WorldWideScience

Sample records for chemically generated noble

  1. DWPF Hydrogen Generation Study-Form of Noble Metal SRAT Testing

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C

    2005-09-01

    The Defense Waste Processing Facility, DWPF, has requested that the Savannah River National Laboratory, SRNL, investigate the factors that contribute to hydrogen generation to determine if current conservatism in setting the DWPF processing window can be reduced. A phased program has been undertaken to increase understanding of the factors that influence hydrogen generation in the DWPF Chemical Process Cell, CPC. The hydrogen generation in the CPC is primarily due to noble metal catalyzed decomposition of formic acid with a minor contribution from radiolytic processes. Noble metals have historically been added as trim chemicals to process simulations. The present study investigated the potential conservatism that might be present from adding the catalytic species as trim chemicals to the final sludge simulant versus co-precipitating the noble metals into the insoluble sludge solids matrix. Two sludge simulants were obtained, one with co-precipitated noble metals and one without noble metals. Co-precipitated noble metals were expected to better match real waste behavior than using trimmed noble metals during CPC simulations. Portions of both sludge simulants were held at 97 C for about eight hours to qualitatively simulate the effects of long term storage on particle morphology and speciation. The two original and two heat-treated sludge simulants were then used as feeds to Sludge Receipt and Adjustment Tank, SRAT, process simulations. Testing was done at relatively high acid stoichiometries, {approx}175%, and without mercury in order to ensure significant hydrogen generation. Hydrogen generation rates were monitored during processing to assess the impact of the form of noble metals. The following observations were made on the data: (1) Co-precipitated noble metal simulant processed similarly to trimmed noble metal simulant in most respects, such as nitrite to nitrate conversion, formate destruction, and pH, but differently with respect to hydrogen generation: (A

  2. Electrocatalysis of chemically synthesized noble metal nanoparticles on carbon electrodes

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    Noble metal nanoparticles (NPs), such as platinum (Pt) and palladium (Pd) NPs are promising catalysts for dioxygen reduction and oxidation of molecules such as formic acid and ethanol in fuel cells. Carbon nanomaterials are ideal supporting materials for electrochemical catalysts due to their good...... on their interfacial interaction with the supporting electrodes. In this work we aim at chemical production of size and shape controlled, specifically 22 nm cubic Pd NPs, and further understanding of the Pd NPs as electrocatalysts at the nanometer scale using both scanning tunneling microscopy (STM) and atomic force...

  3. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  4. Chemical reactivity of the compressed noble gas atoms and their ...

    Indian Academy of Sciences (India)

    Attempts are made to gain insights into the effect of confinement of noble gas atoms on their various reactivity indices. Systems become harder, less polarizable and difficult to excite as the compression increases. Ionization also causes similar effects. A quantum fluid density functional technique is adopted in order to study ...

  5. BWR containment vessel drywell head bolt de-tensioning during noble metal chemical application

    International Nuclear Information System (INIS)

    Herrera, M.; Mattson, R.

    2001-01-01

    Implementation of Noble Metal Chemical Application (NMCA) in a Boiling Water Reactor (BWR) requires injection of a noble metal compound while the reactor is idle at hot shutdown conditions. In order to minimize outage time, utilities are very pro-actively finding ways to reduce the number of critical path tasks. One of these tasks is to remove some containment vessel drywell head bolts during the NMCA idle time. This, thereby, saves the utilities outage time, or they can perform other tasks as desired. Using design basis conditions and state-of-the-art analytical techniques, detailed finite element stress analyses of the closure region are performed. Two acceptance criteria are evaluated. The first is that contained within Section III of the ASME Code for allowable stresses. The second relates to leak tightness, i.e., with bolt removal the joint must still remain leak tight. This paper describes the activities performed to justify bolt removal during the noble metal compound injection idle time at a particular plant. Drywell joint integrity criteria, design input, and assumptions are defined, and analytical results justifying bolt removal are presented. (author)

  6. Discharges in the inlet region of a noble gas MHD generator

    International Nuclear Information System (INIS)

    Borghi, C.A.

    1982-01-01

    In this work the onset of the development of the non-equilibrium conductivity in the entrance region of a noble gas MHD generator is investigated both theoretically and experimentally. At low electron densities the discharge seems to be affected by a non-Maxwellian electron distribution. In Chapter II a self-consistent model of a stationary discharge in an Ar-Cs mixture at atmospheric pressure, is set up. It includes the possibility of deviations from a Maxwellian electron energy distribution. The model allows to calculate at what discharge parameters deviations from the Maxwellian electron distribution will become important. In Chapter III the relaxation of the plasma to a new equilibrium situation following a sudden change in the electron thermal energy is calculated by a model which can take radiation and a non-Maxwellian distribution into account. In Chapter IV an Ar-Cs discharge experiment is described with plasma parameters similar to those present in the entrance region of the generator. The ionization relaxation process in a noble gas MHD generator is experimentally studied and described in Chapter V. In this chapter the relaxation ionization region with and without pre-ionization is investigated. Current voltage characteristics are obtained by varying the applied voltage or the external load. The results are confronted with the theoretical results of the non-Maxwellian model developed in Chapter II. Conclusions of this work are drawn in Chapter VI. (Auth.)

  7. Role of noble metal nanoparticles in DNA base damage and catalysis: a radiation chemical investigation

    International Nuclear Information System (INIS)

    Sharma, Geeta K.

    2011-01-01

    In the emerging field of nanoscience and nanotechnology, tremendous focus has been made by researcher to explore the applications of nanomaterials for human welfare by converting the findings into technology. Some of the examples have been the use of nanoparticles in the field of opto-electronic, fuel cells, medicine and catalysis. These wide applications and significance lies in the fact that nanoparticles possess unique physical and chemical properties very different from their bulk precursors. Numerous methods for the synthesis of noble nanoparticles with tunable shape and size have been reported in literature. The goal of our group is to use different methods of synthesis of noble metal nanoparticles (Au, Ag, Pt and Pd) and test their protective/damaging role towards DNA base damage induced by ionizing radiation (Au and Ag) and to test the catalytic activity of nanoparticles (Pt and Pd) in certain known organic synthesis/electron transfer reactions. Using radiation chemical techniques such as pulse radiolysis and steady state radiolysis complemented by the product analysis using HPLC/LC-MS, a detailed mechanism for the formation of transient species, kinetics leading to the formation of stable end products is studied in the DNA base damage induced by ionizing radiation in presence and absence of Au and Ag nanoparticles. Unraveling the complex interaction between catalysts and reactants under operando conditions is a key step towards gaining fundamental insight in catalysis. The catalytic activity of Pt and Pd nanoparticles in electron transfer and Suzuki coupling reactions has been determined. Investigations are currently underway to gain insight into the interaction between catalysts and reactants using time resolved spectroscopic measurements. These studies will be detailed during the presentation. (author)

  8. Noble metal catalyzed hydrogen generation from formic acid in nitrite-containing simulated nuclear waste media

    International Nuclear Information System (INIS)

    King, R.B.; Bhattacharyya, N.K.; Wiemers, K.D.

    1994-08-01

    Simulants for the Hanford Waste Vitrification Plant (HWVP) feed containing the major non-radioactive components Al, Cd, Fe, Mn, Nd, Ni, Si, Zr, Na, CO 3 2- , NO 3 -, and NO 2 - were used as media to evaluate the stability of formic acid towards hydrogen evolution by the reaction HCO 2 H → H 2 + CO 2 catalyzed by the noble metals Ru, Rh, and/or Pd found in significant quantities in uranium fission products. Small scale experiments using 40-50 mL of feed simulant in closed glass reactors (250-550 mL total volume) at 80-100 degree C were used to study the effect of nitrite and nitrate ion on the catalytic activities of the noble metals for formic acid decomposition. Reactions were monitored using gas chromatography to analyze the CO 2 , H 2 , NO, and N 2 O in the gas phase as a function of time. Rhodium, which was introduced as soluble RhCl 3 ·3H 2 O, was found to be the most active catalyst for hydrogen generation from formic acid above ∼80 degree C in the presence of nitrite ion in accord with earlier observations. The inherent homogeneous nature of the nitrite-promoted Rh-catalyzed formic acid decomposition is suggested by the approximate pseudo first-order dependence of the hydrogen production rate on Rh concentration. Titration of the typical feed simulants containing carbonate and nitrite with formic acid in the presence of rhodium at the reaction temperature (∼90 degree C) indicates that the nitrite-promoted Rh-catalyzed decomposition of formic acid occurs only after formic acid has reacted with all of the carbonate and nitrite present to form CO 2 and NO/N 2 O, respectively. The catalytic activities of Ru and Pd towards hydrogen generation from formic acid are quite different than those of Rh in that they are inhibited rather than promoted by the presence of nitrite ion

  9. Generative models for chemical structures.

    Science.gov (United States)

    White, David; Wilson, Richard C

    2010-07-26

    We apply recently developed techniques for pattern recognition to construct a generative model for chemical structure. This approach can be viewed as ligand-based de novo design. We construct a statistical model describing the structural variations present in a set of molecules which may be sampled to generate new structurally similar examples. We prevent the possibility of generating chemically invalid molecules, according to our implicit hydrogen model, by projecting samples onto the nearest chemically valid molecule. By populating the input set with molecules that are active against a target, we show how new molecules may be generated that will likely also be active against the target.

  10. Attosecond pulse generation in noble gases in the presence of extreme high intensity THz pulses

    International Nuclear Information System (INIS)

    Balogh, E.; Varju, K.

    2010-01-01

    Complete text of publication follows. The shortest - attosecond - light pulses available today are produced by high harmonic generation (HHG) of near-infrared (NIR) laser pulses in noble gas jets, providing a broad spectral plateau of XUV radiation ending in a cutoff. The minimum pulse duration is determined by the achievable bandwidth (i.e. the position of the cutoff), and the chirp of the produced pulses. The extension of the cutoff by increasing the laser intensity is limited by the depletion and phase matching problems of the medium. An alternative method demonstrated to produce higher harmonic orders is by using longer pump pulse wavelength, with the disadvantage of decreased efficiency. Recently it was shown that application of a quasi-DC high strength electric field results in an increase of more than a factor of two in the order of efficiently generated high harmonics. However, the possibility to implement the method proposed in [3] of using a CO 2 laser to create a quasi-DC field for assisting HHG of the NIR laser is questionable, because it's technically very challenging to synchronize pulses from different laser sources. Alternatively, synchronous production of THz pulses with the NIR laser pulse offers a more promising route. The first numerical test of this idea has been reported in [4]. In this contribution we further investigate the method for realistic THz field strengths and short driving pulses, exploring the effect of longer pump laser wavelength on the process. We assume the presence of high intensity THz pulses for supplying the high-strength quasi-DC electric field. The spectrum as well as the chirp of the produced radiation is calculated. We use the non-adiabatic saddle point method to determine the generated radiation described in [6]. We simulate harmonic generation in noble gas atoms, with few cycle NIR pulses of peak intensity at and above 2 x 10 14 W/cm 2 (388 MV/cm) and wavelengths 800 nm and 1560 nm. The THz field strength is varied

  11. Investigation of gold fluorides and noble gas complexes by matrix-isolation spectroscopy and quantum-chemical calculations.

    Science.gov (United States)

    Wang, Xuefeng; Andrews, Lester; Willmann, Knut; Brosi, Felix; Riedel, Sebastian

    2012-10-15

    Noble with a difference: Matrix-isolation experiments and quantum-chemical calculations have led to the characterization of two new compounds, namely first open-shell binary gold fluoride, AuF(2), and a NeAuF complex. Moreover, ArAuF, AuF(3), Au(2)F(6), and monomeric AuF(5) have been produced and identified under cryogenic conditions in neon and argon matrices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.

    2004-12-31

    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a

  13. Base-free non-noble-metal-catalyzed hydrogen generation from formic acid: scope and mechanistic insights.

    Science.gov (United States)

    Mellmann, Dörthe; Barsch, Enrico; Bauer, Matthias; Grabow, Kathleen; Boddien, Albert; Kammer, Anja; Sponholz, Peter; Bentrup, Ursula; Jackstell, Ralf; Junge, Henrik; Laurenczy, Gábor; Ludwig, Ralf; Beller, Matthias

    2014-10-13

    The iron-catalyzed dehydrogenation of formic acid has been studied both experimentally and mechanistically. The most active catalysts were generated in situ from cationic Fe(II) /Fe(III) precursors and tris[2-(diphenylphosphino)ethyl]phosphine (1, PP3 ). In contrast to most known noble-metal catalysts used for this transformation, no additional base was necessary. The activity of the iron catalyst depended highly on the solvent used, the presence of halide ions, the water content, and the ligand-to-metal ratio. The optimal catalytic performance was achieved by using [FeH(PP3 )]BF4 /PP3 in propylene carbonate in the presence of traces of water. With the exception of fluoride, the presence of halide ions in solution inhibited the catalytic activity. IR, Raman, UV/Vis, and EXAFS/XANES analyses gave detailed insights into the mechanism of hydrogen generation from formic acid at low temperature, supported by DFT calculations. In situ transmission FTIR measurements revealed the formation of an active iron formate species by the band observed at 1543 cm(-1) , which could be correlated with the evolution of gas. This active species was deactivated in the presence of chloride ions due to the formation of a chloro species (UV/Vis, Raman, IR, and XAS). In addition, XAS measurements demonstrated the importance of the solvent for the coordination of the PP3 ligand. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Evaluation of HWVP feed preparation chemistry for an NCAW simulant -- Fiscal year 1993: Effect of noble metals concentration on offgas generation and ammonia formation

    International Nuclear Information System (INIS)

    Patello, G.K.; Wiemers, K.D.; Bell, R.D.; Smith, H.D.; Williford, R.E.; Clemmer, R.G.

    1995-03-01

    The High-Level Waste Vitrification Program is developing technology for the Department of Energy to immobilize high-level and transuranic wastes as glass for permanent disposal. Pacific Northwest Laboratory (PNL) is conducting laboratory-scale melter feed preparation studies using a HWVP simulated waste slurry, Neutralized Current Acid Waste (NCAW). A FY 1993 laboratory-scale study focused on the effects of noble metals (Pd, Rh, and Ru) on feed preparation offgas generation and NH 3 production. The noble metals catalyze H 2 and NH 3 production, which leads to safety concerns. The information gained from this study is intended to be used for technology development in pilot scale testing and design of the Hanford High-Level Waste Vitrification Facility. Six laboratory-scale feed preparation tests were performed as part of the FY 1993 testing activities using nonradioactive NCAW simulant. Tests were performed with 10%, 25%, 50% of nominal noble metals content. Also tested were 25% of the nominal Rh and a repeat of 25% nominal noble metals. The results of the test activities are described. 6 refs., 28 figs., 12 tabs

  15. Evaluation of HWVP feed preparation chemistry for an NCAW simulant -- Fiscal year 1993: Effect of noble metals concentration on offgas generation and ammonia formation

    Energy Technology Data Exchange (ETDEWEB)

    Patello, G.K.; Wiemers, K.D.; Bell, R.D.; Smith, H.D.; Williford, R.E.; Clemmer, R.G.

    1995-03-01

    The High-Level Waste Vitrification Program is developing technology for the Department of Energy to immobilize high-level and transuranic wastes as glass for permanent disposal. Pacific Northwest Laboratory (PNL) is conducting laboratory-scale melter feed preparation studies using a HWVP simulated waste slurry, Neutralized Current Acid Waste (NCAW). A FY 1993 laboratory-scale study focused on the effects of noble metals (Pd, Rh, and Ru) on feed preparation offgas generation and NH{sub 3} production. The noble metals catalyze H{sub 2} and NH{sub 3} production, which leads to safety concerns. The information gained from this study is intended to be used for technology development in pilot scale testing and design of the Hanford High-Level Waste Vitrification Facility. Six laboratory-scale feed preparation tests were performed as part of the FY 1993 testing activities using nonradioactive NCAW simulant. Tests were performed with 10%, 25%, 50% of nominal noble metals content. Also tested were 25% of the nominal Rh and a repeat of 25% nominal noble metals. The results of the test activities are described. 6 refs., 28 figs., 12 tabs.

  16. Energy-Saving Electrolytic Hydrogen Generation: Ni2P Nanoarray as a High-Performance Non-Noble-Metal Electrocatalyst.

    Science.gov (United States)

    Tang, Chun; Zhang, Rong; Lu, Wenbo; Wang, Zao; Liu, Danni; Hao, Shuai; Du, Gu; Asiri, Abdullah M; Sun, Xuping

    2017-01-16

    It is highly attractive but challenging to develop earth-abundant electrocatalysts for energy-saving electrolytic hydrogen generation. Herein, we report that Ni 2 P nanoarrays grown in situ on nickel foam (Ni 2 P/NF) behave as a durable high-performance non-noble-metal electrocatalyst for hydrazine oxidation reaction (HzOR) in alkaline media. The replacement of the sluggish anodic oxygen evolution reaction with such the more thermodynamically favorable HzOR enables energy-saving electrochemical hydrogen production with the use of Ni 2 P/NF as a bifunctional catalyst for anodic HzOR and cathodic hydrogen evolution reaction. When operated at room temperature, this two-electrode electrolytic system drives 500 mA cm -2 at a cell voltage as low as 1.0 V with strong long-term electrochemical durability and 100 % Faradaic efficiency for hydrogen evolution in 1.0 m KOH aqueous solution with 0.5 m hydrazine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High order harmonic generation in noble gases using plasmonic field enhancement

    International Nuclear Information System (INIS)

    Ciappina, Marcelo F.; Shaaran, Tahir; Lewenstein, Maciej

    2013-01-01

    Theoretical studies of high-order harmonic generation (HHG) in rare gases driven by plasmonic field enhancement are presented. This kind of fields appears when plasmonic nanostructures are illuminated by an intense few-cycle laser and have a particular spatial dependency, depending on the geometrical shape of the nanostructure. It is demonstrated that the strong nonhomogeneous character of the laser enhanced field plays an important role in the HHG process and significantly extends the harmonic cutoff. The models are based on numerical solution of the time dependent Schroedinger equation (TDSE) and supported by classical and semiclassical calculations. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  19. Experimental and computational approaches to evaluate the environmental mitigation effect in narrow spaces by noble metal chemical addition (NMCA)

    International Nuclear Information System (INIS)

    Shimizu, Ryosuke; Ota, Nobuyuki; Nagase, Makoto; Aizawa, Motohiro; Ishida, Kazushige; Wada, Yoichi

    2014-01-01

    The environmental mitigation effect of NMCA in a narrow space was evaluated by experimental and computational approaches. In the experiment at 8 MPa and 553K, T-tube whose branched line had a narrow space was prepared, and the Zr electrodes were set in the branched line at certain intervals, which were 1, 3, 5, 7, 9, 11, 15 and 29 cm from the opening section of the branched line. Electrochemical corrosion potential (ECP) at the tip of the branched narrow space varied in response to the water chemistry in the main line which was at right angle with the branched line. Computational fluid dynamics (CFD) analysis reproduced the experimental results. It was also confirmed by CFD analysis that the ingress of water from the main line into the narrow space was accelerated by cavity flow and thermal convection. By CFD analysis in a thermal sleeve of actual plant condition, which had a narrow space, the concentration of dissolved oxygen at a tip of the thermal sleeve reached at 250 ppb within 300 sec, which was the same concentration of the main line. Noble metal deposition on the surface of the thermal sleeve was evaluated by mass transfer model. Noble metal deposition was the largest near the opening section of the branched line, and gradually decreased toward the tip section. In light of the consumption of dissolved oxygen in the branched line, noble metal deposition in the thermal sleeve was sufficient to reduce the ECP. It was expected that NMCA could mitigate the corrosion environment in the thermal sleeve. (author)

  20. Entropy Generation in a Chemical Reaction

    Science.gov (United States)

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A…

  1. Chemical aspects of MHD power generation

    International Nuclear Information System (INIS)

    Way, S.

    1965-01-01

    In the magnetohydrodynamic process of generating power by use of combustion products in an open system, the gases must be 'seeded' with a small concentration of alkali. A number of chemical problems are presented. These include the prediction of the equilibrium composition and physical properties of the gas, including electrical conductivity and electron mobility, shifting chemical composition during the generator expansion process, reactions involving wall and electrode materials, nitric oxide formation and fixation, behaviour of ash and alkali laden gases in heat exchangers, and finally the alkali seed recovery. Tabular data are given for equilibrium compositions, gas properties, air preheat temperatures, comparision of experimental and theoretical conductivities, calculated conductivities for various product gases, and equilibrium nitric oxide concentrations. (author)

  2. Polymer-noble metal nanocomposites: Review

    CSIR Research Space (South Africa)

    Folarin, OM

    2011-09-01

    Full Text Available Polymer-noble metal nanocomposites have been extensively investigated due to their potential ability to provide materials with novel mechanical, electronic or chemical behaviour for technological applications. Many preparative procedures have been...

  3. Laser cool and trap trace noble atoms

    Science.gov (United States)

    Wang, Mingdong; Hong, Yanji; Feng, Gaoping

    2016-01-01

    Laser can be used to cool and manipulate neutron atoms via momentum exchange between photons and atoms. Laser cooling and trapping is well established on alkali, alkali earth, and noble gas elements. Noble gases, with stable physical and chemical properties, no reactions with other elements, have great potential uses in cold collision, spectroscopy measurement, photo-association, atom optics, etc. However, trapping noble gas atoms is generally more difficult because of the lack of suitable UV lasers. Some of these problems will be overcome with future advances in UV laser technology. Excited by electron collisions, noble gas can reach the long life metastable state for the use of laser decelerating, focusing and trapping. In this paper some main methods which are used to achieve cooling and trapping metastable noble gas atoms are discussed.

  4. PROCESS FOR THE PREPARATION OF ALLOY NANOPARTICLES COMPRISING A NOBLE AND A NON-NOBLE METAL

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention concerns a chemical process for preparing nanoparticles of an alloy comprising both a noble metal, such as platinum, and a non-noble transition or lanthanide metal, such as yttrium, gadolinium or terbium. The process is carried out by reduction with hydrogen and removal...

  5. ToxCast Data Generation: Chemical Workflow

    Science.gov (United States)

    This page describes the process EPA follows to select chemicals, procure chemicals, register chemicals, conduct a quality review of the chemicals, and prepare the chemicals for high-throughput screening.

  6. A NEW GENERATION CHEMICAL FLOODING SIMULATOR

    Energy Technology Data Exchange (ETDEWEB)

    Gary A. Pope; Kamy Sepehrnoori; Mojdeh Delshad

    2005-01-01

    The premise of this research is that a general-purpose reservoir simulator for several improved oil recovery processes can and should be developed so that high-resolution simulations of a variety of very large and difficult problems can be achieved using state-of-the-art algorithms and computers. Such a simulator is not currently available to the industry. The goal of this proposed research is to develop a new-generation chemical flooding simulator that is capable of efficiently and accurately simulating oil reservoirs with at least a million gridblocks in less than one day on massively parallel computers. Task 1 is the formulation and development of solution scheme, Task 2 is the implementation of the chemical module, and Task 3 is validation and application. In this final report, we will detail our progress on Tasks 1 through 3 of the project.

  7. Noble-metal-free NiO@Ni-ZnO/reduced graphene oxide/CdS heterostructure for efficient photocatalytic hydrogen generation

    Science.gov (United States)

    Chen, Fayun; Zhang, Laijun; Wang, Xuewen; Zhang, Rongbin

    2017-11-01

    Noble-metal-free semiconductor materials are widely used for photocatalytic hydrogen generation because of their low cost. ZnO-based heterostructures with synergistic effects exhibit an effective photocatalytic activity. In this work, NiO@Ni-ZnO/reduced graphene oxide (rGO)/CdS heterostructures are synthesized by a multi-step method. rGO nanosheets and CdS nanoparticles were introduced into the heterostructures via a redox reaction and light-assisted growth, respectively. A novel Ni-induced electrochemical growth method was developed to prepare ZnO rods from Zn powder. NiO@Ni-ZnO/rGO/CdS heterostructures with a wide visible-light absorption range exhibited highly photocatalytic hydrogen generation rates under UV-vis and visible light irradiation. The enhanced photocatalytic activity is attributed to the Ni nanoparticles that act as cocatalysts for capturing photoexcited electrons and the improved synergistic effect between ZnO and CdS due to the rGO nanosheets acting as photoexcited carrier transport channels.

  8. Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways.

    Science.gov (United States)

    Sanabria-Chinchilla, Jean; Asazawa, Koichiro; Sakamoto, Tomokazu; Yamada, Koji; Tanaka, Hirohisa; Strasser, Peter

    2011-04-13

    We report the discovery of a highly active Ni-Co alloy electrocatalyst for the oxidation of hydrazine (N(2)H(4)) and provide evidence for competing electrochemical (faradaic) and chemical (nonfaradaic) reaction pathways. The electrochemical conversion of hydrazine on catalytic surfaces in fuel cells is of great scientific and technological interest, because it offers multiple redox states, complex reaction pathways, and significantly more favorable energy and power densities compared to hydrogen fuel. Structure-reactivity relations of a Ni(60)Co(40) alloy electrocatalyst are presented with a 6-fold increase in catalytic N(2)H(4) oxidation activity over today's benchmark catalysts. We further study the mechanistic pathways of the catalytic N(2)H(4) conversion as function of the applied electrode potential using differentially pumped electrochemical mass spectrometry (DEMS). At positive overpotentials, N(2)H(4) is electrooxidized into nitrogen consuming hydroxide ions, which is the fuel cell-relevant faradaic reaction pathway. In parallel, N(2)H(4) decomposes chemically into molecular nitrogen and hydrogen over a broad range of electrode potentials. The electroless chemical decomposition rate was controlled by the electrode potential, suggesting a rare example of a liquid-phase electrochemical promotion effect of a chemical catalytic reaction ("EPOC"). The coexisting electrocatalytic (faradaic) and heterogeneous catalytic (electroless, nonfaradaic) reaction pathways have important implications for the efficiency of hydrazine fuel cells. © 2011 American Chemical Society

  9. Review of Catalytic Hydrogen Generation in the DWPF Chemical Processing Cell, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David C.; Lambert, Daniel P.; Baich, Mark A.

    2005-08-01

    The Savannah River National Laboratory is in the process of investigating factors suspected of impacting catalytic hydrogen generation in the Defense Waste Processing Facility, DWPF, Chemical Process Cell, CPC. Noble metal catalyzed hydrogen generation in simulation work constrains the allowable acid addition operating window in DWPF. This constraint potentially impacts washing strategies during sludge batch preparation. It can also influence decisions related to the addition of secondary waste streams to a sludge batch. Catalytic hydrogen generation data from 2002-2005 were reviewed. The data came from process simulations of the DWPF Sludge Receipt and Adjustment Tank, SRAT, and Slurry Mix Evaporator, SME. Most of the data was from the development work for the Sludge Batch 3 process flowsheet. This included simulant and radioactive waste testing. Preliminary Sludge Batch 4 data were also reviewed. A statistical analysis of SB3 simulant hydrogen generation data was performed. One factor considered in the statistical analysis was excess acid. Excess acid was determined experimentally as the acid added beyond that required to achieve satisfactory nitrite destruction.

  10. Preparation and Heat-Treatment of DWPF Simulants With and Without Co-Precipitated Noble Metals

    International Nuclear Information System (INIS)

    Koopman, David C.:Eibling, Russel E

    2005-01-01

    The Savannah River National Laboratory is in the process of investigating factors suspected of impacting catalytic hydrogen generation in the Chemical Process Cell of the Defense Waste Processing Facility, DWPF. Noble metal catalyzed hydrogen generation in simulation work constrains the allowable acid addition operating window in DWPF. This constraint potentially impacts washing strategies during sludge batch preparation. It can also influence decisions related to the addition of secondary waste streams to a sludge batch. Noble metals have historically been added as trim chemicals to process simulations. The present study investigated the potential conservatism that might be present from adding the catalytic species as trim chemicals to the final sludge simulant versus co-precipitating the noble metals into the insoluble sludge solids matrix. Parallel preparations of two sludge simulants targeting the composition of Sludge Batch 3 were performed in order to evaluate the impact of the form of noble metals. Identical steps were used except that one simulant had dissolved palladium, rhodium, and ruthenium present during the precipitation of the insoluble solids. Noble metals were trimmed into the other stimulant prior to process tests. Portions of both sludge simulants were held at 97 C for about eight hours to qualitatively simulate the effects of long term storage on particle morphology and speciation. The simulants were used as feeds for Sludge Receipt and Adjustment Tank, SRAT, process simulations. The following conclusions were drawn from the simulant preparation work: (1) The first preparation of a waste slurry simulant with co-precipitated noble metals was successful, based on the data obtained. It appears that 99+% of the noble metals were retained in the simulant. (2) Better control of carbonate, hydroxide, and post-wash trim chemical additions is needed before the new method of simulant preparation will be as reproducible as the old method. (3) The two new

  11. Low chemical concentrating steam generating cycle

    Science.gov (United States)

    Mangus, James D.

    1983-01-01

    A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.

  12. Generation and analysis of chemical compound libraries

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, John M.; Jin, Jian; Kan, Kevin S.; Marcin, Martin R.; Mitrovic, Slobodan; Newhouse, Paul F.; Suram, Santosh K.; Xiang, Chengxiang; Zhou, Lan

    2017-10-03

    Various samples are generated on a substrate. The samples each includes or consists of one or more analytes. In some instances, the samples are generated through the use of gels or through vapor deposition techniques. The samples are used in an instrument for screening large numbers of analytes by locating the samples between a working electrode and a counter electrode assembly. The instrument also includes one or more light sources for illuminating each of the samples. The instrument is configured to measure the photocurrent formed through a sample as a result of the illumination of the sample.

  13. Photoacid generators in chemically amplified resists

    Science.gov (United States)

    Suzuki, Yasuhiro; Johnson, Donald W.

    1998-06-01

    It is well known that onium salt structure has an influence on resist resolution and post exposure delay stability as well as solubility in typical resist solvents. As a result of our study, it was found that resists have higher contrast when t-butylphenyl substituents replaced phenyl or alkyl substituents in the cation segment of onium-type photoacid generators in both iodonium and sulfonium systems. Dissolution inhibition appeared to play a primary role. In this paper we also report the results of our investigation into onium-type photoacid generators possessing reduced diffusion, lower volatility and suitable acidity to cleave common protecting groups such as t-butoxycarbonyl, acetal and t-butyl. Substituted benzene sulfonic acids were very useful for cleaving common protecting groups in polyhydroxystyrene based Deep-UV resist systems. The addition of alkyl groups to the ring had only slight effect on acid diffusion. Perfluoro sulfonic acids were required to cleave adequately, the acid stable leaving groups in methacrylate resist systems.

  14. Chemical looping reforming of generator gas

    Energy Technology Data Exchange (ETDEWEB)

    Mendiara, T.; Jensen, Anker; Glarborg, P.

    2010-02-15

    The main objective of this work is to investigate the carbon deposition during reforming of hydrocarbons in a Chemical Looping Reformer (CLR). This knowledge is needed to asses the viability of the CLR technology in reforming tar from biomass gasification preserving lighter hydrocarbons and minimizing the carbon formation during the process. Two different setups were used to test the reactivity of the different samples in the conditions of interest for the tar reforming process: 1) Fixed bed flow reactor (FR), and 2) Thermogravimetric analyzer (TGA). In the experiments, the gas atmosphere was switched from reducing to oxidizing atmosphere in every cycle. During the oxidizing cycle, the carrier was regenerated using a mixture of oxygen and nitrogen. Four different oxygen carriers based on nickel (Ni40 and Ni60), manganese (Mn) and ilmenite (Fe) were tested. In the tests, toluene was used to simulate the tars. The Fe and the Mn carrier reacted to a small extent with methane at the highest temperature studied, 800 degrees C. The Ni-carriers did not react at 600 degrees C at first, but they showed some reactivity after having been activated at the higher temperature. Carbon formation occurred with the Ni-carriers, more so with the Ni60 than the Ni40. Ni40, Mn and Fe were activated at the higher temperature. However, Fe showed only low capacity. Ni60 showed no capability of tar reforming. Ni40 showed a high tendency to carbon formation at 800 degrees C, but the formation could be lowered by changing some parameters. Mn formed almost no carbon. Ni40 and Mn were chosen for further studies. Carbon deposition occurred for both Ni40 and Mn, but the amount deposited for Ni40 was about 10 times bigger. Ni40 reacted with the methane and toluene only at 800 degrees C. The conversion over Mn was not as big as for toluene alone. Carbon was formed from carbon monoxide on the Ni40 carrier and on the Mn, but to a much less extent on the latter one. The presence of hydrogen decreased

  15. Radon: Not so Noble

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 7. Radon: Not so Noble-Radon in the Environment and Associated Health Problems. Deepanjan Majumdar. General Article Volume 5 Issue 7 July 2000 pp 44-55. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Three Mile Island Nuclear Station steam generator chemical cleaning

    International Nuclear Information System (INIS)

    Hansen, C.A.

    1992-01-01

    The Three Mile Island-1 steam generators were chemically cleaned in 1991 by the B and W Nuclear Service Co. (BWNS). This secondary side cleaning was accomplished through application of the EPRI/SGOG (Electric Power Research Institute - Steam Generator Owners Group) chemical cleaning iron removal process, followed by sludge lancing. BWNS also performed on-line corrosion monitoring. Corrosion of key steam generator materials was low, and well within established limits. Liquid waste, subsequently processed by BWNS was less than expected. 7 tabs

  17. Noble metal ionic catalysts.

    Science.gov (United States)

    Hegde, M S; Madras, Giridhar; Patil, K C

    2009-06-16

    Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NO(x), and unburned hydrocarbons-need to be fully converted to CO(2), N(2), and H(2)O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al(2)O(3) or SiO(2) promoted by CeO(2). However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce(1-x)M(x)O(2-delta) and Ce(1-x-y)Ti(y)M(x)O(2-delta) (M = Pt, Pd, Rh; x = 0.01-0.02, delta approximately x, y = 0.15-0.25) oxides in fluorite structure. In these oxide catalysts, Pt(2+), Pd(2+), or Rh(3+) ions are substituted only to the extent of 1-2% of Ce(4+) ion. Lower-valent noble metal ion substitution in CeO(2) creates oxygen vacancies. Reducing molecules (CO, H(2), NH(3)) are adsorbed onto electron-deficient noble metal ions, while oxidizing (O(2), NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NO(x) reduction (with >80% N(2) selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO(2) or Ce(1-x)Ti(x)O(2) were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the

  18. Noble metal free photocatalytic H2 generation on black TiO2: On the influence of crystal facets vs. crystal damage

    Science.gov (United States)

    Liu, Ning; Steinrück, Hans-Georg; Osvet, Andres; Yang, Yuyun; Schmuki, Patrik

    2017-02-01

    In this study, we investigate noble metal free photocatalytic water splitting on natural anatase single crystal facets and on wafer slices of the [001] plane before and after these surfaces have been modified by high pressure hydrogenation and hydrogen ion-implantation. We find that on the natural, intact low index planes, photocatalytic H2 evolution (in the absence of a noble metal co-catalyst) can only be achieved when the hydrogenation treatment is accompanied by the introduction of crystal damage, such as simple scratching and miscut in the crystal, or by implantation damage. X-ray reflectivity, Raman, and optical reflection measurements show that plain hydrogenation leads to a ≈ 1 nm thick black titania surface layer without activity, while a colorless, density modified, and ≈7 nm thick layer with broken crystal symmetry is present on the ion implanted surface. These results demonstrate that (i) the H-treatment of an intact anatase surface needs to be combined with defect formation for catalytic activation and (ii) activation does not necessarily coincide with the presence of black color.

  19. PWR steam generator chemical cleaning. Phase II. Final report

    International Nuclear Information System (INIS)

    1980-01-01

    Two techniques believed capable of chemically dissolving the corrosion products in the annuli between tubes and support plates were developed in laboratory work in Phase I of this project and were pilot tested in Indian Point Unit No. 1 steam generators. In Phase II, one of the techniques was shown to be inadequate on an actual sample taken from an Indian Point Unit No. 2 steam generator. The other technique was modified slightly, and it was demonstrated that the tube/support plate annulus could be chemically cleaned effectively

  20. In-service chemical diagnostics of WWER-1000 steam generator

    International Nuclear Information System (INIS)

    Cervinka, J. et al.

    1989-01-01

    A chemical diagnostics subsystem is proposed for WWER-1000 steam generators. It consists of two parts. The analytical module serves indirect examination of the effect of the water chemistry of the steam generator secondary side on the structural materials involved. Samples are analyzed for the presence of corrosion-aggressive substances, which can cause or accelerate corrosion damage, and of corrosion products. The quantities measured include electrolytic conductance, pH value, redox potential and oxygen content and concentrations of selected anions. The other part of the chemical diagnostics subsystem provides direct measurement of the degree of salt concentration in the steam generator water by means of microconductivity sensors. Each steam generator should be equipped with three sensors. (Z.M.). 2 figs

  1. Ultrasonic enhancement of chemical cleaning of steam generators. Final report

    International Nuclear Information System (INIS)

    Scharton, T.

    1983-04-01

    This report presents the results of an investigation into the use of ultrasound to enhance the chemical cleaning of steam generator tube and support crevices. Primary attention was focused on a configuration with ultrasonic transducers in the downcomer region of the steam generator in conjunction with the EPRI Steam Generator Owners Group (SGOG) crevice solvent at 200 0 F. The investigation consisted primarily of experiments conducted in facilities designed to simulate the geometry and acoustics of a steam generator. The largest facility holds approximately 1000 gallons of solvent and simulates a 40 0 sector of a steam generator with two support plates. The testing demonstrated that ultrasonics is indeed an effective means of enhancing the crevice cleaning if sound levels sufficient to cause cavitation can be transmitted to the crevices. The effort focused on the coupling of the transducers to the wrapper plate, on the transmission of sound through the tube bundle, and on the determination of cavitation threshold levels

  2. Disposal and handling of nuclear steam generator chemical cleaning wastes

    International Nuclear Information System (INIS)

    Larrick, A.P.; Schneidmiller, D.

    1978-01-01

    A large number of pressurized water nuclear reactor electrical generating plants have experienced a corrosion-related problem with their steam generators known as denting. Denting is a mechanical deformation of the steam generator tubes that occurs at the tube support plates. Corrosion of the tube support plates occurs within the annuli through which the tubes pass and the resulting corrosion oxides, which are larger in volume than the original metal, compress and deform the tubes. In some cases, the induced stresses have been severe enough to cause tube and/or support cracking. The problem was so severe at the Turkey Point and Surrey plants that the tubing is being replaced. For less severe cases, chemical cleaning of the oxides, and other materials which deposit in the annuli from the water, is being considered. A Department of Energy-sponsored program was conducted by Consolidated Edison Co. of New York which identified several suitable cleaning solvents and led to in-plant chemical cleaning pilot demonstrations in the Indian Point Unit 1 steam generators. Current programs to improve the technology are being conducted by the Electric Power Research Institute, and the three PWR NSSS vendors with the assistance of numerous consultants, vendors, and laboratories. These programs are expected to result in more effective, less corrosive solvents. However, after a chemical cleaning is conducted, a large problem still remains- that of disposing of the spent wastes. The paper summarizes some of the methods currently available for handling and disposal of the wastes

  3. Noble Gases in Lakes and Ground Waters

    OpenAIRE

    Kipfer, Rolf; Aeschbach-Hertig, Werner; Peeters, Frank; Stute, Marvin

    2002-01-01

    In contrast to most other fields of noble gas geochemistry that mostly regard atmospheric noble gases as 'contamination,' air-derived noble gases make up the far largest and hence most important contribution to the noble gas abundance in meteoric waters, such as lakes and ground waters. Atmospheric noble gases enter the meteoric water cycle by gas partitioning during air / water exchange with the atmosphere. In lakes and oceans noble gases are exchanged with the free atmosphere at the surface...

  4. Advanced chemical oxygen iodine lasers for novel beam generation

    Science.gov (United States)

    Wu, Kenan; Zhao, Tianliang; Huai, Ying; Jin, Yuqi

    2018-03-01

    Chemical oxygen iodine laser, or COIL, is an impressive type of chemical laser that emits high power beam with good atmospheric transmissivity. Chemical oxygen iodine lasers with continuous-wave plane wave output are well-developed and are widely adopted in directed energy systems in the past several decades. Approaches of generating novel output beam based on chemical oxygen iodine lasers are explored in the current study. Since sophisticated physical processes including supersonic flowing of gaseous active media, chemical reacting of various species, optical power amplification, as well as thermal deformation and vibration of mirrors take place in the operation of COIL, a multi-disciplinary model is developed for tracing the interacting mechanisms and evaluating the performance of the proposed laser architectures. Pulsed output mode with repetition rate as high as hundreds of kHz, pulsed output mode with low repetition rate and high pulse energy, as well as novel beam with vector or vortex feature can be obtained. The results suggest potential approaches for expanding the applicability of chemical oxygen iodine lasers.

  5. Chemical cleaning of PWR steam generators: application at Nogent 1

    International Nuclear Information System (INIS)

    Fiquet, J.M.; Veysset, J.P.; Esteban, L.; Saurin, P.

    1990-01-01

    EDF has developed and patented a chemical cleaning process for PWR steam generators, based on the use of a mixture of organic acids in order to: - dissolve iron oxides and copper with a single solution; - clean dented crevices. Qualification tests have permitted to demonstrate effectiveness of the solution and its inocuousness related to steam generator materials. The process, the license of which belongs to SOMAFER R.A. and FRAMATOME, has been implemented in France at Nogent. The goal was to dissolve iron oxides allowing metallic particles, aggregated on the tubesheet, to be released and mechanically removed. The effectiveness was satisfactory and this treatment is to be extended to other units [fr

  6. PWR steam generator chemical cleaning, Phase I. Final report

    International Nuclear Information System (INIS)

    Rothstein, S.

    1978-07-01

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the search sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI

  7. PWR steam generator chemical cleaning, Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rothstein, S.

    1978-07-01

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the search sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI.

  8. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms

    Science.gov (United States)

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.

    2016-06-01

    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.

  9. Selective noble gases monitoring

    International Nuclear Information System (INIS)

    Janecka, S.; Jancik, O.; Kapisovsky, V.; Kubik, I.; Sevecka, S.

    1995-01-01

    The monitoring of leak releases from ventilation stack of NPP requires a system by several orders more sensitive then currently used radiometer Kalina, designed to cover the range up to a design-based accident. To reach this goal a noble gases monitor with a germanium detector (MPVG) has been developed. It enables nuclide selective monitoring of current value of volume activity of particular nuclides in ventilation stack and daily releases of noble gases (balancing). MPVG can be viewed as a system build of three levels of subsystem: measuring level; control level; presentation level. Measuring level consists of gamma-spectroscopy system and operational parameters monitoring unit (flow rate, temperature, humidity). Control level provides communication between presentation and measuring level, acquisition of operational parameters and power supply. The presentation level of MPVG enables: 1) the measured data storage in predetermined time intervals; 2) the presentation of measured and evaluated values of radiation characteristics. The monitored radionuclides - default set: argon-41, krypton-85m, krypton-87, krypton-88, krypton-89, xenon-131m, xenon-133, xenon-133m, xenon-135, xenon-135m, xenon-137 and xenon-138. The values of volume activities observed at maximum releases have been approximately ten times higher. In that case in balancing some other nuclides exceed corresponding detection limits: 88 Kr(67; 22) Bq/m 3 ; 85m Kr(17; 7) Bq/m 3 ; 135m Xe(7.1; 0.5) Bq/m 3 ; 138 Xe(5.9; 0.9) Bq/m 3 . (J.K.)

  10. Noble gases solubility in water

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, Roberto.

    1980-07-01

    The available experimental data of solubility of noble gases in water for temperatures smaller than 330 0 C have been critically surveyed. Due to the unique structure of the solvent, the solubility of noble gases in water decreases with temperature passing through a temperature of minimum solubility which is different for each gas, and then increases at higher temperatures. As aresult of the analysis of the experimental data and of the features of the solute-solvent interaction, a generalized equation is proposed which enables thecalculation of Henry's coefficient at different temperatures for all noble gases. (author) [es

  11. Testing the noble gas paleothermometer with a yearlong study of groundwater noble gases in an instrumented monitoring well

    Science.gov (United States)

    Hall, Chris M.; Castro, M. Clara; Lohmann, Kyger C.; Sun, Tie

    2012-04-01

    We report the results of a yearlong noble gas study conducted in 2008-2009 together with continuous physical and chemical measurements collected in a monitoring well in an aquifer in southern Michigan. Conditions near the water table are correlated with noble gas concentrations, corresponding noble gas temperatures (NGTs), and precipitation events. This yearlong study is the first noble gas field test that has employed natural recharge and in situ monitored conditions, with minimal disturbance of the unsaturated zone. This detailed study demonstrates that significant changes in conditions near the water table can occur over a year that can greatly affect NGTs. Results show that precipitation events are detected within hours at the water table, but a lag in pressure response argues for a long time constant for gas transport within the unsaturated zone. There is strong evidence for the depletion of oxygen near the water table, which affects the noble gas air-saturated water component. During reducing conditions there is evidence for significant noble gas degassing. Rain from the passage of Hurricane Ike caused a significant shift in stable isotope ratios and injection of a large quantity of excess air and likely led to a much more oxygen-rich environment in the soil gas. Although individual models can account for NGTs over portions of the record, no single NGT model can account for all features observed over the entire study. It is likely that the NGT temperature proxy must be viewed as an average of recharge conditions over several years.

  12. Applicability of chemical cleaning process to steam generator secondary side, (3). Effect of chemical cleaning on long term integrity of steam generator tube after chemical cleaning process

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Fujiwara, Kazutoshi; Kanbe, Hiromi; Hirano, Hideo; Takiguchi, Hideki; Yoshino, Kouji; Yamamoto, Shuuichi; Shibata, Toshio; Ishigure, Kenkichi

    2006-01-01

    The application of the chemical cleaning process to dissolve and remove scales and sludge by chemicals is being planned at the Japanese pressurized water reactor (PWR) plant in order to maintain a designed heat transfer condition and to prevent the steam generator (SG) tube degradation. In this paper, the affects of the EPRI process and the KWU process on the long term integrity of SG tubing were investigated under the simulated SG condition using a SG model boiler test facility. No adverse effect of the both chemical cleaning processes on the long term integrity of SG tubing were observed. (author)

  13. Steam generator secondary side chemical cleaning at Gentilly-2

    International Nuclear Information System (INIS)

    Plante, S.

    2006-01-01

    After more than 20 years of operation, the secondary side of the four steam generators at Gentilly-2 were chemically cleaned during the 2005 annual outage. The FRAMATOME ANP high temperature cleaning process used to remove magnetite loading involved stepwise injection of solvent with PHT temperature in the range 160 o C to 175 o C. The heat required to maintain the PHT temperature was provided by the operation of the main PHT pumps and the reactor core residual heat. The temperature control was accomplished by the shutdown cooling system heat exchangers. A total of 1280 kg of magnetite was removed from the four steam generators. A copper-cleaning step was applied after the iron step. The PHT has been cooled down and the steam generators drained to temporary tanks and dried in preparation of the copper step. The process has been applied at room temperature, two boilers at a time. The solvent removed a total of 116 kg of copper. During the iron step, steam flow to the feedwater tank chemically contaminate the Balance Of Plant (BOP) systems. The isolation of this path should have been part of the G2 procedures. Around 700 m3 of water had to be drained to interim storage tanks for subsequent resin treatment before disposal. Visual inspection of BO1 tubesheet and first support plate showed clean surfaces without measurable sludge pile. Upper support plates visual inspection of BO4 revealed that broach holes blockage reported in 2000 is still present in peripheral area. Following the plant restart, the medium range level measurement instability observed since several years for BO3 was no more present. As anticipated, it also has been observed that the medium and wide range level measurements have shifted down as a result of downcomer flow increase after the cleaning. The cleaning objectives were achieved regarding the fouling reduction on the steam generators secondary side but broach holes blockage of the upper support plate is still present in periphery. (author)

  14. Origin of spontaneous wave generation in an oscillatory chemical system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi-Xue; Foerster, P.; Ross, J. [Stanford Univ., CA (United States)

    1992-10-29

    The origin of spontaneously generated chemical waves in an oscillatory Belousov-Zhabotinskii reaction has been investigated by numerical calculations of the deterministic reaction-diffusion equations of a modified Oregonator model and by equilibrium stochastic calculations. From numerical calculations, we obtain threshold perturbations in the phase of oscillations and in the concentrations of HBrO{sub 2} and Br{sup {minus}} within areas of space with varying radii necessary to initiate trigger waves. Inward propagating trigger waves initiated by a phase shift in the perturbed region with respect to the bulk solution have been observed in the calculations for the first time. Perturbations smaller than the threshold perturbations or in regions with smaller radii lead to phase-diffusion waves. Our equilibrium stochastic calculations show that the recurrence time for a thermal fluctuation to induce a change in the HBrO{sub 2} concentration of sufficient magnitude within a sufficient volume for a trigger wave to propagate is many orders of magnitude larger than the observation time of traveling wave experiments. We concluded that an internal thermal fluctuation is highly unlikely to generate a trigger wave in an oscillatory chemical solution. 22 refs., 5 figs., 7 tabs.

  15. Second-GenerationDrosophilaChemical Tags: Sensitivity, Versatility, and Speed.

    Science.gov (United States)

    Sutcliffe, Ben; Ng, Julian; Auer, Thomas O; Pasche, Mathias; Benton, Richard; Jefferis, Gregory S X E; Cachero, Sebastian

    2017-04-01

    Labeling and visualizing cells and subcellular structures within thick tissues, whole organs, and even intact animals is key to studying biological processes. This is particularly true for studies of neural circuits where neurons form submicron synapses but have arbors that may span millimeters in length. Traditionally, labeling is achieved by immunofluorescence; however, diffusion of antibody molecules (>100 kDa) is slow and often results in uneven labeling with very poor penetration into the center of thick specimens; these limitations can be partially addressed by extending staining protocols to over a week ( Drosophila brain) and months (mice). Recently, we developed an alternative approach using genetically encoded chemical tags CLIP, SNAP, Halo, and TMP for tissue labeling; this resulted in >100-fold increase in labeling speed in both mice and Drosophila , at the expense of a considerable drop in absolute sensitivity when compared to optimized immunofluorescence staining. We now present a second generation of UAS- and LexA-responsive CLIPf, SNAPf, and Halo chemical labeling reagents for flies. These multimerized tags, with translational enhancers, display up to 64-fold increase in sensitivity over first-generation reagents. In addition, we developed a suite of conditional reporters (4xSNAPf tag and CLIPf-SNAPf-Halo2) that are activated by the DNA recombinase Bxb1. Our new reporters can be used with weak and strong GAL4 and LexA drivers and enable stochastic, intersectional, and multicolor Brainbow labeling. These improvements in sensitivity and experimental versatility, while still retaining the substantial speed advantage that is a signature of chemical labeling, should significantly increase the scope of this technology. Copyright © 2017 Sutcliffe et al.

  16. Measuring the noble metal and iodine composition of extracted noble metal phase from spent nuclear fuel using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Palomares, R.I.; Dayman, K.J.; Landsberger, S.; Biegalski, S.R.; Soderquist, C.Z.; Casella, A.J.; Brady Raap, M.C.; Schwantes, J.M.

    2015-01-01

    Masses of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis. Nuclide presence is predicted using fission yield analysis, and radionuclides are identified and the masses quantified using neutron activation analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO 2 fuel dissolved in nitric acid and UO 2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. - Highlights: • The noble metal phase was chemically extracted from spent nuclear fuel and analyzed non-destructively. • Noble metal phase nuclides and long-lived iodine were identified and quantified using neutron activation analysis. • Activation to shorter-lived radionuclides allowed rapid analysis of long-lived fission products in spent fuel using gamma spectrometry

  17. Next Generation Surfactants for Improved Chemical Flooding Technology

    Energy Technology Data Exchange (ETDEWEB)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies

  18. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1993-10-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical waste to LBL's Hazardous Waste Handling Facility (HWHF). Hazardous chemical waste is a necessary byproduct of LBL's research and technical support activities. This waste must be handled properly if LBL is to operate safely and provide adequate protection to staff and the environment. These guidelines describe how you, as a generator of hazardous chemical waste, can meet LBL's acceptance criteria for hazardous chemical waste

  19. The Inert and the Noble

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 3. The Inert and the Noble. A G Samuelson. Article-in-a-Box Volume 4 Issue 3 March 1999 pp 3-5 ... Author Affiliations. A G Samuelson1. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India.

  20. TSCA Chemical Data Reporting Fact Sheet: Reporting for Electricity Generating Sites

    Science.gov (United States)

    This fact sheet provides information on existing Chemical Data Reporting (CDR) rule requirements related to the reporting of chemical substances manufactured during operations conducted at electricity generating sites, such as utilities.

  1. Reviews on Fuel Cell Technology for Valuable Chemicals and Energy Co-Generation

    OpenAIRE

    Wisitsree Wiyaratn

    2010-01-01

    This paper provides a review of co-generation process in fuel cell type reactor to produce valuable chemical compounds along with electricity. The chemicals and energy co-generation processes have been shown to be a promising alternative to conventional reactors and conventional fuel cells with pure water as a byproduct. This paper reviews researches on chemicals and energy co-generation technologies of three types of promising fuel cell i.e. solid oxide fuel cell (SOFC), alkaline fuel cell (...

  2. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs

  3. On the methodology of radiochemical neutron activation analysis of noble metals

    International Nuclear Information System (INIS)

    Chai, C.F.; Ma, S.L.; Mao, X.Y.; Liao, K.N.; Liu, W.C.

    1986-01-01

    Two different radiochemical procedures were developed: chelate ion resin exchange and amine solvent extraction. Two kinds of new Chinese chelate resins (NANKAI-3926 and BEI-5) and a new long-chain primary amine N 1923 were compared with Srafion NMRR and the tertiary amine N 235 in absorption performance of noble metals, respectively. Influences of various experimental conditions, e.g. sample digestion, acidity, equilibrium time, as well as elution of noble metals, on analytical sensitivity and chemical yield were discussed. Combining with neutron activation, the radiochemical separation procedures developed were used to determine the noble metal contents in the geological samples from Permina/Triassic boundary in South China. (author)

  4. Noble-Metal Chalcogenide Nanotubes

    Directory of Open Access Journals (Sweden)

    Nourdine Zibouche

    2014-10-01

    Full Text Available We explore the stability and the electronic properties of hypothetical noble-metal chalcogenide nanotubes PtS2, PtSe2, PdS2 and PdSe2 by means of density functional theory calculations. Our findings show that the strain energy decreases inverse quadratically with the tube diameter, as is typical for other nanotubes. Moreover, the strain energy is independent of the tube chirality and converges towards the same value for large diameters. The band-structure calculations show that all noble-metal chalcogenide nanotubes are indirect band gap semiconductors. The corresponding band gaps increase with the nanotube diameter rapidly approaching the respective pristine 2D monolayer limit.

  5. Noble-Metal Nanocrystals with Controlled Facets for Electrocatalysis.

    Science.gov (United States)

    Hong, Jong Wook; Kim, Yena; Kwon, Yongmin; Han, Sang Woo

    2016-08-19

    Noble-metal nanocrystals (NCs) show excellent catalytic performance for many important electrocatalysis reactions. The crystallographic properties of the facets by which the NCs are bound, closely associated with the shape of the NCs, have a profound influence on the electrocatalytic function of the NCs. To develop an efficient strategy for the synthesis of NCs with controlled facets as well as compositions, understanding of the growth mechanism of the NCs and their interaction with the chemical species involved in NC synthesis is quite important. Furthermore, understanding the facet-dependent catalytic properties of noble-metal NCs and the corresponding mechanisms for various electrocatalysis reactions will allow for the rational design of robust electrocatalysts. In this review, we summarize recently developed synthesis strategies for the preparation of mono- and bimetallic noble-metal NCs by classifying them by the type of facets through which they are enclosed and discuss the electrocatalytic applications of noble-metal NCs with controlled facets, especially for reactions associated with fuel-cell applications, such as the oxygen reduction reaction and fuel (methanol, ethanol, and formic acid) oxidation reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field

    Science.gov (United States)

    Barry, P. H.; Lawson, M.; Meurer, W. P.; Warr, O.; Mabry, J. C.; Byrne, D. J.; Ballentine, C. J.

    2016-12-01

    Noble gases are chemically inert and variably soluble in crustal fluids. They are primarily introduced into hydrocarbon reservoirs through exchange with formation waters, and can be used to assess migration pathways and mechanisms, as well as reservoir storage conditions. Of particular interest is the role groundwater plays in hydrocarbon transport, which is reflected in hydrocarbon-water volume ratios. Here, we present compositional, stable isotope and noble gas isotope and abundance data from the Sleipner Vest field, in the Norwegian North Sea. Sleipner Vest gases are generated from primary cracking of kerogen and the thermal cracking of oil. Gas was emplaced into the Sleipner Vest from the south and subsequently migrated to the east, filling and spilling into the Sleipner Ost fields. Gases principally consist of hydrocarbons (83-93%), CO2 (5.4-15.3%) and N2 (0.6-0.9%), as well as trace concentrations of noble gases. Helium isotopes (3He/4He) are predominantly radiogenic and range from 0.065 to 0.116 RA; reported relative to air (RA = 1.4 × 10-6; Clarke et al., 1976; Sano et al., 1988), showing predominantly (>98%) crustal contributions, consistent with Ne (20Ne/22Ne from 9.70 to 9.91; 21Ne/22Ne from 0.0290 to 0.0344) and Ar isotopes (40Ar/36Ar from 315 to 489). Air-derived noble gas isotopes (20Ne, 36Ar, 84Kr, 132Xe) are introduced into the hydrocarbon system by direct exchange with air-saturated water (ASW). The distribution of air-derived noble gas species are controlled by phase partitioning processes; in that they preferentially partition into the gas (i.e., methane) phase, due to their low solubilities in fluids. Therefore, the extent of exchange between hydrocarbon phases and formation waters - that have previously equilibrated with the atmosphere - can be determined by investigating air-derived noble gas species. We utilize both elemental ratios to address process (i.e., open vs. closed system) and concentrations to quantify the extent of hydrocarbon

  7. Fractal sets generated by chemical reactions discrete chaotic dynamics

    International Nuclear Information System (INIS)

    Gontar, V.; Grechko, O.

    2007-01-01

    Fractal sets composed by the parameters values of difference equations derived from chemical reactions discrete chaotic dynamics (DCD) and corresponding to the sequences of symmetrical patterns were obtained in this work. Examples of fractal sets with the corresponding symmetrical patterns have been presented

  8. Chemical Plant Accidents in a Nuclear Hydrogen Generation Scheme

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Revankar, Shripad T.

    2011-01-01

    A high temperature nuclear reactor (HTR) could be used to drive a steam reformation plant, a coal gasification facility, an electrolysis plant, or a thermochemical hydrogen production cycle. Most thermochemical cycles are purely thermodynamic, and thus achieve high thermodynamic efficiency. HTRs produce large amounts of heat at high temperature (1100 K). Helium-cooled HTRs have many passive, or inherent, safety characteristics. This inherent safety is due to the high design basis limit of the maximum fuel temperature. Due to the severity of a potential release, containment of fission products is the single most important safety issue in any nuclear reactor facility. A HTR coupled to a chemical plant presents a complex system, due primarily to the interactive nature of both plants. Since the chemical plant acts as the heat sink for the nuclear reactor, it important to understand the interaction and feedback between the two systems. Process heat plants and HTRs are generally very different. Some of the major differences include: time constants of plants, safety standards, failure probability, and transient response. While both the chemical plant and the HTR are at advanced stages of testing individually, no serious effort has been made to understand the operation of the integrated system, especially during accident events that are initiated in the chemical plant. There is a significant lack of knowledge base regarding scaling and system integration for large scale process heat plants coupled to HTRs. Consideration of feedback between the two plants during time-dependent scenarios is absent from literature. Additionally, no conceptual studies of the accidents that could occur in either plant and impact the entire coupled system are present in literature

  9. Efficient and Safe Chemical Gas Generators with Nanocomposite Reactive Materials

    Science.gov (United States)

    2015-11-30

    Marco A. Machado, Daniel A. Rodriguez, Yasmine Aly, Mirko Schoenitz, Edward L. Dreizin, Evgeny Shafirovich. Nanocomposite and mechanically alloyed...Marco Machado, Daniel Rodriguez, Yasmine Aly, Mirko Schoenitz, Edward Dreizin, Evgeny Shafirovich. Nanocomposite and mechanically alloyed reactive...Rodriguez, Marco Machado, Yasmine Aly, Mirko Schoenitz, Edward Dreizin, Evgeny Shafirovich. Combustible mixtures for oxygen and hydrogen generation based on

  10. Chemical characterization and local dispersion of slag generated by ...

    African Journals Online (AJOL)

    SAM

    2014-05-07

    May 7, 2014 ... Pb from acid batteries includes their rupture, draining of the acid, separation of the components containing Pb and its recovery by smelting (Faé et al., 2011). During the smelting process, a solid material called "slag" is generated. It contains a high concentration of Pb, among other toxic elements (Coya et al.

