WorldWideScience

Sample records for chemically explicit model

  1. BETR-World: a geographically explicit model of chemical fate: application to transport of α-HCH to the Arctic

    Toose, L.; Woodfine, D.G.; MacLeod, M.; Mackay, D.; Gouin, J.

    2004-01-01

    The Berkeley-Trent (BETR)-World model, a 25 compartment, geographically explicit fugacity-based model is described and applied to evaluate the transport of chemicals from temperate source regions to receptor regions (such as the Arctic). The model was parameterized using GIS and an array of digital data on weather, oceans, freshwater, vegetation and geo-political boundaries. This version of the BETR model framework includes modification of atmospheric degradation rates by seasonally variable hydroxyl radical concentrations and temperature. Degradation rates in all other compartments vary with seasonally changing temperature. Deposition to the deep ocean has been included as a loss mechanism. A case study was undertaken for α-HCH. Dynamic emission scenarios were estimated for each of the 25 regions. Predicted environmental concentrations showed good agreement with measured values for the northern regions in air, and fresh and oceanic water and with the results from a previous model of global chemical fate. Potential for long-range transport and deposition to the Arctic region was assessed using a Transfer Efficiency combined with estimated emissions. European regions and the Orient including China have a high potential to contribute α-HCH contamination in the Arctic due to high rates of emission in these regions despite low Transfer Efficiencies. Sensitivity analyses reveal that the performance and reliability of the model is strongly influenced by parameters controlling degradation rates. - A geographically explicit multi-compartment model is applied to the transport of α-HCH to the Arctic, showing Europe and the Orient are key sources

  2. Modeling Implicit and Explicit Memory.

    Raaijmakers, J.G.W.; Ohta, N.; Izawa, C.

    2005-01-01

    Mathematical models of memory are useful for describing basic processes of memory in a way that enables generalization across a number of experimental paradigms. Models that have these characteristics do not just engage in empirical curve-fitting, but may also provide explanations for puzzling

  3. Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control

    Domínguez, Luis F.

    2011-01-19

    In this paper we present recent advances in multiparametric nonlinear programming (mp-NLP) algorithms for explicit nonlinear model predictive control (mp-NMPC). Three mp-NLP algorithms for NMPC are discussed, based on which novel mp-NMPC controllers are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.

  4. Spatially explicit modelling of cholera epidemics

    Finger, F.; Bertuzzo, E.; Mari, L.; Knox, A. C.; Gatto, M.; Rinaldo, A.

    2013-12-01

    Epidemiological models can provide crucial understanding about the dynamics of infectious diseases. Possible applications range from real-time forecasting and allocation of health care resources to testing alternative intervention mechanisms such as vaccines, antibiotics or the improvement of sanitary conditions. We apply a spatially explicit model to the cholera epidemic that struck Haiti in October 2010 and is still ongoing. The dynamics of susceptibles as well as symptomatic and asymptomatic infectives are modelled at the scale of local human communities. Dissemination of Vibrio cholerae through hydrological transport and human mobility along the road network is explicitly taken into account, as well as the effect of rainfall as a driver of increasing disease incidence. The model is calibrated using a dataset of reported cholera cases. We further model the long term impact of several types of interventions on the disease dynamics by varying parameters appropriately. Key epidemiological mechanisms and parameters which affect the efficiency of treatments such as antibiotics are identified. Our results lead to conclusions about the influence of different intervention strategies on the overall epidemiological dynamics.

  5. Spatially explicit modeling in ecology: A review

    DeAngelis, Donald L.; Yurek, Simeon

    2017-01-01

    The use of spatially explicit models (SEMs) in ecology has grown enormously in the past two decades. One major advancement has been that fine-scale details of landscapes, and of spatially dependent biological processes, such as dispersal and invasion, can now be simulated with great precision, due to improvements in computer technology. Many areas of modeling have shifted toward a focus on capturing these fine-scale details, to improve mechanistic understanding of ecosystems. However, spatially implicit models (SIMs) have played a dominant role in ecology, and arguments have been made that SIMs, which account for the effects of space without specifying spatial positions, have an advantage of being simpler and more broadly applicable, perhaps contributing more to understanding. We address this debate by comparing SEMs and SIMs in examples from the past few decades of modeling research. We argue that, although SIMs have been the dominant approach in the incorporation of space in theoretical ecology, SEMs have unique advantages for addressing pragmatic questions concerning species populations or communities in specific places, because local conditions, such as spatial heterogeneities, organism behaviors, and other contingencies, produce dynamics and patterns that usually cannot be incorporated into simpler SIMs. SEMs are also able to describe mechanisms at the local scale that can create amplifying positive feedbacks at that scale, creating emergent patterns at larger scales, and therefore are important to basic ecological theory. We review the use of SEMs at the level of populations, interacting populations, food webs, and ecosystems and argue that SEMs are not only essential in pragmatic issues, but must play a role in the understanding of causal relationships on landscapes.

  6. Explicitly represented polygon wall boundary model for the explicit MPS method

    Mitsume, Naoto; Yoshimura, Shinobu; Murotani, Kohei; Yamada, Tomonori

    2015-05-01

    This study presents an accurate and robust boundary model, the explicitly represented polygon (ERP) wall boundary model, to treat arbitrarily shaped wall boundaries in the explicit moving particle simulation (E-MPS) method, which is a mesh-free particle method for strong form partial differential equations. The ERP model expresses wall boundaries as polygons, which are explicitly represented without using the distance function. These are derived so that for viscous fluids, and with less computational cost, they satisfy the Neumann boundary condition for the pressure and the slip/no-slip condition on the wall surface. The proposed model is verified and validated by comparing computed results with the theoretical solution, results obtained by other models, and experimental results. Two simulations with complex boundary movements are conducted to demonstrate the applicability of the E-MPS method to the ERP model.

  7. Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control

    Domínguez, Luis F.; Pistikopoulos, Efstratios N.

    2011-01-01

    are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.

  8. Explicit Nonlinear Model Predictive Control Theory and Applications

    Grancharova, Alexandra

    2012-01-01

    Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø  Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...

  9. Modelling conflict management in design: an explicit approach

    Brazier, F.M.; van Langen, P.H.G.; Treur, J.

    1995-01-01

    This paper focusses on how conflicts that arise during a design process and the management of conflicts can be modelled. A number of possible conflict types are distinguished and it is described how each of them can be detected during the design process, using an explicit meta-representation.

  10. Modeling single versus multiple systems in implicit and explicit memory.

    Starns, Jeffrey J; Ratcliff, Roger; McKoon, Gail

    2012-04-01

    It is currently controversial whether priming on implicit tasks and discrimination on explicit recognition tests are supported by a single memory system or by multiple, independent systems. In a Psychological Review article, Berry and colleagues used mathematical modeling to address this question and provide compelling evidence against the independent-systems approach. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A new parallelization algorithm of ocean model with explicit scheme

    Fu, X. D.

    2017-08-01

    This paper will focus on the parallelization of ocean model with explicit scheme which is one of the most commonly used schemes in the discretization of governing equation of ocean model. The characteristic of explicit schema is that calculation is simple, and that the value of the given grid point of ocean model depends on the grid point at the previous time step, which means that one doesn’t need to solve sparse linear equations in the process of solving the governing equation of the ocean model. Aiming at characteristics of the explicit scheme, this paper designs a parallel algorithm named halo cells update with tiny modification of original ocean model and little change of space step and time step of the original ocean model, which can parallelize ocean model by designing transmission module between sub-domains. This paper takes the GRGO for an example to implement the parallelization of GRGO (Global Reduced Gravity Ocean model) with halo update. The result demonstrates that the higher speedup can be achieved at different problem size.

  12. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    Madronich, Sasha [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  13. Explicit estimating equations for semiparametric generalized linear latent variable models

    Ma, Yanyuan

    2010-07-05

    We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.

  14. Integrating remote sensing and spatially explicit epidemiological modeling

    Finger, Flavio; Knox, Allyn; Bertuzzo, Enrico; Mari, Lorenzo; Bompangue, Didier; Gatto, Marino; Rinaldo, Andrea

    2015-04-01

    Spatially explicit epidemiological models are a crucial tool for the prediction of epidemiological patterns in time and space as well as for the allocation of health care resources. In addition they can provide valuable information about epidemiological processes and allow for the identification of environmental drivers of the disease spread. Most epidemiological models rely on environmental data as inputs. They can either be measured in the field by the means of conventional instruments or using remote sensing techniques to measure suitable proxies of the variables of interest. The later benefit from several advantages over conventional methods, including data availability, which can be an issue especially in developing, and spatial as well as temporal resolution of the data, which is particularly crucial for spatially explicit models. Here we present the case study of a spatially explicit, semi-mechanistic model applied to recurring cholera outbreaks in the Lake Kivu area (Democratic Republic of the Congo). The model describes the cholera incidence in eight health zones on the shore of the lake. Remotely sensed datasets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers. Human mobility and its effect on the disease spread is also taken into account. Several model configurations are tested on a data set of reported cases. The best models, accounting for different environmental drivers, and selected using the Akaike information criterion, are formally compared via cross validation. The best performing model accounts for seasonality, El Niño Southern Oscillation, precipitation and human mobility.

  15. Modeling Active Aging and Explicit Memory: An Empirical Study.

    Ponce de León, Laura Ponce; Lévy, Jean Pierre; Fernández, Tomás; Ballesteros, Soledad

    2015-08-01

    The rapid growth of the population of older adults and their concomitant psychological status and health needs have captured the attention of researchers and health professionals. To help fill the void of literature available to social workers interested in mental health promotion and aging, the authors provide a model for active aging that uses psychosocial variables. Structural equation modeling was used to examine the relationships among the latent variables of the state of explicit memory, the perception of social resources, depression, and the perception of quality of life in a sample of 184 older adults. The results suggest that explicit memory is not a direct indicator of the perception of quality of life, but it could be considered an indirect indicator as it is positively correlated with perception of social resources and negatively correlated with depression. These last two variables influenced the perception of quality of life directly, the former positively and the latter negatively. The main outcome suggests that the perception of social support improves explicit memory and quality of life and reduces depression in active older adults. The findings also suggest that gerontological professionals should design memory training programs, improve available social resources, and offer environments with opportunities to exercise memory.

  16. Explicit estimating equations for semiparametric generalized linear latent variable models

    Ma, Yanyuan; Genton, Marc G.

    2010-01-01

    which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n

  17. Explicit chiral symmetry breaking in Gross-Neveu type models

    Boehmer, Christian

    2011-07-25

    This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti {psi}i{gamma}{sup {mu}}{partial_derivative}{sub {mu}}{psi}-m{sub 0} anti {psi}{psi}+(g{sup 2})/(2)(anti {psi}{psi}){sup 2}+(G{sup 2})/(2)(anti {psi}i{gamma}{sub 5}{psi}){sup 2} in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL{sub 2} model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL{sub 2} model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL{sub 2} model in ({mu},T,{gamma}) space, where {gamma} arises from m{sub 0} through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL{sub 2} model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel {xi} parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL{sub 2} model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well

  18. Explicit chiral symmetry breaking in Gross-Neveu type models

    Boehmer, Christian

    2011-01-01

    This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti ψiγ μ ∂ μ ψ-m 0 anti ψψ+(g 2 )/(2)(anti ψψ) 2 +(G 2 )/(2)(anti ψiγ 5 ψ) 2 in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL 2 model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL 2 model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL 2 model in (μ,T,γ) space, where γ arises from m 0 through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL 2 model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel ξ parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL 2 model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well-known that the massless NJL 2 model can be solved analytically. The same is true for the GN model, be it massless or massive. Here, the

  19. Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase

    C. Mouchel-Vallon

    2013-01-01

    Full Text Available The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (yield less than 2% on carbon atom basis under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation to 70% (octane oxidation of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively. Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.

  20. Generalized Heteroskedasticity ACF for Moving Average Models in Explicit Forms

    Samir Khaled Safi

    2014-01-01

    The autocorrelation function (ACF) measures the correlation between observations at different   distances apart. We derive explicit equations for generalized heteroskedasticity ACF for moving average of order q, MA(q). We consider two cases: Firstly: when the disturbance term follow the general covariance matrix structure Cov(wi, wj)=S with si,j ¹ 0 " i¹j . Secondly: when the diagonal elements of S are not all identical but sij = 0 " i¹j, i.e. S=diag(s11, s22,&hellip...

  1. Generalized Heteroskedasticity ACF for Moving Average Models in Explicit Forms

    Samir Khaled Safi

    2014-02-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 The autocorrelation function (ACF measures the correlation between observations at different   distances apart. We derive explicit equations for generalized heteroskedasticity ACF for moving average of order q, MA(q. We consider two cases: Firstly: when the disturbance term follow the general covariance matrix structure Cov(wi, wj=S with si,j ¹ 0 " i¹j . Secondly: when the diagonal elements of S are not all identical but sij = 0 " i¹j, i.e. S=diag(s11, s22,…,stt. The forms of the explicit equations depend essentially on the moving average coefficients and covariance structure of the disturbance terms.   /* Style Definitions */ table.MsoNormalTable {mso-style-name:"جدول عادي"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;}

  2. Explicit equilibria in a kinetic model of gambling

    Bassetti, F.; Toscani, G.

