summary, genetically distinct myogenic tumors in mice exhibit marked differences in malignant behavior.

  7. Hygienic grooming is induced by contact chemicals in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Aya eYanagawa

    2014-07-01

    Full Text Available In social insects, grooming is considered as a behavioral defense against pathogen and parasite infections since it contributes to remove microbes from their cuticle. However, stimuli which trigger this behavior are not well characterized yet. We examined if activating contact chemoreceptive sensilla could trigger grooming activities in Drosophila melanogaster. We monitored the grooming responses of decapitated flies to compounds known to activate the immune system e.g. dead Escherichia coli (Ec and lipopolysaccharides (LPS, and to tastants such as quinine, sucrose, and salt. LPS, quinine and Ec were quite effective in triggering grooming movements when touching the distal border of the wings and the legs, while sucrose had no effect. Contact chemoreceptors are necessary and sufficient to elicit such responses, as grooming could not be elicited by LPS in poxn mutants deprived of external taste sensilla, and as grooming was elicited by light when a channel rhodopsin receptor was expressed in bitter-sensitive cells expressing Gr33a. Contact chemoreceptors distributed along the distal border of the wings respond to these tastants by an increased spiking activity, in response to quinine, Ec, LPS, sucrose and KCl. These results demonstrate for the first time that bacterial compounds trigger grooming activities in D. melanogaster, and indicate that contact chemoreceptors located on the wings participate to the detection of such chemicals.

  8. Chemopreventive effect of Quercus infectoria against chemically induced renal toxicity and carcinogenesis

    Directory of Open Access Journals (Sweden)

    Muneeb U Rehman

    2012-06-01

    Full Text Available In this study we have shown that Quercus infectoria attenuates Fe- NTA induced renal oxidative stress, hyperproliferative response and renal carcinogenesis in rats. Fe-NTA promoted DEN (N-diethyl nitrosamine initiated renal carcinogenesis by increasing the percentage incidence of tumors and induces early tumor markers viz. ornithine decarboxylase (ODC level and PCNA expression. Fe- NTA (9 mg Fe/kg body weight, intraperitoneally enhances renal Malondialdehyde, xanthine oxidase and hydrogen peroxide generation with reduction in renal glutathione content, antioxidant enzymes, viz., glutathione peroxidase, glutathione reductase, catalase, glucose-6-phosphate dehydrogenase and phase-II metabolizing enzymes such as glutathione-S-transferase and quinone reductase. It also enhances blood urea nitrogen and serum creatinine. Fe-NTA also lead to increase in levels of some inflammatory markers viz NO and MPO and some proinflammatory cytokines viz PGE-2 and TNF-1. The chemopreventive efficacy of Quercus infectoria was studied in terms of xenobiotic metabolizing enzyme activities, LPO, redox status, serum toxicity markers, inflammatory and proinflammatory markers and cell proliferation in the kidney tissue. Oral administration of Quercus infectoria at doses of 75 and 150 mg/kg b wt effectively suppressed renal oxidative stress, inflammation and tumor incidence. Chemopreventive effects of Quercus infectoria were associated with up-regulation of xenobiotic metabolizing enzyme activities and down regulation of serum toxicity markers. Present study supports Quercus infectoria as a potent chemopreventive agent and suppresses Fe-NTA-induced renal carcinogenesis and oxidative and inflammatory response in Wistar rat.

  9. Surface chemical reactions induced by well-controlled molecular beams: translational energy and molecular orientation control

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Michio, E-mail: okada@chem.sci.osaka-u.ac.j, E-mail: mokada@cw.osaka-u.ac.j [Renovation Center of Instruments for Science Education and Technology, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047 and 1-2 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan)

    2010-07-07

    I review our recent studies of chemical reactions on single-crystalline Cu and Si surfaces induced by hyperthermal oxygen molecular beams and by oriented molecular beams, respectively. Studies of oxide formation on Cu induced by hyperthermal molecular beams suggest that the translational energy of the incident molecules plays a significant role. The use of hyperthermal molecular beams enables us to open up new chemical reaction paths, and to develop new methods for the fabrication of thin films. Oriented molecular beams also demonstrate the possibility for controlling surface chemical reactions by varying the orientation of the incident molecules. The steric effects found on Si surfaces hint at new ways of achieving material fabrication on Si surfaces. Controlling the initial conditions of incoming molecules is a powerful tool for creating new materials on surfaces with well-controlled chemical reactions. (topical review)

  10. Parenteral is more efficient than mucosal immunization to induce regression of human papillomavirus-associated genital tumors.

    Science.gov (United States)

    Decrausaz, Loane; Domingos-Pereira, Sonia; Duc, Mélanie; Bobst, Martine; Romero, Pedro; Schiller, John T; Jichlinski, Patrice; Nardelli-Haefliger, Denise

    2011-08-01

    Cervical cancer is a public health concern as it represents the second cause of cancer death in women worldwide. High-risk human papillomaviruses (HPV) are the etiologic agents, and HPV E6 and/or E7 oncogene-specific therapeutic vaccines are under development to treat HPV-related lesions in women. Whether the use of mucosal routes of immunization may be preferable for inducing cell-mediated immune responses able to eradicate genital tumors is still debated because of the uniqueness of the female genital mucosa (GM) and the limited experimentation. Here, we compared the protective activity resulting from immunization of mice via intranasal (i.n.), intravaginal (IVAG) or subcutaneous (s.c.) routes with an adjuvanted HPV type 16 E7 polypeptide vaccine. Our data show that s.c. and i.n. immunizations elicited similar frequencies and avidity of TetE71CD81 and E7-specific Interferon-gamma-secreting cells in the GM, whereas slightly lower immune responses were induced by IVAG immunization. In a novel orthotopic murine model, both s.c. and i.n. immunizations allowed for complete long-term protection against genital E7-expressing tumor challenge. However, only s.c. immunization induced complete regression of already established genital tumors. This suggests that the higher E7-specific systemic response observed after s.c. immunization may contribute to the regression of growing genital tumors, whereas local immune responses may be sufficient to impede genital challenges. Thus, our data show that for an efficiently adjuvanted protein-based vaccine, parenteral vaccination route is superior to mucosal vaccination route for inducing regression of established genital tumors in a murine model of HPV-associated genital cancer.

  11. Bio-molecular alterations induced by a chemical or radiating stress in isolated human cells

    International Nuclear Information System (INIS)

    After having recalled some aspects of radiobiology (effects of ionizing radiations, molecular targets of radiations, cellular responses with respect to the radiation), the author discusses various aspects of radio-sensitivity: intrinsic radio-sensitivity of tumoral and normal cells, DNA injuries and in vitro radio-sensitivity, genes of susceptibility to ionizing radiations, clustered injuries. Then she reports investigations performed by infrared micro-spectroscopy: characterization of pathological lines, of biological processes, of oxidative injuries induced by xenobiotics, of injuries induced by ionizing radiations

  12. Transcription-coupled repair: Impact on UV-induced mutagenesis in cultured rodent cells and mouse skin tumors

    International Nuclear Information System (INIS)

    UV-induced cyclobutane pyrimidine dimers (CPDs) are removed with accelerated speed from the transcribed strand of expressed genes in cultured mammalian cells by a process called transcription-coupled repair (TCR). It has been previously shown that this phenomenon has consequences for the molecular nature of the mutations induced by UV-light. Here, we review these data and show that TCR has not only a clear impact on UV-induced mutations in cultured mammalian cells but also on genes involved in tumor formation in the skin of UV-exposed mice. Mutations observed in the p53 gene in UV-induced squamous cell carcinoma are predominantly found at sites of dipyrimidines in the non-transcribed strand. In contrast, in UVC-irradiated Csb -/- Chinese hamster cells and in UVB-induced tumors in the Csb -/- mouse, almost all mutations are at positions of dipyrimidine sites in the transcribed strand of the mutated gene. Csb -/- mice appear to be susceptible to UVB-induced skin cancer in contrast to the human CSB patients. We speculate that the UVB-induced cancer susceptibility of Csb -/- mice is related to the absence of TCR as well as to a lack of a compensating global genome repair system for CPDs in mice

  13. Increased capsaicin-induced secondary hyperalgesia in patients with multiple chemical sensitivity

    DEFF Research Database (Denmark)

    Holst, Helle; Arendt-Nielsen, Lars; Mosbech, Holger;

    2011-01-01

    in experimental pain models to provoke peripheral and central sensitization. In patients with symptoms elicited by odorous chemicals capsaicin-induced secondary hyperalgesia and temporal summation were assessed as markers for abnormal central nociceptive processing together with neurogenic inflammation (flare).......the underlying cause of pathophysiological mechanisms triggering multiple chemical sensitivity (MCS) remains disputed.Recently, alterations in the central nervous system, for example,central sensitization, similar to various chronic pain disorders, have been suggested. Capsaicin is used...

  14. Chemically-induced Jahn-Teller ordering on manganite surfaces

    Science.gov (United States)

    Gai, Zheng; Lin, Wenzhi; Burton, J. D.; Tsymbal, Evgeny Y.; Fuchigami, K.; Shen, Jian; Snijders, P. C.; Ward, T. Z.; Jesse, Stephen; Kalinin, Sergei V.; Baddorf, A. P.

    2014-03-01

    Physical and electrochemical phenomena at the surfaces of transition metal oxides and their coupling to local functionality remains one of the enigmas of condensed matter physics. Understanding the emergent physical phenomena at surfaces requires the capability to probe the local composition, map order parameter fields, and establish their coupling to electronic properties. Here we demonstrate that measuring the sub 30 pm displacements of atoms from high-symmetry positions in the atomically resolved scanning tunneling microscopy (STM) allows the physical order parameter fields to be visualized in real space on the single atom level. Here, this local crystallographic analysis is applied to the in-situ grown manganite surfaces. In particular, using direct bond-angle mapping we report direct observation of structural domains on manganite surfaces, and trace their origin to surface-chemistry-induced stabilization of ordered Jahn-Teller displacements. Density functional calculations provide insight into the intriguing interplay between the various degrees of freedom now resolved on the atomic level. Research was supported by MSED and CNMS, which are sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy.

  15. Chemically induced Jahn-Teller ordering on manganite surfaces.

    Science.gov (United States)

    Gai, Zheng; Lin, Wenzhi; Burton, J D; Fuchigami, K; Snijders, P C; Ward, T Z; Tsymbal, Evgeny Y; Shen, J; Jesse, Stephen; Kalinin, Sergei V; Baddorf, Arthur P

    2014-01-01

    Physical and electrochemical phenomena at the surfaces of transition metal oxides and their coupling to local functionality remains one of the enigmas of condensed matter physics. Understanding the emergent physical phenomena at surfaces requires the capability to probe the local composition, map order parameter fields and establish their coupling to electronic properties. Here we demonstrate that measuring the sub-30-pm displacements of atoms from high-symmetry positions in the atomically resolved scanning tunnelling microscopy allows the physical order parameter fields to be visualized in real space on the single-atom level. Here, this local crystallographic analysis is applied to the in-situ-grown manganite surfaces. In particular, using direct bond-angle mapping we report direct observation of structural domains on manganite surfaces, and trace their origin to surface-chemistry-induced stabilization of ordered Jahn-Teller displacements. Density functional calculations provide insight into the intriguing interplay between the various degrees of freedom now resolved on the atomic level. PMID:25058540

  16. Glucocorticoid-induced tumor necrosis factor receptor expression in patients with cervical human papillomavirus infection

    Directory of Open Access Journals (Sweden)

    Cacilda Tezelli Junqueira Padovani

    2013-06-01

    Full Text Available Introduction The progression of human papillomavirus (HPV infection in the anogenital tract has been associated with the involvement of cells with regulatory properties. Evidence has shown that glucocorticoid-induced tumor necrosis factor receptor (GITR is an important surface molecule for the characterization of these cells and proposes that GITR ligand may constitute a rational treatment for many cancer types. We aimed to detect the presence of GITR and CD25 in cervical stroma cells with and without pathological changes or HPV infection to better understand the immune response in the infected tissue microenvironment. Methods We subjected 49 paraffin-embedded cervical tissue samples to HPV DNA detection and histopathological analysis, and subsequently immunohistochemistry to detect GITR and CD25 in lymphocytes. Results We observed that 76.9% of all samples with high GITR expression were HPV-positive regardless of histopathological findings. High GITR expression (77.8% was predominant in samples with ≥1,000 RLU/PCB. Of the HPV-positive samples negative for intraepithelial lesion and malignancy, 62.5% had high GITR expression. High GITR expression was observed in both carcinoma and high-grade squamous intraepithelial lesion (HSIL samples (p = 0.16. CD25 was present in great quantities in all samples. Conclusions The predominance of high GITR expression in samples with high viral load that were classified as HSIL and carcinoma suggests that GITR+ cells can exhibit regulatory properties and may contribute to the progression of HPV-induced cervical neoplasia, emphasizing the importance of GITR as a potential target for immune therapy of cervical cancer and as a disease evolution biomarker.

  17. CDK2 Activation in Mouse Epidermis Induces Keratinocyte Proliferation but Does Not Affect Skin Tumor Development

    Science.gov (United States)

    Macias, Everardo; Miliani de Marval, Paula L.; De Siervi, Adriana; Conti, Claudio J.; Senderowicz, Adrian M.; Rodriguez-Puebla, Marcelo L.

    2008-01-01

    It has been widely assumed that elevated CDK2 kinase activity plays a contributory role in tumorigenesis. We have previously shown that mice overexpressing CDK4 under control of the keratin 5 promoter (K5CDK4 mice) develop epidermal hyperplasia and increased susceptibility to squamous cell carcinomas. In this model, CDK4 overexpression results in increased CDK2 activity associated with the noncatalytic function of CDK4, sequestration of p21Cip1 and p27Kip1. Furthermore, we have shown that ablation of Cdk2 reduces Ras-Cdk4 tumorigenesis, suggesting that increased CDK2 activity plays an important role in Ras-mediated tumorigenesis. To investigate this hypothesis, we generated two transgenic mouse models of elevated CDK2 kinase activity, K5Cdk2 and K5Cdk4D158N mice. The D158N mutation blocks CDK4 kinase activity without interfering with its binding capability. CDK2 activation via overexpression of CDK4D158N, but not of CDK2, resulted in epidermal hyperplasia. We observed elevated levels of p21Cip1 in K5Cdk2, but not in K5Cdk4D158N, epidermis, suggesting that CDK2 overexpression elicits a p21Cip1 response to maintain keratinocyte homeostasis. Surprisingly, we found that neither CDK2 overexpression nor the indirect activation of CDK2 enhanced skin tumor development. Thus, although the indirect activation of CDK2 is sufficient to induce keratinocyte hyperproliferation, activation of CDK2 alone does not induce malignant progression in Ras-mediated tumorigenesis. PMID:18599613

  18. Interferon-Inducible Protein 16: Insight into the Interaction with Tumor Suppressor p53

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Jack C.C.; Lam, Robert; Brazda, Vaclav; Duan, Shili; Ravichandran, Mani; Ma, Justin; Xiao, Ting; Tempel, Wolfram; Zuo, Xiaobing; Wang, Yun-Xing; Chirgadze, Nickolay Y.; Arrowsmith, Cheryl H. (Toronto); (NCI)

    2011-08-24

    IFI16 is a member of the interferon-inducible HIN-200 family of nuclear proteins. It has been implicated in transcriptional regulation by modulating protein-protein interactions with p53 tumor suppressor protein and other transcription factors. However, the mechanisms of interaction remain unknown. Here, we report the crystal structures of both HIN-A and HIN-B domains of IFI16 determined at 2.0 and 2.35 {angstrom} resolution, respectively. Each HIN domain comprises a pair of tightly packed OB-fold subdomains that appear to act as a single unit. We show that both HIN domains of IFI16 are capable of enhancing p53-DNA complex formation and transcriptional activation via distinctive means. HIN-A domain binds to the basic C terminus of p53, whereas the HIN-B domain binds to the core DNA-binding region of p53. Both interactions are compatible with the DNA-bound state of p53 and together contribute to the effect of full-length IFI16 on p53-DNA complex formation and transcriptional activation.

  19. Tumor necrosis factor-α-induced protein 1 and immunity to hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    Marie C Lin; Nikki P Lee; Ning Zheng; Pai-Hao Yang; Oscar G Wong; Hsiang-Fu Kung; Chee-Kin Hui; John M Luk; George Ka-Kit Lau

    2005-01-01

    AIM: To compare the gene expression profile in a pair of HBV-infected twins.METHODS: The gene expression profile was compared in a pair of HBV-infected twins.RESULTS: The twins displayed different disease outcomes. One acquired natural immunity against HBV,whereas the other became a chronic HBV carrier. Eightyeight and forty-six genes were found to be up- or downregulated in their PBMCs, respectively. Tumor necrosis factor-alpha-induced protein 1 (TNF-αIP1) that expressed at a higher level in the HBV-immune twins was identified and four pairs of siblings with HBV immunity by RTPCR. However, upon HBV core antigen stimulation,TNF-αIP1 was downregulated in PBMCs from subjects with immunity, whereas it was slightly upregulated in HBV carriers. Bioinformatics analysis revealed a K+channel tetramerization domain in TNF-αIP1 that shares a significant homology with some human, mouse, and C elegan proteins.CONCLUSION: TNF-αIP1 may play a role in the innate immunity against HBV.

  20. Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer.

    Science.gov (United States)

    Raynal, Noël J-M; Lee, Justin T; Wang, Youjun; Beaudry, Annie; Madireddi, Priyanka; Garriga, Judith; Malouf, Gabriel G; Dumont, Sarah; Dettman, Elisha J; Gharibyan, Vazganush; Ahmed, Saira; Chung, Woonbok; Childers, Wayne E; Abou-Gharbia, Magid; Henry, Ryan A; Andrews, Andrew J; Jelinek, Jaroslav; Cui, Ying; Baylin, Stephen B; Gill, Donald L; Issa, Jean-Pierre J

    2016-03-15

    Targeting epigenetic pathways is a promising approach for cancer therapy. Here, we report on the unexpected finding that targeting calcium signaling can reverse epigenetic silencing of tumor suppressor genes (TSG). In a screen for drugs that reactivate silenced gene expression in colon cancer cells, we found three classical epigenetic targeted drugs (DNA methylation and histone deacetylase inhibitors) and 11 other drugs that induced methylated and silenced CpG island promoters driving a reporter gene (GFP) as well as endogenous TSGs in multiple cancer cell lines. These newly identified drugs, most prominently cardiac glycosides, did not change DNA methylation locally or histone modifications globally. Instead, all 11 drugs altered calcium signaling and triggered calcium-calmodulin kinase (CamK) activity, leading to MeCP2 nuclear exclusion. Blocking CamK activity abolished gene reactivation and cancer cell killing by these drugs, showing that triggering calcium fluxes is an essential component of their epigenetic mechanism of action. Our data identify calcium signaling as a new pathway that can be targeted to reactivate TSGs in cancer.

  1. Psoriasis Induced by Anti-Tumor Necrosis Factor Alpha Agents: A Comprehensive Review of the Literature.

    Science.gov (United States)

    Ciccarelli, Fedra; De Martinis, Massimo; Sirufo, Maria Maddalena; Ginaldi, Lia

    2016-08-01

    Tumor necrosis factor alpha (TNF-α) inhibitors revolutionized the management of patients affected by autoimmune diseases such as inflammatory bowel diseases, rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, and psoriasis. The biologic agents targeted to block TNF-α such as infliximab, adalimumab, certulizumab pegol, etanercept, and golimumab, have a good safety profile; however, with increasing, broader, and prolonged use, patients could be exposed to an increased risk of adverse reactions including a wide spectrum of dermatological conditions of different etiology and morphology. Among these, of particular interest is the development of skin immune-mediated diseases that seem to be the consequence of the paradoxical inflammation induced by anti-TNF-α therapy. The majority of these lesions are identified as psoriasiform with three main morphologies and different frequency: pustular psoriasis, signs of psoriasis, and guttate; although erythrodermic or inverted psoriasis, among others, may be observed with less frequency. The increased incidence of these dermatological immune-mediated lesions highlight the importance of the skin as a main target of the side effect of anti-TNF-α agents, while the immunopathogenetic hypothesis of these paradoxical effects are quite intriguing. The aim of this review is to collect and to analyze existing knowledge to better understand the pathogenetic mechanism of these complications and suggest new fields of investigation, improve therapeutic strategies of autoimmune diseases, and prevent and/or better address such complications. PMID:27663916

  2. Heat-inducible translationally controlled tumor protein of Trichinella pseudospiralis: cloning and regulation of gene expression.