  11. Noble-Metal-Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production.

    Science.gov (United States)

    Yuan, Yong-Jun; Lu, Hong-Wei; Yu, Zhen-Tao; Zou, Zhi-Gang

    2015-12-21

    Photocatalytic water splitting using powered semiconductors as photocatalysts represents a promising strategy for clean, low-cost, and environmentally friendly production of H2 utilizing solar energy. The loading of noble-metal cocatalysts on semiconductors can significantly enhance the solar-to-H2 conversion efficiency. However, the high cost and scarcity of noble metals counter their extensive utilization. Therefore, the use of alternative cocatalysts based on non-precious metal materials is pursued. Nanosized MoS2 cocatalysts have attracted considerable attention in the last decade as a viable alternative to improve solar-to-H2 conversion efficiency because of its superb catalytic activity, excellent stability, low cost, availability, environmental friendliness, and chemical inertness. In this perspective, the design, structures, synthesis, and application of MoS2 -based composite photocatalysts for solar H2 generation are summarized, compared, and discussed. Finally, this Review concludes with a summary and remarks on some challenges and opportunities for the future development of MoS2 -based photocatalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dealloyed Ruthenium Film Catalysts for Hydrogen Generation from Chemical Hydrides

    Directory of Open Access Journals (Sweden)

    Ramis B. Serin

    2017-07-01

    Full Text Available Thin-film ruthenium (Ru and copper (Cu binary alloys have been prepared on a Teflon™ backing layer by cosputtering of the precious and nonprecious metals, respectively. Alloys were then selectively dealloyed by sulfuric acid as an etchant, and their hydrogen generation catalysts performances were evaluated. Sputtering time and power of Cu atoms have been varied in order to tailor the hydrogen generation performances. Similarly, dealloying time and the sulfuric acid concentration have also been altered to tune the morphologies of the resulted films. A maximum hydrogen generation rate of 35 mL min−1 was achieved when Cu sputtering power and time were 200 W and 60 min and while acid concentration and dealloying time were 18 M and 90 min, respectively. It has also been demonstrated that the Ru content in the alloy after dealloying gradually increased with the increasing the sputtering power of Cu. After 90 min dealloying, the Ru to Cu ratio increased to about 190 times that of bare alloy. This is the key issue for observing higher catalytic activity. Interestingly, we have also presented template-free nanoforest-like structure formation within the context of one-step alloying and dealloying used in this study. Last but not least, the long-time hydrogen generation performances of the catalysts system have also been evaluated along 3600 min. During the first 600 min, the catalytic activity was quite stable, while about 24% of the catalytic activity decayed after 3000 min, which still makes these systems available for the development of robust catalyst systems in the area of hydrogen generation.

  13. Noble gases in meteorites and terrestrial planets

    Science.gov (United States)

    Wacker, J. F.

    1985-01-01

    Terrestrial planets and chondrites have noble gas platforms that are sufficiently alike, especially Ne/Ar, that they may have acquired their noble gases by similar processes. Meteorites presumably obtained their noble gases during formation in the solar nebula. Adsorption onto C - the major gas carrier in chondrites - is the likely mechanism for trapping noble gases; recent laboratory simulations support this hypothesis. The story is more complex for planets. An attractive possibility is that the planets acquired their noble gases in a late accreting veneer of chondritic material. In chondrites, noble gases correlate with C, N, H, and volatile metals; by Occam's Razor, we would expect a similar coupling in planets. Indeed, the Earth's crust and mantle contain chondritic like trace volatiles and PL group metals, respectively and the Earth's oceans resemble C chondrites in their enrichment of D (8X vs 8-10X of the galactic D/H ratio). Models have been proposed to explain some of the specific noble gas patterns in planets. These include: (1) noble gases may have been directly trapped by preplanetary material instead of arriving in a veneer; (2) for Venus, irradiation of preplanetary material, followed by diffusive loss of Ne, could explain the high concentration of AR-36; (3) the Earth and Venus may have initially had similar abundances of noble gases, but the Earth lost its share during the Moon forming event; (4) noble gases could have been captured by planetestimals, possibly leading to gravitational fractionation, particularly of Xe isotopes and (5) noble gases may have been dissolved in the hot outer portion of the Earth during contact with a primordial atmosphere.

  14. Treatment systems for liquid wastes generated in chemical analysis laboratories

    International Nuclear Information System (INIS)

    Linda Berrio; Oscar Beltran; Edison Agudelo; Santiago Cardona

    2012-01-01

    Nowadays, handling of liquid wastes from chemical analysis laboratories is posing problems to different public and private organizations because of its requirements of an integrated management. This article reviews various treatment technologies and its removal efficiencies in order to establish criteria for selecting the system and the appropriate variables to achieve research objectives as well as environmental sustainability. Review begins with a description of the problem and continues with the study of treatments for laboratory wastes. These technologies are segregated into physicochemical and biological treatments that comprise a variety of processes, some of which are considered in this review.

  15. LASTRON - Second generation accelerators and chemical reactors for EBFGT facilities

    International Nuclear Information System (INIS)

    Edinger, R.

    2011-01-01

    Commercializing reliable affordable electron beam flue gas treatment technology requires both, the optimization of accelerator technology and chemical reaction chambers. Moreover, this engineering process involves the integration of beam specific characteristics, such as dosage distribution and penetration of electrons into the flue gas stream. In consideration of the treatment economy, it might be required to calculate the overall process performance without merely limiting the evaluation to accelerator efficiency. For example, a higher energy beam, 1MeV to 2 MeV, reduces the losses in the beam window and penetrates further into the gas stream and, therefore, increases the overall process economy. The energy distribution should be optimized with respect to the configuration of the chemical reaction chamber in order to treat the flue gas uniformly. All these measures are required to achieve high removal rates in large flue gas streams. Today removal rates of more than 99% SO x and more than 80% SO x are required to be compliant with future emission legislations. It is planed to establish a 100,000m³ electron beam flue gas treatment facility that can achieve constant removal rates of higher than 99.4% SO x and more than 80% NO x . The high removal rates would allow us to place CO 2 capture technologies down stream of the EBFGT facility. (author)

  16. COIL Operation with All-Gas Chemical Generation of Atomic Iodine

    National Research Council Canada - National Science Library

    Kodymova, Jarmila

    2005-01-01

    ...) Experimental investigation of kinetics of atomic iodine generation via F atoms based on the chemical reaction of F2 with NO, and a sequential reaction of F with HI performed on a small-scale device...

  17. Noble Gases Trace Earth's Subducted Water Flux

    Science.gov (United States)

    Smye, A.; Jackson, C.; Konrad-Schmolke, M.; Parman, S. W.; Ballentine, C. J.

    2016-12-01

    Volatile elements are transported from Earth's surface reservoirs back into the mantle during subduction of oceanic lithosphere [e.g. 1]. Here, we investigate the degree to which the fate of slab-bound noble gases and water are linked through the subduction process. Both water and noble gases are soluble in ring-structured minerals, such as amphibole, that are common constituents of subducted oceanic lithosphere. Heating and burial during subduction liberates noble gases and water from minerals through a combination of diffusion and dissolution. Combining a kinetic model, parameterized for noble gas fractionation in amphibole [2], with thermodynamic phase equilibria calculations, we quantify the effect of subduction dehydration on the elemental composition of slab-bound noble gases. Results show that post-arc slab water and noble gas fluxes are highly correlated. Hot subduction zones, which likely dominate over geologic history, efficiently remove noble gases and water from the down-going slab; furthermore, kinetic fractionation of noble gases is predicted to occur beneath the forearc. Conversely, hydrated portions of slab mantle in cold subduction zones transport noble gases and water to depths exceeding 200 km. Preservation of seawater-like abundances of Ar, Kr and Xe in the convecting mantle [1] implies that recycling of noble gases and water occurred during cold subduction and that the subduction efficiency of these volatile elements has increased over geological time, driven by secular cooling of the mantle. [1] Holland, G. and Ballentine, C. (2006). Nature 441, 186-191. [2] Jackson et al. (2013). Nat.Geosci. 6, 562-565.

  18. Acute mixture toxicity of halogenated chemicals and their next generation counterparts on zebrafish embryos.

    Science.gov (United States)

    Godfrey, Amy; Abdel-Moneim, Ahmed; Sepúlveda, Maria S

    2017-08-01

    Perfluorinated chemicals and flame retardants are halogenated compounds commonly used in food packaging and in clothing and electronics, respectively. Due to the hazardous effects of many of these chemicals, manufacturers are developing next generation potential less toxic alternatives. The objective of this study was to assess the toxicity of potentially "safer" alternatives, singly and in mixtures, in relation to their first generation counterparts. We used zebrafish embryos as our model organism due to its high structural and functional homology to other vertebrates and its suitability for early developmental studies. We tested three well studied halogens, perfluorooctanoic acid (PFOA), tris (1,3-dichloro-2-propyl) phosphate (TDCPP) and tetrabromobisphenal A (TBBPA), and two less-studied next generation chemicals, 9,10-Dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) and perfluorobutyric acid (PFBA). First, we identified their lethal concentration (LC 50 ) under 96 h exposures using zebrafish embryos; chemical LC50 values ranged from 1.3 to 13,795 ppm. Next, we tested the toxicity of tertiary mixtures containing the estimated LC 50 values for each chemical which ranged from 126 to 5,094 ppm. We found that chemicals within these mixtures displayed concentration addition suggesting a similar mode of toxic action. Importantly, next generation chemicals were less acutely toxic singly and in mixtures than their first generation counterpart. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Chemical vapour generation of silver: reduced palladium as permanent reaction modifier for enhanced performance

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Tomáš; Sturgeon, R. E.

    2004-01-01

    Roč. 19, č. 8 (2004), s. 1014-1017 ISSN 0267-9477 R&D Projects: GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : chemical vapour generation * chemical modification * silver Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.926, year: 2004

  20. A study on the steam generator data base and the evaluation of chemical environment

    International Nuclear Information System (INIS)

    Yang, Kyung Rin; Yoo, Je Hyoo; Lee, Eun He; Hong, Kwang Pum

    1990-01-01

    In order to make steam generator data base, the basic plant information and water quality control data on the steam generators of the PWR nuclear power plant operating in the world have been collected by EPRI. In this project, the basic information and water quality control data of the domestic PWR nuclear power plants were collected to make steam generator data base on the basic of the EPRI format table, and the computerization of them was performed. Also, the technical evaluation of chemical environments on steam generator of the Kori 2 plant chemists. Workers and researchers working at the research institute and universities and so on. Especially, it is able to be used as a basic plant information in order to develop an artificial intellegence development system in the field on the technical development of the chemical environment. The scope and content of the project are following. The data base on the basic information data in domestic PWR plant. The steam generator data base on water quality control data. The evaluation on the chemical environment in the steam generators of the Kori 2 plant. From previous data, it is concluded as follows. The basic plant information on the domestic PWR power plant were computerized. The steam generator data base were made on the basis of EPRI format table. The chemical environment of the internal steam generators could be estimated from the analytical evaluation of water quality control data of the steam generator blowdown. (author)

  1. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    Science.gov (United States)

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  2. Development of the chemical oxygen-iodine laser (COIL) with chemical generation of atomic iodine

    Czech Academy of Sciences Publication Activity Database

    Kodymová, Jarmila; Špalek, Otomar; Jirásek, Vít; Čenský, Miroslav; Hager, G. D.

    2003-01-01

    Roč. 77, - (2003), s. 331-336 ISSN 0947-8396 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z1010914 Keywords : atomic iodine * atomic chlorine * chemical oxygen-iodine laser(COIL) Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.220, year: 2003

  3. Subsurface Noble Gas Sampling Manual

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, C. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-18

    The intent of this document is to provide information about best available approaches for performing subsurface soil gas sampling during an On Site Inspection or OSI. This information is based on field sampling experiments, computer simulations and data from the NA-22 Noble Gas Signature Experiment Test Bed at the Nevada Nuclear Security Site (NNSS). The approaches should optimize the gas concentration from the subsurface cavity or chimney regime while simultaneously minimizing the potential for atmospheric radioxenon and near-surface Argon-37 contamination. Where possible, we quantitatively assess differences in sampling practices for the same sets of environmental conditions. We recognize that all sampling scenarios cannot be addressed. However, if this document helps to inform the intuition of the reader about addressing the challenges resulting from the inevitable deviations from the scenario assumed here, it will have achieved its goal.

  4. Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications.

    Science.gov (United States)

    Fan, Zhanxi; Zhang, Hua

    2016-12-20

    Noble metal nanocrystals own high chemical stability, unique plasmonic and distinctive catalytic properties, making them outstanding in many applications. However, their practical applications are limited by their high cost and scarcity on the earth. One promising strategy to solve these problems is to boost their catalytic performance in order to reduce their usage amount. To realize this target, great research efforts have been devoted to the size-, composition-, shape- and/or architecture-controlled syntheses of noble metal nanocrystals during the past two decades. Impressively, recent experimental studies have revealed that the crystal structure of noble metal nanocrystals can also significantly affect their physicochemical properties, such as optical, magnetic, catalytic, mechanical, electrical and electronic properties. Therefore, besides the well-established size, composition, shape, and architecture control, the rise of crystal structure-controlled synthesis of noble metal nanocrystals will open up new opportunities to further improve their functional properties, and thus promote their potential applications in energy conversion, catalysis, biosensing, information storage, surface enhanced Raman scattering, waveguide, near-infrared photothermal therapy, controlled release, bioimaging, biomedicine, and so on. In this Account, we review the recent research progress on the crystal structure control of noble metal nanocrystals with a template synthetic approach and their crystal structure-dependent catalytic properties. We first describe the template synthetic methods, such as epitaxial growth and galvanic replacement reaction methods, in which a presynthesized noble metal nanocrystal with either new or common crystal structure is used as the template to direct the growth of unusual crystal structures of other noble metals. Significantly, the template synthetic strategy described here provides an efficient, simple and straightforward way to synthesize unusual

  5. NONDESTRUCTIVE IDENTIFICATION OF CHEMICAL WARFARE AGENTS AND EXPLOSIVES BY NEUTRON GENERATOR-DRIVEN PGNAA

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Twomey; A. J. Caffrey; D. L. Chichester

    2007-02-01

    Prompt gamma-ray neutron activation analysis (PGNAA) is now a proven method for the identification of chemical warfare agents and explosives in military projectiles and storage containers. Idaho National Laboratory is developing a next-generation PGNAA instrument based on the new Ortec Detective mechanically-cooled HPGe detector and a neutron generator. In this paper we review PGNAA analysis of suspect chemical warfare munitions, and we discuss the advantages and disadvantages of replacing the californium-252 radioisotopic neutron source with a compact accelerator neutron generator.

  6. NONDESTRUCTIVE IDENTIFICATION OF CHEMICAL WARFARE AGENTS AND EXPLOSIVES BY NEUTRON GENERATOR-DRIVEN PGNAA

    International Nuclear Information System (INIS)

    T. R. Twomey; A. J. Caffrey; D. L. Chichester

    2007-01-01

    Prompt gamma-ray neutron activation analysis (PGNAA) is now a proven method for the identification of chemical warfare agents and explosives in military projectiles and storage containers. Idaho National Laboratory is developing a next-generation PGNAA instrument based on the new Ortec Detective mechanically-cooled HPGe detector and a neutron generator. In this paper we review PGNAA analysis of suspect chemical warfare munitions, and we discuss the advantages and disadvantages of replacing the californium-252 radioisotopic neutron source with a compact accelerator neutron generator

  7. CHEMICAL OXYGEN-IODINE LASER BASED ON HIGH PRESSURE SINGLET GENERATOR

    OpenAIRE

    Zagidullin, M.; Nikolaev, V.; Kurov, A.; Svistun, M.; Yerasov, N.

    1991-01-01

    The singlet oxygen generator based on the injection of jets of the base hydrogen peroxide solution into chlorine flow has been developed. The optimal parameters of the jet generator were found to achieve efficient chlorine uti1ization and high [MATH] yield up to the pressures of 30 torr. The chemical oxygen-iodine laser performance without water vapor trap up to 30 torr of the generator pressure has been attained.

  8. PWR steam generator chemical cleaning. Phase I: solvent and process development. Volume II

    International Nuclear Information System (INIS)

    Larrick, A.P.; Paasch, R.A.; Hall, T.M.; Schneidmiller, D.

    1979-01-01

    A program to demonstrate chemical cleaning methods for removing magnetite corrosion products from the annuli between steam generator tubes and the tube support plates in vertical U-tube steam generators is described. These corrosion products have caused steam generator tube ''denting'' and in some cases have caused tube failures and support plate cracking in several PWR generating plants. Laboratory studies were performed to develop a chemical cleaning solvent and application process for demonstration cleaning of the Indian Point Unit 2 steam generators. The chemical cleaning solvent and application process were successfully pilot-tested by cleaning the secondary side of one of the Indian Point Unit 1 steam generators. Although the Indian Point Unit 1 steam generators do not have a tube denting problem, the pilot test provided for testing of the solvent and process using much of the same equipment and facilities that would be used for the Indian Point Unit 2 demonstration cleaning. The chemical solvent selected for the pilot test was an inhibited 3% citric acid-3% ascorbic acid solution. The application process, injection into the steam generator through the boiler blowdown system and agitation by nitrogen sparging, was tested in a nuclear environment and with corrosion products formed during years of steam generator operation at power. The test demonstrated that the magnetite corrosion products in simulated tube-to-tube support plate annuli can be removed by chemical cleaning; that corrosion resulting from the cleaning is not excessive; and that steam generator cleaning can be accomplished with acceptable levels of radiation exposure to personnel

  9. 21 CFR 872.3060 - Noble metal alloy.

    Science.gov (United States)

    2010-04-01

    ... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver, that... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food...

  10. Recovery and use of fission product noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value. (DLC)

  11. Recovery and use of fission product noble metals

    International Nuclear Information System (INIS)

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value

  12. Noble metal superparticles and methods of preparation thereof

    Science.gov (United States)

    Sun, Yugang; Hu, Yongxing

    2016-07-12

    A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution is cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.

  13. Advanced All-Gas Chemical Generation of Atomic Iodine for a COIL, and Testing the COIL Operation Including This Method of Atomic Iodine Generation

    National Research Council Canada - National Science Library

    Kodymova, Jarmila; Spalek, Otomar; Jirasek, Vit; Censky, Miroslav

    2004-01-01

    This report results from a contract tasking Academy of Sciences as follows: The Grantee will investigate advanced methods for chemical generation of atomic iodine for a Chemical Oxygen-Iodine Laser (COIL...

  14. Noble gases and the early history of the Earth: Inappropriate paradigms and assumptions inhibit research and communication

    Science.gov (United States)

    Huss, G. R.; Alexander, E. C., Jr.

    1985-01-01

    The development of models as tracers of nobel gases through the Earth's evolution is discussed. A new set of paradigms embodying present knowledge was developed. Several important areas for future research are: (1) measurement of the elemental and isotopic compositions of the five noble gases in a large number of terrestrial materials, thus better defining the composition and distribution of terrestrial noble gases; (2) determinations of relative diffusive behavior, chemical behavior, and the distribution between solid and melt of noble gases under mantle conditions are urgently needed; (3) disequilibrium behavior in the nebula needs investigation, and the behavior of plasmas and possible cryotrapping on cold nebular solids are considered.

  15. Chemical name extraction based on automatic training data generation and rich feature set.

    Science.gov (United States)

    Yan, Su; Spangler, W Scott; Chen, Ying

    2013-01-01

    The automation of extracting chemical names from text has significant value to biomedical and life science research. A major barrier in this task is the difficulty of getting a sizable and good quality data to train a reliable entity extraction model. Another difficulty is the selection of informative features of chemical names, since comprehensive domain knowledge on chemistry nomenclature is required. Leveraging random text generation techniques, we explore the idea of automatically creating training sets for the task of chemical name extraction. Assuming the availability of an incomplete list of chemical names, called a dictionary, we are able to generate well-controlled, random, yet realistic chemical-like training documents. We statistically analyze the construction of chemical names based on the incomplete dictionary, and propose a series of new features, without relying on any domain knowledge. Compared to state-of-the-art models learned from manually labeled data and domain knowledge, our solution shows better or comparable results in annotating real-world data with less human effort. Moreover, we report an interesting observation about the language for chemical names. That is, both the structural and semantic components of chemical names follow a Zipfian distribution, which resembles many natural languages.

  16. Shear bond strength of a ceromer to noble and base metal alloys

    Directory of Open Access Journals (Sweden)

    Dorriz H.

    2006-08-01

    Full Text Available Background and Aim: The improvement of the physical and chemical properties of resins as well as great advances achieved in the field of chemical bonding of resin to metal has changed the trend of restorative treatments. Today the second generation of laboratory resins have an important role in the restoration of teeth. The clinical bond strength should be reliable in order to gain successful results. In this study the shear bond strength (SBS between targis (a ceromer and two alloys (noble and base metal was studied and the effect of thermocycling on the bond investigated. Materials and Methods: In this experimental study, alloys samples were prepared according to the manufacturer. After sandblasting of bonding surfaces with 50µ AI2o3 Targis was bonded to the alloy using Targis I link. All of the samples were placed in 37°C water for a period of 24 hours. Then half of the samples were subjected to 1000 cycles of thermocycling at temperatures of 5°C and 55°C. Planear shear test was used to test the bond strength in the Instron machine with the speed rate of 0.5mm/min. Data were analyzed by SPSS software. Two-way analysis of variance was used to compare the bond strength among the groups. T test was used to compare the alloys. The influence of thermocycling and alloy type on bond strength was studied using Mann Whitney test. P<0.05 was considered as the limit of significance. Result: The studied alloys did not differ significantly, when the samples were not thermocycled (P=0.136 but after thermocycling a significant difference was observed in SBS of resin to different alloys (P=000.1. Thermal stress and alloy type had significant interaction, with regard to shear bond strength (P=0.003. There was a significant difference in SBS before and after thermocycling in noble alloys (P=0.009, but this was not true in base metals (P=0.29. Maximum SBS (19.09 Mpa belonged to Degubond 4, before thermocycling. Minimum SBS (8.21 Mpa was seen in Degubond 4

  17. Reviews on Fuel Cell Technology for Valuable Chemicals and Energy Co-Generation

    Directory of Open Access Journals (Sweden)

    Wisitsree Wiyaratn

    2010-07-01

    Full Text Available This paper provides a review of co-generation process in fuel cell type reactor to produce valuable chemical compounds along with electricity. The chemicals and energy co-generation processes have been shown to be a promising alternative to conventional reactors and conventional fuel cells with pure water as a byproduct. This paper reviews researches on chemicals and energy co-generation technologies of three types of promising fuel cell i.e. solid oxide fuel cell (SOFC, alkaline fuel cell (AFC, and proton exchange membrane fuel cell (PEMFC. In addition, the research studies on applications of SOFCs, AFCs, and PEMFCs with chemical production (i.e. nitric oxide, formaldehyde, sulfur oxide, C2 hydrocarbons, alcohols, syngas and hydrogen peroxide were also given. Although, it appears that chemicals and energy co-generation processes have potential to succeed in commercial applications, the development of cheaper catalyst materials with longer stability ,and understanding in thermodynamic are still challenging to improve the overall system performance and enable to use in commercial market.

  18. PWR steam generator chemical cleaning. Phase I: Final report, Volume I

    International Nuclear Information System (INIS)

    1978-07-01

    Two chemical cleaning solvent systems and two application methods were developed to remove the sludge in nuclear steam generators and to remove the corrosion products in the annuli between the steam generator tubes and the support plates. Laboratory testing plus subsequent pilot testing has demonstrated that, in a reasonable length of time, both solvents are capable of dissolving significant amounts of sludge, and of dissolving tightly packed magnetite in tube/support plate crevices. Further, tests have demonstrated that surface losses of the materials of construction in steam generators can be controlled to acceptable limits for the duration of the required cleaning period. Areas requiring further study and test have been identified, and a preliminary procedure for chemical cleaning nuclear steam generators has been chosen subject to quantification based on additional tests prior to actual in-plant demonstration

  19. Importance of deposit information in the design and execution of steam generator chemical cleaning

    International Nuclear Information System (INIS)

    Flores, O.; Remark, J.

    1997-01-01

    During the planning stages of the chemical cleaning of the San Onofre Nuclear Generating Station (SONGS) units 2 and 3 steam generators, it was determined that an understanding of the steam generator deposit loading and composition was essential to the design and success of the project. It was also determined that qualification testing, preferably with actual deposits from the SONGS steam generators, was also essential. SONGS units 2 and 3 have Combustion Engineering (CE)-designed pressurized water reactors. Each unit has two CE model 3410 steam generators. Each steam generator has 9350 alloy 600 tubes with 1.9-cm (3/4 in.) outside diameter. Unit 2 began commercial operation in 1983, and unit 3, in 1984. The purpose of this technical paper is to explain the effort and methodology for deposit composition, characterization, and quantification. In addition, the deposit qualification testing and design of the cleaning are discussed

  20. Experimental studies and model analysis of noble gas fractionation in porous media

    Science.gov (United States)

    Ding, Xin; Kennedy, B. Mack.; Evans, William C.; Stonestrom, David A.

    2016-01-01

    The noble gases, which are chemically inert under normal terrestrial conditions but vary systematically across a wide range of atomic mass and diffusivity, offer a multicomponent approach to investigating gas dynamics in unsaturated soil horizons, including transfer of gas between saturated zones, unsaturated zones, and the atmosphere. To evaluate the degree to which fractionation of noble gases in the presence of an advective–diffusive flux agrees with existing theory, a simple laboratory sand column experiment was conducted. Pure CO2 was injected at the base of the column, providing a series of constant CO2 fluxes through the column. At five fixed sampling depths within the system, samples were collected for CO2 and noble gas analyses, and ambient pressures were measured. Both the advection–diffusion and dusty gas models were used to simulate the behavior of CO2 and noble gases under the experimental conditions, and the simulations were compared with the measured depth-dependent concentration profiles of the gases. Given the relatively high permeability of the sand column (5 ´ 10−11 m2), Knudsen diffusion terms were small, and both the dusty gas model and the advection–diffusion model accurately predicted the concentration profiles of the CO2 and atmospheric noble gases across a range of CO2 flux from ?700 to 10,000 g m−2 d−1. The agreement between predicted and measured gas concentrations demonstrated that, when applied to natural systems, the multi-component capability provided by the noble gases can be exploited to constrain component and total gas fluxes of non-conserved (CO2) and conserved (noble gas) species or attributes of the soil column relevant to gas transport, such as porosity, tortuosity, and gas saturation.

  1. On the calculation of lattice parameters of solid solutions on the basis of noble metals

    International Nuclear Information System (INIS)

    Barsukov, A.D.; Zhuravleva, N.S.; Ageeva, G.N.; Pedos, A.A.

    1996-01-01

    Lattice constants for noble metal solid solutions have been calculated taking into account atomic volumes, number of bonding electrons as well as chemical interaction between the components. Miscount is of the same order as the experimental error. 10 refs.; 2 tabs

  2. Mechanisms of chemical generation of volatile hydrides for trace element determination (IUPAC Technical Report)

    Czech Academy of Sciences Publication Activity Database

    D'Ulivo, A.; Dědina, Jiří; Mester, Z.; Sturgeon, R. E.; Wang, Q.; Welz, B.

    2011-01-01

    Roč. 83, č. 6 (2011), s. 1283-1340 ISSN 0033-4545 Institutional research plan: CEZ:AV0Z40310501 Keywords : borane complexes * chemical generation of volatile hydrides (CHG) * volatile hydrides Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.789, year: 2011

  3. Next-Generation Catalysis for Renewables: Combining Enzymatic with Inorganic Heterogeneous Catalysis for Bulk Chemical Production

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Christensen, C.H.; Pedersen, S.

    2010-01-01

    Nowadays, production of bulk and commodity chemicals from renewable feedstocks is widely debated and investigated as an alternative to the fossil platform. The conversion of biomass necessitates the development of a new generation of catalysts that enable new kinds of reactions from a different c...

  4. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste

  5. The AREVA customized chemical cleaning C3-concept as part of the steam generator asset management

    International Nuclear Information System (INIS)

    Weiss, Steffen; Drexler, Andreas

    2012-09-01

    In pressurized water reactors corrosion products and impurities are transported into the steam generators by feed water. Corrosion products and impurities are accumulated in the SGs as deposits and scales on the tubes, the tube support structures and the tube sheet. Depending on the location, the composition and the morphology such deposits may negatively affect the performance of the steam generators by reducing the thermal performance, changing the flow patterns and producing localized corrosion promoting conditions. Accordingly removal of deposits or deposit minimization strategies are an essential part of the asset management program of the steam generators in Nuclear Power Plants. It is evident that such a program is plant specific, depending on the individual condition prevailing. Parameters to be considered are for example: - Steam generator and balance of plant design; - Secondary side water chemistry treatment; - Deposit amount and constitution; - Deposit distribution in the steam generator; - Existing or expected corrosion problems. After evaluation of the steam generator condition a strategy for deposit minimization has to be developed. Depending on the individual situation such strategies may span from curative full scale cleanings which are capable of removing the entire sludge inventory in the range of several 1000 kg per SG to preventive cleanings that remove only a portion of the deposits in the range of several 100 kg per SG. But also other goals depending on the specific plant situation, like tube sheet sludge piles or hard scale removal, may be considered. Beside the chemical cleaning process itself also the integration of the process into the outage schedule and considerations about its impact on other maintenance activities is of great importance. It is obvious that all these requirements cannot be met easily by a standardized cleaning method, thus a customisable chemical cleaning technology is required. Based on its comprehensive experience

  6. An overview of noble gas (He, Ne, Ar, Xe) contents and isotope signals in terrestrial diamond

    Science.gov (United States)

    Basu, S.; Jones, A. P.; Verchovsky, A. B.; Kelley, S. P.; Stuart, F. M.

    2013-11-01

    high 21Ne/22Ne and 131,134,136Xe/132Xe ratios. In many diamonds, variations in both concentration and isotopic composition within samples from the same geographical location require complex diamond growth. For example, coated stones of Zaire trap noble gases from multiple sources and different generations of diamond growth. Thus noble gas studies have the potential to record major processes during the complex growth histories of natural diamond and also to provide valuable information about the sub-continental mantle. Noble gas signatures may be affected by diffusive losses, notably in some framesites.

  7. Status of QUPID, a novel photosensor for noble liquid detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pantic, E., E-mail: emilija.pantic@googlemail.com [Department of Physics and Astronomy, University of California, 475 Portola Plaza, Los Angeles, CA 90095 (United States); Aharoni, D.; Arisaka, K.; Beltrame, P.; Brown, E.; Cline, D. [Department of Physics and Astronomy, University of California, 475 Portola Plaza, Los Angeles, CA 90095 (United States); Fukasawa, A. [Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Shimokanzo, Iwata City 438-0193, Shizuoka (Japan); Ghag, C.; Lam, C.W.; Lim, T.; Lung, K.; Meng, Y. [Department of Physics and Astronomy, University of California, 475 Portola Plaza, Los Angeles, CA 90095 (United States); Muramatsu, S. [Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Shimokanzo, Iwata City 438-0193, Shizuoka (Japan); Scovell, P. [Department of Physics and Astronomy, University of California, 475 Portola Plaza, Los Angeles, CA 90095 (United States); Suyama, M. [Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Shimokanzo, Iwata City 438-0193, Shizuoka (Japan); Teymourian, A.; Wang, H. [Department of Physics and Astronomy, University of California, 475 Portola Plaza, Los Angeles, CA 90095 (United States)

    2012-12-11

    The discovery potential of experiments searching for rare events, such as dark matter interaction, relies heavily upon achieving a very low background environment. The current generation of noble liquid dark matter detectors is limited by the radioactivity in the detector materials, mostly from the photomultiplier tubes. Quartz Photon Intensifying Detector (QUPID) is a novel photosensor based upon hybrid APD technology and with intrinsic radioactivity at least an order of magnitude lower than the presently employed phototubes. The basic concept as well as the status and the prospect of the QUPID are reviewed. The performance of the QUPID as photosensor for the ultraviolet scintillation light of liquid xenon is presented.

  8. Noble gas systematics of the Skaergaard intrusion

    Science.gov (United States)

    Horton, F.; Farley, K. A.; Taylor, H. P.

    2017-12-01

    The noble gas isotopic compositions of olivines from the Skaergaard layered mafic intrusion in Greenland reveal that magmas readily exchange noble gases with their environment after emplacement. Although Skaergaard magmas are thought to have derived from the upper mantle, all of the olivine separates we analyzed have 3He/4He ratios less than that of the upper mantle ( 8 Ra, where Ra = 3He/4He of the atmosphere, 1.39 x 10-6). This suggests that crustal and/or atmospheric noble gases have contaminated all Skaergaard magmas to some extent. We obtained the highest 3He/4He ratios ( 2 Ra) from olivines found in the lowermost exposed layers of the intrusion away from the margins. Excess radiogenic 4He (indicated by Raatmospheric isotopic compositions, but higher relative helium abundances than the atmosphere. We suggest that post-crystallization hydrothermal circulation introduced atmosphere-derived noble gases into uppermost layers of the intrusion. Such high temperature exchanges of volatiles between plutons and their immediate surroundings may help explain why so few mantle-derived rocks retain mantle-like noble gas signatures.

  9. Chemical cleaning as an essential part of steam generator asset management

    International Nuclear Information System (INIS)

    Stiepani, C.; Ammann, F.; Jones, D.; Evans, S.; Harper, K.

    2010-01-01

    Accumulation of deposits is intrinsic for the operation of Steam Generators in PWRs. Such depositions often lead to reduction of thermal performance, loss of component integrity and, in some cases to power restrictions. Accordingly removal of such deposits is an essential part of the asset management of the Steam Generators in a Nuclear Power Plant. Every plant has its individual condition, history and constraints which need to be considered when planning and performing a chemical cleaning. Typical points are: Sludge load amount and constitution of the deposits; Sludge distribution in the steam generator; Existing or expected corrosion problems; Amount and treatment possibilities for the waste generated. Depending on these points the strategy for chemical cleaning shall be evolved. The range of treatment starts with very soft cleanings with a removal of approx 100 kg per steam generator and goes to a full scale cleaning which can remove up to several thousand kilograms of deposits from a steam generator. Depending on the goal to be achieved and the steam generator present an adequate cleaning method shall be selected. Flexible and 'customizable' cleaning methods that can be adapted to the individual needs of a plant are therefore a must. Particular for the application of preventive cleanings where repeated or even regular application are intended, special focus has to be put on low corrosion and easy waste handling. Therefore AREVA has developed the 'C3' concept, Customized Chemical Cleaning concept. This concept covers the entire range of steam generator cleaning. Particular for the preventive maintenance cleanings processes with extreme low corrosion rates and easy waste handling are provided which make repeated applications safe and cost efficient. (author)

  10. Surface treatment of nanoporous silicon with noble metal ions and characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Kanungo, J.; Maji, S. [IC Design and Fabrication Centre, Dept. of Electronics and Tele-comm. Engineering, Jadavpur University, Kolkata 700032 (India); Mandal, A.K.; Sen, S. [Central Glass and Ceramic Research Institute, CSIR, Kolkata (India); Bontempi, E. [INSTM and Laboratorio di Chimica per le Tecnologie, Universita di Brescia, via Branze 38, 25123 Brescia (Italy); Balamurugan, A.K.; Tyagi, A.K. [Materials Science Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Uvdal, K. [Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83 Linkoeping (Sweden); Sinha, S. [Department of Physics, University of New Haven (United States); Saha, H. [IC Design and Fabrication Centre, Dept. of Electronics and Tele-comm. Engineering, Jadavpur University, Kolkata 700032 (India); Basu, S., E-mail: sukumar_basu@yahoo.co.uk [IC Design and Fabrication Centre, Dept. of Electronics and Tele-comm. Engineering, Jadavpur University, Kolkata 700032 (India)

    2010-04-15

    A very large surface to volume ratio of nanoporous silicon (PS) produces a high density of surface states, which are responsible for uncontrolled oxidation of the PS surface. Hence it disturbs the stability of the material and also creates difficulties in the formation of a reliable electrical contact. To passivate the surface states of the nanoporous silicon, noble metals (Pd, Ru, and Pt) were dispersed on the PS surface by an electroless chemical method. GIXRD (glancing incidence X-ray diffraction) proved the crystallinity of PS and the presence of noble metals on its surface. While FESEM (field emission scanning electron microscopy) showed the morphology, the EDX (energy dispersive X-ray) line scans and digital X-ray image mapping indicated the formation of the noble metal islands on the PS surface. Dynamic SIMS (secondary ion mass spectroscopy) further confirmed the presence of noble metals and other impurities near the surface of the modified PS. The variation of the surface roughness after the noble metal modification was exhibited by AFM (atomic force microscopy). The formation of a thin oxide layer on the modified PS surface was verified by XPS (X-ray photoelectron spectroscopy).

  11. Isotopic and noble gas geochemistry in geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, B.M.; DePaolo, D.J. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    The objective of this program is to provide, through isotopic analyses of fluids, fluid inclusions, and rocks and minerals coupled with improved methods for geochemical data analysis, needed information regarding sources of geothermal heat and fluids, the spatial distribution of fluid types, subsurface flow, water-rock reaction paths and rates, and the temporal evolution of geothermal systems. Isotopic studies of geothermal fluids have previously been limited to the light stable isotopes of H, C, and O. However, other isotopic systems such as the noble gases (He, Ne, Ar, Kr and Xe) and reactive elements (e.g. B, N, S, Sr and Pb) are complementary and may even be more important in some geothermal systems. The chemistry and isotopic composition of a fluid moving through the crust will change in space and time in response to varying chemical and physical parameters or by mixing with additional fluids. The chemically inert noble gases often see through these variations, making them excellent tracers for heat and fluid sources. Whereas, the isotopic compositions of reactive elements are useful tools in characterizing water-rock interaction and modeling the movement of fluids through a geothermal reservoir.

  12. Noble Metal Nanoparticles for Biosensing Applications

    Science.gov (United States)

    Doria, Gonçalo; Conde, João; Veigas, Bruno; Giestas, Leticia; Almeida, Carina; Assunção, Maria; Rosa, João; Baptista, Pedro V.

    2012-01-01

    In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios) that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies—from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory. PMID:22438731

  13. Quality management for noble gas trace analysis

    International Nuclear Information System (INIS)

    Schmid, S.; Konrad, M.; Kumberg, T.; Schlosser, C.; Gohla, H.

    2014-01-01

    The Federal Office for Radiation Protection operates measurement systems to determine the activity concentrations of Krypton-85 and Xenon-133 in air samples since the early 70s. Certified standards with stable noble gas admixtures are still missing for quality assurance (certified activity concentrations). The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is currently establishing a global noble gas monitoring network for the verification of compliance with the Treaty. In cooperation with CTBTO the BfS currently develops concepts of quality assurance for noble gas measurements. Opportunities for quality assurance without using certified standards are discussed by comparisons between individual laboratories and internal audits. The results from the first CTBTO laboratory intercomparison with synthetic radioxenon samples look very promising.

  14. Evaluation of EDTA based chemical formulations for the cleaning of monel-400 tubed steam generators

    International Nuclear Information System (INIS)

    Velmurugan, S.; Rufus, A.L.; Sathyaseelan, V.S.; Kumar, P.S.; Veena, S.N.; Srinivasan, M.P.; Narasimhan, S.V.

    1998-01-01

    The Steam Generator (SG) is an important component in any nuclear power plant which contributes significantly for the over all performance of the reactor. The failure of SG tubes occurs mainly by corrosion under accelerated conditions caused by fouling. There is continuous ingress of the corrosion products and ionic impurities from the condenser and feed train of the secondary heat transfer system. The corrosion products accumulate in the stagnant areas near the tube sheet, over the tube support plates and in the tube to tube support plate crevices. These accumulated deposits help to concentrate the aggressive impurities and induce a variety of corrosion processes affecting the structural materials and finally leading to failure of the SG tube. Scale forming impurities can deposit over the tube surfaces and result in reduction of heat transfer efficiency and over heating of the surfaces. Every effort is being made to control the transport of impurities to the steam generator. Increased blow down, installation of condensate polishers and use of all volatile amines have helped to reduce the corrosion product and ionic impurities input into the steam generators of PHWRs. Despite these efforts, failures of SG tubes in PHWRs have been reported. Hence, attempts are being made to develop chemical formulations to clean the deposits accumulated in the steam generators. The EPRI-SGOG chemical cleaning process has been tried with good success in steam generators of different designs including the steam generators of PHWRs. This paper discusses the work on the evaluation of EDTA based chemical cleaning formulations for monel-400 tubed steam generators of PHWRs. (author)

  15. THE SECOND GENERATION OF THE WASTE REDUCTION (WAR) ALGORITHM: A DECISION SUPPORT SYSTEM FOR GREENER CHEMICAL PROCESSES

    Science.gov (United States)

    chemical process designers using simulation software generate alternative designs for one process. One criterion for evaluating these designs is their potential for adverse environmental impacts due to waste generated, energy consumed, and possibilities for fugitive emissions. Co...

  16. Noble Gas signatures of Enhanced Oil Recovery

    Science.gov (United States)

    Barry, P. H.; Kulongoski, J. T.; Tyne, R. L.; Hillegonds, D.; Byrne, D. J.; Landon, M. K.; Ballentine, C. J.

    2017-12-01

    Noble gases are powerful tracers of fluids from various oil and gas production activities in hydrocarbon reservoirs and nearby groundwater. Non-radiogenic noble gases are introduced into undisturbed oil and natural gas reservoirs through exchange with formation waters [1-3]. Reservoirs with extensive hydraulic fracturing, injection for enhanced oil recovery (EOR), and/or waste disposal also show evidence for a component of noble gases introduced from air [4]. Isotopic and elemental ratios of noble gases can be used to 1) assess the migration history of the injected and formation fluids, and 2) determine the extent of exchange between multiphase fluids in different reservoirs. We present noble gas isotope and abundance data from casing, separator and injectate gases of the Lost Hills and Fruitvale oil fields in the San Joaquin basin, California. Samples were collected as part of the California State Water Resource Control Board's Oil and Gas Regional Groundwater Monitoring Program. Lost Hills (n=7) and Fruitvale (n=2) gases are geochemically distinct and duplicate samples are highly reproducible. Lost Hills casing gas samples were collected from areas where EOR and hydraulic fracturing has occurred in the past several years, and from areas where EOR is absent. The Fruitvale samples were collected from a re-injection port. All samples are radiogenic in their He isotopes, typical of a crustal environment, and show enrichments in heavy noble gases, resulting from preferential adsorption on sediments. Fruitvale samples reflect air-like surface conditions, with higher air-derived noble gas concentrations. Lost Hills gases show a gradation from pristine crustal signatures - indicative of closed-system exchange with formation fluids - to strongly air-contaminated signatures in the EOR region. Pristine samples can be used to determine the extent of hydrocarbon exchange with fluids, whereas samples with excess air can be used to quantify the extent of EOR. Determining noble

  17. Steam generators secondary side chemical cleaning at Point Lepreau using the Siemens high temperature process

    International Nuclear Information System (INIS)

    Verma, K.; MacNeil, C.; Odar, S.; Kuhnke, K.

    1997-01-01

    This paper describes the chemical cleaning of the four steam generators at the Point Lepreau facility, which was accomplished as a part of a normal service outage. The steam generators had been in service for twelve years. Sludge samples showed the main elements were Fe, P and Na, with minor amounts of Ca, Mg, Mn, Cr, Zn, Cl, Cu, Ni, Ti, Si, and Pb, 90% in the form of Magnetite, substantial phosphate, and trace amounts of silicates. The steam generators were experiencing partial blockage of broached holes in the TSPs, and corrosion on tube ODs in the form of pitting and wastage. In addition heat transfer was clearly deteriorating. More than 1000 kg of magnetite and 124 kg of salts were removed from the four steam generators

  18. Molecular design chemical structure generation from the properties of pure organic compounds

    CERN Document Server

    Horvath, AL

    1992-01-01

    This book is a systematic presentation of the methods that have been developed for the interpretation of molecular modeling to the design of new chemicals. The main feature of the compilation is the co-ordination of the various scientific disciplines required for the generation of new compounds. The five chapters deal with such areas as structure and properties of organic compounds, relationships between structure and properties, and models for structure generation. The subject is covered in sufficient depth to provide readers with the necessary background to understand the modeling

  19. Comparison Of Different Noble Metal Catalysts For The Low Temperature Catalytic Partial Oxidation Of Methane

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, S.; Truong, T.-B.; Vogel, F.

    2005-03-01

    The generation of synthesis gas at low temperatures can contribute to a more economic production of clean transportation fuels (Fischer-Tropsch liquids) from natural gas. In this report, the performance of different noble metal catalysts in a low temperature catalytic partial oxidation process is presented. (author)

  20. Noble Gases And Changing Models Of Mantle Evolution

    Science.gov (United States)

    Ballentine, C. J.; van Keken, P. E.; Porcelli, D.; Hauri, E. H.

    2003-04-01

    The noble gas isotopes recorded in Ocean Island Basalts (OIB) and Mid Ocean Ridge Basalts (MORB) combined with an estimate of ^3He concentration in the upper mantle have played a defining role in the development of models describing the geochemical evolution of the mantle. The three most cited noble gas constraints on a layered mantle system are the Heat/He discrepancy, 40Ar mass balance, and low ^3He concentration (relative to U+Th) in the upper mantle. These are all equally dependant on the validity of integrating the mantle ^3He flux into the oceans (t_frac{1}{2} ˜ 10^3 years) with the record of ocean floor generation (t_frac{1}{2} ˜ 5x10^6 years) to obtain the mantle ^3He concentration. A ^3He concentration 3.5 times higher in the mantle than currently accepted removes these noble gas constraints. A deep reservoir would then no longer be required to: i) trap ^4He produced by U+Th decay but let the associated heat escape; ii) provide a reservoir for the 'missing' 40Ar generated by K decay; and iii) provide a flux of ^3He to balance the ^3He/^4He ratio and U+Th content of the upper mantle. Numerical models simulating whole mantle convection show that natural fluctuations in the Heat/He ratio due to different extraction methods can accommodate the difference between predicted and observed values, while these same models illustrate that the efficiency of mantle 40Ar degassing is low enough to account for the 'missing' 40Ar within the context of whole mantle convection. The simple observation that ^3He/^4He ratios in OIB are higher than MORB nevertheless demands that there is a high ^3He reservoir in the mantle and that the model 'zero paradox' concentration remains the upper limit reference value. While higher upper mantle ^3He concentrations remove the need for a layer at the 670km boundary, mantle models satisfying the noble gases must still provide a system that separates radiogenic Heat from Helium production, preserves a region of the mantle with higher 40Ar

  1. Thyroid disrupting effects of halogenated and next generation chemicals on the swim bladder development of zebrafish.

    Science.gov (United States)

    Godfrey, Amy; Hooser, Blair; Abdelmoneim, Ahmed; Horzmann, Katharine A; Freemanc, Jennifer L; Sepúlveda, Maria S

    2017-12-01

    Endocrine disrupting chemicals (EDCs) can alter thyroid function and adversely affect growth and development. Halogenated compounds, such as perfluorinated chemicals commonly used in food packaging, and brominated flame retardants used in a broad range of products from clothing to electronics, can act as thyroid disruptors. Due to the adverse effects of these compounds, there is a need for the development of safer next generation chemicals. The objective of this study was to test the thyroid disruption potential of old use and next generation halogenated chemicals. Zebrafish embryos were exposed to three old use compounds, perfluorooctanoic acid (PFOA), tetrabromobisphenol A (TBBPA) and tris (1,3-dichloro-2-propyl) phosphate (TDCPP) and two next generation chemicals, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxdie (DOPO) and perfluorobutyric acid (PFBA). Sub-chronic (0-6days post fertilization (dpf)) and chronic (0-28dpf) exposures were conducted at 1% of the concentration known to kill 50% (LC 50 ) of the population. Changes in the surface area of the swim bladder as well as in expression levels of genes involved in the thyroid control of swim bladder inflation were measured. At 6dpf, zebrafish exposed to all halogenated chemicals, both old use and next generation, had smaller posterior swim bladder and increased expression in the gene encoding thyroid peroxidase, tpo and the genes encoding two swim bladder surfactant proteins, sp-a and sp-c. These results mirrored the effects of thyroid hormone-exposed positive controls. Fish exposed to a TPO inhibitor (methimazole, MMI) had a decrease in tpo expression levels at 28dpf. Effects on the anterior swim bladder at 28dpf, after exposure to MMI as well as both old and new halogenated chemicals, were the same, i.e., absence of SB in ∼50% of fish, which were also of smaller body size. Overall, our results suggest thyroid disruption by the halogenated compounds tested via the swim bladder surfactant system. However

  2. Chemical-Cleaning Demonstration Test No. 2 in a mock-up steam generator

    International Nuclear Information System (INIS)

    Jevec, J.M.; Leedy, W.S.

    1983-04-01

    This report describes the results of the mockup demonstration test of the first modified baseline process under Contract S-127, Chemical Cleaning of Nuclear Steam Generators. The objective of this program is to determine the feasibility of cleaning the secondary side of nuclear steam generators with state-of-the-art chemical cleaning technology. The first step was to benchmark a baseline process. This process was then modified to attempt to eliminate the causes of unacceptable cleaning performance. The modified baseline process consists of an EDTA/H 2 O 2 -based copper solvent and a near-neutral, EDTA/N 2 H 4 -based magnetite and crevice solvent. This report also presents the results of three inhibitor evaluation mockup runs used in the evaluation of the modified baseline process

  3. Centrifugal spray generator of singlet oxygen for a chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Špalek, Otomar; Hrubý, Jan; Čenský, Miroslav; Jirásek, Vít; Kodymová, Jarmila

    2010-01-01

    Roč. 100, č. 4 (2010), s. 793-802 ISSN 0946-2171 Grant - others:European Office of Aerospace R&D(US) FA8655-09-1-3091 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20760514 Keywords : centrifugal generator of singlet oxygen * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.239, year: 2010

  4. Spray generator of singlet oxygen for a chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Hrubý, Jan; Špalek, Otomar; Čenský, Miroslav; Kodymová, Jarmila

    2010-01-01

    Roč. 100, č. 4 (2010), s. 779-791 ISSN 0946-2171 Grant - others:European Office of Aerospace R&D(US) FA8655-09-1-3091 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20760514 Keywords : spray generator of singlet oxygen * singlet oxygen * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.239, year: 2010

  5. Ultrasound-mediated drug delivery by gas bubbles generated from a chemical reaction.

    Science.gov (United States)

    Lee, Sungmun; Al-Kaabi, Leena; Mawart, Aurélie; Khandoker, Ahsan; Alsafar, Habiba; Jelinek, Herbert F; Khalaf, Kinda; Park, Ji-Ho; Kim, Yeu-Chun

    2018-02-01

    Highly echogenic and ultrasound-responsive microbubbles such as nitrogen and perfluorocarbons have been exploited as ultrasound-mediated drug carriers. Here, we propose an innovative method for drug delivery using microbubbles generated from a chemical reaction. In a novel drug delivery system, luminol encapsulated in folate-conjugated bovine serum albumin nanoparticles (Fol-BSAN) can generate nitrogen gas (N 2 ) by chemical reaction when it reacts with hydrogen peroxide (H 2 O 2 ), one of reactive oxygen species (ROS). ROS plays an important role in the initiation and progression of cancer and elevated ROS have been observed in cancer cells both in vitro and in vivo. High-intensity focussed ultrasound (HIFU) is used to burst the N 2 microbubbles, causing site-specific delivery of anticancer drugs such as methotrexate. In this research, the drug delivery system was optimised by using water-soluble luminol and Mobil Composition of Matter-41 (MCM-41), a mesoporous material, so that the delivery system was sensitive to micromolar concentrations of H 2 O 2 . HIFU increased the drug release from Fol-BSAN by 52.9 ± 2.9% in 10 minutes. The cytotoxicity of methotrexate was enhanced when methotrexate is delivered to MDA-MB-231, a metastatic human breast cancer cell line, using Fol-BSAN with HIFU. We anticipate numerous applications of chemically generated microbubbles for ultrasound-mediated drug delivery.

  6. Hydrogen generation via photoelectrochemical water splitting using chemically exfoliated MoS{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, R. K., E-mail: r.joshi@unsw.edu.au, E-mail: alwarappan@cecri.res.in; Sahajwalla, V. [Centre for Sustainable Materials Research and Technology, School of Materials Science and Engineering, University of New South Wales, NSW 2052 (Australia); Shukla, S.; Saxena, S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai (India); Lee, G.-H. [Department of Material Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Alwarappan, S., E-mail: r.joshi@unsw.edu.au, E-mail: alwarappan@cecri.res.in [CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India)

    2016-01-15

    Study on hydrogen generation has been of huge interest due to increasing demand for new energy sources. Photoelectrochemical reaction by catalysts was proposed as a promising technique for hydrogen generation. Herein, we report the hydrogen generation via photoelectrochecmial reaction using films of exfoliated 2-dimensional (2D) MoS{sub 2}, which acts as an efficient photocatalyst. The film of chemically exfoliated MoS{sub 2} layers was employed for water splitting, leading to hydrogen generation. The amount of hydrogen was qualitatively monitored by observing overpressure of a water container. The high photo-current generated by MoS{sub 2} film resulted in hydrogen evolution. Our work shows that 2D MoS{sub 2} is one of the promising candidates as a photocatalyst for light-induced hydrogen generation. High photoelectrocatalytic efficiency of the 2D MoS{sub 2} shows a new way toward hydrogen generation, which is one of the renewable energy sources. The efficient photoelectrocatalytic property of the 2D MoS{sub 2} is possibly due to availability of catalytically active edge sites together with minimal stacking that favors the electron transfer.

  7. Encapsulation of noble gas in zeolites

    International Nuclear Information System (INIS)

    Dorea, A.

    1987-04-01

    The noble gases neon, argon, krypton and xenon were encapsulated hydrothermally as pure gases as well as in the form of mixtures in type A zeolite of various cationic compositions. As opposed to the starting material the encapsulates are X-ray amorphous and posess a very small specific surface area. Irrespective of the thermal pretreatment of the zeolites the optimal loading occured within a certain temperature window. The amount of gas trapped was essentially a function of the fixation pressure. Within the pressure range 50-2200 bar the obtained loading was independent from the type of noble gas. When mixtures of noble gases were encapsulated a small enrichment of the heavier noble gas, caused by kinetic and thermodynamic effects, was observed. The thermal stability of the encapsulates was found to be very high. Even at temperatures as high as 750 0 C a recrystallization to anorthite was only observed after practically all the trapped gas had been released. Experiments destined to clarify the mechanism of gas leckage at temperatures below 750 0 C suggest a diffusion controlled mechanism described by a √t law. Even at loadings of 45 ml/(STP) Kr/g the leckage predicted under conditions as expected during longterm storage of Kr-85 is extremely small. Kinetic data demonstrate that the gas is not trapped in the form of agglomerates but rather exists homogeneously distributed within the encapsulate. This result is substantiated by electron beam microanalysis. (orig./RB) [de

  8. Noble gases as cardioprotectants - translatability and mechanism

    NARCIS (Netherlands)

    Smit, Kirsten F.; Weber, Nina C.; Hollmann, Markus W.; Preckel, Benedikt

    2015-01-01

    Several noble gases, although classified as inert substances, exert a tissue-protective effect in different experimental models when applied before organ ischaemia as an early or late preconditioning stimulus, after ischaemia as a post-conditioning stimulus or when given in combination before,

  9. Natural Death and the Noble Savage.

    Science.gov (United States)

    Walter, Tony

    1995-01-01

    The belief that dying and grieving are natural processes is widely held in modern bereavement care. Examines four assumption often made in this connection: (1) most primitive cultures deal with death in an accepting way; (2) this way is different than our own; (3) it is a good and noble way; and (4) traditional societies see death as natural. (JBJ)

  10. Organ protection by the noble gas helium

    NARCIS (Netherlands)

    Smit, K.F.

    2017-01-01

    The aims of this thesis were to investigate whether helium induces preconditioning in humans, and to elucidate the mechanisms behind this possible protection. First, we collected data regarding organ protective effects of noble gases in general, and of helium in particular (chapters 1-3). In chapter

  11. Cold and trapped metastable noble gases

    NARCIS (Netherlands)

    Vassen, W.; Cohen-Tannoudji, C.; Leduc, M.; Boiron, D.; Westbrook, C.I.; Truscott, A.; Baldwin, K.; Birkl, G.; Cancio, P.; Trippenbach, M.

    2012-01-01

    Experimental work on cold, trapped metastable noble gases is reviewed. The aspects which distinguish work with these atoms from the large body of work on cold, trapped atoms in general is emphasized. These aspects include detection techniques and collision processes unique to metastable atoms.

  12. Chemical data visualization and analysis with incremental generative topographic mapping: big data challenge.

    Science.gov (United States)

    Gaspar, Héléna A; Baskin, Igor I; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2015-01-26

    This paper is devoted to the analysis and visualization in 2-dimensional space of large data sets of millions of compounds using the incremental version of generative topographic mapping (iGTM). The iGTM algorithm implemented in the in-house ISIDA-GTM program was applied to a database of more than 2 million compounds combining data sets of 36 chemicals suppliers and the NCI collection, encoded either by MOE descriptors or by MACCS keys. Taking advantage of the probabilistic nature of GTM, several approaches to data analysis were proposed. The chemical space coverage was evaluated using the normalized Shannon entropy. Different views of the data (property landscapes) were obtained by mapping various physical and chemical properties (molecular weight, aqueous solubility, LogP, etc.) onto the iGTM map. The superposition of these views helped to identify the regions in the chemical space populated by compounds with desirable physicochemical profiles and the suppliers providing them. The data sets similarity in the latent space was assessed by applying several metrics (Euclidean distance, Tanimoto and Bhattacharyya coefficients) to data probability distributions based on cumulated responsibility vectors. As a complementary approach, data sets were compared by considering them as individual objects on a meta-GTM map, built on cumulated responsibility vectors or property landscapes produced with iGTM. We believe that the iGTM methodology described in this article represents a fast and reliable way to analyze and visualize large chemical databases.

  13. Benefits of integrating chemical and mechanical cleaning processes for steam generator sludge removal

    International Nuclear Information System (INIS)

    Varrin, R.D.; Ferriter, A.M.; Oliver, T.W.; Le Surf, J.E.

    1992-01-01

    This paper discusses the benefits of performing in-bundle tubesheet lancing in conjunction with chemical cleaning of PWR and PHWR steam generators in which a hard sludge pile is known to exist. The primary benefits of in-bundle lancing are to: (1) increase the exposed area of the sludge pile by cutting furrows in the surface thereby enhancing dissolution of sludge, (2) reduce the volume of solvents required since material removed by lancing does not have to be dissolved chemically, (3) improve rinsing and removal of residual solvent between iron and copper dissolution steps, and (4) allow for verification of process effectiveness by providing high quality in-bundle visual inspection. The reduction in solvent volumes can lead to a significant reduction in solvent costs and waste processing. A case study which includes an economic evaluation for a combined chemical and mechanical cleaning shows a potential cost saving of up to US$ 300,000 over use of chemical cleaning alone. 14 refs., 2 tabs., 2 figs

  14. Generation of atomic iodine via fluorine for chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Jirasek, Vit; Spalek, Otomar; Censky, Miroslav; Pickova, Irena; Kodymova, Jarmila; Jakubec, Ivo

    2007-01-01

    A method of the chemical generation of atomic iodine for a chemical oxygen-iodine laser (COIL) using atomic fluorine as a reaction intermediate was studied experimentally. This method is based on the reaction between F 2 and NO providing F atoms, and the reaction of F with HI resulting in iodine atoms generation. Atomic iodine was produced with efficiency exceeding 40% relative to initial F 2 flow rate. This efficiency was nearly independent on pressure and total gas flow rate. The F atoms were stable in the reactor up to 2 ms. An optimum ratio of the reactants flow rates was F 2 :NO:HI = 1:1:1. A rate constant of the reaction of F 2 with HI was determined. The numerical modelling showed that remaining HI and IF were probably consumed in their mutual reaction. The reaction system was found suitable for employing in a generator of atomic iodine with its subsequent injection into a supersonic nozzle of a COIL

  15. Iodine flow rate measurement for COIL with the chemical iodine generator based on absorption spectroscopy

    Science.gov (United States)

    Zhao, Weili; Zhang, Yuelong; Zhang, Peng; Xu, Mingxiu; Jin, Yuqi; Sang, Fengting

    2015-02-01

    A dual-components absorption method based on absorption spectroscopy was described in the paper. It can easily eliminate the influence of the serious contamination and aerosol scattering on IFR measurement by utilizing the absorptions of iodine vapor and chlorine on two different wavelengths respectively. According to the character that there is no other gaseous product in the reaction besides iodine vapor, IFR in real time can be obtained by the connections of the pressure and the flow rate among chlorine remainder, iodine vapor, and the buffer gas. We used this method to measure IFR for the first time at the exit of a chemical iodine generator. The average of IFR is coincident with that calculated by chemical weighting mass.

  16. Enriching Silver Nanocrystals with a Second Noble Metal.

    Science.gov (United States)

    Wu, Yiren; Sun, Xiaojun; Yang, Yin; Li, Jumei; Zhang, Yun; Qin, Dong

    2017-07-18

    Noble-metal nanocrystals have received considerable interests owing to their fascinating properties and promising applications in areas including plasmonics, catalysis, sensing, imaging, and medicine. As demonstrated by ample examples, the performance of nanocrystals in these and related applications can be augmented by switching from monometallic to bimetallic systems. The inclusion of a second metal can enhance the properties and greatly expand the application landscape by bringing in new capabilities. Seeded growth offers a powerful route to bimetallic nanocrystals. This approach is built upon the concept that preformed nanocrystals with uniform, well-controlled size, shape, and structure can serve as seeds to template and direct the deposition of metal atoms. Seeded growth is, however, limited by galvanic replacement when the deposited metal is less reactive than the seed. The involvement of galvanic replacement not only makes it difficult to control the outcome of seeded growth but also causes degradation to some properties. We have successfully addressed this issue by reducing the salt precursor(s) into atoms with essentially no galvanic replacement. In the absence of self-nucleation, the atoms are preferentially deposited onto the seeds to generate bimetallic nanocrystals with controlled structures. In this Account, we use Ag nanocubes as an example to demonstrate the fabrication of Ag@M and Ag@Ag-M (M = Au, Pd, or Pt) nanocubes with a core-frame or core-shell structure by controlling the deposition of M atoms. A typical synthesis involves the titration of M n+ (a precursor to M) ions into an aqueous suspension containing Ag nanocubes, ascorbic acid, and poly(vinylpyrrolidone) under ambient conditions. In one approach, aqueous sodium hydroxide is introduced to increase the initial pH of the reaction system. At pH = 11.9, ascorbic acid is dominated by ascorbate monoanion, a much stronger reductant, to suppress the galvanic replacement between M n+ and Ag. In

  17. High-pressure synthesis of noble metal hydrides.

    Science.gov (United States)

    Donnerer, Christian; Scheler, Thomas; Gregoryanz, Eugene

    2013-04-07

    The formation of hydride phases in the noble metals copper, silver, and gold was investigated by in situ x-ray diffraction at high hydrogen pressures. In the case of copper, a novel hexagonal hydride phase, Cu2H, was synthesised at pressures above 18.6 GPa. This compound exhibits an anti-CdI2-type structure, where hydrogen atoms occupy every second layer of octahedral interstitial sites. In contrast to chemically produced CuH, this phase does not show a change in compressibility compared to pure copper. Furthermore, repeated compression (after decomposition of Cu2H) led to the formation of cubic copper hydride at 12.5 GPa, a phenomenon attributed to an alteration of the microstructure during dehydrogenation. No hydrides of silver (up to 87 GPa) or gold (up to 113 GPa) were found at both room and high temperatures.