    2010-06-01

    We introduce and discuss a nonlinear kinetic equation of Boltzmann type which describes the evolution of wealth in a pure gambling process, where the entire sum of wealths of two agents is up for gambling, and randomly shared between the agents. For this equation the analytical form of the steady states is found for various realizations of the random fraction of the sum which is shared to the agents. Among others, the exponential distribution appears as steady state in case of a uniformly distributed random fraction, while Gamma distribution appears for a random fraction which is Beta distributed. The case in which the gambling game is only conservative-in-the-mean is shown to lead to an explicit heavy tailed distribution.

  3. Depletion benchmarks calculation of random media using explicit modeling approach of RMC

    Liu, Shichang; She, Ding; Liang, Jin-gang; Wang, Kan

    2016-01-01

    Highlights: • Explicit modeling of RMC is applied to depletion benchmark for HTGR fuel element. • Explicit modeling can provide detailed burnup distribution and burnup heterogeneity. • The results would serve as a supplement for the HTGR fuel depletion benchmark. • The method of adjacent burnup regions combination is proposed for full-core problems. • The combination method can reduce memory footprint, keeping the computing accuracy. - Abstract: Monte Carlo method plays an important role in accurate simulation of random media, owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. Three stochastic geometry modeling methods including Random Lattice Method, Chord Length Sampling and explicit modeling approach with mesh acceleration technique, have been implemented in RMC to simulate the particle transport in the dispersed fuels, in which the explicit modeling method is regarded as the best choice. In this paper, the explicit modeling method is applied to the depletion benchmark for HTGR fuel element, and the method of combination of adjacent burnup regions has been proposed and investigated. The results show that the explicit modeling can provide detailed burnup distribution of individual TRISO particles, and this work would serve as a supplement for the HTGR fuel depletion benchmark calculations. The combination of adjacent burnup regions can effectively reduce the memory footprint while keeping the computational accuracy.

  4. Explicit Modeling of Solid Ocean Floor in Shallow Underwater Explosions

    A.P. Walters

    2013-01-01

    Full Text Available Current practices for modeling the ocean floor in underwater explosion simulations call for application of an inviscid fluid with soil properties. A method for modeling the ocean floor as a Lagrangian solid, vice an Eulerian fluid, was developed in order to determine its effects on underwater explosions in shallow water using the DYSMAS solver. The Lagrangian solid bottom model utilized transmitting boundary segments, exterior nodal forces acting as constraints, and the application of prestress to minimize any distortions into the fluid domain. For simplicity, elastic materials were used in this current effort, though multiple constitutive soil models can be applied to improve the overall accuracy of the model. Even though this method is unable to account for soil cratering effects, it does however provide the distinct advantage of modeling contoured ocean floors such as dredged channels and sloped bottoms absent in Eulerian formulations. The study conducted here showed significant differences among the initial bottom reflections for the different solid bottom contours that were modeled. The most important bottom contour effect was the distortion to the gas bubble and its associated first pulse timing. In addition to its utility in bottom modeling, implementation of the non-reflecting boundary along with realistic material models can be used to drastically reduce the size of current fluid domains.

  5. Making decision process knowledge explicit using the product data model

    Petrusel, R.; Vanderfeesten, I.T.P.; Dolean, Cristina; Mican, D.

    2011-01-01

    In this paper, we present a new knowledge acquisition and formalization method: the decision mining approach. Basically, we aim to produce a model of the workflow of mental actions performed by decision makers during the decision process. We show that through the use of a Product Data Model (PDM) we

  6. Quantum decay model with exact explicit analytical solution

    Marchewka, Avi; Granot, Er'El

    2009-01-01

    A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.

  7. Are mixed explicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixed solvation models.

    Kamerlin, Shina C. L.; Haranczyk, Maciej; Warshel, Arieh

    2009-05-01

    Phosphate hydrolysis is ubiquitous in biology. However, despite intensive research on this class of reactions, the precise nature of the reaction mechanism remains controversial. In this work, we have examined the hydrolysis of three homologous phosphate diesters. The solvation free energy was simulated by means of either an implicit solvation model (COSMO), hybrid quantum mechanical / molecular mechanical free energy perturbation (QM/MM-FEP) or a mixed solvation model in which N water molecules were explicitly included in the ab initio description of the reacting system (where N=1-3), with the remainder of the solvent being implicitly modelled as a continuum. Here, both COSMO and QM/MM-FEP reproduce Delta Gobs within an error of about 2kcal/mol. However, we demonstrate that in order to obtain any form of reliable results from a mixed model, it is essential to carefully select the explicit water molecules from short QM/MM runs that act as a model for the true infinite system. Additionally, the mixed models tend to be increasingly inaccurate the more explicit water molecules are placed into the system. Thus, our analysis indicates that this approach provides an unreliable way for modelling phosphate hydrolysis in solution.

  8. Chemical equilibrium relations used in the fireball model of relativistic heavy ion reactions

    Gupta, S.D.

    1978-01-01

    The fireball model of relativistic heavy-ion collision uses chemical equilibrium relations to predict cross sections for particle and composite productions. These relations are examined in a canonical ensemble model where chemical equilibrium is not explicitly invoked

  9. SOMPROF: A vertically explicit soil organic matter model

    Braakhekke, M.C.; Beer, M.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.

    2011-01-01

    Most current soil organic matter (SOM) models represent the soil as a bulk without specification of the vertical distribution of SOM in the soil profile. However, the vertical SOM profile may be of great importance for soil carbon cycling, both on short (hours to years) time scale, due to

  10. Modeling chemical kinetics graphically

    Heck, A.

    2012-01-01

    In literature on chemistry education it has often been suggested that students, at high school level and beyond, can benefit in their studies of chemical kinetics from computer supported activities. Use of system dynamics modeling software is one of the suggested quantitative approaches that could

  11. Explicit versus Implicit Solvent Modeling of Raman Optical Activity Spectra

    Hopmann, K. H.; Ruud, K.; Pecul, M.; Kudelski, A.; Dračínský, Martin; Bouř, Petr

    2011-01-01

    Roč. 115, č. 14 (2011), s. 4128-4137 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) LH11033; GA ČR GAP208/11/0105 Grant - others:AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : raman optical activity * lactamide * solvent models Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.696, year: 2011

  12. Explicit prediction of ice clouds in general circulation models

    Kohler, Martin

    1999-11-01

    Although clouds play extremely important roles in the radiation budget and hydrological cycle of the Earth, there are large quantitative uncertainties in our understanding of their generation, maintenance and decay mechanisms, representing major obstacles in the development of reliable prognostic cloud water schemes for General Circulation Models (GCMs). Recognizing their relative neglect in the past, both observationally and theoretically, this work places special focus on ice clouds. A recent version of the UCLA - University of Utah Cloud Resolving Model (CRM) that includes interactive radiation is used to perform idealized experiments to study ice cloud maintenance and decay mechanisms under various conditions in term of: (1) background static stability, (2) background relative humidity, (3) rate of cloud ice addition over a fixed initial time-period and (4) radiation: daytime, nighttime and no-radiation. Radiation is found to have major effects on the life-time of layer-clouds. Optically thick ice clouds decay significantly slower than expected from pure microphysical crystal fall-out (taucld = 0.9--1.4 h as opposed to no-motion taumicro = 0.5--0.7 h). This is explained by the upward turbulent fluxes of water induced by IR destabilization, which partially balance the downward transport of water by snowfall. Solar radiation further slows the ice-water decay by destruction of the inversion above cloud-top and the resulting upward transport of water. Optically thin ice clouds, on the other hand, may exhibit even longer life-times (>1 day) in the presence of radiational cooling. The resulting saturation mixing ratio reduction provides for a constant cloud ice source. These CRM results are used to develop a prognostic cloud water scheme for the UCLA-GCM. The framework is based on the bulk water phase model of Ose (1993). The model predicts cloud liquid water and cloud ice separately, and which is extended to split the ice phase into suspended cloud ice (predicted

  13. Model of high-tech businesses management under the trends of explicit and implicit knowledge markets: classification and business model

    Guzel Isayevna Gumerova; Elmira Shamilevna Shaimieva

    2015-01-01

    Objective to define the notion of ldquohightech businessrdquo to elaborate classification of hightech businesses to elaborate the business model for hightech business management. Methods general scientific methods of theoretical and empirical cognition. Results the research presents a business model of hightech businesses management basing on the trends of explicit and explicit knowledge market with the dominating implicit knowledge market classification of hightech business...

  14. A spatially explicit scenario-driven model of adaptive capacity to global change in Europe

    Acosta, L.; Klein, R.J.T.; Reidsma, P.; Metzger, M.J.; Rounsevell, M.D.A.; Leemans, R.

    2013-01-01

    Traditional impact models combine exposure in the form of scenarios and sensitivity in the form of parameters, providing potential impacts of global change as model outputs. However, adaptive capacity is rarely addressed in these models. This paper presents the first spatially explicit

  15. DEFINING RECOVERY GOALS AND STRATEGIES FOR ENDANGERED SPECIES USING SPATIALLY-EXPLICIT POPULATION MODELS

    We used a spatially explicit population model of wolves (Canis lupus) to propose a framework for defining rangewide recovery priorities and finer-scale strategies for regional reintroductions. The model predicts that Yellowstone and central Idaho, where wolves have recently been ...

  16. Flood vulnerability assessment of residential buildings by explicit damage process modelling

    Custer, Rocco; Nishijima, Kazuyoshi

    2015-01-01

    The present paper introduces a vulnerability modelling approach for residential buildings in flood. The modelling approach explicitly considers relevant damage processes, i.e. water infiltration into the building, mechanical failure of components in the building envelope and damage from water...

  17. An Explicit Formula for Symmetric Polynomials Related to the Eigenfunctions of Calogero-Sutherland Models

    Martin Hallnäs

    2007-03-01

    Full Text Available We review a recent construction of an explicit analytic series representation for symmetric polynomials which up to a groundstate factor are eigenfunctions of Calogero-Sutherland type models. We also indicate a generalisation of this result to polynomials which give the eigenfunctions of so-called 'deformed' Calogero-Sutherland type models.

  18. LLNL Chemical Kinetics Modeling Group

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  19. Comparison of explicit and effective models for calculating ionic populations in argon plasmas

    Abdallah, J. Jr.; Clark, R.E.H.

    1994-01-01

    Calculations have been performed to model the state populations of argon plasmas at electron densities at and above those required for the validity of coronal equilibrium. Both effective and explicit models have been used, and both are based on the same set of atomic cross sections. The effective model includes ground and singly excited states explicitly, while the effect of autoionizing states is accounted for by branching factors which describe their depopulation into the various non-autoionizing states. The explicit model considers both autoionizing and non-autoionizing states explicitly. The effective model requires a significantly reduced amount of computer time and memory. Good agreement between the two models can be obtained through moderate densities if the branching factors include electron density dependent terms which describe the collisional stabilization of each autoionizing state. The effective model breaks down as density is increased because the population of individual autoionizing states become significant. Results for both ionization balance and radiated power loss are presented. (Author)

  20. High Performance Programming Using Explicit Shared Memory Model on Cray T3D1

    Simon, Horst D.; Saini, Subhash; Grassi, Charles

    1994-01-01

    The Cray T3D system is the first-phase system in Cray Research, Inc.'s (CRI) three-phase massively parallel processing (MPP) program. This system features a heterogeneous architecture that closely couples DEC's Alpha microprocessors and CRI's parallel-vector technology, i.e., the Cray Y-MP and Cray C90. An overview of the Cray T3D hardware and available programming models is presented. Under Cray Research adaptive Fortran (CRAFT) model four programming methods (data parallel, work sharing, message-passing using PVM, and explicit shared memory model) are available to the users. However, at this time data parallel and work sharing programming models are not available to the user community. The differences between standard PVM and CRI's PVM are highlighted with performance measurements such as latencies and communication bandwidths. We have found that the performance of neither standard PVM nor CRI s PVM exploits the hardware capabilities of the T3D. The reasons for the bad performance of PVM as a native message-passing library are presented. This is illustrated by the performance of NAS Parallel Benchmarks (NPB) programmed in explicit shared memory model on Cray T3D. In general, the performance of standard PVM is about 4 to 5 times less than obtained by using explicit shared memory model. This degradation in performance is also seen on CM-5 where the performance of applications using native message-passing library CMMD on CM-5 is also about 4 to 5 times less than using data parallel methods. The issues involved (such as barriers, synchronization, invalidating data cache, aligning data cache etc.) while programming in explicit shared memory model are discussed. Comparative performance of NPB using explicit shared memory programming model on the Cray T3D and other highly parallel systems such as the TMC CM-5, Intel Paragon, Cray C90, IBM-SP1, etc. is presented.

  1. An Efficient Explicit-time Description Method for Timed Model Checking

    Hao Wang

    2009-12-01

    Full Text Available Timed model checking, the method to formally verify real-time systems, is attracting increasing attention from both the model checking community and the real-time community. Explicit-time description methods verify real-time systems using general model constructs found in standard un-timed model checkers. Lamport proposed an explicit-time description method using a clock-ticking process (Tick to simulate the passage of time together with a group of global variables to model time requirements. Two methods, the Sync-based Explicit-time Description Method using rendezvous synchronization steps and the Semaphore-based Explicit-time Description Method using only one global variable were proposed; they both achieve better modularity than Lamport's method in modeling the real-time systems. In contrast to timed automata based model checkers like UPPAAL, explicit-time description methods can access and store the current time instant for future calculations necessary for many real-time systems, especially those with pre-emptive scheduling. However, the Tick process in the above three methods increments the time by one unit in each tick; the state spaces therefore grow relatively fast as the time parameters increase, a problem when the system's time period is relatively long. In this paper, we propose a more efficient method which enables the Tick process to leap multiple time units in one tick. Preliminary experimental results in a high performance computing environment show that this new method significantly reduces the state space and improves both the time and memory efficiency.