    Science.gov (United States)

    Mak, C H; Poon, M W; Lun, H M; Kwok, P Y; Ko, R C

    2007-04-01

    To elucidate the mechanism of inducing translationally controlled tumor protein (TCTP) in stress adaptation of adenophorean nematodes, the complete coding sequence of TCTP of the infective-stage larvae of Trichinella pseudospiralis was characterized. Two cDNA clones with different 3' untranslated region were identified. Tp-TCTP contained an open reading frame of 534 bp encoding 177 residues. The gene with five introns was expressed as histidine-tagged fusion protein having a molecular mass of 17.5 kDa. Quantitative reverse transcriptase polymerase chain reaction (RT-PCR) analysis showed that TCTP RNA was not accumulated when the infective-stage larvae were heat-shocked for 1 h at 45 or 60 degrees C. Using enzyme-linked immunosorbent assay and antiserum against the fusion protein, the expression of TCTP was found to be up-regulated at the translational level. The data suggest that translational regulation of TCTP may play an important role in the early heat-stress adaptation of the trichinellid. Cluster analysis demonstrated that the TCTP sequence of T. pseudospiralis is closely related to that of T. spiralis, but is diverged from the secernentean species. PMID:17149606

  3. Suppressive effects of coffee on the SOS responses induced by UV and chemical mutagens

    International Nuclear Information System (INIS)

    SOS-inducing activity of UV or chemical mutagens was strongly suppressed by instant coffee in Salmonella typhimurium TA1535/pSK1002. As decaffeinated instant coffee showed a similarly strong suppressive effect, it would seem that caffeine, a known inhibitor of SOS responses, is not responsible for the effect observed. The suppression was also shown by freshly brewed coffee extracts. However, the suppression was absent in green coffee-bean extracts. These results suggest that coffee contains some substance(s) which, apart from caffeine, suppresses SOS-inducing activity of UV or chemical mutagens and that the suppressive substance(s) are produced by roasting coffee beans. (Auth.)

  4. A histological evaluation and in vivo assessment of intratumoral near infrared photothermal nanotherapy-induced tumor regression

    Directory of Open Access Journals (Sweden)

    Green HN

    2014-11-01

    Full Text Available Hadiyah N Green,1,2 Stephanie D Crockett,3 Dmitry V Martyshkin,1 Karan P Singh,2,4 William E Grizzle,2,5 Eben L Rosenthal,2,6 Sergey B Mirov11Department of Physics, Center for Optical Sensors and Spectroscopies, 2Comprehensive Cancer Center, 3Department of Pediatrics, Division of Neonatology, 4Department of Medicine, Division of Preventive Medicine, Biostatistics and Bioinformatics Shared Facility, 5Department of Pathology, 6Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, The University of Alabama at Birmingham, Birmingham, AL, USAPurpose: Nanoparticle (NP-enabled near infrared (NIR photothermal therapy has realized limited success in in vivo studies as a potential localized cancer therapy. This is primarily due to a lack of successful methods that can prevent NP uptake by the reticuloendothelial system, especially the liver and kidney, and deliver sufficient quantities of intravenously injected NPs to the tumor site. Histological evaluation of photothermal therapy-induced tumor regression is also neglected in the current literature. This report demonstrates and histologically evaluates the in vivo potential of NIR photothermal therapy by circumventing the challenges of intravenous NP delivery and tumor targeting found in other photothermal therapy studies.Methods: Subcutaneous Cal 27 squamous cell carcinoma xenografts received photothermal nanotherapy treatments, radial injections of polyethylene glycol (PEG-ylated gold nanorods and one NIR 785 nm laser irradiation for 10 minutes at 9.5 W/cm2. Tumor response was measured for 10–15 days, gross changes in tumor size were evaluated, and the remaining tumors or scar tissues were excised and histologically analyzed.Results: The single treatment of intratumoral nanorod injections followed by a 10 minute NIR laser treatment also known as photothermal nanotherapy, resulted in ~100% tumor regression in ~90% of treated tumors, which was statistically significant in a

  5. T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells.

    Science.gov (United States)

    Marigo, Ilaria; Zilio, Serena; Desantis, Giacomo; Mlecnik, Bernhard; Agnellini, Andrielly H R; Ugel, Stefano; Sasso, Maria Stella; Qualls, Joseph E; Kratochvill, Franz; Zanovello, Paola; Molon, Barbara; Ries, Carola H; Runza, Valeria; Hoves, Sabine; Bilocq, Amélie M; Bindea, Gabriela; Mazza, Emilia M C; Bicciato, Silvio; Galon, Jérôme; Murray, Peter J; Bronte, Vincenzo

    2016-09-12

    Effective cancer immunotherapy requires overcoming immunosuppressive tumor microenvironments. We found that local nitric oxide (NO) production by tumor-infiltrating myeloid cells is important for adoptively transferred CD8(+) cytotoxic T cells to destroy tumors. These myeloid cells are phenotypically similar to inducible nitric oxide synthase (NOS2)- and tumor necrosis factor (TNF)-producing dendritic cells (DC), or Tip-DCs. Depletion of immunosuppressive, colony stimulating factor 1 receptor (CSF-1R)-dependent arginase 1(+) myeloid cells enhanced NO-dependent tumor killing. Tumor elimination via NOS2 required the CD40-CD40L pathway. We also uncovered a strong correlation between survival of colorectal cancer patients and NOS2, CD40, and TNF expression in their tumors. Our results identify a network of pro-tumor factors that can be targeted to boost cancer immunotherapies.

  6. Over-expression of Adenine Nucleotide Translocase 1 (ANT1) Induces Apoptosis and Tumor Regression in vivo

    International Nuclear Information System (INIS)

    Adenine nucleotide translocase (ANT) is located in the inner mitochondrial membrane and catalyzes the exchange of mitochondrial ATP for cytosolic ADP. ANT has been known to be a major component of the permeability transition pore complex of mitochondria and contributes to mitochondria-mediated apoptosis. Human ANT has four isoforms (ANT1, ANT2, ANT3, and ANT4), and the expression of the ANT isoforms is variable depending on the tissue and cell type, developmental stage, and proliferation status. Among the isoforms, ANT1 is highly expressed in terminally-differentiated tissues, but expressed in low levels in proliferating cells, such as cancer cells. In particular, over-expression of ANT1 induces apoptosis in cultured tumor cells. We applied an ANT1 gene transfer approach to induce apoptosis and to evaluate the anti-tumor effect of ANT1 in a nude mouse model. We demonstrated that ANT1 transfection induced apoptosis of MDA-MB-231 cells, inactivated NF-κB activity, and increased Bax expression. ANT1-inducing apoptosis was accompanied by the disruption of mitochondrial membrane potential, cytochrome c release and the activation of caspases-9 and -3. Moreover, ANT1 transfection significantly suppressed tumor growth in vivo. Our results suggest that ANT1 transfection may be a useful therapeutic modality for the treatment of cancer

  7. Inducible Expression of B7-H1 (PD-L1) and Its Selective Role in Tumor Site Immune Modulation

    Science.gov (United States)

    Sanmamed, Miguel F.; Chen, Lieping

    2015-01-01

    Immune evasion is an important hallmark of cancer, and a better understanding of this mechanism is essential for the development of effective strategies against cancer. The B7 homolog 1 (B7-H1)/programmed cell death 1 (PD-1) pathway has been demonstrated as a major mechanism of immune evasion in tumor site, and its blockade therapy shows very encouraging results in clinical trials. Inducible B7-H1 expression in tumor microenvironment is complex, with multidimensional interactions and expression by different subsets of hematopoietic and nonhematopoietic cells. Understanding these interactions and how tumors take advantage of this pathway can help us design future strategies for better therapeutic efficacy and to overcome resistances. PMID:25098285

  8. Chemopreventive potential of Annona muricata L leaves on chemically-induced skin papillomagenesis in mice.

    Science.gov (United States)

    Hamizah, Sulaiman; Roslida, A H; Fezah, O; Tan, K L; Tor, Y S; Tan, C I

    2012-01-01

    Annona muricata L (Annonaceae), commonly known as soursop has a long, rich history in herbal medicine with a lengthy recorded indigenous use. It had also been found to be a promising new anti-tumor agent in numerous in vitro studies. The present investigation concerns chemopreventive effects in a two-stage model of skin papillomagenesis. Chemopreventive effects of an ethanolic extract of A. muricata leaves (AMLE) was evaluated in 6-7 week old ICR mice given a single topical application of 7,12-dimethylbenza(α)anthracene (DMBA 100 μg/100 μl acetone) and promotion by repeated application of croton oil (1% in acetone/ twice a week) for 10 weeks. Morphological tumor incidence, burden and volume were measured, with histological evaluation of skin tissue. Topical application of AMLE at 30, 100 and 300 mg/kg significantly reduced DMBA/croton oil induced mice skin papillomagenesis in (i) peri-initiation protocol (AMLE from 7 days prior to 7 days after DMBA), (ii) promotion protocol (AMLE 30 minutes after croton oil), or (iii) both peri-initiation and promotion protocol (AMLE 7 days prior to 7 day after DMBA and AMLE 30 minutes after croton oil throughout the experimental period), in a dose dependent manner (p<0.05) as compared to carcinogen-treated control. Furthermore, the average latent period was significantly increased in the AMLE-treated group. Interestingly, At 100 and 300 mg/ kg, AMLE completely inhibited the tumor development in all stages. Histopathological study revealed that tumor growth from the AMLE-treated groups showed only slight hyperplasia and absence of keratin pearls and rete ridges. The results, thus suggest that the A.muricata leaves extract was able to suppress tumor initiation as well as tumor promotion even at lower dosage.

  9. Mutagenic efficiency of radiations and chemical mutagens in inducing viable mutations in rice

    International Nuclear Information System (INIS)

    Studies were undertaken to compare the effectiveness and efficiency of radiations (gamma rays and fast neutrons) and chemical mutagens (EMS and NMU) in inducing viable mutations in rice. Radiations were more effective than chemical mutagens, the most effective being fast neutrons. Mutagenic efficiency when estimated on the basis of lethality was higher for radiations but when based on sterility was higher for chemical mutagens. Fast neutrons, more effective than gamma rays, were less efficient. NMU was more effective but less efficient than EMS. (author)

  10. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsuneyama, Koichi [Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Sugitani, Toyama 930‐0194 (Japan); Endo, Shinya [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsukui, Tohru [Research Center for Genomic Medicine, Saitama Medical University, Yamane, Hidaka 350‐1241 (Japan); Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Yokoi, Tsuyoshi, E-mail: tyokoi@p.kanazawa-u.ac.jp [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan)

    2012-10-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  11. Chemical chaperone 4-phenylbutyrate prevents endoplasmic reticulum stress induced by T17M rhodopsin

    OpenAIRE

    Jiang, Haibo; Xiong, Siqi; Xia, Xiaobo

    2014-01-01

    Background Rhodopsin mutations are associated with the autosomal dominant form of retinitis pigmentosa. T17M mutation in rhodopsin predisposes cells to endoplasmic reticulum (ER) stress and induces cell death. This study aimed to examine whether chemical chaperone 4-phenylbutyrate prevents ER stress induced by rhodopsin T17M. Results ARPE-19 cells were transfected with myc-tagged wild-type (WT) and T17M rhodopsin constructs. Turnover of WT and T17M rhodopsin was measured by cycloheximide chas...

  12. Physico-chemical study of the focused electron beam induced deposition process

    OpenAIRE

    Bret, Tristan; Hoffmann, Patrik

    2007-01-01

    The focused electron beam induced deposition process is a promising technique for nano and micro patterning. Electrons can be focused in sub-angström dimensions, which allows atomic-scale resolution imaging, analysis, and processing techniques. Before the process can be used in controlled applications, the precise nature of the deposition mechanism must be described and modelled. The aim of this research work is to present a physical and chemical description of the focused electron beam induc...

  13. The anti-tumor effects of calorie restriction are correlated with reduced oxidative stress in ENU-induced gliomas

    Directory of Open Access Journals (Sweden)

    Megan A. Mahlke

    2011-06-01

    Full Text Available The anti-tumor effects of calorie restriction (CR and the possible underlying mechanisms were investigated using ethylnitrosourea (ENU-induced glioma in rats. ENU was given transplacentally at gestational day 15, and male offspring were used in this experiment. The brain from 4-, 6-, and 8-month-old rats fed either ad libitum (AL or calorie-restricted diets (40% restriction of total calories compared to AL rats was studied. Tumor burden was assessed by comparing the number and size of gliomas present in sections of the brain. Immunohistochemical analysis was used to document lipid peroxidation [4-hydroxy-2-nonenal (HNE and malondialdehyde (MDA], protein oxidation (nitrotyrosine, glycation and AGE formation [methylglyoxal (MG and carboxymethyllysine (CML], cell proliferation activity [proliferating cell nuclear antigen (PCNA], cell death [single-stranded DNA (ssDNA], presence of thioredoxin 1 (Trx1, and presence of heme oxygenase-1 (HO-1 associated with the development of gliomas. The results showed that the number of gliomas did not change with age in the AL groups; however, the average size of the gliomas was significantly larger in the 8-month-old group compared to that of the younger groups. Immunopositivity was observed mainly in tumor cells and reactive astrocytes in all histological types of ENU-induced glioma. Immunopositive areas for HNE, MDA, nitrotyrosine, MG, CML, HO-1, and Trx1 increased with the growth of gliomas. The CR group showed both reduced number and size of gliomas, and tumors exhibited less accumulation of oxidative damage, decreased formation of glycated end products, and a decreased presence of HO-1 and Trx1 compared to the AL group. Furthermore, gliomas of the CR group showed less PCNA positive and more ssDNA positive cells, which are correlated to the retarded growth of tumors. Interestingly, we also discovered that the anti-tumor effects of CR were associated with decreased hypoxia-inducible factor-1α (HIF-1α levels

  14. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    Science.gov (United States)

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-06-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions.

  15. Anti-tumor effect of pEgr-1-endostatin-TNF-α recombinant plasmid expression induced by ionizing radiation

    International Nuclear Information System (INIS)

    Objective: To study the anti-tumor effects of pEgr-1-endostatin-TNF-α gene-radiotherapy on mice bearing Lewis lung carcinoma, and to explore the mechanism involved. Methods: 240 mice with Lewis lung carcinoma were randomly divided into four groups, including control group, irradiation group, liposome group, and liposome combined irradiation group. The plasmids packed by liposome were injected locally into the tumors of the mice, and the tumors of liposome combined irradiation group were irradiated with 10 Gy γ-rays 24 h later. The expression levels of TNF-α and endostatin in mouse serum were measured by ELISA. Then the tumor growth rates at different time were observed. Tumor angiogenesis density were estimated on frozen sections stained with CD31 by using the Chalkley counting method to vessel hot-spots. The tumor inhibition rates were also calculated. Results: Radiation induced the expression of pEgr-1-endostatin-TNFα. The endostatin and TNF-α were expressed steadily for about 4 weeks. The highest levels of expression of the endostatin and TNF-α were (52.64±4.19) and (12.01±0.87) ng/ml at 2 week. The expression levels of TNF-α and endostatin were higher in combined therapy group than those in other groups (F=29.726, P3, F=16.415, P<0.05]. Conclusions: The expression of pEgr-1-endostatin-TNFα could be induced by irradiation in dose- and time- dependent manner. The effect of antitumor and angiogenesis inhibition may be more significant than irradiation. (authors)

  16. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis.

    Directory of Open Access Journals (Sweden)

    Pierre Sonveaux

    Full Text Available Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1 pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1 that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2 and basic fibroblast growth factor (bFGF expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.

  17. A preclinical model for noninvasive imaging of hypoxia-induced gene expression; comparison with an exogenous marker of tumor hypoxia

    International Nuclear Information System (INIS)

    Hypoxia is associated with tumor aggressiveness and is an important cause of resistance to radiation therapy and chemotherapy. Assays of tumor hypoxia could provide selection tools for hypoxia-modifying treatments. The purpose of this study was to develop and characterize a rodent tumor model with a reporter gene construct that would be transactivated by the hypoxia-inducible molecular switch, i.e., the upregulation of HIF-1. The reporter gene construct is the herpes simplex virus 1-thymidine kinase (HSV1-tk) fused with the enhanced green fluorescent protein (eGFP) under the regulation of an artificial hypoxia-responsive enhancer/promoter. In this model, tumor hypoxia would up-regulate HIF-1, and through the hypoxia-responsive promoter transactivate the HSV1-tkeGFPfusion gene. The expression of this reporter gene can be assessed with the 124I-labeled reporter substrate 2'-fluoro-2'-deoxy-1-β-d-arabinofuranosyl-5-iodouracil (124I-FIAU), which is phosphorylated by the HSV1-tk enzyme and trapped in the hypoxic cells. Animal positron emission tomography (microPET) and phosphor plate imaging (PPI) were used in this study to visualize the trapped 124I-FIAU, providing a distribution of the hypoxia-induced molecular events. The distribution of 124I-FIAU was also compared with that of an exogenous hypoxic cell marker, 18F-fluoromisonidazole (FMISO). Our results showed that 124I-FIAU microPET imaging of the hypoxia-induced reporter gene expression is feasible, and that the intratumoral distributions of 124I-FIAU and 18F-FMISO are similar. In tumor sections, detailed radioactivity distributions were obtained with PPI which also showed similarity between 124I-FIAU and 18F-FMISO. This reporter system is sufficiently sensitive to detect hypoxia-induced transcriptional activation by noninvasive imaging and might provide a valuable tool in studying tumor hypoxia and in validating existing and future exogenous markers for tumor hypoxia. (orig.)

  18. Tumor Lymphangiogenesis and Metastasis to Lymph Nodes Induced by Cancer Cell Expression of Podoplanin

    OpenAIRE

    Cueni, Leah N.; Hegyi, Ivan; Shin, Jay W.; Albinger-Hegyi, Andrea; Gruber, Silke; Kunstfeld, Rainer; Moch, Holger; Detmar, Michael

    2010-01-01

    The membrane glycoprotein podoplanin is expressed by several types of human cancers and might be associated with their malignant progression. Its exact biological function and molecular targets are unclear, however. Here, we assessed the relevance of tumor cell expression of podoplanin in cancer metastasis to lymph nodes, using a human MCF7 breast carcinoma xenograft model. We found that podoplanin expression promoted tumor cell motility in vitro and, unexpectedly, increased tumor lymphangiog...