  18. Managing expectations: assessment of chemistry databases generated by automated extraction of chemical structures from patents.

    Science.gov (United States)

    Senger, Stefan; Bartek, Luca; Papadatos, George; Gaulton, Anna

    2015-12-01

    First public disclosure of new chemical entities often takes place in patents, which makes them an important source of information. However, with an ever increasing number of patent applications, manual processing and curation on such a large scale becomes even more challenging. An alternative approach better suited for this large corpus of documents is the automated extraction of chemical structures. A number of patent chemistry databases generated by using the latter approach are now available but little is known that can help to manage expectations when using them. This study aims to address this by comparing two such freely available sources, SureChEMBL and IBM SIIP (IBM Strategic Intellectual Property Insight Platform), with manually curated commercial databases. When looking at the percentage of chemical structures successfully extracted from a set of patents, using SciFinder as our reference, 59 and 51 % were also found in our comparison in SureChEMBL and IBM SIIP, respectively. When performing this comparison with compounds as starting point, i.e. establishing if for a list of compounds the databases provide the links between chemical structures and patents they appear in, we obtained similar results. SureChEMBL and IBM SIIP found 62 and 59 %, respectively, of the compound-patent pairs obtained from Reaxys. In our comparison of automatically generated vs. manually curated patent chemistry databases, the former successfully provided approximately 60 % of links between chemical structure and patents. It needs to be stressed that only a very limited number of patents and compound-patent pairs were used for our comparison. Nevertheless, our results will hopefully help to manage expectations of users of patent chemistry databases of this type and provide a useful framework for more studies like ours as well as guide future developments of the workflows used for the automated extraction of chemical structures from patents. The challenges we have encountered

  19. Some nuclear chemical aspects of medical generator nuclide production at the Los Alamos hot cell facility

    CERN Document Server

    Fassbender, M; Heaton, R C; Jamriska, D J; Kitten, J J; Nortier, F M; Peterson, E J; Phillips, D R; Pitt, L R; Salazar, L L; Valdez, F O; 10.1524/ract.92.4.237.35596

    2004-01-01

    Generator nuclides constitute a convenient tool for applications in nuclear medicine. In this paper, some radiochemical aspects of generator nuclide parents regularly processed at Los Alamos are introduced. The bulk production of the parent nuclides /sup 68/Ge, /sup 82/Sr, /sup 109/Cd and /sup 88/Zr using charged particle beams is discussed. Production nuclear reactions for these radioisotopes, and chemical separation procedures are presented. Experimental processing yields correspond to 80%-98% of the theoretical thick target yield. Reaction cross sections are modeled using the code ALICE-IPPE; it is observed that the model largely disagrees with experimental values for the nuclear processes treated. Radionuclide production batches are prepared 1-6 times yearly for sales. Batch activities range from 40MBq to 75 GBq.

  20. Gas chromatography-mass spectrometric identification of iodine species arising from photo-chemical vapor generation

    Energy Technology Data Exchange (ETDEWEB)

    Grinberg, Patricia; Mester, Zoltan [Institute for National Measurements Standards, National Research Council Canada, Ottawa, Ontario, K1A 0R6 (Canada); D' Ulivo, Alessandro [Institute for Chemical and Physical Processes, National Research Council, Via G. Moruzzi 1, Pisa, 56124 (Italy); Sturgeon, Ralph E. [Institute for National Measurements Standards, National Research Council Canada, Ottawa, Ontario, K1A 0R6 (Canada)], E-mail: ralph.sturgeon@nrc.ca

    2009-07-15

    Ultraviolet irradiation of aqueous solutions of iodide/iodate ion containing low molecular weight organic acids generates volatile iodine species that are amenable to detection by atomic spectrometry. In the presence of formic, acetic or propionic acids, photo-chemical generation results in the formation of HI, methyl- and ethyl-iodide respectively, the latter two products being directly identified by gas chromatography-mass spectrometry. Deuterium and {sup 13}C-labeled reagents were employed to elucidate the provenance of the alkyl group. Use of {sup 13}CH{sub 3}-COOH produced {sup 13}CH{sub 3}-I; deuterated acetic acid (D{sub 3}C-COOD) resulted in the formation of CD{sub 3}-I. These observations indicate direct transfer of the alkyl group from the carboxylic acid to iodide, consistent with the suggestion that the mechanism of synthesis involves radical induced reactions.

  1. Gas chromatography-mass spectrometric identification of iodine species arising from photo-chemical vapor generation

    Science.gov (United States)

    Grinberg, Patricia; Mester, Zoltan; D'Ulivo, Alessandro; Sturgeon, Ralph E.

    2009-07-01

    Ultraviolet irradiation of aqueous solutions of iodide/iodate ion containing low molecular weight organic acids generates volatile iodine species that are amenable to detection by atomic spectrometry. In the presence of formic, acetic or propionic acids, photo-chemical generation results in the formation of HI, methyl- and ethyl-iodide respectively, the latter two products being directly identified by gas chromatography-mass spectrometry. Deuterium and 13C-labeled reagents were employed to elucidate the provenance of the alkyl group. Use of 13CH 3-COOH produced 13CH 3-I; deuterated acetic acid (D 3C-COOD) resulted in the formation of CD 3-I. These observations indicate direct transfer of the alkyl group from the carboxylic acid to iodide, consistent with the suggestion that the mechanism of synthesis involves radical induced reactions.

  2. Noble Gases in the Chelyabinsk Meteorites

    Science.gov (United States)

    Haba, Makiko K.; Sumino, Hirochika; Nagao, Keisuke; Mikouchi, Takashi; Komatsu, Mutsumi; Zolensky, Michael E.

    2014-01-01

    The Chelyabinsk meteorite fell in Russia on February 15, 2013 and was classified as LL5 chondrite. The diameter before it entered the atmosphere has been estimated to be about 20 m [1]. Up to now, numerous fragments weighing much greater than 100 kg in total have been collected. In this study, all noble gases were measured for 13 fragments to investigate the exposure history of the Chelyabinsk meteorite and the thermal history of its parent asteroid.

  3. One parameter model potential for noble metals

    International Nuclear Information System (INIS)

    Idrees, M.; Khwaja, F.A.; Razmi, M.S.K.

    1981-08-01

    A phenomenological one parameter model potential which includes s-d hybridization and core-core exchange contributions is proposed for noble metals. A number of interesting properties like liquid metal resistivities, band gaps, thermoelectric powers and ion-ion interaction potentials are calculated for Cu, Ag and Au. The results obtained are in better agreement with experiment than the ones predicted by the other model potentials in the literature. (author)

  4. Noble gases, nitrogen, and methane from the deep interior to the atmosphere of Titan

    Science.gov (United States)

    Glein, Christopher R.

    2015-04-01

    Titan's thick N2-CH4 atmosphere is unlike any in the Solar System, and its origin has been shrouded in mystery for over half a century. Here, I perform a detailed analysis of chemical and isotopic data from the Cassini-Huygens mission to develop the hypothesis that Titan's (non-photochemical) atmospheric gases came from deep within. It is suggested that Titan's CH4, N2, and noble gases originated in a rocky core buried inside the giant satellite, and hydrothermal and cryovolcanic processes were critical to the creation of Titan's atmosphere. Mass balance and chemical equilibrium calculations demonstrate that all aspects of this hypothesis can be considered geochemically plausible with respect to contemporary observational, experimental, and theoretical knowledge. Specifically, I show that a rocky core with a bulk noble gas content similar to that in CI carbonaceous meteorites would contain sufficient 36Ar and 22Ne to explain their reported abundances. I also show that Henry's law constants for noble gases in relevant condensed phases can be correlated with the size of their atoms, which leads to expected mixing ratios for 84Kr (∼0.2 ppbv) and 132Xe (∼0.01 ppbv) that can explain why these species have yet to be detected (Huygens upper limit motivates me to consider endogenic production of CH4 from CO2 as a result of geochemical reactions between liquid water and anhydrous rock (i.e., serpentinization). I show that sufficient CH4 can be produced to replenish Titan's atmosphere many times over in the face of irreversible photolysis and escape of CH4, which is consistent with the favored model of episodic cryovolcanic outgassing. There should also have been enough NH3 inside Titan so that its thermal decomposition in a hot rocky core can generate the observed atmospheric N2, and if correct this model would imply that Titan's interior has experienced vigorous hydrothermal processing. The similarity in 14N/15N between cometary NH3 and Titan's N2 is consistent with

  5. Characterisation and radiolysis of modified lithium orthosilicate pebbles with noble metal impurities

    DEFF Research Database (Denmark)

    Tamulevičius, Sigitas; Zariņš, A.; Valtenbergs, O.

    2017-01-01

    of the noble metals on the radiolysis was evaluated after irradiation with accelerated electrons (E = 5 MeV), up to 12 MGy absorbed dose at 300–345 K in a dry argon atmosphere. Using electron spin resonance (ESR) spectroscopy, it was determined that the noble metals (up to 300 ppm) do not significantly......Modified lithium orthosilicate (Li4SiO4) pebbles with additions of titanium dioxide (TiO2) are suggested as an alternative tritium breeding ceramic for the European solid breeder test blanket module. The noble metals – platinum (Pt), gold (Au) and rhodium (Rh), can be introduced into the modified...... Li4SiO4 pebbles during the melt-based process, due to the corrosion of Pt-Rh and Pt-Au alloy crucible components. In this study, the surface microstructure, chemical and phase composition of the modified Li4SiO4 pebbles with different contents of the noble metals was analysed. The influence...

  6. Design Evolution and Verification of the A-3 Chemical Steam Generator

    Science.gov (United States)

    Kirchner, Casey K.

    2009-01-01

    Following is an overview of the Chemical Steam Generator system selected to provide vacuum conditions for a new altitude test facility, the A-3 Test Stand at Stennis Space Center (SSC) in Bay St. Louis, MS. A-3 will serve as NASA s primary facility for altitude testing of the J-2X rocket engine, to be used as the primary propulsion device for the upper stages of the Ares launch vehicles. The Chemical Steam Generators (CSGs) will produce vacuum conditions in the test cell through the production and subsequent supersonic ejection of steam into a diffuser downstream of the J-2X engine nozzle exit. The Chemical Steam Generators chosen have a rich heritage of operation at rocket engine altitude test facilities since the days of the Apollo program and are still in use at NASA White Sands Test Facility (WSTF) in New Mexico. The generators at WSTF have been modified to a degree, but are still very close to the heritage design. The intent for the A-3 implementation is to maintain this heritage design as much as possible, making minimal updates only where necessary to substitute for obsolete parts and to increase reliability. Reliability improvements are especially desired because the proposed system will require 27 generators, which is nine times the largest system installed in the 1960s. Improvements were suggested by the original design firm, Reaction Motors, by NASA SSC and NASA WSTF engineers, and by the A-3 test stand design contractor, Jacobs Technology, Inc. (JTI). This paper describes the range of improvements made to the design to date, starting with the heritage generator and the minor modifications made over time at WSTF, to the modernized configuration which will be used at A-3. The paper will discuss NASA s investment in modifications to SSC s E-2 test facility fire a full-scale Chemical Steam Generator in advance of the larger steam system installation at A-3. Risk mitigation testing will be performed in early 2009 at this test facility to verify that the CSGs

  7. Inhibition of hydrogen sulfide generation from disposed gypsum drywall using chemical inhibitors.

    Science.gov (United States)

    Xu, Qiyong; Townsend, Timothy; Bitton, Gabriel

    2011-07-15

    Disposal of gypsum drywall in landfills has been demonstrated to elevate hydrogen sulfide (H(2)S) concentrations in landfill gas, a problem with respect to odor, worker safety, and deleterious effect on gas-to-energy systems. Since H(2)S production in landfills results from biological activity, the concept of inhibiting H(2)S production through the application of chemical agents to drywall during disposal was studied. Three possible inhibition agents - sodium molybdate (Na(2)MoO(4)), ferric chloride (FeCl(3)), and hydrated lime (Ca(OH)(2)) - were evaluated using flask and column experiments. All three agents inhibited H(2)S generation, with Na(2)MoO(4) reducing H(2)S generation by interrupting the biological sulfate reduction process and Ca(OH)(2) providing an unfavorable pH for biological growth. Although FeCl(3) was intended to provide an electron acceptor for a competing group of bacteria, the mechanism found responsible for inhibiting H(2)S production in the column experiment was a reduction in pH. Application of both Na(2)MoO(4) and FeCl(3) inhibited H(2)S generation over a long period (over 180 days), but the impact of Ca(OH)(2) decreased with time as the alkalinity it contributed was neutralized by the generated H(2)S. Practical application and potential environmental implications need additional exploration. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Patterns of waste generation, treatment and disposal in the chemical and allied industries in Ghana

    Directory of Open Access Journals (Sweden)

    Osei-Wusu Achaw

    2012-09-01

    Full Text Available Environmental pollution and degradation in urban Ghana has been on the increase as a result of the nations drive towards industrialization, a generally weak regulatory regime, and a lack of capacity to manage the environment. This situation is affecting the well-being and livelihood of affected communities. As part of an effort to address the issue, a thirteen (13 item questionnaire was designed and distributed to seventy (70 companies in the chemical and allied industry to solicit and analyze data and information on the their waste management situation. Forty-seven, representing 67.1%, of the distributed questionnaires were completed and returned. The responses were analyzed using tables, percentages and bar charts. The results revealed that while 80.9% of the respondents generate waste as a result of the operation of the plants, 23.3% directly dump their waste into the environment without any prior treatment. Only one company was found that incinerate its waste, and only four (8.5% had comprehensive waste water treatment plants. The low numbers of companies treating the waste they generate prior to disposal means that the chemical and allied industry is contributing to the environmental pollution and degradation in the country.

  9. Chemical treatment of deposits of junctions 'collector-tube' of horizontal steam generators

    International Nuclear Information System (INIS)

    Alkassem, S.N.

    2009-01-01

    A method of chemical treatment of deposits of junctions 'collector - tube' of horizontal steam generators of NPP with reactor VVER has been developed at the department of NPP of the Moscow Power Engineering Institute (Russia). The underexpanding zones of heat-exchanger tubes (HET) in the collector casing, forming fricative gaps with mass-transfer decrease plays a special role in corrosion damage of steam generator collectors. Moreover, if they are filled with porous deposit, then it can become an ideal place of potential concentration of aggressive impurity in the least thermal loading zone: just an accumulation of slime takes place in this zone most intensively. At present, there are series of methods for treating the deposits and for fighting against their formulation. One of the most effective widely used treatment methods is the chemical dissolution. Morpholine or Trilon-B can be used as reagents. The artificially created protective film of ceramic structures made of lithium ferrite on the surfaces of HETs reduces the corrosion-fatigue cracking process rate in the water with the parameters of the second contour. The stability of this film towards dissolution in contact with morpholine was experimentally tested and also a sufficiently durational presence of the film on the pipes' surfaces HETs and ring cracks has been verified by a repeated test. For reinforcing the protective effect, it is needed to maintain the film uniformity in the working process (microdosage of lithium hydroxide-LiOH). On the surface oxidized or polluted with deposits, first of all the LiOH is utilized for interaction with magnetite, then a formation of a coating of a mixed structure of lithium ferrite plus magnetite takes place. Since the combination of magnetite and lithium ferrite is insoluble in water then there is also no transfer of corrosion products in water from the protected surface. This circumstance strongly slows down the deposit formation process. Thus, iron-oxide deposits in

  10. EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA: JUPITER's NOBLE GAS ENRICHMENTS

    International Nuclear Information System (INIS)

    Monga, Nikhil; Desch, Steven

    2015-01-01

    We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show similar enrichments (∼3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from H 2 . We argue that external photoevaporation by far-ultraviolet (FUV) radiation from nearby massive stars removed H 2 , He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough (≲ 30 K) to trap them in amorphous water ice. As the solar nebula lost H, it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot and Hueso. We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production is also necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water vapor in regions ≲ 30 K to trap gas-phase species in amorphous water ice in solar proportions. We find more efficient chemical fractionation in the outer disk: whereas the model of Guillot and Hueso predicts a factor of three enrichment when only <2% of the disk mass remains, we find the same enrichments when 30% of the disk mass remains. Finally, we predict the presence of ∼0.1 M ⊕ of water vapor in the outer solar nebula and protoplanetary disks in H II regions

  11. Measuring the Chemical Potential of the Martian Regolith to Generate and Sustain Life

    Science.gov (United States)

    Kounaves, S. P.; Buehler, M. G.; Kuhlman, K. R.

    1999-01-01

    A critical component for identifying chemical biosignatures is the ability to assess in-situ the potential of an aqueous geochemical environment to generate and sustain life. On Mars or other solar bodies, in-situ chemical characterization could provide evidence as to whether the chemical composition of the regolith or evaporites in suspected ancient water bodies have been biologically influenced or possess the chemical parameters within which life may have existed, or may still exist. A variety of analytical techniques have been proposed for use in detecting and identify signatures of past or present life. These techniques fall into two groups; visual observation with instruments such as cameras or optical/atomic-force microscopes; or elemental chemical analysis with such instruments as X-ray fluorescence (XRF) and diffraction (XRD), a-proton backscatter (APX), y-ray, Mossbauer, Raman, IR, UV/VIS spectroscopies, gas chromatography (GC), or mass spectrometry (MS). Direct observation of an identifiable lifeform by the first set of instruments in a single sample is highly unlikely, especially for extinct organisms or on the surface. The later instruments can provide vital data as to the elemental mineralogy and geological history of the planet, but are highly inadequate for understanding the chemistry of the planet in terms of indigenous life or interactions with human explorers. Techniques such as XRD, XRF, and APX, provide elemental composition at high limits of detection. Some of this data can be extrapolated or interpolated to provide chemical parameters such as oxidation state or composition. Gas chromatography (GC) without standards and non-specific detectors, has little chance of identifying a mixture of unknown components. Combined with GC or by itself, mass spectrometry (MS) can provide identification of compounds, but in both cases the sample must be appropriately prepared for accurate and reliable analysis. Life as we know it, and probably identify it as

  12. Noble Metal Catalysts Supported on Nanofibrous Polymeric Membranes for Environmental Applications

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Topka, Pavel; Hejtmánek, Vladimír; Petráš, D.; Valeš, V.; Šolcová, Olga

    2014-01-01

    Roč. 236, NOV 1 (2014), s. 3-11 ISSN 0920-5861 R&D Projects: GA ČR GPP106/11/P459; GA ČR GP13-24186P Institutional support: RVO:67985858 Keywords : electrospinning * noble metals * catalytic oxidation * volatile organic compoundas Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.893, year: 2014

  13. Interaction between Nafion ionomer and noble metal catalyst for PEMFCs

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    The implement of polymer impregnation in electrode structure (catalyst layer) decreasing the noble metal catalyst loading by a factor of ten , , is one of the essential mile stones in the evolution of Proton Exchange Membrane Fuel Cells’ development among the application of catalyst support...... and electrode deposition etc. In fuel cell reactions, both electrons and protons are involved. Impregnation of Nafion ionomer in catalyst layer effectively increases the proton-electron contact, enlarge the reaction zone, extend the reaction from the surface to the entire electrode. Therefore, the entire...... catalyst layer conducts both electrons and protons so that catalyst utilization in the layer is improved dramatically. The catalyst layer will in turn generate and sustain a higher current density. One of the generally adapted methods to impregnate Nafion into the catalyst layer is to mix the catalysts...

  14. Noble Gases in the LEW 88663 L7 Chondrite

    Science.gov (United States)

    Miura, Y. N.; Sugiura, N.; Nagao, K.

    1995-09-01

    LEW88663 and some meteorites (e.g. Shaw) are the most highly metamorphosed meteorites among L group chondrites. Although the abundances of lithophile elements and oxygen isotopic compositions of the L7 chondrite LEW88663 (total recovered mass: 14.5g) are close to those of the range for L chondrites [1,2], metallic iron is absent and concentrations of siderophile elements are about half of typical values for L chondrites [3,4]. Petrographical and geochemical observation suggested that this meteorite has experienced partial melting [5]. As a part of our study on differentiated meteorites, we also investigated noble gases in this meteorite. We present here noble gas compositions of LEW88663 and discuss history of this meteorite. In addition, we will consider whether there is any evidence for bridging between chondrites and achondrites. Noble gases were extracted from a whole rock sample weighing 66.31 mg by total fusion, and all stable noble gas isotopes as well as cosmogenic radioactive 81Kr were analyzed using a mass spectrometer at ISEI, Okayama University. The results are summarized in the table. The concentrations of cosmogenic ^3He, ^21Ne, and ^38Ar are 7.3, 1.6 and 3.1x10^-8 cm^3STP/g, respectively. The cosmic-ray exposure ages based on them are calculated to be 4.7, 6.9 and 8.8 m.y., respectively, using the production rates proposed by [6, 7] and mean chemical compositions of L chondrites. The shorter cosmic-ray exposure ages T(sub)3 and T(sub)21 than T(sub)38 would be due to diffusive loss of lighter noble gases from the meteorite. The concentrations of trapped Kr and Xe in LEW88663 are lower than those for L6 chondrites [8], supporting thermal metamorphism for the meteorite higher than that for L6 chondrites. The Kr and Xe are isotopically close to those of the terrestrial atmospheric Kr and Xe, and elemental abundance ratios for Ar, Kr and Xe suggest adsorbed noble gas patterns of the terrestrial atmosphere. The terrestrial atmospheric Ar, Kr and Xe (most

  15. Multi-generation chemical aging of α-pinene ozonolysis products by reactions with OH

    Science.gov (United States)

    Wang, Ningxin; Kostenidou, Evangelia; Donahue, Neil M.; Pandis, Spyros N.

    2018-03-01

    Secondary organic aerosol (SOA) formation from volatile organic compounds (VOCs) in the atmosphere can be thought of as a succession of oxidation steps. The production of later-generation SOA via continued oxidation of the first-generation products is defined as chemical aging. This study investigates aging in the α-pinene ozonolysis system with hydroxyl radicals (OH) through smog chamber experiments. The first-generation α-pinene ozonolysis products were allowed to react further with OH formed via HONO photolysis. After an equivalent of 2-4 days of typical atmospheric oxidation conditions, homogeneous OH oxidation of the α-pinene ozonolysis products resulted in a 20-40 % net increase in the SOA for the experimental conditions used in this work. A more oxygenated product distribution was observed after aging based on the increase in aerosol atomic oxygen-to-carbon ratio (O : C) by up to 0.04. Experiments performed at intermediate relative humidity (RH) of 50 % showed no significant difference in additional SOA formation during aging compared to those performed at a low RH of less than 20 %.

  16. Multi-generation chemical aging of α-pinene ozonolysis products by reactions with OH

    Directory of Open Access Journals (Sweden)

    N. Wang

    2018-03-01

    Full Text Available Secondary organic aerosol (SOA formation from volatile organic compounds (VOCs in the atmosphere can be thought of as a succession of oxidation steps. The production of later-generation SOA via continued oxidation of the first-generation products is defined as chemical aging. This study investigates aging in the α-pinene ozonolysis system with hydroxyl radicals (OH through smog chamber experiments. The first-generation α-pinene ozonolysis products were allowed to react further with OH formed via HONO photolysis. After an equivalent of 2–4 days of typical atmospheric oxidation conditions, homogeneous OH oxidation of the α-pinene ozonolysis products resulted in a 20–40 % net increase in the SOA for the experimental conditions used in this work. A more oxygenated product distribution was observed after aging based on the increase in aerosol atomic oxygen-to-carbon ratio (O : C by up to 0.04. Experiments performed at intermediate relative humidity (RH of 50 % showed no significant difference in additional SOA formation during aging compared to those performed at a low RH of less than 20 %.

  17. The Behavior and Effects of the Noble Metals in the DWPF Melter System

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bickford, D.F.

    1997-11-30

    Governments worldwide have committed to stabilization of high-level nuclear waste (HLW) by vitrification to a durable glass form for permanent disposal. All of these nuclear wastes contain the fission-product noble metals: ruthenium, rhodium, and palladium. SRS wastes also contain natural silver from iodine scrubbers. Closely associated with the noble metals are the fission products selenium and tellurium which are chemical analogs of sulfur and which combine with noble metals to influence their behavior and properties. Experience has shown that these melt insoluble metals and their compounds tend to settle to the floor of Joule-heated ceramic melters. In fact, almost all of the major research and production facilities have experienced some operational problem which can be associated with the presence of dense accumulations of these relatively conductive metals and/or their compounds. In most cases, these deposits have led to a loss of production capability, in some cases, to the point that melter operation could not continue. HLW nuclear waste vitrification facilities in the United States are the Department of Energy`s Defense Waste Processing Facility (DWPF) at the Savannah River Site, the planned Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the operating West Valley Demonstration Project (WVDP) at West Valley, NY. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. An extensive noble metals testing program was begun in 1990. The objectives of this task were to explore the effects of the noble metals on the DWPF melter feed preparation and waste vitrification processes. This report focuses on the vitrification portion of the test program.

  18. The U.S. Chemical Industry, the Foreign Trade It Generates

    Science.gov (United States)

    Chemical and Engineering News, 1972

    1972-01-01

    The foreign trade of the United States chemical industry is reviewed in this section of the annual chemical industry report, including data presented for: U.S. chemical trade, U.S. trade as per cent of world trade, total U.S. trade, chemical trade growth, and U.S. chemical trade partners. (PR)

  19. Design of sustainable chemical processes: Systematic retrofit analysis, generation and evaluation alternatives

    DEFF Research Database (Denmark)

    Carvalho, Ana; Gani, Rafiqul; Matos, Henrique

    2008-01-01

    eliminating the need to identify trade-off-based solutions. These indicators are also able to reduce (where feasible) a set of safety indicators. An indicator sensitivity analysis algorithm has been added to the methodology to define design targets and to generate sustainable process alternatives. A computer......The objective of this paper is to present a generic and systematic methodology for identifying the feasible retrofit design alternatives of any chemical process. The methodology determines a set of mass and energy indicators from steady-state process data, establishes the operational and design...... targets, and through a sensitivity-based analysis, identifies the design alternatives that can match a set of design targets. The significance of this indicator-based method is that it is able to identify alternatives, where one or more performance criteria (factors) move in the same direction thereby...

  20. Addressing Human Variability in Next-Generation Human Health Risk Assessments of Environmental Chemicals

    Science.gov (United States)

    Bois, Frederic Y.; Chiu, Weihsueh A.; Hattis, Dale; Rusyn, Ivan; Guyton, Kathryn Z.

    2012-01-01

    Background: Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Objective: Our goal was to explore how next-generation human health risk assessments may better characterize variability in the context of the conceptual framework for the source-to-outcome continuum. Methods: This review was informed by a National Research Council workshop titled “Biological Factors that Underlie Individual Susceptibility to Environmental Stressors and Their Implications for Decision-Making.” We considered current experimental and in silico approaches, and emerging data streams (such as genetically defined human cells lines, genetically diverse rodent models, human omic profiling, and genome-wide association studies) that are providing new types of information and models relevant for assessing interindividual variability for application to human health risk assessments of environmental chemicals. Discussion: One challenge for characterizing variability is the wide range of sources of inherent biological variability (e.g., genetic and epigenetic variants) among individuals. A second challenge is that each particular pair of health outcomes and chemical exposures involves combinations of these sources, which may be further compounded by extrinsic factors (e.g., diet, psychosocial stressors, other exogenous chemical exposures). A third challenge is that different decision contexts present distinct needs regarding the identification—and extent of characterization—of interindividual variability in the human population. Conclusions: Despite these inherent challenges, opportunities exist to incorporate evidence from emerging data streams for addressing interindividual variability in a range of decision-making contexts. PMID:23086705

  1. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model.

    Science.gov (United States)

    Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir

    2018-03-22

    We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .

  2. Syngas Generation from Methane Using a Chemical-Looping Concept: A Review of Oxygen Carriers

    Directory of Open Access Journals (Sweden)

    Kongzhai Li

    2013-01-01

    Full Text Available Conversion of methane to syngas using a chemical-looping concept is a novel method for syngas generation. This process is based on the transfer of gaseous oxygen source to fuel (e.g., methane by means of a cycling process using solid oxides as oxygen carriers to avoid direct contact between fuel and gaseous oxygen. Syngas is produced through the gas-solid reaction between methane and solid oxides (oxygen carriers, and then the reduced oxygen carriers can be regenerated by a gaseous oxidant, such as air or water. The oxygen carrier is recycled between the two steps, and the syngas with a ratio of H2/CO = 2.0 can be obtained successively. Air is used instead of pure oxygen allowing considerable cost savings, and the separation of fuel from the gaseous oxidant avoids the risk of explosion and the dilution of product gas with nitrogen. The design and elaboration of suitable oxygen carriers is a key issue to optimize this method. As one of the most interesting oxygen storage materials, ceria-based and perovskite oxides were paid much attention for this process. This paper briefly introduced the recent research progresses on the oxygen carriers used in the chemical-looping selective oxidation of methane (CLSOM to syngas.

  3. CO-oxidation catalysts: Low-temperature CO oxidation over Noble-Metal Reducible Oxide (NMRO) catalysts

    Science.gov (United States)

    Herz, Richard K.

    1990-01-01

    Oxidation of CO to CO2 is an important reaction technologically and environmentally and a complex and interesting reaction scientifically. In most cases, the reaction is carried out in order to remove CO as an environmental hazard. A major application of heterogeneous catalysts is catalytic oxidation of CO in the exhaust of combustion devices. The reaction over catalysts in exhaust gas is fast and often mass-transfer-limited since exhaust gases are hot and O2/CO ratios are high. The main challenges to catalyst designers are to control thermal sintering and chemical poisoning of the active materials. The effect of the noble metal on the oxide is discussed, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form unique catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  4. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun

    2014-01-01

    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  5. Positron scattering from noble gases future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A C L; Caradonna, P; Makochekanwa, C; Slaughter, D S; Sullivan, J P; Buckman, S J [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, Australian National University, Canberra, ACT (Australia); Mitroy, J, E-mail: acj107@rsphysse.anu.edu.a [Faculty of Education Health and Science, Charles Darwin University, NT (Australia)

    2009-11-01

    Recent results for positron scattering from noble gases over an energy range from 0.5 to 60eV are presented. Measurements include the grand total ({sigma}{sub GT}), Ps formation ({sigma}{sub Ps}) and Grand total - Ps formation (({sigma}{sub GT}-P{sub s}) cross sections. Some preliminary DCS results will also be presented. Work on a formulation of modified effective range theory (MERT) is being undertaken to determine the value of the scattering length which may be useful for identifying a bound state. Plans for experiments on metal atoms will be outlined.

  6. In-situ Studies of the Reactions of Bifunctional and Heterocyclic Molecules over Noble Metal Single Crystal and Nanoparticle Catalysts Studied with Kinetics and Sum-Frequency Generation Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kliewer, Christopher J. [Univ. of California, Berkeley, CA (United States)

    2009-06-30

    Sum frequency generation surface vibrational spectroscopy (SFG-VS) in combination with gas chromatography (GC) was used in-situ to monitor surface bound reaction intermediates and reaction selectivities for the hydrogenation reactions of pyrrole, furan, pyridine, acrolein, crotonaldehyde, and prenal over Pt(111), Pt(100), Rh(111), and platinum nanoparticles under Torr reactant pressures and temperatures of 300K to 450K. The focus of this work is the correlation between the SFG-VS observed surface bound reaction intermediates and adsorption modes with the reaction selectivity, and how this is affected by catalyst structure and temperature. Pyrrole hydrogenation was investigated over Pt(111) and Rh(111) single crystals at Torr pressures. It was found that pyrrole adsorbs to Pt(111) perpendicularly by cleaving the N-H bond and binding through the nitrogen. However, over Rh(111) pyrrole adsorbs in a tilted geometry binding through the {pi}-aromatic orbitals. A surface-bound pyrroline reaction intermediate was detected over both surfaces with SFG-VS. It was found that the ring-cracking product butylamine is a reaction poison over both surfaces studied. Furan hydrogenation was studied over Pt(111), Pt(100), 10 nm cubic platinum nanoparticles and 1 nm platinum nanoparticles. The product distribution was observed to be highly structure sensitive and the acquired SFG-VS spectra reflected this sensitivity. Pt(100) exhibited more ring-cracking to form butanol than Pt(111), while the nanoparticles yielded higher selectivities for the partially saturated ring dihydrofuran. Pyridine hydrogenation was investigated over Pt(111) and Pt(100). The α-pyridyl surface adsorption mode was observed with SFG-VS over both surfaces. 1,4-dihydropyridine was seen as a surface intermediate over Pt(100) but not Pt(111). Upon heating the surfaces to 350K, the adsorbed pyridine changes to a flat-lying adsorption mode. No evidence was found for the pyridinium cation. The hydrogenation of the

  7. Theoretical analysis of dynamic chemical imaging with lasers using high-order harmonic generation

    International Nuclear Information System (INIS)

    Van-Hoang Le; Anh-Thu Le; Xie Ruihua; Lin, C. D.

    2007-01-01

    We report theoretical investigations of the tomographic procedure suggested by Itatani et al. [Nature (London) 432, 867 (2004)] for reconstructing highest occupied molecular orbitals (HOMOs) using high-order harmonic generation (HHG). Due to the limited range of harmonics from the plateau region, we found that even under the most favorable assumptions, it is still very difficult to obtain accurate HOMO wave functions using the tomographic procedure, but the symmetry of the HOMOs and the internuclear separation between the atoms can be accurately extracted, especially when lasers of longer wavelengths are used to generate the HHG. Since the tomographic procedure relies on approximating the continuum wave functions in the recombination process by plane waves, the method can no longer be applied upon the improvement of the theory. For future chemical imaging with lasers, we suggest that one may want to focus on how to extract the positions of atoms in molecules instead, by developing an iterative method such that the theoretically calculated macroscopic HHG spectra can best fit the experimental HHG data

  8. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    NARCIS (Netherlands)

    Hettne, K.M.; Boorsma, A.; Dartel, D.A. van; Goeman, J.J.; Jong, E. de; Piersma, A.H.; Stierum, R.H.; Kleinjans, J.C.; Kors, J.A.

    2013-01-01

    BACKGROUND: Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set

  9. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    NARCIS (Netherlands)

    Hettne, K.M.; Boorsma, A.; Dartel, van D.A.M.; Goeman, J.J.; Jong, de E.; Piersma, A.H.; Stierum, R.H.; Kleinjans, J.C.; Kors, J.A.

    2013-01-01

    Background: Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set

  10. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    NARCIS (Netherlands)

    K.M. Hettne (Kristina); J. Boorsma (Jeffrey); D.A.M. van Dartel (Dorien A M); J.J. Goeman (Jelle); E.C. de Jong (Esther); A.H. Piersma (Aldert); R.H. Stierum (Rob); J. Kleinjans (Jos); J.A. Kors (Jan)

    2013-01-01

    textabstractBackground: Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with

  11. The leaves of Ficus exasperata Vahl (Moraceae) generates uterine active chemical constituents.

    Science.gov (United States)

    Bafor, Enitome E; Lim, Chiew V; Rowan, Edward G; Edrada-Ebel, Ruangelie

    2013-02-13

    In the search for new, safe and efficacious uterine active agents, the plant Ficus exasperata was subjected to phytochemical screening and pharmacological analysis. Ethyl acetate and methanolic leaf extracts of Ficus exasperata were fractionated and purified by a series of chromatographic techniques. The isolation process was guided by in vitro functional uterine assays involving the use of C57Bl/6 female mice. Identification of the active chemical constituents was performed by several spectroscopic techniques which included 1D and 2D nuclear magnetic resonance (NMR) and high resolution mass spectrometry (HRMS). The uterine effects of these compounds were investigated on spontaneous, oxytocin-induced and high KCl-induced contractions using isolated uterine segments of non-pregnant female mice. The activity of different compounds on the amplitude (maximum tension above basal force) and frequency of uterine contractions were simultaneously measured and then statistically analysed. The structure-activity relationships were also examined where possible. These studies led to the identification of some new phytochemical derivatives. Pharmacological assay revealed the presence of both uterine stimulatory and inhibitory constituents. The new pheophytin/pheophorbide derivatives, flavonoids, fatty acids and glycerol derivatives significantly reduced the frequency and amplitude of uterine contraction, while KCl salt, pyrimidine and pheophorbide-b derivatives significantly augmented both spontaneous and agonist-induced contractions. This study has demonstrated that Ficus exasperata generates secondary metabolites which have proven effective in the significant inhibition of uterine contractions and thus a potential source of new tocolytic agents. Additionally, uterine stimulatory constituents were also generated some of which may be potential drugs for contraception and/or labour facilitation. Lead compounds generated from this study are the pheophytin/pheophorbide derivatives

  12. Chemically Regulated ROS Generation from Gold Nanoparticles for Enzyme-Free Electrochemiluminescent Immunosensing.

    Science.gov (United States)

    Higashi, Yui; Mazumder, Joyotu; Yoshikawa, Hiroyuki; Saito, Masato; Tamiya, Eiichi

    2018-04-17

    In the present work, we report on an enzyme-free electrochemiluminescent (ECL) immunosensing scheme utilizing the catalytic generation of reactive oxygen species (ROS) from gold nanoparticles (AuNPs) (diameter ≥5 nm) dispersed in aqueous solutions of trishydroxymethylaminomethane (Tris). First, to examine this catalytic pathway in detail, the effects of various factors such as the AuNP size and concentration, dispersant type and concentration, and dissolved oxygen were investigated using the electrochemiluminescence (ECL) of luminol. It was found that the catalytic generation of ROS from AuNPs can be regulated chemically by altering conditions such as the type, concentration, and pH of the solution that the AuNPs are dispersed in. Under the best conditions studied in this work, the AuNPs displayed high catalytic activity toward ROS generation, with an estimated apparent turnover number per AuNP of 0.1 s -1 , comparable to those of several common peroxide-producing enzymes. Following these studies, this phenomenon was applied to develop a one-step enzyme-free ECL immunosensor based on sandwiching the target analyte using antibody-conjugated magnetic beads (MB) and AuNPs. Using IgA as a model analyte, the developed immunosensor was able to detect the target in the range of 1 ng/mL to 10 μg/mL, with the lower detection limit being comparable to those of commercial assays for the same target. Altering the antibodies used to modify the MB and AuNPs could further improve the detection limit as well as expand the applicability of this immunoassay to the detection of other analytes.

  13. Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions.

    Science.gov (United States)

    Rodriguez, José A; Illas, Francesc

    2012-01-14

    This perspective article focuses on the physical and chemical properties of highly active catalysts for CO oxidation, desulfurization and hydrogenation reactions generated by depositing noble metals on metal-carbide surfaces. To rationalize structure-reactivity relationships for these novel catalysts, well-defined systems are required. High-resolution photoemission, scanning tunneling microscopy (STM) and first-principles periodic density-functional (DF) calculations have been used to study the interaction of metals of Groups 9, 10 and 11 with MC(001) (M = Ti, Zr, V, Mo) surfaces. DF calculations give adsorption energies that range from 2 eV (Cu, Ag, Au) to 6 eV (Co, Rh, Ir). STM images show that Au, Cu, Ni and Pt grow on the carbide substrates forming two-dimensional islands at very low coverage, and three-dimensional islands at medium and large coverages. In many systems, the results of DF calculations point to the preferential formation of admetal-C bonds with significant electronic perturbations in the admetal. TiC(001) and ZrC(001) transfer some electron density to the admetals facilitating bonding of the adatom with electron-acceptor molecules (CO, O(2), C(2)H(4), SO(2), thiophene, etc.). For example, the Cu/TiC(001) and Au/TiC(001) systems are able to cleave both S-O bonds of SO(2) at a temperature as low as 150 K, displaying a reactivity much larger than that of TiC(001) or extended surfaces of bulk copper and gold. At temperatures below 200 K, Au/TiC is able to dissociate O(2) and perform the 2CO + O(2)→ 2CO(2) reaction. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(001) or Au(111), a Au/TiC(001) surface displays an activity for the hydrodesulfurization of thiophene higher than that of conventional Ni/MoS(x) catalysts. In general, the Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces. Thus, metal carbides are excellent supports for enhancing the chemical

  14. Selective extraction and detection of noble metal based on ionic ...

    Indian Academy of Sciences (India)

    With the dramatic increase in economic growth, noble metals have been extensively utilized for wide range of industries and economic activities. Gold is one of the noble metals, which used in various applications because of its unique properties. However, various reports have mentioned that gold species may cause an ...

  15. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse: Chapter 12

    Science.gov (United States)

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  16. Positron Cooling and Annihilation in Noble Gases.

    Science.gov (United States)

    Green, D G

    2017-11-17

    Positron cooling and annihilation in room temperature noble gases is simulated using accurate scattering and annihilation cross sections calculated with many-body theory, enabling the first simultaneous probing of the energy dependence of the scattering and annihilation cross sections. A strikingly small fraction of positrons is shown to survive to thermalization: ∼0.1 in He, ∼0 in Ne, ∼0.15 in Ar, ∼0.05 in Kr, and ∼0.01 in Xe. For Xe, the time-varying annihilation rate Z[over ¯]_{eff}(τ) is shown to be highly sensitive to the depletion of the momentum distribution due to annihilation, conclusively explaining the long-standing discrepancy between gas-cell and trap-based measurements. Overall, the use of the accurate atomic data gives Z[over ¯]_{eff}(τ) in close agreement with experiment for all noble gases except Ne, the experiment for which is proffered to have suffered from incomplete knowledge of the fraction of positrons surviving to thermalization and/or the presence of impurities.

  17. Effect of Mercury-Noble Metal Interactions on SRAT Processing of SB3 Simulants (U)

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Baich, M. A.

    2004-12-31

    Controlling hydrogen generation below the Defense Waste Processing Facility (DWPF) safety basis constrains the range of allowable acid additions in the DWPF Chemical Processing Cell. This range is evaluated in simulant tests at the Savannah River National Laboratory (SRNL). A minimum range of allowable acid additions is needed to provide operational flexibility and to handle typical uncertainties in process and analytical measurements used to set acid additions during processing. The range of allowable acid additions is a function of the composition of the feed to DWPF. Feed changes that lead to a smaller range of allowable acid additions have the potential to impact decisions related to wash endpoint control of DWPF feed composition and to the introduction of secondary waste streams into DWPF. A limited program was initiated in SRNL in 2001 to study the issue of hydrogen generation. The program was reinitiated at the end of fiscal year 2004. The primary motivation for the study is that a real potential exists to reduce the conservatism in the range of allowable acid additions in DWPF. Increasing the allowable range of acid additions can allow decisions on the sludge wash endpoint or the introduction of secondary waste streams to DWPF to be based on other constraints such as glass properties, organic carbon in the melter off-gas, etc. The initial phase of the study consisted of a review of site reports and off-site literature related to catalytic hydrogen generation from formic acid and/or formate salts by noble metals. Many things are already known about hydrogen generation during waste processing. This phase also included the development of an experimental program to improve the understanding of hydrogen generation. This phase is being documented in WSRC-TR-2002-00034. A number of areas were identified where an improved understanding would be beneficial. A phased approach was developed for new experimental studies related to hydrogen generation. The first phase

  18. Chemical preventive remedies for steam generators fouling and tube support plate blockages

    International Nuclear Information System (INIS)

    Alves Vieira, M.; Mayos, M.; Coquio, N.; Fourcroy, H.; Battesti, P.

    2010-01-01

    In 2006, EDF identified on several PWR units broached hole blockage on the upper Steam Generator (SG) Tube Support Plates (TSP). TSP blockage often occurs in association with secondary fouling. The units with copper alloys materials are more affected due the applied low pH 25 o C (9.20) all volatile treatment (AVT). Carbon steels materials are less protected against flow accelerated corrosion (FAC) and therefore more corrosion products enter the SGs through the final feed water (FFW). In parallel of chemical cleanings to remove oxides deposits in SGs, EDF has defined a strategy to improve operating conditions. It mainly relies on the removal of copper alloys materials to implement a high pH AVT (9.60) as a preventive remedy. However for some plants, copper alloys removal is not straightforward due to environmental constraints. EDF must indeed manage the implementation of a biocide treatment needed in closed loop cooling systems (as copper has a bacteriostatic effect on micro-organisms) and more generally must comply with discharge authorisations for chemical conditioning reagents or biocide reagent. An alternative conditioning was tested on the Dampierre 4 unit in 2007/2008 during 6 months to assess if operating at 9.40 was acceptable regarding the impacts on copper alloys materials. The perspective would be to implement it in the units where no biocide treatment can be applied on a short term. In parallel, other chemical conditionings or additives will be implemented or tested. First of all, EDF will carry out a trial test with APA in order to assess its efficiency on the removal of oxides deposits through SG blowdown. On the other hand, AVT with high pH ethanolamine (ETA) will be implemented as an alternative of ammonia and morpholine conditioning on some chosen plants. Ethanolamine is selected as a way to mitigate FAC kinetics in two-phase flow areas (reheaters or moisture heater separator) or to limit liquid releases. This paper provides the lessons of the

  19. Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional Printer.

    Science.gov (United States)

    Stefaniak, Aleksandr B; LeBouf, Ryan F; Yi, Jinghai; Ham, Jason; Nurkewicz, Timothy; Schwegler-Berry, Diane E; Chen, Bean T; Wells, J Raymond; Duling, Matthew G; Lawrence, Robert B; Martin, Stephen B; Johnson, Alyson R; Virji, M Abbas

    2017-07-01

    Printing devices are known to emit chemicals into the indoor atmosphere. Understanding factors that influence release of chemical contaminants from printers is necessary to develop effective exposure assessment and control strategies. In this study, a desktop fused deposition modeling (FDM) 3-dimensional (3-D) printer using acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) filaments and two monochrome laser printers were evaluated in a 0.5 m 3 chamber. During printing, chamber air was monitored for vapors using a real-time photoionization detector (results expressed as isobutylene equivalents) to measure total volatile organic compound (TVOC) concentrations, evacuated canisters to identify specific VOCs by off-line gas chromatography-mass spectrometry (GC-MS) analysis, and liquid bubblers to identify carbonyl compounds by GC-MS. Airborne particles were collected on filters for off-line analysis using scanning electron microscopy with an energy dispersive x-ray detector to identify elemental constituents. For 3-D printing, TVOC emission rates were influenced by a printer malfunction, filament type, and to a lesser extent, by filament color; however, rates were not influenced by the number of printer nozzles used or the manufacturer's provided cover. TVOC emission rates were significantly lower for the 3-D printer (49-3552 µg h -1 ) compared to the laser printers (5782-7735 µg h -1 ). A total of 14 VOCs were identified during 3-D printing that were not present during laser printing. 3-D printed objects continued to off-gas styrene, indicating potential for continued exposure after the print job is completed. Carbonyl reaction products were likely formed from emissions of the 3-D printer, including 4-oxopentanal. Ultrafine particles generated by the 3-D printer using ABS and a laser printer contained chromium. Consideration of the factors that influenced the release of chemical contaminants (including known and suspected asthmagens such as styrene and

  20. Chemical reactivity of the compressed noble gas atoms and their ...

    Indian Academy of Sciences (India)

    Systems become harder, less polarizable and difficult to excite as the compression increases. Ionization also causes similar effects. A quantum ... projectile velocities and impact parameters. Dynamical variants of the principles of maximum hardness, minimum polarizability and maximum entropy are found to be operative.

  1. GREENER CHEMICAL SYNTHETIC APPROACHES TO HETEROCYCLES, NOBLE NANOMETALS, AND NANOCOMPOSITES

    Science.gov (United States)

    An efficient and sustainable approach to rapid organic synthesis using ‘greener’ conditions, especially in the context of multi-component condensation reactions that are amenable to building libraries of compounds, is described. The use of solvent-free mechanochemical mixing, or ...

  2. Reactive species generated during wet chemical etching of silicon in HF/HNO3 mixtures.

    Science.gov (United States)

    Steinert, Marco; Acker, Jörg; Krause, Matthias; Oswald, Steffen; Wetzig, Klaus

    2006-06-15

    The role of intermediate species generated during wet chemical etching of silicon in a HF-rich HF/HNO3 mixture was studied by spectroscopic and analytical methods at 1 degrees C. The intermediate N2O3 was identified by its cobalt blue color and the characteristic features in its UV-vis and Raman spectra. Furthermore, a complex N(III) species (3NO+.NO3-) denoted as [N4O6(2+)] is observed in these solutions. The time-dependent decay of the N(III) intermediates, mainly by their oxidation at the liquid-air interface, serves as a precondition for the study of the etch rate as function of the intermediate concentration measured by Raman spectroscopy. From a linear relationship between etch rate and [N4O6(2+)] concentration, NO+ is considered to be a reactive species in the rate-limiting step. This step is attributed to the oxidation of permanent existing Si-H bonds at the silicon surface by the reactive NO+ species. N2O3 serves as a reservoir for the generation of NO+ leading to a complete coverage of the silicon surface with reactive species at high intermediate concentrations. As long as this condition is valid (plateau region), the etch rate is constant and yields a smooth silicon surface upon completion of the etching. If the N2O3 concentration is insufficient to ensure a coverage of the Si surface by NO+, the etch rate decreases linearly with the N2O3 concentration and results in a roughening of the etched silicon surface (slope region).

  3. Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture solid oxygen- and CO2-carriers

    CERN Document Server

    Fennell, Paul

    2015-01-01

    Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical loopingProvi

  4. Chemical evolution of atmospheric organic carbon over multiple generations of oxidation

    Science.gov (United States)

    Isaacman-VanWertz, Gabriel; Massoli, Paola; O'Brien, Rachel; Lim, Christopher; Franklin, Jonathan P.; Moss, Joshua A.; Hunter, James F.; Nowak, John B.; Canagaratna, Manjula R.; Misztal, Pawel K.; Arata, Caleb; Roscioli, Joseph R.; Herndon, Scott T.; Onasch, Timothy B.; Lambe, Andrew T.; Jayne, John T.; Su, Luping; Knopf, Daniel A.; Goldstein, Allen H.; Worsnop, Douglas R.; Kroll, Jesse H.

    2018-02-01

    The evolution of atmospheric organic carbon as it undergoes oxidation has a controlling influence on concentrations of key atmospheric species, including particulate matter, ozone and oxidants. However, full characterization of organic carbon over hours to days of atmospheric processing has been stymied by its extreme chemical complexity. Here we study the multigenerational oxidation of α-pinene in the laboratory, characterizing products with several state-of-the-art analytical techniques. Although quantification of some early generation products remains elusive, full carbon closure is achieved (within measurement uncertainty) by the end of the experiments. These results provide new insights into the effects of oxidation on organic carbon properties (volatility, oxidation state and reactivity) and the atmospheric lifecycle of organic carbon. Following an initial period characterized by functionalization reactions and particle growth, fragmentation reactions dominate, forming smaller species. After approximately one day of atmospheric aging, most carbon is sequestered in two long-lived reservoirs—volatile oxidized gases and low-volatility particulate matter.

  5. Characterization and modeling of tungsten nanoparticles generated by laser-assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Landstroem, L.; Kokavecz, J.; Lu, J.; Heszler, P.

    2004-01-01

    Tungsten nanoparticles were generated by photolytical (UV) laser-activated chemical vapor deposition from WF 6 /H 2 /Ar gas mixture. Emission spectroscopy of thermal radiation allowed temperature determination of the nanoparticles while varying the laser fluence. A model including known cooling mechanisms was used to calculate the laser-induced temperature as a function of time and laser fluence, where the only fitting parameter was the absorption efficiency of the particles, obtained from measured temperatures. Size decrease of the particles due to evaporation was modeled at different laser fluences, and connected to size-distribution measurements from transmission electron microscopy micrographs, where a maximum geometric mean diameter (for the experimental conditions used) of 10 nm was observed at a laser fluence of ∼120 mJ/cm2. Measurements and the model calculations showed that the laser-excited particles reached the melting temperature of tungsten at ∼95 mJ/cm2. Above ∼130 mJ/cm2, very high rates of evaporation of W atoms were found, resulting in a decrease in size of the deposited particles. Crystalline, metastable β-W nanoparticles were found above ∼100 mJ/cm2 by both electron and x-ray diffraction. Below fluences of ∼100 mJ/cm2, i.e., corresponding to the value necessary for melting, amorphous nanoparticles were obtained

  6. Quantifying Repetitive Transmission at Chemical Synapses: A Generative-Model Approach123

    Science.gov (United States)

    Barri, Alessandro; Wang, Yun; Hansel, David

    2016-01-01

    Abstract The dependence of the synaptic responses on the history of activation and their large variability are both distinctive features of repetitive transmission at chemical synapses. Quantitative investigations have mostly focused on trial-averaged responses to characterize dynamic aspects of the transmission—thus disregarding variability—or on the fluctuations of the responses in steady conditions to characterize variability—thus disregarding dynamics. We present a statistically principled framework to quantify the dynamics of the probability distribution of synaptic responses under arbitrary patterns of activation. This is achieved by constructing a generative model of repetitive transmission, which includes an explicit description of the sources of stochasticity present in the process. The underlying parameters are then selected via an expectation-maximization algorithm that is exact for a large class of models of synaptic transmission, so as to maximize the likelihood of the observed responses. The method exploits the information contained in the correlation between responses to produce highly accurate estimates of both quantal and dynamic parameters from the same recordings. The method also provides important conceptual and technical advances over existing state-of-the-art techniques. In particular, the repetition of the same stimulation in identical conditions becomes unnecessary. This paves the way to the design of optimal protocols to estimate synaptic parameters, to the quantitative comparison of synaptic models over benchmark datasets, and, most importantly, to the study of repetitive transmission under physiologically relevant patterns of synaptic activation. PMID:27200414

  7. Quantifying Repetitive Transmission at Chemical Synapses: A Generative-Model Approach.

    Science.gov (United States)

    Barri, Alessandro; Wang, Yun; Hansel, David; Mongillo, Gianluigi

    2016-01-01

    The dependence of the synaptic responses on the history of activation and their large variability are both distinctive features of repetitive transmission at chemical synapses. Quantitative investigations have mostly focused on trial-averaged responses to characterize dynamic aspects of the transmission--thus disregarding variability--or on the fluctuations of the responses in steady conditions to characterize variability--thus disregarding dynamics. We present a statistically principled framework to quantify the dynamics of the probability distribution of synaptic responses under arbitrary patterns of activation. This is achieved by constructing a generative model of repetitive transmission, which includes an explicit description of the sources of stochasticity present in the process. The underlying parameters are then selected via an expectation-maximization algorithm that is exact for a large class of models of synaptic transmission, so as to maximize the likelihood of the observed responses. The method exploits the information contained in the correlation between responses to produce highly accurate estimates of both quantal and dynamic parameters from the same recordings. The method also provides important conceptual and technical advances over existing state-of-the-art techniques. In particular, the repetition of the same stimulation in identical conditions becomes unnecessary. This paves the way to the design of optimal protocols to estimate synaptic parameters, to the quantitative comparison of synaptic models over benchmark datasets, and, most importantly, to the study of repetitive transmission under physiologically relevant patterns of synaptic activation.

  8. Study of heat and mass transfer in a steam generator with chemically reacting coolant

    International Nuclear Information System (INIS)

    Lemeshev, V.U.; Mikhalevich, A.A.; Nemtsev, V.A.; Nesterenko, V.B.

    1983-01-01

    A one-dimensional mathematical model is represented once-through type and heat and mass transfer steam generator with turbulent flow of chemically reacting N 2 O 4 -NO coolant is investigated. During development of the mathematical model it has been assumed that the process of heating and boiling of liquid N 2 O 4 -NO coolant as well as superheating of produced vapour at subcritical parameters or heating of pseudo-liquid and superheating of produced pseudovapour at supercritical parameters (the heated side) is carried out at the expense of gaseous N 2 O 4 -NO coolant cooling (the heating side). The process of heating and cooling of the N 2 O 4 -NO system is followed by N 2 O 4 reversible 2NO 2 (1); 2NO 2 reversible 2NO+O 2 (2); N 2 O 3 reVersible NO 2 +NO (3) reactions, whereas the reactions (1) and (3) are practically equilibrium and the reaction (2) proceeds for the time comparable with the coolant residence time in the reactor circuit and the reaction rate is to be taken into account at mathematical modelling of the heat and mass transfer processes in the equipment. The modelling of thermal and hydrodynamic processes in the elements of a powergenerating components is needed for developing power plants with a dissociating coolant

  9. Generation of Self-Renewing Hepatoblasts From Human Embryonic Stem Cells by Chemical Approaches.

    Science.gov (United States)

    Zhang, Muzi; Sun, Pingxin; Wang, Yusheng; Chen, Junnan; Lv, Linjie; Wei, Wanguo; Jin, Caixia; Li, Wenlin

    2015-11-01

    Somatic stem cells play crucial roles in organogenesis and tissue homeostasis and regeneration and may ultimately prove useful for cell therapy for a variety of degenerative diseases and injuries; however, isolation and expansion of most types of somatic stem cells from tissues are technically challenging. Human pluripotent stem cells are a renewable source for any adult cell types, including somatic stem cells. Generation of somatic stem cells from human pluripotent stem cells is a promising strategy to get these therapeutically valuable cells. Previously, we developed a chemically defined condition for mouse hepatoblast self-renewal through a reiterative screening strategy. In the present study, we efficiently generated hepatoblasts from human embryonic stem cells by a stepwise induction strategy. Importantly, these human embryonic stem cell-derived hepatoblasts can be captured and stably maintained using conditions previously established for mouse hepatoblast self-renewal, which includes basal media supplemented with insulin, transferrin, sodium selenite, epidermal growth factor, glycogen synthase kinase 3 inhibitor, transforming growth factor β receptor inhibitor, lysophosphatidic acid, and sphingosine 1-phosphate. The cells can stably retain hepatoblast phenotypes during prolonged culture and can differentiate into mature hepatocytes through in vitro provision of hepatocyte lineage developmental cues. After being embedded into three-dimensional Matrigel, these cells efficiently formed bile duct-like structures resembling native bile duct tissues. These human embryonic stem cell-derived hepatoblasts would be useful as a renewable source for cell therapy of liver diseases. Somatic stem cells have been proposed as promising candidates for cell-based therapy; however, isolation of somatic stem cells from adult tissues is usually invasive and technically challenging. In the present study, hepatoblasts from human embryonic stem cells were efficiently generated

  10. Noble Gases as tracers of fluid migration in the Haynesville shale and overlying strata

    Science.gov (United States)

    Byrne, D. J.; Barry, P. H.; Lawson, M.; Ballentine, C. J.

    2017-12-01

    Noble gases are ideal tracers of physical processes and fluid provenance in crustal systems. Due to their inert nature, they are unaffected by chemical alteration, redox, or biological phenomena that fractionate other geochemical tracers. Noble gas analysis has been used to quantify fluid provenance, interactions, and ages in petroleum systems [1,2], but the effects of hydrocarbon migration on noble gas signatures have not been directly observed. The Haynesville Shale (East Texas & Louisiana), is exploited commercially for unconventional shale gas, but also acts as the source-rock for overlying conventional reservoirs. We present noble gas isotope and abundance data in samples collected from 9 natural gas wells sourced from the Haynesville Shale, as well as 21 from reservoirs in the overlying Cotton Valley (n=7), Travis Peak (n=9), and James (n=5) groups. Using a stratigraphic model, we observe systematic changes in the noble gas signatures as the fluids migrate from the Haynesville source rock to the overlying conventional accumulations. Helium isotope ratios (3He/4He) are strongly radiogenic in the Haynesville and stratigraphically older conventional reservoirs, with the younger reservoirs showing evidence of a mantle helium input. Argon isotope ratios (40Ar/36Ar) are strongly correlated with high 3He/4He, suggesting a similar provenance for radiogenic 40Ar and mantle 3He. Concentrations of groundwater-derived 36Ar are consistently higher in the conventional reservoirs than in the Haynesville shale, reflecting the greater interaction with groundwater during migration. However, 20Ne/36Ar ratios are not significantly different, suggesting that solubility-dependent partitioning is not simply dependent on vertical or horizontal migration distance. Krypton and xenon abundances are higher than expected for groundwater in all samples, a phenomenon that has been observed in many other hydrocarbon accumulations [3]. The excess Xe/Kr ratio is highest in the Haynesville

  11. Noble Metal Nanoparticles Applications in Cancer

    Directory of Open Access Journals (Sweden)

    João Conde

    2012-01-01

    Full Text Available Nanotechnology has prompted new and improved materials for biomedical applications with particular emphasis in therapy and diagnostics. Special interest has been directed at providing enhanced molecular therapeutics for cancer, where conventional approaches do not effectively differentiate between cancerous and normal cells; that is, they lack specificity. This normally causes systemic toxicity and severe and adverse side effects with concomitant loss of quality of life. Because of their small size, nanoparticles can readily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. This way, a variety of nanoparticles with the possibility of diversified modification with biomolecules have been investigated for biomedical applications including their use in highly sensitive imaging assays, thermal ablation, and radiotherapy enhancement as well as drug and gene delivery and silencing. Here, we review the available noble metal nanoparticles for cancer therapy, with particular focus on those already being translated into clinical settings.

  12. Monolayer adsorption of noble gases on graphene

    Science.gov (United States)

    Maiga, Sidi M.; Gatica, Silvina M.

    2018-02-01

    We report our results of simulations of the adsorption of noble gases (Kr, Ar, Xe) on graphene. For Kr, we consider two configurations: supported and free-standing graphene, where atoms are adsorbed only on one or two sides of the graphene. For Ar and Xe, we studied only the case of supported graphene. For the single-side adsorption, we calculated the two-dimensional gas-liquid critical temperature for each adsorbate. We determined the different phases of the monolayers and constructed the phase diagrams. We found two-dimensional incommensurate solid phases for krypton, argon and xenon, and a two-dimensional commensurate solid phase for krypton. For double side adsorption of Kr, we do not see evidence of an ordering transition driven by the interlayer forces.

  13. Spectrophotometric methods for determining noble metals

    International Nuclear Information System (INIS)

    Gur'eva, R.F.; Savvin, S.B.