  2. Scaling-up spatially-explicit ecological models using graphics processors

    Koppel, Johan van de; Gupta, Rohit; Vuik, Cornelis

    2011-01-01

    How the properties of ecosystems relate to spatial scale is a prominent topic in current ecosystem research. Despite this, spatially explicit models typically include only a limited range of spatial scales, mostly because of computing limitations. Here, we describe the use of graphics processors to

  3. Dynamic optimization and robust explicit model predictive control of hydrogen storage tank

    Panos, C.

    2010-09-01

    We present a general framework for the optimal design and control of a metal-hydride bed under hydrogen desorption operation. The framework features: (i) a detailed two-dimension dynamic process model, (ii) a design and operational dynamic optimization step, and (iii) an explicit/multi-parametric model predictive controller design step. For the controller design, a reduced order approximate model is obtained, based on which nominal and robust multi-parametric controllers are designed. © 2010 Elsevier Ltd.

  4. Dynamic optimization and robust explicit model predictive control of hydrogen storage tank

    Panos, C.; Kouramas, K.I.; Georgiadis, M.C.; Pistikopoulos, E.N.

    2010-01-01

    We present a general framework for the optimal design and control of a metal-hydride bed under hydrogen desorption operation. The framework features: (i) a detailed two-dimension dynamic process model, (ii) a design and operational dynamic optimization step, and (iii) an explicit/multi-parametric model predictive controller design step. For the controller design, a reduced order approximate model is obtained, based on which nominal and robust multi-parametric controllers are designed. © 2010 Elsevier Ltd.

  5. Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems

    Khajuria, Harish

    2011-01-01

    Pressure swing adsorption (PSA) is a flexible, albeit complex gas separation system. Due to its inherent nonlinear nature and discontinuous operation, the design of a model based PSA controller, especially with varying operating conditions, is a challenging task. This work focuses on the design of an explicit/multi-parametric model predictive controller for a PSA system. Based on a system involving four adsorbent beds separating 70% H2, 30% CH4 mixture into high purity hydrogen, the key controller objective is to fast track H2 purity to a set point value of 99.99%. To perform this task, a rigorous and systematic framework is employed. First, a high fidelity detailed dynamic model is built to represent the system\\'s real operation, and understand its dynamic behavior. The model is then used to derive appropriate linear models by applying suitable system identification techniques. For the reduced models, a model predictive control (MPC) step is formulated, where latest developments in multi-parametric programming and control are applied to derive a novel explicit MPC controller. To test the performance of the designed controller, closed loop simulations are performed where the dynamic model is used as the virtual plant. Comparison studies of the derived explicit MPC controller are also performed with conventional PID controllers. © 2010 Elsevier Ltd. All rights reserved.

  6. Predicting continental-scale patterns of bird species richness with spatially explicit models

    Rahbek, Carsten; Gotelli, Nicholas J; Colwell, Robert K

    2007-01-01

    the extraordinary diversity of avian species in the montane tropics, the most species-rich region on Earth. Our findings imply that correlative climatic models substantially underestimate the importance of historical factors and small-scale niche-driven assembly processes in shaping contemporary species-richness......The causes of global variation in species richness have been debated for nearly two centuries with no clear resolution in sight. Competing hypotheses have typically been evaluated with correlative models that do not explicitly incorporate the mechanisms responsible for biotic diversity gradients....... Here, we employ a fundamentally different approach that uses spatially explicit Monte Carlo models of the placement of cohesive geographical ranges in an environmentally heterogeneous landscape. These models predict species richness of endemic South American birds (2248 species) measured...

  7. Fire Propagation Tracing Model in the Explicit Treatment of Events of Fire PSA

    Lim, Ho Gon; Han, Sang Hoon; Yang, Jun Eon

    2010-01-01

    The fire propagation model in a fire PSA has not been considered analytically instead a simplified analyst's intuition was used to consider the fire propagation path. A fire propagation equation is developed to trace all the propagation paths in the fire area in which a zone is defined to identify various fire ignition sources. An initiation of fire is assumed to take place in a zone. Then, the propagation is modeled with a Boolean equation. Since the explicit fire PSA modeling requires an exclusive event set to sum up the..., exclusive event sets are derived from the fire propagation equation. As an example, we show the exclusive set for a 2x3 rectangular fire zone. Also, the applicability the developed fire equation is discussed when the number of zone increases including the limitation of the explicit fire PSA modeling method

  8. Testing the cognitive catalyst model of rumination with explicit and implicit cognitive content.

    Sova, Christopher C; Roberts, John E

    2018-06-01

    The cognitive catalyst model posits that rumination and negative cognitive content, such as negative schema, interact to predict depressive affect. Past research has found support for this model using explicit measures of negative cognitive content such as self-report measures of trait self-esteem and dysfunctional attitudes. The present study tested whether these findings would extend to implicit measures of negative cognitive content such as implicit self-esteem, and whether effects would depend on initial mood state and history of depression. Sixty-one undergraduate students selected on the basis of depression history (27 previously depressed; 34 never depressed) completed explicit and implicit measures of negative cognitive content prior to random assignment to a rumination induction followed by a distraction induction or vice versa. Dysphoric affect was measured both before and after these inductions. Analyses revealed that explicit measures, but not implicit measures, interacted with rumination to predict change in dysphoric affect, and these interactions were further moderated by baseline levels of dysphoria. Limitations include the small nonclinical sample and use of a self-report measure of depression history. These findings suggest that rumination amplifies the association between explicit negative cognitive content and depressive affect primarily among people who are already experiencing sad mood. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The composition-explicit distillation curve technique: Relating chemical analysis and physical properties of complex fluids.

    Bruno, Thomas J; Ott, Lisa S; Lovestead, Tara M; Huber, Marcia L

    2010-04-16

    The analysis of complex fluids such as crude oils, fuels, vegetable oils and mixed waste streams poses significant challenges arising primarily from the multiplicity of components, the different properties of the components (polarity, polarizability, etc.) and matrix properties. We have recently introduced an analytical strategy that simplifies many of these analyses, and provides the added potential of linking compositional information with physical property information. This aspect can be used to facilitate equation of state development for the complex fluids. In addition to chemical characterization, the approach provides the ability to calculate thermodynamic properties for such complex heterogeneous streams. The technique is based on the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. The analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. By far, the most widely used analytical technique we have used with the ADC is gas chromatography. This has enabled us to study finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this special issue of the Journal of Chromatography, specifically dedicated to extraction technologies, we describe the essential features of the advanced distillation curve metrology as an analytical strategy for complex fluids. Published by Elsevier B.V.

  10. Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; Reynolds, Daniel R.; Ullrich, Paul A.; Woodward, Carol S.

    2018-04-01

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit-explicit (IMEX) additive Runge-Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit - vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored. The accuracy and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.

  11. Implicit–explicit (IMEX Runge–Kutta methods for non-hydrostatic atmospheric models

    D. J. Gardner

    2018-04-01

    Full Text Available The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX additive Runge–Kutta (ARK methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracy and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.

  12. Diagnosis of dynamic systems based on explicit and implicit behavioural models: an application to gas turbines in Esprit Project Tiger

    Trave-Massuyes, L. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Milne, R.

    1995-12-31

    We are interested in the monitoring and diagnosis of dynamic systems. In our work, we are combining explicit temporal models of the behaviour of a dynamic system with implicit behavioural models supporting model based approaches. This work is drive by the needs of and applied to, two gas turbines of very different size and power. In this paper we describe the problems of building systems for these domains and illustrate how we have developed a system where these two approaches complement each other to provide a comprehensive fault detection and diagnosis system. We also explore the strengths and weaknesses of each approach. The work described here is currently working continuously, on line to a gas turbine in a major chemical plant. (author) 24 refs.

  13. Diagnosis of dynamic systems based on explicit and implicit behavioural models: an application to gas turbines in Esprit Project Tiger

    Trave-Massuyes, L [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Milne, R

    1996-12-31

    We are interested in the monitoring and diagnosis of dynamic systems. In our work, we are combining explicit temporal models of the behaviour of a dynamic system with implicit behavioural models supporting model based approaches. This work is drive by the needs of and applied to, two gas turbines of very different size and power. In this paper we describe the problems of building systems for these domains and illustrate how we have developed a system where these two approaches complement each other to provide a comprehensive fault detection and diagnosis system. We also explore the strengths and weaknesses of each approach. The work described here is currently working continuously, on line to a gas turbine in a major chemical plant. (author) 24 refs.

  14. Explicit calculation of indirect global warming potentials for halons using atmospheric models

    D. J. Wuebbles

    2009-11-01

    Full Text Available The concept of Global Warming Potentials (GWPs has been extensively used in policy consideration as a relative index for comparing the climate impact of an emitted greenhouse gas (GHG, relative to carbon dioxide with equal mass emissions. Ozone depletion due to emission of chlorinated or brominated halocarbons leads to cooling of the climate system in the opposite direction to the direct warming contribution by halocarbons as GHGs. This cooling is a key indirect effect of the halocarbons on climatic radiative forcing, which is accounted for by indirect GWPs. With respect to climate, it is critical to understand net influences considering direct warming and indirect cooling effects especially for Halons due to the greater ozone-depleting efficiency of bromine over chlorine. Until now, the indirect GWPs have been calculated using a parameterized approach based on the concept of Equivalent Effective Stratospheric Chlorine (EESC and the observed ozone depletion over the last few decades. As a step towards obtaining indirect GWPs through a more robust approach, we use atmospheric models to explicitly calculate the indirect GWPs of Halon-1211 and Halon-1301 for a 100-year time horizon. State-of-the-art global chemistry-transport models (CTMs were used as the computational tools to derive more realistic ozone depletion changes caused by an added pulse emission of the two major Halons at the surface. The radiative forcings on climate from the ozone changes have been calculated for indirect GWPs using an atmospheric radiative transfer model (RTM. The simulated temporal variations of global average total column Halons after a pulse perturbation follow an exponential decay with an e-folding time which is consistent with the expected chemical lifetimes of the Halons. Our calculated indirect GWPs for the two Halons are much smaller than those from past studies but are within a single standard deviation of WMO (2007 values and the direct GWP values derived

  15. Explicit Modeling of Ancestry Improves Polygenic Risk Scores and BLUP Prediction.

    Chen, Chia-Yen; Han, Jiali; Hunter, David J; Kraft, Peter; Price, Alkes L

    2015-09-01

    Polygenic prediction using genome-wide SNPs can provide high prediction accuracy for complex traits. Here, we investigate the question of how to account for genetic ancestry when conducting polygenic prediction. We show that the accuracy of polygenic prediction in structured populations may be partly due to genetic ancestry. However, we hypothesized that explicitly modeling ancestry could improve polygenic prediction accuracy. We analyzed three GWAS of hair color (HC), tanning ability (TA), and basal cell carcinoma (BCC) in European Americans (sample size from 7,440 to 9,822) and considered two widely used polygenic prediction approaches: polygenic risk scores (PRSs) and best linear unbiased prediction (BLUP). We compared polygenic prediction without correction for ancestry to polygenic prediction with ancestry as a separate component in the model. In 10-fold cross-validation using the PRS approach, the R(2) for HC increased by 66% (0.0456-0.0755; P ancestry, which prevents ancestry effects from entering into each SNP effect and being overweighted. Surprisingly, explicitly modeling ancestry produces a similar improvement when using the BLUP approach, which fits all SNPs simultaneously in a single variance component and causes ancestry to be underweighted. We validate our findings via simulations, which show that the differences in prediction accuracy will increase in magnitude as sample sizes increase. In summary, our results show that explicitly modeling ancestry can be important in both PRS and BLUP prediction. © 2015 WILEY PERIODICALS, INC.

  16. The SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation

    S. Madronich

    2007-11-01

    Full Text Available Our current understanding of secondary organic aerosol (SOA formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i the potential for products of multiple oxidation steps contributing to SOA, and (ii the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of detailed gas-phase oxidation schemes with a thermodynamic condensation module. Such a model allows prediction of SOA mass and speciation on the basis of first principles. The SOA/VOC/NOx system is studied for the oxidation of 1-octene under atmospherically relevant concentrations. In this study, gaseous oxidation of octene is simulated to lead to SOA formation. Contributors to SOA formation are shown to be formed via multiple oxidation steps of the parent hydrocarbon. The behaviour of the SOA/VOC/NOx system simulated using the explicit model agrees with general tendencies observed during laboratory chamber experiments. This explicit modelling of SOA formation appears as a useful exploratory tool to (i support interpretations of SOA formation observed in laboratory chamber experiments, (ii give some insights on SOA formation under atmospherically relevant conditions and (iii investigate implications for the regional/global lifetimes of the SOA.

  17. A unitary signal-detection model of implicit and explicit memory.

    Berry, Christopher J; Shanks, David R; Henson, Richard N A

    2008-10-01

    Do dissociations imply independent systems? In the memory field, the view that there are independent implicit and explicit memory systems has been predominantly supported by dissociation evidence. Here, we argue that many of these dissociations do not necessarily imply distinct memory systems. We review recent work with a single-system computational model that extends signal-detection theory (SDT) to implicit memory. SDT has had a major influence on research in a variety of domains. The current work shows that it can be broadened even further in its range of application. Indeed, the single-system model that we present does surprisingly well in accounting for some key dissociations that have been taken as evidence for independent implicit and explicit memory systems.