  19. Liver tumors induced in B6C3F{sub 1} mice by benz[a]anthracene and two of its halogenated derivatives contain K-RAS oncogene mutations

    Energy Technology Data Exchange (ETDEWEB)

    Xia, O.; Yi, P.; Zhan, D. [and others

    1997-10-01

    Polycyclic aromatic hydrocarbons (PAHs) and halogenated PAHs are genotoxic environmental contaminants. We previously examined the tumorigenicity of benz[a]anthracene (BA), 7-Cl-BA, and 7-Br-BA in the neonatal mouse tumorigenicity bioassay. Male B6C3F{sub 1} mice were administered i.p. injections at a total dose of 400 nmol per mouse on 1, 8, and 15 days after birth. BA, 7-Cl-BA, and 7-Br-BA induced hepatocellular adenoma in 67, 92, and 96% of the mice, respectively, and induced hepatocellular carcinoma in 15, 100 and 83% of the mice, respectively. In the present study, mRNA was isolated from each of the liver tumors induced by the three compounds, reversed-transcribed to cDNA, and portions of the K- and H-ras oncogene coding sequences were amplified and analyzed for DNA sequence alterations. 92% (11/12) of BA-induced, 79% (19/24) of 7-Cl-BA-induced and 86% (19/22) of 7-Br-BA-induced liver tumors had activated ras protooncogenes. In contrast to the general finding of H-ras mutations in B6C3F{sub 1} mouse liver tumors, all the mutations were at the first base of K-ras codon 13, resulting in a pattern of GGC{yields}CGC. No other ras oncogene mutations were detected. Our results clearly demonstrate that these chemicals induce a unique type of ras (K-ras) oncogene activation in the liver tumors of B6C3F{sub 1} mice.

  20. Stochastic resonance in the growth of a tumor induced by correlated noises

    Institute of Scientific and Technical Information of China (English)

    ZHONG Weirong; SHAO Yuanzhi; HE Zhenhui

    2005-01-01

    Multiplicative noise is found to divide the growth law of tumors into two parts in a logistic model, which is driven by additive and multiplicative noises simultaneously. The Fokker-Planck equation was also derived to explain the fact that the influence of the intensity of multiplicative noise on the growth of tumor cells has a stochastic resonance-like characteristic. An appropriate intensity of multiplicative noise is benefit to the growth of the tumor cells. The correlation between two sorts of noises weakens the stochastic resonance-like characteristic. Homologous noises promote the growth of the tumor cells.

  1. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia.

    Science.gov (United States)

    Zhu, Zhen-Yuan; Dong, Fengying; Liu, Xiaocui; Lv, Qian; YingYang; Liu, Fei; Chen, Ling; Wang, Tiantian; Wang, Zheng; Zhang, Yongmin

    2016-04-20

    This study was to investigate the effects of different extraction methods on the yield, chemical structure and antitumor activity of polysaccharides from Cordyceps gunnii (C. gunnii) mycelia. Five extraction methods were used to extract crude polysaccharides (CPS), which include room-temperature water extraction (RWE), hot-water extraction (HWE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and cellulase-assisted extraction (CAE). Then Sephadex G-100 was used for purification of CPS. As a result, the antitumor activities of CPS and PPS on S180 cells were evaluated. Five CPS and purified polysaccharides (PPS) were obtained. The yield of CPS by microwave-assisted extraction (CPSMAE) was the highest and its anti-tumor activity was the best and its macromolecular polysaccharide (3000-1000kDa) ratio was the largest. The PPS had the same monosaccharide composition, but their obvious difference was in the antitumor activity and the physicochemical characteristics, such as intrinsic viscosity, specific rotation, scanning electron microscopy and circular dichroism spectra. PMID:26876874

  2. Fructose as a carbon source induces an aggressive phenotype in MDA-MB-468 breast tumor cells

    Science.gov (United States)

    MONZAVI-KARBASSI, BEHJATOLAH; HINE, R. JEAN; STANLEY, JOSEPH S.; RAMANI, VISHNU PRAKASH; CARCEL-TRULLOLS, JAIME; WHITEHEAD, TRACY L.; KELLY, THOMAS; SIEGEL, ERIC R.; ARTAUD, CECILE; SHAAF, SAEID; SAHA, RINKU; JOUSHEGHANY, FARIBA; HENRY-TILLMAN, RONDA; KIEBER-EMMONS, THOMAS

    2012-01-01

    Aberrant glycosylation is a universal feature of cancer cells, and certain glycan structures are well-known markers for tumor progression. Availability and composition of sugars in the microenvironment may affect cell glycosylation. Recent studies of human breast tumor cell lines indicate their ability to take up and utilize fructose. Here we tested the hypothesis that adding fructose to culture as a carbon source induces phenotypic changes in cultured human breast tumor cells that are associated with metastatic disease. MDA-MB-468 cells were adapted to culture media in which fructose was substituted for glucose. Changes in cell surface glycan structures, expression of genes related to glycan assembly, cytoskeleton F-actin, migration, adhesion and invasion were determined. Cells cultured in fructose expressed distinct cell-surface glycans. The addition of fructose affected sialylation and fucosylation patterns. Fructose feeding also increased binding of leukoagglutinating Phaseolus vulgaris isolectin, suggesting a possible rise in expression of branching β-1, 6 GlcNAc structures. Rhodamine-phalloidin staining revealed an altered F-actin cytoskeletal system. Fructose accelerated cellular migration and increased invasion. These data suggest that changing the carbon source of the less aggressive MDA-MB-468 cell line induced characteristics associated with more aggressive phenotypes. These data could be of fundamental importance due to the markedly increased consumption of sweeteners containing free fructose in recent years, as they suggest that the presence of fructose in nutritional micro-environment of tumor cells may negatively affect the outcome for some breast cancer patients. PMID:20664930

  3. Human Hepatocyte-Derived Induced Pluripotent Stem Cells: MYC Expression, Similarities to Human Germ Cell Tumors, and Safety Issues

    Directory of Open Access Journals (Sweden)

    Carmen Unzu

    2016-01-01

    Full Text Available Induced pluripotent stem cells (iPSC are a most promising approach to the development of a hepatocyte transplantable mass sufficient to induce long-term correction of inherited liver metabolic diseases, thus avoiding liver transplantation. Their intrinsic self-renewal ability and potential to differentiate into any of the three germ layers identify iPSC as the most promising cell-based therapeutics, but also as drivers of tumor development. Teratoma development currently represents the gold standard to assess iPSC pluripotency. We analyzed the tumorigenic potential of iPSC generated from human hepatocytes (HEP-iPSC and compared their immunohistochemical profiles to that of tumors developed from fibroblast and hematopoietic stem cell-derived iPSC. HEP-iPSC generated tumors significantly presented more malignant morphological features than reprogrammed fibroblasts or CD34+ iPSC. Moreover, the protooncogene myc showed the strongest expression in HEP-iPSC, compared to only faint expression in the other cell subsets. Random integration of transgenes and the use of potent protooncogenes such as myc might be a risk factor for malignant tumor development if hepatocytes are used for reprogramming. Nonviral vector delivery systems or reprogramming of cells obtained from less invasive harvesting methods would represent interesting options for future developments in stem cell-based approaches for liver metabolic diseases.

  4. Prognostic Significance of Tumor Hypoxia Inducible Factor-1α Expression for Outcome After Radiotherapy in Oropharyngeal Cancer

    International Nuclear Information System (INIS)

    Purpose: Head-and-neck squamous cell carcinoma (HNSCC) represents a heterogeneous group of patients in terms of subsite, treatment, and biology. Currently most management decisions are based on clinical parameters with little appreciation of patient differences in underlying tumor biology. We investigated the prognostic significance of clinicopathologic features and tumor hypoxia-inducible factor-1α (HIF-1α) expression in a homogeneous series of patients who underwent radiotherapy. Methods and Materials: An audit identified 133 consecutive patients with histologically proven squamous cell carcinoma of the tonsil or tongue base. All patients received primary radiotherapy between 1996 and 2001. Tumor HIF-1α expression was examined in 79 patients. Results: Features associated with poor locoregional control were low Hb level (p = 0.05) and advancing T (p = 0.008), N (p = 0.03), and disease (p = 0.008) stage. HIF-1α expression was a more significant adverse prognostic factor in the tonsil (hazard ratio [HR], 23.1; 95% confidence interval [CI]. 3.04-176.7) than the tongue-base tumor (HR, 2.86; 95% CI, 1.14-7.19) group (p = 0.03, test for interaction). High tumor HIF-1α expression was associated with low blood Hb levels (p = 0.03). In a multivariate analysis HIF-1α expression retained prognostic significance for locoregional control (HR, 7.10; 95% CI, 3.07-16.43) and cancer-specific survival (HR, 9.19; 95% CI, 3.90-21.6). Conclusions: There are significant differences in radiation therapy outcome within a homogeneous subsite of the oropharynx related to molecular marker expression. The work highlights the importance of studying homogeneous groups of patients in HNSCC, and the complex interrelationships between tumor biology and clinicopathologic factors. The establishment of tumor-type specific markers would represent a major advance in this area

  5. Identification of an mtDNA mutation hot spot in UV-induced mouse skin tumors producing altered cellular biochemistry.

    Science.gov (United States)

    Jandova, Jana; Eshaghian, Alex; Shi, Mingjian; Li, Meiling; King, Lloyd E; Janda, Jaroslav; Sligh, James E

    2012-02-01

    There is increasing awareness of the role of mtDNA alterations in the development of cancer, as mtDNA point mutations are found at high frequency in a variety of human tumors. To determine the biological effects of mtDNA mutations in UV-induced skin tumors, hairless mice were irradiated to produce tumors, and the tumor mtDNAs were screened for single-nucleotide changes using temperature gradient capillary electrophoresis (TGCE), followed by direct sequencing. A mutation hot spot (9821insA) in the mitochondrially encoded tRNA arginine (mt-Tr) locus (tRNA(Arg)) was discovered in approximately one-third of premalignant and malignant skin tumors. To determine the functional relevance of this particular mutation in vitro, cybrid cell lines containing different mt-Tr (tRNA(Arg)) alleles were generated. The resulting cybrid cell lines contained the same nuclear genotype and differed only in their mtDNAs. The biochemical analysis of the cybrids revealed that the mutant haplotype is associated with diminished levels of complex I protein (CI), resulting in lower levels of baseline oxygen consumption and lower cellular adenosine triphosphate (ATP) production. We hypothesize that this specific mtDNA mutation alters cellular biochemistry, supporting the development of keratinocyte neoplasia.

  6. Mammalian Target of Rapamycin Inhibitors Induce Tumor Cell Apoptosis In Vivo Primarily by Inhibiting VEGF Expression and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Patrick Frost

    2013-01-01

    Full Text Available We found that rapalog mTOR inhibitors induce G1 arrest in the PTEN-null HS Sultan B-cell lymphoma line in vitro, but that administration of rapalogs in a HS Sultan xenograft model resulted in significant apoptosis, and that this correlated with induction of hypoxia and inhibition of neoangiogenesis and VEGF expression. Mechanistically, rapalogs prevent cap-dependent translation, but studies have shown that cap-independent, internal ribosome entry site (IRES-mediated translation of genes, such as c-myc and cyclin D, can provide a fail-safe mechanism that regulates tumor survival. Therefore, we tested if IRES-dependent expression of VEGF could likewise regulate sensitivity of tumor cells in vivo. To achieve this, we developed isogenic HS Sultan cell lines that ectopically express the VEGF ORF fused to the p27 IRES, an IRES sequence that is insensitive to AKT-mediated inhibition of IRES activity and effective in PTEN-null tumors. Mice challenged with p27-VEGF transfected tumor cells were more resistant to the antiangiogenic and apoptotic effects of the rapalog, temsirolimus, and active site mTOR inhibitor, pp242. Our results confirm the critical role of VEGF expression in tumors during treatment with mTOR inhibitors and underscore the importance of IRES activity as a resistance mechanism to such targeted therapy.

  7. Supramolecular chemical shift reagents inducing conformational transitions: NMR analysis of carbohydrate homooligomer mixtures

    DEFF Research Database (Denmark)

    Beeren, Sophie; Meier, Sebastian

    2015-01-01

    We introduce the concept of supramolecular chemical shift reagents as a tool to improve signal resolution for the NMR analysis of homooligomers. Non-covalent interactions with the shift reagent can constrain otherwise flexible analytes inducing a conformational transition that results in signal...

  8. Biomarkers of DNA and cytogenetic damages induced by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    This paper presents and discusses results from the studies on various biomarkers of the DNA and cytogenetic damages induced by environmental chemicals or radiation. Results of the biomonitoring studies have shown that particularly in the condition of Poland, health hazard from radiation exposure is overestimated in contradistinction to the environmental hazard

  9. Cleavage enhancement of specific chemical bonds in DNA-Cisplatin complexes induced by X-rays

    International Nuclear Information System (INIS)

    The chemical bond transformation of cisplatin-DNA complexes can be probed efficiently by XPS which provides a concomitant X-ray irradiation source as well. The presence to Pt could considerably increase formation of the SE induced by X-ray and that the further interaction of these LEE with DNA leads to the enhancement of bond cleavages.

  10. Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-α pathway

    OpenAIRE

    Ramesh Vijay; Nair Deepti; Zhang Shelley X L; Hakim Fahed; Kaushal Navita; Kayali Foaz; Wang Yang; Li Richard C; Carreras Alba; Gozal David

    2012-01-01

    Abstract Background Sleepiness and cognitive dysfunction are recognized as prominent consequences of sleep deprivation. Experimentally induced short-term sleep fragmentation, even in the absence of any reductions in total sleep duration, will lead to the emergence of excessive daytime sleepiness and cognitive impairments in humans. Tumor necrosis factor (TNF)-α has important regulatory effects on sleep, and seems to play a role in the occurrence of excessive daytime sleepiness in children who...

  11. Hypodipsic hypernatremia with intact AVP response to non-osmotic stimuli induced by hypothalamic tumor: a case report.

    OpenAIRE

    Kang, M. J.; Yoon, K. H.; S. S. Lee; Lee, J. M.; Ahn, Y. B.; Chang, S. A.; Kang, M. I.; Cha, B. Y.; Lee, K.W.; Son, H. Y.; Kang, S K; Hong, Y K

    2001-01-01

    Anatomical lesions of hypothalamic area associated with hypodipsic hypernatremia have been reported only rarely. We report here a case of hypodipsic hypernatremia induced by a hypothalamic lesion. A 25-yr-old man, who had been treated with radiation for hypothalamic tumor 5-yr before, was admitted for evaluation of hypernatremia and hypokalemia. He never felt thirst despite the elevated plasma osmolality and usually refused to drink intentionally. Plasma arginine vasopressin (AVP) level was n...

  12. Inhibitors of the cytochrome P-450 enzymes block the secretagogue-induced release of corticotropin in mouse pituitary tumor cells.

    OpenAIRE

    Luini, A G; Axelrod, J

    1985-01-01

    A mouse pituitary tumor cell line (AtT-20) releases corticotropin (ACTH) in response to a number of secretagogues, including corticotropin-releasing factor (CRF), beta-adrenergic agents, N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate (Bt2 cAMP), and potassium. The stimulation of ACTH secretion induced by the secretagogues can be blocked by inhibitors of the enzymes that generate (phospholipase A2) and metabolize (lipoxygenase and epoxygenase) arachidonic acid. The phospholipase A2 block...

  13. Imprint Control of BaTiO3 Thin Films via Chemically Induced Surface Polarization Pinning.

    Science.gov (United States)

    Lee, Hyungwoo; Kim, Tae Heon; Patzner, Jacob J; Lu, Haidong; Lee, Jung-Woo; Zhou, Hua; Chang, Wansoo; Mahanthappa, Mahesh K; Tsymbal, Evgeny Y; Gruverman, Alexei; Eom, Chang-Beom

    2016-04-13

    Surface-adsorbed polar molecules can significantly alter the ferroelectric properties of oxide thin films. Thus, fundamental understanding and controlling the effect of surface adsorbates are crucial for the implementation of ferroelectric thin film devices, such as ferroelectric tunnel junctions. Herein, we report an imprint control of BaTiO3 (BTO) thin films by chemically induced surface polarization pinning in the top few atomic layers of the water-exposed BTO films. Our studies based on synchrotron X-ray scattering and coherent Bragg rod analysis demonstrate that the chemically induced surface polarization is not switchable but reduces the polarization imprint and improves the bistability of ferroelectric phase in BTO tunnel junctions. We conclude that the chemical treatment of ferroelectric thin films with polar molecules may serve as a simple yet powerful strategy to enhance functional properties of ferroelectric tunnel junctions for their practical applications. PMID:26901570

  14. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    Directory of Open Access Journals (Sweden)

    Ana-Maria Florea

    2011-03-01

    Full Text Available Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs and might provide new therapeutic strategies and reduce side effects.

  15. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    Energy Technology Data Exchange (ETDEWEB)

    Florea, Ana-Maria [Department of Neuropathology, Heinrich-Heine University, Düsseldorf (Germany); Büsselberg, Dietrich, E-mail: dib2015@qatar-med.cornell.edu [Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha (Qatar)

    2011-03-15

    Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects.

  16. 1,10-Phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity.

    Science.gov (United States)

    Zhang, Zhen; Bi, Caifeng; Schmitt, Sara M; Fan, Yuhua; Dong, Lili; Zuo, Jian; Dou, Q Ping

    2012-12-01

    Indole-3-acetic acid and indole-3-propionic acid, two potent natural plant growth hormones, have attracted attention as promising prodrugs in cancer therapy. Copper is known to be a cofactor essential for tumor angiogenesis. We have previously reported that taurine, L-glutamine, and quinoline-2-carboxaldehyde Schiff base copper complexes inhibit cell proliferation and proteasome activity in human cancer cells. In the current study, we synthesized two types of copper complexes, dinuclear complexes and ternary complexes, to investigate whether a certain structure could easily carry copper into cancer cells and consequently inhibit tumor proteasome activity and induce apoptosis. We observed that ternary complexes binding with 1,10-phenanthroline are more potent proteasome inhibitors and apoptosis inducers than dinuclear complexes in PC-3 human prostate cancer cells. Furthermore, the ternary complexes potently inhibit proteasome activity before induction of apoptosis in MDA-MB-231 human breast cancer cells, but not in nontumorigenic MCF-10A cells. Our results suggest that copper complexes binding with 1,10-phenanthroline as the third ligand could serve as potent, selective proteasome inhibitors and apoptosis inducers in tumor cells, and that the ternary complexes may be good potential anticancer drugs.

  17. 1,10-Phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity.

    Science.gov (United States)

    Zhang, Zhen; Bi, Caifeng; Schmitt, Sara M; Fan, Yuhua; Dong, Lili; Zuo, Jian; Dou, Q Ping

    2012-12-01

    Indole-3-acetic acid and indole-3-propionic acid, two potent natural plant growth hormones, have attracted attention as promising prodrugs in cancer therapy. Copper is known to be a cofactor essential for tumor angiogenesis. We have previously reported that taurine, L-glutamine, and quinoline-2-carboxaldehyde Schiff base copper complexes inhibit cell proliferation and proteasome activity in human cancer cells. In the current study, we synthesized two types of copper complexes, dinuclear complexes and ternary complexes, to investigate whether a certain structure could easily carry copper into cancer cells and consequently inhibit tumor proteasome activity and induce apoptosis. We observed that ternary complexes binding with 1,10-phenanthroline are more potent proteasome inhibitors and apoptosis inducers than dinuclear complexes in PC-3 human prostate cancer cells. Furthermore, the ternary complexes potently inhibit proteasome activity before induction of apoptosis in MDA-MB-231 human breast cancer cells, but not in nontumorigenic MCF-10A cells. Our results suggest that copper complexes binding with 1,10-phenanthroline as the third ligand could serve as potent, selective proteasome inhibitors and apoptosis inducers in tumor cells, and that the ternary complexes may be good potential anticancer drugs. PMID:23053530

  18. Laser-induced thermotherapy of benign and malignant tumors controlled by color-coded duplex sonography

    Science.gov (United States)

    Philipp, Carsten M.; Rohde, Ewa; Waldschmidt, Juergen; Berlien, Hans-Peter

    1994-12-01

    Since 1984 we use the interstitial application of laser induced thermotherapy (LITT) for the treatment of congenital vascular disorders (CVD) such as hemangiomas and vascular malformations. In most of the procedures a 600 micron core bare fiber is used to deliver the radiation of a cw Nd:YAG laser emitting at 1064 nm into the diseased tissue. As most of the CVD treated this way are located subcutaneously, the localization of the fiber and the interstitial laser coagulation (ILC) is controlled by transillumination and palpitation of the heat expansion of the skin surface, this way a crepitation can also be detected during the ILC. As the ILC in deeper body structures cannot be controlled directly we use color coded duplex sonography (CCDS), both for diagnostic and treatment control. In the procedures where we use the B-scan image for puncture control, a color signal is displayed representing tissue movements. These movements caused by degasification and vapor are those detectable as crepitations when using direct control. The color signal starts, changes, and moves in a reproducible pattern following the heat distribution and the subsequently occurring degasification in the tissue. Also the changes in perfusion are detectable by the means of CCDS. The precise extent of the coagulation is visible in the B-scan several minutes after laser exposure. The clinical experience and an extensive experimental evaluation has proven that CCDS is a valuable real time method to monitor the tissue reaction in ILC-procedures. For two years we have performed ILC-procedures with CCDS control in patients with CVD (n equals 65) successfully. Because of its reliable imaging and the clinical advantages recently we applied this type of ILC-control to the palliative treatment of nonresectable primary and secondary liver tumors (n equals 3) and subcutaneous metastases of mamma carcinoma. (n equals 6).