    2002-01-01

    The main trends of the development of spectrophotometric methods for determining noble metals (NMs) including ruthenium are considered. One of these trends is the synthesis and study of new, highly sensitive and selective organic reagents for determining NMs in solutions and solid phase. Another trend is the search for and developing of new methodological approaches (techniques) and color reactions, including those that involve modified and immobilized reagents. The third trend includes the improvement of equipment and automation. It is shown that the present-day spectrophotometry can provide the determination of NMs in samples with concentrations from several to 10 -4 % (photometry and differential photometry) and down to 10 -7 % (test and sorption-spectroscopic methods based on photometry and diffuse-reflectance spectroscopy, including the use of chromaticity functions) [ru

  14. Noble gas, a potential nuclear proliferation indicator

    International Nuclear Information System (INIS)

    Chapman, T.C.

    1993-01-01

    In the post-Cold War era, it appears that nuclear proliferation will be a continuing problem. At least one reliable technique to detect nuclear activities is needed to deter potential proliferators. This paper proposes a candidate technique for detection. Early efforts to measure nuclear fuel performance resulted in the consideration of a variety of potential techniques. In 1965, Maeck proposed determination of nuclear fuel burnup based on the ratio of two stable fission product isotopes of the same element. Maeck proposed using three ratios: 84 Kr/ 83 Kr, 132 Xe/ 131 Xe, and 144 Nd/ 143 Nd. More recent work includes useful application of krypton and xenon isotope correlation techniques to safeguards at nuclear fuel reprocessing facilities. The safeguards application requires very precise measurement of the fission product isotopes, detailed fuel exposure history, and knowledge of the neutron spectrum. Meeting all these requirements is extremely difficult and requires carefully controlled conditions. The most likely scenario for a proliferator to produce nuclear material suitable for weapons applications is reprocessing of reactor fuel to recover the plutonium. Since useful amounts of plutonium are produced in all uranium-fueled reactors, reprocessing the reactor fuel would be much easier and less expensive than mining and enriching uranium to weapons-grade material. Reprocessing nuclear reactor fuel releases the noble gases krypton and xenon from the fuel. Because capture of the noble gases is difficult, expensive, and produces a radiation hazard, the gases will normally be released during reprocessing. These factors provide the basis for this proposed technique of detecting proliferators

  15. Deposition and characterization of noble metal onto surfaces of 304l stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Contreras R, A.; Arganis J, C. R.; Aguilar T, J. A.; Medina A, A. L., E-mail: aida.contreras@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-10-15

    Noble metal chemical addition (NMCA) plus hydrogen water chemistry is an industry-wide accepted approach for potential intergranular stress corrosion cracking mitigation of BWR internals components. NMCA is a method of applying noble metal onto BWR internals surfaces using reactor water as the transport medium that causes the deposition of noble metal from the liquid onto surfaces. In this work different platinum concentration solutions were deposited onto pre-oxidized surfaces of 304l steel at 180 C during 48 hr in an autoclave. In order to simulate the zinc water conditions, deposits of Zn and Pt-Zn were also carried out. The solutions used to obtain the deposits were: sodium hexahydroxyplatinate (IV), zinc nitrate hydrate and zinc oxide. The deposits obtained were characterized by scanning electron microscopy and X-ray diffraction. Finally, the electrochemical corrosion potential of pre-oxidized samples with Pt deposit were obtained and compared with the electrochemical corrosion potential of only pre-oxidized samples. (Author)

  16. Noble gas adsorption with and without mechanical stress: Not Martian signatures but fractionated air

    Science.gov (United States)

    Schwenzer, Susanne P.; Herrmann, Siegfried; Ott, Ulrich

    2012-06-01

    Sample preparation, involving physical and chemical methods, is an unavoidable step in geochemical analysis. From a noble gas perspective, the two important effects are loss of sample gas and/or incorporation of air, which are significant sources of analytical artifacts. This article reports on the effects of sample exposure to laboratory air without mechanical influence and during sample grinding. The experiments include pure adsorption on terrestrial analog materials (gibbsite and olivine) and grinding of Martian meteorites. A consistent observation is the presence of an elementally fractionated air component in the samples studied. This is a critical form of terrestrial contamination in meteorites as it often mimics the heavy noble gas signatures of known extra-terrestrial end-members that are the basis of important conclusions about the origin and evolution of a meteorite. Although the effects of such contamination can be minimized by avoiding elaborate sample preparation protocols, caution should be exercised in interpreting the elemental ratios (Ar/Xe, Kr/Xe), especially in the low-temperature step extractions. The experiments can also be transferred to the investigation of Martian meteorites with long terrestrial residence times, and to Mars, where the Mars Science Laboratory mission will be able to measure noble gas signatures in the current atmosphere and in rocks and soils collected on the surface in Gale crater.

  17. Visible light active TiO 2 films prepared by electron beam deposition of noble metals

    Science.gov (United States)

    Hou, Xing-Gang; Ma, Jun; Liu, An-Dong; Li, De-Jun; Huang, Mei-Dong; Deng, Xiang-Yun

    2010-03-01

    TiO 2 films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO 2 films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO 2 is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO 2 films by this method is affected by the concentration of impregnating solution.

  18. Chemical transformations of chlorophyll and its application in the design of a new generation of environmentally safe dyes

    International Nuclear Information System (INIS)

    Berezin, Boris D; Rumyantseva, Svetlana V; Moryganov, Andrey P; Berezin, Mikhail B

    2004-01-01

    Chemical transformations of chlorophyll and physicochemical properties of its derivatives are considered. These compounds can be used in the design of a new generation of chlorophyll- and porphyrin-based dyes environmentally more safe than currently used arene dyes and possessing renewable sources of raw materials. The first results on the use of chlorophyll derivatives for dyeing wool, acetate fibres and cotton are reported.

  19. Chemical transformations of chlorophyll and its application in the design of a new generation of environmentally safe dyes

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, Boris D; Rumyantseva, Svetlana V; Moryganov, Andrey P; Berezin, Mikhail B [Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo (Russian Federation)

    2004-02-28

    Chemical transformations of chlorophyll and physicochemical properties of its derivatives are considered. These compounds can be used in the design of a new generation of chlorophyll- and porphyrin-based dyes environmentally more safe than currently used arene dyes and possessing renewable sources of raw materials. The first results on the use of chlorophyll derivatives for dyeing wool, acetate fibres and cotton are reported.

  20. Side by Side Comparison of Chemical Compounds Generated by Aqueous Pretreatments of Maize Stover, Miscanthus and Sugarcane Bagasse

    NARCIS (Netherlands)

    Gomez, L.D.; Vanholme, R.; Bird, S.; Goeminne, G.; Trindade, L.M.; Polikarpov, I.; Simister, R.; Morreel, K.; Boerjan, W.; McQueen-Mason, S.J.

    2014-01-01

    In order to examine the potential for coproduct generation, we have characterised chemical compounds released by a range of alkaline and acidic aqueous pretreatments as well as the effect of these pretreatments on the saccharification ability of the lignocellulosic material. Comparative experiments

  1. WW LCI v2: A second-generation life cycle inventory model for chemicals discharged to wastewater systems

    DEFF Research Database (Denmark)

    Kalbar, Pradip P; Muñoz, Ivan; Birkved, Morten

    2017-01-01

    We present a second-generation wastewater treatment inventory model, WW LCI 2.0, which on many fronts represents considerable advances compared to its previous version WW LCI 1.0. WW LCI 2.0 is a novel and complete wastewater inventory model integrating WW LCI 1.0, i.e. a complete life cycle...... inventory, including infrastructure requirement, energy consumption and auxiliary materials applied for the treatment of wastewater and disposal of sludge and SewageLCI, i.e. fate modelling of chemicals released to the sewer. The model is expanded to account for different wastewater treatment levels, i....... Higher treatment levels lead to lower CC and FET burden compared to direct discharge. WW LCI 2.0 makes it possible to generate complete detailed life cycle inventories and fate analyses for chemicals released to wastewater systems. Our test of the WW LCI 2.0 model with five chemicals illustrates how...

  2. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    Directory of Open Access Journals (Sweden)

    Hettne Kristina M

    2013-01-01

    Full Text Available Abstract Background Availability of chemical response-specific lists of genes (gene sets for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM, and that these can be used with gene set analysis (GSA methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. Methods We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human and 588 (mouse gene sets from the Comparative Toxicogenomics Database (CTD. We tested for significant differential expression (SDE (false discovery rate -corrected p-values Results Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other chemicals. Conclusions Gene set analysis with next-gen TM-derived chemical response-specific gene sets is a scalable method for identifying similarities in gene responses to other chemicals, from which one may infer potential mode of action and/or toxic effect.

  3. Modeling and simulation of acid generation in anion-bound chemically amplified resists used for extreme ultraviolet lithography

    Science.gov (United States)

    Komuro, Yoshitaka; Kawana, Daisuke; Hirayama, Taku; Ohomori, Katsumi; Kozawa, Takahiro

    2015-03-01

    Extreme ultraviolet (EUV) lithography is the most promising candidate technique for the high-volume production of semiconductor devices with half-pitches of sub-10 nm. An anion-bound polymer, in which the anion part of onium salts is polymerized, has attracted much attention from the viewpoint of the control of acid diffusion. In this study, we modeled the acid generation processes in the anion-bound chemically amplified resists upon exposure to EUV radiation and developed a Monte Carlo simulation code. Using the developed simulation code, the dependence of the quantum efficiency of acid generation on the concentration of acid generator units was calculated. The calculated quantum efficiencies well agreed with the experimental values with a fitting error of less than 10%. The thermalization distance was considered to be approximately 3 nm. The blur of proton distribution intrinsic to the reaction mechanisms of anion-bound chemically amplified resists was roughly estimated to be 4.5-6.5 nm.

  4. A High Performance Chemical Simulation Preprocessor and Source Code Generator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerical simulations of chemical kinetics are a critical component of aerospace research, Earth systems research, and energy research. These simulations enable a...

  5. A High Performance Chemical Simulation Preprocessor and Source Code Generator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerical simulations of chemical kinetics are a critical component of aerospace research, Earth systems research, and energy research. These simulations enable a...

  6. Stability and Activity of Non-Noble-Metal-Based Catalysts Toward the Hydrogen Evolution Reaction.

    Science.gov (United States)

    Ledendecker, Marc; Mondschein, Jared S; Kasian, Olga; Geiger, Simon; Göhl, Daniel; Schalenbach, Max; Zeradjanin, Aleksandar; Cherevko, Serhiy; Schaak, Raymond E; Mayrhofer, Karl

    2017-08-07

    A fundamental understanding of the behavior of non-noble based materials toward the hydrogen evolution reaction is crucial for the successful implementation into practical devices. Through the implementation of a highly sensitive inductively coupled plasma mass spectrometer coupled to a scanning flow cell, the activity and stability of non-noble electrocatalysts is presented. The studied catalysts comprise a range of compositions, including metal carbides (WC), sulfides (MoS 2 ), phosphides (Ni 5 P 4 , Co 2 P), and their base metals (W, Ni, Mo, Co); their activity, stability, and degradation behavior was elaborated and compared to the state-of-the-art catalyst platinum. The non-noble materials are stable at HER potentials but dissolve substantially when no current is flowing. Through pre- and post-characterization of the catalysts, explanations of their stability (thermodynamics and kinetics) are discussed, challenges for the application in real devices are analyzed, and strategies for circumventing dissolution are suggested. The precise correlation of metal dissolution with applied potential/current density allows for narrowing down suitable material choices as replacement for precious group metals as for example, platinum and opens up new ways in finding cost-efficient, active, and stable new-generation electrocatalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Real-time noble gas release signaling rock deformation

    Science.gov (United States)

    Bauer, S. J.; Gardner, W. P.; Lee, H.

    2016-12-01

    We present empirical results/relationships of rock strain, microfracture density, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite and basalt. Noble gases are contained in most crustal rock at inter/intra granular sites, their release during natural and manmade stress and strain changes represents a signal of brittle/semi brittle deformation. The gas composition depends on lithology, geologic history and age, fluids present, and uranium, thorium and potassium-40 concentrations in the rocks that affect radiogenic noble gases (helium, argon) production. Noble gas emission and its relationship to crustal processes have been studied, including correlations to tectonic velocities and qualitative estimates of deep permeability from surface measurements, finger prints of nuclear weapon detonation, and as potential precursory signals to earthquakes attributed to gas release due to pre-seismic stress, dilatancy and/or rock fracturing. Helium emission has been shown as a precursor of volcanic activity. Real-time noble gas release is observed using an experimental system utilizing mass spectrometers to measure gases released during triaxial rock deformation. Noble gas release is shown to represent a sensitive precursor signal of rock deformation by relating real-time noble gas release to stress-strain state changes and acoustic emissions. We propose using noble gas release to also signal rock deformation in boreholes, mines and nuclear waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress/strain state, and or permanent deformation dependent. Such relationships, when calibrated, may be used to sense rock deformation and then develop predictive models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the US Dept. of Energy's National Nuclear Security Administration under

  8. High Voltage in Noble Liquids for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rebel, B. [Fermilab; Bernard, E. [Yale U.; Faham, C. H. [LBL, Berkeley; Ito, T. M. [Los Alamos; Lundberg, B. [Maryland U.; Messina, M. [Columbia U.; Monrabal, F. [Valencia U., IFIC; Pereverzev, S. P. [LLNL, Livermore; Resnati, F. [Zurich, ETH; Rowson, P. C. [SLAC; Soderberg, M. [Fermilab; Strauss, T. [Bern U.; Tomas, A. [Imperial Coll., London; Va' vra, J. [SLAC; Wang, H. [UCLA

    2014-08-22

    A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.

  9. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    Science.gov (United States)

    2013-01-01

    Background Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set analysis (GSA) methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. Methods We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human) and 588 (mouse) gene sets from the Comparative Toxicogenomics Database (CTD). We tested for significant differential expression (SDE) (false discovery rate -corrected p-values sets and the CTD-derived gene sets in gene expression (GE) data sets of five chemicals (from experimental models). We tested for SDE of gene sets for six fibrates in a peroxisome proliferator-activated receptor alpha (PPARA) knock-out GE dataset and compared to results from the Connectivity Map. We tested for SDE of 319 next-gen TM-derived gene sets for environmental toxicants in three GE data sets of triazoles, and tested for SDE of 442 gene sets associated with embryonic structures. We compared the gene sets to triazole effects seen in the Whole Embryo Culture (WEC), and used principal component analysis (PCA) to discriminate triazoles from other chemicals. Results Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the

  10. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data.

    Science.gov (United States)

    Hettne, Kristina M; Boorsma, André; van Dartel, Dorien A M; Goeman, Jelle J; de Jong, Esther; Piersma, Aldert H; Stierum, Rob H; Kleinjans, Jos C; Kors, Jan A

    2013-01-29

    Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set analysis (GSA) methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human) and 588 (mouse) gene sets from the Comparative Toxicogenomics Database (CTD). We tested for significant differential expression (SDE) (false discovery rate -corrected p-values data sets of five chemicals (from experimental models). We tested for SDE of gene sets for six fibrates in a peroxisome proliferator-activated receptor alpha (PPARA) knock-out GE dataset and compared to results from the Connectivity Map. We tested for SDE of 319 next-gen TM-derived gene sets for environmental toxicants in three GE data sets of triazoles, and tested for SDE of 442 gene sets associated with embryonic structures. We compared the gene sets to triazole effects seen in the Whole Embryo Culture (WEC), and used principal component analysis (PCA) to discriminate triazoles from other chemicals. Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other

  11. Noble gases in Mars atmosphere: new precise analysis with Paloma

    Science.gov (United States)

    Sarda, Ph.; Paloma Team

    2003-04-01

    The Viking mission embarked a mass spectrometer designed by Alfred O. Nier that yielded the first determination of the elemental and isotopic composition of noble gases in Mars atmosphere. For example, the 40Ar/36Ar ratio in martian air is roughly 10 fold that in terrestrial air. This extraordinary accomplishment, however, has furnished only partial results with large analytical uncertainties. For example, we do not know the isotopic composition of helium, and only very poorly that of Ne, Kr and Xe. In planetary science, it is fundamental to have a good knowledge of the atmosphere because this serves as a reference for all further studies of volatiles. In addition, part of our present knowledge of Mars atmosphere is based on the SNC meteorites, and again points to important differences between the atmospheres of Earth and Mars. For example the 129Xe/132Xe ratio of martian atmosphere would be twice that of terrestrial air and the 36Ar/38Ar ratio strongly different from the terrestrial or solar value. There is a need for confirming that the atmospheric components found in SNC meteorites actually represents the atmosphere of Mars, or to determine how different they are. Paloma is an instrument designed to generate elemental and isotopic data for He, Ne, Ar, Kr and Xe (and other gases) using a mass spectrometer with a purification and separation line. Gas purification and separation did not exist on the Vicking instrument. Because Paloma includes purification and separation, we expect strong improvement in precision. Ne, Ar and Xe isotope ratios should be obtained with an accuracy of better than 1%. Determination of the presently unknown ^3He/^4He ratio is also awaited from this experiment. Knowledge of noble gas isotopes in Mars atmosphere will allow some insight into major planetary processes such as degassing (^3He/^4He, 40Ar/36Ar, 129Xe/130Xe, 136Xe/130Xe), gravitational escape to space (^3He/^4He, 20Ne/22Ne), hydrodynamic escape and/or impact erosion of the

  12. A chemical redox reaction to generate rock salt-type materials: the case of Na3V2O5.

    Science.gov (United States)

    Adamczyk, E; Anger, E; Freire, M; Pralong, V

    2018-02-27

    Chemical redox reactions are extremely efficient to prepare fully reduced or oxidized phases that are formed during the topotactic insertion/extraction of alkaline ions. Herein, we report these reactions and discuss the possibility to generate new ordered or disordered rock salt-type structures depending on the structure of the mother phase. We have shown that a disordered rock salt-type structure is formed when the transition element is located at the tetrahedral site, as exemplified by the formation of Na 3 V 2 O 5 upon chemical reduction of V 2 O 5 .

  13. Applicability of chemical cleaning process to steam generator secondary side, (1). Outline of the investigation and cleaning effectiveness

    International Nuclear Information System (INIS)

    Fujiwara, Kazutoshi; Kawamura, Hirotaka; Kanbe, Hiromi; Hirano, Hideo; Takiguchi, Hideki; Yoshino, Kouji; Yamamoto, Shuuichi; Shibata, Toshio; Ishigure, Kenkichi

    2004-01-01

    The application of the chemical cleaning process to dissolve and remove scales and sludge by chemicals is being planned at the Japanese pressurized water reactor (PWR) plant in order to maintain a high heat transfer condition and to prevent the steam generator tube degradation. In this paper, fundamental characteristics and cleaning effectiveness of the EPRI process and the KWU process, which are typical cleaning processes, were investigated. Both processes showed a satisfactory cleaning effectiveness for sludges and scales, and the cleaning effectiveness of the standard KWU process was improved by tailoring it to crevice cleaning conditions. (author)

  14. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  15. Conversion of ion-exchange resins, catalysts and sludges to glass with optional noble metal recovery using the GMODS process

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.

    1996-01-01

    Chemical processing and cleanup of waste streams (air and water) typically result in products, clean air, clean water, and concentrated hazardous residues (ion exchange resins, catalysts, sludges, etc.). Typically, these streams contain significant quantities of complex organics. For disposal, it is desirable to destroy the organics and immobilize any heavy metals or radioactive components into stable waste forms. If there are noble metals in the residues, it is desirable to recover these for reuse. The Glass Material Oxidation and Dissolution System (GMODS) is a new process that directly converts radioactive and hazardous chemical wastes to borosilicate glass. GMODS oxidizes organics with the residue converted to glass; converts metals, ceramics, and amorphous solids to glass; converts halides (eg chlorides) to borosilicate glass and a secondary sodium halide stream; and recovers noble metals. GMODS has been demonstrated on a small laboratory scale (hundreds of grams), and the equipment needed for larger masses has been identified

  16. Chemical cleaning of secondary steam generators; Limpieza quimica del secundario de generadores de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Martinez, J. T.; Traino, J.; Rottner, B.

    2014-07-01

    The main objective of the work consisted of the development and application of a procedure of cleaning chemical that would significantly reduce the level of obstruction of the plates stand and part of the fouling in the tubes-free zone, respecting a value of admissible maximum corrosion. This procedure also aim preserve optimal operating conditions while keeping all security criteria, without having to resort to a new chemical cleaning for a minimum of 4 cycles of exploitation. (Author)

  17. Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping.

    Science.gov (United States)

    Park, Sungjin; Hu, Yichen; Hwang, Jin Ok; Lee, Eui-Sup; Casabianca, Leah B; Cai, Weiwei; Potts, Jeffrey R; Ha, Hyung-Wook; Chen, Shanshan; Oh, Junghoon; Kim, Sang Ouk; Kim, Yong-Hyun; Ishii, Yoshitaka; Ruoff, Rodney S

    2012-01-24

    Chemically modified graphene platelets, produced via graphene oxide, show great promise in a variety of applications due to their electrical, thermal, barrier and mechanical properties. Understanding the chemical structures of chemically modified graphene platelets will aid in the understanding of their physical properties and facilitate development of chemically modified graphene platelet chemistry. Here we use (13)C and (15)N solid-state nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy to study the chemical structure of (15)N-labelled hydrazine-treated (13)C-labelled graphite oxide and unlabelled hydrazine-treated graphene oxide, respectively. These experiments suggest that hydrazine treatment of graphene oxide causes insertion of an aromatic N(2) moiety in a five-membered ring at the platelet edges and also restores graphitic networks on the basal planes. Furthermore, density-functional theory calculations support the formation of such N(2) structures at the edges and help to elucidate the influence of the aromatic N(2) moieties on the electronic structure of chemically modified graphene platelets.

  18. An Experimental Framework for Generating Evolvable Chemical Systems in the Laboratory

    Science.gov (United States)

    Baum, David A.; Vetsigian, Kalin

    2017-12-01

    Most experimental work on the origin of life has focused on either characterizing the chemical synthesis of particular biochemicals and their precursors or on designing simple chemical systems that manifest life-like properties such as self-propagation or adaptive evolution. Here we propose a new class of experiments, analogous to artificial ecosystem selection, where we select for spontaneously forming self-propagating chemical assemblages in the lab and then seek evidence of a response to that selection as a key indicator that life-like chemical systems have arisen. Since surfaces and surface metabolism likely played an important role in the origin of life, a key experimental challenge is to find conditions that foster nucleation and spread of chemical consortia on surfaces. We propose high-throughput screening of a diverse set of conditions in order to identify combinations of "food," energy sources, and mineral surfaces that foster the emergence of surface-associated chemical consortia that are capable of adaptive evolution. Identification of such systems would greatly advance our understanding of the emergence of self-propagating entities and the onset of adaptive evolution during the origin of life.

  19. Graphene–Noble Metal Nano-Composites and Applications for Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Sukumar Basu

    2017-10-01

    Full Text Available Graphene based nano-composites are relatively new materials with excellent mechanical, electrical, electronic and chemical properties for applications in the fields of electrical and electronic devices, mechanical appliances and chemical gadgets. For all these applications, the structural features associated with chemical bonding that involve other components at the interface need in-depth investigation. Metals, polymers, inorganic fibers and other components improve the properties of graphene when they form a kind of composite structure in the nano-dimensions. Intensive investigations have been carried out globally in this area of research and development. In this article, some salient features of graphene–noble metal interactions and composite formation which improve hydrogen gas sensing properties—like higher and fast response, quick recovery, cross sensitivity, repeatability and long term stability of the sensor devices—are presented. Mostly noble metals are effective for enhancing the sensing performance of the graphene–metal hybrid sensors, due to their superior catalytic activities. The experimental evidence for atomic bonding between metal nano-structures and graphene has been reported in the literature and it is theoretically verified by density functional theory (DFT. Multilayer graphene influences gas sensing performance via intercalation of metal and non-metal atoms through atomic bonding.

  20. Final Technical Report for GO15056 Millennium Cell: Development of an Advanced Chemical Hydrogen Storage and Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Oscar [Millennium Cell Inc., Eatontown, NJ (United States)

    2017-02-22

    The objectives of this project are to increase system storage capacity by improving hydrogen generation from concentrated sodium borohydride, with emphasis on reactor and system engineering; to complete a conceptual system design based on sodium borohydride that will include key technology improvements to enable a hydrogen fuel system that will meet the systembased storage capacity of 1.2 kWh/L (36 g H2/L) and 1.5 kWh/kg (45 g H2/kg), by the end of FY 2007; and to utilize engineering expertise to guide Center research in both off-board chemical hydride regeneration and on-board hydrogen generation systems.

  1. Utilisation of fly ash for the management of heavy metal containing primary chemical sludge generated in a leather manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Sekaran, G.; Rao, B.P.; Ghanamani, A.; Rajamani, S. [Central Leather Research Institute, Chennai (India). Dept. of Environmental Technology

    2003-07-01

    The present study aims at disposal of primary chemical sludge generated in the tanning industry by solidification and stabilization process using flyash generated from thermal power plant along with binders and also on evaluating the leachability of heavy metal from the solidified product. The primary chemical sludge containing heavy metals iron and chromium were obtained from a garment leather manufacturing company at Chennai in India. The sludge was dried in open environment and it was powdered to fine size in a grinder. Binding increases stabilization of heavy metal in calcined sludge with refractory binders such as clay, fly ash, lime and ordinary Portland cement. Fly ash can be considered as the additional binder for producing stronger bricks, with high metal fixation efficiency, and minimum rate of removal of heavy metal and minimum diffusion co-efficient. 15 refs., 5 figs., 5 tabs.

  2. Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikolaj; Laurent, Alexis

    2015-01-01

    Power generation from high-ash coals is a niche technology for power generation, but coal cleaning is deemed necessary to avoid problems associated with low combustion efficiencies and to minimize environmental burdens associated with emissions of pollutants originating from ash. Here, chemical...... itself, it is demonstrated that for a wide range of cleaning procedures and types of coal, chemical cleaning generally performs worse than combustion of the raw coals and physical cleaning using dense medium separation. These findings apply for many relevant impact categories, including climate change...... beneficiation of coals using acid and alkali–acid leaching procedures is evaluated as a potential coal cleaning technology employing life cycle assessment (LCA). Taking into account the environmental benefits from firing cleaner coal in pulverized coal power plants and the environmental burden of the cleaning...

  3. Effects of debris generated by chemical reactions on head loss through emergency-core cooling-system strainers

    International Nuclear Information System (INIS)

    Howe, K.; Ghosh, A.; Maji, A.K.; Letellier, B.C.; Johns, R.; Chang, T.Y.

    2004-01-01

    The effect of debris generated during a loss of coolant accident (LOCA) on the emergency core cooling system (ECCS) strainers has been studied via numerous avenues over the last several years. The research described in this manuscript examines the generation and effect of secondary materials -- not debris generated in the LOCA itself, but materials created by chemical reactions between exposed surfaces/debris and cooling system water. The secondary materials studied in the research were corrosion products from exposed metallic surfaces and paint chips that may precipitate out of solution, with a focus on the corrosion products of aluminium, iron, and zinc. The processes of corrosion and leaching of metals with subsequent precipitation is important because: (1) the surface area of exposed metal inside containment represents a large potential source term, even for slow chemical reactions; the chemical composition of the cooling system water (boric acid, lithium, etc.) may affect corrosion or precipitation in ways that have not been studied thoroughly in the past; and (3) an eyewitness report of the presence of gelatinous material in the Three Mile Island containment pool after the 1979 accident suggests the formation of a secondary material that has not been examined under the generic safety issue (GSI)-191 research program. This research was limited in scope and consisted only of small-scale tests. Several key questions were investigated: (1) do credible corrosion mechanisms exist for leaching metal ions from bulk solid surfaces or from zinc-based paint chips, and if so, what are the typical rate constants? (2) can corrosion products accumulate in the containment pool water to the extent that they might precipitate as new chemical species at pH and temperatures levels that are relevant to the LOCA accident sequence? and (3) how do chemical precipitants affect the head loss across an existing fibrous debris bed? A full report of the research is available. (authors)

  4. Silver chemical vapor generation for atomic absorption spectrometry: Minimization of transport losses, interferences and application to water analysis

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Kratzer, Jan; Vobecký, Miloslav; Benada, Oldřich; Matoušek, Tomáš

    2010-01-01

    Roč. 25, č. 10 (2010), s. 1618-1626 ISSN 0267-9477 R&D Projects: GA ČR GA203/09/1783 Institutional research plan: CEZ:AV0Z40310501; CEZ:AV0Z50200510 Keywords : chemical vapor generation * 111Ag radioindicator * transport losses Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.372, year: 2010

  5. A detailed pathway analysis of the chemical reaction system generating the Martian vertical ozone profile

    Science.gov (United States)

    Stock, Joachim W.; Blaszczak-Boxe, Christopher S.; Lehmann, Ralph; Grenfell, J. Lee; Patzer, A. Beate C.; Rauer, Heike; Yung, Yuk L.

    2017-07-01

    Atmospheric chemical composition is crucial in determining a planet's atmospheric structure, stability, and evolution. Attaining a quantitative understanding of the essential chemical mechanisms governing atmospheric composition is nontrivial due to complex interactions between chemical species. Trace species, for example, can participate in catalytic cycles - affecting the abundance of major and other trace gas species. Specifically, for Mars, such cycles dictate the abundance of its primary atmospheric constituent, carbon dioxide (CO2), but also for one of its trace gases, ozone (O3). The identification of chemical pathways/cycles by hand is extremely demanding; hence, the application of numerical methods, such as the Pathway Analysis Program (PAP), is crucial to analyze and quantitatively exemplify chemical reaction networks. Here, we carry out the first automated quantitative chemical pathway analysis of Mars' atmosphere with respect to O3. PAP was applied to JPL/Caltech's 1-D updated photochemical Mars model's output data. We determine all significant chemical pathways and their contribution to O3 production and consumption (up to 80 km) in order to investigate the mechanisms causing the characteristic shape of the O3 volume mixing ratio profile, i.e. a ground layer maximum and an ozone layer at ∼50 km. These pathways explain why an O3 layer is present, why it is located at that particular altitude and what the different processes forming the near-surface and middle atmosphere O3 maxima are. Furthermore, we show that the Martian atmosphere can be divided into two chemically distinct regions according to the O(3P):O3 ratio. In the lower region (below approximately 24 km altitude) O3 is the most abundant Ox (= O3 + O(3P)) species. In the upper region (above approximately 24 km altitude), where the O3 layer is located, O(3P) is the most abundant Ox species. Earlier results concerning the formation of O3 on Mars can now be explained with the help of chemical

  6. Development of New Generation of Ceramics for Environmentally Focused Chemical Separations

    Science.gov (United States)

    Ramakrishnan, Girish

    This dissertation focuses on the use of composite materials for environmental applications. For the first time, applications of both fresh and aged concrete as inexpensive adsorbents for nitrogen dioxide (NO2) removal is demonstrated. Concrete is the most widely used composite material of the modern era. Cement manufacturing (a major component of concrete) is considered to be one of the leading contributors to air pollution, resulting in 7% of the global carbon dioxide emissions along with a number of other harmful pollutants such as oxides, mercury and particulates. These emissions aide in the formation of acid rain, smog, and toxic ground level ozone, causing detrimental effects such as respiratory illnesses, visibility reduction, eutrification and global warming. This thesis offers a novel and sustainable solution in mitigating NOX emissions, by introducing the significant adsorption potential of recycled concrete. The work is based on both commercially available cement paste and already aged concrete samples, providing truly scalable solutions. The concrete samples aged for different periods of time were exposed to NO2 to measure their adsorption capacity. The results show that all of the concrete samples (fresh and aged) exhibited excellent NO2 adsorption capacity, with the fresh concrete samples removing almost 100% of the NO2. Furthermore, to compare the effects of long term aging, 12 year-old recently demolished concrete samples were obtained and its NOX removal was shown to be almost 60%. The experimental results provide evidence of nitrate and nitrite species formation from chemical reactions occurring between NO2 and surface alkaline species. This important discovery can be utilized for NO2 removal and subsequent NOX sequestered demolished concrete (NSDC) recycling in new concrete, either as a set accelerating admixture or as a corrosion inhibitor, a big leap towards better sustainability and longevity of the new reinforced concrete structures. The rest

  7. Chemical and isotopic composition of secondary organic aerosol generated by α-pinene ozonolysis

    Science.gov (United States)

    Meusinger, Carl; Dusek, Ulrike; King, Stephanie M.; Holzinger, Rupert; Rosenørn, Thomas; Sperlich, Peter; Julien, Maxime; Remaud, Gerald S.; Bilde, Merete; Röckmann, Thomas; Johnson, Matthew S.

    2017-05-01

    Secondary organic aerosol (SOA) plays a central role in air pollution and climate. However, the description of the sources and mechanisms leading to SOA is elusive despite decades of research. While stable isotope analysis is increasingly used to constrain sources of ambient aerosol, in many cases it is difficult to apply because neither the isotopic composition of aerosol precursors nor the fractionation of aerosol forming processes is well characterised. In this paper, SOA formation from ozonolysis of α-pinene - an important precursor and perhaps the best-known model system used in laboratory studies - was investigated using position-dependent and average determinations of 13C in α-pinene and advanced analysis of reaction products using thermal-desorption proton-transfer-reaction mass spectrometry (PTR-MS). The total carbon (TC) isotopic composition δ13C of the initial α-pinene was measured, and the δ13C of the specific carbon atom sites was determined using position-specific isotope analysis (PSIA). The PSIA analysis showed variations at individual positions from -6.9 to +10. 5 ‰ relative to the bulk composition. SOA was formed from α-pinene and ozone in a constant-flow chamber under dark, dry, and low-NOx conditions, with OH scavengers and in the absence of seed particles. The excess of ozone and long residence time in the flow chamber ensured that virtually all α-pinene had reacted. Product SOA was collected on two sequential quartz filters. The filters were analysed offline by heating them stepwise from 100 to 400 °C to desorb organic compounds that were (i) detected using PTR-MS for chemical analysis and to determine the O : C ratio, and (ii) converted to CO2 for 13C analysis. More than 400 ions in the mass range 39-800 Da were detected from the desorbed material and quantified using a PTR-MS. The largest amount desorbed at 150 °C. The O : C ratio of material from the front filter increased from 0.18 to 0.25 as the desorption temperature was

  8. Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: recent progress and perspective.

    Science.gov (United States)

    Li, Guodong; Tang, Zhiyong

    2014-04-21

    Controllable integration of noble metals (e.g., Au, Ag, Pt, and Pd) and metal oxides (e.g., TiO₂, CeO₂, and ZrO₂) into single nanostructures has attracted immense research interest in heterogeneous catalysis, because they not only combine the properties of both noble metals and metal oxides, but also bring unique collective and synergetic functions in comparison with single-component materials. Among many strategies recently developed, one of the most efficient ways is to encapsulate and protect individual noble metal nanoparticles by a metal oxide shell of a certain thickness to generate the core-shell or yolk-shell structure, which exhibits enhanced catalytic performance compared with conventional supported catalysts. In this review article, we summarize the state-of-the art progress in synthesis and catalytic application of noble metal nanoparticle@metal oxide core/yolk-shell nanostructures. We hope that this review will help the readers to obtain better insight into the design and application of well-defined nanocomposites in both the energy and environmental fields.

  9. Results of the secondary side chemical cleaning of the steam generators

    International Nuclear Information System (INIS)

    Doma, A.; Patek, G.

    2001-01-01

    A significant amount of deposit has developed on the secondary side of the heat transfer tubes of the steam generators (SG) of the Paks Nuclear Power Plant units in course of the years. More than 99.5% of the deposit is made up of magnetite (Fe 3 O 4 ) generated in the secondary circuit of the power plant. Those deposits lead to the decrease of the heat transfer. Even more important is its role from the point of view of operational reliability of the steam generators, leak tightness between the primary and secondary sides. The first series of cleaning took place following 8-9 years of operation of the units. Following the first cleaning cycle the transport of the corrosion products into the steam generators did not change, and thus obviously new cleaning was required. Periodical cleaning of the steam generators shall be assured. (R.P.)

  10. Protonated ions as systemic trapping agents for noble gases: From electronic structure to radiative association

    Science.gov (United States)

    Ozgurel, O.; Pauzat, F.; Pilmé, J.; Ellinger, Y.; Bacchus-Montabonel, M.-C.; Mousis, O.

    2017-10-01

    The deficiencies of argon, krypton, and xenon observed in the atmosphere of Titan as well as anticipated in some comets might be related to a scenario of sequestration by H3+ in the gas phase at the early evolution of the solar nebula. The chemical process implied is a radiative association, evaluated as rather efficient in the case of H3+, especially for krypton and xenon. This mechanism of chemical trapping might not be limited to H3+ only, considering that the protonated ions produced in the destruction of H3+ by its main competitors present in the primitive nebula, i.e., H2O, CO, and N2, might also give stable complexes with the noble gases. However the effective efficiency of such processes is still to be proven. Here, the reactivity of the noble gases Ar, Kr, and Xe, with all protonated ions issued from H2O, CO, and N2, expected to be present in the nebula with reasonably high abundances, has been studied with quantum simulation method dynamics included. All of them give stable complexes and the rate coefficients of their radiative associations range from 10-16 to 10-19 cm3 s-1, which is reasonable for such reactions and has to be compared to the rates of 10-16 to 10-18 cm3 s-1, obtained with H3+. We can consider this process as universal for all protonated ions which, if present in the primitive nebula as astrophysical models predict, should act as sequestration agents for all three noble gases with increasing efficiency from Ar to Xe.

  11. Study of highly efficient power generation system based on chemical-looping combustion; Chemical loop nenshoho ni yoru kokoritsu hatsuden system no kaihatsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, S.; Suzuki, T.; Yamamoto, M. [Tokyo Institute of Technology, Tokyo (Japan). Research Laboratory of Resources Utilization

    1997-02-01

    This paper describes the research and development of power generation system by means of chemical-looping combustion. For this system, fuel flows in a reduction reactor and air flows in an oxidation reactor. These two flows are separated. As a result, recovery of CO2 without energy consumption, drastic improvement of power generation efficiency, and suppression of NOx emission are expected. To realize the above, two promising candidates, NiCoO2/YSZ and NiO2/NiAl2O4, have been found as recycle solid particles between the both reactors. These have excellent oxidation/reduction cycle characteristics. By these particles as well as the existing particle, NiO/YSZ, practical application of the chemical-looping combustion is realized. Besides LNG, coal and hydrogen were considered as fuels. When using coal or hydrogen, it was found that temperature of the reduction reactor should be increased the same as that of the oxidation reactor. This is a different point from a case using LNG as a fuel. 5 refs., 2 figs.

  12. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    Science.gov (United States)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  13. Next Generation Non-particulate Dry Nonwoven Pad for Chemical Warfare Agent Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Ramkumar, S S; Love, A; Sata, U R; Koester, C J; Smith, W J; Keating, G A; Hobbs, L; Cox, S B; Lagna, W M; Kendall, R J

    2008-05-01

    New, non-particulate decontamination materials promise to reduce both military and civilian casualties by enabling individuals to decontaminate themselves and their equipment within minutes of exposure to chemical warfare agents or other toxic materials. One of the most promising new materials has been developed using a needlepunching nonwoven process to construct a novel and non-particulate composite fabric of multiple layers, including an inner layer of activated carbon fabric, which is well-suited for the decontamination of both personnel and equipment. This paper describes the development of a composite nonwoven pad and compares efficacy test results for this pad with results from testing other decontamination systems. The efficacy of the dry nonwoven fabric pad was demonstrated specifically for decontamination of the chemical warfare blister agent bis(2-chloroethyl)sulfide (H or sulfur mustard). GC/MS results indicate that the composite fabric was capable of significantly reducing the vapor hazard from mustard liquid absorbed into the nonwoven dry fabric pad. The mustard adsorption efficiency of the nonwoven pad was significantly higher than particulate activated carbon (p=0.041) and was similar to the currently fielded US military M291 kit (p=0.952). The nonwoven pad has several advantages over other materials, especially its non-particulate, yet flexible, construction. This composite fabric was also shown to be chemically compatible with potential toxic and hazardous liquids, which span a range of hydrophilic and hydrophobic chemicals, including a concentrated acid, an organic solvent and a mild oxidant, bleach.

  14. Efficient and Selective Chemical Labeling of Electrochemically Generated Peptides Based on Spirolactone Chemistry

    NARCIS (Netherlands)

    Zhang, Tao; Niu, Xiaoyu; Yuan, Tao; Tessari, Marco; de Vries, Marcel P.; Permentier, Hjalmar P.; Bischoff, Rainer

    2016-01-01

    Specific digestion of proteins is an essential step for mass spectrometry-based proteomics, and the chemical labeling of the resulting peptides is often used for peptide enrichment or the introduction of desirable tags. Cleavage of the peptide bond following electrochemical oxidation of Tyr or Trp

  15. Measurement of small-signal gain on COIL with chemically generated molecular iodine

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Špalek, Otomar; Čenský, Miroslav; Kodymová, Jarmila

    2010-01-01

    Roč. 46, č. 9 (2010), s. 1350-1353 ISSN 0018-9197 Institutional research plan: CEZ:AV0Z10100523 Keywords : chemical laser s * iodine * gain measurement Subject RIV: BH - Optics, Masers, Laser s Impact factor: 2.477, year: 2010

  16. Triaging Chemical Exposure Data Needs and Tools for Advancing Next-Generation Risk Assessment

    Science.gov (United States)

    The timely assessment of the risks posed to public health by tens of thousands of existing and emerging commercial chemicals is a critical challenge facing the U.S. Environmental Protection Agency and regulatory bodies worldwide. The pace of conducting risk assessments is limited...

  17. High efficiency noble gas electron impact ion source for isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, A. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Olson, J. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dahl, D. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ward, M. B. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-01

    An electron impact ion source has been designed for generation of noble gas ions in a compact isotope separator. The source utilizes a circular filament that surrounds an ionization chamber, enabling multiple passes of electrons through the ionization chamber. This report presents ion optical design and the results of efficiency and sensitivity measurements performed in an ion source test chamber and in the compact isotope separator. The cylindrical design produced xenon ions at an efficiency of 0.37% with a sensitivity of ~24 µA /Pa at 300 µA of electron current.

  18. Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source

    International Nuclear Information System (INIS)

    Kim, Jincheol; Kim, Taegyu

    2015-01-01

    Highlights: • Compact fuel cell system was developed for a portable power generator. • Novel concept using an all-in-one reactor for hydrogen generation was proposed. • Catalytic reactor, hydrogen chamber and separator were combined in a volume. • The system can be used to drive fuel cell-powered unmanned autonomous systems. - Abstract: Compact fuel cell system was developed for a portable power generator. The power generator features a polymer electrolyte membrane fuel cell (PEMFC) using a chemical hydride as a hydrogen source. The hydrogen generator extracted hydrogen using a catalytic hydrolysis from a sodium borohydride alkaline solution. A novel concept using an all-in-one reactor was proposed in which a catalyst, hydrogen chamber and byproduct separator were combined in a volume. In addition, the reactor as well as a pump, cooling fans, valves and controller was integrated in a single module. A 100 W PEMFC stack was connected with the hydrogen generator and was evaluated at various load conditions. It was verified that the stable hydrogen supply was achieved and the developed system can be used to drive fuel cell-powered unmanned autonomous systems.

  19. Excluded volume effects caused by high concentration addition of acid generators in chemically amplified resists used for extreme ultraviolet lithography

    Science.gov (United States)

    Kozawa, Takahiro; Watanabe, Kyoko; Matsuoka, Kyoko; Yamamoto, Hiroki; Komuro, Yoshitaka; Kawana, Daisuke; Yamazaki, Akiyoshi

    2017-08-01

    The resolution of lithography used for the high-volume production of semiconductor devices has been improved to meet the market demands for highly integrated circuits. With the reduction in feature size, the molecular size becomes non-negligible in the resist material design. In this study, the excluded volume effects caused by adding high-concentration acid generators were investigated for triphenylsulfonium nonaflate. The resist film density was measured by X-ray diffractometry. The dependences of absorption coefficient and protected unit concentration on acid generator weight ratio were calculated from the measured film density. Using these values, the effects on the decomposition yield of acid generators, the protected unit fluctuation, and the line edge roughness (LER) were evaluated by simulation on the basis of sensitization and reaction mechanisms of chemically amplified extreme ultraviolet resists. The positive effects of the increase in acid generator weight ratio on LER were predominant below the acid generator weight ratio of 0.3, while the negative effects became equivalent to the positive effects above the acid generator weight ratio of 0.3 owing to the excluded volume effects.

  20. Solubility investigations in support of ultrasensitive noble gas detector development

    International Nuclear Information System (INIS)

    Gross, K. C.

    1998-01-01

    Argonne National Laboratory (ANL) and the University of Cincinnati (UC) have been developing a new class of ultrasensitive noble gas detectors that are based upon the ANL discovery that corn oil has a high affinity for heavy noble gas absorption at room temperature, but releases the noble gases with warming or by other low-energy-input means. Environmental applications for this new class of fluid-based detectors include ultrahigh sensitivity radioxenon detectors for Comprehensive Test Ban Treaty Surveillance, improved fission gas detectors for enhanced environmental surveillance in the vicinity of DOE, DOD, and NRC-licensed facilities, and improved integrating Rn detectors for earthquake prediction. The purpose of the present paper is to present the results of theoretical and experimental investigations into the solubility phenomena of heavy noble gases (Rn, Xe, and Kr) in triglyceride oils. It is the authors' intention that the findings presented herein may be used to guide future selection, development, and refinement of vegetable and other hydrocarbon oils to bring further enhancements to noble gas detection efficiencies

  1. Solubility investigations in support of ultrasensitive noble gas detector development

    International Nuclear Information System (INIS)

    Gross, K.C.; Andersen, A.; Russ, W.R.; Stuenkel, D.; Valentine, J.D.

    1998-01-01

    Argonne National Laboratory (ANL) and the University of Cincinnati (UC) have been developing a new class of ultrasensitive noble gas detectors that are based upon the ANL discovery that corn oil has a high affinity for heavy noble gas absorption at room temperature but releases the noble gases with warming or by other low-energy-input means. Environmental applications for this new class of fluid-based detectors include ultrahigh sensitivity radioxenon detectors for comprehensive test ban treaty surveillance, improved fission gas detectors for enhanced environmental surveillance in the vicinity of US Department of Energy, US Department of Defense, and US Nuclear Regulatory Commission licensed facilities, and improved integrating Rn detectors for earthquake prediction. They present the results of theoretical and experimental investigations into the solubility phenomena of heavy noble gases (Rn, Xe, and Kr) in triglyceride oils. They intend for the findings presented herein to be used to guide future selection, development, and refinement of vegetable and other hydrocarbon oils to bring further enhancements to noble gas detection efficiencies

  2. Trans-generational radiation-induced chromosomal instability in the female enhances the action of chemical mutagens

    International Nuclear Information System (INIS)

    Camats, Nuria; Garcia, Francisca; Parrilla, Juan Jose; Calaf, Joaquim; Martin, Miguel; Caldes, Montserrat Garcia

    2008-01-01

    Genomic instability can be produced by ionising radiation, so-called radiation-induced genomic instability, and chemical mutagens. Radiation-induced genomic instability occurs in both germinal and somatic cells and also in the offspring of irradiated individuals, and it is characterised by genetic changes including chromosomal rearrangements. The majority of studies of trans-generational, radiation-induced genomic instability have been described in the male germ line, whereas the authors who have chosen the female as a model are scarce. The aim of this work is to find out the radiation-induced effects in the foetal offspring of X-ray-treated female rats and, at the same time, the possible impact of this radiation-induced genomic instability on the action of a chemical mutagen. In order to achieve both goals, the quantity and quality of chromosomal damage were analysed. In order to detect trans-generational genomic instability, a total of 4806 metaphases from foetal tissues from the foetal offspring of X-irradiated female rats (5 Gy, acute dose) were analysed. The study's results showed that there is radiation-induced genomic instability: the number of aberrant metaphases and the breaks per total metaphases studied increased and were found to be statistically significant (p ≤ 0.05), with regard to the control group. In order to identify how this trans-generational, radiation-induced chromosomal instability could influence the chromosomal behaviour of the offspring of irradiated rat females in front of a chemical agent (aphidicolin), a total of 2481 metaphases were studied. The observed results showed that there is an enhancement of the action of the chemical agent: chromosomal breaks per aberrant metaphases show significant differences (p ≤ 0.05) in the X-ray- and aphidicolin-treated group as regards the aphidicolin-treated group. In conclusion, our findings indicate that there is trans-generational, radiation-induced chromosomal instability in the foetal cells

  3. Trans-generational radiation-induced chromosomal instability in the female enhances the action of chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Camats, Nuria [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Garcia, Francisca [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Parrilla, Juan Jose [Servicio de Ginecologia y Obstetricia, Hospital Universitario Virgen de la Arrixaca, 30120 El Palmar, Murcia (Spain); Calaf, Joaquim [Servei de Ginecologia i Obstetricia, Hospital Universitari de la Santa Creu i Sant Pau, 08025 Barcelona (Spain); Martin, Miguel [Departament de Pediatria, d' Obstetricia i Ginecologia i de Medicina Preventiva, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Caldes, Montserrat Garcia [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain)], E-mail: Montserrat.Garcia.Caldes@uab.es

    2008-04-02

    Genomic instability can be produced by ionising radiation, so-called radiation-induced genomic instability, and chemical mutagens. Radiation-induced genomic instability occurs in both germinal and somatic cells and also in the offspring of irradiated individuals, and it is characterised by genetic changes including chromosomal rearrangements. The majority of studies of trans-generational, radiation-induced genomic instability have been described in the male germ line, whereas the authors who have chosen the female as a model are scarce. The aim of this work is to find out the radiation-induced effects in the foetal offspring of X-ray-treated female rats and, at the same time, the possible impact of this radiation-induced genomic instability on the action of a chemical mutagen. In order to achieve both goals, the quantity and quality of chromosomal damage were analysed. In order to detect trans-generational genomic instability, a total of 4806 metaphases from foetal tissues from the foetal offspring of X-irradiated female rats (5 Gy, acute dose) were analysed. The study's results showed that there is radiation-induced genomic instability: the number of aberrant metaphases and the breaks per total metaphases studied increased and were found to be statistically significant (p {<=} 0.05), with regard to the control group. In order to identify how this trans-generational, radiation-induced chromosomal instability could influence the chromosomal behaviour of the offspring of irradiated rat females in front of a chemical agent (aphidicolin), a total of 2481 metaphases were studied. The observed results showed that there is an enhancement of the action of the chemical agent: chromosomal breaks per aberrant metaphases show significant differences (p {<=} 0.05) in the X-ray- and aphidicolin-treated group as regards the aphidicolin-treated group. In conclusion, our findings indicate that there is trans-generational, radiation-induced chromosomal instability in the foetal

  4. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    Science.gov (United States)

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-06-17

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically.

  5. Analysing and Navigating Natural Products Space for Generating Small, Diverse, But Representative Chemical Libraries.

    Science.gov (United States)

    O'Hagan, Steve; Kell, Douglas B

    2018-01-01

    Armed with the digital availability of two natural products libraries, amounting to some 195 885 molecular entities, we ask the question of how we can best sample from them to maximize their "representativeness" in smaller and more usable libraries of 96, 384, 1152, and 1920 molecules. The term "representativeness" is intended to include diversity, but for numerical reasons (and the likelihood of being able to perform a QSAR) it is necessary to focus on areas of chemical space that are more highly populated. Encoding chemical structures as fingerprints using the RDKit "patterned" algorithm, we first assess the granularity of the natural products space using a simple clustering algorithm, showing that there are major regions of "denseness" but also a great many very sparsely populated areas. We then apply a "hybrid" hierarchical K-means clustering algorithm to the data to produce more statistically robust clusters from which representative and appropriate numbers of samples may be chosen. There is necessarily again a trade-off between cluster size and cluster number, but within these constraints, libraries containing 384 or 1152 molecules can be found that come from clusters that represent some 18 and 30% of the whole chemical space, with cluster sizes of, respectively, 50 and 27 or above, just about sufficient to perform a QSAR. By using the online availability of molecules via the Molport system (www.molport.com), we are also able to construct (and, for the first time, provide the contents of) a small virtual library of available molecules that provided effective coverage of the chemical space described. Consistent with this, the average molecular similarities of the contents of the libraries developed is considerably smaller than is that of the original libraries. The suggested libraries may have use in molecular or phenotypic screening, including for determining possible transporter substrates. © 2017 The Authors. Biotechnology Journal Published by Wiley

  6. Generation of atomic iodine via fluorine for chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Špalek, Otomar; Čenský, Miroslav; Picková, Irena; Kodymová, Jarmila; Jakubec, Ivo

    2007-01-01

    Roč. 334, - (2007), s. 167-174 ISSN 0301-0104 R&D Projects: GA ČR GA202/05/0359 Grant - others:USAF European Office for Research and Development(XE) FA 8655-05-M-4027 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40320502 Keywords : atomic iodine * atomic fluorine * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.805, year: 2007

  7. Chemical oxygen-iodine laser with atomic iodine generated via fluorine atoms

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Čenský, Miroslav; Špalek, Otomar; Kodymová, Jarmila; Picková, Irena; Jakubec, Ivo

    2008-01-01

    Roč. 345, č. 1 (2008), 14-22 ISSN 0301-0104 R&D Projects: GA ČR GA202/05/0359 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40320502 Keywords : atomic iodine * atomic fluorine * chemical oxygen–iodine laser * COIL Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.961, year: 2008

  8. Noble gas separation with the use of inorganic adsorbents

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.C.; Christian, J.D.; Paplawsky, W.J.

    1979-01-01

    A noble gas separation process is proposed for application to airborne nuclear fuel reprocessing plant effluents. The process involves the use of inorganic adsorbents for the removal of contaminant gases and noble gas separation through selective adsorption. Water and carbon dioxide are removed with selected zeolites that do not appreciably adsorb the noble gases. Xenon is essentially quantitatively removed with a specially developed adsorbent using conventional adsorption-desorption techniques. Oxygen is removed to low ppM levels by the use of a rapid cycle adsorption technique on a special adsorbent leaving a krypton-nitrogen mixture. Krypton is separated from nitrogen with a special adsorbent operated at about -80 0 C. Because the separation process does not require high pressures and oxygen is readily removed to sufficiently limit ozone formation to insignificant levels, appreciable capital and operating cost savings with this process are possible compared with other proposed processes. In addition, the proposed process is safer to operate

  9. International Conference on LIght Detection in Noble Elements

    CERN Document Server

    2016-01-01

    The objective of the Light Detection in Noble Elements (LIDINE) 2015 conference is to promote discussion between the members of the particle and nuclear physics communities about light and charge collection in detectors based on liquid or gaseous noble elements, xenon and argon being the most common, but neon and helium also in use, and represented at this conference. The neutrino physics, ultra-cold neutron study, dark matter search, and medical physics communities all utilize noble-based detector technologies, recording UV scintillation and/or ionization. Therefore, this will be an interdisciplinary opportunity for information exchange, and a chance for each of these communities enumerated above, in the U.S. as well as abroad, to expand their technical knowledge bases.

  10. Compact devices for generation of reference trace VOC mixtures: a new concept in assuring quality at chemical and biochemical laboratories.

    Science.gov (United States)

    Demichelis, Alessia; Pascale, Céline; Lecuna, Maricarmen; Niederhauser, Bernhard; Sassi, Guido; Sassi, Maria Paola

    2018-04-01

    Volatile organic compounds (VOCs) in gas mixtures at trace level (nmol/mol) are routinely measured by chemical and biochemical laboratories as climate indicators, indoor air quality pollutants from building materials emissions, contaminants in food and beverages, and biomarkers in body fluids (blood, urine, breath) of occupational exposure or human diseases. Current analytical instruments used for measurements are gas chromatographs equipped with various injector and detector configurations. The assurance of measurement quality is done by using a huge amount of certified liquid VOC standard solutions (or gaseous VOC standard cylinders) with multiple dilutions to reach the required trace level. This causes high standard uncertainty in instrument calibrations, high cost, and high consumption of analysis and laboratory personal time. In this paper, we present the implementation of portable generators producing VOC gas standards at trace level for automatic and direct calibration of VOC detectors employed in various contexts, removing the need for preparation of matrix calibration standards in cylinders. Two compact devices in-house developed by two national metrology institutes-the Istituto Nazionale di Ricerca Metrologica (INRIM) and the Federal Institute of Metrology (METAS)-are here used to dynamically generate reference gas mixtures in an SI traceable way. The two devices are based on different technologies: diffusion and permeation, for INRIM and METAS, respectively. A metrological characterization is given and the practical implementation at chemical and biochemical laboratories is discussed. Graphical abstract Onsite calibration with transportable generation system with similar performances to primary laboratory devices.

  11. Semi-continuous high speed gas analysis of generated vapors of chemical warfare agents

    NARCIS (Netherlands)

    Trap, H.C.; Langenberg, J.P.

    1999-01-01

    A method is presented for the continuous analysis of generated vapors of the nerve agents soman and satin and the blistering agent sulfur mustard. By using a gas sampling valve and a very short (15 cm) column connected to an on-column injector with a 'standard length' column, the system can either

  12. Surfactant assisted chemical vapour generation of silver for AAS and ICP-OES: a mechanistic study

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Tomáš; Sturgeon, R. E.

    2003-01-01

    Roč. 18, č. 5 (2003), s. 487-494 ISSN 0267-9477 Institutional research plan: CEZ:AV0Z4031919 Keywords : vapour generation * ICP-OES * silver Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.200, year: 2003

  13. Chemical generation of volatile species of copper – Optimization, efficiency and investigation of volatile species nature

    Czech Academy of Sciences Publication Activity Database

    Šoukal, Jakub; Benada, Oldřich; Matoušek, Tomáš; Dědina, Jiří; Musil, Stanislav

    2017-01-01

    Roč. 977, JUL (2017), s. 10-19 ISSN 0003-2670 Institutional support: RVO:68081715 ; RVO:61388971 Keywords : generation of volatile species * copper * analytical atomic spectrometry Subject RIV: CB - Analytical Chemistry, Separation; EE - Microbiology, Virology (MBU-M) OBOR OECD: Analytical chemistry; Microbiology (MBU-M) Impact factor: 4.950, year: 2016

  14. Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydroccarbon Biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-03-01

    This roadmap to “Next Generation Hydrocarbon Biorefineries” outlines a number of novel process pathways for biofuels production based on sound scientific and engineering proofs of concept demonstrated in laboratories around the world. This report was based on the workshop of the same name held June 25-26, 2007 in Washington, DC.

  15. Chemical generation of volatile species of copper – Optimization, efficiency and investigation of volatile species nature

    Czech Academy of Sciences Publication Activity Database

    Šoukal, Jakub; Benada, Oldřich; Matoušek, Tomáš; Dědina, Jiří; Musil, Stanislav

    Roč. 977, JUL (2017), s. 10-19 ISSN 0003-2670 Institutional support: RVO:68081715 ; RVO:61388971 Keywords : generation of volatile species * copper * analytical atomic spectrometry Subject RIV: CB - Analytical Chemistry, Separation; EE - Microbiology, Virology (MBU-M) OBOR OECD: Analytical chemistry; Microbiology (MBU-M) Impact factor: 4.950, year: 2016

  16. Composite nanomaterials of semiconductors and noble metals as plasmonic photocatalysts

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Law, Matt; Zhang, Jingdong

    Harnessing sunlight and storing the energy in chemical bonds is an important element in the transition towards green and sustainable technologies. Solar fuel production requires photocatalysts that (1) absorb large parts of the solar spectrum, (2) generate charges with significant lifetimes...... and appropriate energies, (3) catalyze relevant chemical transformations from abundant, low - energy starting materials, and (4) are stable under operating conditions. A new avenue within solar fuels involve plasmonic metal nanoparticles (PNPs). These materials have tunable optical properties, exciting catalytic...

  17. Santa Lucia (2008) (L6) Chondrite, a Recent Fall: Composition, Noble Gases, Nitrogen and Cosmic Ray Exposure Age

    Science.gov (United States)

    Mahajan, Ramakant R.; Varela, Maria Eugenia; Joron, Jean Louis

    2016-04-01

    The Santa Lucia (2008)—one the most recent Argentine meteorite fall, fell in San Juan province, Argentina, on 23 January 2008. Several masses (total ~6 kg) were recovered. Most are totally covered by fusion crust. The exposed interior is of light-grey colour. Chemical data [olivine (Fa24.4) and low-Ca pyroxene (En77.8 Fs20.7 Wo1.6)] indicate that Santa Luica (2008) is a member of the low iron L chondrite group, corresponding to the equilibrated petrologic type 6. The meteorite name was approved by the Nomenclature Committee (NomCom) of the Meteoritical Society (Meteoritic Bulletin, no. 97). We report about the chemical composition of the major mineral phases, its bulk trace element abundance, its noble gas and nitrogen data. The cosmic ray exposure age based on cosmogenic 3He, 21Ne, and 38Ar around 20 Ma is comparable to one peak of L chondrites. The radiogenic K-Ar age of 2.96 Ga, while the young U, Th-He are of 1.2 Ga indicates that Santa Lucia (2008) lost radiogenic 4He more recently. Low cosmogenic (22Ne/21Ne)c and absence of solar wind noble gases are consistent with irradiation in a large body. Heavy noble gases (Ar/Kr/Xe) indicated trapped gases similar to ordinary chondrites. Krypton and neon indicates irradiation in large body, implying large pre-atmospheric meteoroid.

  18. The interpretation of ellipsometric measurements of ion bombardment of noble gases on semiconductor surfaces

    NARCIS (Netherlands)

    Holtslag, A.H.M.; Slager, U.C.; van Silfhout, Arend

    1985-01-01

    Low energy noble gas ion bombardment and thermal desorption studies were carried out on Si(111) and analysed, in situ, using spectroscopic ellipsometry. The amorphous layer thickness and implanted noble gas fraction were calculated.

  19. The Effect of Aqueous Alteration on Primordial Noble Gases in CM Chondrites

    Science.gov (United States)

    Weimer, D.; Busemann, H.; Alexander, C. M. O'D.; Maden, C.

    2017-07-01

    We have analyzed 32 CM chondrites for their noble gas contents and isotopic compositions and calculated CRE ages. Correlated effects of parent body aqueous alteration with primordial noble gas contents were detected.