  18. Reduction of chemical reaction models

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  19. An Explicit Approach Toward Modeling Thermo-Coupled Deformation Behaviors of SMPs

    Hao Li

    2017-03-01

    Full Text Available A new elastoplastic J 2 -flow models with thermal effects is proposed toward simulating thermo-coupled finite deformation behaviors of shape memory polymers. In this new model, an elastic potential evolving with development of plastic flow is incorporated to characterize the stress-softening effect at unloading and, moreover, thermo-induced plastic flow is introduced to represent the strain recovery effect at heating. It is shown that any given test data for both effects may be accurately simulated by means of direct and explicit procedures. Numerical examples for model predictions compare well with test data in literature.

  20. Explicit all-atom modeling of realistically sized ligand-capped nanocrystals

    Kaushik, Ananth P.

    2012-01-01

    We present a study of an explicit all-atom representation of nanocrystals of experimentally relevant sizes (up to 6 nm), capped with alkyl chain ligands, in vacuum. We employ all-atom molecular dynamics simulation methods in concert with a well-tested intermolecular potential model, MM3 (molecular mechanics 3), for the studies presented here. These studies include determining the preferred conformation of an isolated single nanocrystal (NC), pairs of isolated NCs, and (presaging studies of superlattice arrays) unit cells of NC superlattices. We observe that very small NCs (3 nm) behave differently in a superlattice as compared to larger NCs (6 nm and above) due to the conformations adopted by the capping ligands on the NC surface. Short ligands adopt a uniform distribution of orientational preferences, including some that lie against the face of the nanocrystal. In contrast, longer ligands prefer to interdigitate. We also study the effect of changing ligand length and ligand coverage on the NCs on the preferred ligand configurations. Since explicit all-atom modeling constrains the maximum system size that can be studied, we discuss issues related to coarse-graining the representation of the ligands, including a comparison of two commonly used coarse-grained models. We find that care has to be exercised in the choice of coarse-grained model. The data provided by these realistically sized ligand-capped NCs, determined using explicit all-atom models, should serve as a reference standard for future models of coarse-graining ligands using united atom models, especially for self-assembly processes. © 2012 American Institute of Physics.

  1. Latin hypercube sampling and geostatistical modeling of spatial uncertainty in a spatially explicit forest landscape model simulation

    Chonggang Xu; Hong S. He; Yuanman Hu; Yu Chang; Xiuzhen Li; Rencang Bu

    2005-01-01

    Geostatistical stochastic simulation is always combined with Monte Carlo method to quantify the uncertainty in spatial model simulations. However, due to the relatively long running time of spatially explicit forest models as a result of their complexity, it is always infeasible to generate hundreds or thousands of Monte Carlo simulations. Thus, it is of great...

  2. Probabilistic modelling in urban drainage – two approaches that explicitly account for temporal variation of model errors

    Löwe, Roland; Del Giudice, Dario; Mikkelsen, Peter Steen

    of input uncertainties observed in the models. The explicit inclusion of such variations in the modelling process will lead to a better fulfilment of the assumptions made in formal statistical frameworks, thus reducing the need to resolve to informal methods. The two approaches presented here...

  3. Multiscale modeling of a rectifying bipolar nanopore: explicit-water versus implicit-water simulations.

    Ható, Zoltán; Valiskó, Mónika; Kristóf, Tamás; Gillespie, Dirk; Boda, Dezsö

    2017-07-21

    In a multiscale modeling approach, we present computer simulation results for a rectifying bipolar nanopore at two modeling levels. In an all-atom model, we use explicit water to simulate ion transport directly with the molecular dynamics technique. In a reduced model, we use implicit water and apply the Local Equilibrium Monte Carlo method together with the Nernst-Planck transport equation. This hybrid method makes the fast calculation of ion transport possible at the price of lost details. We show that the implicit-water model is an appropriate representation of the explicit-water model when we look at the system at the device (i.e., input vs. output) level. The two models produce qualitatively similar behavior of the electrical current for different voltages and model parameters. Looking at the details of concentration and potential profiles, we find profound differences between the two models. These differences, however, do not influence the basic behavior of the model as a device because they do not influence the z-dependence of the concentration profiles which are the main determinants of current. These results then address an old paradox: how do reduced models, whose assumptions should break down in a nanoscale device, predict experimental data? Our simulations show that reduced models can still capture the overall device physics correctly, even though they get some important aspects of the molecular-scale physics quite wrong; reduced models work because they include the physics that is necessary from the point of view of device function. Therefore, reduced models can suffice for general device understanding and device design, but more detailed models might be needed for molecular level understanding.

  4. An improved risk-explicit interval linear programming model for pollution load allocation for watershed management.

    Xia, Bisheng; Qian, Xin; Yao, Hong

    2017-11-01

    Although the risk-explicit interval linear programming (REILP) model has solved the problem of having interval solutions, it has an equity problem, which can lead to unbalanced allocation between different decision variables. Therefore, an improved REILP model is proposed. This model adds an equity objective function and three constraint conditions to overcome this equity problem. In this case, pollution reduction is in proportion to pollutant load, which supports balanced development between different regional economies. The model is used to solve the problem of pollution load allocation in a small transboundary watershed. Compared with the REILP original model result, our model achieves equity between the upstream and downstream pollutant loads; it also overcomes the problem of greatest pollution reduction, where sources are nearest to the control section. The model provides a better solution to the problem of pollution load allocation than previous versions.

  5. Short-Range Prediction of Monsoon Precipitation by NCMRWF Regional Unified Model with Explicit Convection

    Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.

    2018-03-01

    There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and

  6. An explicit formula for the interface tension of the 2D Potts model

    Borgs, Christian; Janke, Wolfhard

    1992-11-01

    We consider the exact correlation length calculations for the two-dimensional Potts model at the transition point β_t by Klümper, Schadschneider and Zittartz, and by Buffenoir and Wallon. We argue that the correlation length calculated by the latter authors is the correlation length in the disordered phase and then combine their result with duality and the assumption of complete wetting to give an explicit formula for the order-disorder interface tension σ_od of this model. The result is used to clarify a controversy stemming from different numerical simulations of σ_od.

  7. Development of a reactive burn model based upon an explicit visco-plastic pore collapse model

    Bouton, Eric; Lefrançois, Alexandre; Belmas, Robert

    2015-06-01

    Our aim in this study is to develop a reactive burn model based upon a microscopic hot spot model to compute the initiation and shock to detonation of pressed TATB explosives. For the sake of simplicity, the hot spots are supposed to result from the viscoplastic collapse of spherical micro-voids inside the composition. Such a model has been incorporated in a lagrangian hydrodynamic code. In our calculations, 8 different pore diameters, ranging from 100 nm to 1.2 μm, have been taken into account and the porosity associated to each pore size has been deduced from the PBX-9502 void distribution derived from the SAXS. The last ingredient of our model is the burn rate that depends on two main variables. The first one is the shock pressure as proposed by the developers of the CREST model. The second one is the number of effective chemical reaction sites calculated by the microscopic model. Furthermore, the function of the reaction progress variable of the burn rate is similar to that in the SURF model proposed by Menikoff. Our burn rate has been calibrated by using pressure profile, material velocities wave forms obtained with embedded particle velocity gauges and run distance to detonation. The comparison between the numerical and experimental results is really good and sufficient to perform a wide variety of simulations including single, double shock waves and the desensitization phenomenon. In conclusion, future works are described.

  8. Modeling mixed retention and early arrivals in multidimensional heterogeneous media using an explicit Lagrangian scheme

    Zhang, Yong; Meerschaert, Mark M.; Baeumer, Boris; LaBolle, Eric M.

    2015-08-01

    This study develops an explicit two-step Lagrangian scheme based on the renewal-reward process to capture transient anomalous diffusion with mixed retention and early arrivals in multidimensional media. The resulting 3-D anomalous transport simulator provides a flexible platform for modeling transport. The first step explicitly models retention due to mass exchange between one mobile zone and any number of parallel immobile zones. The mobile component of the renewal process can be calculated as either an exponential random variable or a preassigned time step, and the subsequent random immobile time follows a Hyper-exponential distribution for finite immobile zones or a tempered stable distribution for infinite immobile zones with an exponentially tempered power-law memory function. The second step describes well-documented early arrivals which can follow streamlines due to mechanical dispersion using the method of subordination to regional flow. Applicability and implementation of the Lagrangian solver are further checked against transport observed in various media. Results show that, although the time-nonlocal model parameters are predictable for transport with retention in alluvial settings, the standard time-nonlocal model cannot capture early arrivals. Retention and early arrivals observed in porous and fractured media can be efficiently modeled by our Lagrangian solver, allowing anomalous transport to be incorporated into 2-D/3-D models with irregular flow fields. Extensions of the particle-tracking approach are also discussed for transport with parameters conditioned on local aquifer properties, as required by transient flow and nonstationary media.

  9. A Bidirectional Subsurface Remote Sensing Reflectance Model Explicitly Accounting for Particle Backscattering Shapes

    He, Shuangyan; Zhang, Xiaodong; Xiong, Yuanheng; Gray, Deric

    2017-11-01

    The subsurface remote sensing reflectance (rrs, sr-1), particularly its bidirectional reflectance distribution function (BRDF), depends fundamentally on the angular shape of the volume scattering functions (VSFs, m-1 sr-1). Recent technological advancement has greatly expanded the collection, and the knowledge of natural variability, of the VSFs of oceanic particles. This allows us to test the Zaneveld's theoretical rrs model that explicitly accounts for particle VSF shapes. We parameterized the rrs model based on HydroLight simulations using 114 VSFs measured in three coastal waters around the United States and in oceanic waters of North Atlantic Ocean. With the absorption coefficient (a), backscattering coefficient (bb), and VSF shape as inputs, the parameterized model is able to predict rrs with a root mean square relative error of ˜4% for solar zenith angles from 0 to 75°, viewing zenith angles from 0 to 60°, and viewing azimuth angles from 0 to 180°. A test with the field data indicates the performance of our model, when using only a and bb as inputs and selecting the VSF shape using bb, is comparable to or slightly better than the currently used models by Morel et al. and Lee et al. Explicitly expressing VSF shapes in rrs modeling has great potential to further constrain the uncertainty in the ocean color studies as our knowledge on the VSFs of natural particles continues to improve. Our study represents a first effort in this direction.

  10. Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

    M. H. Savoji

    2014-09-01

    Full Text Available Gaussian Mixture Models (GMMs of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equations whose solutions lead to the first estimates of speech and noise power spectra. The noise source is also identified and the input SNR estimated in this first step. These first estimates are then refined using approximate but explicit MMSE and MAP estimation formulations. The refined estimates are then used in a Wiener filter to reduce noise and enhance the noisy speech. The proposed schemes show good results. Nevertheless, it is shown that the MAP explicit solution, introduced here for the first time, reduces the computation time to less than one third with a slight higher improvement in SNR and PESQ score and also less distortion in comparison to the MMSE solution.

  11. Modelling the Hydraulic Behaviour of Growing Media with the Explicit Finite Volume Solution

    Marco Carbone

    2015-02-01

    Full Text Available The increasing imperviousness of urban areas reduces the infiltration and evapotranspiration capacity of urban catchments and results in increased runoff. In the last few decades, several solutions and techniques have been proposed to prevent such impacts by restoring the hydrological cycle. A limiting factor in spreading the use of such systems is the lack of proper modelling tools for design, especially for the infiltration processes in a growing medium. In this research, a physically-based model, employing the explicit Finite Volume Method (FVM, is proposed for modelling infiltration into growing media. The model solves a modified version of the Richards equation using a formulation which takes into account the main characteristics of green infrastructure substrates. The proposed model was verified against the HYDRUS-1D software and the comparison of results confirmed the suitability of the proposed model for correctly describing the hydraulic behaviour of soil substrates.

  12. Towards Linking 3D SAR and Lidar Models with a Spatially Explicit Individual Based Forest Model

    Osmanoglu, B.; Ranson, J.; Sun, G.; Armstrong, A. H.; Fischer, R.; Huth, A.

    2017-12-01

    In this study, we present a parameterization of the FORMIND individual-based gap model (IBGM)for old growth Atlantic lowland rainforest in La Selva, Costa Rica for the purpose of informing multisensor remote sensing techniques for above ground biomass techniques. The model was successfully parameterized and calibrated for the study site; results show that the simulated forest reproduces the structural complexity of Costa Rican rainforest based on comparisons with CARBONO inventory plot data. Though the simulated stem numbers (378) slightly underestimated the plot data (418), particularly for canopy dominant intermediate shade tolerant trees and shade tolerant understory trees, overall there was a 9.7% difference. Aboveground biomass (kg/ha) showed a 0.1% difference between the simulated forest and inventory plot dataset. The Costa Rica FORMIND simulation was then used to parameterize a spatially explicit (3D) SAR and lidar backscatter models. The simulated forest stands were used to generate a Look Up Table as a tractable means to estimate aboveground forest biomass for these complex forests. Various combinations of lidar and radar variables were evaluated in the LUT inversion. To test the capability of future data for estimation of forest height and biomass, we considered data of 1) L- (or P-) band polarimetric data (backscattering coefficients of HH, HV and VV); 2) L-band dual-pol repeat-pass InSAR data (HH/HV backscattering coefficients and coherences, height of scattering phase center at HH and HV using DEM or surface height from lidar data as reference); 3) P-band polarimetric InSAR data (canopy height from inversion of PolInSAR data or use the coherences and height of scattering phase center at HH, HV and VV); 4) various height indices from waveform lidar data); and 5) surface and canopy top height from photon-counting lidar data. The methods for parameterizing the remote sensing models with the IBGM and developing Look Up Tables will be discussed. Results

  13. A new method for explicit modelling of single failure event within different common cause failure groups

    Kančev, Duško; Čepin, Marko

    2012-01-01

    Redundancy and diversity are the main principles of the safety systems in the nuclear industry. Implementation of safety components redundancy has been acknowledged as an effective approach for assuring high levels of system reliability. The existence of redundant components, identical in most of the cases, implicates a probability of their simultaneous failure due to a shared cause—a common cause failure. This paper presents a new method for explicit modelling of single component failure event within multiple common cause failure groups simultaneously. The method is based on a modification of the frequently utilised Beta Factor parametric model. The motivation for development of this method lays in the fact that one of the most widespread softwares for fault tree and event tree modelling as part of the probabilistic safety assessment does not comprise the option for simultaneous assignment of single failure event to multiple common cause failure groups. In that sense, the proposed method can be seen as an advantage of the explicit modelling of common cause failures. A standard standby safety system is selected as a case study for application and study of the proposed methodology. The results and insights implicate improved, more transparent and more comprehensive models within probabilistic safety assessment.