  19. Exenatide Reduces Tumor Necrosis Factor-α-induced Apoptosis in Cardiomyocytes by Alleviating Mitochondrial Dysfunction

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yuan Cao; Zhang-Wei Chen; Yan-Hua Gao; Xing-Xu Wang; Jian-Ying Ma; Shu-Fu Chang; Ju-Ying Qian

    2015-01-01

    Background: Tumor necrosis factor-α (TNF-α) plays an important role in progressive contractile dysfunction in several cardiac diseases.The cytotoxic effects of TNF-α are suggested to be partly mediated by reactive oxygen species (ROS)-and mitochondria-dependent apoptosis.Glucagon-like peptide-1 (GLP-1) or its analogue exhibits protective effects on the cardiovascular system.The objective of the study was to assess the effects of exenatide, a GLP-1 analogue, on oxidative stress, and apoptosis in TNF-c-treated cardiomyocytes in vitro.Methods: Isolated neonatal rat cardiomyocytes were divided into three groups: Control group, with cells cultured in normal conditions without intervention;TNF-α group, with cells incubated with TNF-c (40 ng/ml) for 6, 12, or 24 h without pretreatment with exenatide;and exenatide group, with cells pretreated with exenatide (100 nmol/L) 30 mins before TNF-α (40 ng/ml) stimulation.We evaluated apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and flow cytometry, measured ROS production and mitochondrial membrane potential (MMP) by specific the fluorescent probes, and assessed the levels of proteins by Western blotting for all the groups.Results: Exenatide pretreatment significantly reduced cardiomyocyte apoptosis as measured by flow cytometry and TUNEL assay at 12 h and 24 h.Also, exenatide inhibited excessive ROS production and maintained MMP.Furthermore, declined cytochrome-c release and cleaved caspase-3 expression and increased bcl-2 expression with concomitantly decreased Bax activation were observed in exenatide-pretreated cultures.Conclusion: These results suggested that exenatide exerts a protective effect on cardiomyocytes, preventing TNF-α-induced apoptosis;the anti-apoptotic effects may be associated with protection of mitochondrial function.

  20. Activation of Nerve Growth Factor-Induced Bα by Methylene-Substituted Diindolylmethanes in Bladder Cancer Cells Induces Apoptosis and Inhibits Tumor GrowthS⃞

    OpenAIRE

    Dae Cho, Sung; Lee, Syng-Ook; Chintharlapalli, Sudhakar; Abdelrahim, Maen; Khan, Shaheen; Yoon, Kyungsil; Kamat, Ashish M.; Safe, Stephen

    2010-01-01

    Nerve growth factor-induced B (NGFI-B) genes are orphan nuclear receptors, and NGFI-Bα (Nur77, TR3) is overexpressed in bladder tumors and bladder cancer cells compared with nontumorous bladder tissue. 1,1-Bis(3′-indolyl)-1-(p-methoxyphenyl)-methane (DIM-C-pPhOCH3) and 1,1-bis(3′-indolyl)-1-(p-phenyl)methane have previously been identified as activators of Nur77, and both compound...

  1. How to Distinguish Conformational Selection and Induced Fit Based on Chemical Relaxation Rates

    Science.gov (United States)

    2016-01-01

    Protein binding often involves conformational changes. Important questions are whether a conformational change occurs prior to a binding event (‘conformational selection’) or after a binding event (‘induced fit’), and how conformational transition rates can be obtained from experiments. In this article, we present general results for the chemical relaxation rates of conformational-selection and induced-fit binding processes that hold for all concentrations of proteins and ligands and, thus, go beyond the standard pseudo-first-order approximation of large ligand concentration. These results allow to distinguish conformational-selection from induced-fit processes—also in cases in which such a distinction is not possible under pseudo-first-order conditions—and to extract conformational transition rates of proteins from chemical relaxation data. PMID:27636092

  2. How to distinguish conformational selection and induced fit based on chemical relaxation rates

    CERN Document Server

    Paul, Fabian

    2016-01-01

    Protein binding often involves conformational changes. Important questions are whether a conformational change occurs prior to a binding event ('conformational selection') or after a binding event ('induced fit'), and how conformational transition rates can be obtained from experiments. In this article, we present general results for the chemical relaxation rates of conformational-selection and induced-fit binding processes that hold for all concentrations of proteins and ligands and, thus, go beyond the standard pseudo-first-order approximation of large ligand concentration. These results allow to distinguish conformational-selection from induced-fit processes - also in cases in which such a distinction is not possible under pseudo-first-order conditions - and to extract conformational transition rates of proteins from chemical relaxation data.

  3. NI-49SMART SUCKER: NEXT GENERATION SMART SURGICAL TOOL FOR INTRAOPERATIVE BRAIN TUMOR RESECTION USING TIME RESOLVED LASER INDUCED FLUORESCENCE SPECTROSCOPY

    OpenAIRE

    Kittle, David S.; Butte, Pramod V.; Vasefi, Fartash; Patil, Chirag G.; Black, Keith

    2014-01-01

    Primary brain tumors are highly lethal tumors where surgical resection is the primary treatment of choice. It has been shown that survival rate is directly related to the extent of tumor resection. In order to aid the surgeon in achieving near-complete resection, novel technologies are required. Time-resolved laser induced fluorescence spectroscopy (TRLIFS) promises to be one such technology, where the tissue is excited using an ultra-short laser and the corresponding fluorescence intensity d...

  4. Metabolic effects of cachectin/tumor necrosis factor are modified by site of production. Cachectin/tumor necrosis factor-secreting tumor in skeletal muscle induces chronic cachexia, while implantation in brain induces predominantly acute anorexia.

    OpenAIRE

    Tracey, K J; Morgello, S; Koplin, B; Fahey, T J; Fox, J; Aledo, A; Manogue, K. R.; Cerami, A

    1990-01-01

    We have developed a murine model of wasting by injecting intracerebrally cells which continuously secrete h-cachectin/TNF (CHO-TNF) to: (a) determine the effects of cachectin/TNF produced continuously in the central nervous system (CNS), and (b) compare the metabolic effects of cachectin/TNF-secreting tumor in the brain to the cachexia caused by CHO-TNF tumor in peripheral tissue (IM). Intracerebral CHO-TNF tumors produced increased serum h-cachectin/TNF levels with lethal hypophagia and weig...

  5. Termoablação a laser de tumores hepáticos: atualização Laser-induced thermoablation of hepatic tumors: an update review

    Directory of Open Access Journals (Sweden)

    Giuseppe D'Ippolito

    2004-06-01

    Full Text Available A termoablação por raio laser de tumores hepáticos tem despontado como alternativa válida de tratamento em pacientes que não são candidatos a ressecção cirúrgica. O procedimento pode ser realizado por via percutânea, laparoscópica ou por laparotomia, e orientado por métodos de imagem. O objetivo deste trabalho é apresentar o mecanismo de ação deste método, bem como as suas indicações, contra-indicações, complicações e resultados clínicos, baseados em revisão bibliográfica.Laser-induced thermoablation has been used as a reliable method for producing coagulation necrosis in hepatic tumors in patients who are not suitable for surgical treatment. The procedure can be performed percutaneously, using image-guiding methods, by open laparotomy or laparoscopy. We review the current literature and discuss the principles, indications, complications and clinical results as well as the potential limitations and contraindications of this novel technique.

  6. Capsaicin-induced neurogenic inflammation in the skin in patients with symptoms induced by odorous chemicals

    DEFF Research Database (Denmark)

    Holst, Helle; Arendt-Nielsen, Lars; Mosbech, Holger;

    2011-01-01

    Intradermal injection of capsaicin induces the axonal release of neuropeptides, vasodilatation and flare, e.g. neurogenic inflammation. The spatial profile of neurogenic inflammation in the skin has been studied in various experimental models. Polarization spectroscopy imaging introduced recently...

  7. Noble metal nanoparticle-induced oxidative stress modulates tumor associated macrophages (TAMs) from an M2 to M1 phenotype: An in vitro approach.

    Science.gov (United States)

    Pal, Ramkrishna; Chakraborty, Biswajit; Nath, Anupam; Singh, Leichombam Mohindro; Ali, Mohammed; Rahman, Dewan Shahidur; Ghosh, Sujit Kumar; Basu, Abhishek; Bhattacharya, Sudin; Baral, Rathindranath; Sengupta, Mahuya

    2016-09-01

    Diagnosis of cancer and photothermal therapy using optoelectronic properties of noble metal nanoparticles (NPs) has established a new therapeutic approach for treating cancer. Here we address the intrinsic properties of noble metal NPs (gold and silver) as well as the mechanism of their potential antitumor activity. For this, the study addresses the functional characterization of tumor associated macrophages (TAMs) isolated from murine fibrosarcoma induced by a chemical carcinogen, 3-methylcholanthrene (MCA). We have previously shown antitumor activity of both gold nanoparticles (AuNPs) and silver nanoparticle (AgNPs) in vivo in a murine fibrosarcoma model. In the present study, it has been seen that AuNPs and AgNPs modulate the reactive oxygen species (ROS) and reactive nitrogen species (RNS) production, suppressing the antioxidant system of cells (TAMs). Moreover, the antioxidant-mimetic action of these NPs maintain the ROS and RNS levels in TAMs which act as second messengers to activate the proinflammatory signaling cascades. Thus, while there is a downregulation of tumor necrosis factor-α (TNF-α) and Interleukin-10 (IL-10) in the TAMs, the proinflammatory cytokine Interleukin-12 (IL-12) is upregulated resulting in a polarization of TAMs from M2 (anti-inflammatory) to M1 (pro-inflammatory) nature. PMID:27344639

  8. Anti-Tumor Action, Clinical Biochemistry Profile and Phytochemical Constituents of a Pharmacologically Active Fraction of S. crispus in NMU-Induced Rat Mammary Tumour Model.

    Directory of Open Access Journals (Sweden)

    Nik Soriani Yaacob

    Full Text Available Cancer patients seek alternative remedies such as traditional medicinal plants for safe and effective treatment and help overcome the side effects of conventional therapy. Current knowledge indicates that extracts of Strobilanthes crispus of the Acanthaceae family exhibit potent anticancer properties in vitro and are non-toxic in vivo. S. crispus was also reported to be protective against chemical hepatocarcinogenesis. We previously showed that a bioactive fraction of S. crispus leaves also synergized with tamoxifen to cause apoptosis of human breast cancer cell lines without damaging non-malignant epithelial cells. The present study aimed to evaluate the antitumor effect of S. crispus dichloromethane fraction (F3 using N-methyl-N-Nitrosourea (NMU-induced rat mammary tumor model. Tumor regression was observed in 75% of the rats following 8-week oral administration of F3 with no secondary tumour formation and no signs of anemia or infection. However, no improvement in the liver and renal function profiles was observed. Major constituents of F3 were identified as lutein, 131-hydroxy-132-oxo-pheophytin a, campesterol, stigmasterol, β-sitosterol, pheophytin a and 132-hydroxy-pheophytin a. These compounds however, may not significantly contribute to the antitumor effect of F3.

  9. Pure Multiplicative Noises Induced Population Extinction in an Anti-tumor Model under Immune Surveillance

    International Nuclear Information System (INIS)

    The dynamical characters of a theoretical anti-tumor model under immune surveillance subjected to a pure multiplicative noise are investigated. The effects of pure multiplicative noise on the stationary probability distribution (SPD) and the mean first passage time (MFPT) are analysed based on the approximate Fokker-Planck equation of the system in detail. For the anti-tumor model, with the multiplicative noise intensity D increasing, the tumor population move towards to extinction and the extinction rate can be enhanced. Numerical simulations are carried out to check the approximate theoretical results. Reasonably good agreement is obtained.

  10. Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis

    Directory of Open Access Journals (Sweden)

    Jérôme eDoyen

    2013-01-01

    Full Text Available The relationship between acidosis within the tumor microenvironment and radioresistance of hypoxic tumor cells remains unclear. Previously we reported that hypoxia-induced carbonic anhydrases CAIX and CAXII constitute a robust pHi-regulating system that confers a survival advantage on hypoxic human colon carcinoma LS174Tr cells in acidic microenvironments. Here we investigate the role of acidosis, CAIX and CAXII knock-down in combination with ionizing radiation. Fibroblasts cells (-/+ CAIX and LS174Tr cells (inducible knock-down for ca9/ca12 were analyzed for cell cycle phase distribution and survival after irradiation in extracellular pHo manipulations and hypoxia (1% O2 exposure. Radiotherapy was used to target ca9/ca12-silenced LS174Tr tumors grown in nude mice. We found that diminishing the pHi-regulating capacity of fibroblasts through inhibition of NHE-1 sensitize cells to radiation-induced cell death. Secondly, the pHi-regulating function of CAIX plays a key protective role in irradiated fibroblasts in an acidic environment as accompanied by a reduced number of cells in the radiosensitive phases of the cell cycle. Thirdly, we demonstrate that irradiation of LS174Tr spheroids, silenced for either ca9 or both ca9/ca12, showed a respective 50% and 75% increase in cell death as a result of a decrease in cell number in the radioresistant S phase and a disruption of CA-mediated pHi regulation. Finally, LS174Tr tumor progression was strongly decreased when ca9/ca12 silencing was combined with irradiation in vivo. These findings highlight the combinatory use of radiotherapy with targeting of the pHi-regulating carbonic anhydrases as an anti-cancer strategy.

  11. Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes.

    Science.gov (United States)

    Liao, Shih-Fen; Liang, Chi-Hui; Ho, Ming-Yi; Hsu, Tsui-Ling; Tsai, Tsung-I; Hsieh, Yves S-Y; Tsai, Chih-Ming; Li, Shiou-Ting; Cheng, Yang-Yu; Tsao, Shu-Ming; Lin, Tung-Yi; Lin, Zong-Yan; Yang, Wen-Bin; Ren, Chien-Tai; Lin, Kuo-I; Khoo, Kay-Hooi; Lin, Chun-Hung; Hsu, Hsien-Yeh; Wu, Chung-Yi; Wong, Chi-Huey

    2013-08-20

    Carbohydrate-based vaccines have shown therapeutic efficacy for infectious disease and cancer. The mushroom Ganoderma lucidum (Reishi) containing complex polysaccharides has been used as antitumor supplement, but the mechanism of immune response has rarely been studied. Here, we show that the mice immunized with a l-fucose (Fuc)-enriched Reishi polysaccharide fraction (designated as FMS) induce antibodies against murine Lewis lung carcinoma cells, with increased antibody-mediated cytotoxicity and reduced production of tumor-associated inflammatory mediators (in particular, monocyte chemoattractant protein-1). The mice showed a significant increase in the peritoneal B1 B-cell population, suggesting FMS-mediated anti-glycan IgM production. Furthermore, the glycan microarray analysis of FMS-induced antisera displayed a high specificity toward tumor-associated glycans, with the antigenic structure located in the nonreducing termini (i.e., Fucα1-2Galβ1-3GalNAc-R, where Gal, GalNAc, and R represent, respectively, D-galactose, D-N-acetyl galactosamine, and reducing end), typically found in Globo H and related tumor antigens. The composition of FMS contains mainly the backbone of 1,4-mannan and 1,6-α-galactan and through the Fucα1-2Gal, Fucα1-3/4Man, Fucα1-4Xyl, and Fucα1-2Fuc linkages (where Man and Xyl represent d-mannose and d-xylose, respectively), underlying the molecular basis of the FMS-induced IgM antibodies against tumor-specific glycans.

  12. Dose-Response on the Chemopreventive Effects of Sarcophine-Diol on UVB-Induced Skin Tumor Development in SKH-1 Hairless Mice

    Directory of Open Access Journals (Sweden)

    Chandradhar Dwivedi

    2012-09-01

    Full Text Available Sarcophine-diol (SD is a lactone ring-opened analogue of sarcophine. It has shown chemopreventive effects on chemically-induced skin tumor development in female CD-1 mice, as well as in a UVB-induced skin tumor development model in hairless SKH-1 mice at a dose of 30 μg SD applied topically and 180 mJ/cm2 UVB. The objective of this study was to determine the dose-response on the chemopreventive effects of SD on SKH-1 hairless mice when exposed to a UVB radiation dose of 30 mJ/cm2. This UVB dose better represents chronic human skin exposure to sunlight leading to skin cancer than previous studies applying much higher UVB doses. Carcinogenesis was initiated and promoted by UVB radiation. Female hairless SKH-1 mice were divided into five groups. The control group was topically treated with 200 μL of acetone (vehicle, and the SD treatment groups were topically treated with SD (30 μg, 45 μg, and 60 μg dissolved in 200 μL of acetone 1 h before UVB radiation (30 mJ/cm2. The last group of animals received 60 μg SD/200 μL acetone without UVB exposure. These treatments were continued for 27 weeks. Tumor multiplicity and tumor volumes were recorded on a weekly basis for 27 weeks. Weight gain and any signs of toxicity were also closely monitored. Histological characteristics and the proliferating cell nuclear antigen (PCNA were evaluated in the mice skin collected at the end of the experiment. The dose-response study proved a modest increase in chemopreventive effects with the increase in SD dose. SD reduced the number of cells positively stained with PCNA proliferation marker in mice skin. The study also showed that SD application without UVB exposure has no effect on the structure of skin. The results from this study suggest that broader range doses of SD are necessary to improve the chemopreventive effects.

  13. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    Directory of Open Access Journals (Sweden)

    Klier Ulrike

    2011-09-01

    Full Text Available Abstract Background Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. Methods We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. Results The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4+, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested could be observed. Conclusion Cellular fusions of MSI+ carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These

  14. The relationship between chemical-induced kidney weight increases and kidney histopathology in rats.

    Science.gov (United States)

    Craig, Evisabel A; Yan, Zhongyu; Zhao, Q Jay

    2015-07-01

    The kidney is a major site of chemical excretion, which results in its propensity to exhibit chemically-induced toxicological effects at a higher rate than most other organs. Although the kidneys are often weighed in animal toxicity studies, the manner in which these kidney weight measurements are interpreted and the value of this information in predicting renal damage remains controversial. In this study we sought to determine whether a relationship exists between chemically-induced kidney weight changes and renal histopathological alterations. We also examined the relative utility of absolute and relative (kidney-to-body weight ratio) kidney weight in the prediction of renal toxicity. For this, data extracted from oral chemical exposure studies in rats performed by the National Toxicology Program were qualitatively and quantitatively evaluated. Our analysis showed a statistically significant correlation between absolute, but not relative, kidney weight and renal histopathology in chemically-treated rats. This positive correlation between absolute kidney weight and histopathology was observed even with compounds that statistically decreased terminal body weight. Also, changes in absolute kidney weight, which occurred at subchronic exposures, were able to predict the presence or absence of kidney histopathology at both subchronic and chronic exposures. Furthermore, most increases in absolute kidney weight reaching statistical significance (irrespective of the magnitude of change) were found to be relevant for the prediction of histopathological changes. Hence, our findings demonstrate that the evaluation of absolute kidney weight is a useful method for identifying potential renal toxicants.