  20. 3D chemical imaging based on a third-generation synchrotron source

    Energy Technology Data Exchange (ETDEWEB)

    Bleuet, P.; Gergaud, P. [CEA, LETI, MINATEC, F-38054 Grenoble, (France); Lemelle, L. [Ecole Normale Super Lyon, CNRS, USR, UMR 5570, F-3010 Lyon, (France); Bleuet, P.; Tucoulou, R.; Cloetens, P.; Susini, J. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Delette, G. [CEA LITEN DEHT LPCE, F-38054 Grenoble, (France); Simionovici, A. [Univ Grenoble 1, Lab Geodynam Chaines Alpines, F-38041 Grenoble, (France)

    2010-07-01

    Data acquisition and reconstruction for tomography have been extensively studied for the past 30 years, mainly for medical diagnosis and non-destructive testing. In these fields, imaging is typically limited to sample morphology. However, in many cases, that is insufficient, and 3D chemical imaging becomes essential. This review highlights synchrotron X-ray fluorescence tomography, a well-established non-destructive technique that makes tomography richer by reconstructing the quantitative elemental distribution within samples down to the micrometer scale or even less. We compare the technique to others and illustrate it through results covering different scientific applications. (authors)

  1. Isotopic mass-dependence of noble gas diffusion coefficients inwater

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2007-06-25

    Noble gas isotopes are used extensively as tracers inhydrologic and paleoclimatic studies. These applications requireknowledge of the isotopic mass (m) dependence of noble gas diffusioncoefficients in water (D), which has not been measured but is estimatedusing experimental D-values for the major isotopes along with an untestedrelationship from kinetic theory, D prop m-0.5. We applied moleculardynamics methods to determine the mass dependence of D for four noblegases at 298 K, finding that D prop m-beta with beta<0.2, whichrefutes the kinetic theory model underlying all currentapplications.

  2. A chemical model for generating the sources of mare basalts - Combined equilibrium and fractional crystallization of the lunar magmasphere

    Science.gov (United States)

    Snyder, Gregory A.; Taylor, Lawrence A.; Neal, Clive R.

    1992-01-01

    A chemical model for simulating the sources of the lunar mare basalts was developed by considering a modified mafic cumulate source formed during the combined equilibrium and fractional crystallization of a lunar magma ocean (LMO). The parameters which influence the initial LMO and its subsequent crystallization are examined, and both trace and major elements are modeled. It is shown that major elements tightly constrain the composition of mare basalt sources and the pathways to their creation. The ability of this LMO model to generate viable mare basalt source regions was tested through a case study involving the high-Ti basalts.

  3. Feasibility Study of Economics and Performance of Wind Turbine Generators at the Newport Indiana Chemical Depot Site

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Joseph Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, Gail [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-11-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Newport Indiana Chemical Depot site in Newport, Indiana, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) was contacted to provide technical assistance for this project. The purpose of this report is to assess the sitefor possible wind turbine electrical generator installation and estimate the cost, performance, and site impacts of different wind energy options. In addition, the report recommends financing options that could assist in the implementation of a wind system at the site.

  4. Evaluation of precipitates used in strainer head loss testing. Part I. Chemically generated precipitates

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken; Klein, Paul

    2009-01-01

    The purpose of the current program was to evaluate the properties of chemical precipitates proposed by industry that have been used in sump strainer head loss testing. Specific precipitates that were evaluated included aluminum oxyhydroxide (AlOOH) and sodium aluminum silicate (SAS) prepared according to the procedures in WCAP-16530-NP, along with precipitates formed from injecting chemicals into the test loop according to the procedure used by one sump strainer test vendor for U.S. pressurized water reactors. The settling rates of the surrogate precipitates are strongly dependent on their particle size and are reasonably consistent with those expected from Stokes' Law or colloid aggregation models. Head loss tests showed that AlOOH and SAS surrogates are quite effective in increasing the head loss across a perforated pump inlet strainer that has an accumulated fibrous debris bed. The characteristics of aluminum hydroxide precipitate using sodium aluminate were dependent on whether it was formed in high-purity or ordinary tap water and whether excess silicate was present or not.

  5. Optimization of wet lay-up conditions for steam generators hydrazine chemical treatment

    International Nuclear Information System (INIS)

    Long, A.; Organista, M.; Brun, C.; Combrade, P.

    2002-01-01

    Since a long time, hydrazine is used as a chemical agent to prevent corrosion of unalloyed steels. This is a conventional treatment widely used by nuclear power plant operators. But its application in SG lay-up at French nuclear power plants has, however, lead to some drawbacks. Effluent releases: Due to regulation relative to release of hydrazine and alkaline chemical compounds, some plant operators limit the concentrations of reagents to levels that could lead to insufficient protection of materials. Safety hazards associated with SG nitrogen blanketing: Prohibiting use of nitrogen blankets for SG wet lay-up due to associated safety hazards could likewise jeopardize corrosion protection at normally specified hydrazine levels. As the exact limits of hydrazine action against corrosion during SG lay-up are not well known, it is sometimes difficult to evaluate the risk associated to low dosage of N 2 H 4 . In order to answer to these problems, Framatome ANP (France) decided to carry out a test program aimed to determine the limit conditions for use of hydrazine in a wet lay-up environment. (authors)

  6. Structural steels for power generating equipment and heat and chemical heat treatments

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1979-01-01

    Development of structural steels for power generating equipment and for reactor engineering, in particular, is elucidated. Noted is utilization of the 15Kh2NMFA steels for the WWER-1000 reactor vessels, the 10GN2MFA steels for steam generators, pressurizers, vessels of the automatic emergency shut down and safety system; the 00Kh12N3DL steel for cast pump vessels and main locking bars. The recommendations on heat treatment of big forgings, for instance, ensuring the necessary complex of mechanical properties are given. Diffusion chromizing with subsequent nitriding of austenitic steels which increase durability of the components in BN reactors more than 4 times, is practised on a large scale

  7. Fouling of steam generator tubes in nuclear power plants. Laboratory tests to reproduce oxides deposition and chemical cleanings

    International Nuclear Information System (INIS)

    Goujon, C.; Bescond, A.; Mansour, C.; Delaunay, S.; Pauporte, T.; Bretelle, J-L.

    2014-01-01

    In the secondary circuit of nuclear Pressurized Water Reactors, magnetite (Fe 3 O 4 ) deposits lead to Steam Generators (SG) fouling decreasing thermal performances. As a counteraction, chemical cleanings, started in 1989, have become since 2006 the priority strategy to remove oxides deposited in SG of the EDF fleet. The use of chelating agents in chemical cleaning processes could affect the passive layer of SG tubes, and then modify their surface reactivity. To investigate this impact, a three steps R and D program was established: (1) reproduce deposits on SG tube surfaces using several techniques, (2) apply industrial chemical cleaning procedures and (3) study the redeposition of magnetite. First, SG tubes were fouled in a specific experimental loop, FORTRAND. In this device, magnetite and soluble iron were formed by carbon steel pipes corrosion in feedwater circuit representative conditions and released in the fluid. Then, corrosion products were flow-carried to the autoclave where their precipitation and deposition on heated SG tubes led to tubes fouling. Additional nickel base alloys substrates were also fouled by magnetite electrodeposition. Second, chemical cleaning processes were applied on fouled substrates and tubes in a specific experimental device, ECCLIPS. SG industrial cleaning processes timing and thermochemical conditions were strictly respected during these operations. Finally, fouling of cleaned substrates and tubes was performed in FORTRAND in the same experimental conditions as in the first step. At each step of the study, oxide composition and properties were investigated by surface characterizations. Comparison of oxide deposits before and after cleaning highlights the impact of chemical cleanings on tubes surface reactivity. (author)

  8. Fabrication and processing of next-generation oxygen carrier materials for chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nadarajah, Arunan [Univ. of Toledo, OH (United States)

    2017-04-26

    Among numerous methods of controlling the global warming effect, Chemical Looping Combustion is known to be the most viable option currently. A key factor to a successful chemical looping process is the presence of highly effective oxygen carriers that enable fuel combustion by going through oxidation and reduction in the presence of air and fuel respectively. In this study, CaMnO3-δ was used as the base material and doped on the A-site (Sr or La) and B-site (Fe, Ti, Zn and Al) by 10 mol % of dopants. Solid state reaction followed by mechanical extrusion (optimized paste formula) was used as the preparation method A series of novel doped perovskite-type oxygen carrier particles (CaxLa (Or Sa)1-x Mn1-yByO3-δ (B-site = Fe, Ti, Al, or Zr)) were synthesized by the proposed extrusion formula. The produced samples were characterized with XRD, SEM, BET and TGA techniques. According to the results obtained from TGA analysis, the oxygen capacity of the samples ranged between 1.2 for CLMZ and 1.75 for CSMF. Reactivity and oxygen uncoupling behaviors of the prepared samples were also evaluated using a fluidized bed chemical looping reactor using methane as the fuel at four different temperatures (800, 850, 900, 950 °C). All of the oxygen carriers showed oxygen uncoupling behavior and they were able to capture and release oxygen. Mass-based conversion of the perovskites was calculated and temperature increase proved to increase the mass-based conversion rate in all of the samples under study. Gas yield was calculated at 950 °C as well, and results showed that CLMZ, CM and CSMF showed 100% gas yields and CLMF and CSMZ showed approximately 85% yield in fluidized bed reactor, which is a high and acceptable quantity. Based on extended reactor tests the modified calcium manganese perovskite structures (CSMF) can be a good candidate for future pilot tests.

  9. Laser ablation in liquid media of noble metals. The physics of plasma plume and the optical properties of the produced colloids

    International Nuclear Information System (INIS)

    Cataliotti, R.S.; Messina, E.

    2009-01-01

    In experiments of pulsed laser ablation in liquids (PLAL), performed on noble metal targets, many physical aspects regarding the characteristics of the plasma plume generated in the confining liquid, and the optical properties of the produced nano colloids deserve a clear definition and discussion. In this paper we present the relevant theories and the results of experiments performed in our laboratory on this argument.

  10. Effect of noble gas ion pre-irradiation on deuterium retention in tungsten

    NARCIS (Netherlands)

    Cheng, L.; Zhao, Z. H.; De Temmerman, G.; Yuan, Y.; Morgan, T. W.; Guo, L. P.; Wang, B.; Zhang, Y.; Wang, B. Y.; Zhang, P.; Cao, X. Z.; Lu, G. H.

    2016-01-01

    Impurity seeding of noble gases is an effective way of decreasing the heat loads onto the divertor targets in fusion devices. To investigate the effect of noble gases on deuterium retention, tungsten targets have been implanted by different noble gas ions and subsequently exposed to deuterium

  11. Chemical and isotopic composition of secondary organic aerosol generated by α-pinene ozonolysis

    DEFF Research Database (Denmark)

    Meusinger, Carl; Dusek, Ulrike; King, Stephanie Michelle

    2017-01-01

    to 400 °C to desorb organic compounds that were (i) detected using PTR-MS for chemical analysis and to determine the O: C ratio, and (ii) converted to CO2 for 13C analysis. More than 400 ions in the mass range 39-800 Da were detected from the desorbed material and quantified using a PTR-MS. The largest......Secondary organic aerosol (SOA) plays a central role in air pollution and climate. However, the description of the sources and mechanisms leading to SOA is elusive despite decades of research. While stable isotope analysis is increasingly used to constrain sources of ambient aerosol, in many cases...... it is difficult to apply because neither the isotopic composition of aerosol precursors nor the fractionation of aerosol forming processes is well characterised. In this paper, SOA formation from ozonolysis of α-pinene - an important precursor and perhaps the best-known model system used in laboratory studies...

  12. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation--A Chemical Approach.

    Directory of Open Access Journals (Sweden)

    Thiago C Genaro-Mattos

    Full Text Available Caffeic acid (CA is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here--in association with its reported signaling effects--could be an explanation to its

  13. Water uptake and chemical composition of fresh aerosols generated in open burning of biomass

    Directory of Open Access Journals (Sweden)

    C. M. Carrico

    2010-06-01

    Full Text Available As part of the Fire Lab at Missoula Experiments (FLAME in 2006–2007, we examined hygroscopic properties of particles emitted from open combustion of 33 select biomass fuels. Measurements of humidification growth factors for subsaturated water relative humidity (RH conditions were made with a hygroscopic tandem differential mobility analyzer (HTDMA for dry particle sizes of 50, 100 and 250 nm. Results were then fit to a single-parameter model to obtain the hygroscopicity parameter, κ. Particles in freshly emitted biomass smoke exhibited a wide range of hygroscopicity (individual modes with 0<κ<1.0, spanning a range from the hygroscopicity of fresh diesel soot emissions to that of pure inorganic salts commonly found in the ambient aerosol. Smoke aerosols dominated by carbonaceous species typically had a unimodal growth factor with corresponding mean κ=0.1 (range of 0<κ<0.4. Those with a substantial inorganic mass fraction typically separated into less- and more-hygroscopic modes at high RH, the latter with mean κ=0.4 (range of 0.1<κ<1. The bimodal κ distributions were indicative of smoke chemical heterogeneity at a single particle size, whereas heterogeneity as a function of size was indicated by typically decreasing κ values with increasing dry particle diameters. Hygroscopicity varied strongly with biomass fuel type and, to a lesser extent, with combustion conditions. Among the most hygroscopic smokes were those from palmetto, rice straw, and sawgrass, while smoke particles from coniferous species such as spruces, firs, pines, and duffs were among the least hygroscopic. Overall, hygroscopicity decreased with increasing ratios of total carbon to inorganic ions as measured in PM2.5 filter samples. Despite aerosol heterogeneity, reconstructions of κ using PM2.5 bulk chemical composition data fell along a 1:1 line with measured ensemble κ values.

  14. CHEMICAL ABUNDANCES IN NGC 5024 (M53): A MOSTLY FIRST GENERATION GLOBULAR CLUSTER

    International Nuclear Information System (INIS)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2016-01-01

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin–Indiana–Yale–NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H] = −2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na–O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  15. Chemical Abundances in NGC 5024 (M53): A Mostly First Generation Globular Cluster

    Science.gov (United States)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2016-06-01

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin-Indiana-Yale-NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H] = -2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na-O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  16. CHEMICAL ABUNDANCES IN NGC 5024 (M53): A MOSTLY FIRST GENERATION GLOBULAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States)

    2016-06-10

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin–Indiana–Yale–NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H] = −2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na–O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  17. A chemical and thermodynamic model of oil generation in hydrocarbon source rocks

    Science.gov (United States)

    Helgeson, Harold C.; Richard, Laurent; McKenzie, William F.; Norton, Denis L.; Schmitt, Alexandra

    2009-02-01

    Thermodynamic calculations and Gibbs free energy minimization computer experiments strongly support the hypothesis that kerogen maturation and oil generation are inevitable consequences of oxidation/reduction disproportionation reactions caused by prograde metamorphism of hydrocarbon source rocks with increasing depth of burial.These experiments indicate that oxygen and hydrogen are conserved in the process.Accordingly, if water is stable and present in the source rock at temperatures ≳25 but ≲100 °C along a typical US Gulf Coast geotherm, immature (reduced) kerogen with a given atomic hydrogen to carbon ratio (H/C) melts incongruently with increasing temperature and depth of burial to produce a metastable equilibrium phase assemblage consisting of naphthenic/biomarker-rich crude oil, a type-II/III kerogen with an atomic hydrogen/carbon ratio (H/C) of ˜1, and water. Hence, this incongruent melting process promotes diagenetic reaction of detritus in the source rock to form authigenic mineral assemblages.However, in the water-absent region of the system CHO (which is extensive), any water initially present or subsequently entering the source rock is consumed by reaction with the most mature kerogen with the lowest H/C it encounters to form CO 2 gas and a new kerogen with higher H/C and O/C, both of which are in metastable equilibrium with one another.This hydrolytic disproportionation process progressively increases both the concentration of the solute in the aqueous phase, and the oil generation potential of the source rock; i.e., the new kerogen can then produce more crude oil.Petroleum is generated with increasing temperature and depth of burial of hydrocarbon source rocks in which water is not stable in the system CHO by a series of irreversible disproportionation reactions in which kerogens with higher (H/C)s melt incongruently to produce metastable equilibrium assemblages consisting of crude oil, CO 2 gas, and a more mature (oxidized) kerogen with a lower

  18. Influence of the carbon fiber surface microstructure on the surface chemistry generated by a thermo-chemical surface treatment

    International Nuclear Information System (INIS)

    Vautard, F.; Ozcan, S.; Paulauskas, F.; Spruiell, J.E.; Meyer, H.; Lance, M.J.

    2012-01-01

    Highlights: ► Continuous thermo-chemical surface treatment used to functionalize different types of carbon fibers. ► Surface density of functional groups directly correlated to the size of the surface microstructure. ► Preferential creation of hydroxyls and carboxylic acids confirmed regardless of the type of carbon fiber. ► Effective surface treatment regardless of the fiber surface microstructure. ► Potential alternative to electro-chemical surface treatment. - Abstract: Carbon fibers made of textile and aerospace grade polyacrylonitrile precursor fibers were surface treated by a continuous gas phase thermochemical treatment. The surface chemistry generated by the surface treatment was characterized by X-ray photoelectron spectroscopy. The surface and the average entire microstructure of the fibers were characterized by Raman spectroscopy and X-ray diffraction, respectively. Depending on the grade of the precursor, the final surface concentration of oxygen was comprised between 14% and 24%, whereas the typical commercial electrochemical surface treatments led to concentrations of around 8% with the same fibers. The final concentration of oxygen was directly correlated to the size of the crystallites which was a function of the grade of the polyacrylonitrile precursor and to the corresponding surface microstructure. The thermochemical surface treatment enabled a better control of the nature of the oxygen-containing functionalities as well. Whatever the grade of the precursor, desired hydroxyl groups and carboxylic acid functionalities were preferably generated, which is observed to be difficult with electrochemical surface treatments.

  19. Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    Science.gov (United States)

    Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.

    2000-01-01

    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.

  20. Local chemical and thermal-hydraulic analysis of U-tube steam generators

    International Nuclear Information System (INIS)

    Lee, J.Y.; No, H.C.

    1990-01-01

    In order to know how pH distribution affects corrosion in a U-tube steam generator, a study of the combination of water chemistry and thermal-hydraulic conditions is suggested. A two-fluid (unequal velocity and unequal temperature) formulation is proposed to describe the convective transport of volatile species in each phase, and a spherical bubble model is developed on the basis of the penetration theory to describe the interfacial mass transfer. The thermal-hydraulic local conditions are obtained by the U-tube steam generator design analysis code FAUST which is based on the three-dimensional two-fluid model. The results of the present study are compared with dynamic equilibrium model calculations. This study shows that, in contrast with dynamic equilibrium calculations, the pH is lower in the cold-leg side than in the hot-leg side because of liquid recirculation. Just above the tube sheet, however, the lower void fraction in this region than that in the hot-leg region results in higher pH, which agrees with the prediction of the dynamic equilibrium model. (orig.)

  1. Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Trincado, J. G.; Geisler, D.; Tang, B.; Villanova, S.; Mennickent, R. E. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Zamora, O.; García-Hernández, D. A.; Dell’Agli, F.; Prieto, Carlos Allende [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Souto, Diogo; Cunha, Katia [Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ—20921-400 (Brazil); Schiavon, R. P. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Hasselquist, Sten [New Mexico State University, Las Cruces, NM 88003 (United States); Shetrone, M. [University of Texas at Austin, McDonald Observatory, Fort Davis, TX 79734 (United States); Vieira, K. [Centro de Investigaciones de Astronomía, AP 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Zasowski, G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sobeck, J.; Hayes, C. R.; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Placco, V. M., E-mail: jfernandezt@astro-udec.cl, E-mail: jfernandezt87@gmail.com [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); and others

    2017-09-01

    We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] ≳ −1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution.

  2. The AREVA C3 concept. Customized chemical cleaning as an essential part of steam generator asset management

    International Nuclear Information System (INIS)

    Weiss, Steffen

    2011-01-01

    As the nuclear industry moves forward and the world's power demand increases, the continued safe, reliable, and efficient operation of existing plants has become indispensable. For these plants asset management is an essential factor. A crucial part of the plant assets are the steam generators (SG). Not only that the SG tubes are by far the largest boundary between the primary and secondary sides, they are also instrumental in the overall performance of the plant. The main concern for operational lifetime is tube degradation due to either ID or OD corrosion. At the secondary side, sludge and corrosion products accumulate in the SG resulting in the buildup of secondary side deposits. Such deposits can negatively affect the SG performance in different ways, not only by reduction of the heat transfer rates and, thus, by reducing the efficiency of the SG but also as cause or promotion of different types of corrosion phenomena. The cleanliness of the secondary side of SG is of essential interest to all utilities. There is not just one solution for SG asset optimization. The utilities must weigh the pros and cons of SG cleaning, with the associated impact on outage time and cost, versus the potential benefits. Each plant that considers a SG chemical cleaning has different objectives and goals. AREVA has developed the C 3 (Customized Chemical Cleaning - or in short 'C cubed') concept in order to provide the utility with a chemical cleaning method that is tailored to the needs of the individual units and that addresses them directly. (orig.)

  3. Optical and structural properties of noble-metal nanoparticles; Optische und strukturelle Eigenschaften von Edelmetallnanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Dahmen, C.

    2006-06-23

    Noble-metal nanoparticles exhibit rich optical behavior, such as resonant light scattering and absorption and non-linear signal enhancement. This makes them attractive for a multitude of physical, chemical, and biophysical applications. For instance, recent biomedical experiments demonstrate the suitability of noble-metal nanoparticles for selective photothermal apoptosis by heat transport by laser irradiation. The applications of nanoparticles largely exploit that plasmons, i. e. collective oscillations of the conduction electrons, can be optically excited in these nanoparticles. In optical spectroscopy, these are seen as pronounced resonances. In the first part of this work, model calculations are employed to elucidate how radiation damping in noble-metal nanoparticles, i. e. the transformation of plasmons into photons, depends on particle size, particle shape, and on electromagnetic coupling between individual particles. Exact electrodynamic calculations are carried out for individual spheroidal particles and for pairs of spherical particles. These calculations for spheroidal particles demonstrate for the first time that radiative plasmon decay is determined by both the particle volume and the particle shape. Model calculations for pairs of large spherical particles reveal that the electromagnetic fields radiated by the particles mediate electromagnetic coupling at interparticle distances in the micrometer range. This coupling can lead to immense modulations of the plasmonic linewidth. The question whether this coupling is sufficiently strong to mediate extended, propagating, plasmon modes in nanoparticle arrays is addressed next. Detailed analysis reveals that this is not the case; instead, for the particle spacings regarded here, a non-resonant, purely diffractive coupling is observed, which is identified by steplike signatures in reflection spectra of the particle arrays. In the second part of this work, structural and optical properties of noble

  4. Growth and photoemission spectroscopic studies of ultrathin noble ...

    Indian Academy of Sciences (India)

    2015-05-24

    May 24, 2015 ... ness towards most of the residual gases inside ultrahigh vacuum (UHV) chamber [12]. The van der Waals' surface of graphite cleaves very nicely leaving the surface extremely flat with large terraces. Low interdiffusion for most of the noble metals, makes it an ideal substrate material for the growth of thin ...

  5. Consistent measurements comparing the drift features of noble gas mixtures

    CERN Document Server

    Becker, U; Fortunato, E M; Kirchner, J; Rosera, K; Uchida, Y

    1999-01-01

    We present a consistent set of measurements of electron drift velocities and Lorentz deflection angles for all noble gases with methane and ethane as quenchers in magnetic fields up to 0.8 T. Empirical descriptions are also presented. Details on the World Wide Web allow for guided design and optimization of future detectors.

  6. Consistent measurements comparing the drift features of noble gas mixtures

    International Nuclear Information System (INIS)

    Becker, U.; Dinner, R.; Fortunato, E.; Kirchner, J.; Rosera, K.; Uchida, Y.

    1999-01-01

    We present a consistent set of measurements of electron drift velocities and Lorentz deflection angles for all noble gases with methane and ethane as quenchers in magnetic fields up to 0.8 T. Empirical descriptions are also presented. Details on the World Wide Web allow for guided design and optimization of future detectors

  7. Classical and quantum effects in noble metal and graphene plasmonics

    DEFF Research Database (Denmark)

    Mortensen, N. Asger

    2015-01-01

    such as nonclassical electrodynamics with a nonlocal response of the plasmons. Nonlocal effects are being explored both theoretically and experimentally in different charge-conducting material systems with examples ranging from sub-10 nanometer noble metal particles to one-atom thin disks of doped graphene....

  8. Making A Noble-Metal-On-Metal-Oxide Catalyst

    Science.gov (United States)

    Miller, Irvin M.; Davis, Patricia P.; Upchurch, Billy T.

    1989-01-01

    Catalyst exhibits superior performance in oxidation of CO in CO2 lasers. Two-step process developed for preparing platinum- or palladium-on-tin-oxide catalyst for recombination of CO and O2, decomposition products that occur in high-voltage discharge region of closed-cycle CO2 laser. Process also applicable to other noble-metal/metal-oxide combinations.

  9. Peptide-templated noble metal catalysts: syntheses and applications.

    Science.gov (United States)

    Wang, Wei; Anderson, Caleb F; Wang, Zongyuan; Wu, Wei; Cui, Honggang; Liu, Chang-Jun

    2017-05-01

    Noble metal catalysts have been widely used in many applications because of their high activity and selectivity. However, a controllable preparation of noble metal catalysts still remains as a significant challenge. To overcome this challenge, peptide templates can play a critical role in the controllable syntheses of catalysts owing to their flexible binding with specific metallic surfaces and self-assembly characteristics. By employing peptide templates, the size, shape, facet, structure, and composition of obtained catalysts can all be specifically controlled under the mild synthesis conditions. In addition, catalysts with spherical, nanofiber, and nanofilm structures can all be produced by associating with the self-assembly characteristics of peptide templates. Furthermore, the peptide-templated noble metal catalysts also reveal significantly enhanced catalytic behaviours compared with conventional catalysts because the electron conductivity, metal dispersion, and reactive site exposure can all be improved. In this review, we summarize the research progresses in the syntheses of peptide-templated noble metal catalysts. The applications of the peptide-templated catalysts in organic reactions, photocatalysis, and electrocatalysis are discussed, and the relationship between structure and activity of these catalysts are addressed. Future opportunities, including new catalytic materials designed by using biological principles, are indicated to achieve selective, eco-friendly, and energy neutral synthesis approaches.

  10. EOSN: A TOUGH2 module for noble gases

    International Nuclear Information System (INIS)

    Shan, Chao; Pruess, Karsten

    2003-01-01

    We developed a new fluid property module for TOUGH2, called EOSN, to simulate transport of noble gases in the subsurface. Currently, users may select any of five different noble gases as well as CO2, two at a time. For the three gas components (air and two user-specified noble gases) in EOSN, the Henry's coefficients and the diffusivities in the gas phase are no longer assumed constants, but are temperature dependent. We used the Crovetto et al. (1982) model to estimate Henry's coefficients, and the Reid et al. (1987) correlations to calculate gas phase diffusivities. The new module requires users to provide names of the selected noble gases, which properties are provided internally. There are options for users to specify any (non-zero) molecular weights and half-lives for the gas components. We provide two examples to show applications of TOUGH2IEOSN. While temperature effects are relatively insignificant for one example problem where advection is dominant, they cause almost an order of magnitude difference for the other case where diffusion becomes a dominant process and temperature variations are relatively large. It appears that thermodynamic effects on gas diffusivities and Henry's coefficients can be important for low-permeability porous media and zones with large temperature variations

  11. Investigation into atmospheric contamination by noble radioactive gases

    International Nuclear Information System (INIS)

    Vardashko, T.; Nidetska, Yu.

    1976-01-01

    The methods used in Poland for measuring the atmospheric contamination by noble radioactive gases are considered. The primary attention is given to the problem of the 85 Kr measurement in the atmospheric air. The order of performing measurements and the spectrometers used are described. The errors in the measurement are pointed out [ru

  12. Oxygen Reduction Reaction Catalyzed by Noble Metal Clusters

    Directory of Open Access Journals (Sweden)

    Zhenghua Tang

    2018-02-01

    Full Text Available Highly-efficient catalysts for the oxygen reduction reaction (ORR have been extensively investigated for the development of proton exchange membrane fuel cells (PEMFCs. The state-of-the-art Pt/C catalysts suffer from high price, limited accessibility of Pt, sluggish reaction kinetics, as well as undesirable long-term durability. Engineering ultra-small noble metal clusters with high surface-to-volume ratios and robust stabilities for ORR represents a new avenue. After a simple introduction regarding the significance of ORR and the recent development of noble metal clusters, the general ORR mechanism in both acidic and basic media is firstly discussed. Subsequently, we will summarize the recent efforts employing Pt, Au, Ag, Pd and Ru clusters, as well as the alloyed bi-metallic clusters for acquiring highly efficient catalysts to enhance both the activity and stability of ORR. Molecular noble metal clusters with definitive composition to reveal the relevant ORR mechanism will be particularly highlighted. Finally, the current challenges, the future outlook, as well as the perspectives in this booming field will be proposed, featuring the great opportunities and potentials to engineering noble metal clusters as highly-efficient and durable cathodic catalysts for fuel cell applications.

  13. Inculcating Noble Values for Pre-Service Teachers

    Science.gov (United States)

    Hasan, Anita Abu; Hamzah, Mohd Isa; Awang, Mohd Mahzan

    2014-01-01

    This study aims to identify the noble values that are being cultivated and practiced in the process of teaching and learning of Ethnic Relations Course for pre-service teachers. Element values investigated including the identity, loyalty, patriotism, tolerance, cooperation and pride as a Malaysian. This quantitative research employs a survey…

  14. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    International Nuclear Information System (INIS)

    Shimada, Hidenori; Hashimoto, Yoshiya; Nakada, Akira; Shigeno, Keiji; Nakamura, Tatsuo

    2012-01-01

    Highlights: ► Very rapid generation of human iPS cells under optimized conditions. ► Five chemical inhibitors under hypoxia boosted reprogramming. ► We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly generating bona fide human iPS cells and facilitates the application of i

  15. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidenori [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Hashimoto, Yoshiya [Department of Biomaterials, Osaka Dental University, 8-1, Hanazonocho, Kuzuha, Hirakatashi, Osaka 573-1121 (Japan); Nakada, Akira; Shigeno, Keiji [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Nakamura, Tatsuo, E-mail: nakamura@frontier.kyoto-u.ac.jp [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly

  16. Study of the stability of suspended solids in chemical cleaning solvents used in nuclear steam generators

    International Nuclear Information System (INIS)

    Gilbert, R.

    1982-01-01

    Zeta potential (ZP) values were calculated from electrophoresis measurements performed on Fe 3 O 4 and Cu 2 O particles and used with microscope observations to assess the degree of stability of the suspended solids in the acidic and alkaline solvents employed for cleaning nuclear steam generators. In the acidic solvent, the degree of stability proved outstandingly good with a ZP of approximately -352 mV. The EDTA and citric acid constituents of the solvent are potential-determining ions acting as anionic surface-active agents. Nitrogen bubbling and the presence of N 2 H 4 have a stabilizing effect on the suspensions, which increases as the solvent ages. On the other hand, suspensions in the alkaline solvent are unstable, with ZP values between -10 and -30 mV. Surface-active agents of the anionic carboxylate type are far more effective than the non-ionic type for improving stability. (author)

  17. Opacity and conductivity measurements in noble gases at conditions of planetary and stellar interiors.

    Science.gov (United States)

    McWilliams, R Stewart; Dalton, D Allen; Konôpková, Zuzana; Mahmood, Mohammad F; Goncharov, Alexander F

    2015-06-30

    The noble gases are elements of broad importance across science and technology and are primary constituents of planetary and stellar atmospheres, where they segregate into droplets or layers that affect the thermal, chemical, and structural evolution of their host body. We have measured the optical properties of noble gases at relevant high pressures and temperatures in the laser-heated diamond anvil cell, observing insulator-to-conductor transformations in dense helium, neon, argon, and xenon at 4,000-15,000 K and pressures of 15-52 GPa. The thermal activation and frequency dependence of conduction reveal an optical character dominated by electrons of low mobility, as in an amorphous semiconductor or poor metal, rather than free electrons as is often assumed for such wide band gap insulators at high temperatures. White dwarf stars having helium outer atmospheres cool slower and may have different color than if atmospheric opacity were controlled by free electrons. Helium rain in Jupiter and Saturn becomes conducting at conditions well correlated with its increased solubility in metallic hydrogen, whereas a deep layer of insulating neon may inhibit core erosion in Saturn.

  18. Examining changes in cellular communication in neuroendocrine cells after noble metal nanoparticle exposure.

    Science.gov (United States)

    Love, Sara A; Liu, Zhen; Haynes, Christy L

    2012-07-07

    As nanoparticles enjoy increasingly widespread use in commercial applications, the potential for unintentional exposure has become much more likely during any given day. Researchers in the field of nanotoxicity are working to determine the physicochemical nanoparticle properties that lead to toxicity in an effort to establish safe design rules. This work explores the effects of noble metal nanoparticle exposure in murine chromaffin cells, focusing on examining the effects of size and surface functionality (coating) in silver and gold, respectively. Carbon-fibre microelectrode amperometry was utilized to examine the effect of exposure on exocytosis function, at the single cell level, and provided new insights into the compromised functions of cells. Silver nanoparticles of varied size, between 15 and 60 nm diameter, were exposed to cells and found to alter the release kinetics of exocytosis for those cells exposed to the smallest examined size. Effects of gold were examined after modification with two commonly used 'bio-friendly' polymers, either heparin or poly (ethylene glycol), and gold nanoparticles were found to induce altered cellular adhesion or the number of chemical messenger molecules released, respectively. These results support the body of work suggesting that noble metal nanoparticles perturb exocytosis, typically altering the number of molecules and kinetics of release, and supports a direct disruption of the vesicle matrix by the nanoparticle. Overall, it is clear that various nanoparticle physicochemical properties, including size and surface coating, do modulate changes in cellular communication via exocytosis.

  19. Noble Gas Release Signal as a Precursor to Fracture

    Science.gov (United States)

    Bauer, S. J.; Lee, H.; Gardner, W. P.

    2017-12-01

    We present empirical results of rock strain, microfracturing, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite, basalt, shale and bedded rock salt. Noble gases are released and measured real-time during deformation using mass spectrometry. The gas release represents a precursive signal to macrofracture. Gas release is associated with increased acoustic emissions indicating that microfracturing is required to release gas and create pathways for the gas to be sensed. The gas released depends on initial gas content, pore structure and its evolution during deformation, the deformation amount, matrix permeability, deformation style and the stress/strain history. Gases are released from inter and intracrystalline sites; release rate increases as strain and microfracturing increases. The gas composition depends on lithology, geologic history and age, fluids present, and radioisotope concentrations that affect radiogenic noble gas isotope (e.g. 4He,40Ar) production. Noble gas emission and its relationship to crustal processes such as seismicity and volcanism, tectonic velocities, qualitative estimates of deep permeability, age dating of groundwater, and a signature of nuclear weapon detonation. Our result show that mechanical deformation of crustal materials is an important process controlling gas release from rocks and minerals, and should be considered in techniques which utilize gas release and/or accumulation. We propose using noble gas release to signal rock deformation in boreholes, mines and waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress, strain, and/or permanent deformation dependent. Calibration of such relationships, for example relating gas release per rock unit volume to strain may be used to quantify rock deformation and develop predictive models.Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

  20. Generating Hydrated Electrons for Chemical Syntheses by Using a Green Light-Emitting Diode (LED).

    Science.gov (United States)

    Naumann, Robert; Lehmann, Florian; Goez, Martin

    2018-01-22

    We present the first working system for accessing and utilizing laboratory-scale concentrations of hydrated electrons by photoredox catalysis with a green light-emitting diode (LED). Decisive are micellar compartmentalization and photon pooling in an intermediate that decays with second-order kinetics. The only consumable is the nontoxic and bioavailable vitamin C. A turnover number of 1380 shows the LED method to be on par with electron generation by high-power pulsed lasers, but at a fraction of the cost. The extreme reducing power of the electron and its long unquenched life as a ground-state species are synergistic. We demonstrate the applicability to the dechlorination, defluorination, and hydrogenation of compounds that are inert towards all other visible-light photoredox catalysts known to date. A comprehensive mechanistic investigation from microseconds to hours yields results of general validity for photoredox catalysis with photon pooling, allowing optimization and upscaling. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Inverse QSPR/QSAR Analysis for Chemical Structure Generation (from y to x).

    Science.gov (United States)

    Miyao, Tomoyuki; Kaneko, Hiromasa; Funatsu, Kimito

    2016-02-22

    Retrieving descriptor information (x information) from a value of an objective variable (y) is a fundamental problem in inverse quantitative structure-property relationship (inverse-QSPR) analysis but challenging because of the complexity of the preimage function. Herewith, we propose using a cluster-wise multiple linear regression (cMLR) model as a QSPR model for inverse-QSPR analysis. x information is acquired as a probability density function by combining cMLR and the prior distribution modeled with a mixture of Gaussians (GMMs). Three case studies were conducted to demonstrate various aspects of the potential of cMLR. It was found that the predictive power of cMLR was superior to that of MLR, especially for data with nonlinearity. Moreover, it turned out that the applicability domain could be considered since the posterior distribution inherits the prior distribution's feature (i.e., training data feature) and represents the possibility of having the desired property. Finally, a series of inverse analyses with the GMMs/cMLR was demonstrated with the aim to generate de novo structures having specific aqueous solubility.

  2. Noble metal catalysts in the production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A.

    2013-11-01

    The energy demand is increasing in the world together with the need to ensure energy security and the desire to decrease greenhouse gas emissions. While several renewable alternatives are available for the production of electricity, e.g. solar energy, wind power, and hydrogen, biomass is the only renewable source that can meet the demand for carbon-based liquid fuels and chemicals. The technology applied in the conversion of biomass depends on the type and complexity of the biomass, and the desired fuel. Hydrogen and hydrogen-rich mixtures (synthesis gas) are promising energy sources as they are more efficient and cleaner than existing fuels, especially when they are used in fuel cells. Hydrotreatment is a catalytic process that can be used in the conversion of biomass or biomass-derived liquids into fuels. In autothermal reforming (ATR), catalysts are used in the production of hydrogen-rich mixtures from conventional fuels or bio-fuels. The different nature of biomass and biomass-derived liquids and mineral oil makes the use of catalysts developed for the petroleum industry challenging. This requires the improvement of available catalysts and the development of new ones. To overcome the limitations of conventional hydrotreatment and ATR catalysts, zirconia-supported mono- and bimetallic rhodium, palladium, and platinum catalysts were developed and tested in the upgrading of model compounds for wood-based pyrolysis oil and in the production of hydrogen, using model compounds for gasoline and diesel. Catalysts were also tested in the ATR of ethanol. For comparative purposes commercial catalysts were tested and the results obtained with model compounds were compared with those obtained with real feedstocks (hydrotreatmet tests with wood-based pyrolysis oil and ATR tests with NExBTL renewable diesel). Noble metal catalysts were active and selective in the hydrotreatment of guaiacol used as the model compound for the lignin fraction of wood-based pyrolysis oil and wood

  3. Synthesis, fabrication, and spectroscopy of nano-scale photonic noble metal materials

    Science.gov (United States)

    Egusa, Shunji

    Nanometer is an interesting scale for physicists, chemists, and materials scientists, in a sense that it lies between the macroscopic and the atomic scales. In this regime, materials exhibit distinct physical and chemical properties that are clearly different from those of atoms or macroscopic bulk. This thesis is concerned about both physics and chemistry of noble metal nano-structures. Novel chemical syntheses and physical fabrications of various noble metal nano-structures, and the development of spectroscopic techniques for nano-structures are presented. Scanning microscopy/spectroscopy techniques inherently perturbs the true optical responses of the nano-structures. However, by using scanning tunneling microscope (STM) tip as the nanometer-confined excitation source of surface plasmons in the samples, and subsequently collecting the signals in the Fourier space, it is shown that the tip-perturbed part of the signals can be deconvoluted. As a result, the collected signal in this approach is the pure response of the sample. Coherent light is employed to study the optical response of nano-structures, in order to avoid complication from tip-perturbation as discussed above. White-light super-continuum excites the nano-structure, the monolayer of Au nanoparticles self-assembled on silicon nitride membrane substrates. The coherent excitation reveals asymmetric surface plasmon resonance in the nano-structures. One of the most important issues in nano-scale science is to gain control over the shape, size, and assembly of nanoparticles. A novel method is developed to chemically synthesize ligand-passivated atomic noble metal clusters in solution phase. The method, named thermal decomposition method, enables facile yet robust synthesis of fluorescent atomic clusters. Thus synthesized atomic clusters are very stable, and show behaviors of quantum dots. A novel and versatile approach for creation of nanoparticle arrays is developed. This method is different from the

  4. Development of next generation consumable technologies for chemical mechanical planarization of copper/low K devices

    Science.gov (United States)

    Keleher, Jason J.

    Chemical Mechanical Planarization (CMP) has become the key planarization technology for the fabrication of ultra large-scale integration (ULSI) silicon devices that contain sub-quarter micron metal and dielectric lines. The rapid integration of copper as the interconnect material into IC production has placed a high demand on Cu CMP slurry development. Key issues in CMP today include reduction of surface defectivity and enhancement of planarization efficiency. More specifically, the polished surface should be free of defects such as scratches, pits, corrosion spots, trench copper loss, and residue particles. This dissertation will explore the use of Abrasive Free and Novel Abrasive systems as a plausible solution for the planarization Cu/low K devices. For copper/low K CMP, one of the most promising strategies to accomplishing these goals is an Abrasive-Free Process (AFP). By eliminating abrasive particles from the process, either free or fixed to the pad, it has been anticipated and realized that defects such as severe scratching, particle contamination and slurry instability via particle aggregation or settling will be significantly reduced. In addition, with proper formulation, an abrasive free process can also yield an excellent over polishing window and desired step function of pressure for material removal rate. Coupled with a supramolecular design, some of the characteristic advantages seen in abrasive containing systems, such as step height reduction efficiency, can be realized without the side effects often introduced from solid particles. The second portion of this dissertation deals with the use of novel hydrophobic particles such as diamond and boron nitride. Hydrophobic particles have received much less attention because of issues related to the stability when placed in an aqueous media as well as the inability of the particles to interact with the abraded material. In general the ability of the hydrophobic particle to interact with the oxidized or

  5. Tailoring the supercapacitive performances of noble metal oxides, porous carbons and their composites

    Directory of Open Access Journals (Sweden)

    Panić Vladimir V.

    2013-01-01

    Full Text Available Porous electrochemical supercapacitive materials, as an important type of new-generation energy storage devices, require a detailed analysis and knowledge of their capacitive performances upon different charging/discharging regimes. The investigation of the responses to dynamic perturbations of typical representatives, noble metal oxides, carbonaceous materials and RuO2-impregnated carbon blacks, by electrochemical impedance spectroscopy (EIS is presented. This presentation follows a brief description of supercapacitive behavior and origin of pseudocapacitive response of noble metal oxides. For all investigated materials, the electrical charging/discharging equivalent of the EIS response was found to obey the transmission line model envisaged as so-called „resistor/capacitor (RC ladder“. The ladder features are correlated to material physicochemical properties, its composition and the composition of the electrolyte. Fitting of the EIS data of different supercapacitive materials to appropriate RC ladders enables the in-depth profiling of the capacitance and pore resistance of their porous thin-layers and finally the complete revelation of capacitive energy storage issues. [Projekat Ministarstva nauke Republike Srbije, br. 172060

  6. Potential energy surfaces for alkali plus noble gas pairs: a systematic comparison

    Science.gov (United States)

    Blank, L. Aaron; Kedziora, Gary S.; Weeks, David E.

    2010-02-01

    Optically Pumped Alkali Lasers (OPAL) involve interactions of alkali atoms with a buffer gas typically consisting of a noble gas together with C2H4. Line broadening mechanisms are of particular interest because they can be used to match a broad optical pumping source with relatively narrow alkali absorption spectra. To better understand the line broadening processes at work in OPAL systems we focus on the noble gas collisional partners. A matrix of potential energy surfaces (PES) has been generated at the multi-configurational self consistent field (MCSCF) level for M + Ng, where M=Li, Na, K, Rb, Cs and Ng=He, Ne, Ar. The PES include the X2Σ ground state surface and the A2II, B2Σ excited state surfaces. In addition to the MCSCF surfaces, PES for Li+He have been calculated at the multi-reference singles and doubles configuration interaction (MRSDCI) level with spin-orbit splitting effects included. These surfaces provide a way to check the qualitative applicability of the MCSCF calculations. They also exhibit the avoided crossing between the B2Σ and A2II1/2 surfaces that is partially responsible for collision induced relaxation from the 2P3/2 to the 2P1/2 atomic levels.

  7. The Statistical Evolution of Multiple Generations of Oxidation Products in the Photochemical Aging of Chemically Reduced Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Kevin R.; Smith, Jared D.; Kessler, Sean; Kroll, Jesse H.

    2011-10-03

    The heterogeneous reaction of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reactionproducts evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new(BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during thereaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products.In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could playimportant roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.

  8. SewageLCI 1.0 - A first generation inventory model for quantification of chemical emissions via sewage systems. Application on chemicals of concern

    DEFF Research Database (Denmark)

    Gallice, Aurélie; Birkved, Morten; Kech, Sébastien

    Lack of inventory data on chemical emissions often forces life cycle assessors to rely on crude emissions estimates (e.g. 100 % of the applied chemical mass is assumed emitted) or in the worst case to omit chemical emissions due to lack of emission data. The inventory model SewageLCI 1.0, provides...

  9. Geochemical monitoring using noble gases and carbon isotopes: study of a natural reservoir

    International Nuclear Information System (INIS)

    Jeandel, E.

    2008-12-01

    To limit emissions of greenhouse gases in the atmosphere, CO 2 geological sequestration appears as a solution in the fight against climate change. The development of reliable monitoring tools to ensure the sustainability and the safety of geological storage is a prerequisite for the implementation of such sites. In this framework, a geochemical method using noble gas and carbon isotopes geochemistry has been tested on natural and industrial analogues. The study of natural analogues from different geological settings showed systematic behaviours of the geochemical parameters, depending on the containment sites, and proving the effectiveness of these tools in terms of leak detection and as tracers of the behaviour of CO 2 . Moreover, an experience of geochemical tracing on a natural gas storage has demonstrated that it is possible to identify the physical-chemical processes taking place in the reservoir to a human time scale, increasing interest in the proposed tool and providing general information on its use. (author)

  10. A systematic study of the controlled generation of crystalline iron oxide nanoparticles on graphene using a chemical etching process

    Directory of Open Access Journals (Sweden)

    Peter Krauß

    2017-09-01

    Full Text Available Chemical vapor deposition (CVD of carbon precursors employing a metal catalyst is a well-established method for synthesizing high-quality single-layer graphene. Yet the main challenge of the CVD process is the required transfer of a graphene layer from the substrate surface onto a chosen target substrate. This process is delicate and can severely degrade the quality of the transferred graphene. The protective polymer coatings typically used generate residues and contamination on the ultrathin graphene layer. In this work, we have developed a graphene transfer process which works without a coating and allows the transfer of graphene onto arbitrary substrates without the need for any additional post-processing. During the course of our transfer studies, we found that the etching process that is usually employed can lead to contamination of the graphene layer with the Faradaic etchant component FeCl3, resulting in the deposition of iron oxide FexOy nanoparticles on the graphene surface. We systematically analyzed the removal of the copper substrate layer and verified that crystalline iron oxide nanoparticles could be generated in controllable density on the graphene surface when this process is optimized. It was further confirmed that the FexOy particles on graphene are active in the catalytic growth of carbon nanotubes when employing a water-assisted CVD process.

  11. Noble gas atmospheric monitoring for international safeguards at reprocessing plants

    International Nuclear Information System (INIS)

    Nakhleh, C.W.; Poths, J.; Stanbro, W.D.; Perry, R.T. Jr.; Wilson, W.B.; Fearey, B.L.

    1997-01-01

    The use of environmental sampling is a major component of the improvements of International Atomic Energy Agency safeguards being carried out under Program 93+2. Nonradioactive noble gas isotopic measurements in the effluent stream of large reprocessing facilities may provide useful confirmatory information on the burnup and reactor type of the spent fuel undergoing reprocessing. The authors have taken and analyzed stack samples at an operating facility. The data show clear fission signals. The authors are currently applying a maximum-likelihood estimation procedure to determine the fuel burnup from these data. They anticipate that the general features involved in the table noble gas problem--selection of appropriate signals, measurement of those signals under realistic conditions, and inverse calculation of parameters of interest from the environmental data--will be present in all environmental sampling problems. These methods should therefore be widely applicable

  12. Fractionation of noble gases by thermal escape from accreting planetesimals

    International Nuclear Information System (INIS)

    Donahue, T.M.

    1986-01-01

    Assuming solar initial elemental and isotopic ratios and a determination of the degree of fractionation occurring by competition between gravitational binding and escape, a model is developed for selective noble gas loss through escape during the growth of planetesimals to form the terrestrial planets. Of the two classes of planetesimals that can form on a time scale that is consistent with modern accretion models, one is depleted in neon while the other is neon-rich. The mechanism is noted to be capable of accounting for all known properties of the noble gas volatiles on the terrestrial planets, with only one exception, namely the Ar-36/Ar-38 ratios for Mars and the earth, which are much lower than observed. 11 references

  13. Fluorescence emissions from mixtures of Hg with the noble gases

    International Nuclear Information System (INIS)

    Woodworth, J.R.

    1977-01-01

    Fluorescence emissions from mixtures of Hg with high pressure Xe, Kr, and Ar (approx.1 torr Hg, 10 3 --10 4 torr noble gas) have been studied using a short-pulse relativistic electron beam as an excitation source. Hg--noble gas molecular bands were observed on the red sides of the Hg lines (1849 and 2537 A) as well as on the red sides of the Hg visible lines (7 3 S 1 →6 3 P 0 , 1 , 2 ). Temporal histories and production efficiencies of the molecular emissions were determined and a model was formulated for the time histories of the HgXe 2600 A bands. Possible applications to high power laser systems are discussed

  14. Method for low temperature preparation of a noble metal alloy

    Science.gov (United States)

    Even, Jr., William R.

    2002-01-01

    A method for producing fine, essentially contamination free, noble metal alloys is disclosed. The alloys comprise particles in a size range of 5 to 500 nm. The method comprises 1. A method for preparing a noble metal alloy at low temperature, the method comprising the steps of forming solution of organometallic compounds by dissolving the compounds into a quantity of a compatible solvent medium capable of solvating the organometallic, mixing a portion of each solution to provide a desired molarity ratio of ions in the mixed solution, adding a support material, rapidly quenching droplets of the mixed solution to initiate a solute-solvent phase separation as the solvent freezes, removing said liquid cryogen, collecting and freezing drying the frozen droplets to produce a dry powder, and finally reducing the powder to a metal by flowing dry hydrogen over the powder while warming the powder to a temperature of about 150.degree. C.

  15. Probing Positron Cooling in Noble Gases via Annihilation γ Spectra.

    Science.gov (United States)

    Green, D G

    2017-11-17

    γ spectra for positron annihilation in noble-gas atoms are calculated using many-body theory for positron momenta up to the positronium-formation threshold. These data are used, together with time-evolving positron-momentum distributions determined in the preceding Letter [Phys. Rev. Lett. 119, 203403 (2017)PRLTAO0031-9007], to calculate the time-varying γ spectra produced during positron cooling in noble gases. The γ spectra and their S[over ¯] and W[over ¯] shape parameters are shown to be sensitive probes of the time evolution of the positron momentum distribution and thus provide a means of studying positron cooling that is complementary to positron lifetime spectroscopy.

  16. The chemical generation of NO for the determination of nitrite by high-resolution continuum source molecular absorption spectrometry.

    Science.gov (United States)

    Brandao, Geovani C; Lima, Daniel C; Ferreira, Sergio L C

    2012-08-30

    In the present work, we propose a method for the determination of nitrite based on the chemical generation of nitric oxide (NO) and its detection by high-resolution continuum source molecular absorption spectrometry. NO is generated by the reduction of nitrite in acidic media with ascorbic acid as the reducing agent and then transferred into a quartz cell by a stream of argon carrier gas. The conditions under which the NO is generated are as follows: 0.4 mol L(-1) hydrochloric acid, 1.5%(w/v) ascorbic acid, an argon gas pressure of 0.03 MPa and an injection time of the reducing agent of 4s. All measurements of molecular absorption were performed using the NO line at 215.360 nm, and the signal was measured by peak height. Under these conditions, the method described has limits of detection and quantification of 0.045 and 0.150 μg mL(-1) of nitrite, respectively. The calibration curve is linear for nitrite concentrations in the range 0.15-15 μg mL(-1). The precision, estimated as the relative standard deviation (RSD), was 3.5% and 4.4% for solutions with nitrite concentrations of 0.5 and 5.0 μg mL(-1), respectively. This method was applied to the analysis of different water samples (well water, drinking water and river water) collected in Cachoeira City, Bahia State, Brazil. The results were in agreement with those obtained by a spectrophotometric method using the Griess reaction. Addition/recovery tests were also performed to check the validity of the proposed method. Recoveries of 93-106% were achieved. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Hydrodynamic analysis of a three-fluidized bed reactor cold flow model for chemical looping hydrogen generation. Pressure characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhipeng; Xiang, Wenguo; Chen, Shiyi; Wang, Dong [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Chemical looping hydrogen generation (CLHG) can produce pure hydrogen with inherent separation of CO{sub 2} from fossils fuel. The process involves a metal oxide, as an oxygen carrier, such as iron oxide. The CLHG system consists of three reactors: a fuel reactor (FR), a steam reactor (SR) and an air reactor (AR). In the FR, the fuel gases react with iron oxides (hematite Fe{sub 2}O{sub 3}, magnetite Fe{sub 3}O{sub 4}, wuestite FeO), generating reduced iron oxides (FeO or even Fe), and with full conversion of gaseous fuels, pure CO{sub 2} can be obtained after cooling the flue gas from the fuel reactor; in the SR, FeO and Fe reacts with steam to generate magnetite (Fe{sub 3}O{sub 4}) and H{sub 2}, the latter representing the final target product of the process; in the AR, the magnetite is oxidized back to hematite which is used in another cycle. A cold flow model of three-fluidized bed for CLHG corresponding to 50 KW hot units has been built. A major novelty of this facility is the compact fuel reactor, which integrates a bubble and a fast fluidized bed to avoid the incomplete conversion of the fuel gas caused by the thermodynamics equilibrium. In order to study the pressure characteristics and the solids concentration of the system, especially in the fuel reactor, the gas velocity of three reactors, gas flow of L-type value, total solids inventory (TSI) and the secondary air of fuel reactor were varied. Results show that the pressure and the solids concentration are strongly influenced by the fluidizing-gas velocity of three reactors. Moreover, the entrainment of the upper part of fuel reactor increases as the total solids inventory increases, and the operating range of the FR can be changed by introducing secondary air or increasing the total solids inventory.

  18. Neutron activation analysis for noble metals in matte leach residues

    International Nuclear Information System (INIS)

    Hart, R.J.

    1978-01-01

    The development of the neutron activation analysis technique as a method for rapid and precise determinations of platinum group metals in matte leach residues depends on obtaining a method for effecting complete and homogeneous sample dilution. A simple method for solid dilution of metal samples is outlined in this study, which provided a basis for the accurate determination of all the noble metals by the Neutron Activation Analysis technique

  19. Removing radioactive noble gases from nuclear process off-gases

    International Nuclear Information System (INIS)

    Lofredo, A.

    1977-01-01

    A system is claimed for separating, concentrating and storing radioactive krypton and xenon in the off-gases from a boiling water reactor, wherein adsorption and cryogenic distillation are both efficiently used for rapid and positive separation and removal of the radioactive noble gases, and for limiting such gases in circulation in the system to low inventory at all times, and wherein the system is self-regulating to eliminate operator options or attention

  20. Resonance ionization spectroscopy: counting noble-gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G.S.; Payne, M.G.; Chen, C.H.; Willis, R.D.; Lehmann, B.E.; Kramer, S.D.

    1981-06-01

    New work on the counting of noble gas atoms, using lasers for the selective ionization and detectors for counting individual particles (electrons or positive ions) is reported. When positive ions are counted, various kinds of mass analyzers (magnetic, quadrupole, or time-of-flight) can be incorporated to provide A selectivity. It is shown that a variety of interesting and important applications can be made with atom-counting techniques which are both atomic number (Z) and mass number (A) selective.

  1. Liquid state properties of certain noble and transition metals

    International Nuclear Information System (INIS)

    Bhuiyan, G.M.; Rahman, A.; Khaleque, M.A.; Rashid, R.I.M.A.; Mujibur Rahman, S.M.

    1998-07-01

    Certain structural, thermodynamic and atomic transport properties of a number of liquid noble and transition metals are reported. The underlying theory combines together a simple form of the N-body potential and the thermodynamically self-consistent variational modified hypernetted chain (VMHNC) theory of liquid. The static structure factors calculated by using the VMHNC resemble the hard sphere (HS) values. Consequently the HS model is used to calculate the thermodynamic properties viz. specific heat, entropy, isothermal compressibility and atomic transport properties. (author)

  2. Noble gases in ten stone meteorites from Antarctica

    International Nuclear Information System (INIS)

    Weber, H.W.; Schultz, L.

    1980-01-01

    The concentrations and isotopic composition of noble gases have been determined in all ten stone meteorites recovered in Antarctica during 1976-1977 by a U.S.-Japanese expedition. From a comparison of spallogenic and radiogenic gas components it is concluded that the chondrites Mt. Baldr (a) and Mt. Baldr (b) belong to the same fall but that all other stone meteorites are individual finds. (orig.)

  3. Oxygen Reduction Reaction Catalyzed by Noble Metal Clusters

    OpenAIRE

    Zhenghua Tang; Wen Wu; Kai Wang

    2018-01-01

    Highly-efficient catalysts for the oxygen reduction reaction (ORR) have been extensively investigated for the development of proton exchange membrane fuel cells (PEMFCs). The state-of-the-art Pt/C catalysts suffer from high price, limited accessibility of Pt, sluggish reaction kinetics, as well as undesirable long-term durability. Engineering ultra-small noble metal clusters with high surface-to-volume ratios and robust stabilities for ORR represents a new avenue. After a simple introduction ...

  4. Synthesis of Zeolite Materials for Noble Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Achey, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rivera, O. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wellons, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-02

    Microporous zeolite adsorbent materials are widely used as a medium for separating gases. Adsorbent gas separation systems can run at ambient temperature and require minimal pressure to flow the input gas stream across the adsorbent bed. This allows for low energy consumption relative to other types of separation systems. Specific zeolites also have a high capacity and selectivity for the gases of interest, leading to compact and efficient separation systems. These characteristics are particularly advantageous for the application of signatures detection for non-proliferation, which often requires portable systems with low power draw. Savannah River National Laboratory currently is the leader in using zeolites for noble gas sampling for non-proliferation detection platforms. However, there is a constant customer need for improved sampling capabilities. Development of improved zeolite materials will lead to improved sampling technology. Microwave-assisted and conventional hydrothermal synthesis have been used to make a variety of zeolites tailored for noble gas separation. Materials characterization data collected in this project has been used to help guide the synthesis of improved zeolite materials. Candidate materials have been down-selected based on highest available surface area, maximum overall capacity for gas adsorption and highest selectivity. The creation of improved adsorbent materials initiated in this project will lead to development of more compact, efficient and effective noble gas collectors and concentrators. The work performed in this project will be used as a foundation for funding proposals for further material development as well as possible industrial applications.

  5. First ECR-Ionized Noble Gas Radioisotopes at ISOLDE

    CERN Document Server

    Wenander, F; Gaubert, G; Jardin, P; Lettry, Jacques

    2004-01-01

    The production of light noble gas radioisotopes with high ionization potentials has been hampered by modest ionization efficiencies for standard plasma ion-sources. However, the decay losses are minimal as the lingering time of light noble gases within plasma ion-sources is negligible when compared to its diffusion out of the target material. Previous singly charged ECRIS have shown a higher efficiency but also a lingering time of the order of 1 s and a total weight that prevents remote handling by the ISOLDE robot. The compact MINIMONO efficiently addressed the lingering time and weight issues. In addition, the MINIMONO maintained the high off-line ionization efficiency for light noble gases. This paper describes a standard ISOLDE target unit equipped with a MINIMONO ion-source and the first tests. The ion-source has been tested off-line and equipped with a CaO target for on-line tests. Valuable information was gained about high current (100-500 muA) transport through the ISOLDE mass separators designed for ...

  6. Near transferable phenomenological n-body potentials for noble metals

    Science.gov (United States)

    Pontikis, Vassilis; Baldinozzi, Gianguido; Luneville, Laurence; Simeone, David

    2017-09-01

    We present a semi-empirical model of cohesion in noble metals with suitable parameters reproducing a selected set of experimental properties of perfect and defective lattices in noble metals. It consists of two short-range, n-body terms accounting respectively for attractive and repulsive interactions, the former deriving from the second moment approximation of the tight-binding scheme and the latter from the gas approximation of the kinetic energy of electrons. The stability of the face centred cubic versus the hexagonal compact stacking is obtained via a long-range, pairwise function of customary use with ionic pseudo-potentials. Lattice dynamics, molecular statics, molecular dynamics and nudged elastic band calculations show that, unlike previous potentials, this cohesion model reproduces and predicts quite accurately thermodynamic properties in noble metals. In particular, computed surface energies, largely underestimated by existing empirical cohesion models, compare favourably with measured values, whereas predicted unstable stacking-fault energy profiles fit almost perfectly ab initio evaluations from the literature. All together the results suggest that this semi-empirical model is nearly transferable.

  7. Recent Experimental Advances to Determine (noble) Gases in Waters

    Science.gov (United States)

    Kipfer, R.; Brennwald, M. S.; Huxol, S.; Mächler, L.; Maden, C.; Vogel, N.; Tomonaga, Y.

    2013-12-01

    In aquatic systems noble gases, radon, and bio-geochemically conservative transient trace gases (SF6, CFCs) are frequently applied to determine water residence times and to reconstruct past environmental and climatic conditions. Recent experimental breakthroughs now enable ● to apply the well-established concepts of terrestrial noble gas geochemistry in waters to the minute water amounts stored in sediment pore space and in fluid inclusions (A), ● to determine gas exchange processes on the bio-geochemical relevant time scales of minutes - hours (B), and ● to separate diffusive and advective gas transport in soil air (C). A. Noble-gas analysis in water samples (doi:10:4319/lom.2011.9.42. [2] Vogel et al. (2013) Geochem. Geophys. Geosyst., 14, doi:10.1002/ggge.20164. [3] Brennwald et al. (2013) Environ. Sci. Technol., Article ASAP, DOI: 10.1021/es401698p. [4] Mächler et al. (2012) Environ. Sci. Technol., 47, 7060-7066. [5] Huxol et al. Environ. Sci. Technol., in revision.