  14. Explicit ions/implicit water generalized Born model for nucleic acids

    Tolokh, Igor S.; Thomas, Dennis G.; Onufriev, Alexey V.

    2018-05-01

    The ion atmosphere around highly charged nucleic acid molecules plays a significant role in their dynamics, structure, and interactions. Here we utilized the implicit solvent framework to develop a model for the explicit treatment of ions interacting with nucleic acid molecules. The proposed explicit ions/implicit water model is based on a significantly modified generalized Born (GB) model and utilizes a non-standard approach to define the solute/solvent dielectric boundary. Specifically, the model includes modifications to the GB interaction terms for the case of multiple interacting solutes—disconnected dielectric boundary around the solute-ion or ion-ion pairs. A fully analytical description of all energy components for charge-charge interactions is provided. The effectiveness of the approach is demonstrated by calculating the potential of mean force for Na+-Cl- ion pair and by carrying out a set of Monte Carlo (MC) simulations of mono- and trivalent ions interacting with DNA and RNA duplexes. The monovalent (Na+) and trivalent (CoHex3+) counterion distributions predicted by the model are in close quantitative agreement with all-atom explicit water molecular dynamics simulations used as reference. Expressed in the units of energy, the maximum deviations of local ion concentrations from the reference are within kBT. The proposed explicit ions/implicit water GB model is able to resolve subtle features and differences of CoHex distributions around DNA and RNA duplexes. These features include preferential CoHex binding inside the major groove of the RNA duplex, in contrast to CoHex biding at the "external" surface of the sugar-phosphate backbone of the DNA duplex; these differences in the counterion binding patters were earlier shown to be responsible for the observed drastic differences in condensation propensities between short DNA and RNA duplexes. MC simulations of CoHex ions interacting with the homopolymeric poly(dA.dT) DNA duplex with modified (de

  15. Spatially-Explicit Bayesian Information Entropy Metrics for Calibrating Landscape Transformation Models

    Kostas Alexandridis

    2013-06-01

    Full Text Available Assessing spatial model performance often presents challenges related to the choice and suitability of traditional statistical methods in capturing the true validity and dynamics of the predicted outcomes. The stochastic nature of many of our contemporary spatial models of land use change necessitate the testing and development of new and innovative methodologies in statistical spatial assessment. In many cases, spatial model performance depends critically on the spatially-explicit prior distributions, characteristics, availability and prevalence of the variables and factors under study. This study explores the statistical spatial characteristics of statistical model assessment of modeling land use change dynamics in a seven-county study area in South-Eastern Wisconsin during the historical period of 1963–1990. The artificial neural network-based Land Transformation Model (LTM predictions are used to compare simulated with historical land use transformations in urban/suburban landscapes. We introduce a range of Bayesian information entropy statistical spatial metrics for assessing the model performance across multiple simulation testing runs. Bayesian entropic estimates of model performance are compared against information-theoretic stochastic entropy estimates and theoretically-derived accuracy assessments. We argue for the critical role of informational uncertainty across different scales of spatial resolution in informing spatial landscape model assessment. Our analysis reveals how incorporation of spatial and landscape information asymmetry estimates can improve our stochastic assessments of spatial model predictions. Finally our study shows how spatially-explicit entropic classification accuracy estimates can work closely with dynamic modeling methodologies in improving our scientific understanding of landscape change as a complex adaptive system and process.

  16. A spatially explicit model for an Allee effect: why wolves recolonize so slowly in Greater Yellowstone.

    Hurford, Amy; Hebblewhite, Mark; Lewis, Mark A

    2006-11-01

    A reduced probability of finding mates at low densities is a frequently hypothesized mechanism for a component Allee effect. At low densities dispersers are less likely to find mates and establish new breeding units. However, many mathematical models for an Allee effect do not make a distinction between breeding group establishment and subsequent population growth. Our objective is to derive a spatially explicit mathematical model, where dispersers have a reduced probability of finding mates at low densities, and parameterize the model for wolf recolonization in the Greater Yellowstone Ecosystem (GYE). In this model, only the probability of establishing new breeding units is influenced by the reduced probability of finding mates at low densities. We analytically and numerically solve the model to determine the effect of a decreased probability in finding mates at low densities on population spread rate and density. Our results suggest that a reduced probability of finding mates at low densities may slow recolonization rate.

  17. An explicit solution of the mathematical model for osmotic desalination process

    Kim, Do Yeon; Gu, Boram; Yang, Dae Ryook [Korea University, Seoul (Korea, Republic of)

    2013-09-15

    Membrane processes such as reverse osmosis and forward osmosis for seawater desalination have gained attention in recent years. Mathematical models have been used to interpret the mechanism of membrane processes. The membrane process model, consisting of flux and concentration polarization (CP) models, is coupled with balance equations and solved simultaneously. This set of model equations is, however, implicit and nonlinear; consequently, the model must be solved iteratively and numerically, which is time- and cost-intensive. We suggest a method to transform implicit equations to their explicit form, in order to avoid an iterative procedure. In addition, the performance of five solving methods, including the method that we suggest, is tested and compared for accuracy, computation time, and robustness based on input conditions. Our proposed method shows the best performance based on the robustness of various simulation conditions, accuracy, and a cost-effective computation time.

  18. Pedagogical Model for Explicit Teaching of Reading Comprehension to English Language Learners

    Al Tiyb Al Khaiyali

    2017-09-01

    Full Text Available Reading comprehension instruction is considered one of the major challenges that most English language teachers and students encounter. Therefore, providing a systematic, explicit, and flexible model to teaching reading comprehension strategies could help resolve some of these challenges and increase the possibility of teaching reading comprehension, particularly in language learners’ classrooms. Consequently, the purpose of this paper is to provide a model to teach reading comprehension strategies in language learning classrooms. The proposed instructional model is divided into three systematic phases through which strategies are taught before reading, during reading, and after reading. Each phase is explained and elaborated using recommended models for teachers. Finally, suggested considerations to consolidate this model are provided.

  19. Modeling nitrous oxide production and reduction in soil through explicit representation of denitrification enzyme kinetics.

    Zheng, Jianqiu; Doskey, Paul V

    2015-02-17

    An enzyme-explicit denitrification model with representations for pre- and de novo synthesized enzymes was developed to improve predictions of nitrous oxide (N2O) accumulations in soil and emissions from the surface. The metabolic model of denitrification is based on dual-substrate utilization and Monod growth kinetics. Enzyme synthesis/activation was incorporated into each sequential reduction step of denitrification to regulate dynamics of the denitrifier population and the active enzyme pool, which controlled the rate function. Parameterizations were developed from observations of the dynamics of N2O production and reduction in soil incubation experiments. The model successfully reproduced the dynamics of N2O and N2 accumulation in the incubations and revealed an important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Pre-synthesized denitrification enzymes contributed 20, 13, 43, and 62% of N2O that accumulated in 48 h incubations of soil collected from depths of 0-5, 5-10, 10-15, and 15-25 cm, respectively. An enzyme activity function (E) was defined to estimate the relative concentration of active enzymes and variation in response to environmental conditions. The value of E allows for activities of pre-synthesized denitrification enzymes to be differentiated from de novo synthesized enzymes. Incorporating explicit representations of denitrification enzyme kinetics into biogeochemical models is a promising approach for accurately simulating dynamics of the production and reduction of N2O in soils.

  20. A Risk Assessment Example for Soil Invertebrates Using Spatially Explicit Agent-Based Models

    Reed, Melissa; Alvarez, Tania; Chelinho, Sonia

    2016-01-01

    Current risk assessment methods for measuring the toxicity of plant protection products (PPPs) on soil invertebrates use standardized laboratory conditions to determine acute effects on mortality and sublethal effects on reproduction. If an unacceptable risk is identified at the lower tier...... population models for ubiquitous soil invertebrates (collembolans and earthworms) as refinement options in current risk assessment. Both are spatially explicit agent-based models (ABMs), incorporating individual and landscape variability. The models were used to provide refined risk assessments for different...... application scenarios of a hypothetical pesticide applied to potato crops (full-field spray onto the soil surface [termed “overall”], in-furrow, and soil-incorporated pesticide applications). In the refined risk assessment, the population models suggest that soil invertebrate populations would likely recover...

  1. Flavour chemicals in a sample of non-cigarette tobacco products without explicit flavour names sold in New York City in 2015.

    Farley, Shannon M; Schroth, Kevin Rj; Grimshaw, Victoria; Luo, Wentai; DeGagne, Julia L; Tierney, Peyton A; Kim, Kilsun; Pankow, James F

    2018-03-01

    Youth who experiment with tobacco often start with flavoured products. In New York City (NYC), local law restricts sales of all tobacco products with 'characterising flavours' except for 'tobacco, menthol, mint and wintergreen'. Enforcement is based on packaging: explicit use of a flavour name (eg, 'strawberry') or image depicting a flavour (eg, a fruit) is presumptive evidence that a product is flavoured and therefore prohibited. However, a tobacco product may contain significant levels of added flavour chemicals even when the label does not explicitly use a flavour name. Sixteen tobacco products were purchased within NYC in 2015 that did not have explicit flavour names, along with three with flavour names. These were analysed for 92 known flavour chemicals plus triacetin by gas chromatography/mass spectrometry. 14 of the 16 products had total determined flavour chemical levels that were higher (>0.3 mg/g) than in previously studied flavour-labelled products and of a chemical profile indicating added flavour chemicals. The results suggest that the tobacco industry has responded to sales restrictions by renaming flavoured products to avoid explicitly identifying them as flavoured. While chemical analysis is the most precise means of identifying flavours in tobacco products, federal tobacco laws pre-empt localities from basing regulations on that approach, limiting enforcement options. If the Food and Drug Administration would mandate that all tobacco products must indicate when flavourings are present above a specific level, local jurisdictions could enforce their sales restrictions. A level of 0.1 mg/g for total added flavour chemicals is suggested here as a relevant reference value for regulating added flavour chemicals in tobacco products. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Simulation of a severe convective storm using a numerical model with explicitly incorporated aerosols

    Lompar, Miloš; Ćurić, Mladjen; Romanic, Djordje

    2017-09-01

    Despite an important role the aerosols play in all stages of cloud lifecycle, their representation in numerical weather prediction models is often rather crude. This paper investigates the effects the explicit versus implicit inclusion of aerosols in a microphysics parameterization scheme in Weather Research and Forecasting (WRF) - Advanced Research WRF (WRF-ARW) model has on cloud dynamics and microphysics. The testbed selected for this study is a severe mesoscale convective system with supercells that struck west and central parts of Serbia in the afternoon of July 21, 2014. Numerical products of two model runs, i.e. one with aerosols explicitly (WRF-AE) included and another with aerosols implicitly (WRF-AI) assumed, are compared against precipitation measurements from surface network of rain gauges, as well as against radar and satellite observations. The WRF-AE model accurately captured the transportation of dust from the north Africa over the Mediterranean and to the Balkan region. On smaller scales, both models displaced the locations of clouds situated above west and central Serbia towards southeast and under-predicted the maximum values of composite radar reflectivity. Similar to satellite images, WRF-AE shows the mesoscale convective system as a merged cluster of cumulonimbus clouds. Both models over-predicted the precipitation amounts; WRF-AE over-predictions are particularly pronounced in the zones of light rain, while WRF-AI gave larger outliers. Unlike WRF-AI, the WRF-AE approach enables the modelling of time evolution and influx of aerosols into the cloud which could be of practical importance in weather forecasting and weather modification. Several likely causes for discrepancies between models and observations are discussed and prospects for further research in this field are outlined.

  3. [Application of spatially explicit landscape model in soil loss study in Huzhong area].

    Xu, Chonggang; Hu, Yuanman; Chang, Yu; Li, Xiuzhen; Bu, Renchang; He, Hongshi; Leng, Wenfang

    2004-10-01

    Universal Soil Loss Equation (USLE) has been widely used to estimate the average annual soil loss. In most of the previous work on soil loss evaluation on forestland, cover management factor was calculated from the static forest landscape. The advent of spatially explicit forest landscape model in the last decade, which explicitly simulates the forest succession dynamics under natural and anthropogenic disturbances (fire, wind, harvest and so on) on heterogeneous landscape, makes it possible to take into consideration the change of forest cover, and to dynamically simulate the soil loss in different year (e.g. 10 years and 20 years after current year). In this study, we linked a spatially explicit landscape model (LANDIS) with USLE to simulate the soil loss dynamics under two scenarios: fire and no harvest, fire and harvest. We also simulated the soil loss with no fire and no harvest as a control. The results showed that soil loss varied periodically with simulation year, and the amplitude of change was the lowest under the control scenario and the highest under the fire and no harvest scenario. The effect of harvest on soil loss could not be easily identified on the map; however, the cumulative effect of harvest on soil loss was larger than that of fire. Decreasing the harvest area and the percent of bare soil increased by harvest could significantly reduce soil loss, but had no significant effects on the dynamic of soil loss. Although harvest increased the annual soil loss, it tended to decrease the variability of soil loss between different simulation years.