  15. Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection.

    Science.gov (United States)

    Jinno, Masafumi; Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu

    2016-09-01

    This study has been done to know what kind of factors in plasmas and processes on cells induce plasma gene transfection. We evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones, inducing gene transfection. First, the laser produced plasma (LPP) was employed to estimate the contribution of the chemical factors. Second, liposomes were fabricated and employed to evaluate the effects of plasma irradiation on membrane under the condition without biochemical reaction. Third, the clathrin-dependent endocytosis, one of the biochemical processes was suppressed. It becomes clear that chemical factors (radicals and reactive oxygen/nitrogen species) do not work by itself alone and electrical factors (electrical current, charge and field) are essential to plasma gene transfection. It turned out the clathrin-dependent endocytosis is the process of the transfection against the 60% in all the transfected cells. The endocytosis and electrical poration are dominant in plasma gene transfection, and neither permeation through ion channels nor chemical poration is dominant processes. The simultaneous achievement of high transfection efficiency and high cell survivability is attributed to the optimization of the contribution weight among three groups of processes by controlling the weight of electrical and chemical factors. PMID:27136710

  16. How to Use MR-Contrast Agent in Tumor Induced Epilepsis

    Directory of Open Access Journals (Sweden)

    Aliakbar Ameri

    2010-05-01

    Full Text Available By year of 1990, second MRI revolution has hap-pened in the diagnosis of infection and tumor assessment "first revolution was made by clinical MRI invention in the early 1980's"."nTumor-associated epilepsis is an important contributor to morbidity in patients with brain tumors. Perilesional tissue changes play a vital role in the generation of tumor-associated seizures.Tumor-associated seizure is usually focal with secondary generalization and often resistant to antiepileptic drugs."nFor studying the tumor well and diagnosis, contrast injection is a necessity and T1 pulse is used for demonstration. It needs pre-contrast T1 to compare with post contrast T1. "nContrast agent "Gadolinium" changes the relaxation time of tissue in T1 pulse "shortening the time". Contrast circulation in the body is in a close circuit from vein or artery to the capillary system, interstitial tissue and contrast does not go inside the normal cells except in hepatocytes, pituicytes and damaged cells "broken blood brain barrier"."nFor tumor diagnosis, MRI with and without Gadolinium is used more than x-ray CT techniques."nOther diagnostic techniques for tumor D.D.X and epilepsis are PET, SPECT, EEG, MEG "MSI" and ultrasound. "nTested Double Dose contrasted images "2 x 1mmol/kg" of Gadolinium by 1.5 Tesla machine increased the enhancement rate about 5-10% but needs double money for contrast. Using 3 Tesla machine also increases signal demonstration but today all imaging "95%" is sufficient by 1.5 Tesla and imaging by 3-Tesla is difficult and expensive. "nConclusion: 1/ Please request MRI with and without GD for tumor diagnosis "pre-contrast T1and post contrast T1 is necessary to diagnosis and D.D.X of any hemorrhage inside the tumor versus enhancement". 2/ Please do not request double dose contrast for imaging "it is more expensive and less effective". 3/ Please request your patients imaging by 1.5 Tesla "3 Tesla imaging is difficult and more expensive". 4/Requesting

  17. Retinoid-induced expression and activity of an immediate early tumor suppressor gene in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Streb

    Full Text Available Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12β in cultured smooth muscle cells (SMC as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12β is a retinoid-induced, immediate-early gene. Akap12β promoter analyses reveal a conserved RARE mildly induced with atRA in a region that exhibits hyper-acetylation. Immunofluorescence microscopy and protein kinase A (PKA regulatory subunit overlay assays in SMC suggest a physical association between AKAP12β and PKA following retinoid treatment. Consistent with its designation as a tumor suppressor, inducible expression of AKAP12β attenuates SMC growth in vitro. Further, immunohistochemistry studies establish marked decreases in AKAP12 expression in experimentally-injured vessels of mice as well as atheromatous lesions in humans. Collectively, these results demonstrate a novel role for retinoids in the induction of an AKAP tumor suppressor that blocks vascular SMC growth thus providing new molecular insight into how retiniods may exert their anti-proliferative effects in the injured vessel wall.

  18. Perillyl Alcohol Protects against Fe-NTA-Induced Nephrotoxicity and Early Tumor Promotional Events in Rat Experimental Model

    Directory of Open Access Journals (Sweden)

    Tamanna Jahangir

    2007-01-01

    Full Text Available Plants have been widely used as protective agents against a wide variety of processes and compounds that damage tissues via free radical mechanisms. Perillyl alcohol (PA is a naturally occurring monoterpene found in the essential oils of numerous species of plants including mints, cherries and celery seeds. This monocyclic monoterpene has shown antioxidant and therapeutic activity in various studies against various xenobiotics. In this study, we have analyzed the effects of PA against single intraperitoneal dose of ferric nitrilotriacetate (Fe-NTA (9 mg iron per kg body weight-induced nephrotoxicity and early tumor promotional events. The pretreatment of Fe-NTA-treated rats with 0.5% per kg body weight dose and 1% per kg body weight dose of PA for seven consecutive days significantly reversed the Fe-NTA-induced malondialdehyde formation, xanthine oxidase activity (P < 0.001, ornithine decarboxylase activity (P < 0.001 and 3[H]thymidine incorporation in renal DNA (P < 0.001 with simultaneous significant depletion in serum toxicity markers blood urea nitrogen and creatinine (P < 0.001. Significant restoration at both the doses was recorded in depleted renal glutathione content, and its dependent enzymes with prophylactic treatment of PA. Present results suggest that PA potentially attenuates against Fe-NTA-induced oxidative damage and tumor promotional events that preclude its development as a future drug to avert the free radical-induced toxicity.

  19. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming, E-mail: wsenming@126.com

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  20. Identification of glucocorticoid-induced leucine zipper as a key regulator of tumor cell proliferation in epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Fernandez Hervé

    2009-10-01

    Full Text Available Abstract Background Little is known about the molecules that contribute to tumor progression of epithelial ovarian cancer (EOC, currently a leading cause of mortality from gynecological malignancies. Glucocorticoid-Induced Leucine Zipper (GILZ, an intracellular protein widely expressed in immune tissues, has been reported in epithelial tissues and controls some of key signaling pathways involved in tumorigenesis. However, there has been no report on GILZ in EOC up to now. The objectives of the current study were to examine the expression of GILZ in EOC and its effect on tumor cell proliferation. Results GILZ expression was measured by immunohistochemical staining in tissue sections from 3 normal ovaries, 7 benign EOC and 50 invasive EOC. GILZ was not detected on the surface epithelium of normal ovaries and benign tumors. In contrast, it was expressed in the cytoplasm of tumor cells in 80% EOC specimens. GILZ immunostaining scores correlated positively to the proliferation marker Ki-67 (Spearman test in univariate analysis, P P Conclusion The present study is the first to identify GILZ as a molecule produced by ovarian cancer cells that promotes cell cycle progression and proliferation. Our findings clearly indicate that GILZ activates AKT, a crucial signaling molecule in tumorigenesis. GILZ thus appears as a potential key molecule in EOC.

  1. The analysis of respiration-induced pancreatic tumor motion based on reference measurement

    International Nuclear Information System (INIS)

    To evaluate pancreatic tumor motion and its dynamics during respiration. This retrospective study includes 20 patients with unresectable pancreatic cancer who were treated with stereotactic ablative radiotherapy. An online respiratory tumor tracking system was used. Periodical maximum and minimum tumor positions with respiration in superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were collected for tumor motion evaluation. The predictability of tumor motion in each axis, based on reference measurement, was analyzed. The use of a 20-mm and 5-mm constant margins for SI and LL/AP directions, avoids target underdosage, without the need for reference measurement. Pearson’s correlation coefficient indicated only a modest correlation between reference and subsequent measurements in the SI direction (r = 0.50) and no correlation in LL (r = 0.17) and AP (r = 0.35) directions. When margins based on the reference measurement of respiratory tumor motion are used, then 30% of patients have a risk zone of underdosage >3 mm (in average). ITV (internal target volume) optimization based on the reference measurement is possible, but allows only modest margin reduction (approximately from 20 mm to 16-17 mm) in SI direction and no reduction in AP and LL directions. Our results support the use of 20-mm margin in the SI direction and 5-mm margins in the LL and AP directions to account for respiratory motion without reference measurement. Single measurement of tumor motion allows only modest margin reduction. Further margin reduction is only possible when there is on-line tumor motion control according to internal markers

  2. Cancer-induced anorexia in tumor-bearing mice is dependent on cyclooxygenase-1.

    Science.gov (United States)

    Ruud, Johan; Nilsson, Anna; Engström Ruud, Linda; Wang, Wenhua; Nilsberth, Camilla; Iresjö, Britt-Marie; Lundholm, Kent; Engblom, David; Blomqvist, Anders

    2013-03-01

    It is well-established that prostaglandins (PGs) affect tumorigenesis, and evidence indicates that PGs also are important for the reduced food intake and body weight loss, the anorexia-cachexia syndrome, in malignant cancer. However, the identity of the PGs and the PG producing cyclooxygenase (COX) species responsible for cancer anorexia-cachexia is unknown. Here, we addressed this issue by transplanting mice with a tumor that elicits anorexia. Meal pattern analysis revealed that the anorexia in the tumor-bearing mice was due to decreased meal frequency. Treatment with a non-selective COX inhibitor attenuated the anorexia, and also tumor growth. When given at manifest anorexia, non-selective COX-inhibitors restored appetite and prevented body weight loss without affecting tumor size. Despite COX-2 induction in the cerebral blood vessels of tumor-bearing mice, a selective COX-2 inhibitor had no effect on the anorexia, whereas selective COX-1 inhibition delayed its onset. Tumor growth was associated with robust increase of PGE(2) levels in plasma - a response blocked both by non-selective COX-inhibition and by selective COX-1 inhibition, but not by COX-2 inhibition. However, there was no increase in PGE(2)-levels in the cerebrospinal fluid. Neutralization of plasma PGE(2) with specific antibodies did not ameliorate the anorexia, and genetic deletion of microsomal PGE synthase-1 (mPGES-1) affected neither anorexia nor tumor growth. Furthermore, tumor-bearing mice lacking EP(4) receptors selectively in the nervous system developed anorexia. These observations suggest that COX-enzymes, most likely COX-1, are involved in cancer-elicited anorexia and weight loss, but that these phenomena occur independently of host mPGES-1, PGE(2) and neuronal EP(4) signaling.

  3. Inducing pluripotency and immortality in prostate tumor cells : a stem cell model of cancer progression

    OpenAIRE

    Fiñones, Rita Roces

    2009-01-01

    The progression from local prostate tumor to lethal prostate cancer is not well understood. Although current treatments cure a majority of patients, a significant minority (̃12 %) of people are diagnosed with late-stage, hormone-independent disease. As yet, the origin of the hormone-independent prostate cancer cells is unknown. In the present study, the transition to the lethal form of this disease is hypothesized to occur when a genetically- compromised tumor cell undergoes (1) an immortaliz...

  4. Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines

    Directory of Open Access Journals (Sweden)

    Fox Bernard A

    2007-11-01

    Full Text Available Abstract Background The mechanisms by which tumor-specific T cells induce regression of established metastases are not fully characterized. In using the poorly immunogenic B16BL6-D5 (D5 melanoma model we reported that T cell-mediated tumor regression can occur independently of perforin, IFN-γ or the combination of both. Characterization of regressing pulmonary metastases identified macrophages as a major component of the cells infiltrating the tumor after adoptive transfer of effector T cells. This led us to hypothesize that macrophages played a central role in tumor regression following T-cell transfer. Here, we sought to determine the factors responsible for the infiltration of macrophages at the tumor site. Methods These studies used the poorly immunogenic D5 melanoma model. Tumor-specific effector T cells, generated from tumor vaccine-draining lymph nodes (TVDLN, were used for adoptive immunotherapy and in vitro analysis of chemokine expression. Cellular infiltrates into pulmonary metastases were determined by immunohistochemistry. Chemokine expression by the D5 melanoma following co-culture with T cells, IFN-γ or TNF-α was determined by RT-PCR and ELISA. Functional activity of chemokines was confirmed using a macrophage migration assay. T cell activation of macrophages to release nitric oxide (NO was determined using GRIES reagent. Results We observed that tumor-specific T cells with a type 1 cytokine profile also expressed message for and secreted RANTES, MIP-1α and MIP-1β following stimulation with specific tumor. Unexpectedly, D5 melanoma cells cultured with IFN-γ or TNF-α, two type 1 cytokines expressed by therapeutic T cells, secreted Keratinocyte Chemoattractant (KC, MCP-1, IP-10 and RANTES and expressed mRNA for MIG. The chemokines released by T cells and cytokine-stimulated tumor cells were functional and induced migration of the DJ2PM macrophage cell line. Additionally, tumor-specific stimulation of wt or perforin

  5. IGF binding protein-6 expression in vascular endothelial cells is induced by hypoxia and plays a negative role in tumor angiogenesis

    OpenAIRE

    ZHANG, CHUNYANG; Lu, Ling; Li, Yun; Wang, Xianlei; Zhou, Jianfeng; Liu, Yunzhang; Fu, Ping; Gallicchio, Marisa A; Bach, Leon A.; Duan, Cunming

    2011-01-01

    Hypoxia stimulates tumor angiogenesis by inducing the expression of angiogenic molecules. The negative regulators of this process, however, are not well understood. Here we report that hypoxia induced the expression of insulin-like growth factor binding protein-6 (IGFBP-6), a tumor repressor, in human and rodent vascular endothelial cells (VECs) via a HIF-mediated mechanism. Addition of human IGFBP-6 to cultured human VECs inhibited angiogenesis in vitro. An IGFBP-6 mutant with at least 10,00...

  6. Electrochemically induced chemical sensor properties in graphite screen-printed electrodes: The case of a chemical sensor for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kostaki, Vasiliki T.; Florou, Ageliki B. [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina (Greece); Prodromidis, Mamas I., E-mail: mprodrom@cc.uoi.gr [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina (Greece)

    2011-10-01

    Highlights: > Electrochemical treatment endows analytical characteristics to SPEs. > A sensitive chemical sensor for uranium is described. > Performance is due to a synergy between electrochemical treatment and ink's solvents. > The amount of the solvent controls the achievable sensitivity. - Abstract: We report for the first time on the possibility to develop chemical sensors based on electrochemically treated, non-modified, graphite screen-printed electrodes (SPEs). The applied galvanostatic treatment (5 {mu}A for 6 min in 0.1 M H{sub 2}SO{sub 4}) is demonstrated to be effective for the development of chemical sensors for the determination of uranium in aqueous solutions. A detailed study of the effect of various parameters related to the fabrication of SPEs on the performance of the resulting sensors along with some diagnostic experiments on conventional graphite electrodes showed that the inducible analytical characteristics are due to a synergy between electrochemical treatment and ink's solvents. Indeed, the amount of the latter onto the printed working layer controls the achievable sensitivity. The preconcentration of the analyte was performed in an electroless mode in an aqueous solutions of U(VI), pH 4.6, and then, the accumulated species was reduced by means of a differential pulse voltammetry scan in 0.1 M H{sub 3}BO{sub 3}, pH 3. Under selected experimental conditions, a linear calibration curve over the range 5 x 10{sup -9} to 10{sup -7} M U(VI) was constructed. The 3{sigma} limit of detection at a preconcentration time of 30 min, and the relative standard deviation of the method were 4.5 x 10{sup -9} M U(VI) and >12% (n = 5, 5 x 10{sup -8} M U(VI)), respectively. The effect of potential interferences was also examined.

  7. Modulation of N-methyl-N-nitrosourea induced mammary tumors in Sprague–Dawley rats by combination of lysine, proline, arginine, ascorbic acid and green tea extract

    International Nuclear Information System (INIS)

    The limited ability of current treatments to control metastasis and the proposed antitumor properties of specific nutrients prompted us to examine the effect of a specific formulation (nutrient supplement [NS]) of lysine, proline, arginine, ascorbic acid, and green tea extract in vivo on the development of N-methyl-N-nitrosourea (MNU)-induced mammary tumors in rats. A single intraperitoneal dose of MNU was injected into each of 20 female Sprague–Dawley rats (aged 50 days) to induce tumors. Two weeks after MNU treatment, a time by which the animals had recovered from MNU-induced toxicity, the rats were divided into two groups. Rats in group 1 (n = 10) were fed Purina chow diet, whereas those in group 2 (n = 10) were fed the same diet supplemented with 0.5% NS. After a further 24 weeks, the rats were killed and tumors were excised and processed. NS reduced the incidence of MNU-induced mammary tumors and the number of tumors by 68.4%, and the tumor burden by 60.5%. The inhibitory effect of NS was also reflected by decreased tumor weight; the tumor weights per rat and per group were decreased by 41% and 78%, respectively. In addition, 30% of the control rats developed ulcerated tumors, in contrast to 10% in the nutrient supplemented rats. These findings suggest that the specific formulation of lysine, proline, arginine, ascorbic acid, and green tea extract tested significantly reduces the incidence and growth of MNU-induced mammary tumors, and therefore has strong potential as a useful therapeutic regimen for inhibiting breast cancer development

  8. Chemical interactions by low-energy electron-induced x-ray emission spectroscopy, LEXES

    CERN Document Server

    Bonnelle, C

    2002-01-01

    The possibilities presented by low-energy electron-induced x-ray emission spectroscopy to study chemical interactions in solids are discussed. Examples of change observed for the emissions between core levels as a function of the chemical environment of the emitting atoms are given. By comparing the partial densities of the valence states associated to each type of atoms in the compound, it is shown that the strength of the metal-ligand interactions can be obtained. Information on the charge densities around each type of atoms can be deduced. Application to the study of the interactions at the atomic scale to solid-solid interfaces is presented. (author)

  9. Berberine reverses epithelial-to-mesenchymal transition and inhibits metastasis and tumor-induced angiogenesis in human cervical cancer cells.

    Science.gov (United States)

    Chu, Shu-Chen; Yu, Cheng-Chia; Hsu, Li-Sung; Chen, Kuo-Shuen; Su, Mei-Yu; Chen, Pei-Ni

    2014-12-01

    Metastasis is the most common cause of cancer-related death in patients, and epithelial-to-mesenchymal transition (EMT) is essential for cancer metastasis, which is a multistep complicated process that includes local invasion, intravasation, extravasation, and proliferation at distant sites. When cancer cells metastasize, angiogenesis is also required for metastatic dissemination, given that an increase in vascular density will allow easier access of tumor cells to circulation, and represents a rational target for therapeutic intervention. Berberine has several anti-inflammation and anticancer biologic effects. In this study, we provided molecular evidence that is associated with the antimetastatic effect of berberine by showing a nearly complete inhibition on invasion (P metalloproteinase-2 and urokinase-type plasminogen activator. Berberine reversed transforming growth factor-β1-induced EMT and caused upregulation of epithelial markers such as E-cadherin and inhibited mesenchymal markers such as N-cadherin and snail-1. Selective snail-1 inhibition by snail-1-specific small interfering RNA also showed increased E-cadherin expression in SiHa cells. Berberine also reduced tumor-induced angiogenesis in vitro and in vivo. Importantly, an in vivo BALB/c nude mice xenograft model and tail vein injection model showed that berberine treatment reduced tumor growth and lung metastasis by oral gavage, respectively. Taken together, these findings suggested that berberine could reduce metastasis and angiogenesis of cervical cancer cells, thereby constituting an adjuvant treatment of metastasis control.