  8. Noble Metal/Ceramic Composites in Flame Processes

    DEFF Research Database (Denmark)

    Schultz, Heiko; Madler, Lutz; Strobel, Reto

    conditions influence the resulting noble metal particles size in those systems [1]. For every specific application the particle size and the metal/metal oxide interaction affect the performance of these nano-composite materials [2]. Recently, aerosol processes have been successfully used to produce platinum...... [3,4], palladium [5], silver [6] and gold [7] crystallites on Al2O3 [3,5], SiO2 [7] and TiO2 [4,6,7] in a single step.. The as-prepared materials exhibited a high external specific surface area (40 – 320 m2 g-1) [3-7] with a high degree of crystallinity and an excellent noble metal distribution [3...... size is mainly dependent on its loading [3,7]. In this study, the role of the supporting metal oxide on the noble metal particle size was systematically investigated for the flame spray pyrolysis process. The materials were produced at fixed process conditions such as resident time of the particles...

  9. Restart of the chemical preparation process for the fabrication of ZnO varistors for ferroelectric neutron generator power supplies

    International Nuclear Information System (INIS)

    Lockwood, Steven John

    2005-01-01

    To date, all varistors used in ferroelectric neutron generators have been supplied from a single, proprietary source, General Electric Corporate Research and Development (GE CR and D). To protect against the vulnerability of a single source, Sandia initiated a program in the early 1980's to develop a second source for this material. A chemical preparation process for making homogeneous, high purity ZnO-based varistor powder was generated, scaled to production quantities, and transferred to external suppliers. In 1992, the chem-prep varistor program was suspended when it appeared there was sufficient inventory of GE CR and D material to supply ferroelectric neutron generator production for many years. In 1999, neutron generator production schedules increased substantially, resulting in a predicted exhaustion of the existing supply of varistor material within five years. The chem-prep program was restarted in January, 2000. The goals of the program were to (1) duplicate the chem-prep powder synthesis process that had been qualified for WR production, (2) demonstrate sintered billets from the chem-prep powder met requirements, (3) develop a process for rod fabrication and demonstrate that all component specifications could be met, and (4) optimize the process from powder synthesis through component fabrication for full-scale production. The first three of these goals have been met and are discussed in this report. A facility for the fabrication of production quantities of chem-prep powder has been established. All batches since the restart have met compositional requirements, but differences in sintering behavior between the original process and the restarted process were noted. Investigation into the equipment, precipitant stoichiometry, and powder processing procedures were not able to resolve the discrepancies. It was determined that the restarted process, which incorporated Na doping for electrical stability (a process that was not introduced until the end of the

  10. Mantle Noble Gas Contents Controlled by Subduction of Serpentinite

    Science.gov (United States)

    Krantz, J. A.; Parman, S. W.; Kelley, S. P.; Smye, A.; Jackson, C.

    2017-12-01

    Geochemical analyses of exhumed subduction zone material1, well gases2, MORB, and OIBs3 indicate that noble gases are being recycled from the surface of the earth into the mantle. However, the path taken by these noble gases is unclear. To estimate the distribution and quantity of Ar, Kr, and Xe in subducting slabs, a model consisting of layers of sediments, altered oceanic crust (AOC), and serpentinite (hydrously altered mantle) has been developed. The noble gas contents of sediments and AOC were calculated using the least air-like and most gas-rich analyses from natural systems4,5, while serpentinite was modelled using both data from natural systems1 and experimentally determined solubilities. Layer thicknesses were assessed over a range of values: 1 to 12 km of sediments, 5 to 9 km of AOC, and 1 to 30 km of serpentinite. In all cases, the serpentinite layer contains at least an order of magnitude more Ar and Kr than the other layers. For realistic layer thicknesses (1 km of sediments, 6 km of AOC, and 3 km of serpentinite), Xe is distributed roughly equally between the three layers. By incorporating global subduction rates6, fluxes of the heavy noble gases into the mantle have been calculated as 4 · 1012 mol/Ma for 36Ar, 6 · 1011 mol/Ma for 84Kr, and 8 · 109 mol/Ma for 130Xe. These fluxes are equivalent to the total 84Kr and 130Xe contents of the depleted and bulk mantle over 1 and 10 Ma7. Similarly, the flux of 36Ar is equivalent over 1 and 100 Ma. Since the Kr and Xe have not been completely overprinted by recycling, the large majority of subducted noble gases must escape in the subduction zone. However, even the small amounts that are subducted deeper have affected the mantle as measured in both MORB and OIBs. 1. Kendrick, M.A. et al., Nature Geoscience, 4, 807-812, 2011 2. Holland, G. and Ballentine, C.J., Nature, 441, 186-191, 2006 3. Parai, R. and Mukhopadhyay, S., G3, 16, 719-735, 2015 4. Matsuda, J. and Nagao, K., Geochemical Journal, 20, 71-80, 1986

  11. Cucurbit[6]uril: A Possible Host for Noble Gas Atoms.

    Science.gov (United States)

    Pan, Sudip; Mandal, Subhajit; Chattaraj, Pratim K

    2015-08-27

    Density functional and ab initio molecular dynamics studies are carried out to investigate the stability of noble gas encapsulated cucurbit[6]uril (CB[6]) systems. Interaction energy, dissociation energy and dissociation enthalpy are calculated to understand the efficacy of CB[6] in encapsulating noble gas atoms. CB[6] could encapsulate up to three Ne atoms having dissociation energy (zero-point energy corrected) in the range of 3.4-4.1 kcal/mol, whereas due to larger size, only one Ar or Kr atom encapsulated analogues would be viable. The dissociation energy value for the second Ar atom is only 1.0 kcal/mol. On the other hand, the same for the second Kr is -0.5 kcal/mol, implying the instability of the system. The noble gas dissociation processes are endothermic in nature, which increases gradually along Ne to Kr. Kr encapsulated analogue is found to be viable at room temperature. However, low temperature is needed for Ne and Ar encapsulated analogues. The temperature-pressure phase diagram highlights the region in which association and dissociation processes of Kr@CB[6] would be favorable. At ambient temperature and pressure, CB[6] may be used as an effective noble gas carrier. Wiberg bond indices, noncovalent interaction indices, electron density, and energy decomposition analyses are used to explore the nature of interaction between noble gas atoms and CB[6]. Dispersion interaction is found to be the most important term in the attraction energy. Ne and Ar atoms in one Ng entrapped analogue are found to stay inside the cavity of CB[6] throughout the simulation at 298 K. However, during simulation Ng2 units in Ng2@CB[6] flip toward the open faces of CB[6]. After 1 ps, one Ne atom of Ne3@CB[6] almost reaches the open face keeping other two Ne atoms inside. At lower temperature (77 K), all the Ng atoms in Ngn@CB[6] remain well inside the cavity of CB[6] throughout the simulation time (1 ps).

  12. WS2 as an Effective Noble-Metal Free Cocatalyst Modified TiSi2 for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Dongmei Chu

    2016-09-01

    Full Text Available A noble-metal free photocatalyst consisting of WS2 and TiSi2 being used for hydrogen evolution under visible light irradiation, has been successfully prepared by in-situ formation of WS2 on the surface of TiSi2 in a thermal reaction. The obtained samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDX, transmission electron microscopy (TEM, and X-ray photoelectron spectroscopy (XPS. The results demonstrate that WS2 moiety has been successfully deposited on the surface of TiSi2 and some kind of chemical bonds, such as Ti-S-W and Si-S-W, might have formed on the interface of the TiSi2 and WS2 components. Optical and photoelectrochemical investigations reveal that WS2/TiSi2 composite possesses lower hydrogen evolution potential and enhanced photogenerated charge separation and transfer efficiency. Under 6 h of visible light (λ > 420 nm irradiation, the total amount of hydrogen evolved from the optimal WS2/TiSi2 catalyst is 596.4 μmol·g−1, which is around 1.5 times higher than that of pure TiSi2 under the same reaction conditions. This study shows a paradigm of developing the effective, scalable and inexpensive system for photocatalytic hydrogen generation.

  13. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow

    International Nuclear Information System (INIS)

    Yokoyama, Mayo; Johkura, Kohei; Sato, Takehiko

    2014-01-01

    Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H 2 O 2 -added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogen peroxide (H 2 O 2 ) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H 2 O 2 . As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H 2 O 2 -medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H 2 O 2 -medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H 2 O 2 -medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN and FOS, were detected and notably elevated in

  14. Design, Modeling, Fabrication, and Evaluation of Thermoelectric Generators with Hot-Wire Chemical Vapor Deposited Polysilicon as Thermoelement Material

    Science.gov (United States)

    de Leon, Maria Theresa; Tarazona, Antulio; Chong, Harold; Kraft, Michael

    2014-11-01

    This paper presents the design, modeling, fabrication, and evaluation of thermoelectric generators (TEGs) with p-type polysilicon deposited by hot-wire chemical vapor deposition (HWCVD) as thermoelement material. A thermal model is developed based on energy balance and heat transfer equations using lumped thermal conductances. Several test structures were fabricated to allow characterization of the boron-doped polysilicon material deposited by HWCVD. The film was found to be electrically active without any post-deposition annealing. Based on the tests performed on the test structures, it is determined that the Seebeck coefficient, thermal conductivity, and electrical resistivity of the HWCVD polysilicon are 113 μV/K, 126 W/mK, and 3.58 × 10-5 Ω m, respectively. Results from laser tests performed on the fabricated TEG are in good agreement with the thermal model. The temperature values derived from the thermal model are within 2.8% of the measured temperature values. For a 1-W laser input, an open-circuit voltage and output power of 247 mV and 347 nW, respectively, were generated. This translates to a temperature difference of 63°C across the thermoelements. This paper demonstrates that HWCVD, which is a cost-effective way of producing solar cells, can also be applied in the production of TEGs. By establishing that HWCVD polysilicon can be an effective thermoelectric material, further work on developing photovoltaic-thermoelectric (PV-TE) hybrid microsystems that are cost-effective and better performing can be explored.

  15. Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Dominik; Schäfer, Tobias; Schulz, Philip; Jung, Sebastian; Rittich, Julia; Mokros, Daniel; Segger, Ingolf; Maercks, Franziska; Effertz, Christian; Mazzarello, Riccardo; Wuttig, Matthias

    2016-09-06

    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that N,N-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work function shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics.

  16. The EXCEL and NOBLE trials: similarities, contrasts and future perspectives for left main revascularisation.

    Science.gov (United States)

    Campos, Carlos M; Christiansen, Evald H; Stone, Gregg W; Serruys, Patrick W

    2015-01-01

    Unprotected left main coronary artery (ULMCA) stenosis has relatively high prevalence and exposes patients to a high risk for adverse cardiovascular events. The optimal revascularisation strategy (coronary artery bypass surgery [CABG] or percutaneous coronary intervention [PCI]) for patients with complex coronary artery disease is a topic of continuing debate. The introduction of the newer-generation drug-eluting stents (DES) -with documented improvements in both safety and efficacy- has prompted the interventional community to design two new dedicated randomised trials comparing CABG and PCI: the NOBLE (Coronary Artery Bypass Grafting Vs Drug Eluting Stent Percutaneous Coronary Angioplasty in the Treatment of Unprotected Left Main Stenosis) and EXCEL (Evaluation of XIENCE Everolimus Eluting Stent Versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization) trials. The aims of the present review are to describe the similarities and contrasts between these two trials as well to explore their future implications in ULMCA treatment.

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. P K Chattaraj. Articles written in Journal of Chemical Sciences. Volume 115 Issue 3 June 2003 pp 195-218 Physical and Theoretical. Chemical reactivity of the compressed noble gas atoms and their reactivity dynamics during collisions with protons · P K Chattaraj B Maiti U ...

  18. Automated electrodeposition of bimetallic noble-metal nanoclusters via redox-replacement reactions for electrocatalysis

    CSIR Research Space (South Africa)

    Mkwizu, TS

    2009-01-01

    Full Text Available of Bimetallic Noble-Metal Nanoclusters via Redox- Replacement Reactions for Electrocatalysis T. S. Mkwizua,b, M. K. Matheb, and I. Cukrowskia aDepartment of Chemistry, University of Pretoria, NW-1 Building, Pretoria, 0002, South Africa b... strategies have utilized surface-limited redox-replacement reactions involving spontaneous replacement of less noble, sacrificial elements, such as Cu or Pb, used as templating layers in controlled synthesis of multilayers composed of noble metals...

  19. Integrated environmental modeling system for noble gas releases at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cooper, R.E.

    1973-01-01

    The Savannah River Plant (SRP) is a large nuclear complex engaged in varied activities and is the AEC's major site for the production of weapons material. As a result of these activities, there are continuous and intermittent releases of radioactive gases to the atmosphere. Of these releases, the noble gases constitute about 11 percent of the total man-rem exposure to the population out to a distance of 100 km. Although SRP has an extensive radiological monitoring program, an environmental modeling system is necessary for adequately estimating effects on the environment. The integrated environmental modeling system in use at SRP consists of a series of computer programs that generate and use a library of environmental effects data as a function of azimuth and distance. Annual average atmospheric dispersion and azimuthal distribution of material assumed to be released as unit sources is estimated from a 2-year meteorological data base--assuming an arbitrary point of origin. The basic library of data consists of: ground-level concentrations according to isotope, and whole body gamma dose calculations that account for the total spatial distribution at discrete energy levels. These data are normalized to tritium measurements, and are subsequently used to generate similar library data that pertain to specific source locations, but always with respect to the same population grid. Thus, the total additive effects from all source points, both on- and off-site, can be estimated. The final program uses the library data to estimate population exposures for specified releases and source points for the nuclides of interest (including noble gases). Multiple source points are considered within a single pass to obtain the integrated effects from all sources

  20. Synergistic effects of semiconductor substrate and noble metal nano-particles on SERS effect both theoretical and experimental aspects

    Science.gov (United States)

    Yang, Chen; Liang, Pei; Tang, Lisha; Zhou, Yongfeng; Cao, Yanting; Wu, Yanxiong; Zhang, De; Dong, Qianmin; Huang, Jie; He, Peng

    2018-04-01

    As a means of chemical identification and analysis, Surface enhanced Raman spectroscopy (SERS), with the advantages of high sensitivity and selectivity, non-destructive, high repeatability and in situ detection etc., has important significance in the field of composition detection, environmental science, biological medicine etc. Physical model of coupling effect between different semiconductor substrates and noble metal particles were investigated by using 3D-FDTD method. Mechanism and the effects of excitation wavelength, particle spacing and semiconductor substrate types on the SERS effect were discussed. The results showed that the optimal excitation wavelengths of three noble metals of Ag, Au, Cu, were located at 510, 600 and 630 nm, respectively; SERS effect of Ag, Au, Cu increases with the decreasing of the inter distance of particles, while the distance of the NPs reaches the critical value of 3 nm, the strength of SERS effect will be greatly enhanced. For the four different types of substrate of Ge, Si, SiO2 (glass) and Al2O3, the SERS effect of Ag on SiO2 > Ge > Al2O3 > Si. For Au and Cu nanoparticles, the SERS effect of them on oxide substrate is stronger than that on non-oxide substrate. In order to verify FDTD simulations, taking silver nanoparticles as an example, and silver nanoparticles prepared by chemical method were spinning coating on the four different substrates with R6G as probe molecules. The results show that the experimental results are consistent with FDTD theoretical simulations, and the SERS enhancement effect of Ag-SiO2 substrate is best. The results of this study have important theoretical significance to explain the variations of SERS enhancement on different noble metals, which is also an important guide for the preparation of SERS substrates, especially for the microfluidics. The better Raman effect can be realized by choosing proper substrate type, particle spacing and excitation wavelength, result in expanding the depth and width

  1. Chemical gas-generating nanoparticles for tumor-targeted ultrasound imaging and ultrasound-triggered drug delivery.

    Science.gov (United States)

    Min, Hyun Su; Son, Sejin; You, Dong Gil; Lee, Tae Woong; Lee, Jangwook; Lee, Sangmin; Yhee, Ji Young; Lee, Jaeyoung; Han, Moon Hee; Park, Jae Hyung; Kim, Sun Hwa; Choi, Kuiwon; Park, Kinam; Kim, Kwangmeyung; Kwon, Ick Chan

    2016-11-01

    Although there is great versatility of ultrasound (US) technologies in the real clinical field, one main technical challenge is the compromising of high quality of echo properties and size engineering of ultrasound contrast agents (UCAs); a high echo property is offset by reducing particle size. Herein, a new strategy for overcoming the dilemma by devising chemical gas (CO2) generating carbonate copolymer nanoparticles (Gas-NPs), which are clearly distinguished from the conventional gas-encapsulated micro-sized UCAs. More importantly, Gas-NPs could be readily engineered to strengthen the desirable in vivo physicochemical properties for nano-sized drug carriers with higher tumor targeting ability, as well as the high quality of echo properties for tumor-targeted US imaging. In tumor-bearing mice, anticancer drug-loaded Gas-NPs showed the desirable theranostic functions for US-triggered drug delivery, even after i.v. injection. In this regard, and as demonstrated in the aforementioned study, our technology could serve a highly effective platform in building theranostic UCAs with great sophistication and therapeutic applicability in tumor-targeted US imaging and US-triggered drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effective Giromagnetic Ratios in Artifical Nuclear Magnetization Pumping of the Noble Gases Mix

    Directory of Open Access Journals (Sweden)

    Popov E.N.

    2015-01-01

    Full Text Available Dynamic of the nuclear magnetization of the two noble gases mix was studied in this research. Nuclear magnetization pumped along the induction of external magnetic field. Vector of nuclear magnetization is given a tilt by the week rotational magnetic field, which makes NMR for noble gases. Interaction between the nuclear magnetic moments of the different noble gases adducted to shifts at the frequency of nuclear moments precession in external magnetic field. Effective gyromagnetic ratios of the nuclear of noble gases is defined and it different from the tabulated value. There is theoretical calculation of effective gyromagnetic ratios in this research.

  3. Noble Metals and Spinel Settling in High Level Waste Glass Melters

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, S. K.; Perez, Joseph M.

    2000-09-30

    In the continuing effort to support the Defense Waste Processing Facility (DWPF), the noble metals issue is addressed. There is an additional concern about the amount of noble metals expected to be present in the future batches that will be considered for vitrification in the DWPF. Several laboratory, as well as melter-scale, studies have been completed by various organizations (mainly PNNL, SRTC, and WVDP in the USA). This letter report statuses the noble metals issue and focuses at the settling of noble metals in melters.

  4. Determining the source and genetic fingerprint of natural gases using noble gas geochemistry: a northern Appalachian Basin case study

    Science.gov (United States)

    Hunt, Andrew G.; Darrah, Thomas H.; Poreda, Robert J.

    2012-01-01

    Silurian and Devonian natural gas reservoirs present within New York state represent an example of unconventional gas accumulations within the northern Appalachian Basin. These unconventional energy resources, previously thought to be noneconomically viable, have come into play following advances in drilling (i.e., horizontal drilling) and extraction (i.e., hydraulic fracturing) capabilities. Therefore, efforts to understand these and other domestic and global natural gas reserves have recently increased. The suspicion of fugitive mass migration issues within current Appalachian production fields has catalyzed the need to develop a greater understanding of the genetic grouping (source) and migrational history of natural gases in this area. We introduce new noble gas data in the context of published hydrocarbon carbon (C1,C2+) (13C) data to explore the genesis of thermogenic gases in the Appalachian Basin. This study includes natural gases from two distinct genetic groups: group 1, Upper Devonian (Marcellus shale and Canadaway Group) gases generated in situ, characterized by early mature (13C[C1  C2][13C113C2]: –9), isotopically light methane, with low (4He) (average, 1  103 cc/cc) elevated 4He/40Ar and 21Ne/40Ar (where the asterisk denotes excess radiogenic or nucleogenic production beyond the atmospheric ratio), and a variable, atmospherically (air-saturated–water) derived noble gas component; and group 2, a migratory natural gas that emanated from Lower Ordovician source rocks (i.e., most likely, Middle Ordovician Trenton or Black River group) that is currently hosted primarily in Lower Silurian sands (i.e., Medina or Clinton group) characterized by isotopically heavy, mature methane (13C[C1 – C2] [13C113C2]: 3), with high (4He) (average, 1.85  103 cc/cc) 4He/40Ar and 21Ne/40Ar near crustal production levels and elevated crustal noble gas content (enriched 4He,21Ne, 40Ar). Because the release of each crustal noble gas (i.e., He, Ne, Ar

  5. Matrix Sputtering Method: A Novel Physical Approach for Photoluminescent Noble Metal Nanoclusters.

    Science.gov (United States)

    Ishida, Yohei; Corpuz, Ryan D; Yonezawa, Tetsu

    2017-12-19

    Noble metal nanoclusters are believed to be the transition between single metal atoms, which show distinct optical properties, and metal nanoparticles, which show characteristic plasmon absorbance. The interesting properties of these materials emerge when the particle size is well below 2 nm, such as photoluminescence, which has potential application particularly in biomedical fields. These photoluminescent ultrasmall nanoclusters are typically produced by chemical reduction, which limits their practical application because of the inherent toxicity of the reagents used in this method. Thus, alternative strategies are sought, particularly in terms of physical approaches, which are known as "greener alternatives," to produce high-purity materials at high yields. Thus, a new approach using the sputtering technique was developed. This method was initially used to produce thin films using solid substrates; now it can be applied even with liquid substrates such as ionic liquids or polyethylene glycol as long as these liquids have a low vapor pressure. This revolutionary development has opened up new areas of research, particularly for the synthesis of colloidal nanoparticles with dimensions below 10 nm. We are among the first to apply the sputtering technique to the physical synthesis of photoluminescent noble metal nanoclusters. Although typical sputtering systems have relied on the effect of surface composition and viscosity of the liquid matrix on controlling particle diameters, which only resulted in diameters ca. 3-10 nm, that were all plasmonic, our new approach introduced thiol molecules as stabilizers inspired from chemical methods. In the chemical syntheses of metal nanoparticles, controlling the concentration ratio between metal ions and stabilizing reagents is a possible means of systematic size control. However, it was not clear whether this would be applicable in a sputtering system. Our latest results showed that we were able to generically produce a

  6. Experimental Demonstration Center at Mining Chemical Combine as a prototype of Third Generation Plant for Thermal Reactor SNF Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, E.G.; Haperskaya, A.V. [GC Rosatom (Russian Federation); Gavrilov, P.M.; Revenko, Yu.A.; Bondin, V.V. [MCC, Zeleznogorsk (Russian Federation); Fedorov, Yu.S.; Shadrin, A.Yu. [Khlopin Radium Institute, 2nd Murinsky Ave., 28, Saint Petersburg, 194021 (Russian Federation); Shafrova, N.P.; Smirnov, Yu.V. [GI VNIPIET, St. Petersburg (Russian Federation)

    2009-06-15

    fuel element cladding, unit for fuel oxidation to release gaseous fission nuclides, compact oven for HLW vitrification, etc.) is being developed. After implementation of the above approaches, the Experimental Demonstration Center will become a prototype of the third generation radiochemical plant in Russia. This Experimental Demonstration Center will be arranged at the Mining Chemical Combine near the 'wet' storage of the spent WWER-1000 fuel assemblies not far from dry repository. Modern approaches providing remote control of the equipment will be taken into account in this project. (authors)

  7. Characterization of divalent and trivalent species generated in the chemical and electrochemical oxidation of a dimeric pincer complex of nickel.

    Science.gov (United States)

    Spasyuk, Denis M; Gorelsky, Serge I; van der Est, Art; Zargarian, Davit

    2011-03-21

    The electrolytic and chemical oxidation of the dimeric pincer complex [κ(P),κ(C),κ(N),μ(N)-(2,6-(i-Pr(2)POC(6)H(3)CH(2)NBn)Ni](2) (1; Bn = CH(2)Ph) has been investigated by various analytic techniques. Cyclic voltammetry measurements have shown that 1 undergoes a quasi-reversible, one electron, Ni-based redox process (ΔE(0)(1/2) = -0.07 V vs Cp(2)Fe/[Cp(2)Fe](+)), and spectroelectrochemical measurements conducted on the product of the electrolytic oxidation, [1](+•), have shown multiple low-energy electronic transitions in the range of 10,000-15,000 cm(-1). Computational studies using Density Functional Theory (B3LYP) have corroborated the experimentally obtained structure of 1, provided the electronic structure description, and helped interpret the experimentally obtained absorption spectra for 1 and [1](+·). These calculations indicate that the radical cation [1](+·) is a dimeric, mixed-valent species (class III) wherein most of the spin density is delocalized over the two nickel centers (Ni(+2.5)(2)N(2)), but some spin density is also present over the two nitrogen atoms (Ni(2+)(2)N(2)·). Examination of alternative structures for open shell species generated from 1 has shown that the spin density distribution is highly sensitive toward changes in the ligand environment of the Ni ions. NMR, UV-vis, electron paramagnetic resonance (EPR), and single crystal X-ray diffraction analyses have shown that chemical oxidation of 1 with N-Bromosuccinimide (NBS) follows a complex process that gives multiple products, including the monomeric trivalent species κ(P),κ(C),κ(N)-{2,6-(i-Pr(2)PO)(C(6)H(3))(CH═NBn)}NiBr(2) (2). These studies also indicate that oxidation of 1 with 1 equiv of NBS gives an unstable, paramagnetic intermediate that decomposes to a number of divalent species, including succinimide and the monomeric divalent complexes κ(P),κ(C),κ(N)-{2,6-(i-Pr(2)PO)(C(6)H(3))(CH═NBn)}NiBr (3) and κ(P),κ(C),κ(N)-{2,6-(i-Pr(2)PO)(C(6)H(3))(CH(2)N

  8. An Unified Approach to Limits on Power Generation and Power Consumption in Thermo-Electro-Chemical Systems

    Directory of Open Access Journals (Sweden)

    Stanisław Sieniutycz

    2013-02-01

    Full Text Available This research presents a unified approach to power limits in power producing and power consuming systems, in particular those using renewable resources. As a benchmark system which generates or consumes power, a well-known standardized arrangement is considered, in which two different reservoirs are separated by an engine or a heat pump. Either of these units is located between a resource fluid (‘upper’ fluid 1 and the environmental fluid (‘lower’ fluid, 2. Power yield or power consumption is determined in terms of conductivities, reservoir temperatures and internal irreversibility coefficient, F. While bulk temperatures Ti of reservoirs’ are the only necessary state coordinates describing purely thermal units, in chemical (electrochemical engines, heat pumps or separators it is necessary to use both temperatures and chemical potentials mk. Methods of mathematical programming and dynamic optimization are applied to determine limits on power yield or power consumption in various energy systems, such as thermal engines, heat pumps, solar dryers, electrolysers, fuel cells, etc. Methodological similarities when treating power limits in engines, separators, and heat pumps are shown. Numerical approaches to multistage systems are based on methods of dynamic programming (DP or on Pontryagin’s maximum principle. The first method searches for properties of optimal work and is limited to systems with low dimensionality of state vector, whereas the second investigates properties of differential (canonical equations derived from the process Hamiltonian. A relatively unknown symmetry in behaviour of power producers (engines and power consumers is enunciated in this paper. An approximate evaluation shows that, at least ¼ of power dissipated in the natural transfer process must be added to a separator or a heat pump in order to assure a required process rate. Applications focus on drying systems which, by nature, require a large amount of thermal

  9. Genealogía de la noble mentira

    Directory of Open Access Journals (Sweden)

    Miguel Catalán

    2004-06-01

    Full Text Available Cet article analyse la notion de « noble mensonge » que l’on retrouve tout au long de l’histoire chez de nombreux auteurs, de Platon dans la Republique à Leo Strauss, l’actuel inspirateur de la politique menée par les néo-conservateurs aux Etats-Unis. L’article trace une ligne de pensée qui traverse les principales écoles et les auteurs modernes qui ont justifié le mensonge politique.The notion of «noble lie» has a long history. It can be found from Plato’s Republic to Leo Strauss’opus, a contemporary thinker whose thought inspires the philosophical background of the North-American neo-conservatives, who control the present Republican administration. This article goes through and analyses the main modern schools and authors who have justified political lie, i.e. a specific lie by which the political authority deceives its own people.Partiendo de la noción de «noble mentira» que encontramos en República de Platón y desembocando en la figura de Leo Strauss, filósofo inspirador de los actuales políticos neo-conservadores norteamericanos en torno al partido republicano en el poder, este artículo traza una línea de pensamiento que recorre las principales escuelas y autores modernos que han justificado la mentira política, entendida como aquella mentira con que el gobernante engaña a sus gobernados.

  10. Volatile elements - water, carbon, nitrogen, noble gases - on Earth

    Science.gov (United States)

    Marty, B.

    2017-12-01

    Understanding the origin and evolution of life-bearing volatile elements (water, carbon, nitrogen) on Earth is a fruitful and debated area of research. In his pioneering work, W.W. Rubey inferred that the terrestrial atmosphere and the oceans formed from degassing of the mantle through geological periods of time. Early works on noble gas isotopes were consistent with this view and proposed a catastrophic event of mantle degassing early in Earth's history. We now have evidence, mainly from noble gas isotopes, that several cosmochemical sources contributed water and other volatiles at different stages of Earth's accretion. Potential contributors include the protosolar nebula gas that equilibrated with magma oceans, inner solar system bodies now represented by chondrites, and comets. Stable isotope ratios suggest volatiles where primarily sourced by planetary bodies from the inner solar system. However, recent measurements by the European Space Agency Rosetta probe on the coma of Comet 67P/Churyumov-Gerasimenko permit to set quantitative constraints on the cometary contribution to the surface of our planet. The surface and mantle reservoirs volatile elements exchanged volatile elements through time, with rates that are still uncertain. Some mantle regions remained isolated from whole mantle convection within the first tens to hundreds million years after start of solar system formation. These regions, now sampled by some mantle plumes (e.g., Iceland, Eifel) preserved their volatile load, as indicated by extinct and extant radioactivity systems. The abundance of volatile elements in the mantle is still not well known. Different approaches, such as high pressure experimental petrology, noble gas geochemistry, modelling, resulted in somewhat contrasted estimates, varying over one order of magnitude for water. Comparative planetology, that is, the study of volatiles on the Moon, Venus, Mars, Vesta, will shed light on the sources and strengths of these elements in the

  11. Small angle elastic scattering of electrons by noble gas atoms

    International Nuclear Information System (INIS)

    Wagenaar, R.W.

    1984-01-01

    In this thesis, measurements are carried out to obtain small angle elastic differential cross sections in order to check the validity of Kramers-Kronig dispersion relations for electrons scattered by noble gas atoms. First, total cross sections are obtained for argon, krypton and xenon. Next, a parallel plate electrostatic energy analyser for the simultaneous measurement of doubly differential cross section for small angle electron scattering is described. Also absolute differential cross sections are reported. Finally the forward dispersion relation for electron-helium collisions is dealt with. (Auth.)

  12. Nanoparticles of noble metals in the supergene zone

    Science.gov (United States)

    Zhmodik, S. M.; Kalinin, Yu. A.; Roslyakov, N. A.; Mironov, A. G.; Mikhlin, Yu. L.; Belyanin, D. K.; Nemirovskaya, N. A.; Spiridonov, A. M.; Nesterenko, G. V.; Airiyants, E. V.; Moroz, T. N.; Bul'bak, T. A.

    2012-04-01

    Formation of noble metal nanoparticles is related to various geological processes in the supergene zone. Dispersed mineral phases appear during weathering of rocks with active participation of microorganisms, formation of soil, in aqueous medium and atmosphere. Invisible gold and other noble metals are incorporated into oxides, hydroxides, and sulfides, as well as in dispersed organic and inorganic carbonic matter. Sulfide minerals that occur in bedrocks and ores unaltered by exogenic processes and in cementation zone are among the main concentrators of noble metal nanoparticles. The ability of gold particles to disaggregate is well-known and creates problems in technological and analytical practice. When Au and PGE nanoparticles and clusters occur, these problems are augmented because of their unusual reactions and physicochemical properties. The studied gold, magnetite, titanomagnetite and pyrite microspherules from cementation zone and clay minerals of laterites in Republic of Guinea widen the knowledge of their abundance and inferred formation conditions, in particular, in the contemporary supergene zone. Morphology and composition of micrometer-sized Au mineral spherules were studied with SEM and laser microprobe. The newly formed segregations of secondary gold on the surface of its residual grains were also an object of investigation. The character of such overgrowths is the most indicative for nanoparticles. The newly formed Au particles provide evidence for redistribution of ultradispersed gold during weathering. There are serious prerequisites to state that microorganisms substantially control unusual nano-sized microspherical morphology of gold particles in the supergene zone. This is supported by experiments indicating active absorption of gold by microorganisms and direct evidence for participation of Ralstonia metallidurans bacteria in the formation of peculiar corroded bacteriomorphic surface of gold grains. In addition, the areas enriched in carbon

  13. Imaging with SiPMs in noble-gas detectors

    International Nuclear Information System (INIS)

    Yahlali, N; González, K; Fernandes, L M P; Garcia, A N C; Soriano, A

    2013-01-01

    Silicon photomultipliers (SiPMs) are photosensors widely used for imaging in a variety of high energy and nuclear physics experiments. In noble-gas detectors for double-beta decay and dark matter experiments, SiPMs are attractive photosensors for imaging. However they are insensitive to the VUV scintillation emitted by the noble gases (xenon and argon). This difficulty is overcome in the NEXT experiment by coating the SiPMs with tetraphenyl butadiene (TPB) to convert the VUV light into visible light. TPB requires stringent storage and operational conditions to prevent its degradation by environmental agents. The development of UV sensitive SiPMs is thus of utmost interest for experiments using electroluminescence of noble-gas detectors. It is in particular an important issue for a robust and background free ββ0ν experiment with xenon gas aimed by NEXT. The photon detection efficiency (PDE) of UV-enhanced SiPMs provided by Hamamatsu was determined for light in the range 250–500 nm. The PDE of standard SiPMs of the same model (S10362-33-50C), coated and non-coated with TPB, was also determined for comparison. In the UV range 250–350 nm, the PDE of the standard SiPM is shown to decrease strongly, down to about 3%. The UV-enhanced SiPM without window is shown to have the maximum PDE of 44% at 325 nm and 30% at 250 nm. The PDE of the UV-enhanced SiPM with silicon resin window has a similar trend in the UV range, although it is about 30% lower. The TPB-coated SiPM has shown to have about 6 times higher PDE than the non-coated SiPM in the range 250–315 nm. This is however below the performance of the UV-enhanced prototypes in the same wavelength range. Imaging in noble-gas detectors using UV-enhanced SiPMs is discussed.

  14. The Noble Tattenbach Family and their Estates in Styria

    OpenAIRE

    Zadravec, Dejan

    2008-01-01

    In this article the author discusses the rise and the decline of the noble family of Tattenbach and about their estates in Styria. Some members of this Bavarian family are in the dukedom of Styria first mentioned already at the end of the 15th century. Besides an unknown Tattenbach, who fought against the Turks near the border river Sotla, the first real trace in this province was left by his relative Viljem. The latter did not actually get any bigger estate in lasting or hereditary ownership...

  15. Neutron detection by scintillation of noble-gas excimers

    Science.gov (United States)

    McComb, Jacob Collin

    Neutron detection is a technique essential to homeland security, nuclear reactor instrumentation, neutron diffraction science, oil-well logging, particle physics and radiation safety. The current shortage of helium-3, the neutron absorber used in most gas-filled proportional counters, has created a strong incentive to develop alternate methods of neutron detection. Excimer-based neutron detection (END) provides an alternative with many attractive properties. Like proportional counters, END relies on the conversion of a neutron into energetic charged particles, through an exothermic capture reaction with a neutron absorbing nucleus (10B, 6Li, 3He). As charged particles from these reactions lose energy in a surrounding gas, they cause electron excitation and ionization. Whereas most gas-filled detectors collect ionized charge to form a signal, END depends on the formation of diatomic noble-gas excimers (Ar*2, Kr*2,Xe* 2) . Upon decaying, excimers emit far-ultraviolet (FUV) photons, which may be collected by a photomultiplier tube or other photon detector. This phenomenon provides a means of neutron detection with a number of advantages over traditional methods. This thesis investigates excimer scintillation yield from the heavy noble gases following the boron-neutron capture reaction in 10B thin-film targets. Additionally, the thesis examines noble-gas excimer lifetimes with relationship to gas type and gas pressure. Experimental data were collected both at the National Institute of Standards and Technology (NIST) Center for Neutron Research, and on a newly developed neutron beamline at the Maryland University Training Reactor. The components of the experiment were calibrated at NIST and the University of Maryland, using FUV synchrotron radiation, neutron imaging, and foil activation techniques, among others. Computer modeling was employed to simulate charged-particle transport and excimer photon emission within the experimental apparatus. The observed excimer

  16. Studies on PEM Fuel Cell Noble Metal Catalyst Dissolution

    DEFF Research Database (Denmark)

    Ma, Shuang; Skou, Eivind Morten

    Incredibly vast advance has been achieved in fuel cell technology regarding to catalyst efficiency, improvement of electrolyte conductivity and optimization of cell system. With breathtakingly accelerating progress, Proton Exchange Membrane Fuel Cells (PEMFC) is the most promising and most widely....... Membrane Electrode Assembly (MEA) is commonly considered as the heart of cell system [2]. Degradation of the noble metal catalysts in MEAs especially Three-Phase-Boundary (TPB) is a key factor directly influencing fuel cell durability. In this work, electrochemical degradation of Pt and Pt/Ru alloy were...

  17. The Noble Gas Fingerprint in a UK Unconventional Gas Reservoir

    Science.gov (United States)

    McKavney, Rory; Gilfillan, Stuart; Györe, Domokos; Stuart, Fin

    2016-04-01

    In the last decade, there has been an unprecedented expansion in the development of unconventional hydrocarbon resources. Concerns have arisen about the effect of this new industry on groundwater quality, particularly focussing on hydraulic fracturing, the technique used to increase the permeability of the targeted tight shale formations. Methane contamination of groundwater has been documented in areas of gas production1 but conclusively linking this to fugitive emissions from unconventional hydrocarbon production has been controversial2. A lack of baseline measurements taken before drilling, and the equivocal interpretation of geochemical data hamper the determination of possible contamination. Common techniques for "fingerprinting" gas from discrete sources rely on gas composition and isotopic ratios of elements within hydrocarbons (e.g. δ13CCH4), but the original signatures can be masked by biological and gas transport processes. The noble gases (He, Ne, Ar, Kr, Xe) are inert and controlled only by their physical properties. They exist in trace quantities in natural gases and are sourced from 3 isotopically distinct environments (atmosphere, crust and mantle)3. They are decoupled from the biosphere, and provide a separate toolbox to investigate the numerous sources and migration pathways of natural gases, and have found recent utility in the CCS4 and unconventional gas5 industries. Here we present a brief overview of noble gas data obtained from a new coal bed methane (CBM) field, Central Scotland. We show that the high concentration of helium is an ideal fingerprint for tracing fugitive gas migration to a shallow groundwater. The wells show variation in the noble gas signatures that can be attributed to differences in formation water pumping from the coal seams as the field has been explored for future commercial development. Dewatering the seams alters the gas/water ratio and the degree to which noble gases degas from the formation water. Additionally the

  18. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Mayo, E-mail: yokoyama@plasma.ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Johkura, Kohei, E-mail: kohei@shinshu-u.ac.jp [Department of Histology and Embryology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621 (Japan); Sato, Takehiko, E-mail: sato@ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-08-08

    Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H{sub 2}O{sub 2}-added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogen peroxide (H{sub 2}O{sub 2}) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H{sub 2}O{sub 2}. As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H{sub 2}O{sub 2}-medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H{sub 2}O{sub 2}-medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H{sub 2}O{sub 2}-medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN

  19. A geração química de vapor em espectrometria atômica Chemical vapor generation in atomic spectrometry

    Directory of Open Access Journals (Sweden)

    Iracema Takase

    2002-12-01

    Full Text Available The historical development of atomic spectrometry techniques based on chemical vapor generation by both batch and flow injection sampling formats is presented. Detection via atomic absorption spectrometry (AAS, microwave induced plasma optical emission spectrometry (MIP-OES, inductively coupled plasma optical emission spectrometry (ICP-OES , inductively coupled plasma mass spectrometry (ICP-MS and furnace atomic nonthermal excitation spectrometry (FANES are considered. Hydride generation is separately considered in contrast to other methods of generation of volatile derivatives. Hg ¾ CVAAS (cold vapor atomic absorption spectrometry is not considered here. The current state-of-the-art, including extension, advantages and limitations of this approach is discussed.

  20. Nanoscale chemical and mechanical characterization of thin films:sum frequency generation (SFG) vibrational spectroscopy at buriedinterfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kweskin, Sasha Joseph [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Sum frequency generation (SFG) surface vibrational spectroscopy was used to characterize interfaces pertinent to current surface engineering applications, such as thin film polymers and novel catalysts. An array of advanced surface science techniques like scanning probe microscopy (SPM), x-ray photoelectron spectroscopy (XPS), gas chromatography (GC) and electron microscopy were used to obtain experimental measurements complementary to SFG data elucidating polymer and catalyst surface composition, surface structure, and surface mechanical behavior. Experiments reported in this dissertation concentrate on three fundamental questions: (1) How does the interfacial molecular structure differ from that of the bulk in real world applications? (2) How do differences in chemical environment affect interface composition or conformation? (3) How do these changes correlate to properties such as mechanical or catalytic performance? The density, surface energy and bonding at a solid interface dramatically alter the polymer configuration, physics and mechanical properties such as surface glass transition, adhesion and hardness. The enhanced sensitivity of SFG at the buried interface is applied to three systems: a series of acrylates under compression, the compositions and segregation behavior of binary polymer polyolefin blends, and the changes in surface structure of a hydrogel as a function of hydration. In addition, a catalytically active thin film of polymer coated nanoparticles is investigated to evaluate the efficacy of SFG to provide in situ information for catalytic reactions involving small mass adsorption and/or product development. Through the use of SFG, in situ total internal reflection (TIR) was used to increase the sensitivity of SFG and provide the necessary specificity to investigate interfaces of thin polymer films and nanostructures previously considered unfeasible. The dynamic nature of thin film surfaces is examined and it is found that the non

  1. Atmospheric noble gases as tracers of biogenic gas dynamics in a shallow unconfined aquifer

    Science.gov (United States)

    Jones, Katherine L.; Lindsay, Matthew B. J.; Kipfer, Rolf; Mayer, K. Ulrich

    2014-03-01

    Atmospheric noble gases (NGs) were used to investigate biogenic gas dynamics in a shallow unconfined aquifer impacted by a crude oil spill, near Bemidji, MN. Concentrations of 3,4He, 20,22Ne, 36,40Ar, Kr, and Xe were determined for gas- and aqueous-phase samples collected from the vadose and saturated zones, respectively. Systematic elemental fractionation of Ne, Ar, Kr, and Xe with respect to air was observed in both of these hydrogeologic zones. Within the vadose zone, relative ratios of Ne and Ar to Kr and Xe revealed distinct process-related trends when compared to corresponding ratios for air. The degree of NG deviation from atmospheric concentrations generally increased with greater atomic mass (i.e., ΔXe > ΔKr > ΔAr > ΔNe), indicating that Kr and Xe are the most sensitive NG tracers in the vadose zone. Reactive transport modeling of the gas data confirms that elemental fractionation can be explained by mass-dependent variations in diffusive fluxes of NGs opposite to a total pressure gradient established between different biogeochemical process zones. Depletion of atmospheric NGs was also observed within a methanogenic zone of petroleum hydrocarbon degradation located below the water table. Solubility normalized NG abundances followed the order Xe > Kr > Ar > Ne, which is indicative of dissolved NG partitioning into the gas phase in response to bubble formation and possibly ebullition. Observed elemental NG ratios of Ne/Kr, Ne/Xe, Ar/Xe, and Kr/Xe and a modeling analysis provide strong evidence that CH4 generation below the water table caused gas exsolution and possibly ebullition and carbon transfer from groundwater to the vadose zone. These results suggest that noble gases provide sensitive tracers in biologically active unconfined aquifers and can assist in identifying carbon cycling and transfer within the vadose zone, the capillary fringe, and below the water table.

  2. Interactions of noble metal nanoparticles with their environment; Wechselwirkungen von Edelmetallnanopartikeln mit ihrer Umgebung

    Energy Technology Data Exchange (ETDEWEB)

    Reismann, Maximilian

    2009-12-08

    Upon irradiating noble metal nanoparticles with light, unique optical phenomena can occur, such as resonantly enhanced light-scattering and light-absorption, or a tremendous enhancement of the exciting optical field close to the surface of the nanoparticles. These phenomena rely on the excitations of collective oscillations of the conduction electrons within a nanoparticle. The optical properties of a nanoparticle are determined by the resonance frequency of these so-called plasmon oscillations. This resonance frequency and the light-scattering spectrum of a nanoparticle depend (among other effects) on the dielectric environment of the particle. Due to this effect, noble metal nanoparticles can be applied for local optical sensing of chemical substances. The large light-absorption properties of a nanoparticle also enable the usage of light-irradiation to deposit heat in the nanoparticle in a selective and highly localized manner. Therefore, a local temperature increase can be induced in the nanoparticle and its immediate environment. This temperature increase could be used to trigger chemical or biological reactions, or it could be used for a selective hyperthermia of biological material. These and further possible applications rely on the detection or the systematic excitation of interactions between the noble metal nanoparticle and its environment. These interactions are the central subject of this thesis. Particular attention is paid to photothermal interactions. An interesting question is to what extend a nanoparticle-supported, photothermally-induced temperature rise can be applied to trigger a biomolecular reaction in a spatially confined volume. By carefully adjusting the photothermal treatment, one aims at affecting the molecules without damaging their chemical functionality. The photothermal interaction is addressed in two projects: First, networks built up by gold nanoparticles are investigated. In these networks, double-stranded DNA-molecules are used to

  3. Effects of deprotonation efficiency of protected units on line edge roughness and stochastic defect generation in chemically amplified resist processes for 11 nm node of extreme ultraviolet lithography

    Science.gov (United States)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2014-11-01

    The deprotonation of polymer radical cations plays an important role in the acid generation in chemically amplified resists upon exposure to ionizing radiation. In this study, the effects of the deprotonation efficiency of protected units of a resist polymer on line edge roughness (LER) and stochastic defect generation were investigated. The suppression of stochastic effects is essential for the realization of high-volume production of semiconductor devices with an 11 nm critical dimension using extreme ultraviolet (EUV) lithography. By increasing the deprotonation efficiency, the chemical contrast (latent image quality) was improved; however, the protected unit number fluctuation did not significantly change. Consequently, LER and the probability of stochastic defect generation were reduced. This effect was prominent when the protection ratio was close to 100%.

  4. 75 FR 12737 - Applications To Export Electric Energy; Noble Energy Marketing and Trade Corp.

    Science.gov (United States)

    2010-03-17

    ...; Noble Energy Marketing and Trade Corp. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Under two separate applications, Noble Energy Marketing... Marketing and Trade Corp., 333 Ludlow Street, Suite 1230, Stamford, CT 06902. A final decision will be made...

  5. Targets Involved in Cardioprotection by the Non-Anesthetic Noble Gas Helium

    NARCIS (Netherlands)

    Weber, Nina C.; Smit, Kirsten F.; Hollmann, Markus W.; Preckel, Benedikt

    2015-01-01

    Research data from the past decade indicate that noble gases like xenon and helium exert profound cardioprotection when applied before, during or after organ ischemia. Of all noble gases, especially helium, has gained interest in the past years because it does not have an anesthetic "side effect"

  6. The desorption behaviour of implanted noble gases at low energy on silicon surfaces

    NARCIS (Netherlands)

    Holtslag, A.H.M.; van Silfhout, Arend

    1987-01-01

    Under UHV conditions, clean crystalline Si(111) surfaces have been bombarded mass-selectively at room temperature with noble gas ions, Ne+, Ar+, Kr+, at normal incidence. By means of stepwise heating up to 1050 K the activation energies and desorbed doses of the noble gases have been straight

  7. Noble Gas Migration Experiment to Support the Detection of Underground Nuclear Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Khris B.; Kirkham, Randy R.; Woods, Vincent T.; Haas, Derek A.; Hayes, James C.; Bowyer, Ted W.; Mendoza, Donaldo P.; Lowrey, Justin D.; Lukins, Craig D.; Suarez, Reynold; Humble, Paul H.; Ellefson, Mark D.; Ripplinger, Mike D.; Zhong, Lirong; Mitroshkov, Alexandre V.; Aalseth, Craig E.; Prinke, Amanda M.; Mace, Emily K.; McIntyre, Justin I.; Stewart, Timothy L.; Mackley, Rob D.; Milbrath, Brian D.; Emer, Dudley; Biegalski, S.

    2016-03-01

    A Noble Gas Migration Experiment (NGME) funded by the National Center for Nuclear Security and conducted at the Nevada National Security Site (NNSS) in collaboration with Lawrence Livermore national Laboratory and National Security Technology provided critical on-site inspection (OSI) information related to the detection of an underground nuclear explosion (UNE) event using noble gas signatures.

  8. Metal-organic frameworks for adsorption and separation of noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Greathouse, Jeffery A.; Staiger, Chad

    2017-05-30

    A method including exposing a gas mixture comprising a noble gas to a metal organic framework (MOF), including an organic electron donor and an adsorbent bed operable to adsorb a noble gas from a mixture of gases, the adsorbent bed including a metal organic framework (MOF) including an organic electron donor.

  9. Noble gas confinement for reactor fuel melting accidents

    International Nuclear Information System (INIS)

    Monson, P.R.

    1985-01-01

    In the unlikely event of a fuel melting accident radioactive material would be released into the reactor room. This radioactive material would consist of particulate matter, iodine, tritium, and the noble gases krypton and xenon. In the case of reactors with containment domes, the gases would be contained for subsequent cleanup. For reactors without containment the particulates and the iodine can be effectively removed with HEPA and carbon filters of current technology; however, noble gases cannot be easily removed and would be released to the atmosphere. In either case, it would be highly desirable to have a system that could be brought online to treat this contaminated air to minimize the population dose. A low temperature adsorption system has been developed at the Savannah River Laboratory to remove the airborne radioactive material from such a fuel melting accident. Over two dozen materials have been tested in extensive laboratory studies, and hydrogen mordensite and silver mordenite were found to be the most promising absorbents. A full-scale conceptual design has also been developed. Results of the laboratory studies and the conceptual design will be discussed along with plans for further development of this concept

  10. Noble gas geochemistry to monitor CO2 geological storages

    International Nuclear Information System (INIS)

    Lafortune, St.

    2007-11-01

    According to the last IPCC (Intergovernmental Panel on Climate Change) report, a probability of 90 % can be now established for the responsibility of the anthropogenic CO 2 emissions for the global climate change observed since the beginning of the 20. century. To reduce these emissions and keep producing energy from coal, oil or gas combustions, CO 2 could be stored in geological reservoirs like aquifers, coal beds, and depleted oil or gas fields. Storing CO 2 in geological formations implies to control the efficiency and to survey the integrity of the storages, in order to be able to detect the possible leaks as fast as possible. Here, we study the feasibility of a geochemical monitoring through noble gas geochemistry. We present (1) the development of a new analytical line, Garodiox, developed to extract quantitatively noble gas from water samples, (2) the testing of Garodiox on samples from a natural CO 2 storage analogue (Pavin lake, France) and (3) the results of a first field work on a natural CO 2 accumulation (Montmiral, France). The results we obtain and the conclusions we draw, highlight the interest of the geochemical monitoring we suggest. (author)

  11. Optical Properties and Immunoassay Applications of Noble Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shaoli Zhu

    2010-01-01

    Full Text Available Noble metal, especially gold (Au and silver (Ag nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR. In this paper, we mainly discussed the theory background of the enhanced optical properties of noble metal nanoparticles. Mie theory, transfer matrix method, discrete dipole approximation (DDA method, and finite-difference time domain (FDTD method applied brute-force computational methods for different nanoparticles optical properties. Some important nanostructure fabrication technologies such as nanosphere lithography (NSL and focused ion beam (FIB are also introduced in this paper. Moreover, these fabricated nanostructures are used in the plasmonic sensing fields. The binding signal between the antibody and antigen, amyloid-derived diffusible ligands (ADDLs-potential Alzheimer's disease (AD biomarkers, and staphylococcal enterotixn B (SEB in nano-Moore per liter (nM concentration level are detected by our designed nanobiosensor. They have many potential applications in the biosensor, environment protection, food security, and medicine safety for health, and so forth, fields.

  12. The Noble-Abel Stiffened-Gas equation of state

    Science.gov (United States)

    Le Métayer, Olivier; Saurel, Richard

    2016-04-01

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.

  13. Noble metal-free hydrogen evolution catalysts for water splitting.

    Science.gov (United States)

    Zou, Xiaoxin; Zhang, Yu

    2015-08-07

    Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

  14. The noble gas record of the terrestrial planets

    International Nuclear Information System (INIS)

    Manuel, O.K.; Sabu, D.D.

    1981-01-01

    The Earth's atmosphere was produced by exhaustive degassing of the upper mantle during the first 200 My, but the lower mantle has retained an appreciable fraction of its initial inventory of primordial 3 He. The lower mantle has retained most of its initial inventory of the heavy noble gases, and it is presently accumulating radiogenic 4 He and 40 Ar. Most of the radiogenic 40 Ar in air was produced in the crust during the first 2.5 Gy. Extinct radionuclides have augmented the atmospheric inventory of 136 Xe by less than 1 % and that of 129 Xe by about 5 %. Terrestrial Ar, Kr, and Xe are type-Y, but the He and Ne are of solar wind origin. Terrestrial Xe may not be isotopically unique in the solar system; its composition can be related to that in meteorites by consideration of nucleogenetic heterogeneities and mass dependent fractionation. The atmospheres of the terrestrial planets were produced by exhaustive degassing of specific regions. Observed similarities in the abundance patterns of noble gases in meteorites and in the terrestrial planets rule out elemental fractionation in the evolution of their atmospheres. The degassed portions of Mars, Earth, and Venus are estimated to be 1-2 %, 17 % and 100 %, respectively. The iron cores of these bodies were produced by heterogeneous accretion. (author)

  15. Optical Properties and Immunoassay Applications of Noble Metal Nanoparticles

    International Nuclear Information System (INIS)

    Zhu, S.; Zhou, W.

    2010-01-01

    Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this paper, we mainly discussed the theory background of the enhanced optical properties of noble metal nanoparticles. Mie theory, transfer matrix method, discrete dipole approximation (DDA) method, and finite-difference time domain (FDTD) method applied brute-force computational methods for different nanoparticles optical properties. Some important nanostructure fabrication technologies such as nanosphere lithography (NSL) and focused ion beam (FIB) are also introduced in this paper. Moreover, these fabricated nanostructures are used in the plasmonic sensing fields. The binding signal between the antibody and antigen, amyloid-derived diffusible ligands (ADDLs)-potential Alzheimer's disease (AD) biomarkers, and staphylococcal enterotoxin B (SEB) in nano-Moore per liter (nM) concentration level are detected by our designed nanobiosensor. They have many potential applications in the biosensor, environment protection, food security, and medicine safety for health, and so forth, fields.

  16. Modification of titanium electrodes by a noble metal deposit

    Energy Technology Data Exchange (ETDEWEB)

    Devilliers, D.; Mahe, E. [Pierre et Marie Curie Univ., Paris (France). Laboratoire LI2C, UMR CNRS

    2008-07-01

    Titanium is commonly used as a substrate for dimensionally stable anodes (DSAs) because it is corrosion-resistant in acid media and because a passive titanium oxide (TiO2) film can be formed on the surface. This paper reported on a study in which titanium substrates were first covered by anodization with a TiO2 layer. The electrochemical properties of the Ti/TiO2 electrodes were investigated. The modification of the substrates by cathodic electrodeposition of a noble metal was described. The reactivity of the Ti/TiO2/Pt structures were illustrated by impedance spectroscopy experiments. The impedance studies performed with Ti/ TiO2 electrodes in the presence of a redox couple in solution (Fe3+/Fe2+ system in sulphuric acid) showed that the electronic transfer is very slow. It was concluded that the deposition of a noble metal coating on Ti/TiO2 substrates leads to modified titanium electrodes that exhibit electrocatalytic behaviour versus specific electrochemical reactions. 1 ref., 3 figs.

  17. Analysis of noble gas recycling at a fusion plasma divertor

    International Nuclear Information System (INIS)

    Brooks, J.N.

    1996-01-01

    Near-surface recycling of neon and argon atoms and ions at a divertor has been studied using impurity transport and surface interaction codes. A fixed background deuterium endash tritium plasma model is used corresponding to the International Thermonuclear Experimental Reactor (ITER) [ITER EDA Agreement and Protocol 2, ITER EDA Documentation Series No. 5 (International Atomic Energy Agency, Vienna, 1994)] radiative plasma conditions (T e ≤10 eV). The noble gas transport depends critically on the divertor surface material. For low-Z materials (Be and C) both neon and argon recycle many (e.g., ∼100) times before leaving the near-surface region. This is also true for an argon on tungsten combination. For neon on tungsten, however, there is low recycling. These variations are due to differences in particle and energy reflection coefficients, mass, and ionization rates. In some cases a high flux of recycling atoms is ionized within the magnetic sheath and this can change local sheath parameters. Due to inhibited backflow, high recycling, and possibly high sputtering, noble gas seeding (for purposes of enhancing radiation) may be incompatible with Be or C surfaces, for fusion reactor conditions. On the other hand, neon use appears compatible with tungsten. copyright 1996 American Institute of Physics

  18. Photoionization of the outer electrons in noble gas endohedral atoms

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Baltenkov, A. S.; Chernysheva, L. V.

    2008-01-01

    We suggest a prominent modification of the outer shell photoionization cross section in noble gas (NG) endohedral atoms NG-C n under the action of the electron shell of fullerene C n . This shell leads to two important effects: a strong enhancement of the cross section due to fullerene shell polarization under the action of the incoming electromagnetic wave and to prominent oscillation of this cross section due to the reflection of a photoelectron from the NG by the fullerene shell. Both factors lead to powerful maxima in the outer shell ionization cross sections of NG-C n , which we call giant endohedral resonances. The oscillator strength reaches a very large value in the atomic scale, 25. We consider atoms of all noble gases except He. The polarization of the fullerene shell is expressed in terms of the total photoabsorption cross section of the fullerene. The photoelectron reflection is taken into account in the framework of the so-called bubble potential, which is a spherical δ-type potential. It is assumed in the derivations that the NG is centrally located in the fullerene. It is also assumed, in accordance with the existing experimental data, that the fullerene radius R C is much larger than the atomic radius r A and the thickness Δ C of the fullerene shell. As was demonstrated recently, these assumptions allow us to represent the NG-C n photoionization cross section as a product of the NG cross section and two well-defined calculated factors

  19. Atmospheric ionization caused by ionizing radiation of radioactive noble gas

    International Nuclear Information System (INIS)

    Butkus, D.

    1998-01-01

    One of the most important problems connected with extension of nuclear energy production is environmental contamination with radioactive noble gases (RNG). These gases are constantly released into the atmosphere as a result of the operation of plants of nuclear fuel cycle. An important task is determination of their impact on the living and inanimate nature and geophysical processes taking place in the atmosphere (circulation of RNG in the atmosphere, removal of RNG from the atmosphere, variations of the ion current and electrical conductivity in the atmosphere, formation of aerosol particles, formation of precipitation redistribution of fields of precipitation, etc.). Long lived noble gases present in the emissions from plants of nuclear fuel cycle and nuclear installations are released into planetary circulation of the atmosphere. They are spread in the entire atmosphere and cause geophysical and technogenic problems. The most important is 85 Kr. This radioisotope has a comparatively long half life time (T 1/2 =10.76 years) and is accumulated in the atmosphere. Atmospheric concentration of 85 Kr from 1952 to 1998 increased by 45 times and is constantly growing up. There arises necessity of investigating the geophysical properties of 85 Kr, its interaction with environmental bodies, which can have an influence on geophysical processes. (author)

  20. Noble gases preserve history of retentive continental crust in the Bravo Dome natural CO2 field, New Mexico

    Science.gov (United States)

    Sathaye, Kiran J.; Smye, Andrew J.; Jordan, Jacob S.; Hesse, Marc A.

    2016-06-01

    Budgets of 4He and 40Ar provide constraints on the chemical evolution of the solid Earth and atmosphere. Although continental crust accounts for the majority of 4He and 40Ar degassed from the Earth, degassing mechanisms are subject to scholarly debate. Here we provide a constraint on crustal degassing by comparing the noble gases accumulated in the Bravo Dome natural CO2 reservoir, New Mexico USA, with the radiogenic production in the underlying crust. A detailed geological model of the reservoir is used to provide absolute abundances and geostatistical uncertainty of 4He, 40Ar, 21Ne, 20Ne, 36Ar, and 84Kr. The present-day production rate of crustal radiogenic 4He and 40Ar, henceforth referred to as 4He* and 40Ar*, is estimated using the basement composition, surface and mantle heat flow, and seismic estimates of crustal density. After subtracting mantle and atmospheric contributions, the reservoir contains less than 0.02% of the radiogenic production in the underlying crust. This shows unequivocally that radiogenic noble gases are effectively retained in cratonic continental crust over millennial timescales. This also requires that approximately 1.5 Gt of mantle derived CO2 migrated through the crust without mobilizing the crustally accumulated gases. This observation suggests transport along a localized fracture network. Therefore, the retention of noble gases in stable crystalline continental crust allows shallow accumulations of radiogenic gases to record tectonic history. At Bravo Dome, the crustal 4He*/40Ar* ratio is one fifth of the expected crustal production ratio, recording the preferential release of 4He during the Ancestral Rocky Mountain orogeny, 300 Ma.