  4. Chemical model reduction under uncertainty

    Malpica Galassi, Riccardo; Valorani, Mauro; Najm, Habib N.; Safta, Cosmin; Khalil, Mohammad; Ciottoli, Pietro P.

    2017-01-01

    A general strategy for analysis and reduction of uncertain chemical kinetic models is presented, and its utility is illustrated in the context of ignition of hydrocarbon fuel–air mixtures. The strategy is based on a deterministic analysis

  5. Interaction of the model alkyltrimethylammonium ions with alkali halide salts: an explicit water molecular dynamics study

    M. Druchok

    2013-01-01

    Full Text Available We present an explicit water molecular dynamics simulation of dilute solutions of model alkyltrimethylammonium surfactant ions (number of methylene groups in the tail is 3, 5, 8, 10, and 12 in mixture with NaF, NaCl, NaBr, and NaI salts, respectively. The SPC/E model is used to describe water molecules. Results of the simulation at 298 K are presented in form of the radial distribution functions between nitrogen and carbon atoms of CH2 groups on the alkyltrimethylammonium ion, and the counterion species in the solution. The running coordination numbers between carbon atoms of surfactants and counterions are also calculated. We show that I- counterion exhibits the highest, and F- the lowest affinity to "bind" to the model surfactants. The results are discussed in view of the available experimental and simulation data for this and similar solutions.

  6. Analysis of explicit model predictive control for path-following control

    2018-01-01

    In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration. PMID:29534080

  7. Modeling of fatigue crack induced nonlinear ultrasonics using a highly parallelized explicit local interaction simulation approach

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-04-01

    This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.

  8. Explicit state representation and the ATLAS event data model: theory and practice

    Nowak, M; Snyder, S; Cranmer, K; Malon, D; Gemmeren, P v; Schaffer, A; Binet, S

    2008-01-01

    In anticipation of data taking, ATLAS has undertaken a program of work to develop an explicit state representation of the experiment's complex transient event data model. This effort has provided both an opportunity to consider explicitly the structure, organization, and content of the ATLAS persistent event store before writing tens of petabytes of data (replacing simple streaming, which uses the persistent store as a core dump of transient memory), and a locus for support of event data model evolution, including significant refactoring, beyond the automatic schema evolution capabilities of underlying persistence technologies. ATLAS has encountered the need for such non-trivial schema evolution on several occasions already. This paper describes the state representation strategy (transient/persistent separation) and its implementation, including both the payoffs that ATLAS has seen (significant and sometimes surprising space and performance improvements, the extra layer notwithstanding, and extremely general schema evolution support) and the costs (additional and relatively pervasive additional infrastructure development and maintenance). The paper further discusses how these costs are mitigated, and how ATLAS is able to implement this strategy without losing the ability to take advantage of the (improving!) automatic schema evolution capabilities of underlying technology layers when appropriate. Implications of state representations for direct ROOT browsability, and current strategies for associating physics analysis views with such state representations, are also described

  9. Analysis of explicit model predictive control for path-following control.

    Lee, Junho; Chang, Hyuk-Jun

    2018-01-01

    In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration.

  10. Novel application of explicit dynamics occupancy models to ongoing aquatic invasions

    Sepulveda, Adam J.

    2018-01-01

    Identification of suitable habitats, where invasive species can establish, is an important step towards controlling their spread. Accurate identification is difficult for new or slow invaders because unoccupied habitats may be suitable, given enough time for dispersal, while occupied habitats may prove to be unsuitable for establishment.To identify the suitable habitat of a recent invader, I used an explicit dynamics occupancy modelling framework to evaluate habitat covariates related to successful and failed establishments of American bullfrogs (Lithobates catesbeianus) within the Yellowstone River floodplain of Montana, USA from 2012-2016.During this five-year period, bullfrogs failed to establish at most sites they colonized. Bullfrog establishment was most likely to occur and least likely to fail at sites closest to human-modified ponds and lakes and those with emergent vegetation. These habitat covariates were generally associated with the presence of permanent water.Suitable habitat for bullfrog establishment is abundant in the Yellowstone River floodplain, though many sites with suitable habitat remain uncolonized. Thus, the maximum distribution of bullfrogs is much greater than their current distribution.Synthesis and applications. Focused control efforts on habitats with or proximate to permanent waters are most likely to reduce the potential for invasive bullfrog establishment and spread in the Yellowstone River. The novel application of explicit dynamics occupancy models is a useful and widely applicable tool for guiding management efforts towards those habitats where new or slow invaders are most likely to establish and persist.

  11. Model of high-tech businesses management under the trends of explicit and implicit knowledge markets: classification and business model

    Guzel Isayevna Gumerova

    2015-03-01

    Full Text Available Objective to define the notion of ldquohightech businessrdquo to elaborate classification of hightech businesses to elaborate the business model for hightech business management. Methods general scientific methods of theoretical and empirical cognition. Results the research presents a business model of hightech businesses management basing on the trends of explicit and explicit knowledge market with the dominating implicit knowledge market classification of hightech businesses taking into consideration the three types of economic activity possibilities to manage hightech business basing on its market cost technological innovations costs and business indicators. Scientific novelty the interpretation of the notion of ldquohightech businessrdquo has been renewed the classification of hightech businesses has been elaborated for the first time allocating three groups of enterprises. Practical value theoretical significance ndash development of notional apparatus of hightech business management practical significancenbsp ndash grounding of the necessity to manage enterprises under development of explicit and explicit knowledge markets in Russia as a complex of capital and noncapital assets with dominating indicators of ldquomarket valuerdquo and ldquolife span of a companyrdquo. nbsp

  12. Modeling of turbulent chemical reaction

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  13. Explicit Solution of Reinsurance-Investment Problem for an Insurer with Dynamic Income under Vasicek Model

    De-Lei Sheng

    2016-01-01

    Full Text Available Unlike traditionally used reserves models, this paper focuses on a reserve process with dynamic income to study the reinsurance-investment problem for an insurer under Vasicek stochastic interest rate model. The insurer’s dynamic income is given by the remainder after a dynamic reward budget being subtracted from the insurer’s net premium which is calculated according to expected premium principle. Applying stochastic control technique, a Hamilton-Jacobi-Bellman equation is established and the explicit solution is obtained under the objective of maximizing the insurer’s power utility of terminal wealth. Some economic interpretations of the obtained results are explained in detail. In addition, numerical analysis and several graphics are given to illustrate our results more meticulous.

  14. From explicit to implicit normal mode initialization of a limited-area model

    Bijlsma, S.J.

    2013-02-15

    In this note the implicit normal mode initialization of a limited-area model is discussed from a different point of view. To that end it is shown that the equations describing the explicit normal mode initialization applied to the shallow water equations in differentiated form on the sphere can readily be derived in normal mode space if the model equations are separable, but only in the case of stationary Rossby modes can be transformed into the implicit equations in physical space. This is a consequence of the simple relations between the components of the different modes in that case. In addition a simple eigenvalue problem is given for the frequencies of the gravity waves. (orig.)

  15. Nano-colloid electrophoretic transport: Fully explicit modelling via dissipative particle dynamics

    Hassanzadeh Afrouzi, Hamid; Farhadi, Mousa; Sedighi, Kurosh; Moshfegh, Abouzar

    2018-02-01

    In present study, a novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced for modelling electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Moreover, capability of different thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field in nano scale application (0.072 600 in DPD units regardless of electric field intensity. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0.145 [ v / nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the radial distribution function with available electrolyte structure modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  16. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions.

    Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  17. Comparison of Explicitly Simulated and Downscaled Tropical Cyclone Activity in a High-Resolution Global Climate Model

    Hirofumi Tomita

    2010-01-01

    Full Text Available The response of tropical cyclone activity to climate change is a matter of great inherent interest and practical importance. Most current global climate models are not, however, capable of adequately resolving tropical cyclones; this has led to the development of downscaling techniques designed to infer tropical cyclone activity from the large-scale fields produced by climate models. Here we compare the statistics of tropical cyclones simulated explicitly in a very high resolution (~14 km grid mesh global climate model to the results of one such downscaling technique driven by the same global model. This is done for a simulation of the current climate and also for a simulation of a climate warmed by the addition of carbon dioxide. The explicitly simulated and downscaled storms are similarly distributed in space, but the intensity distribution of the downscaled events has a somewhat longer high-intensity tail, owing to the higher resolution of the downscaling model. Both explicitly simulated and downscaled events show large increases in the frequency of events at the high-intensity ends of their respective intensity distributions, but the downscaled storms also show increases in low-intensity events, whereas the explicitly simulated weaker events decline in number. On the regional scale, there are large differences in the responses of the explicitly simulated and downscaled events to global warming. In particular, the power dissipation of downscaled events shows a 175% increase in the Atlantic, while the power dissipation of explicitly simulated events declines there.

  18. Cholera in the Lake Kivu region (DRC): Integrating remote sensing and spatially explicit epidemiological modeling

    Finger, Flavio; Knox, Allyn; Bertuzzo, Enrico; Mari, Lorenzo; Bompangue, Didier; Gatto, Marino; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2014-07-01

    Mathematical models of cholera dynamics can not only help in identifying environmental drivers and processes that influence disease transmission, but may also represent valuable tools for the prediction of the epidemiological patterns in time and space as well as for the allocation of health care resources. Cholera outbreaks have been reported in the Democratic Republic of the Congo since the 1970s. They have been ravaging the shore of Lake Kivu in the east of the country repeatedly during the last decades. Here we employ a spatially explicit, inhomogeneous Markov chain model to describe cholera incidence in eight health zones on the shore of the lake. Remotely sensed data sets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers in addition to baseline seasonality. The effect of human mobility is also modelled mechanistically. We test several models on a multiyear data set of reported cholera cases. The best fourteen models, accounting for different environmental drivers, and selected using the Akaike information criterion, are formally compared via proper cross validation. Among these, the one accounting for seasonality, El Niño Southern Oscillation, precipitation and human mobility outperforms the others in cross validation. Some drivers (such as human mobility and rainfall) are retained only by a few models, possibly indicating that the mechanisms through which they influence cholera dynamics in the area will have to be investigated further.

  19. A novel explicit approach to model bromide and pesticide transport in soils containing macropores

    Klaus, J.; Zehe, E.

    2011-01-01

    The present study tests whether an explicit treatment of worm burrows is feasible for simulating water flow, bromide and pesticide transport in structured heterogeneous soils. The essence is to represent worm burrows as morphologically connected paths of low flow resistance in the spatially highly resolved model domain. A recent Monte Carlo study (Klaus and Zehe, 2010) revealed that this approach allowed successful reproduction of tile drain event discharge recorded during an irrigation experiment at a tile drained field site. However, several "hillslope architectures" that were all consistent with the available extensive data base allowed a good reproduction of tile drain flow response. Our second objective was thus to find out whether this "equifinality" in spatial model setups may be reduced when including bromide tracer data in the model falsification process. We thus simulated transport of bromide and Isoproturon (IPU) for the 13 spatial model setups, which performed best with respect to reproduce tile drain event discharge, without any further calibration. All model setups allowed a very good prediction of the temporal dynamics of cumulated bromide leaching into the tile drain, while only four of them matched the accumulated water balance and accumulated bromide loss into the tile drain. The number of behavioural model architectures could thus be reduced to four. One of those setups was used for simulating transport of IPU, using different parameter combinations to characterise adsorption according to the Footprint data base. Simulations could, however, only reproduce the observed leaching behaviour, when we allowed for retardation coefficients that were very close to one.

  20. Spatially explicit models, generalized reproduction numbers and the prediction of patterns of waterborne disease

    Rinaldo, A.; Gatto, M.; Mari, L.; Casagrandi, R.; Righetto, L.; Bertuzzo, E.; Rodriguez-Iturbe, I.

    2012-12-01

    Metacommunity and individual-based theoretical models are studied in the context of the spreading of infections of water-borne diseases along the ecological corridors defined by river basins and networks of human mobility. The overarching claim is that mathematical models can indeed provide predictive insight into the course of an ongoing epidemic, potentially aiding real-time emergency management in allocating health care resources and by anticipating the impact of alternative interventions. To support the claim, we examine the ex-post reliability of published predictions of the 2010-2011 Haiti cholera outbreak from four independent modeling studies that appeared almost simultaneously during the unfolding epidemic. For each modeled epidemic trajectory, it is assessed how well predictions reproduced the observed spatial and temporal features of the outbreak to date. The impact of different approaches is considered to the modeling of the spatial spread of V. cholera, the mechanics of cholera transmission and in accounting for the dynamics of susceptible and infected individuals within different local human communities. A generalized model for Haitian epidemic cholera and the related uncertainty is thus constructed and applied to the year-long dataset of reported cases now available. Specific emphasis will be dedicated to models of human mobility, a fundamental infection mechanism. Lessons learned and open issues are discussed and placed in perspective, supporting the conclusion that, despite differences in methods that can be tested through model-guided field validation, mathematical modeling of large-scale outbreaks emerges as an essential component of future cholera epidemic control. Although explicit spatial modeling is made routinely possible by widespread data mapping of hydrology, transportation infrastructure, population distribution, and sanitation, the precise condition under which a waterborne disease epidemic can start in a spatially explicit setting is

  1. Three Dimensional Explicit Model for Cometary Tail Ions Interactions with Solar Wind

    Al Bermani, M. J. F.; Alhamed, S. A.; Khalaf, S. Z.; Ali, H. Sh.; Selman, A. A.