  10. Protective Effect of Prosopis cineraria Against N-Nitrosodiethylamine Induced Liver Tumor by Modulating Membrane Bound Enzymes and Glycoproteins

    Directory of Open Access Journals (Sweden)

    Naina Mohamed Pakkir Maideen

    2012-06-01

    Full Text Available Purpose: The objective of the present study was to evaluate the protective effect of methanol extract of Prosopis cineraria (MPC against N-nitrosodiethylamine (DEN, 200mg/kg induced Phenobarbital promoted experimental liver tumors in male Wistar rats. Methods: The rats were divided into four groups, each group consisting of six animals. Group 1 served as control animals. Liver tumor was induced in group 2, 3, and 4 and Group 3 animals received MPC 200mg/kg and Group 4 animals received MPC 400mg/kg. Results: Administration of DEN has brought down the levels of membrane bound enzymes like Na+/ K+ ATPase, Mg2+ ATPase and Ca2+ATPase which were later found to be increased by the administration of Prosopis cineraria (200 and 400mg/kg in dose dependent manner. The MPC extract also suppressed the levels of glycoproteins like Hexose, Hexosamine and Sialic acid when compared to liver tumor bearing animals. Conclusions: Our study suggests that MPC may extend its protective role by modulating the levels of membrane bound enzymes and suppressing glycoprotein levels.

  11. Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Ranganatha R Somasagara

    Full Text Available BACKGROUND: The consumption of berry fruits, including strawberries, has been suggested to have beneficial effects against oxidative stress mediated diseases. Berries contain multiple phenolic compounds and secondary metabolites that contribute to their biological properties. METHODOLOGY/PRINCIPAL FINDINGS: Current study investigates the anticancer activity of the methanolic extract of strawberry (MESB fruits in leukaemia (CEM and breast cancer (T47D cell lines ex vivo, and its cancer therapeutic and chemopreventive potential in mice models. Results of MTT, trypan blue and LDH assays suggested that MESB can induce cytotoxicity in cancer cells, irrespective of origin, in a concentration- and time-dependent manner. Treatment of mice bearing breast adenocarcinoma with MESB blocked the proliferation of tumor cells in a time-dependent manner and resulted in extended life span. Histological and immunohistochemical studies suggest that MESB treatment affected tumor cell proliferation by activating apoptosis and did not result in any side effects. Finally, we show that MESB can induce intrinsic pathway of apoptosis by activating p73 in breast cancer cells, when tumor suppressor gene p53 is mutated. CONCLUSIONS/SIGNIFICANCE: The present study reveals that strawberry fruits possess both cancer preventive and therapeutic values and we discuss the mechanism by which it is achieved.

  12. A chemical pollen suppressant inhibits auxin-induced growth in maize coleoptile sections

    Energy Technology Data Exchange (ETDEWEB)

    Vesper, M.J. (Univ. of Dayton, OH (USA)); Cross, J.W. (Sogetal, Inc., Hayward, CA (USA))

    1990-05-01

    Chemical inhibitors of pollen development having a phenylcinnoline carboxylate structure were found to inhibit IAA- and 1-NAA-induced growth in maize coleoptile sections. The inhibitor (100 {mu}M) used in these experiments caused approx. 35% reduction in auxin-induced growth over the auxin concentration range of 0.3 to 100 {mu}M. Growth inhibition was noted as a lengthening of the latent period and a decrease in the rate of an auxin-induced growth response. An acid growth response to pH 5 buffer in abraded sections was not impaired. The velocity of basipetal transport of ({sup 3}H)IAA through the coleoptile sections also was not inhibited by the compound, nor was uptake of ({sup 3}H)IAA. Similarly, the inhibitor does not appear to alter auxin-induced H{sup +} secretion. We suggest that the agent targets some other process necessary for auxin-dependent growth.

  13. Tumor necrosis factor-α attenuates starvation-induced apoptosis through upregulation of ferritin heavy chain in hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Tumor microenviroment is characteristic of inflammation, ischemia and starvation of nutrient. TNF-α, which is an extraordinarily pleiotropic cytokine, could be an endogenous tumor promoter in some tumor types. The basic objective of this study was to investigate the effects of TNF-α on the cell viability and apoptosis of hepatocellular carcinoma cells under serum starvation, and to identify the molecular mechanisms involved. For this purpose, five different concentrations of TNF-α and two different serum settings (serum-cultured and serum-deprived) were used to investigate the effects of TNF-α on the cell viability and apoptosis of Hep3B and SMMC-7721 cells. TNF-α (10 ng/ml) attenuated serum starvation-induced apoptosis of hepatocellular carcinoma cells, and autophagy conferred this process. BAY11-7082, a specific inhibitor of NF-κB, reversed the suppression of serum starvation-induced apoptosis by TNF-α. Moreover, TNF-α-induced NF-κB transactivation was suppressed by autophagy inhibitor 3-MA. In addition, TNF-α up-regulated Ferritin heavy chain (FHC) transiently by NF-κB activation and FHC levels were correlated with the TNF-α-induced protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells. Furthermore, FHC-mediated inhibition of apoptosis depended on suppressing ROS accumulation. Our findings suggested that autophagy conferred the TNF-α protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells, the mechanism involved with the activation of the TNF-α/ NF-κB /FHC signaling pathway

  14. Effect of NF-κB, survivin, Bcl-2 and Caspase3 on apoptosis of gastric cancer cells induced by tumor necrosis factor related apoptosis inducing ligand

    Institute of Scientific and Technical Information of China (English)

    Liu-Qin Yang; Dian-Chun Fang; Rong-Quan Wang; Shi-Ming Yang

    2004-01-01

    AIM: To study the effect of NF-κB, survivin, Bcl-2 and Caspase3 on tumor necrosis factors related apoptosis inducing ligand (TRAIL) induced apoptosis of gastric cancer cells.METHODS: Gastric cancer cells of SGC-7901, MKN28,MKN45 and AGS lines were cultured in PRMI-1640 medium and the apoptosis rates of the cells of 4 lines were observed after treatment of tumor necrosis factors related apoptosis inducing ligand (TRAIL) with a flow cytometer. The expression of NF-κB, survivin, Bcl-2 and Caspase3 in gastric cancer cells of 4 lines was analyzed with Western blot.RESULTS: After the gastric cancer cells were exposed to TRAIL 300 ng/ml for 24 hours, the apoptosis rate was 36.05%, 20.27%, 16.50% and 11.80% in MKN28, MKN45,AGS and SGC-7901cells respectively. Western blot revealed that the expressions of NF-κB and survivin were lower in MKN28 cells than in MKN45, AGS and SGC-7901 cells. In contrast, the expression of Caspase3 was higher in MKN28 cells than in MKN45, AGS and SGC-7901 cells.CONCLUSION: There is a selectivity of TRAIL potency to induce apoptosis in gastric cancer cells of different cell lines.The anticancer potency of TRAIL is associated with the decreased expression of NF-κB and survivin and increased expression of Caspase3 of gastric cancer cells.

  15. An Inducible Lentiviral Guide RNA Platform Enables the Identification of Tumor-Essential Genes and Tumor-Promoting Mutations In Vivo

    Directory of Open Access Journals (Sweden)

    Brandon J. Aubrey

    2015-03-01

    Full Text Available The CRISPR/Cas9 technology enables the introduction of genomic alterations into almost any organism; however, systems for efficient and inducible gene modification have been lacking, especially for deletion of essential genes. Here, we describe a drug-inducible small guide RNA (sgRNA vector system allowing for ubiquitous and efficient gene deletion in murine and human cells. This system mediates the efficient, temporally controlled deletion of MCL-1, both in vitro and in vivo, in human Burkitt lymphoma cell lines that require this anti-apoptotic BCL-2 protein for sustained survival and growth. Unexpectedly, repeated induction of the same sgRNA generated similar inactivating mutations in the human Mcl-1 gene due to low mutation variability exerted by the accompanying non-homologous end-joining (NHEJ process. Finally, we were able to generate hematopoietic cell compartment-restricted Trp53-knockout mice, leading to the identification of cancer-promoting mutants of this critical tumor suppressor.

  16. The Cell Death Inhibitor ARC Is Induced in a Tissue-Specific Manner by Deletion of the Tumor Suppressor Gene Men1, but Not Required for Tumor Development and Growth.

    Directory of Open Access Journals (Sweden)

    Wendy M McKimpson

    Full Text Available Multiple endocrine neoplasia type 1 (MEN1 is a genetic disorder characterized by tissue-specific tumors in the endocrine pancreas, parathyroid, and pituitary glands. Although tumor development in these tissues is dependent upon genetic inactivation of the tumor suppressor Men1, loss of both alleles of this gene is not sufficient to induce these cancers. Men1 encodes menin, a nuclear protein that influences transcription. A previous ChIP on chip analysis suggested that menin binds promoter sequences of nol3, encoding ARC, which is a cell death inhibitor that has been implicated in cancer pathogenesis. We hypothesized that ARC functions as a co-factor with Men1 loss to induce the tissue-restricted distribution of tumors seen in MEN1. Using mouse models that recapitulate this syndrome, we found that biallelic deletion of Men1 results in selective induction of ARC expression in tissues that develop tumors. Specifically, loss of Men1 in all cells of the pancreas resulted in marked increases in ARC mRNA and protein in the endocrine, but not exocrine, pancreas. Similarly, ARC expression increased in the parathyroid with inactivation of Men1 in that tissue. To test if ARC contributes to MEN1 tumor development in the endocrine pancreas, we generated mice that lacked none, one, or both copies of ARC in the context of Men1 deletion. Studies in a cohort of 126 mice demonstrated that, although mice lacking Men1 developed insulinomas as expected, elimination of ARC in this context did not significantly alter tumor load. Cellular rates of proliferation and death in these tumors were also not perturbed in the absence of ARC. These results indicate that ARC is upregulated by loss Men1 in the tissue-restricted distribution of MEN1 tumors, but that ARC is not required for tumor development in this syndrome.

  17. Fabrication of highly ultramicroporous carbon nanofoams by SF6-catalyzed laser-induced chemical vapor deposition

    Science.gov (United States)

    Hattori, Yoshiyuki; Shuhara, Ai; Kondo, Atsushi; Utsumi, Shigenori; Tanaka, Hideki; Ohba, Tomonori; Kanoh, Hirofumi; Takahashi, Kunimitsu; Vallejos-Burgos, Fernando; Kaneko, Katsumi

    2016-05-01

    We have developed a laser-induced chemical vapor deposition (LCVD) method for preparing nanocarbons with the aid of SF6. This method would offer advantages for the production of aggregates of nanoscale foams (nanofoams) at high rates. Pyrolysis of the as-grown nanofoams induced the high surface area (1120 m2 g-1) and significantly enhanced the adsorption of supercritical H2 (16.6 mg g-1 at 77 K and 0.1 MPa). We also showed that the pyrolized nanofoams have highly ultramicroporous structures. The pyrolized nanofoams would be superior to highly microporous nanocarbons for the adsorption of supercritical gases.

  18. Chemical leucoderma induced by ear-ring stoppers made of polyvinyl chloride

    Directory of Open Access Journals (Sweden)

    Reena Sharma

    2012-01-01

    Full Text Available We report a case of chemical leucoderma (CL in a 15-year-old girl, who developed patterned depigmentation at the back of both ear lobules after contact with plastic ear-ring stoppers made of polyvinyl chloride (PVC after continuous use for 6-7 months. Patch test with Indian standard series and cosmetic series was negative after 48 h, but she refused patch testing for extended duration as the possibility of induced depigmentation at the test site was unacceptable to her. To the best of our knowledge, this is the first report of plastic ear-ring stopper induced CL.

  19. Protective immunity induced by tumor vaccines requires interaction between CD40 and its ligand, CD154.

    Science.gov (United States)

    Mackey, M F; Gunn, J R; Ting, P P; Kikutani, H; Dranoff, G; Noelle, R J; Barth, R J

    1997-07-01

    Interactions between CD40 and its ligand, CD154 (CD40L, gp39), have been shown to play a central role in the regulation of humoral immunity. Recent evidence suggests that this ligand-receptor pair also plays an important role in the induction of cell-mediated immune responses, including those directed against viral pathogens, intracellular parasites, and alloantigens. The contribution of this ligand-receptor pair to the development of protective immunity against syngeneic tumors was evaluated by blocking the in vivo function of CD154 or by studying tumor resistance in mice genetically deficient in CD40 expression (CD40-/-). In the former case, anti-CD154 monoclonal antibody treatment inhibited the generation of protective immune responses after the administration of three potent tumor vaccines: irradiated MCA 105, MCA 105 admixed with Corynebacterium parvum adjuvant, and irradiated B16 melanoma cells transduced with the gene for granulocyte macrophage colony-stimulating factor. Confirmation of the role of CD40/CD154 interactions in tumor immunity was provided by the overt tumor susceptibility in CD40-deficient mice as compared to that in CD40+/+ mice. In this case, wild-type but not CD40-deficient mice could be readily protected against live TS/A tumor challenge by preimmunization with TS/A admixed with C. parvum. These findings suggest a critical role for CD40/CD154 interactions in the induction of cellular immunity by tumor vaccines and may have important implications for future approaches to cell-based cancer therapies. PMID:9205055

  20. Histogenesis of lung tumors induced in rats by inhalation of α emitters. An overview

    International Nuclear Information System (INIS)

    Recent reviews have shown that simular risks coefficients for α irradiation of the lung in man could be deduced using epidemiological or experimental data in animals. Most experimental data were obtained in rats. In this overview the histogenesis and ultrastructure of lung tumors are presented. Only few tumors originating from lung parenchyma could be considered as non relevant for extrapolation to man. Most tumors arose from axial bronchus or bronchioles and their histogenesis was very similar to what is known in man. The only striking difference between the two species was related to the growth characteristics of the tumors. Tumors in rat, frequently papillary, acquired only slowly their full malignancy. They seem to be only potentially malignant. Two main types of tumors were considered: bronchogenic (B) and bronchiolo alveolar (b.a.) carcinomas. Survivals of the cancerous rats were log normal distribution in a given group of dose and were supposed to reflect latent period. No difference was found between B and b.a. carcinomas; geometric standard deviation did not increase when doses decrease. Since risk coefficients were found to increase when dose decreased, and through latent period fitted well with a power function of dose within the dose range studied, it is observed that the latent period can not be deduced by extrapolation at low doses. b.a. carcinomas prevailed at low doses; the relevance of this observation to man is however dubious since combined action with environmental carcinogens led to a high prevalence of B. carcinomas. Though genetic and immune surveillance are factors of some importance in the determination of the tumors it is suggested that critical individuals will be mostly multi-exposed individuals

  1. Enhancement of leptin receptor signaling by SOCS3 deficiency induces development of gastric tumors in mice.

    Science.gov (United States)

    Inagaki-Ohara, K; Mayuzumi, H; Kato, S; Minokoshi, Y; Otsubo, T; Kawamura, Y I; Dohi, T; Matsuzaki, G; Yoshimura, A

    2014-01-01

    Leptin acts on its receptor (ObR) in the hypothalamus to inhibit food intake and energy expenditure. Leptin and ObR are also expressed in the gastrointestinal tract; however, the physiological significance of leptin signaling in the gut remains uncertain. Suppressor of cytokine signaling 3 (SOCS3) is a key negative feedback regulator of ObR-mediated signaling in the hypothalamus. We now show that gastrointestinal epithelial cell-specific SOCS3 conditional knockout (T3b-SOCS3 cKO) mice developed gastric tumors by enhancing leptin production and the ObRb/signal transducer and activator of transcription 3 (STAT3) signaling pathway. All T3b-SOCS3 cKO mice developed tumors in the stomach but not in the bowels by 2 months of age, even though the SOCS3 deletion occurred in both the epithelium of stomach and bowels. The tumors developed in the absence of the inflammatory response and all cKO mice died within 6 months. These tumors displayed pathology and molecular alterations, such as an increase in MUC2 (Mucin 2, oligomeric mucus/gel-forming) and TFF3 (trefoil factor 3), resembling human intestinal-type gastric tumors. Administration of antileptin antibody to T3b-SOCS3 cKO mice reduced hyperplasia of gastric mucosa, which is the step of the initiation of gastric tumor. These data suggest that SOCS3 is an antigastric tumor gene that suppresses leptin overexpression and ObRb/STAT3 hyperactivation, supporting the hypothesis that the leptin/ObRb/STAT3 axis accelerates tumorigenesis and that it may represent a new therapeutic target for the treatment of gastric cancer.

  2. Decrease in radio-sensitivity of the tumor by radiation-induced damage to immuno-related cells

    Energy Technology Data Exchange (ETDEWEB)

    Makidono, Reiko

    1987-08-01

    Immunological competence plays an important role in response of patients to radiation therapy and dose of radiation required for tumor control depends also on the immunocompetence of the individual patient. Radiation therapy (even localized irradiation) can, however, cause lymphopenia and induce an immunodeficient state. This may facilitate growth of residual tumor cells or metastatic foci, this negating benefits of the therapy. A brief overview of damage to T and B lymphocytes as well as macrophages and natural killer (NK) cells by radiation therapy was presented. The restoration and potentiation of the immunological competence of the patients by biological response modifiers (BRM) such as OK432 (a bacterial preparation), recombinant interferon (rIFN-..gamma..) and recombinant interleukin-2 (rIL-2) with or without lymphokine activated killer (LAK) cells, were discussed. (author) 61 refs.

  3. The herbicide atrazine induces hyperactivity and compromises tadpole detection of predator chemical cues.

    Science.gov (United States)

    Ehrsam, Mackenzie; Knutie, Sarah A; Rohr, Jason R

    2016-09-01

    The ability to detect chemical cues is often critical for freshwater organisms to avoid predation and find food and mates. In particular, reduced activity and avoidance of chemical cues signaling predation risk are generally adaptive behaviors that reduce prey encounter rates with predators. The present study examined the effects of the common herbicide atrazine on the ability of Cuban tree frog (Osteopilus septentrionalis) tadpoles to detect and respond to chemical cues from larval dragonfly (Libellulidae sp.) predators. Tadpoles exposed to an estimated environmental concentration of atrazine (calculated using US Environmental Protection Agency software; measured concentration, 178 μg/L) were significantly hyperactive relative to those exposed to solvent control. In addition, control tadpoles significantly avoided predator chemical cues, but tadpoles exposed to atrazine did not. These results are consistent with previous studies that have demonstrated that ecologically relevant concentrations of atrazine can induce hyperactivity and impair the olfactory abilities of other freshwater vertebrates. The authors call for additional studies examining the role of chemical contaminants in disrupting chemical communication and the quantification of subsequent impacts on the fitness and population dynamics of wildlife. Environ Toxicol Chem 2016;35:2239-2244. © 2016 SETAC.

  4. Chemical changes induced on a TiO{sub 2} surface by electron bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Vergara, L.I. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica, INTEC (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Passeggi, M.C.G. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica, INTEC (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina)], E-mail: mpggih@intec.unl.edu.ar; Ferron, J. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica, INTEC (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Departamento de Materiales, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, (S3000AOM) Santa Fe (Argentina)

    2007-09-14

    We study the TiO{sub 2} (Ti{sup 4+}) chemical reduction induced by electron bombardment using Auger electron spectroscopy and factor analysis. We show that the electron irradiation of a TiO{sub 2} sample is characterized by the appearance of a lower Ti oxidation state, Ti{sub 2}O{sub 3} (Ti{sup 3+}), followed by a further deposition of carbon, which is present inevitably in the environment even under ultra-high vacuum conditions. The appearance of C over the surface is found to be a complex mechanism which affects the reduction process through passivation of the electron-induced oxygen desorption and formation of titanium carbide. For very high irradiation doses, we also found that the chemical changes on the surface are stopped due to the deposition of carbon in a graphitic form.