  1. Exploring the Effects on Lipid Bilayer Induced by Noble Gases via Molecular Dynamics Simulations.

    Science.gov (United States)

    Chen, Junlang; Chen, Liang; Wang, Yu; Wang, Xiaogang; Zeng, Songwei

    2015-11-25

    Noble gases seem to have no significant effect on the anesthetic targets due to their simple, spherical shape. However, xenon has strong narcotic efficacy and can be used clinically, while other noble gases cannot. The mechanism remains unclear. Here, we performed molecular dynamics simulations on phospholipid bilayers with four kinds of noble gases to elucidate the difference of their effects on the membrane. Our results showed that the sequence of effects on membrane exerted by noble gases from weak to strong was Ne, Ar, Kr and Xe, the same order as their relative narcotic potencies as well as their lipid/water partition percentages. Compared with the other three kinds of noble gases, more xenon molecules were distributed between the lipid tails and headgroups, resulting in membrane's lateral expansion and lipid tail disorder. It may contribute to xenon's strong anesthetic potency. The results are well consistent with the membrane mediated mechanism of general anesthesia.

  2. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Duarte, Fabio Andrei; Bizzi, Cezar Augusto; Goldschmidt Antes, Fabiane; Dressler, Valderi Luiz; Flores, Erico Marlon de Moraes

    2009-01-01

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L - 1 KBr in 6 mol L - 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L - 1 HCl and 2.5% m/v NaBH 4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 deg. C and the atomization temperature was set at 650 deg. C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g - 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  3. Therapeutic Potential of Noble Nanoparticles for Wound Repair

    Directory of Open Access Journals (Sweden)

    Timur Saliyev

    2014-12-01

    Full Text Available Introduction. Nanoparticles made of noble metals, such as gold and silver, have a great potential to be effectively employed for wound management. The nano-size of such particles provides an opportunity to enlarge the contacting area, which results in more effective anti-bacterial action and faster wound repair. It must be noted that the shape of noble nanoparticles might play a crucial role in the manifestation of their anti-microbial properties. The modern state of technology allows fabrication of the nanoparticles with the desired shape and physical properties. In order to provide efficacy and close contact with the wound, the noble nanoparticles can be incorporated into a special matrix made of a cryogel (based on polymethyl methacrylate. This combination might serve as a foundation for developing completely new types of wound dressing.Materials and methods. We have developed a few methods for synthesizing gold and silver nanoparticles of different shapes and sizes. After fabrication of metallic nanoparticles, they were characterized by using Tunneling Electron Microscopy (TEM and Malvern Zetasizer system in order to determine the average population size and consistency. The silver nanoparticles was synthesized using sodium borohydride reduction of silver nitrate. The synthesis of gold nanoparticles was conducted by using the Turkevich method.Results. We have developed a synthetic cryogel based on polyacrylamide (by cryogelation reaction at several temperatures. At the second step, we developed a method for conjugating fabricated gold and silver nanoparticles to the surface (or pores of cryogel through covalent bonds so they can provide antibacterial action within the wound. By following the developed protocol, we were able to obtain an approximate cryogel layer (1 cm thickness with embedded gold and silver nanoparticles. This conjugate was analyzed and confirmed using Scanning Electron Microscopy (SEM and TEM.Discussion. The obtained

  4. Noble gases, nitrogen, cosmic ray exposure history and mineralogy of Beni M'hira (L6) chondrite

    Science.gov (United States)

    Mahajan, Ramakant R.; Nejia, Laridhi Ouazaa; Ray, Dwijesh; Naik, Sekhar

    2018-03-01

    The concentrations and isotopic composition of noble gases helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon(Xe) and nitrogen were measured in the Beni M'hira L6 chondrite. The cosmic ray exposure age of Beni M'hira is estimated of 15.6 ± 3.7 (Ma). The radiogenic age, of around 485 ± 64 Ma, derived from 4He, and of around 504 ± 51 Ma from 40Ar, suggests an age resetting indicating the event impact. The heavy noble gases (Ar, Kr and Xe) concentrations imply that the gas is a mixture of trapped component Q and solar wind. The measured nitrogen abundance of 0.74 ppm and the isotopic signature of δ15N = 14.6‰ are within the range of ordinary chondrites. The homogeneous chemical composition of olivine (Fa:26 ± 0.25) and low-Ca pyroxene (Fs:22.4 ± 0.29) suggest that the Beni M'hira meteorite is an equilibrated chondrite. This is further corroborated by strong chondrule-matrix textural integration (lack of chondrules, except a few relict clast). Shock metamorphism generally corresponds to S5 (>45 GPa), however, locally disequilibrium melting (shock-melt veins) suggests, that the peak shock metamorphism was at ∼75 GPa, 950 °C.

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. SUDIP PAN. Articles written in Journal of Chemical Sciences. Volume 128 Issue 10 October 2016 pp 1537-1548 Regular Article. A computational study on structure, stability and bonding in Noble Gas bound metal Nitrates, Sulfates and Carbonates (Metal = Cu, Ag, Au).

  6. CHARACTERIZATION OF INDIVIDUAL CHEMICAL REACTIONS CONSUMING ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136B

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J.; Stone, M.

    2009-09-02

    Conversion of legacy radioactive high-level waste at the Savannah River Site into a stable glass waste form involves a chemical pretreatment process to prepare the waste for vitrification. Waste slurry is treated with nitric and formic acids to achieve certain goals. The total quantity of acid added to a batch of waste slurry is constrained by the catalytic activity of trace noble metal fission products in the waste that can convert formic acid into hydrogen gas at many hundreds of times the radiolytic hydrogen generation rate. A large block of experimental process simulations were performed to characterize the chemical reactions that consume acid prior to hydrogen generation. The analysis led to a new equation for predicting the quantity of acid required to process a given volume of waste slurry.

  7. Determination of As, Se, and Hg in fuel samples by in-chamber chemical vapor generation ICP OES using a Flow Blurring® multinebulizer.

    Science.gov (United States)

    García, Miriam; Aguirre, Miguel Ángel; Canals, Antonio

    2017-09-01

    In this work, a new and simple analytical methodology based on in-chamber chemical vapor generation has been developed for the spectrochemical analysis of commercial fuel samples. A multiple nebulizer with three nebulization units has been employed for this purpose: One unit was used for sample introduction, while the other two were used for the necessary reagent introduction. In this way, the aerosols were mixed inside the spray chamber. Through this method, analyte transport and, therefore, sensitivity are improved in inductively coupled plasma-optical emission spectrometry. The factors (i.e., variables), influencing chemical vapor generation, have been optimized using a multivariate approach. Under optimum chemical vapor generation conditions ([NaBH 4 ] = 1.39%, [HCl] = 2.97 M, total liquid flow = 936 μL min -1 ), the proposed sample introduction system allowed the determination of arsenic, selenium, and mercury up to 5 μg g -1 with a limit of detection of 25, 140, and 13 μg kg -1 , respectively. Analyzing spiked commercial fuel samples, recovery values obtained were between 96 and 113%, and expanded uncertainty values ranged from 4 to 16%. The most striking practical conclusion of this investigation is that no carbon deposit appears on the plasma torch after extended periods of working. Graphical abstract A new and simple analytical methodology based on in-chamber chemical vapor generation has been developed for the spectrochemical analysis of commercial fuel samples in ICP OES.

  8. Life at the College of Nobles Maidens of Toledo

    Directory of Open Access Journals (Sweden)

    Ángel Santos Vaquero

    2017-07-01

    Full Text Available The College of Noble Maidens of Toledo was founded by Cardinal Silíceo in 1551, designed to train women as holy and Christian wives and educated housewives. As would be admitted girls who could prove their ancestry free of impure blood. When they married would receive a dowry. Over time the institution was made many visits that were trying to bring order to the relaxation of discipline and desmadres produced both in administrative matters such as economic and internal order. Finally on July 20, 1988 was agreed between the Archbishop of Toledo and National Heritage. For him the Statute of Real Compatronato were modified and agreed to convert the institution into a female dorm.

  9. Radioactive gases monitor system: tritium, radon, noble gases

    International Nuclear Information System (INIS)

    Egey, J.Z.; Matatagui, E.

    2015-01-01

    A system for monitoring the radioactive gases tritium, radon and noble gases is described. We present the description of the sensor and the associated electronics that have been developed to monitor the presence of radioactive gases in air or other gaseous effluents. The system has a high sensitivity and a wide range of operation. The sensor is an ionization chamber, featuring the internal circulation of the gas to monitor and the associated electronics has a resolution better than 10 E-15A (fA). It allows the detection of the individual pulses that are produced during the alpha decay of radon and its daughter elements. The measurement system is made up of a commercial data acquisition system connected to a computer. The acquired data is presented on a graphical display and it is stored for later processing and analysis. We have a system that is of simple construction and versatile. Here we present the experimental results. (authors) [es

  10. Noble metal ionic sites for catalytic hydrogen combustion: spectroscopic insights.

    Science.gov (United States)

    Deshpande, Parag A; Madras, Giridhar

    2011-01-14

    A catalytic hydrogen combustion reaction was carried out over noble metal catalysts substituted in ZrO(2) and TiO(2) in ionic form. The catalysts were synthesized by the solution combustion technique. The compounds showed high activity and CO tolerance for the reaction. The activity of Pd and Pt ion substituted TiO(2) was comparable and was higher than Pd and Pt ion substituted ZrO(2). The mechanisms of the reaction over the two supports were proposed by making use of the X-ray photoelectron spectroscopy and FT infrared spectroscopic observations. The reaction over ZrO(2) supported catalysts was proposed to take place by the utilization of the surface hydroxyl groups while the reaction over TiO(2) supported catalysts was hypothesized to be a hybrid mechanism utilizing surface hydroxyl groups and the lattice oxygen.

  11. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal.

    Directory of Open Access Journals (Sweden)

    Aminul Islam

    Full Text Available A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3 are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed.

  12. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  13. Modeling of noble gas injection into tokamak plasmas

    International Nuclear Information System (INIS)

    Morozov, D.Kh.; Yurchenko, E.I.; Lukash, V.E.; Baronova, E.O.; Rozhansky, V.A.; Senichenkov, I.Yu.; Veselova, I.Yu.; Schneider, R.

    2005-01-01

    Noble gas injection for mitigation of the disruption in DIII-D is simulated. The simulation of the first two stages is performed: of the neutral gas jet penetration through the background plasmas, and of the thermal quench. In order to simulate the first stage the 1.5-dimensional numerical code LLP with improved radiation model for noble gas is used. It is demonstrated that the jet remains mainly neutral and thus is able to penetrate to the central region of the tokamak in accordance with experimental observations. Plasma cooling at this stage is provided by the energy exchange with the jet. The radiation is relatively small, and the plasma thermal energy is spent mainly on the jet expansion. The magnetic surfaces in contact with the jet are cooled significantly. The cooling front propagates towards the plasma center. The simulations of the plasma column dynamics in the presence of moving jet is performed by means of the free boundary transport modeling DINA code. It has been shown that the cooling front is accompanied by strongly localized 'shark fin-like' perturbation in toroidal current density profile. After few milliseconds the jet (together with the current perturbation) achieves the region where safety factor is slightly higher than unity and a new type of the non-local kink mode develops. The unstable kink perturbation is non-resonant for any magnetic surface, both inside the plasma column, and in the vacuum space. The mode disturbs mainly the core region. The growth time of the 'shark fin-like' mode is higher than the Alfven time by a factor of 100 for DIII-D parameters. Hence, the simulation describes the DIII-D experimental results, at least, qualitatively. (author)

  14. Noble Metal Arsenides and Gold Inclusions in Northwest Africa 8186

    Science.gov (United States)

    Srinivasan, P.; McCubbin, F. M.; Rahman, Z.; Keller, L. P.; Agee, C. B.

    2016-01-01

    CK carbonaceous chondrites are a highly thermally altered group of carbonaceous chondrites, experiencing temperatures ranging between approximately 576-867 degrees Centigrade. Additionally, the mineralogy of the CK chondrites record the highest overall oxygen fugacity of all chondrites, above the fayalite-magnetite-quartz (FMQ) buffer. Me-tallic Fe-Ni is extremely rare in CK chondrites, but magnetite and Fe,Ni sulfides are commonly observed. Noble metal-rich inclusions have previously been found in some magnetite and sulfide grains. These arsenides, tellurides, and sulfides, which contain varying amounts of Pt, Ru, Os, Te, As, Ir, and S, are thought to form either by condensation from a solar gas, or by exsolution during metamorphism on the chondritic parent body. Northwest Africa (NWA) 8186 is a highly metamorphosed CK chondrite. This meteorite is predominately composed of NiO-rich forsteritic olivine (Fo65), with lesser amounts of plagioclase (An52), augite (Fs11Wo49), magnetite (with exsolved titanomagnetite, hercynite, and titanohematite), monosulfide solid solution (with exsolved pentlandite), and the phosphate minerals Cl-apatite and merrillite. This meteorite contains coarse-grained, homogeneous silicates, and has 120-degree triple junctions between mineral phases, which indicates a high degree of thermal metamorphism. The presence of NiO-rich olivine, oxides phases all bearing Fe3 plus, and the absence of metal, are consistent with an oxygen fugacity above the FMQ buffer. We also observed noble metal-rich phases within sulfide grains in NWA 8186, which are the primary focus of the present study.

  15. Determination of natural in vivo noble-gas concentrations in human blood.

    Directory of Open Access Journals (Sweden)

    Yama Tomonaga

    Full Text Available Although the naturally occurring atmospheric noble gases He, Ne, Ar, Kr, and Xe possess great potential as tracers for studying gas exchange in living beings, no direct analytical technique exists for simultaneously determining the absolute concentrations of these noble gases in body fluids in vivo. In this study, using human blood as an example, the absolute concentrations of all stable atmospheric noble gases were measured simultaneously by combining and adapting two analytical methods recently developed for geochemical research purposes. The partition coefficients determined between blood and air, and between blood plasma and red blood cells, agree with values from the literature. While the noble-gas concentrations in the plasma agree rather well with the expected solubility equilibrium concentrations for air-saturated water, the red blood cells are characterized by a distinct supersaturation pattern, in which the gas excess increases in proportion to the atomic mass of the noble-gas species, indicating adsorption on to the red blood cells. This study shows that the absolute concentrations of noble gases in body fluids can be easily measured using geochemical techniques that rely only on standard materials and equipment, and for which the underlying concepts are already well established in the field of noble-gas geochemistry.

  16. Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems

    Science.gov (United States)

    Niu, Yi; Castro, M. Clara; Hall, Chris M.; Gingerich, Stephen B.; Scholl, Martha A.; Warrier, Rohit B.

    2017-05-01

    Uneven distribution of rainfall and freshwater scarcity in populated areas in the Island of Maui, Hawaii, renders water resources management a challenge in this complex and ill-defined hydrological system. A previous study in the Galapagos Islands suggests that noble gas temperatures (NGTs) record seasonality in that fractured, rapid infiltration groundwater system rather than the commonly observed mean annual air temperature (MAAT) in sedimentary systems where infiltration is slower thus, providing information on recharge sources and potential flow paths. Here we report noble gas results from the basal aquifer, springs, and rainwater in Maui to explore the potential for noble gases in characterizing this type of complex fractured hydrologic systems. Most samples display a mass-dependent depletion pattern with respect to surface conditions consistent with previous observations both in the Galapagos Islands and Michigan rainwater. Basal aquifer and rainwater noble gas patterns are similar and suggest direct, fast recharge from precipitation to the basal aquifer. In contrast, multiple springs, representative of perched aquifers, display highly variable noble gas concentrations suggesting recharge from a variety of sources. The distinct noble gas patterns for the basal aquifer and springs suggest that basal and perched aquifers are separate entities. Maui rainwater displays high apparent NGTs, incompatible with surface conditions, pointing either to an origin at high altitudes with the presence of ice or an ice-like source of undetermined origin. Overall, noble gas signatures in Maui reflect the source of recharge rather than the expected altitude/temperature relationship commonly observed in sedimentary systems.

  17. Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems

    Science.gov (United States)

    Niu, Yi; Castro, M. Clara; Hall, Chris M.; Gingerich, Stephen B.; Scholl, Martha A.; Warrier, Rohit B.

    2017-01-01

    Uneven distribution of rainfall and freshwater scarcity in populated areas in the Island of Maui, Hawaii, renders water resources management a challenge in this complex and ill-defined hydrological system. A previous study in the Galapagos Islands suggests that noble gas temperatures (NGTs) record seasonality in that fractured, rapid infiltration groundwater system rather than the commonly observed mean annual air temperature (MAAT) in sedimentary systems where infiltration is slower thus, providing information on recharge sources and potential flow paths. Here we report noble gas results from the basal aquifer, springs, and rainwater in Maui to explore the potential for noble gases in characterizing this type of complex fractured hydrologic systems. Most samples display a mass-dependent depletion pattern with respect to surface conditions consistent with previous observations both in the Galapagos Islands and Michigan rainwater. Basal aquifer and rainwater noble gas patterns are similar and suggest direct, fast recharge from precipitation to the basal aquifer. In contrast, multiple springs, representative of perched aquifers, display highly variable noble gas concentrations suggesting recharge from a variety of sources. The distinct noble gas patterns for the basal aquifer and springs suggest that basal and perched aquifers are separate entities. Maui rainwater displays high apparent NGTs, incompatible with surface conditions, pointing either to an origin at high altitudes with the presence of ice or an ice-like source of undetermined origin. Overall, noble gas signatures in Maui reflect the source of recharge rather than the expected altitude/temperature relationship commonly observed in sedimentary systems.

  18. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    Science.gov (United States)

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-02-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2-), hydroxyl radical (HO.), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO. (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.

  19. Noble metal emissions. Final presentation, Hanover, October 17/18, 1996; Edelmetall - Emissionen. Abschlusspraesentation, Hannover, 17. und 18. Oktober 1996. Kurzfassung der Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, D. [comp.

    1997-12-31

    The discussion concerning noble metal emissions, in particular platinum emissions, and their environmental effects, started with the introduction of catalytical cleaning of gasoline engine exhaust. The Research Association for Noble Metal Emissions (Forschungsverbund Edelmetallemissionen) ws founded for the purpose of investigating problems concerning the types and volumes of noble metal emissions as well as their toxicological and allergological potential. In order to make valid statements on physiological and toxicological effects, it was necessary to identify the chemical forms of platinum and to develop powerful methods of analysis. Investigations of platinum concentrations in environmental samples suggest a 10 percent bioavailability. [Deutsch] Mit der Einfuehrung der katalytischen Abgasreinigung von Ottomotoren begann gleichzeitig die Diskussion ueber moegliche Emissionen von Edelmetallen, insbesondere von Platin, sowie ueber ihre eventuell moeglichen negativen Wirkungen in der Umwelt. Zur Erforschung der Fragestellungen zur Art und Menge der emittierten Platinmetalle, ihrer Aufnahme und dem Uebergang in den Nahrungskreislauf, sowie zu ihrem toxikologischen und allergologischen Potential wurde der Forschungsverbund ``Edelmetallemissionen`` gegruendet. Um Aussagen ueber physiologische und toxikologische Einfluesse zu machen, war es notwendig, die chemischen Erscheinungsformen des Platins zu identifizieren und nachweisstarke Analysenmethoden zu entwickeln. Untersuchungen zu Platinkonzentrationen in Umweltproben deuten auf eine Bioverfuegbarkeit von ca. 10 % hin. (ABI)

  20. The MSFC Noble Gas Research Laboratory (MNGRL): A NASA Investigator Facility

    Science.gov (United States)

    Cohen, Barbara

    2016-01-01

    Noble-gas isotopes are a well-established technique for providing detailed temperature-time histories of rocks and meteorites. We have established the MSFC Noble Gas Research Laboratory (MNGRL) at Marshall Space Flight Center to serve as a NASA investigator facility in the wake of the closure of the JSC laboratory formerly run by Don Bogard. The MNGRL lab was constructed to be able to measure all the noble gases, particularly Ar-Ar and I-Xe radioactive dating to find the formation age of rocks and meteorites, and Ar/Kr/Ne cosmic-ray exposure ages to understand when the meteorites were launched from their parent planets.

  1. Review: gas-phase ion chemistry of the noble gases: recent advances and future perspectives.

    Science.gov (United States)

    Grandinetti, Felice

    2011-01-01

    This review article surveys recent experimental and theoretical advances in the gas-phase ion chemistry of the noble gases. Covered issues include the interaction of the noble gases with metal and non-metal cations, the conceivable existence of covalent noble-gas anions, the occurrence of ion-molecule reactions involving singly-charged xenon cations, and the occurrence of bond-forming reactions involving doubly-charged cations. Research themes are also highlighted, that are expected to attract further interest in the future.

  2. Generation of Chemical Commodities and Fertilizer from ISS and ISRU Water Brines Using Combined Ion Exchange and Electrodialysis

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal is to develop a next generation brine recovery and electrolysis grade potable water producing system for Environmental Control and Life Support System...

  3. Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path.

    Science.gov (United States)

    Campodonico, Miguel A; Andrews, Barbara A; Asenjo, Juan A; Palsson, Bernhard O; Feist, Adam M

    2014-09-01

    The production of 75% of the current drug molecules and 35% of all chemicals could be achieved through bioprocessing (Arundel and Sawaya, 2009). To accelerate the transition from a petroleum-based chemical industry to a sustainable bio-based industry, systems metabolic engineering has emerged to computationally design metabolic pathways for chemical production. Although algorithms able to provide specific metabolic interventions and heterologous production pathways are available, a systematic analysis for all possible production routes to commodity chemicals in Escherichia coli is lacking. Furthermore, a pathway prediction algorithm that combines direct integration of genome-scale models at each step of the search to reduce the search space does not exist. Previous work (Feist et al., 2010) performed a model-driven evaluation of the growth-coupled production potential for E. coli to produce multiple native compounds from different feedstocks. In this study, we extended this analysis for non-native compounds by using an integrated approach through heterologous pathway integration and growth-coupled metabolite production design. In addition to integration with genome-scale model integration, the GEM-Path algorithm developed in this work also contains a novel approach to address reaction promiscuity. In total, 245 unique synthetic pathways for 20 large volume compounds were predicted. Host metabolism with these synthetic pathways was then analyzed for feasible growth-coupled production and designs could be identified for 1271 of the 6615 conditions evaluated. This study characterizes the potential for E. coli to produce commodity chemicals, and outlines a generic strain design workflow to design production strains. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Ab initio study of the trapping of polonium on noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Rijpstra, Kim; Van Yperen-De Deyne, Andy [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Ghent (Belgium); Maugeri, Emilio Andrea; Neuhausen, Jörg [Laboratory for Radiochemistry, Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland); Waroquier, Michel; Van Speybroeck, Veronique [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Ghent (Belgium); Cottenier, Stefaan, E-mail: stefaan.cottenier@ugent.be [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Ghent (Belgium); Department of Materials Science and Engineering, Ghent University, Technologiepark 903, 9052 Ghent (Belgium)

    2016-04-15

    In the future MYRRHA reactor, lead bismuth eutectic (LBE) will be used both as coolant and as spallation target. Due to the high neutron flux a small fraction of the bismuth will transmute to radiotoxic {sup 210}Po. Part of this radiotoxic element will evaporate into the gas above the coolant. Extracting it from the gas phase is necessary to ensure a safe handling of the reactor. An issue in the development of suitable filters is the lack of accurate knowledge on the chemical interaction between a candidate filter material and either elemental polonium or polonium containing molecules. Experimental work on this topic is complicated by the high radiotoxicity of polonium. Therefore, we present in this paper a first-principles study on the adsorption of polonium on noble metals as filter materials. The adsorption of monoatomic Po is considered on the candidate filter materials palladium, platinum, silver and gold. The case of the gold filter is looked upon in more detail by examining how bismuth pollution affects its capability to capture polonium and by studying the adsorption of the heavy diatomic molecules Po{sub 2}, PoBi and PoPb on this gold filter.

  5. Ab initio study of the trapping of polonium on noble metals

    Science.gov (United States)

    Rijpstra, Kim; Van Yperen-De Deyne, Andy; Maugeri, Emilio Andrea; Neuhausen, Jörg; Waroquier, Michel; Van Speybroeck, Veronique; Cottenier, Stefaan

    2016-04-01

    In the future MYRRHA reactor, lead bismuth eutectic (LBE) will be used both as coolant and as spallation target. Due to the high neutron flux a small fraction of the bismuth will transmute to radiotoxic 210Po. Part of this radiotoxic element will evaporate into the gas above the coolant. Extracting it from the gas phase is necessary to ensure a safe handling of the reactor. An issue in the development of suitable filters is the lack of accurate knowledge on the chemical interaction between a candidate filter material and either elemental polonium or polonium containing molecules. Experimental work on this topic is complicated by the high radiotoxicity of polonium. Therefore, we present in this paper a first-principles study on the adsorption of polonium on noble metals as filter materials. The adsorption of monoatomic Po is considered on the candidate filter materials palladium, platinum, silver and gold. The case of the gold filter is looked upon in more detail by examining how bismuth pollution affects its capability to capture polonium and by studying the adsorption of the heavy diatomic molecules Po2, PoBi and PoPb on this gold filter.

  6. Generation of dissolved organic matter and byproducts from activated sludge during contact with sodium hypochlorite and its implications to on-line chemical cleaning in MBR.

    Science.gov (United States)

    Cai, Weiwei; Liu, Jiaqi; Zhang, Xiangru; Ng, Wun Jern; Liu, Yu

    2016-11-01

    On-line chemical cleaning of membranes with sodium hypochlorite (NaClO) has been commonly employed for maintaining a constant permeability of membrane bioreactor (MBR) due to its simple and efficient operation. However, activated sludge is inevitably exposed to NaClO during this cleaning process. In spite of the broad applications of on-line chemical cleaning in MBR such as chemical cleaning-in-place (CIP) and chemical enhanced backwash (CEB), little information is currently available for the release of emerging dissolved organic matter (DOM) and byproducts from this prevalent practice. Therefore, in this study, activated sludge suspended in a phosphate buffered saline solution was exposed to different doses of NaClO in order to determine the generation of potential DOM and byproducts. The results showed the occurrence of significant DOM release (up to 24.7 mg/L as dissolved organic carbon) after exposure to NaClO for 30 min. The dominant components of the released DOM were characterized to be humic acid-like as well as protein-like substances by using an excitation-emission matrix fluorescence spectrophotometer. Furthermore, after the contact of activated sludge with NaClO, 19 kinds of chlorinated and brominated byproducts were identified by ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, eight of which were confirmed and characterized with standard compounds. Many byproducts were found to be halogenated aromatic compounds, including halopyrroles and halo(hydro)benzoquinones, which had been reported to be significantly more toxic than the halogenated aliphatic ones. Consequently, this study offers new insights into the practice of on-line chemical cleaning, and opens up a window to re-examine the current operation of MBR by looking into the generation of micropollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Al-ShaikhAli, Anaam H.

    2016-11-30

    Liquid organic chemical hydride is a promising candidate for hydrogen storage and transport. Methylcyclohexane (MCH) to toluene (TOL) cycle has been considered as one of the feasible hydrogen carrier systems, but selective dehydrogenation of MCH to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based catalysts. Mono-metallic Ni based catalyst is a well-known dehydrogenation catalyst, but the major drawback with Ni is its hydrogenolysis activity to cleave C-C bonds, which leads to inferior selectivity towards dehydrogenation of MCH to TOL. This study elucidate addition of the second metal to Ni based catalyst to improve the TOL selectivity. Herein, ubiquitous bi-metallic nanoparticles catalysts were investigated including (Ni–M, M: Ag, Zn, Sn or In) based catalysts. Among the catalysts investigated, the high TOL selectivity (> 99%) at low conversions was achieved effectively using the supported NiZn catalyst under flow of excess H2. In this work, a combined study of experimental and computational approaches was conducted to determine the main role of Zn over Ni based catalyst in promoting the TOL selectivity. A kinetic study using mono- and bimetallic Ni based catalysts was conducted to elucidate reaction mechanism and site requirement for MCH dehydrogenation reaction. The impact of different reaction conditions (feed compositions, temperature, space velocity and stability) and catalyst properties were evaluated. This study elucidates a distinctive mechanism of MCH dehydrogenation to TOL reaction over the Ni-based catalysts. Distinctive from Pt catalyst, a nearly positive half order with respect to H2 pressure was obtained for mono- and bi-metallic Ni based catalysts. This kinetic data was consistent with rate determining step as (somewhat paradoxically) hydrogenation

  8. Microstructures, mineral chemistry, noble gases and nitrogen in the recent fall, Bhuka iron (IAB) meteorite

    Science.gov (United States)

    Murty, S. V. S.; Ranjith, P. M.; Ray, Dwijesh; Ghosh, S.; Chattopadhyay, Basab; Shrivastava, K. L.

    2016-10-01

    We report some chemical, petrological and isotopic studies of the Bhuka iron meteorite that fell in Rajasthan, India in 2005. Numerous silicate and graphite inclusions are visible on the surface of the hand specimen. In the polished and etched surface studied, irregular patches of graphite are found as the most dominant inclusion and commonly associated with pure corundum (95 wt% Al2O3), spinel, feldspar and Si-rich phases. Apart from typical lamellar intergrowth with kamacite (i.e. the Widmänstatten pattern), taenites are also commonly found to occur as a rim of the graphite inclusions. P-rich (up to 10 wt%) taenites are also found locally within the recrystallised kamacite matrix. Based on mineralogy, texture and bulk composition, Bhuka resembles the low-Ni IAB subgroup (ungrouped). Noble gas isotope studies suggest He, Ne and Ar are mostly of cosmogenic origin, while Kr and Xe are a mixture of cosmogenic, radiogenic and trapped components. A pre-atmospheric radius of 10±1 cm and a cosmic ray exposure age of 346±52 Ma are derived based on depth dependant (3He/4He)c and 38Arc respectively, as per the production systematics of cosmogenic noble gas isotopes (Ammon et al., 2009). Cosmogenic 83Kr and 126Xe yield production rates of 12 and 0.335 (in 10-15ccSTP/g Ma) for 83Kr and 126Xe respectively. Presence of trapped Kr and Xe, with (84Kr/132Xe)t=2 and radiogenic 129Xe=120×10-12 ccSTP/g are due to presence of graphite/silicate inclusions in the analysed sample. Over 150% excess 131Xec than expected from spallation suggests contribution from (n,ɤ) reactions from Ba from inclusions and suggests irradiation of pre-atmospheric object in a larger body, indicative of complex irradiation. Trapped N of 24 ppm, with δ15N=-10.7±0.8‰ observed in Bhuka, is heavier than the range observed hither to in IAB irons.

  9. Attosecond time delays in the photoionization of noble gas atoms studied in TDLDA

    International Nuclear Information System (INIS)

    Magrakvelidze, Maia; Chakraborty, Himadri; Madjet, Mohamed

    2015-01-01

    We perform time-dependent local density functional calculations of the quantum phase and time delays of valence photoionization of noble gas atoms. Results may be accessed by XUV-IR interferometric metrology. (paper)

  10. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gardner, William Payton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of Montana, Missoula, MT (United States)

    2015-09-01

    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.

  11. The U.S. Army's Initial Impressions of Operations Enduring Freedom and Noble Eagle

    National Research Council Canada - National Science Library

    Crane, Conrad

    2002-01-01

    .... The participants initial impressions focused on Operation Enduring Freedom and Noble Eagle. They highlighted rapid and successful responses at home and in distant theaters from Afghanistan to the Philippines...

  12. The efficacy of noble metal alloy urinary catheters in reducing catheter-associated urinary tract infection

    Directory of Open Access Journals (Sweden)

    Alanood Ahmed Aljohi

    2016-01-01

    Results: A 90% relative risk reduction in the rate of CAUTI was observed with the noble metal alloy catheter compared to the standard catheter (10 vs. 1 cases, P = 0.006. When considering both catheter-associated asymptomatic bacteriuria and CAUTI, the relative risk reduction was 83% (12 vs. 2 cases, P = 0.005. In addition to CAUTI, the risk of acquiring secondary bacteremia was lower (100% for the patients using noble metal alloy catheters (3 cases in the standard group vs. 0 case in the noble metal alloy catheter group, P = 0.24. No adverse events related to any of the used catheters were recorded. Conclusion: Results from this study revealed that noble metal alloy catheters are safe to use and significantly reduce CAUTI rate in ICU patients after 3 days of use.

  13. Exploring methods for compositional and particle size analysis of noble metal nanoparticles in Daphnia manga

    NARCIS (Netherlands)

    Krystek, P.W.; Brandsma, S.H.; Leonards, P.E.G.; de Boer, J.

    2016-01-01

    The identification and quantification of the bioaccumulation of noble metal engineered nanoparticles (ENPs) by aquatic organisms is of great relevance to understand the exposure and potential toxicity mechanisms of nanoscale materials. Four analytical scenarios were investigated in relation to

  14. An Analytical Framework for Studying Small-Number Effects in Catalytic Reaction Networks: A Probability Generating Function Approach to Chemical Master Equations.

    Science.gov (United States)

    Nakagawa, Masaki; Togashi, Yuichi

    2016-01-01

    Cell activities primarily depend on chemical reactions, especially those mediated by enzymes, and this has led to these activities being modeled as catalytic reaction networks. Although deterministic ordinary differential equations of concentrations (rate equations) have been widely used for modeling purposes in the field of systems biology, it has been pointed out that these catalytic reaction networks may behave in a way that is qualitatively different from such deterministic representation when the number of molecules for certain chemical species in the system is small. Apart from this, representing these phenomena by simple binary (on/off) systems that omit the quantities would also not be feasible. As recent experiments have revealed the existence of rare chemical species in cells, the importance of being able to model potential small-number phenomena is being recognized. However, most preceding studies were based on numerical simulations, and theoretical frameworks to analyze these phenomena have not been sufficiently developed. Motivated by the small-number issue, this work aimed to develop an analytical framework for the chemical master equation describing the distributional behavior of catalytic reaction networks. For simplicity, we considered networks consisting of two-body catalytic reactions. We used the probability generating function method to obtain the steady-state solutions of the chemical master equation without specifying the parameters. We obtained the time evolution equations of the first- and second-order moments of concentrations, and the steady-state analytical solution of the chemical master equation under certain conditions. These results led to the rank conservation law, the connecting state to the winner-takes-all state, and analysis of 2-molecules M-species systems. A possible interpretation of the theoretical conclusion for actual biochemical pathways is also discussed.

  15. Thermal analysis experiment for elucidating sodium-water chemical reaction mechanism in steam generator of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki

    2012-01-01

    For the purpose of elucidating the mechanism of the sodium-water surface reaction in a steam generator of sodium-cooled fast reactors, kinetic study of the sodium (Na)-sodium hydroxide (NaOH) reaction has been carried out by using Differential Thermal Analysis (DTA) technique. The parameters, including melting points of Na and NaOH, phase transition temperature of NaOH, Na-NaOH reaction temperature, and decomposition temperature of sodium hydride (NaH) have been identified from DTA curves. Based on the measured reaction temperature, rate constant of sodium monoxide (Na 2 O) generation was obtained. Thermal analysis results indicated that Na 2 O generation at the secondary overall reaction should be considered during the sodium-water reaction. (author)

  16. A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles

    KAUST Repository

    Jin, Zhao

    2012-04-26

    Catalytic microspheres: A general approach is demonstrated for the facile preparation of mesoporous metal oxide microspheres loaded with noble metal nanoparticles (see TEM image in the picture). Among 18 oxide/noble metal catalysts, TiO 2/0.1 mol Pd microspheres showed the highest turnover frequency in NaBH 4 reduction of 4-nitrophenol (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Spectral study of the luminescence produced by the excitation of noble gases by alpha-rays

    International Nuclear Information System (INIS)

    Koch, L.

    1960-01-01

    Luminescence spectra of the noble gases He, A, Kr and Xe are studied under excitation by α rays. It is shown that the energy is transferred from excited levels of these gases to Hg and N 2 impurities for impurity concentrations respectively less than 10 6 and 10 4 . These results confirm previous measurements concerning the period of luminescence and its variations versus nitrogen concentration in noble gases. (author) [fr

  18. Experimental studies and model analysis of noble gas fractionation in low-permeability porous media

    Science.gov (United States)

    Ding, Xin; Mack Kennedy, B.; Molins, Sergi; Kneafsey, Timothy; Evans, William C.

    2017-05-01

    Gas flow through the vadose zone from sources at depth involves fractionation effects that can obscure the nature of transport and even the identity of the source. Transport processes are particularly complex in low permeability media but as shown in this study, can be elucidated by measuring the atmospheric noble gases. A series of laboratory column experiments was conducted to evaluate the movement of noble gas from the atmosphere into soil in the presence of a net efflux of CO2, a process that leads to fractionation of the noble gases from their atmospheric abundance ratios. The column packings were designed to simulate natural sedimentary deposition by interlayering low permeability ceramic plates and high permeability beach sand. Gas samples were collected at different depths at CO2 fluxes high enough to cause extreme fractionation of the noble gases (4He/36Ar > 20 times the air ratio). The experimental noble gas fractionation-depth profiles were in good agreement with those predicted by the dusty gas (DG) model, demonstrating the applicability of the DG model across a broad spectrum of environmental conditions. A governing equation based on the dusty gas model was developed to specifically describe noble gas fractionation at each depth that is controlled by the binary diffusion coefficient, Knudsen diffusion coefficient and the ratio of total advection flux to total flux. Finally, the governing equation was used to derive the noble gas fractionation pattern and illustrate how it is influenced by soil CO2 flux, sedimentary sequence, thickness of each sedimentary layer and each layer's physical parameters. Three potential applications of noble gas fractionation are provided: evaluating soil attributes in the path of gas flow from a source at depth to the atmosphere, testing leakage through low permeability barriers used to isolate buried waste, and tracking biological methanogenesis and methane oxidation associated with hydrocarbon degradation.

  19. CO oxidation studies over supported noble metal catalysts and single crystals: A review

    Science.gov (United States)

    Boecker, Dirk; Gonzalez, Richard D.

    1987-01-01

    The catalytic oxidation of CO over noble metal catalysts is reviewed. Results obtained on supported noble metal catalysts and single crystals both at high pressures and under UHV conditions are compared. The underlying causes which result in surface instabilities and multiple steady-state oscillations are considered, in particular, the occurrence of hot spots. CO islands of reactivity, surface oxide formation and phase transformations under oscillatory conditions are discussed.

  20. Noble metal alloys for metal-ceramic restorations.

    Science.gov (United States)

    Anusavice, K J

    1985-10-01

    A review of the comparative characteristics and properties of noble metal alloys used for metal-ceramic restorations has been presented. Selection of an alloy for one's practice should be based on long-term clinical data, physical properties, esthetic potential, and laboratory data on metal-ceramic bond strength and thermal compatibility with commercial dental porcelains. Although gold-based alloys, such as the Au-Pt-Pd, Au-Pd-Ag, and Au-Pd classes, may appear to be costly compared with the palladium-based alloys, they have clearly established their clinical integrity and acceptability over an extended period of time. Other than the relatively low sag resistance of the high gold-low silver content alloys and the potential thermal incompatibility with some commercial porcelain products, few clinical failures have been observed. The palladium-based alloys are less costly than the gold-based alloys. Palladium-silver alloys require extra precautions to minimize porcelain discoloration. Palladium-copper and palladium-cobalt alloys may also cause porcelain discoloration, as copper and cobalt are used as colorants in glasses. The palladium-cobalt alloys are least susceptible to high-temperature creep compared with all classes of noble metals. Nevertheless, insufficient clinical data exist to advocate the general use of the palladium-copper and palladium-cobalt alloys at the present time. One should base the selection and use of these alloys in part on their ability to meet the requirements of the ADA Acceptance Program. A list of acceptable or provisionally acceptable alloys is available from the American Dental Association and is published annually in the Journal of the American Dental Association. Dentists have the legal and ethical responsibility for selection of alloys used for cast restorations. This responsibility should not be delegated to the dental laboratory technician. It is advisable to discuss the criteria for selection of an alloy with the technician and the

  1. Formation of SiO2 film by chemical vapor deposition enhanced by atomic species extracted from a surface-wave generated plasma

    Science.gov (United States)

    Okada, H.; Baba, M.; Furukawa, M.; Yamane, K.; Sekiguchi, H.; Wakahara, A.

    2017-01-01

    In this study, we have investigated SiO2 deposition by chemical vapor deposition enhanced by neutral oxygen at the ground state extracted from a surface-wave generated plasma proposed by our group at 350°C using hexamethyldisilane (HMDS) as a precursor. Good properties of deposited SiO2 having refractive index of n = 1.45-1.46 have been confirmed by ellipsometry. Stoichiometric SiO2 was also confirmed by X-ray photoelectron spectroscopy (XPS) with single peak of Si 2p and O 1s. High quality SiO2 film deposition was also confirmed by Fourier transform infrared spectrometer (FT-IR) analysis indicating formation of chemical bonding in SiO2 with no unwanted bonds due to -OH or -CH3 groups.

  2. Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate - Metabolic aspects, challenges and possibilities: An overview.

    Science.gov (United States)

    Vivek, Narisetty; Sindhu, Raveendran; Madhavan, Aravind; Anju, Alphonsa Jose; Castro, Eulogio; Faraco, Vincenza; Pandey, Ashok; Binod, Parameswaran

    2017-09-01

    One of the major ecological concerns associated with biodiesel production is the generation of waste/crude glycerol during the trans-esterification process. Purification of this crude glycerol is not economically viable. In this context, the development of an efficient and economically viable strategy would be biotransformation reactions converting the biodiesel derived crude glycerol into value added chemicals. Hence the process ensures the sustainability and waste management in biodiesel industry, paving a path to integrated biorefineries. This review addresses a waste to wealth approach for utilization of crude glycerol in the production of value added chemicals, current trends, challenges, future perspectives, metabolic approaches and the genetic tools developed for the improved synthesis over wild type microorganisms were described. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Steady-state ozone concentration in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O 2 and noble gas-O 2 -SF 6 mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10 15 eV.cm -3 .s -1 . The experimental apparatus and proceedure were previously described. The experimentally observed stead-state ozone concentrations in noble gas-O 2 discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O 2 -SF 6 mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF 6 addition. This observation was contrary to only a small increase observed after SF 6 addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O 2 discharges

  4. Steady-state ozone concentrations in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O/sub 2/ and noble gas-o/sub 2/-SF/sub 6/ mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10/sup 15/ eV . cm/sup -3/ . s/sup -1/. The experimental apparatus and procedure were previously described. The experimentally observed steady-state ozone concentrations in noble gas-O/sub 2/ discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O/sub 2/-SF/sub 6/ mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF/sub 6/ addition. This observation was contrary to only a small increase observed after SF/sub 6/ addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O/sub 2/ discharges

  5. Biologically activated noble metal alloys at the nanoscale: for lithium ion battery anodes.

    Science.gov (United States)

    Lee, Yun Jung; Lee, Youjin; Oh, Dahyun; Chen, Tiffany; Ceder, Gerbrand; Belcher, Angela M

    2010-07-14

    We report the synthesis and electrochemical activity of gold and silver noble metals and their alloy nanowires using multiple virus clones as anode materials for lithium ion batteries. Using two clones, one for specificity (p8#9 virus) and one versatility (E4 virus), noble metal nanowires of high-aspect ratio with diameters below 50 nm were successfully synthesized with control over particle sizes, morphologies, and compositions. The biologically derived noble metal alloy nanowires showed electrochemical activities toward lithium even when the electrodes were prepared from bulk powder forms. The improvement in capacity retention was accomplished by alloy formation and surface stabilization. Although the cost of noble metals renders them a less ideal choice for lithium ion batteries, these noble metal/alloy nanowires serve as great model systems to study electrochemically induced transformation at the nanoscale. Given the demonstration of the electrochemical activity of noble metal alloy nanowires with various compositions, the M13 biological toolkit extended its utility for the study on the basic electrochemical property of materials.

  6. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  7. Physical and chemical characteristics of fluorinel/sodium calcine generated during 30 cm Pilot-Plant Run 17

    International Nuclear Information System (INIS)

    Brewer, K.N.; Kessinger, G.F.; Littleton, L.L.; Olson, A.L.

    1993-07-01

    The 30 centimeter (cm) pilot plant calciner Run 17, of March 9, 1987, was performed to study the calcination of fluroinel-sodium blended waste blended at the ratio 3.5:1 fluorinel to sodium, respectively. The product of the run was analyzed by a variety of analytical techniques that included X-ray powder diffraction (XRD), inductively coupled plasma spectroscopy (ICP), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) to deduce physical and chemical characteristics. The analytical data, as well as data analyses and conclusions drawn from the data, are presented

  8. Experiments on interactions between zirconium-containing melt and water (ZREX). Hydrogen generation and chemical augmentation of energetics

    Energy Technology Data Exchange (ETDEWEB)

    Cho, D.H.; Armstrong, D.R.; Gunther, W.H. [Argonne National Lab., IL (United States); Basu, S.

    1998-01-01

    The results of the first data series of experiments on interactions between zirconium-containing melt and water are described. These experiments involved dropping 1-kg batches of pure zirconium or zirconium-zirconium dioxide mixture melt into a column of water. A total of nine tests were conducted, including four with pure zirconium melt and five with Zr-ZrO{sub 2} mixture melt. Explosions took place only in those tests which were externally triggered. While the extent of zirconium oxidation in the triggered experiments was quite extensive, the estimated explosion energetics were found to be very small compared to the combined thermal and chemical energy available. (author)

  9. Production yields of noble-gas isotopes from ISOLDE UC$_{x}$/graphite targets

    CERN Document Server

    Bergmann, U C; Catherall, R; Cederkäll, J; Diget, C A; Fraile-Prieto, L M; Franchoo, S; Fynbo, H O U; Gausemel, H; Georg, U; Giles, T; Hagebø, E; Jeppesen, H B; Jonsson, O C; Köster, U; Lettry, Jacques; Nilsson, T; Peräjärvi, K; Ravn, H L; Riisager, K; Weissman, L; Äystö, J

    2003-01-01

    Yields of He, Ne, Ar, Kr and Xe isotopic chains were measured from UC$_{x}$/graphite and ThC$_{x}$/graphite targets at the PSB-ISOLDE facility at CERN using isobaric selectivity achieved by the combination of a plasma-discharge ion source with a water-cooled transfer line. %The measured half-lives allowed %to calculate the decay losses of neutron-rich isotopes in the %target and ion-source system, and thus to obtain information on the in-target %productions from the measured yields. The delay times measured for a UC$_x$/graphite target allow for an extrapolation to the expected yields of very neutron-rich noble gas isotopes, in particular for the ``NuPECC reference elements'' Ar and Kr, at the next-generation radioactive ion-beam facility EURISOL. \\end{abstract} \\begin{keyword} % keywords here, in the form: keyword \\sep keyword radioactive ion beams \\sep release \\sep ion yields \\sep ISOL (Isotope Separation On-Line) \\sep uranium and thorium carbide targets. % PACS codes here, in the form: \\PACS code \\sep code...

  10. Noble metal, oxide and chalcogenide-based nanomaterials from scalable phototrophic culture systems.

    Science.gov (United States)

    Dahoumane, Si Amar; Wujcik, Evan K; Jeffryes, Clayton

    2016-12-01

    Phototrophic cell or tissue cultures can produce nanostructured noble metals, oxides and chalcogenides at ambient temperatures and pressures in an aqueous environment and without the need for potentially toxic solvents or the generation of dangerous waste products. These "green" synthesized nanobiomaterials can be used to fabricate biosensors and bio-reporting tools, theranostic vehicles, medical imaging agents, as well as tissue engineering scaffolds and biomaterials. While successful at the lab and experimental scales, significant barriers still inhibit the development of higher capacity processes. While scalability issues in traditional algal bioprocess engineering are well known, such as the controlled delivery of photons and gas-exchange, the large-scale algal synthesis of nanomaterials introduces additional parameters to be understood, i.e., nanoparticle (NP) formation kinetics and mechanisms, biological transport of metal cations and the effect of environmental conditions on the final form of the NPs. Only after a clear understanding of the kinetics and mechanisms can the strain selection, photobioreactor type, medium pH and ionic strength, mean light intensity and other relevant parameters be specified for an optimal bioprocess. To this end, this mini-review will examine the current best practices and understanding of these phenomena to establish a path forward for this technology. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Catalytic conversion of CHx and CO2 on non-noble metallic impurities in graphene.

    Science.gov (United States)

    Tang, Yanan; Liu, Zhiyong; Chen, Weiguang; Ma, Dongwei; Chang, Shanshan; Dai, Xianqi

    2016-06-22

    Density functional theory (DFT) was applied to investigate the geometric, electronic, and magnetic properties of CHx (x = 0, 1, 2, 3, 4) species on non-noble metal embedded graphene (NNM-graphene). It was found that the different stabilities of CHx species can modify the electronic structures and magnetic properties of NNM-graphene systems. The carbonaceous reforming reactions include conversion of CHx (x = 0, 1, 2 and 3) species by hydrogen molecules (H2) to form CHx+2 species or oxidation of C atoms by oxygen molecules to form CO2. In the hydrogenation reactions, deposited C atoms can be converted easily into CHx species overcoming small energy barriers. In comparison, coadsorption of C and O2 to generate CO2 encounters relatively larger energy barriers on the NNM-graphene. Hence, the coadsorption of CHx and H2 as the starting state is energetically more favorable and formation of CHx species can reduce amounts of carbon deposition. Among the NNM-graphene substrates studied, moderate adsorption energies and low reaction barriers of CHx species are more likely to occur on the Co-graphene surface, thus the hydrogenation reaction is able to inhibit carbon deposition on the NNM-graphene surface while maintaining high activity.

  12. Grains of Nonferrous and Noble Metals in Iron-Manganese Formations and Igneous Rocks of Submarine Elevations of the Sea of Japan

    Science.gov (United States)

    Kolesnik, O. N.; Astakhova, N. V.

    2018-01-01

    Iron-manganese formations and igneous rocks of submarine elevations in the Sea of Japan contain overlapping mineral phases (grains) with quite identical morphology, localization, and chemical composition. Most of the grains conform to oxides, intermetallic compounds, native elements, sulfides, and sulfates in terms of the set of nonferrous, noble, and certain other metals (Cu, Zn, Sn, Pb, Ni, Mo, Ag, Pd, and Pt). The main conclusion that postvolcanic hydrothermal fluids are the key sources of metals is based upon a comparison of the data of electron microprobe analysis of iron-manganese formations and igneous rocks dredged at the same submarine elevations in the Sea of Japan.

  13. Delayed Higher-Order Optical Nonlinearities in Noble Gases

    Science.gov (United States)

    Tarazkar, Maryam; Romanov, Dmitri; Levis, Robert

    2014-05-01

    The role of higher-order Kerr effect (HOKE) in femtosecond laser filamentation is currently at the center of a controversy, as alleged crossover from positive to negative nonlinear refractive index at higher intensities was proposed to cause filament stabilization. Experimental evidence of HOKE crossover or lack thereof is being hotly debated. Motivated by this debate, we report the frequency-dependent nonlinear refractive index coefficients n2 and n4 for a series of atmospheric-pressure noble gases: helium, neon, argon, krypton, and xenon. The corresponding atomic hyperpolarizability coefficients are obtained via auxiliary static electric field approach developed on the basis of ab initio calculations implemented in Dalton program and performed at the CCSD level of theory with t-Aug-cc-PV5Z basis set. The n4 index is obtained using the relations between the degenerate six-wave mixing coefficient and some other frequency-dependent second hyperpolarizability coefficients, which can be calculated on the basis of n2via the auxiliary field approach. For all the investigated gases, the n4 indices are found to be positive over the wavelength range 300 nm-1500 nm. This result runs counter to the HOKE crossover hypothesis. The calculated n4 indices demonstrate considerable temporal dispersion, which progressively increases from helium to xenon. This feature implies delayed nonlinearity and calls for modifications in current theoretical models of filamentation process. We gratefully acknowledge financial support through AFOSR MURI Grant No. FA9550-10-1-0561.

  14. Anomalous trapping of noble gases during sample crushing

    Science.gov (United States)

    Cox, S. E.; Miller, H.; Farley, K. A.; Hofmann, F.

    2017-12-01

    Fine-grained mineral samples are commonly analyzed for noble gas composition. Many coarse minerals contain inclusions that require that the samples be crushed and purified before analysis. Other samples are crushed because fine-grained samples may be degassed at lower temperature. And many rocks lack coarse mineral grains entirely. Protin et al. (2016) showed that crushed fine-grained olivine absorbs He from the atmosphere and retains it under heating to at least 900 degrees. We show that the act of crushing itself is responsible for the vast majority of this trapping. Samples crushed in the presence of pure He retain 25 times as much He as samples crushed in vacuum and immediately exposed to pure helium. We tested several ways to mitigate this problem, including acid leaching and crushing under a liquid. We find that crushing samples under water is the simplest, most effective way to avoid contamination with He during crushing. This approach resulted in no significant contamination of crushed fine-grained olivine, even when the submerged crushing was conducted under a headspace of pure He. Protin, M. (2016), et al. GCA 179, 76-88.

  15. Laser-assisted biosynthesis for noble nanoparticles production

    Science.gov (United States)

    Kukhtarev, Tatiana; Edwards, Vernessa; Kukhtareva, Nickolai; Moses, Sherita

    2014-08-01

    Extracellular Biosynthesis technique (EBS) for nanoparticles production has attracted a lot of attention as an environmentally friendly and an inexpensive methodology. Our recent research was focused on the rapid approach of the green synthesis method and the reduction of the homogeneous size distribution of nanoparticles using pulse laser application. Noble nanoparticles (NNPs) were produced using various ethanol and water plant extracts. The plants were chosen based on their biomedical applications. The plants we used were Magnolia grandiflora, Geranium, Aloe `tingtinkie', Aloe barbadensis (Aloe Vera), Eucalyptus angophoroides, Sansevieria trifasciata, Impatiens scapiflora. Water and ethanol extract, were used as reducing agents to produce the nanoparticles. The reaction process was monitored using a UV-Visible spectroscopy. NNPs were characterized by Fourier Transfer Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM), and the Dynamic Light Scattering technique (DLS). During the pulse laser Nd-YAG illumination (λ=1064nm, 532nm, PE= 450mJ, 200mJ, 10 min) the blue shift of the surface plasmon resonance absorption peak was observed from ~424nm to 403nm for silver NP; and from ~530nm to 520 nm for gold NPs. In addition, NNPs solution after Nd-YAG illumination was characterized by the narrowing of the surface plasmon absorption resonance band, which corresponds to monodispersed NNPS distribution. FTIR, TEM, DLS, Zeta potential results demonstrated that NNPs were surrounded by biological molecules, which naturally stabilized nanosolutions for months. Cytotoxicity investigation of biosynthesized NNPs is in progress.

  16. Framing the performance of heat absorption/generation and thermal radiation in chemically reactive Darcy-Forchheimer flow

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available The present work aims to report the consequences of heterogeneous-homogeneous reactions in Darcy-Forchheimer flow of Casson material bounded by a nonlinear stretching sheet of variable thickness. Nonlinear stretched surface with variable thickness is the main agent for MHD Darcy-Forchheimer flow. Impact of thermal radiation and non-uniform heat absorption/generation are also considered. Flow in porous space is characterized by Darcy-Forchheimer flow. It is assumed that the homogeneous process in ambient fluid is governed by first order kinetics and the heterogeneous process on the wall surface is given by isothermal cubic autocatalator kinetics. The governing nonlinear ordinary differential equations are solved numerically. Effects of physical variables such as thickness, Hartman number, inertia and porous, radiation, Casson, heat absorption/generation and homogeneous-heterogeneous reactions are investigated. The variations of drag force (skin friction and heat transfer rate (Nusselt numberfor different interesting variables are plotted and discussed. Keywords: Casson fluid, Variable sheet thickness, Darcy-Forchheimer flow, Homogeneous-heterogeneous reactions, Heat generation/absorption, Thermal radiation

  17. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals.

    Science.gov (United States)

    Kobayashi, Hisataka; Longmire, Michelle R; Ogawa, Mikako; Choyke, Peter L

    2011-09-01

    In recent years, numerous in vivo molecular imaging probes have been developed. As a consequence, much has been published on the design and synthesis of molecular imaging probes focusing on each modality, each type of material, or each target disease. More recently, second generation molecular imaging probes with unique, multi-functional, or multiplexed characteristics have been designed. This critical review focuses on (i) molecular imaging using combinations of modalities and signals that employ the full range of the electromagnetic spectra, (ii) optimized chemical design of molecular imaging probes for in vivo kinetics based on biology and physiology across a range of physical sizes, (iii) practical examples of second generation molecular imaging probes designed to extract complementary data from targets using multiple modalities, color, and comprehensive signals (277 references). This journal is © The Royal Society of Chemistry 2011

  18. Chemical reaction and heat generation/absorption aspects in flow of Walters-B nanofluid with Cattaneo-Christov double-diffusion

    Science.gov (United States)

    Hayat, Tasawar; Qayyum, Sajid; Shehzad, Sabir Ali; Alsaedi, Ahmed

    Main objective of present article is to investigate the Cattaneo-Christov double-diffusion theory for the flow of Walters-B nanofluid over an impermeable stretching surface. Cattaneo-Christov double-diffusion definitions are utilized in the energy and concentration expressions. The Cattaneo-Christov diffusion model is introduced in describing the temperature and concentration diffusions with thermal and solutal relaxation times respectively. Heat and mass transfer analysis is carried out with the effects of heat generation/absorption and chemical reaction. Nanofluid model includes Brownian motion and thermophoresis. Dimensional nonlinear equations of momentum, energy and concentration are converted into dimensionless systems by invoking appropriate variables. The series solutions are obtained through homotopy analysis method (HAM). Effect of sundry variables on the velocity, temperature and nanoparticles concentration are scrutinized graphically. Numerical values of skin friction coefficients are computed and analyzed. Temperature field and layer thickness are quite reverse for heat generation/absorption.

  19. Evaluation of methods for pore generation and their influence on physio-chemical properties of a protein based hydrogel.

    Science.gov (United States)

    Bodenberger, Nicholas; Kubiczek, Dennis; Abrosimova, Irina; Scharm, Annika; Kipper, Franziska; Walther, Paul; Rosenau, Frank

    2016-12-01

    Different methods to create and manipulate pore sizes in hydrogel fabrication are available, but systematic studies are normally conducted with hydrogels made of synthetic chemical compounds as backbones. In this study, a hydrogel made of natural and abundant protein in combination with different, well-available techniques was used to produce different architectures within the hydrogel matrix. Pore sizes and distribution are compared and resulting hydrogel properties like swelling ratio, resistance towards external stimuli and enzymatic degradation were investigated. Porous hydrogels were functionalized and two cancer cell lines were successfully adhered onto the material. With simple methods, pores with a radius between 10 and 80 μm and channels of 25 μm radius with a length of several hundreds of μm could be created and analyzed with laser scanning confocal microscopy and electron microscopy respectively. Furthermore, the influence of different methods on swelling ratio, enzymatic degradation and pH and temperature resistance was observed.

  20. Particle Generation by Laser Ablation in Support of Chemical Analysis of High Level Mixed Waste from Plutonium Production Operations

    International Nuclear Information System (INIS)

    Dickinson, J. Thomas; Alexander, Michael L.

    2001-01-01

    Investigate particles produced by laser irradiation and their analysis by Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA/ICP-MS), with a view towards optimizing particle production for analysis of high level waste materials and waste glass. LA/ICP-MS has considerable potential to increase the safety and speed of analysis required for the remediation of high level wastes from cold war plutonium production operations. In some sample types, notably the sodium nitrate-based wastes at Hanford and elsewhere, chemical analysis using typical laser conditions depends strongly on the details of sample history composition in a complex fashion, rendering the results of analysis uncertain. Conversely, waste glass materials appear to be better behaved and require different strategies to optimize analysis

  1. Enhanced electricity generation by triclosan and iron anodes in the three-chambered membrane bio-chemical reactor (TC-MBCR).

    Science.gov (United States)

    Song, Jing; Liu, Lifen; Yang, Fenglin; Ren, Nanqi; Crittenden, John

    2013-11-01

    A three-chambered membrane bio-chemical reactor (TC-MBCR) was developed. The stainless steel membrane modules were used as cathodes and iron plates in the middle chamber served as the anode. The TC-MBCR was able to reduce fouling, remove triclosan (TCS) from a synthetic wastewater treatment and enhance electricity generation by ~60% compared with the cell voltage before TCS addition. The TC-MBCR system generated a relatively stable power output (cell voltage ~0.2V) and the corrosion of iron plates contributed to electricity generation together with microbes on iron anode. The permeation flow from anode to cathode chamber was considered important in electricity generation. In addition, the negatively charged cathode membrane and Fe(2+)/Fe(3+) released by iron plates mitigated membrane fouling by approximately 30%, as compared with the control. The removal of COD and total phosphorus was approximately 99% and 90%. The highest triclosan removal rate reached 97.9%. Copyright © 2013. Published by Elsevier Ltd.

  2. Formulation of chemically reactive foams for the dissolution of oxides polluting the secondary circuits of steam generators

    International Nuclear Information System (INIS)

    Provens, Helene

    1999-01-01

    The fouling of the Steam Generators (SG) secondary circuits, due to oxides deposits like magnetite (Fe 3 O 4 ), induces the degradation of the internal SG equipment, the reduction of the plant power, implying to clean these circuits. This operation made in liquid phase generates an important volume of effluents with an expensive cost of treatment. The use of a reactive foam allows the reduction of this volume by ten. Among the reactive tested, oxalic acid is the most efficient to dissolve a magnetite quantity of 10 g.l -1 , at ambient temperature for 24 hours, as imposed by the industrial wishes. The dissolution is not complete in our experimental conditions and is a complex reaction of autocatalytic type, composed of an acid attack, a reductive step, both followed by a slow diffusion. The surfactants generating the foam, which transport the reactive, are adsorbed on the magnetite but this affects weakly the dissolution. Its effectiveness is evaluated varying the experimental conditions. The wetting properties and the stability of the foam induce erosion and undissolved particles transport capacities, during its circulation into the SG. These particles trapped in the inter-bubble liquid films or carried by the piston effect of the foam bed, can be recovered on filters placed out of the SG. To quantify the transport, the influence of different parameters is studied: the more stable the foam is, the more important the transport is. Innocuousness tests showed that oxalic acid was not harmful for constitutive SG materials, either they were isolated or coupled. The cleaning by oxalic acid causes ferrous oxalates precipitation, representing 10 to 15 pc of the total iron quantity depending on the sample. A rinsing out with a foam containing 1 pc oxalic acid and 5 pc hydrogen peroxide allows the dissolution of these precipitates without corrosion problems. (author) [fr

  3. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry

    Directory of Open Access Journals (Sweden)

    Nayansi Jha

    2017-01-01

    Full Text Available The generation of reactive oxygen and nitrogen species (RONS has been found to occur during inflammatory procedures, during cell ischemia, and in various crucial developmental processes such as cell differentiation and along cell signaling pathways. The most common sources of intracellular RONS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this review, we analyzed the extracellular and intracellular sources of reactive species, their cell signaling pathways, the mechanisms of action, and their positive and negative effects in the dental field. In dentistry, ROS can be found—in lasers, photosensitizers, bleaching agents, cold plasma, and even resin cements, all of which contribute to the generation and prevalence of ROS. Nonthermal plasma has been used as a source of ROS for biomedical applications and has the potential for use with dental stem cells as well. There are different types of dental stem cells, but their therapeutic use remains largely untapped, with the focus currently on only periodontal ligament stem cells. More research is necessary in this area, including studies about ROS mechanisms with dental cells, along with the utilization of reactive species in redox medicine. Such studies will help to provide successful treatment modalities for various diseases.