    2009-06-01

    The different interactions between cometary tail and solar wind ions are studied in the present paper based on three-dimensional Lax explicit method. The model used in this research is based on the continuity equations describing the cometary tail-solar wind interactions. Three dimensional system was considered in this paper. Simulation of the physical system was achieved using computer code written using Matlab 7.0. The parameters studied here assumed Halley comet type and include the particle density rho, the particles velocity v, the magnetic field strength B, dynamic pressure p and internal energy E. The results of the present research showed that the interaction near the cometary nucleus is mainly affected by the new ions added to the plasma of the solar wind, which increases the average molecular weight and result in many unique characteristics of the cometary tail. These characteristics were explained in the presence of the IMF.

  2. The Importance of Representing Certain Key Vegetation Canopy Processes Explicitly in a Land Surface Model

    Napoly, A.; Boone, A. A.; Martin, E.; Samuelsson, P.

    2015-12-01

    Land surface models are moving to more detailed vegetation canopy descriptions in order to better represent certain key processes, such as Carbon dynamics and snowpack evolution. Since such models are usually applied within coupled numerical weather prediction or spatially distributed hydrological models, these improvements must strike a balance between computational cost and complexity. The consequences of simplified or composite canopy approaches can be manifested in terms of increased errors with respect to soil temperatures, estimates of the diurnal cycle of the turbulent fluxes or snow canopy interception and melt. Vegetated areas and particularly forests are modeled in a quite simplified manner in the ISBA land surface model. However, continuous developments of surface processes now require a more accurate description of the canopy. A new version of the the model now includes a multi energy balance (MEB) option to explicitly represent the canopy and the forest floor. It will be shown that certain newly included processes such as the shading effect of the vegetation, the explicit heat capacity of the canopy, and the insulating effect of the forest floor turn out to be essential. A detailed study has been done for four French forested sites. It was found that the MEB option significantly improves the ground heat flux (RMSE decrease from 50W/m2 to 10W/m2 on average) and soil temperatures when compared against measurements. Also the sensible heat flux calculation was improved primarily owing to a better phasing with the solar insulation owing to a lower vegetation heat capacity. However, the total latent heat flux is less modified compared to the classical ISBA simulation since it is more related to water uptake and the formulation of the stomatal resistance (which are unchanged). Next, a benchmark over 40 Fluxnet sites (116 cumulated years) was performed and compared with results from the default composite soil-vegetation version of ISBA. The results show

  3. Chemical model reduction under uncertainty

    Najm, Habib; Galassi, R. Malpica; Valorani, M.

    2016-01-01

    We outline a strategy for chemical kinetic model reduction under uncertainty. We present highlights of our existing deterministic model reduction strategy, and describe the extension of the formulation to include parametric uncertainty in the detailed mechanism. We discuss the utility of this construction, as applied to hydrocarbon fuel-air kinetics, and the associated use of uncertainty-aware measures of error between predictions from detailed and simplified models.

  4. Chemical model reduction under uncertainty

    Najm, Habib

    2016-01-05

    We outline a strategy for chemical kinetic model reduction under uncertainty. We present highlights of our existing deterministic model reduction strategy, and describe the extension of the formulation to include parametric uncertainty in the detailed mechanism. We discuss the utility of this construction, as applied to hydrocarbon fuel-air kinetics, and the associated use of uncertainty-aware measures of error between predictions from detailed and simplified models.

  5. Explicit simulation of ice particle habits in a Numerical Weather Prediction Model

    Hashino, Tempei

    2007-05-01

    This study developed a scheme for explicit simulation of ice particle habits in Numerical Weather Prediction (NWP) Models. The scheme is called Spectral Ice Habit Prediction System (SHIPS), and the goal is to retain growth history of ice particles in the Eulerian dynamics framework. It diagnoses characteristics of ice particles based on a series of particle property variables (PPVs) that reflect history of microphysieal processes and the transport between mass bins and air parcels in space. Therefore, categorization of ice particles typically used in bulk microphysical parameterization and traditional bin models is not necessary, so that errors that stem from the categorization can be avoided. SHIPS predicts polycrystals as well as hexagonal monocrystals based on empirically derived habit frequency and growth rate, and simulates the habit-dependent aggregation and riming processes by use of the stochastic collection equation with predicted PPVs. Idealized two dimensional simulations were performed with SHIPS in a NWP model. The predicted spatial distribution of ice particle habits and types, and evolution of particle size distributions showed good quantitative agreement with observation This comprehensive model of ice particle properties, distributions, and evolution in clouds can be used to better understand problems facing wide range of research disciplines, including microphysics processes, radiative transfer in a cloudy atmosphere, data assimilation, and weather modification.

  6. A spatially explicit model for the future progression of the current Haiti cholera epidemic

    Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2011-12-01

    As a major cholera epidemic progresses in Haiti, and the figures of the infection, up to July 2011, climb to 385,000 cases and 5,800 deaths, the development of general models to track and predict the evolution of the outbreak, so as to guide the allocation of medical supplies and staff, is gaining notable urgency. We propose here a spatially explicit epidemic model that accounts for the dynamics of susceptible and infected individuals as well as the redistribution of textit{Vibrio cholera}, the causative agent of the disease, among different human communities. In particular, we model two spreading pathways: the advection of pathogens through hydrologic connections and the dissemination due to human mobility described by means of a gravity-like model. To this end the country has been divided into hydrologic units based on drainage directions derived from a digital terrain model. Moreover the population of each unit has been estimated from census data downscaled to 1 km x 1 km resolution via remotely sensed geomorphological information (LandScan texttrademark project). The model directly account for the role of rainfall patterns in driving the seasonality of cholera outbreaks. The two main outbreaks in fact occurred during the rainy seasons (October and May) when extensive floodings severely worsened the sanitation conditions and, in turn, raised the risk of infection. The model capability to reproduce the spatiotemporal features of the epidemic up to date grants robustness to the foreseen future development. In this context, the duration of acquired immunity, a hotly debated topic in the scientific community, emerges as a controlling factor for progression of the epidemic in the near future. The framework presented here can straightforwardly be used to evaluate the effectiveness of alternative intervention strategies like mass vaccinations, clean water supply and educational campaigns, thus emerging as an essential component of the control of future cholera

  7. Explicit Nonlinear Model Predictive Control for a Saucer-Shaped Unmanned Aerial Vehicle

    Zhihui Xing

    2013-01-01

    Full Text Available A lifting body unmanned aerial vehicle (UAV generates lift by its body and shows many significant advantages due to the particular shape, such as huge loading space, small wetted area, high-strength fuselage structure, and large lifting area. However, designing the control law for a lifting body UAV is quite challenging because it has strong nonlinearity and coupling, and usually lacks it rudders. In this paper, an explicit nonlinear model predictive control (ENMPC strategy is employed to design a control law for a saucer-shaped UAV which can be adequately modeled with a rigid 6-degrees-of-freedom (DOF representation. In the ENMPC, control signal is calculated by approximation of the tracking error in the receding horizon by its Taylor-series expansion to any specified order. It enhances the advantages of the nonlinear model predictive control and eliminates the time-consuming online optimization. The simulation results show that ENMPC is a propriety strategy for controlling lifting body UAVs and can compensate the insufficient control surface area.

  8. Predicting drought propagation within peat layers using a three dimensionally explicit voxel based model

    Condro, A. A.; Pawitan, H.; Risdiyanto, I.

    2018-05-01

    Peatlands are very vulnerable to widespread fires during dry seasons, due to availability of aboveground fuel biomass on the surface and belowground fuel biomass on the sub-surface. Hence, understanding drought propagation occurring within peat layers is crucial with regards to disaster mitigation activities on peatlands. Using a three dimensionally explicit voxel-based model of peatland hydrology, this study predicted drought propagation time lags into sub-surface peat layers after drought events occurrence on the surface of about 1 month during La-Nina and 2.5 months during El-Nino. The study was carried out on a high-conservation-value area of oil palm plantation in West Kalimantan. Validity of the model was evaluated and its applicability for disaster mitigation was discussed. The animations of simulated voxels are available at: goo.gl/HDRMYN (El-Nino 2015 episode) and goo.gl/g1sXPl (La-Nina 2016 episode). The model is available at: goo.gl/RiuMQz.

  9. A stage-structured, spatially explicit migration model for Myotis bats: mortality location affects system dynamics

    Erickson, Richard A.; Thogmartin, Wayne E.; Russell, Robin E.; Diffendorfer, James E.; Szymanski, Jennifer A.

    2014-01-01

    Bats are ecologically and economically important species because they consume insects, transport nutrients, and pollinate flowers.  Many species of bats, including those in the Myotis genus, are facing population decline and increased extinction risk.  Despite these conservation concerns, few models exist for providing insight into the population dynamics of bats in a spatially explicit context.  We developed a model for bats by considering the stage-structured colonial life history of Myotis bats with their annual migration behavior.  This model provided insight into network dynamics.  We specifically focused on two Myotis species living in the eastern United States: the Indiana bat (M. sodalis), which is a Federally listed endangered species, and the little brown bat (M. lucifugus), which is under consideration for listing as an endangered species.  We found that multiple equilibria exist for the local, migratory subpopulations even though the total population was constant.  These equilibria suggest the location and magnitude of stressors such as White-nose Syndrome, meteorological phenomena, or impacts of wind turbines on survival influence system dynamics and risk of population extirpation in difficult to predict ways.

  10. Spatially Explicit Estimation of Optimal Light Use Efficiency for Improved Satellite Data Driven Ecosystem Productivity Modeling

    Madani, N.; Kimball, J. S.; Running, S. W.

    2014-12-01

    Remote sensing based light use efficiency (LUE) models, including the MODIS (MODerate resolution Imaging Spectroradiometer) MOD17 algorithm are commonly used for regional estimation and monitoring of vegetation gross primary production (GPP) and photosynthetic carbon (CO2) uptake. A common model assumption is that plants in a biome matrix operate at their photosynthetic capacity under optimal climatic conditions. A prescribed biome maximum light use efficiency parameter defines the maximum photosynthetic carbon conversion rate under prevailing climate conditions and is a large source of model uncertainty. Here, we used tower (FLUXNET) eddy covariance measurement based carbon flux data for estimating optimal LUE (LUEopt) over a North American domain. LUEopt was first estimated using tower observed daily carbon fluxes, meteorology and satellite (MODIS) observed fraction of photosynthetically active radiation (FPAR). LUEopt was then spatially interpolated over the domain using empirical models derived from independent geospatial data including global plant traits, surface soil moisture, terrain aspect, land cover type and percent tree cover. The derived LUEopt maps were then used as primary inputs to the MOD17 LUE algorithm for regional GPP estimation; these results were evaluated against tower observations and alternate MOD17 GPP estimates determined using Biome-specific LUEopt constants. Estimated LUEopt shows large spatial variability within and among different land cover classes indicated from a sparse North American tower network. Leaf nitrogen content and soil moisture are two important factors explaining LUEopt spatial variability. GPP estimated from spatially explicit LUEopt inputs shows significantly improved model accuracy against independent tower observations (R2 = 0.76; Mean RMSE plant trait information can explain spatial heterogeneity in LUEopt, leading to improved GPP estimates from satellite based LUE models.

  11. A novel explicit approach to model bromide and pesticide transport in connected soil structures

    J. Klaus

    2011-07-01

    Full Text Available The present study tests whether an explicit treatment of worm burrows and tile drains as connected structures is feasible for simulating water flow, bromide and pesticide transport in structured heterogeneous soils at hillslope scale. The essence is to represent worm burrows as morphologically connected paths of low flow resistance in a hillslope model. A recent Monte Carlo study (Klaus and Zehe, 2010, Hydrological Processes, 24, p. 1595–1609 revealed that this approach allowed successful reproduction of tile drain event discharge recorded during an irrigation experiment at a tile drained field site. However, several "hillslope architectures" that were all consistent with the available extensive data base allowed a good reproduction of tile drain flow response. Our second objective was thus to find out whether this "equifinality" in spatial model setups may be reduced when including bromide tracer data in the model falsification process. We thus simulated transport of bromide for the 13 spatial model setups that performed best with respect to reproduce tile drain event discharge, without any further calibration. All model setups allowed a very good prediction of the temporal dynamics of cumulated bromide leaching into the tile drain, while only four of them matched the accumulated water balance and accumulated bromide loss into the tile drain. The number of behavioural model architectures could thus be reduced to four. One of those setups was used for simulating transport of Isoproturon, using different parameter combinations to characterise adsorption according to the Footprint data base. Simulations could, however, only reproduce the observed leaching behaviour, when we allowed for retardation coefficients that were very close to one.

  12. A novel explicit approach to model bromide and pesticide transport in connected soil structures

    Klaus, J.; Zehe, E.