  5. Chemical changes induced on a TiO2 surface by electron bombardment

    International Nuclear Information System (INIS)

    We study the TiO2 (Ti4+) chemical reduction induced by electron bombardment using Auger electron spectroscopy and factor analysis. We show that the electron irradiation of a TiO2 sample is characterized by the appearance of a lower Ti oxidation state, Ti2O3 (Ti3+), followed by a further deposition of carbon, which is present inevitably in the environment even under ultra-high vacuum conditions. The appearance of C over the surface is found to be a complex mechanism which affects the reduction process through passivation of the electron-induced oxygen desorption and formation of titanium carbide. For very high irradiation doses, we also found that the chemical changes on the surface are stopped due to the deposition of carbon in a graphitic form

  6. Ion transport through chemically induced pores in protein-free phospholipid membranes.

    Science.gov (United States)

    Gurtovenko, Andrey A; Anwar, Jamshed

    2007-11-29

    We address the possibility of being able to induce the trafficking of salt ions and other solutes across cell membranes without the use of specific protein-based transporters or pumps. On the basis of realistic atomic-scale molecular dynamics simulations, we demonstrate that transmembrane ionic leakage can be initiated by chemical means, in this instance through addition of dimethyl sulfoxide (DMSO), a solvent widely used in cell biology. Our results provide compelling evidence that the small amphiphilic solute DMSO is able to induce transient defects (water pores) in membranes and to promote a subsequent diffusive pore-mediated transport of salt ions. The findings are consistent with available experimental data and offer a molecular-level explanation for the experimentally observed activities of DMSO solvent as an efficient penetration enhancer and a cryoprotectant, as well as an analgesic. Our findings suggest that transient pore formation by chemical means could emerge as an important general principle for therapeutics. PMID:17983219

  7. Deoxynivalenol induced mouse skin tumor initiation: Elucidation of molecular mechanisms in human HaCaT keratinocytes.

    Science.gov (United States)

    Mishra, Sakshi; Tewari, Prachi; Chaudhari, Bhushan P; Dwivedi, Premendra D; Pandey, Haushila P; Das, Mukul

    2016-11-01

    Among food contaminants, mycotoxins are toxic to both human and animal health. Our prior studies suggest that Deoxynivalenol (DON), a mycotoxin, behaves as a tumor promoter by inducing edema, hyperplasia, ODC activity and activation of MAPK's in mouse skin. In this study, topical application of DON, 336 and 672 nmol significantly enhanced ROS levels, DNA damage and apoptosis with concomitant downregulation of Ki-67, cyclin D, cyclin E, cyclin A and cyclin-dependent kinases (CDK4 and CDK2) thereby resulting in tumor initiation in mouse skin. Further, the elucidation of molecular mechanisms of tumor initiation by DON (0.42-3.37 nmol/ml) in HaCaT keratinocytes, revealed (i) enhanced ROS generation with cell cycle phase arrest in G0/G1 phase, (ii) increase in levels of 8-OxoG (6-24 hr) and γH2AX protein, (iii) significant enhancement in oxidative stress marker enzymes LPO, GSH, GR with concomitant decrease in antioxidant enzymes catalase, GPx, GST, SOD and mitochondrial membrane potential after DON (1.68 nmol) treatment, (iv) suppression of Nrf2 translocation to nucleus, enhanced phosphorylation with subsequent activation ERK1/2, p38 and JNK MAPK's following DON (1.68 nmol) treatment, (v) overexpression of c-jun, c-fos proteins, upregulation of Bax along with downregulation of Bcl-2 proteins, (vi) increase in cytochrome-c, caspase-9, caspase-3 and poly ADP ribose polymerase levels leads to apoptosis. Pretreatment of superoxide dismutase, mannitol and ethanol to HaCaT cells resulted in significant reduction in ROS levels and apoptosis indicating the role of superoxide and hydroxyl radicals in DON induced apoptosis as an early event and skin tumor initiation as a late event. PMID:27389473

  8. Deoxynivalenol induced mouse skin tumor initiation: Elucidation of molecular mechanisms in human HaCaT keratinocytes.

    Science.gov (United States)

    Mishra, Sakshi; Tewari, Prachi; Chaudhari, Bhushan P; Dwivedi, Premendra D; Pandey, Haushila P; Das, Mukul

    2016-11-01

    Among food contaminants, mycotoxins are toxic to both human and animal health. Our prior studies suggest that Deoxynivalenol (DON), a mycotoxin, behaves as a tumor promoter by inducing edema, hyperplasia, ODC activity and activation of MAPK's in mouse skin. In this study, topical application of DON, 336 and 672 nmol significantly enhanced ROS levels, DNA damage and apoptosis with concomitant downregulation of Ki-67, cyclin D, cyclin E, cyclin A and cyclin-dependent kinases (CDK4 and CDK2) thereby resulting in tumor initiation in mouse skin. Further, the elucidation of molecular mechanisms of tumor initiation by DON (0.42-3.37 nmol/ml) in HaCaT keratinocytes, revealed (i) enhanced ROS generation with cell cycle phase arrest in G0/G1 phase, (ii) increase in levels of 8-OxoG (6-24 hr) and γH2AX protein, (iii) significant enhancement in oxidative stress marker enzymes LPO, GSH, GR with concomitant decrease in antioxidant enzymes catalase, GPx, GST, SOD and mitochondrial membrane potential after DON (1.68 nmol) treatment, (iv) suppression of Nrf2 translocation to nucleus, enhanced phosphorylation with subsequent activation ERK1/2, p38 and JNK MAPK's following DON (1.68 nmol) treatment, (v) overexpression of c-jun, c-fos proteins, upregulation of Bax along with downregulation of Bcl-2 proteins, (vi) increase in cytochrome-c, caspase-9, caspase-3 and poly ADP ribose polymerase levels leads to apoptosis. Pretreatment of superoxide dismutase, mannitol and ethanol to HaCaT cells resulted in significant reduction in ROS levels and apoptosis indicating the role of superoxide and hydroxyl radicals in DON induced apoptosis as an early event and skin tumor initiation as a late event.

  9. Role of cysteinyl leukotriene receptor-1 antagonists in treatment of experimentally induced mammary tumor: does montelukast modulate antitumor and immunosuppressant effects of doxorubicin?

    Science.gov (United States)

    El-Sisi, Alaa El-Din E; Sokar, Samia S; Salem, Tarek A; Abu Risha, Sally E

    2015-11-01

    It has been reported that a leukotriene (LT)-D4 receptor (i.e. cysteinyl LT1 receptor; CysLT1R) has an important role in carcinogenesis. The current study was carried out to assess the possible antitumor effects of montelukast (MON), a CysLT1R antagonist, in a mouse mammary carcinoma model, that is, a solid Ehrlich carcinoma (SEC). Effects of MON on tumor-induced immune dysfunction and the possibility that MON may modulate the antitumor and immunomodulatory effects of doxorubicin (DOX) were also studied. The effects in tumor-bearing hosts of several dosings with MON (10 mg/kg, per os), with and without the added presence of DOX (2 mg/kg, intraperitoneal), were investigated in vivo; end points evaluated included assessment of tumor volume, splenic lymphocyte profiles/functionality, tumor necrosis factor-α content, as well as apoptosis and expression of nuclear factor-κB (NF-κB) among the tumor cells. The data indicate that MON induced significant antitumor activity against the SEC. MON treatments also significantly mitigated both tumor- and DOX-induced declines in immune parameters assessed here. Moreover, MON led to decreased NF-κB nuclear expression and, in doing so, appeared to chemosensitize these tumor cells to DOX-induced apoptosis. PMID:26499992

  10. Tumor Infiltrating Lymphocytes Genetically Engineered with an Inducible Gene Encoding Interleukin-12 for the Immunotherapy of Metastatic Melanoma

    Science.gov (United States)

    Zhang, Ling; Morgan, Richard A.; D.Beane, Joal; Zheng, Zhili; Dudley, Mark E.; Kassim, Sadik H.; Nahvi, Azam V.; Ngo, Lien T.; Sherry, Richard M.; Phan, Giao Q.; Hughes, Marybeth S.; Kammula, Udai S.; Feldman, Steven A.; Toomey, Mary Ann; Kerkar, Sid. P.; Restifo, Nicholas P.; Yang, James C.; Rosenberg, Steven A.

    2015-01-01

    Purpose Infusion of interleukin-12 (IL-12) can mediate anti-tumor immunity in animal models, yet its systemic administration to patients with cancer results in minimal efficacy and severe toxicity. Here, we evaluated the anti-tumor activity of adoptively transferred human tumor infiltrating lymphocytes (TIL) genetically engineered to secrete single-chain IL-12 selectively at the tumor site. Experimental design Thirty-three patients with metastatic melanoma were treated in a cell-dose escalation trial of autologous TIL transduced with a gene encoding a single chain IL-12 driven by a nuclear factor of activated T cells promoter (NFAT.IL12). No IL-2 was administered. Results The administration of 0.001-0.1 X 109 NFAT.IL12 transduced TIL to 17 patients resulted in a single objective response (5.9%). However, at doses between 0.3-3 X 109 cells, 10 of 16 patients (63%) exhibited objective clinical responses. The responses tended to be short and the administered IL-12 producing cells rarely persisted at one month. Increasing cell doses were associated with high serum levels of IL-12 and gamma-interferon as well as clinical toxicities including liver dysfunction, high fevers and sporadic life threatening hemodynamic instability. Conclusions In this first-in-man trial, administration of TIL transduced with an inducible IL-12 gene mediated tumor responses in the absence of IL-2 administration using cell doses 10-100 fold lower than conventional TIL. However, due to toxicities, likely attributable to the secreted IL-12, further refinement will be necessary before this approach can be safely utilized in the treatment of cancer patients. PMID:25695689

  11. Astrocytes Upregulate Survival Genes in Tumor Cells and Induce Protection from Chemotherapy

    Directory of Open Access Journals (Sweden)

    Sun-Jin Kim

    2011-03-01

    Full Text Available In the United States, more than 40% of cancer patients develop brain metastasis. The median survival for untreated patients is 1 to 2 months, which may be extended to 6 months with conventional radiotherapy and chemotherapy. The growth and survival of metastasis depend on the interaction of tumor cells with host factors in the organ microenvironment. Brain metastases are surrounded and infiltrated by activated astrocytes and are highly resistant to chemotherapy. We report here that coculture of human breast cancer cells or lung cancer cells with murine astrocytes (but not murine fibroblasts led to the up-regulation of survival genes, including GSTA5, BCL2L1, and TWIST1, in the tumor cells. The degree of up-regulation directly correlated with increased resistance to all tested chemotherapeutic agents. We further show that the up-regulation of the survival genes and consequent resistance are dependent on the direct contact between the astrocytes and tumor cells through gap junctions and are therefore transient. Knocking down these genes with specific small interfering RNA rendered the tumor cells sensitive to chemotherapeutic agents. These data clearly demonstrate that host cells in the microenvironment influence the biologic behavior of tumor cells and reinforce the contention that the organ microenvironment must be taken into consideration during the design of therapy.

  12. Spontaneous squamous cell carcinoma induced by the somatic inactivation of retinoblastoma and Trp53 tumor suppressors.

    Science.gov (United States)

    Martínez-Cruz, Ana Belén; Santos, Mirentxu; Lara, M Fernanda; Segrelles, Carmen; Ruiz, Sergio; Moral, Marta; Lorz, Corina; García-Escudero, Ramón; Paramio, Jesús M

    2008-02-01

    Squamous cell carcinomas (SCC) represent the most aggressive type of nonmelanoma skin cancer. Although little is known about the causal alterations of SCCs, in organ-transplanted patients the E7 and E6 oncogenes of human papillomavirus, targeting the p53- and pRb-dependent pathways, have been widely involved. Here, we report the functional consequences of the simultaneous elimination of Trp53 and retinoblastoma (Rb) genes in epidermis using Cre-loxP system. Loss of p53, but not pRb, produces spontaneous tumor development, indicating that p53 is the predominant tumor suppressor acting in mouse epidermis. Although the simultaneous inactivation of pRb and p53 does not aggravate the phenotype observed in Rb-deficient epidermis in terms of proliferation and/or differentiation, spontaneous SCC development is severely accelerated in doubly deficient mice. The tumors are aggressive and undifferentiated and display a hair follicle origin. Detailed analysis indicates that the acceleration is mediated by premature activation of the epidermal growth factor receptor/Akt pathway, resulting in increased proliferation in normal and dysplastic hair follicles and augmented tumor angiogenesis. The molecular characteristics of this model provide valuable tools to understand epidermal tumor formation and may ultimately contribute to the development of therapies for the treatment of aggressive squamous cancer. PMID:18245467

  13. Thermal dosimetry studies of ultrasonically induced hyperthermia in normal dog brain and in experimental brain tumors

    International Nuclear Information System (INIS)

    In a series of 16 acute experiments on pentobarbital anesthetized dogs, thermal distributions generated by ultrasonic heating using a 1 MHz PZT transducer were compared with intensity distributions mapped in a test tank. Relatively flat distributions from 1 to 3 cm have been mapped in normal dog brain using ''shaped'' intensity distributions generated from ultrasonic emission patterns which are formed by the interaction between compressional, transverse and flexural modes activated within the crystal. In contrast, these same intensity distributions generated marked temperature variations in 3 malignant brain tumors presumably due to variations in tumor blood flow. The results of this study suggest that a practical clinical system for uniform heating of large tumor volumes with varying volumes and geometries is not an achievable goal. The author's laboratory is developing a scanning ultrasonic rapid hyperthermia treatment system which will be able to sequentially heat small volume of tumor tissue either to temperatures which will sterilize tumor or to a more conventional thermal dose. Time-temperature studies of threshold for thermal damage in normal dog brain are currently in progress

  14. Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla.

    Science.gov (United States)

    Nylund, Göran M; Weinberger, Florian; Rempt, Martin; Pohnert, Georg

    2011-01-01

    In comparison with terrestrial plants the mechanistic knowledge of chemical defences is poor for marine macroalgae. This restricts our understanding in the chemically mediated interactions that take place between algae and other organisms. Technical advances such as metabolomics, however, enable new approaches towards the characterisation of the chemically mediated interactions of organisms with their environment. We address defence responses in the red alga Gracilaria vermiculophylla using mass spectrometry based metabolomics in combination with bioassays. Being invasive in the north Atlantic this alga is likely to possess chemical defences according to the prediction that well-defended exotics are most likely to become successful invaders in systems dominated by generalist grazers, such as marine macroalgal communities. We investigated the effect of intense herbivore feeding and simulated herbivory by mechanical wounding of the algae. Both processes led to similar changes in the metabolic profile. Feeding experiments with the generalist isopod grazer Idotea baltica showed that mechanical wounding caused a significant increase in grazer resistance. Structure elucidation of the metabolites of which some were up-regulated more than 100 times in the wounded tissue, revealed known and novel eicosanoids as major components. Among these were prostaglandins, hydroxylated fatty acids and arachidonic acid derived conjugated lactones. Bioassays with pure metabolites showed that these eicosanoids are part of the innate defence system of macroalgae, similarly to animal systems. In accordance with an induced defence mechanism application of extracts from wounded tissue caused a significant increase in grazer resistance and the up-regulation of other pathways than in the activated defence. Thus, this study suggests that G. vermiculophylla chemically deters herbivory by two lines of defence, a rapid wound-activated process followed by a slower inducible defence. By unravelling

  15. Allergic skin inflammation induced by chemical sensitizers is controlled by the transcription factor Nrf2.

    Science.gov (United States)

    El Ali, Zeina; Gerbeix, Cédric; Hemon, Patrice; Esser, Philipp R; Martin, Stefan F; Pallardy, Marc; Kerdine-Römer, Saadia

    2013-07-01

    Allergic contact dermatitis (ACD) is induced by low-molecular weight electrophilic chemicals and metal ions. Chemical contact sensitizers trigger reactive oxygen species production and provoke electrophilic stress, leading to the accumulation of the transcription factor nuclear-related factor 2 (Nrf2) in innate immune cell types. The objective of this work was to identify the role of Nrf2 in the regulation of ACD. We used the local lymph node assay (LLNA) and the mouse ear swelling test (MEST) to study the role of Nrf2 in both the sensitization and elicitation phase in nrf2 knockout (nrf2(-/-)) and wild-type (nrf2(+/+)) mice. Five chemicals were used: two compounds known to react with cysteine residues, 2,4-dinitrochlorobenzene (DNCB) and cinnamaldehyde (CinA); one sensitizer known to exhibit mixed reactivity to cysteine and lysine residues, isophorone diisocyanate; and one reacting specifically with lysine residues, trimellitic anhydride and croton oil, a well-known irritant. In the MEST assay, DNCB (1 and 2%) induced a significant increase in ear thickness in nrf2(-/-) compared with nrf2(+/+) mice, suggesting a role for Nrf2 in the control of the inflammatory process. When DNCB was used at 0.25 and 0.5% or when mice were treated with CinA, inflammation was found only in nrf2(-/-) mice. In the LLNA, all chemical sensitizers induced an increase of lymphocyte proliferation in nrf2(-/-) compared with nrf2(+/+) mice for the same chemical concentration. These results reveal an important role for Nrf2 in controlling ACD and lymphocyte proliferation in response to sensitizers. PMID:23564646

  16. Plant flavonol isorhamnetin attenuates chemically induced inflammatory bowel disease via a PXR-dependent pathway

    OpenAIRE

    Dou, Wei; Zhang, Jingjing; Li, Hao; Kortagere, Sandhya; Sun, Katherine; Ding, Lili; Ren, Gaiyan; WANG Zhengtao; Mani, Sridhar

    2014-01-01

    Isorhamnetin is an O-methylated flavonol present in fruit and vegetables. We recently reported the identification of isorhamnetin as an activator of the human pregnane X receptor (PXR), a known target for abrogating inflammation in inflammatory bowel disease (IBD). The current study investigated the role of isorhamnetin as a putative mouse PXR activator in ameliorating chemically induced IBD. Using two different models (Ulcerative colitis-like and Crohn’s disease-like) of experimental IBD in ...

  17. Laser induced chemical vapour deposition of TiN coatings at atmospheric pressure

    OpenAIRE

    Croonen, Y.; Verspui, G.

    1993-01-01

    Laser induced Chemical Vapour Deposition of a wide variety of materials has been studied extensively at reduced pressures. However, for this technique to be economically and industrially applicable, processes at atmospheric pressure are preferred. A model study was made on the substrate-coating system molybdenum-titaniumnitride focussing on the feasibility to deposit TiN films locally at atmospheric pressure. The results of this study turned out to be very promising. A Nd-YAG laser beam ([MAT...

  18. Improving analytical methods for protein-protein interaction through implementation of chemically inducible dimerization

    OpenAIRE

    Tonni Grube Andersen; Nintemann, Sebastian J.; Magdalena Marek; Halkier, Barbara A.; Alexander Schulz; Meike Burow

    2016-01-01

    When investigating interactions between two proteins with complementary reporter tags in yeast two-hybrid or split GFP assays, it remains troublesome to discriminate true- from false-negative results and challenging to compare the level of interaction across experiments. This leads to decreased sensitivity and renders analysis of weak or transient interactions difficult to perform. In this work, we describe the development of reporters that can be chemically induced to dimerize independently ...