  4. Validation of 68Ge/68Ga generator processing by chemical purification for routine clinical application of 68Ga-DOTATOC

    International Nuclear Information System (INIS)

    Asti, Mattia; De Pietri, Giovanni; Fraternali, Alessandro; Grassi, Elisa; Sghedoni, Roberto; Fioroni, Federica; Roesch, Frank; Versari, Annibale; Salvo, Diana

    2008-01-01

    Introduction: Imaging of somatostatin receptor expressing tumours has been greatly enhanced by the use of 68 Ga-DOTATOC and PET/CT. Methods: In this work, a purification method for the 68 Ge/ 68 Ga generator eluate and a method to produce 68 Ga-DOTATOC suitable for clinical use were evaluated. The generator eluate was purified and concentrated on a cation-exchange cartridge in HCl/acetone media. The efficacy of this procedure in eliminating metal impurities from the 68 Ga solution was investigated by ICP-MS. The radiotracer quality was evaluated by radio-TLC, GC and γ-ray spectrometry. Results: 68 Ga-DOTATOC preparations (n=33) were carried out with a mean synthesis yield of 59.3±2.8% (not corrected for decay) and a batch activity ranging from 555 to 296 MBq. The radiochemical and radionuclidic purity were >98% and 99.9999%, respectively. With this purification process, >95% of the Fe(III), Zn(II) and Mn(II) were eliminated from the solution. Conclusions: 68 Ga-DOTATOC produced with this method can be efficiently used in nuclear medicine departments for PET evaluations

  5. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry

    Science.gov (United States)

    Jha, Nayansi; Ryu, Jae Jun

    2017-01-01

    The generation of reactive oxygen and nitrogen species (RONS) has been found to occur during inflammatory procedures, during cell ischemia, and in various crucial developmental processes such as cell differentiation and along cell signaling pathways. The most common sources of intracellular RONS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this review, we analyzed the extracellular and intracellular sources of reactive species, their cell signaling pathways, the mechanisms of action, and their positive and negative effects in the dental field. In dentistry, ROS can be found—in lasers, photosensitizers, bleaching agents, cold plasma, and even resin cements, all of which contribute to the generation and prevalence of ROS. Nonthermal plasma has been used as a source of ROS for biomedical applications and has the potential for use with dental stem cells as well. There are different types of dental stem cells, but their therapeutic use remains largely untapped, with the focus currently on only periodontal ligament stem cells. More research is necessary in this area, including studies about ROS mechanisms with dental cells, along with the utilization of reactive species in redox medicine. Such studies will help to provide successful treatment modalities for various diseases. PMID:29204250

  6. FY1998 report on the surveys and studies on developing next generation chemical process technologies; 1998 nendo jisedai kagaku process gijutsu kaihatsu ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For further resource and energy conservation and environmental load reduction, development is necessary on innovative chemical reaction technologies. This paper describes surveys on next generation chemical processes. As non-halogen processes subject to development of new catalysts, new processes were investigated and searching experiments and discussions were given on isocyanate, propylene oxide, and phenol. Technological progress in the C1 chemistry was investigated. Problems in hydrocarbon compound oxidation, hydroxylation, and decomposition by utilizing microorganisms were put into order as application of environmentally friendly technologies. Marine biotechnical possibilities were surveyed. The surveys were given on new processes utilizing the phase transfer catalyst forming a third phase, manufacture of biodegradable plastics, and a novel reaction system combined with self-separation process using molecular assembly. Possibilities were searched on designing a truly simple production system of highly energy saving type. Such fundamental common technologies as structure analysis, property control and reaction engineering were investigated for methods to manufacture functional micro-powder chemical materials. Development was discussed on a system for technology assessment over whole product life cycle to structure a technology assessment basis. (NEDO)

  7. Next generation renal denervation: chemical “perivascular” renal denervation with alcohol using a novel drug infusion catheter

    Energy Technology Data Exchange (ETDEWEB)

    Fischell, Tim A. [Borgess Heart Institute, 1521 Gull Road, Kalamazoo, MI, 49008 (United States); Ablative Solutions, 801 Hermosa Way, Menlo Park, CA, 94025 (United States); Fischell, David R.; Ghazarossian, Vartan E. [Ablative Solutions, 801 Hermosa Way, Menlo Park, CA, 94025 (United States); Vega, Félix [Preclinical Consultation, San Francisco, CA (United States); Ebner, Adrian [Clinics, Ascension (Paraguay)

    2015-06-15

    Background/Purpose: We update the pre-clinical and early clinical results using a novel endovascular approach, to perform chemical renal denervation, via peri-adventitial injection of micro-doses of dehydrated alcohol (ethanol–EtOH). Methods/Materials: A novel, three-needle delivery device (Peregrine™) was used to denervate the renal arteries of adult swine (n = 17) and in a first-in-man feasibility study (n = 18). In the pre-clinical testing EtOH was infused bilaterally with one infusion per renal artery into to the perivascular space, using EtOH doses of 0.3 ml/artery (n = 8), and 0.6 ml/artery (n = 9), and with saline sham control (0.4 ml/artery n = 3). Renal parenchymal norepinephrine (NE) concentration (performed blindly), and safety were the primary endpoints. Data from the first-in-man study (n = 18) to evaluate device performance, safety and peri-procedural pain are reported. Results: In the pre-clinical testing renal function was unchanged at 3-month follow-up. Angiography at 90 days (n = 34 arteries) demonstrated normal appearing renal arteries, unchanged from baseline, and without stenosis or other abnormalities. The reductions in mean renal parenchymal NE reductions at 3 months were 68% and 88% at doses of 0.3 and 0.6 ml, respectively (p < 0.001 vs. controls). In the first-in-man study, there was 100% device success, no complications, a mean treatment time of 4.3 ± 3 minutes/artery, and minimal or no patient discomfort during treatment. Angiography at 6-months showed no evidence of renal artery stenosis, and evidence of a reduction of blood pressure from baseline. Conclusion: Perivascular RDN using micro-doses of alcohol is a promising alternative to energy-based systems to achieve dose-dependent, predictable, safe and essentially painless renal denervation. Further clinical evaluation is warranted. Summary: (For annotated table of contents) This paper describes the preclinical results, in a porcine model, and the early first-in-man results, using

  8. Noble Estate Self-Government in Russia: Between the State and Civil Society

    Directory of Open Access Journals (Sweden)

    Alexander Yu. Morozov

    2016-10-01

    Full Text Available This article is devoted to assessing the role of noble self-governance in the history of Russia. According to Boris Mironov, before the Great Reforms of the 1860s, each noble assembly was a part of civil society. This point of view has aroused objections and debate among Russian historians. Morozov analyzed the historiographical aspect of the problem and demonstrated the impact of the socio-political context of their scientific work on Russian historians. In his opinion, from a purely legal point of view, there is reason to conclude that the autonomy of noble assemblies increased in the first half of the 19th century. However, the question of the extent to which these opportunities were realized in practice has been poorly studied. In the literature, there are examples of effective methods of influencing the government at the noble assemblies despite legal restrictions, as well as examples of noble assemblies that did not restrain the arbitrariness of the crown authority, did not protect their members from its abuse, and did not serve as the expression of public opinion. Mironov’s attempt to place in doubt the fact of the widespread presence of absenteeism seems unconvincing to Morozov. However, he agrees with Mironov that after 1861, the nobility really became a part of civil society, because the activity of noble organizations increased substantially in many different directions, including the political. For almost half a century of its history, the noble corporate organization evolved from a traditional institution into a civil one, which retained many features of traditional organization.

  9. Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component on the Moon

    Science.gov (United States)

    Bekaert, David V.; Avice, Guillaume; Marty, Bernard; Henderson, Bryana; Gudipati, Murthy S.

    2017-12-01

    Despite extensive effort during the last four decades, no clear signature of a lunar indigenous noble gas component has been found. In order to further investigate the possible occurrence of indigenous volatiles in the Moon, we have re-analyzed the noble gas and nitrogen isotopic compositions in three anorthosite samples. Lunar anorthosites 60025, 60215 and 65315 have the lowest exposure duration (∼2 Ma) among Apollo samples and consequently contain only limited cosmogenic (e.g. 124,126Xe) and solar wind (SW) noble gases. Furthermore, anorthosites have negligible contributions of fissiogenic Xe isotopes because of their very low Pu and U contents. As observed in previous studies (Lightner and Marti, 1974; Leich and Niemeyer, 1975), lunar anorthosite Xe presents an isotopic composition very close to that of terrestrial atmospheric Xe, previously attributed to ;anomalous adsorption; of terrestrial Xe after sample return. The presumed atmospheric Xe contamination can only be removed by heating the samples at medium to high temperatures under vacuum, and is therefore different from common adsorption. To test this hypothesis, we monitored the adsorption of Xe onto lunar anorthositic powder using infrared reflectance spectroscopy. A clear shift in the anorthosite IR absorbance peaks is detected when comparing the IR absorbance spectra of the lunar anorthositic powder before and after exposure to a neutral Xe-rich atmosphere. This observation accounts for the chemical bonding (chemisorption) of Xe onto anorthosite, which is stronger than the common physical bonding (physisorption) and could account for the anomalous adsorption of Xe onto lunar samples. Our high precision Xe isotope analyses show slight mass fractionation patterns across 128-136Xe isotopes with systematic deficits in the heavy Xe isotopes (mostly 136Xe and marginally 134Xe) that have not previously been observed. This composition could be the result of mixing between an irreversibly adsorbed terrestrial

  10. Evaluation of methods for pore generation and their influence on physio-chemical properties of a protein based hydrogel

    Directory of Open Access Journals (Sweden)

    Nicholas Bodenberger

    2016-12-01

    Full Text Available Different methods to create and manipulate pore sizes in hydrogel fabrication are available, but systematic studies are normally conducted with hydrogels made of synthetic chemical compounds as backbones. In this study, a hydrogel made of natural and abundant protein in combination with different, well-available techniques was used to produce different architectures within the hydrogel matrix. Pore sizes and distribution are compared and resulting hydrogel properties like swelling ratio, resistance towards external stimuli and enzymatic degradation were investigated. Porous hydrogels were functionalized and two cancer cell lines were successfully adhered onto the material. With simple methods, pores with a radius between 10 and 80 μm and channels of 25 μm radius with a length of several hundreds of μm could be created and analyzed with laser scanning confocal microscopy and electron microscopy respectively. Furthermore, the influence of different methods on swelling ratio, enzymatic degradation and pH and temperature resistance was observed.

  11. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    X. Pan

    2009-06-01

    Full Text Available Photodegradation of secondary organic aerosol (SOA prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone (0.1–300 ppm and D-limonene (0.02–3 ppm concentrations used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA prepared in these experiments. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  12. Mid-IR quantum cascade lasers as an enabling technology for a new generation of chemical analyzers for liquids

    Science.gov (United States)

    Lendl, B.; Reidl-Leuthner, C.; Ritter, W.

    2011-01-01

    This presentation introduces a chemical analyzer (The ERACHECK) which is based on quantum cascade laser technology for measuring oil-in-water. Using these mid-IR lasers, it was possible to develop a portable, robust and highly precise analyzer for the measurement of oil-in-water, a parameter which is vital in the petrochemical industry for process control and environmental analysis. The overall method employs a liquid-liquid extraction step of the aqueous sample using a cyclic, aliphatic hydrocarbon such as cyclohexane. Quantification is based on measurement of the C-H deformation vibrations of the extracted hydrocarbons in the cyclic extraction solvent. The developed method is linear from 0.5 - 2000 ppm of oil in water, with precisions well below 15% in terms of r.s.d for repeated measurements. The portability of the ERACHECK and its robustness has been key for its successful use on oil rigs as well as petrochemical production sites on land. The values provided by the ERACHECK correlate well with those obtained by the former CFC (Freon 113) based method for oil in water, which is no longer in use in industrialized countries due to the ozone depleting effect of the CFCs employed.

  13. Chemical characterization of bottom ashes generated during combustion of a Colombian mineral coal in a thermal power plant

    International Nuclear Information System (INIS)

    Pinheiro, H.S.; Nogueira, R.E.F.Q.; Lobo, C.J.S.; Nobre, A.I.S.; Sales, J.C.; Silva, C.J.M.

    2012-01-01

    Bottom ashes generated during combustion of a mineral coal from Colombia were characterized by X-ray fluorescence spectrometry and X-ray diffraction. The interest in this particular coal is due to the fact that it will be used by a thermal power plant in Ceara, Northeastern Brazil, where it could produce over 900 tons of different residues/combustion products every day. Results from Xray fluorescence allowed identification and quantification of elements present in the sample: silicon (59,17%), aluminum (13,17%), iron (10,74%), potassium (6,11%), titanium (2,91%), calcium (4,97%), sulphur (0,84%) and others (2,09%). The X-ray diffraction revealed patterns from silica, mullite, calcium sulphate and hydrated sodium. Results obtained so far indicate that the material is a potential raw-material for use in the formulation of ceramic components (author)

  14. Small RNA Library Preparation Method for Next-Generation Sequencing Using Chemical Modifications to Prevent Adapter Dimer Formation.

    Science.gov (United States)

    Shore, Sabrina; Henderson, Jordana M; Lebedev, Alexandre; Salcedo, Michelle P; Zon, Gerald; McCaffrey, Anton P; Paul, Natasha; Hogrefe, Richard I

    2016-01-01

    For most sample types, the automation of RNA and DNA sample preparation workflows enables high throughput next-generation sequencing (NGS) library preparation. Greater adoption of small RNA (sRNA) sequencing has been hindered by high sample input requirements and inherent ligation side products formed during library preparation. These side products, known as adapter dimer, are very similar in size to the tagged library. Most sRNA library preparation strategies thus employ a gel purification step to isolate tagged library from adapter dimer contaminants. At very low sample inputs, adapter dimer side products dominate the reaction and limit the sensitivity of this technique. Here we address the need for improved specificity of sRNA library preparation workflows with a novel library preparation approach that uses modified adapters to suppress adapter dimer formation. This workflow allows for lower sample inputs and elimination of the gel purification step, which in turn allows for an automatable sRNA library preparation protocol.

  15. Noble Gas Surface Flux Simulations And Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Charles R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Yunwei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    Signatures from underground nuclear explosions or UNEs are strongly influenced by the containment regime surrounding them. The degree of gas leakage from the detonation cavity to the surface obviously affects the magnitude of surface fluxes of radioxenon that might be detected during the course of a Comprehensive Test Ban Treaty On-Site Inspection. In turn, the magnitude of surface fluxes will influence the downwind detectability of the radioxenon atmospheric signature from the event. Less obvious is the influence that leakage rates have on the evolution of radioxenon isotopes in the cavity or the downwind radioisotopic measurements that might be made. The objective of this letter report is to summarize our attempt to better understand how containment conditions affect both the detection and interpretation of radioxenon signatures obtained from sampling at the ground surface near an event as well as at greater distances in the atmosphere. In the discussion that follows, we make no attempt to consider other sources of radioactive noble gases such as natural backgrounds or atmospheric contamination and, for simplicity, only focus on detonation-produced radioxenon gases. Summarizing our simulations, they show that the decay of radioxenon isotopes (e.g., Xe-133, Xe-131m, Xe-133m and Xe-135) and their migration to the surface following a UNE means that the possibility of detecting these gases exists within a window of opportunity. In some cases, seeps or venting of detonation gases may allow significant quantities to reach the surface and be released into the atmosphere immediately following a UNE. In other release scenarios – the ones we consider here – hours to days may be required for gases to reach the surface at detectable levels. These release models are most likely more characteristic of “fully contained” events that lack prompt venting, but which still leak gas slowly across the surface for periods of months.

  16. Contraction of the positive column of discharges in noble gases

    International Nuclear Information System (INIS)

    Golubovskii, Yu B; Nekuchaev, V; Gorchakov, S; Uhrlandt, D

    2011-01-01

    This review describes the experimental studies of contraction in neon, argon and helium, discussing the basic regularities of the phenomenon. These studies, extended over a long time, are still urgent. For pressures that are not too high a noticeable contraction of the plasma glow and a smooth non-monotonic dependence of the degree of contraction on the current are observed. Above a critical pressure the plasma immediately contracts into a bright thin cord, if the current reaches a critical value. A hysteresis phenomenon is observed during the transition from the diffuse state to the contracted state and vice versa. Experiments that show the secondary role of non-homogeneous gas heating for contraction in neon and argon, and the main role for contraction in helium, are described. Studies of the ionization waves (the strata), which propagate as pulses of the current cord area, are reviewed showing the close relationship between contraction and stratification. The roles of various mechanisms leading to the contraction and describing the general picture of the observed phenomena are analysed. For heavy noble gases the main role is played by ionization non-linearity as a function of electron concentration, which is related to the competition of electron-atom and electron-electron collisions. This non-linearity leads to plasma shrinkage and the development of ionization instability in the radial (contraction) and longitudinal (stratification) directions. For helium such non-linearity does not play a leading role, since the frequency of the elastic electron-atom collisions is considered to be constant over a large energy range, and this yields a Maxwellian distribution function. The contraction in helium is defined by thermal effects. In addition, recent studies on the numerical modelling of the contraction are discussed. (topical review)

  17. Process for Making a Noble Metal on Tin Oxide Catalyst

    Science.gov (United States)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  18. Status and management of noble crayfish Astacus astacus in Estonia

    Directory of Open Access Journals (Sweden)

    T. Paaver

    2009-01-01

    Full Text Available Noble crayfish Astacus astacus (L. is an indigenous and the only crayfish species in Estonia. It is potentially endangered by invasion of alien species, diseases and habitat deterioration but does not have legal protected status and is fished only for recreational purpose. Crayfish Working Group of Ministry of Environment and Department of Aquaculture of the Estonian University of Life Sciences have developed crayfish conservation and management plan. Since 1994 standardized test fishing with traps (which catch only crayfish over 7 cm TL has been carried out and database of these fishings shows, that crayfish is dwelling in more than 255 sites in the lakes, rivers, streams, artificial reservoirs. In 52% of monitored sites populations are weak, catch per trap night is below 1 specimen. Exceptionally rich is the stock on the island Saaremaa, where in 59% of populations catch per trap night is over 4 and can reach 50. Licensed recreational catch is allowed in regions, where monitoring data show good status of crayfish stock. It is not allowed to sell the crayfish caught on recreational license. Crayfishing season is limited with August, size limit in recreational fishery is 11 cm TL. There are 10 operating crayfish farms and 15 are under construction. The farms produce yearly around 1000 kg of commercial size crayfish for export to Finland. Over 200000 juveniles are produced for restocking yearly. Restocking projects e.g. restoration of populations, which have been lost because of plague have been successful. The main threat factor is crayfish plague. In 2006–2007 it destroyed the stock of crayfish farms of companies Veteko, Pähkla, Astacus and wild population of Põduste river on the island Saaremaa.

  19. Groundwater studies using isotopes and noble gases as a tracer. Review and prospect

    International Nuclear Information System (INIS)

    Kazahaya, Kohei; Yasuhara, Masaya; Takahashi, Hiroshi A.; Morikawa, Noritoshi; Ohwada, Michiko; Tosaki, Yuki; Asai, Kazuyoshi

    2007-01-01

    Environmental tracers become a common tool for the groundwater study and a number of methods have been presented in order to understand groundwater flow processes, water budget, origins, chemical reaction processes and retention time. Tracers often used are selected and reviewed for their various methods and advantages as follows; 1) stable 18 O, D in water, 2) stable 13 C and radioactive 14 C in DIC, 3) noble gases such as He, Ne, Ar, Kr, Xe and their isotopes, 4) radioactive 36 Cl in dissolved chloride and some heavier isotopes, and 5) inert gaseous species such as CFCs. If they are less reactive species, they likely preserve information at the time of recharge or their origin. Use of D, 18 O and the d-value of water is the powerful tool to determine the recharge area because recharged meteoric water have their inherent isotopic ratios correlated with the recharge elevation, distance from the coast, or the local topography. Carbon-bearing species are more reactive though, use of stable isotopes of DIC leads to identify its origin and helps to analyze the chemical reaction between minerals and water or gas addition processes during the groundwater flow in aquifers. Radioactive 14 C has been used to estimate groundwater age however special attention should be paid for, i.e., the origin of DIC, before applying the method. Noble gas tracers are the useful species to presume recharge temperature from their concentrations in water using their temperature dependence of solubilities. Radiogenic 4 He concentration can be used for the very long-term groundwater dating since the 4 He is produced in the crust and is accumulated in the deep aquifers, if the local accumulation rate of 4 He is known. Radioactive 36 C1 has been used to determine the age of very old saline waters up to million years. This isotope will also be convenient for the dating of very younger waters, by the use of bomb-produced 36 Cl resulted from surface nuclear experiments near the seawater in the 1950s

  20. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration

    International Nuclear Information System (INIS)

    Irudayam, Sheeba Jem; Henchman, Richard H

    2010-01-01

    An equation for the chemical potential of a dilute aqueous solution of noble gases is derived in terms of energies, force and torque magnitudes, and solute and water coordination numbers, quantities which are all measured from an equilibrium molecular dynamics simulation. Also derived are equations for the Gibbs free energy, enthalpy and entropy of hydration for the Henry's law process, the Ostwald process, and a third proposed process going from an arbitrary concentration in the gas phase to the equivalent mole fraction in aqueous solution which has simpler expressions for the enthalpy and entropy changes. Good agreement with experimental hydration free energies is obtained in the TIP4P and SPC/E water models although the solute's force field appears to affect the enthalpies and entropies obtained. In contrast to other methods, the approach gives a complete breakdown of the entropy for every degree of freedom and makes possible a direct structural interpretation of the well-known entropy loss accompanying the hydrophobic hydration of small non-polar molecules under ambient conditions. The noble-gas solutes experience only a small reduction in their vibrational entropy, with larger solutes experiencing a greater loss. The vibrational and librational entropy components of water actually increase but only marginally, negating any idea of water confinement. The term that contributes the most to the hydrophobic entropy loss is found to be water's orientational term which quantifies the number of orientational minima per water molecule and how many ways the whole hydrogen-bond network can form. These findings help resolve contradictory deductions from experiments that water structure around non-polar solutes is similar to bulk water in some ways but different in others. That the entropy loss lies in water's rotational entropy contrasts with other claims that it largely lies in water's translational entropy, but this apparent discrepancy arises because of different

  1. Are clusters important in understanding the mechanisms in atmospheric pressure ionization? Part 1: Reagent ion generation and chemical control of ion populations.

    Science.gov (United States)

    Klee, Sonja; Derpmann, Valerie; Wißdorf, Walter; Klopotowski, Sebastian; Kersten, Hendrik; Brockmann, Klaus J; Benter, Thorsten; Albrecht, Sascha; Bruins, Andries P; Dousty, Faezeh; Kauppila, Tiina J; Kostiainen, Risto; O'Brien, Rob; Robb, Damon B; Syage, Jack A

    2014-08-01

    It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region.

  2. Interference of nitrite and nitrogen dioxide on mercury and selenium determination by chemical vapor generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lopes Nunes, Dayana; Pereira dos Santos, Eliane Pereira; Barin, Juliano Smanioto; Mortari, Sergio Roberto; Dressler, Valderi Luiz; Moraes Flores, Erico Marlon de

    2005-01-01

    In this study, a systematic investigation was performed concerning the interference of nitrogen oxides on the determination of selenium and mercury by hydride generation atomic absorption spectrometry (HG AAS) and cold vapor atomic absorption spectrometry (CV AAS). The effect of nitrate, nitrite and NO 2 dissolved in the condensed phase was evaluated. No effect of NO 3 - on Se and Hg determination was observed up to 100 mg of sodium nitrate added to the reaction vessel. The Se signal was reduced by about 80% upon the addition of 6.8 mg NO 2 - . For Hg, no interference of nitrite was observed up to 20 mg of NO 2 - . A complete suppression of the Se signal was observed when gaseous NO 2 was introduced into analytical solutions. For Hg, a signal decrease between 8 and 13% occurred. For Se, bubbling argon or heating the solution was not able to recover the original absorbance values, whereas Hg signals were recovered with these procedures. When gaseous NO 2 was passed directly into the atomizer, Se signals decreased similarly to when NO 2 was bubbled in analytical solutions. The addition of urea, hydroxylamine hydrochloride and sulfamic acid (SA) was investigated to reduce the NO 2 effect in sample digests containing residual NO 2 , but only SA was effective in reducing the interference. Based on the results, it is possible to propose the use of SA to prevent interferences in Se and Hg determinations by HG AAS and CV AAS, respectively

  3. A portable membrane contactor sampler for analysis of noble gases in groundwater.

    Science.gov (United States)

    Matsumoto, Takuya; Han, Liang-Feng; Jaklitsch, Manfred; Aggarwal, Pradeep K

    2013-01-01

    To enable a wider use of dissolved noble gas concentrations and isotope ratios in groundwater studies, we have developed an efficient and portable sampling device using a commercially available membrane contactor. The device separates dissolved gases from a stream of water and collects them in a small copper tube (6 mm in diameter and 100 mm in length with two pinch-off clamps) for noble gas analysis by mass spectrometry. We have examined the performance of the sampler using a tank of homogeneous water prepared in the laboratory and by field testing. We find that our sampling device can extract heavier noble gases (Ar, Kr, and Xe) more efficiently than the lighter ones (He and Ne). An extraction time of about 60 min at a flow rate of 3 L/min is sufficient for all noble gases extracted in the sampler to attain equilibrium with the dissolved phase. The extracted gas sample did not indicate fractionation of helium ((3) He/(4) He) isotopes or other noble gas isotopes. Field performance of the sampling device was tested using a groundwater well in Vienna and results were in excellent agreement with those obtained from the conventional copper tube sampling method. © 2012, National Ground Water Association.

  4. Effect of the Noble Metals Addition on the Oxidation Behavior of Ni3Al

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2018-01-01

    Full Text Available This paper discusses the effect of the addition of noble metals on the microstructure, mechanism, and oxidation kinetics of the Ni3Al intermetallic alloy. Ni3Al was doped with 1% (atomic percent of Au, Ag, Pd, and Pt. Oxidation behavior of the alloys was evaluated at 900, 1000, and 1100°C in O2 for 24 hours. XRD analysis showed that the addition of noble metals favored the oxide growth on preferential crystallographic planes. In addition, the preferential substitution of the noble metals in the Ni3Al structure modifies the surface composition by increasing the Al/Ni ratio. It was observed that most of the alloys showed a subparabolic behavior, and only the intermetallic base and the alloy doped with Ag show a parabolic behavior at 900°C. The developed oxides were analyzed both superficially and in cross section by scanning electron microscopy (SEM and energy dispersive X-ray analysis (EDXA. It was evident that only the intermetallic base showed the formation of a duplex oxide scale (Al2O3/NiO. The alloys doped with noble metals showed the oxide growth practically of pure Al2O3. This was due to a decrease in the diffusion of the Ni cations because of the presence of the noble metals in the crystalline structure.

  5. Wire gauze and cordierite supported noble metal catalysts for passive autocatalytic recombiner

    International Nuclear Information System (INIS)

    Sanap, Kiran K.; Varma, S.; Waghmode, S.B.; Bharadwaj, S.R.

    2015-01-01

    Highlights: • Synthesis by electroless deposition method and chemical reduction route. • Particle size of 0.1–0.5 μm & 3.5–5 nm for Pt–Pd/Wg & Pt–Pd/Cord catalysts. • Active for H 2 and O 2 reaction with initial H 2 concentration of 1.5 to 7% in air. • Active in presence of different contaminants like CO 2 , CH 4 , CO & relative humidity. • Enhanced resistance of Pt–Pd/Cord catalyst towards the poisoning of CO. - Abstract: Hydrogen released in nuclear reactor containment under severe accident scenario poses a threat to containment and hence needs to be regulated by catalytic recombination. Mixed noble metal catalysts with platinum–palladium supported on stainless steel wire gauze and cordierite support have been developed for this purpose. The developed catalysts have been found to be highly efficient for removal of hydrogen concentration in the range of 1.5 to 7.0% v/v in air. Though both the catalysts exhibit similar kinetics for lower hydrogen concentration, cordierite supported catalysts exhibits better kinetic rate at higher hydrogen concentration. The performances of these catalysts in presence of various probable catalytic poison like carbon monoxide and catalytic inhibitors like moisture, carbon dioxide, and hydrocarbons provide data for use of these catalysts under the actual scenario. Compared to stainless steel wire gauze supported catalyst, the cordierite based catalyst are found to exhibit enhanced resistance towards carbon monoxide and limited temperature rise for safer application at higher hydrogen concentrations.

  6. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln.

    Science.gov (United States)

    Kim, Hwajin

    2015-04-01

    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Langmuir-Blodgett technique is monitored by quartz crystal microgravimetry, UVVis spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. pp 195-218 Physical and Theoretical. Chemical reactivity of the compressed noble gas atoms and their reactivity dynamics during collisions with ...

  8. Chemical modification of extracellular matrix by cold atmospheric plasma-generated reactive species affects chondrogenesis and bone formation.

    Science.gov (United States)

    Eisenhauer, Peter; Chernets, Natalie; Song, You; Dobrynin, Danil; Pleshko, Nancy; Steinbeck, Marla J; Freeman, Theresa A

    2016-09-01

    The goal of this study was to investigate whether cold plasma generated by dielectric barrier discharge (DBD) modifies extracellular matrices (ECM) to influence chondrogenesis and endochondral ossification. Replacement of cartilage by bone during endochondral ossification is essential in fetal skeletal development, bone growth and fracture healing. Regulation of this process by the ECM occurs through matrix remodelling, involving a variety of cell attachment molecules and growth factors, which influence cell morphology and protein expression. The commercially available ECM, Matrigel, was treated with microsecond or nanosecond pulsed (μsp or nsp, respectively) DBD frequencies conditions at the equivalent frequencies (1 kHz) or power (~1 W). Recombinant human bone morphogenetic protein-2 was added and the mixture subcutaneously injected into mice to simulate ectopic endochondral ossification. Two weeks later, the masses were extracted and analysed by microcomputed tomography. A significant increase in bone formation was observed in Matrigel treated with μsp DBD compared with control, while a significant decrease in bone formation was observed for both nsp treatments. Histological and immunohistochemical analysis showed Matrigel treated with μsp plasma increased the number of invading cells, the amount of vascular endothelial growth factor and chondrogenesis while the opposite was true for Matrigel treated with nsp plasma. In support of the in vivo Matrigel study, 10 T1/2 cells cultured in vitro on μsp DBD-treated type I collagen showed increased expression of adhesion proteins and activation of survival pathways, which decreased with nsp plasma treatments. These results indicate DBD modification of ECM can influence cellular behaviours to accelerate or inhibit chondrogenesis and endochondral ossification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. TLC-SERS Plates with a Built-In SERS Layer Consisting of Cap-Shaped Noble Metal Nanoparticles Intended for Environmental Monitoring and Food Safety Assurance

    Directory of Open Access Journals (Sweden)

    H. Takei

    2015-01-01

    Full Text Available We report on a thin layer chromatograph (TLC with a built-in surface enhanced Raman scattering (SERS layer for in-situ identification of chemical species separated by TLC. Our goal is to monitor mixture samples or diluted target molecules suspended in a host material, as happens often in environmental monitoring or detection of food additives. We demonstrate that the TLC-SERS can separate mixture samples and provide in-situ SERS spectra. One sample investigated was a mixture consisting of equal portions of Raman-active chemical species, rhodamine 6 G (R6G, crystal violet (CV, and 1,2-di(4-pyridylethylene (BPE. The three components could be separated and their SERS spectra were obtained from different locations. Another sample was skim milk with a trace amount of melamine. Without development, no characteristic peaks were observed, but after development, a peak was observed at 694 cm−1. Unlike previous TLC-SERS whereby noble metal nanoparticles are added after development of a sample, having a built-in SERS layer greatly facilitates analysis as well as maintaining high uniformity of noble metal nanoparticles.

  10. Oxidation of glycerol to biobased chemicals using supported mono- and bimetallic noble metal catalysts

    NARCIS (Netherlands)

    Pazhavelikkakath Purushothaman, Rajeesh

    2014-01-01

    Het gebruik van fossiele bronnen staat onder druk. Dit wordt mede veroorzaakt door het besef dat ze eindig zijn en dat de bijkomende CO2 emissies bijdragen aan wereldwijde klimaat veranderingen. Biomassa wordt gezien als een aantrekkelijk alternatief voor de productie van koolstof gebaseerde

  11. Nuclear and electronic energy loss of noble gas ions bombarding solid benzene and relative chemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, O.; Marletta, G.; Torrisi, A. (Catania Univ. (Italy). Ist. di Chimica e Chimica Industriale); Foti, G.; Torrisi, L. (Catania Univ. (Italy). Ist. di Struttura della Materia)

    1982-10-01

    Solid benzene has been bombarded with several inert gas ions at various energies ranging between 15 to 100 keV. Under these conditions the energy deposition (eta) which occurs via nuclear collisions ranged between 4 x 10/sup -3/ to 1 of total energy loss. After implantation many products have been found in the target, and good correlation between the C/sub 13/ product yield and eta has been found. This correlation is explained in terms of different fragmentation events which occur after electronic and nuclear energy deposition.

  12. PACKAGE (Plasma Analysis, Chemical Kinetics and Generator Efficiency): a computer program for the calculation of partial chemical equilibrium/partial chemical rate controlled composition of multiphased mixtures under one dimensional steady flow

    Energy Technology Data Exchange (ETDEWEB)

    Yousefian, V.; Weinberg, M.H.; Haimes, R.

    1980-02-01

    The NASA CEC Code was the starting point for PACKAGE, whose function is to evaluate the composition of a multiphase combustion product mixture under the following chemical conditions: (1) total equilibrium with pure condensed species; (2) total equilibrium with ideal liquid solution; (3) partial equilibrium/partial finite rate chemistry; and (4) fully finite rate chemistry. The last three conditions were developed to treat the evolution of complex mixtures such as coal combustion products. The thermodynamic variable pairs considered are either pressure (P) and enthalpy, P and entropy, at P and temperature. Minimization of Gibbs free energy is used. This report gives detailed discussions of formulation and input/output information used in the code. Sample problems are given. The code development, description, and current programming constraints are discussed. (DLC)

  13. Fabrication of noble metal alloy filter vents for radioisotope thermal generators

    International Nuclear Information System (INIS)

    Honnell, R.E.

    1977-01-01

    Because the primary decay modes of 238 Pu are by alpha particles (helium) and by spontaneous fission, the fuel container requires a filter vent to release the helium while retaining particulates, or it may pressurize and rupture. Procedures are described for fabricating a filter vent of Pt-30 wt. percent Rh alloy for use in a 25-W radioisotope heat source. The filter vent is designed to operate at 1273 0 K with a helium leak rate between 0.01 and 0.001 cm 3 (STP)/s

  14. Electron beam generated in low pressure noble gas atmosphere – Compact device construction and applications

    International Nuclear Information System (INIS)

    Zawada, A.; Konarski, P.

    2013-01-01

    During the process of low vacuum electron beam welding the energy of electrons is lower than the energy of electrons in the classical electron beam welding equipment. The classical electron beam welding can not always be used to weld of small work-piece details. Sometimes it’s impossible to reduce the electron beam energy because of poor focusing in the conventional electron beam welding machines. Low vacuum electron beam welding technique is well suitable to several niche products, such as thermocouples or aluminium seals. It also allows to treat the surface of dielectric materials, which is not possible using classical electron beam welding technique. The costs of low vacuum electron beam welding process are very low. (authors)

  15. Differential chemical profiling to identify ozonation by-products of estrone-sulfate and first characterization of estrogenicity in generated drinking water.

    Science.gov (United States)

    Bourgin, Marc; Gervais, Gaël; Bichon, Emmanuelle; Antignac, Jean-Philippe; Monteau, Fabrice; Leroy, Gaëla; Barritaud, Lauriane; Chachignon, Mathilde; Ingrand, Valérie; Roche, Pascal; Le Bizec, Bruno

    2013-07-01

    For a few years, the concern of water treatment companies is not only focused on the removal of target micropollutants but has been extended to the investigation of potential biologically active by-products generated during the treatment processes. Therefore, some methods dedicated to the detection and structural characterization of such by-products have emerged. However, most of these studies are usually carried out under simplified conditions (e.g. high concentration levels of micropollutants, drastic treatment conditions, use of deionized or ultrapure water) and somewhat unrealistic conditions compared to that implemented in water treatment plants. In the present study, a real field water sample was fortified at the part-per-billion level (50 μg L(-1)) with estrone-3-sulfate (E1-3S) before being ozonated (at 1 mg L(-1)) for 10 min. In a first step, targeted measurements evidenced a degradation of the parent compound (>80%) in 10 min. Secondly, a non-targeted chemical profiling approach derived from metabolomic profiling studies allowed to reveal 11 ozonation by-products, among which 4 were found predominant. The estrogenic activity of these water samples spiked with E1-3S before and after treatment was assessed by the ER-CALUX assay and was found to decrease significantly after 10 min of ozonation. Therefore, this innovative methodological strategy demonstrated its suitability and relevancy for revealing unknown compounds generated from water treatment, and permitted to generate new results regarding specifically the impact of ozonation on estrone-3-sulfate. These results confirm that ozonation is effective at removing E1-3S in drinking water and indicate that the by-products generated have significantly lower estrogenic activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Influence of alumina phases on the molybdenum adsorption capacity and chemical stability for {sup 99}Mo/{sup 99m}Tc generators columns

    Energy Technology Data Exchange (ETDEWEB)

    Guedes-Silva, Cecilia C.; Ferreira, Thiago dos Santos; Paula, Carolina M. de; Otubo, Larissa, E-mail: cecilia.guedes@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Carvalho, Flavio M.S. [Universidade de Sao Paulo (IGC/USP), SP (Brazil). Instituto de Geociencias

    2016-07-15

    Technetium-{sup 99m} is the clinically most used radionuclide worldwide. Although many techniques can be applied to separate {sup 99}Mo and {sup 99m}Tc, the most commonly used method is the column chromatography with alumina as stationary phase. However, the alumina nowadays used has limited adsorption capacity of molybdate ions which implies the need to develop or improve materials to produce high specific activity generators. In this paper, alumina was obtained by a solid state method and heat treatments at different conditions. The powders had a microstructure with porous particles of γ, δ, θ and α-Al{sub 2}O{sub 3} phases as well as specific surface area between 36 and 312 m{sup 2} g{sup -1}. Most interesting results were reached by powders calcined at 900 deg C for 5 hours which had high chemical stability and a molybdenum adsorption capacity of 92.45 mg Mo per g alumina. (author)

  17. Dynamics of a geothermal field traced by noble gases: Cerro Prieto, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Mazor, E. (Weizmann Inst. of Science, Rehovot, Israel); Truesdell, A.H.

    1981-01-01

    Noble gases have been measured mass spectrometrically in samples collected during 1977 from producing wells at Cerro Prieto. Positive correlations between concentrations of radiogenic (He, /sup 40/Ar) and atmospheric noble gases (Ne, Ar, and Kr) suggest the following dynamic model: the geothermal fluids originated from meteoric water penetrated to more than 2500 m depth (below the level of first boiling) and mixed with radiogenic helium and argon-40 formed in the aquifer rocks. Subsequently, small amounts of steam were lost by a Raleigh process (0 to 3%) and mixing with shallow cold water occurred (0 to 30%). Noble gases are sensitive tracers of boiling in the initial stages of 0 to 3% steam separation and complement other tracers, such as Cl or temperature, which are effective only beyond this range.

  18. Element distribution and noble gas isotopic abundances in lunar meteorite Allan Hills A81005

    Science.gov (United States)

    Kraehenbuehl, U.; Eugster, O.; Niedermann, S.

    1986-01-01

    Antarctic meteorite ALLAN HILLS A81005, an anorthositic breccia, is recognized to be of lunar origin. The noble gases in this meteorite were analyzed and found to be solar-wind implanted gases, whose absolute and relative concentrations are quite similar to those in lunar regolith samples. A sample of this meteorite was obtained for the analysis of the noble gas isotopes, including Kr(81), and for the determination of the elemental abundances. In order to better determine the volume derived from the surface correlated gases, grain size fractions were prepared. The results of the instrumental measurements of the gamma radiation are listed. From the amounts of cosmic ray produced noble gases and respective production rates, the lunar surface residence times were calculated. It was concluded that the lunar surface time is about half a billion years.

  19. Pulmonary hyperpolarized noble gas MRI: Recent advances and perspectives in clinical application

    International Nuclear Information System (INIS)

    Liu, Zaiyi; Araki, Tetsuro; Okajima, Yuka; Albert, Mitchell; Hatabu, Hiroto

    2014-01-01

    The invention of hyperpolarized (HP) noble gas MRI using helium-3 ( 3 He) or xenon-129 ( 129 Xe) has provided a new method to evaluate lung function. Using HP 3 He or 129 Xe for inhalation into the lung air spaces as an MRI contrast agent significantly increases MR signal and makes pulmonary ventilation imaging feasible. This review focuses on important aspects of pulmonary HP noble gas MRI, including the following: (1) functional imaging types, (2) applications for major pulmonary diseases, (3) safety considerations, and (4) future directions. Although it is still challenging to use pulmonary HP noble gas MRI clinically, the technology offers promise for the investigation of the microstructure and function of the lungs

  20. Noble gases and the history of Jilin meteorite

    International Nuclear Information System (INIS)

    Begemann, F.; Li, Zhaohui; Schmitt-Strecker, S.; Weber, H.W.; Xu, Zitu

    1985-01-01

    Potassium and noble gases have been determined in more than twenty specimens from the largest known stone meteorite, the H5 chondrite Jilin. Thirteen specimens came from the surface of the present main mass, the remainder from various locations in the strewn field. The average K content is 802 ppm (29 samples from 23 specimens), maximum deviations from the mean are -7% and +11%. Whole-rock gas retention ages of different specimens are distinctly different; they vary between 2.22 and 3.90 AE for 40 Ar- 40 K and between 0.44 and 2.0 AE for 4 He-U/Th. Severe losses of 4 He and 40 Ar (up to 95% and 80%, respectively) must have occurred (up to) less than 440 Ma Ago; they cannot have happened during the fall of the meteorite, however. Differences in concentration of cosmic-ray-produced 3 He, 21 Ne and 38 Arsub(Me) by factors of five, six, and seven, respectively, reflect a complex irradiation history; they are compatible with a short 4π irradiation and an extended one in 2π geometry at shallow depth (top samples were most probably located near the transition maximum of nuclear-active particles at around 15 cm depth; they definitely cannot have been buried deeper than 4 m). 3 He/ 21 Ne ratios in bulk samples are lowered by diffusion losses of 3 He (25-61%) while 22 Ne/ 21 Ne ratios appear to be unaffected. 22 Ne/ 21 Ne values range between 1.060 and 1.086 (with a mean of 1.069) which is at variance with predictions for the particular irradiation conditions of Jilin. Low 36 Ar/ 38 Ar ratios (down to 0.553) in clean metal samples are interpreted as the combined effect of large size and the transient lowering of this ratio because of a sudden increase in production rates upon going from 2π to 4π irradiation. (orig.)

  1. Fiscal 1999 survey report. Survey and research concerning development of next-generation chemical process technologies; 1999 nendo jisedai kagaku process gijutsu kaihatsu ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    To further enhance resource/energy conservation and environmental impact reduction, it is necessary to develop innovative chemical reaction process technologies. It is for this reason that 'development of next-generation chemical reaction process technologies' is being carried out under the New Sunshine Program. The survey and research, for the fulfilment of the above goal, aim to select important technologies and put in a easy-to-study order the problems contained in associated technologies for picking out tasks for future studies for the purpose of suggesting some subjects to be taken up for future development. In addition, studies are made about how a comprehensive technology assessment system should be. In this fiscal year, propositions are compiled for research and development projects on five subjects. Studies of subjects other than these five will also continue to eventually build concrete propositions on them. The said five subjects involve 1) the development and application of nonaqueous biotechnologies, 2) biotechnology-aided polymeric material creation processes, 3) construction of high-efficiency energy conservation processes using innovative grain handling technologies in the high-temperature reaction field, 4) manufacture of high-performance polymeric materials for batteries and development of battery fabrication processes, and 5) the development of an energy conservation process maximally utilizing environmentally-friendly polyolefin. (NEDO)

  2. Vitrification of noble metals containing NCAW simulant with an engineering scale melter (ESM): Campaign report

    Energy Technology Data Exchange (ETDEWEB)

    Grunewald, W.; Roth, G.; Tobie, W.; Weisenburger, S.; Weiss, K.; Elliott, M.; Eyler, L.L.

    1996-03-01

    ESM has been designed as a 10th-scale model of the DWPF-type melter, currently the reference melter for nitrification of Hanford double shell tankwaste. ESM and related equipment have been integrated to the existing mockup vitrification plant VA-WAK at KfK. On June 2-July 10, 1992, a shakedown test using 2.61 m{sup 3} of NCAW (neutralized current acid waste) simulant without noble metals was performed. On July 11-Aug. 30, 1992, 14.23 m{sup 3} of the same simulant with nominal concentrations of Ru, Rh, and Pd were vitrified. Objective was to investigate the behavior of such a melter with respect to discharge of noble metals with routine glass pouring via glass overflow. Results indicate an accumulation of noble metals in the bottom area of the flat-bottomed ESM. About 65 wt% of the noble metals fed to the melter could be drained out, whereas 35 wt% accumulated in the melter, based on analysis of glass samples from glass pouring stream in to the canisters. After the melter was drained at the end of the campaign through a bottom drain valve, glass samples were taken from the residual bottom layer. The samples had significantly increased noble metals content (factor of 20-45 to target loading). They showed also a significant decrease of the specific electric resistance compared to bulk glass (factor of 10). A decrease of 10- 15% of the resistance between he power electrodes could be seen at the run end, but the total amount of noble metals accumulated was not yet sufficient enough to disturb the Joule heating of the glass tank severely.

  3. Method and apparatus for noble gas atom detection with isotopic selectivity

    Science.gov (United States)

    Hurst, G. Samuel; Payne, Marvin G.; Chen, Chung-Hsuan; Parks, James E.

    1984-01-01

    Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.

  4. Calibration of new measuring systems to detect emissions of radioactive noble gases

    International Nuclear Information System (INIS)

    Winkelmann, I.; Kreiner, H.J.

    1977-12-01

    This report describes the calibration of different systems for the integral measurement of radioactive noble gases and the calibration of a measuring chamber for the detection of individual nuclides of radioactive noble gases in the gaseous effluent of nuclear power plants. For these measuring chambers the calibration factors for Kr-85 and Xe-133 are given as well as the detection limits to be obtained with these measuring systems for several radioactive noble gases present in the gaseous effluent at the stack of nuclear power plants. Calibration factors for Kr-85 and Xe-133 and the detection limits of this measuring method for the detections of individual nuclides of radioactive noble gases in air samples are defined taken wirh a high pressure compressor in pressure flasks an measured on a Ge(Li)-semiconductor spectrometer (pressure flask measuring method). A measuring equipment is described and calibrated which allows simultaneous measurement of activity concentration of radioactive noble gases and radioactive aerosols with a sensitivity of 2 x 10 -7 Ci/m 3 for radioactive gases and 1 x 10 -9 Ci/m 3 for radioactive particulates at a background radiation of 1 R/h. This paper is an additional report to our STH-Bericht 3/76, 'Calibration of measuring equipment for monitoring of gaseous effluents from nuclear power plants', which specifies a procedure for the calibration of measuring chambers for monitoring of gaseous radioactive effluents from nuclear power plants /1/. The calibration system used here makes it possible to simultaneously calibrate several noble gas measuring devices. (orig.) [de

  5. Extraction of Solar Wind Nitrogen and Noble Gases From the Genesis Gold Foil Collector

    Science.gov (United States)

    Schlutter, D. J.; Pepin, R. O.

    2005-12-01

    The Genesis gold foil is a bulk solar wind collector, integrating fluences from all three of the wind regimes. Pyrolytic extraction of small foil samples at Minnesota yielded He fluences, corrected for backscatter, in good agreement with measurements by on-board spacecraft instruments, and He/Ne elemental ratios close to those implanted in collector foils deployed on the lunar surface during the Apollo missions. Isotopic distributions of He, Ne and Ar are under study. Pyrolysis to temperatures above the gold melting point generates nitrogen blanks large enough to obscure the solar-wind nitrogen component. An alternative technique for nitrogen and noble gas extraction, by room-temperature amalgamation of the gold foil surface, will be discussed. Ne and Ar releases in preliminary tests of this technique on small foil samples were close to 100% of the amounts expected from the high-temperature pyrolysis yields, indicating that amalgamation quantitatively liberates gases from several hundred angstroms deep in the gold, beyond the implantation depth of most of the solar wind. Present work is focused on two problems currently interfering with accurate nitrogen measurements at the required picogram to sub-picogram levels: a higher than expected blank likely due to tiny air bubbles rolled into the gold sheet during fabrication, and the presence of a refractory hydrocarbon film on Genesis collector surfaces (the "brown stain") that, if left in place on the foil, shields the underlying gold from mercury attack. We have found, however, that the film is efficiently removed within tens of seconds by oxygen plasma ashing. Potential nitrogen contaminants introduced during the crash of the sample return canister are inert in amalgamation, and so are not hazards to the measurements.

  6. 77 FR 64980 - Noble Americas Energy Solutions LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2012-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Noble Americas Energy Solutions LLC; Supplemental Notice That Initial Market... in the above-referenced proceeding of Noble Americas Energy Solutions LLC's application for market...

  7. Use of IMS data and its potential for research through global noble gases concentration maps

    Science.gov (United States)

    Terzi, Lucrezia; Kalinowski, Martin; Gueibe, Christophe; Camps, Johan; Gheddou, Abdelhakim; Kusmierczyk-Michulec, Jolanta; Schoeppner, Michael

    2017-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) established for verification purposes a global monitoring system for atmospheric radioisotopes and noble gas radioactivity. Daily activity concentrations have been collected worldwide for over 15 years providing unique data sets with long term time series that can be used for atmospheric circulation dynamics analysis. In this study, we want to emphasize the value of worldwide noble gas data by reconstructing global xenon concentration maps and comparing these observations with ATM simulations. By creating a residual plot, we can improve our understanding of our source estimation level for each region.

  8. Geological structure and prospects of noble metal ore mineralization of the Khayrkhan gabbroid massif (Western Mongolia)

    Science.gov (United States)

    Kurumshieva, K. R.; Gertner, I. F.; Tishin, P. A.

    2017-12-01

    An analysis of the distribution of noble metals in zones of sulfide mineralization makes it possible to justify the isolation of four ore-bearing horizons with a specific geochemical zonation. A rise in the gold content relative to palladium and platinum is observed from the bottom upwards along the section of the stratified series of gabbroids. The study of the mineral phases of sulphides and the noble minerals itself indicates the evolution of hydrothermal solutions, which determines the different activity and mobility of the fluid (mercury, tellurium, sulfur) and ore (copper, nickel, iron, platinum, gold and silver) components.

  9. Polyetheretherketone Overlay Prosthesis over High Noble Ball Attachments to Overcome Base Metal Sensitivity: A Clinical Report.

    Science.gov (United States)

    Zoidis, Panagiotis

    2018-01-11

    A modified polyetheretherketone (PEEK) framework material in combination with heat-polymerized denture base acrylic resin was used for the fabrication of an overlay prosthesis for a patient sensitive to base metals. High noble metal was used for the fabrication of the post/coping/ball attachment assemblies to promote retention and stability. These protruding attachments into the acrylic resin could result in stress concentration; therefore, a framework is often used to strengthen the prosthesis. PEEK frameworks could be a treatment alternative to high noble or Ti frameworks since they combine good mechanical properties with biocompatibility, reduced cost, and common laboratory procedures. © 2018 by the American College of Prosthodontists.

  10. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  11. Pulse radiolysis study of polystyrene-based polymers with added photoacid generators: Reaction mechanism of extreme-ultraviolet and electron-beam chemically amplified resist

    Science.gov (United States)

    Okamoto, Kazumasa; Yamamoto, Hiroki; Kozawa, Takahiro; Fujiyoshi, Ryoko; Umegaki, Kikuo

    2015-02-01

    The reaction mechanism of chemically amplified resist (CAR) after irradiation with ionizing radiation is important for developing extreme-ultraviolet and electron-beam lithography. The acid generation after the ionization is an essential reaction in CAR. In this study, the intermediate of the proton source of acid (a radical cation of the base polymer) in the presence of a photoacid generator (PAG) was investigated by the pulse radiolysis method. The deprotonation kinetics of the radical cation of poly(4-hydroxystyrene) (PHS) in solutions with and without PAG shows only a small difference. However, the yield of radical cations of poly(4-methoxystyrene) (PMOS) as a model of the resist with a protecting (releasing) group increases upon adding PAG. The formation of the ion pair between the PMOS radical cation and the dissociated anion with a lifetime of approximately 30 to 40 µs is suggested. The lower acid yield in PMOS than in PHS film is also discussed in terms of the stability of the radical cation.

  12. FY 2000 report on the results of the development of the next generation chemical process technology; 2000 nendo jisedai kagaku process gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The R and D were conducted on the next generation chemical process by which no energy losses are produced and the amount of the waste is made extremely small by the new catalytic reaction, the reaction using next generation separation/reaction membrane, etc., and the FY 2000 results were summed up. As to the development of the selective oxidation technology of saturated hydrocarbon, the basic knowledge/information were obtained on the following: construction of the catalytic principle toward the highly selective catalytic partial oxidation, elucidation of the reaction mechanism in alkane oxidation and design of the high functional catalyst, functional design in butane oxidation, characterization of the alkane oxidation catalyst and the application to the catalytic development, synthesis of the alkane selective oxidation catalyst, etc. Relating to the development of the process technology using the new reaction mechanism, a target value of equilibrium conversion of 10% or more was achieved using membrane reactor in the dehydrogenation of ethyl benzene. Further, as to the high performance selective membrane and low temperature active catalyst that are indispensable to the element technology, the continuous study was made, and at the same time themes in this study were arranged. (NEDO)

  13. Generation of eye field/optic vesicle-like structures from human embryonic stem cells under two-dimensional and chemically defined conditions.

    Science.gov (United States)

    Parvini, Maryam; Parivar, Kazem; Safari, Fatemeh; Tondar, Mahdi

    2015-03-01

    Despite the enormous progress in studying retinal cell differentiation from human embryonic stem cells (hESCs), none of the reported protocols have produced a cost-effective eye field cells with the capability to further differentiate into retinal derivatives. In this study, by drawing chemicals on our four-step differentiation strategy, we demonstrated the ability of hESCs in assembling such qualifications to follow human retinogenesis in a serum- and feeder-free adherent condition. Two-dimensional (2D) populations of eye field cells arose within early forebrain progeny upon hESCs differentiation. Gene expression analysis showed that the treatment of hESCs with a combination of selected small molecules (SMs) gave rise to the higher expressions of eye field-specific genes, PAX6, RX, and SIX3. Thereafter, a subset of cells gained the transient features of advancing retinal differentiation, including optic vesicle (OV)-like structures, which expressed MITF and CHX10 in a manner imitated in vivo human retinal development. The competency of derived cells in differentiation to retinal derivatives was further investigated. The gene analysis of the cells showed more propensity for generating retinal pigment epithelial (RPE) than neural retina (NR). The generation of OV-like structures in 2D cultures can shed light on molecular events governing retinal specification. It can also facilitate the study of human retinal development.

  14. Physical-chemical characterization and biological assessment of simple and lithium-doped biological-derived hydroxyapatite thin films for a new generation of metallic implants

    Science.gov (United States)

    Popescu, A. C.; Florian, P. E.; Stan, G. E.; Popescu-Pelin, G.; Zgura, I.; Enculescu, M.; Oktar, F. N.; Trusca, R.; Sima, L. E.; Roseanu, A.; Duta, L.

    2018-05-01

    We report on the synthesis by PLD of simple and lithium-doped biological-origin hydroxyapatite (HA) films. The role of doping reagents (Li2CO3, Li3PO4) on the morphology, structure, chemical composition, bonding strength and cytocompatibility of the films was investigated. SEM investigations of the films evidenced a surface morphology consisting of particles with mean diameters of (5-7) μm. GIXRD analyses demonstrated that the synthesized structures consisted of HA phase only, with different degrees of crystallinity, mainly influenced by the doping reagent type. After only three days of immersion in simulated body fluid, FTIR spectra showed a remarkable growth of a biomimetic apatitic film, indicative of a high biomineralization capacity of the coatings. EDS analyses revealed a quasi-stoichiometric target-to-substrate transfer, the values inferred for the Ca/P ratio corresponding to a biological apatite. All synthesized structures displayed a hydrophilic behavior, suitable for attachment of osteoblast cells. In vitro cell viability tests showed that the presence of Li2CO3 and Li3PO4 as doping reagents promoted the hMSC growth on film surfaces. Taking into consideration these enhanced characteristics, corroborated with a low fabrication cost generated by sustainable resources, one should consider the lithium-doped biological-derived materials as promising prospective solutions for a next generation of coated implants with rapid osteointegration.

  15. An integrated system combining chemical looping hydrogen generation process and solid oxide fuel cell/gas turbine cycle for power production with CO2 capture

    Science.gov (United States)

    Chen, Shiyi; Xue, Zhipeng; Wang, Dong; Xiang, Wenguo

    2012-10-01

    In this paper, the solid oxide fuel cell/gas turbine (SOFC/GT) cycle is integrated with coal gasification and chemical looping hydrogen generation (CLHG) for electric power production with CO2 capture. The CLHG-SOFC/GT plant is configurated and the schematic process is modeled using Aspen Plus® software. Syngas, produced by coal gasification, is converted to hydrogen with CO2 separation through a three-reactors CLHG process. Hydrogen is then fueled to SOFC for power generation. The unreacted hydrogen from SOFC burns in a combustor and drives gas turbine. The heat of the gas turbine exhaust stream is recovered in HRSG for steam bottoming cycle. At a system pressure of 20 bar and a cell temperature of 900 °C, the CLHG-SOFC/GT plant has a net power efficiency of 43.53% with no CO2 emissions. The hybrid power plant performance is attractive because of high energy conversion efficiency and zero-CO2-emission. Key parameters that influence the system performance are also discussed, including system operating pressure, cell temperature, fuel utilization factor, steam reactor temperature, CO2 expander exhaust pressure and inlet gas preheating.

  16. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  17. A 1-dodecanethiol-based phase transfer protocol for the highly efficient extraction of noble metal ions from aqueous phase.

    Science.gov (United States)

    Chen, Dong; Cui, Penglei; Cao, Hongbin; Yang, Jun

    2015-03-01

    A 1-dodecanethiol-based phase-transfer protocol is developed for the extraction of noble metal ions from aqueous solution to a hydrocarbon phase, which calls for first mixing the aqueous metal ion solution with an ethanolic solution of 1-dodecanethiol, and then extracting the coordination compounds formed between noble metal ions and 1-dodecanethiol into a non-polar organic solvent. A number of characterization techniques, including inductively coupled plasma atomic emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis demonstrate that this protocol could be applied to extract a wide variety of noble metal ions from water to dichloromethane with an efficiency of >96%, and has high selectivity for the separation of the noble metal ions from other transition metals. It is therefore an attractive alternative for the extraction of noble metals from water, soil, or waste printed circuit boards. Copyright © 2015. Published by Elsevier B.V.

  18. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    Energy Technology Data Exchange (ETDEWEB)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan; Velikokhatnyi, Oleg

    2017-02-07

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VII of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.

  19. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – a facile method for encapsulation of diverse cell types in silica matrices

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Robert [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Materials Engineering Dept.; Rogelj, Snezna [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Biology Dept.; Harper, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Bioenergy and Biodefense Technologies Dept.; Tartis, Michaelann [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Materials and Chemical Engineering Dept.

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Thus, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.

  20. Determination of trace cadmium in rice by liquid spray dielectric barrier discharge induced plasma - chemical vapor generation coupled with atomic fluorescence spectrometry

    Science.gov (United States)

    Liu, Xing; Zhu, Zhenli; Bao, Zhengyu; Zheng, Hongtao; Hu, Shenghong

    2018-03-01

    Cadmium contamination in rice has become an increasing concern in many countries including China. A simple, cost-effective, and highly sensitive method was developed for the determination of trace cadmium in rice samples based on a new high-efficient liquid spray dielectric barrier discharge induced plasma (LSDBD) vapor generation coupled with atomic fluorescence spectrometry (AFS). The analytical procedure involves the efficient formation of Cd volatile species by LSDBD plasma induced chemical processes without the use of any reducing reagents (Na/KBH4 in conventional hydride generation). The effects of the addition of organic substances, different discharge parameters such as discharge voltage and discharge gap, as well as the foreign ion interferences were investigated. Under optimized conditions, a detection limit of 0.01 μg L- 1 and a precision of 0.8% (RSD, n = 5, 1 μg L- 1 Cd) was readily achieved. The calibration curve was linear in the range between 0.1 and 10 μg L- 1, with a correlation coefficient of R2 = 0.9995. Compared with the conventional acid-BH4- vapor generation, the proposed method not only eliminates the use of unstable and expensive reagents, but also offers high tolerance for coexisting ions, which is well suited to the direct analysis of environmental samples. The validation of the proposed method was demonstrated by the analysis of Cd in reference material of rice (GBW080684). It was also successfully applied to the determination of trace cadmium in locally collected 11 rice samples, and the obtained Cd concentrations are ranged from 7.2 to 517.7 μg kg- 1.