  19. Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not its receptors during oral cancer progression

    International Nuclear Information System (INIS)

    TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and

  20. Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL but not its receptors during oral cancer progression

    Directory of Open Access Journals (Sweden)

    Muller Susan

    2007-06-01

    Full Text Available Abstract Background TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5 and two decoy (DcR1, and DcR2 receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM, oral premalignancies (OPM, and primary and metastatic oral squamous cell carcinomas (OSCC in order to characterize the changes in their expression patterns during OSCC initiation and progression. Methods DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. Results Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. Conclusion Loss of TRAIL expression is an early event during oral

  1. Shock-induced solid-state chemical reactivity studies using time-resolved radiation pyrometry

    International Nuclear Information System (INIS)

    Time-resolved radiation pyrometry has been used to study materials which undergo solid-state chemical reactions due to shock loading. Shock-induced chemical reactivity in solids is fundamentally different than that in high explosives and other energetic materials because, if no volatiles are present, the reaction products end up in the condensed, rather than the vapor, state. Bulk property changes accompanying the solid-state reactions may therefore be too small to be observable with wave profile or shock-velocity measurements. However, some solid-state reactions, such as that between metallic nickel and aluminum, are exothermic enough to give rise to a measurable increase in temperature, so pyrometry can be used to detect the reactions. Unfortunately, these measurements are complicated by the large temperature increases generated by other sources. Possible mechanisms for generation of these high temperatures, and their effect on the chemical reaction, are suggested

  2. Ga-68 DOTATOC PET/CT-Guided Biopsy and Cryoablation with Autoradiography of Biopsy Specimen for Treatment of Tumor-Induced Osteomalacia.

    Science.gov (United States)

    Maybody, Majid; Grewal, Ravinder K; Healey, John H; Antonescu, Cristina R; Fanchon, Louise; Hwang, Sinchun; Carrasquillo, Jorge A; Kirov, Assen; Farooki, Azeez

    2016-09-01

    Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by small benign tumors of mesenchymal origin also known as phosphaturic mesenchymal tumors mixed connective tissue variant. Excellent prognosis is expected with eradication of the culprit tumor. These small tumors are notoriously difficult to localize with conventional imaging studies; this often leads to an extensive work up and prolonged morbidity. We report a patient with clinical diagnosis of TIO whose culprit tumor was localized with Ga-68 DOTATOC PET/CT and MRI. Biopsy and cryoablation were performed under Ga-68 DOTATOC PET/CT guidance. Autoradiography of the biopsy specimen was performed and showed in situ correlation between Ga-68 DOTATOC uptake and histopathology with millimeter resolution. PMID:27150801

  3. Radiation-induced mammary carcinogenesis in rodent models. What's different from chemical carcinogenesis?

    International Nuclear Information System (INIS)

    Ionizing radiation is one of a few well-characterized etiologic factors of human breast cancer. Laboratory rodents serve as useful experimental models for investigating dose responses and mechanisms of cancer development. Using these models, a lot of information has been accumulated about mammary gland cancer, which can be induced by both chemical carcinogens and radiation. In this review, we first list some experimental rodent models of breast cancer induction. We then focus on several topics that are important in understanding the mechanisms and risk modification of breast cancer development, and compare radiation and chemical carcinogenesis models. We will focus on the pathology and natural history of cancer development in these models, genetic changes observed in induced cancers, indirect effects of carcinogens, and finally risk modification by reproductive factors and age at exposure to the carcinogens. In addition, we summarize the knowledge available on mammary stem/progenitor cells as a potential target of carcinogens. Comparison of chemical and radiation carcinogenesis models on these topics indicates certain similarities, but it also indicates clear differences in several important aspects, such as genetic alterations of induced cancers and modification of susceptibility by age and reproductive factors. Identification of the target cell type and relevant translational research for human risk management may be among the important issues that are addressed by radiation carcinogenesis models. (author)

  4. Squalene Selectively Protects Mouse Bone Marrow Progenitors Against Cisplatin and Carboplatin-Induced Cytotoxicity In Vivo Without Protecting Tumor Growth

    Directory of Open Access Journals (Sweden)

    Bikul Das

    2008-10-01

    Full Text Available Squalene, an isoprenoid antioxidant is a potential cytoprotective agent against chemotherapy-induced toxicity. We have previously published that squalene protects light-density bone marrow cells against cis-diamminedichloroplatinum( II (cisplatin-induced toxicity without protecting tumor cells in vitro. Here, we developed an in vivo mouse model of cisplatin and cis-diammine (cyclobutane-1,1-dicarboxylato platinum(II (carboplatin-induced toxicity to further investigate squalene-mediated LD-BM cytoprotection including the molecular mechanism behind selective cytoprotection. We found that squalene significantly reduced the body weight loss of cisplatin and carboplatin-treated mice. Light-density bone marrow cells from squalene-treated mice exhibited improved formation of hematopoietic colonies (colony-forming unit-granulocyte macrophage. Furthermore, squalene also protected mesenchymal stem cell colonies (colony-forming unit-fibroblast from cisplatin and carboplatin-induced toxicity. Squalene-induced protection was associated with decreased reactive oxygen species and increased levels of glutathione and glutathione peroxidase/glutathione-S-transferase. Importantly, squalene did not protect neuroblastoma, small cell carcinoma, or medulloblastoma xenografts against cisplatin-induced toxicity. These results suggest that squalene is a potential candidate for future development as a cytoprotective agent against chemotherapeutic toxicity.

  5. Prostaglandins can modify gamma-radiation and chemical induced cytotoxicity and genetic damage in vitro and in vivo

    International Nuclear Information System (INIS)

    The effect of prostaglandin E1, E2, and F2 alpha on gamma-radiation, benzo(a)pyrene and diphenylhydantoin-induced cytotoxicity in vivo and genotoxicity in vitro was investigated. Prostaglandin E1 prevented both cytotoxic and genotoxic actions of all the three agents, where as both PGE2 and PGF2 alpha were ineffective. In fact, it was seen that both PGE2 and PGF2 alpha are genotoxic by themselves. Gamma-linolenic acid and dihomogamma-linolenic acid, the precursor of PGE1 were also as protective as that of PGE1, where as arachidonic acid, the precursor of 2 series PGs, has genotoxic actions to human lymphocytes in vitro. These results suggest that prostaglandins and their precursors can determine the susceptibility of cells to cytotoxic and genotoxic actions of chemicals and radiation. This study is particularly interesting since, it is known that some tumor cells contain excess of PGE2 and PGF2 alpha and many carcinogens can augment the synthesis of 2 series of PGs

  6. Effect of surface topography in the generation of chemical maps by laser-induced plasma spectroscopy

    Science.gov (United States)

    Lopez-Quintas, I.; Piñon, V.; Mateo, M. P.; Nicolas, G.

    2012-09-01

    The development of technologically advanced materials is propelling the improvement of surface analytical techniques. In particular, the composition and hence the properties of most of these new materials are spatial dependent. Between the techniques able to provide chemical spatial information, laser-induced plasma spectroscopy known also as laser-induced breakdown spectroscopy (LIBS) is a very promising analytical technique. During the last decade, LIBS was successfully applied to the analysis of surfaces and the generation of chemical maps of heterogeneous materials. In the LIBS analysis, several experimental factors including surface topography must be taken into account. In this work, the influence of surface roughness in LIBS signal during the point analysis and acquisition of chemical maps was studied. For this purpose, samples of stainless steel with different surface finishes were prepared and analyzed by LIBS. In order to characterize the different surfaces, confocal microscopy images were obtained. Afterwards, both topographic and spectroscopic information were combined to show the relationship between them. Additionally, in order to reveal the effect of surface topography in the acquisition of chemical maps, a three dimensional analysis of a sample exhibiting two different finishes was carried out.

  7. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney

    Directory of Open Access Journals (Sweden)

    Kerstin Stemmer

    2012-09-01

    Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens or partially resistant (DIOres to DIO to investigate the impact of body adiposity versus dietary nutrient overload in the development of renal preneoplasia and activation of tumor-promoting signaling pathways. Our data clearly show a correlation between body adiposity, the severity of nephropathy, and the total number and incidence of preneoplastic renal lesions. However, similar plasma triglyceride, plasma free fatty acid and renal triglyceride levels were found in chow-fed, DIOres and DIOsens rats, suggesting that lipotoxicity is not a critical contributor to the renal pathology. Obesity-related nephropathy was further associated with regenerative cell proliferation, monocyte infiltration and higher renal expression of monocyte chemotactic protein-1 (MCP-1, interleukin (IL-6, IL-6 receptor and leptin receptor. Accordingly, we observed increased signal transducer and activator of transcription 3 (STAT3 and mammalian target of rapamycin (mTOR phosphorylation in tubules with preneoplastic phenotypes. In summary, our results demonstrate that high body adiposity induces an inflammatory and proliferative microenvironment in rat kidneys that promotes the development of preneoplastic lesions, potentially via activation of the STAT3 and mTOR signaling pathways.

  8. Tumor Necrosis Factor-related Apoptosis Ligand Induces Apoptosis in Prostate Cancer PC-3M Cell Line

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhohui; WANG Huafang; GU Longjie; YE Zhewei; XIAO Yajun

    2005-01-01

    To study the effect of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)on PC-3M cell line, PC-3M cell line was incubated with gradient concentrations of TRAIL for 4-24h. Annixin-Ⅴ fluorescence staining and TUNEL method were employed to detect the apoptosis of PC-3M cells. The morphology of apoptotic PC-3M cells was observed by electron microscopy. The relationship between TRAIL concentrations and the percentage of apoptotic cells was evaluated by flow cytometry. The proliferation inhibitory ratio was calculated by using MTT colorimetry. Our results showed that apoptosis of PC-3M cells could be induced by treatment with TRAIL for at most 4 h. The results of flow cytometry and MTT colorimetry demonstrated a time- and concentration-dependent relationship between cell apoptosis rate and TRAIL concentration. It is concluded that apoptosis of PC-3M cells can be induced by TRAIL. Because of the selective killing effect of TRAIL on tumor ceils, it may become a potential alternative for the treatment of advanced prostate cancer.

  9. Dietary proanthocyanidins inhibit UV radiation-induced skin tumor development through functional activation of the immune system.

    Science.gov (United States)

    Katiyar, Santosh K

    2016-06-01

    The incidence of skin cancer is equivalent to the incidence of malignancies in all other organs combined. The main risk factor for this disease is overexposure of the skin to solar ultraviolet (UV) radiation. UV irradiation induces inflammation, oxidative stress, DNA damage, and suppression of the immune system in the skin, which together contribute to carcinogenesis. The use of dietary phytochemicals shows great promise as a complementary and alternative strategy for skin cancer prevention. Grape seed proanthocyanidins (GSPs) have been tested extensively for their anti-skin cancer effect using in vivo animal models. Supplementation of an AIN76A control diet with GSPs (0.2 and 0.5%, w/w) significantly inhibits UV radiation-induced skin tumor development as well as malignant transformation of papillomas to carcinoma in mice. The inhibition of UVB-induced skin tumor development by GSPs is mediated through interrelated mechanisms of action including: (i) inhibition of inflammation, (ii) rapid repair of damaged DNA, and (iii) stimulation of immune system. Additionally, the chemopreventive effects of GSPs involve DNA repair-dependent functional activation of antigen-presenting cells and stimulation of CD8(+) effector T cells. These effects of GSPs could be useful in attenuation of the adverse effects of UV radiation and may have health benefits in humans. PMID:26991736

  10. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice

    Energy Technology Data Exchange (ETDEWEB)

    Vaid, Mudit; Singh, Tripti; Prasad, Ram [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Katiyar, Santosh K., E-mail: skatiyar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294 (United States)

    2014-01-01

    Previously, we showed that administration of a high-fat diet (HF-diet) to C57BL/6 mice exacerbates their response to short-term UVB radiation-induced inflammation in the skin. To explore the effects of an HF-diet on UVB-induced tumorigenesis, we have used the SKH-1 hairless mouse model in which the mice are exposed to UVB radiation (180 mJ/cm{sup 2}) three times a week for 24 weeks. The development of UVB-induced skin tumors was rapid and the tumor multiplicity and tumor size were significantly higher (P < 0.01–0.005) in the mice fed an HF-diet than the mice fed a control-diet (C-diet). Moreover, the malignant progression of UVB-induced papillomas to carcinomas was higher in HF-diet-fed mice. On analysis of tumors and tumor-uninvolved skin samples from the tumor-bearing mice, we found that administration of an HF-diet significantly enhanced the levels of UVB-induced expression of cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (P < 0.01), and PGE{sub 2} receptors, and activation of NF-κB in the UVB-exposed skin as well as in tumors. In addition the HF-diet enhanced the expression of proinflammatory cytokines, including tumor necrosis factor-α (P < 0.01), interleukin (IL)-1β (P < 0.01) and IL-6 (P < 0.05) in the UVB-exposed skin as well as in tumors. Western blot analysis revealed that HF-diet enhanced the levels of epidermal cell proliferation, phosphatidylinositol 3-kinase and phosphorylation of Akt at Ser{sup 473} in UVB-exposed skin and skin tumors. Collectively, these data demonstrate that the regular consumption of an HF-diet increases the risk of photocarcinogenesis in mice and that this is associated with enhanced expression of inflammatory mediators in the UVB-exposed skin and tumors. - Highlights: • Consumption of high-fat diet increases UVB-induced skin tumor development in mice. • Intake of high-fat diet stimulates progression of UV-induced papilloma to carcinoma. • Intake of high-fat diet enhances inflammation in UV-exposed skin • Regular

  11. STAT3 as a target for inducing apoptosis in solid and hematological tumors

    Institute of Scientific and Technical Information of China (English)

    Khandaker Al Zaid Siddiquee; James Turkson

    2008-01-01

    Studies in the past few years have provided compelling evidence for the critical role of aberrant Signal Transducer and Activator of Transcription 3 (STAT3) in malignant transformation and tumorigenesis. Thus, it is now generally accepted that STAT3 is one of the critical players in human cancer formation and represents a valid target for novel anticancer drug design. This review focuses on aberrant STAT3 and its role in promoting tumor cell survival and supporting the malignant phenotype. A brief evaluation of the current strategies targeting STAT3 for the development of novel anticancer agents against human tumors harboring constitutively active STAT3 will also be presented.

  12. Two modes of c-myb activation in virus-induced mouse myeloid tumors.

    OpenAIRE

    1986-01-01

    Two modes of disruption of the protooncogene c-myb by viral insertional mutagenesis in mouse myeloid tumor cells are described. The first mode was found in six tumors in which a Moloney murine leukemia virus component had inserted in the same transcriptional orientation upstream of the 5'-most exon with v-myb homology (vE1). cDNA sequence data indicate the presence of a truncated c-myb mRNA that is initiated in the upstream 5' long terminal repeat of the integrated provirus and processed via ...

  13. Oncogene amplification detected by in situ hybridization in radiation induced rat skin tumors. [C-myc:a3

    Energy Technology Data Exchange (ETDEWEB)

    Yi Jin.

    1991-02-01

    Oncogene activation may play an important role in radiation induced carcinogenesis. C-myc oncogene amplification was detected by in situ hybridization in radiation-induced rat skin tumors, including squamous and basal cell carcinomas. In situ hybridization was performed with a biotinylated human c-myc third exon probe, visualized with an avidin-biotinylated alkaline phosphate detection system. No c-myc oncogene amplification was detected in normal rat skin at very early times after exposure to ionizing radiation, which is consistent with the view that c-myc amplification is more likely to be related to carcinogenesis than to normal cell proliferation. The incorporation of tritiated thymidine into the DNA of rat skin cells showed that the proliferation of epidermal cells reached a peak on the seventh day after exposure to ionizing radiation and then decreased. No connection between the proliferation of epidermal cell and c-myc oncogene amplification in normal or irradiated rat skin was found. The results indicated that c-myc amplification as measured by in situ hybridization was correlated with the Southern bolt results, but only some of the cancer cells were amplified. The c-myc positive cells were distributed randomly within regions of the tumor and exhibited a more uniform nuclear structure in comparison to the more vacuolated c-myc negative cells. No c-myc signal was detected in unirradiated normal skin or in irradiated skin cells near the tumors. C-myc amplification appears to be cell or cell cycle specific within radiation-induced carcinomas. 28 refs., 3 figs., 3 tabs.

  14. Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation.

    Science.gov (United States)

    Zaafar, Dalia K; Zaitone, Sawsan A; Moustafa, Yasser M

    2014-01-01

    Several studies indicated that type 2 diabetes mellitus and insulin resistance are associated with increased colon cancer risk. Recently, studies suggest that metformin can reduce cancer risk in diabetic or non-diabetic patients with unclear mechanisms. This work aimed to determine the effect of metformin on chemically-induced colon cancer in mice. Colon cancer was induced using 1,2-dimethylhydrazine (DMH, 20 mg/kg/week, s.c.) for fifteen weeks. Experiment I: healthy mice were fed with basal diet for four weeks and then allocated into seven groups, (i) saline, (ii) DMH, (iii) oxaliplatin, (iv-v): metformin (100 or 200 mg/kg) and (vi-vii): oxaliplatin+metformin (100 or 200 mg/kg), respectively. Experiment II: type 2 diabetes mellitus was induced by injection of STZ (30 mg/kg) after four weeks of high-fat feeding and then mice were allocated into seven groups similar to those reported in experiment I. Examination of the colonic tissue at the end of the experiment highlighted an increase in angiogenic markers and cell proliferation and showed a greater immunostaining for insulin growth factor I receptors and CD34 in the colon of diabetic mice compared to non-diabetics. In general, metformin downregulated tumor angiogenesis and augmented the antitumor effect of oxaliplatin. Overall, the current results showed that metformin protected against DMH-induced colon cancer in non-diabetic and diabetic mice. This therapeutic effect was, at least in part, attributed to its anti-angiogenic and anti-proliferative mechanisms.

  15. Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation.

    Directory of Open Access Journals (Sweden)

    Dalia K Zaafar

    Full Text Available Several studies indicated that type 2 diabetes mellitus and insulin resistance are associated with increased colon cancer risk. Recently, studies suggest that metformin can reduce cancer risk in diabetic or non-diabetic patients with unclear mechanisms. This work aimed to determine the effect of metformin on chemically-induced colon cancer in mice. Colon cancer was induced using 1,2-dimethylhydrazine (DMH, 20 mg/kg/week, s.c. for fifteen weeks. Experiment I: healthy mice were fed with basal diet for four weeks and then allocated into seven groups, (i saline, (ii DMH, (iii oxaliplatin, (iv-v: metformin (100 or 200 mg/kg and (vi-vii: oxaliplatin+metformin (100 or 200 mg/kg, respectively. Experiment II: type 2 diabetes mellitus was induced by injection of STZ (30 mg/kg after four weeks of high-fat feeding and then mice were allocated into seven groups similar to those reported in experiment I. Examination of the colonic tissue at the end of the experiment highlighted an increase in angiogenic markers and cell proliferation and showed a greater immunostaining for insulin growth factor I receptors and CD34 in the colon of diabetic mice compared to non-diabetics. In general, metformin downregulated tumor angiogenesis and augmented the antitumor effect of oxaliplatin. Overall, the current results showed that metformin protected against DMH-induced colon cancer in non-diabetic and diabetic mice. This therapeutic effect was, at least in part, attributed to its anti-angiogenic and anti-proliferative mechanisms.

  16. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  17. Pathomorphology of laser-induced interstitial tumor thermotherapy for the liver; Pathomorphologie der Laser-induzierten interstitiellen Tumor-Thermotherapie an der Leber

    Energy Technology Data Exchange (ETDEWEB)

    Filler, T.J.; Peuker, E.T. [Inst. fuer Anatomie, Univ. Muenster (Germany); Bremer, C. [Center for Molecular Imaging Research, Massachusetts General Hospital, Boston, MA (United States); Bankert, J.; Kreft, G. [Inst. fuer klinische Radiologie, Univ. Muenster (Germany); Reimer, P. [Zentralinst. fuer Bildgebende Diagnostik, Staedtisches Klinikum Karlsruhe (Germany)

    2001-02-01