    2011-07-01

    The present study tests whether an explicit treatment of worm burrows and tile drains as connected structures is feasible for simulating water flow, bromide and pesticide transport in structured heterogeneous soils at hillslope scale. The essence is to represent worm burrows as morphologically connected paths of low flow resistance in a hillslope model. A recent Monte Carlo study (Klaus and Zehe, 2010, Hydrological Processes, 24, p. 1595-1609) revealed that this approach allowed successful reproduction of tile drain event discharge recorded during an irrigation experiment at a tile drained field site. However, several "hillslope architectures" that were all consistent with the available extensive data base allowed a good reproduction of tile drain flow response. Our second objective was thus to find out whether this "equifinality" in spatial model setups may be reduced when including bromide tracer data in the model falsification process. We thus simulated transport of bromide for the 13 spatial model setups that performed best with respect to reproduce tile drain event discharge, without any further calibration. All model setups allowed a very good prediction of the temporal dynamics of cumulated bromide leaching into the tile drain, while only four of them matched the accumulated water balance and accumulated bromide loss into the tile drain. The number of behavioural model architectures could thus be reduced to four. One of those setups was used for simulating transport of Isoproturon, using different parameter combinations to characterise adsorption according to the Footprint data base. Simulations could, however, only reproduce the observed leaching behaviour, when we allowed for retardation coefficients that were very close to one.

  13. Modeling the oxidation of ebselen and other organoselenium compounds using explicit solvent networks.

    Bayse, Craig A; Antony, Sonia

    2009-05-14

    The oxidation of dimethylselenide, dimethyldiselenide, S-methylselenenyl-methylmercaptan, and truncated and full models of ebselen (N-phenyl-1,2-benzisoselenazol-3(2H)-one) by methyl hydrogen peroxide has been modeled using density functional theory (DFT) and solvent-assisted proton exchange (SAPE), a method of microsolvation that employs explicit solvent networks to facilitate proton transfer reactions. The calculated activation barriers for these systems were substantially lower in energy (DeltaG(double dagger) + DeltaG(solv) = 13 to 26 kcal/mol) than models that neglect the participation of solvent in proton exchange. The comparison of two- and three-water SAPE networks showed a reduction in the strain in the model system but without a substantial reduction in the activation barriers. Truncating the ebselen model to N-methylisoselenazol-3(2H)-one gave a larger activation barrier than ebselen or N-methyl-1,2-benzisoselenazol-3(2H)-one but provided an efficient means of determining an initial guess for larger transition-state models. The similar barriers obtained for ebselen and Me(2)Se(2) (DeltaG(double dagger) + DeltaG(solv) = 20.65 and 20.40 kcal/mol, respectively) were consistent with experimentally determined rate constants. The activation barrier for MeSeSMe (DeltaG(double dagger) + DeltaG(solv) = 21.25 kcal/mol) was similar to that of ebselen and Me(2)Se(2) despite its significantly lower experimental rate for oxidation of an ebselen selenenyl sulfide by hydrogen peroxide relative to ebselen and ebselen diselenide. The disparity is attributed to intramolecular Se-O interactions, which decrease the nucleophilicity of the selenium center of the selenenyl sulfide.

  14. Biomass supply from alternative cellulosic crops and crop residues: A spatially explicit bioeconomic modeling approach

    Egbendewe-Mondzozo, Aklesso; Swinton, Scott M.; Izaurralde, César R.; Manowitz, David H.; Zhang, Xuesong

    2011-01-01

    This paper introduces a spatially-explicit bioeconomic model for the study of potential cellulosic biomass supply. For biomass crops to begin to replace current crops, farmers must earn more from them than from current crops. Using weather, topographic and soil data, the terrestrial ecosystem model, EPIC, dynamically simulates multiple cropping systems that vary by crop rotation, tillage, fertilization and residue removal rate. EPIC generates predicted crop yield and environmental outcomes over multiple watersheds. These EPIC results are used to parameterize a regional profit-maximization mathematical programming model that identifies profitable cropping system choices. The bioeconomic model is calibrated to 2007–09 crop production in a 9-county region of southwest Michigan. A simulation of biomass supply in response to rising biomass prices shows that cellulosic residues from corn stover and wheat straw begin to be supplied at minimum delivered biomass:corn grain price ratios of 0.15 and 0.18, respectively. At the mean corn price of $162.6/Mg ($4.13 per bushel) at commercial moisture content during 2007–2009, these ratios correspond to stover and straw prices of $24 and $29 per dry Mg. Perennial bioenergy crops begin to be supplied at price levels 2–3 times higher. Average biomass transport costs to the biorefinery plant range from $6 to $20/Mg compared to conventional crop production practices in the area, biomass supply from annual crop residues increased greenhouse gas emissions and reduced water quality through increased nutrient loss. By contrast, perennial cellulosic biomass crop production reduced greenhouse gas emissions and improved water quality. -- Highlights: ► A new bioeconomic model predicts biomass supply and its environmental impacts. ► The model captures the opportunity cost of switching to new cellulosic crops. ► Biomass from crop residues is supplied at lower biomass price than cellulosic crops. ► Biomass from cellulosic crops has

  15. Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation

    R. Valorso

    2011-07-01

    Full Text Available The sensitivity of the formation of secondary organic aerosol (SOA to the estimated vapour pressures of the condensable oxidation products is explored. A highly detailed reaction scheme was generated for α-pinene photooxidation using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A. Vapour pressures (Pvap were estimated with three commonly used structure activity relationships. The values of Pvap were compared for the set of secondary species generated by GECKO-A to describe α-pinene oxidation. Discrepancies in the predicted vapour pressures were found to increase with the number of functional groups borne by the species. For semi-volatile organic compounds (i.e. organic species of interest for SOA formation, differences in the predicted Pvap range between a factor of 5 to 200 on average. The simulated SOA concentrations were compared to SOA observations in the Caltech chamber during three experiments performed under a range of NOx conditions. While the model captures the qualitative features of SOA formation for the chamber experiments, SOA concentrations are systematically overestimated. For the conditions simulated, the modelled SOA speciation appears to be rather insensitive to the Pvap estimation method.

  16. Modelling rapid subsurface flow at the hillslope scale with explicit representation of preferential flow paths

    Wienhöfer, J.; Zehe, E.

    2012-04-01

    Rapid lateral flow processes via preferential flow paths are widely accepted to play a key role for rainfall-runoff response in temperate humid headwater catchments. A quantitative description of these processes, however, is still a major challenge in hydrological research, not least because detailed information about the architecture of subsurface flow paths are often impossible to obtain at a natural site without disturbing the system. Our study combines physically based modelling and field observations with the objective to better understand how flow network configurations influence the hydrological response of hillslopes. The system under investigation is a forested hillslope with a small perennial spring at the study area Heumöser, a headwater catchment of the Dornbirnerach in Vorarlberg, Austria. In-situ points measurements of field-saturated hydraulic conductivity and dye staining experiments at the plot scale revealed that shrinkage cracks and biogenic macropores function as preferential flow paths in the fine-textured soils of the study area, and these preferential flow structures were active in fast subsurface transport of artificial tracers at the hillslope scale. For modelling of water and solute transport, we followed the approach of implementing preferential flow paths as spatially explicit structures of high hydraulic conductivity and low retention within the 2D process-based model CATFLOW. Many potential configurations of the flow path network were generated as realisations of a stochastic process informed by macropore characteristics derived from the plot scale observations. Together with different realisations of soil hydraulic parameters, this approach results in a Monte Carlo study. The model setups were used for short-term simulation of a sprinkling and tracer experiment, and the results were evaluated against measured discharges and tracer breakthrough curves. Although both criteria were taken for model evaluation, still several model setups

  17. SPATIALLY EXPLICIT MICRO-LEVEL MODELLING OF LAND USE CHANGE AT THE RURAL-URBAN INTERFACE. (R828012)

    This paper describes micro-economic models of land use change applicable to the rural–urban interface in the US. Use of a spatially explicit micro-level modelling approach permits the analysis of regional patterns of land use as the aggregate outcomes of many, disparate...

  18. Prediction of strongly-heated gas flows in a vertical tube using explicit algebraic stress/heat-flux models

    Baek, Seong Gu; Park, Seung O.

    2003-01-01

    This paper provides the assessment of prediction performance of explicit algebraic stress and heat-flux models under conditions of mixed convective gas flows in a strongly-heated vertical tube. Two explicit algebraic stress models and four algebraic heat-flux models are selected for assessment. Eight combinations of explicit algebraic stress and heat-flux models are used in predicting the flows experimentally studied by Shehata and McEligot (IJHMT 41(1998) p.4333) in which property variation was significant. Among the various model combinations, the Wallin and Johansson (JFM 403(2000) p. 89) explicit algebraic stress model-Abe, Kondo, and Nagano (IJHFF 17(1996) p. 228) algebraic heat-flux model combination is found to perform best. We also found that the dimensionless wall distance y + should be calculated based on the local property rather than the property at the wall for property-variation flows. When the buoyancy or the property variation effects are so strong that the flow may relaminarize, the choice of the basic platform two-equation model is a most important factor in improving the predictions

  19. Human Mobility Patterns and Cholera Epidemics: a Spatially Explicit Modeling Approach

    Mari, L.; Bertuzzo, E.; Righetto, L.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2010-12-01

    Cholera is an acute enteric disease caused by the ingestion of water or food contaminated by the bacterium Vibrio cholerae. Although most infected individuals do not develop severe symptoms, their stool may contain huge quantities of V.~cholerae cells. Therefore, while traveling or commuting, asymptomatic carriers can be responsible for the long-range dissemination of the disease. As a consequence, human mobility is an alternative and efficient driver for the spread of cholera, whose primary propagation pathway is hydrological transport through river networks. We present a multi-layer network model that accounts for the interplay between epidemiological dynamics, hydrological transport and long-distance dissemination of V.~cholerae due to human movement. In particular, building on top of state-of-the-art spatially explicit models for cholera spread through surface waters, we describe human movement and its effects on the propagation of the disease by means of a gravity-model approach borrowed from transportation theory. Gravity-like contact processes have been widely used in epidemiology, because they can satisfactorily depict human movement when data on actual mobility patterns are not available. We test our model against epidemiological data recorded during the cholera outbreak occurred in the KwaZulu-Natal province of South Africa during years 2000--2001. We show that human mobility does actually play an important role in the formation of the spatiotemporal patterns of cholera epidemics. In particular, long-range human movement may determine inter-catchment dissemination of V.~cholerae cells, thus in turn explaining the emergence of epidemic patterns that cannot be produced by hydrological transport alone. We also show that particular attention has to be devoted to study how heterogeneously distributed drinking water supplies and sanitation conditions may affect cholera transmission.

  20. Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model

    Bogey, Christophe; Bailly, Christophe

    2006-01-01

    Large eddy simulations (LES) of round free jets at Mach number M = 0.9 with Reynolds numbers over the range 2.5 x 10 3 ≤ Re D ≤ 4 x 10 5 are performed using explicit selective/high-order filtering with or without dynamic Smagorinsky model (DSM). Features of the flows and of the turbulent kinetic energy budgets in the turbulent jets are reported. The contributions of molecular viscosity, filtering and DSM to energy dissipation are also presented. Using filtering alone, the results are independent of the filtering strength, and the effects of the Reynolds number on jet development are successfully calculated. Using DSM, the effective jet Reynolds number is found to be artificially decreased by the eddy viscosity. The results are also not appreciably modified when subgrid-scale kinetic energy is used. Moreover, unlike filtering which does not significantly affect the larger computed scales, the eddy viscosity is shown to dissipate energy through all the turbulent scales, in the same way as molecular viscosity at lower Reynolds numbers

  1. Resolution and Energy Dissipation Characteristics of Implicit LES and Explicit Filtering Models for Compressible Turbulence

    Romit Maulik

    2017-04-01

    Full Text Available Solving two-dimensional compressible turbulence problems up to a resolution of 16, 384^2, this paper investigates the characteristics of two promising computational approaches: (i an implicit or numerical large eddy simulation (ILES framework using an upwind-biased fifth-order weighted essentially non-oscillatory (WENO reconstruction algorithm equipped with several Riemann solvers, and (ii a central sixth-order reconstruction framework combined with various linear and nonlinear explicit low-pass spatial filtering processes. Our primary aim is to quantify the dissipative behavior, resolution characteristics, shock capturing ability and computational expenditure for each approach utilizing a systematic analysis with respect to its modeling parameters or parameterizations. The relative advantages and disadvantages of both approaches are addressed for solving a stratified Kelvin-Helmholtz instability shear layer problem as well as a canonical Riemann problem with the interaction of four shocks. The comparisons are both qualitative and quantitative, using visualizations of the spatial structure of the flow and energy spectra, respectively. We observe that the central scheme, with relaxation filtering, offers a competitive approach to ILES and is much more computationally efficient than WENO-based schemes.

  2. Model tool to describe chemical structures in XML format utilizing structural fragments and chemical ontology.

    Sankar, Punnaivanam; Alain, Krief; Aghila, Gnanasekaran

    2010-05-24

    We have developed a model structure-editing tool, ChemEd, programmed in JAVA, which allows drawing chemical structures on a graphical user interface (GUI) by selecting appropriate structural fragments defined in a fragment library. The terms representing the structural fragments are organized in fragment ontology to provide a conceptual support. ChemEd describes the chemical structure in an XML document (ChemFul) with rich semantics explicitly encoding the details of the chemical bonding, the hybridization status, and the electron environment around each atom. The document can be further processed through suitable algorithms and with the support of external chemical ontologies to generate understandable reports about the functional groups present in the structure and their specific environment.

  3. Spatially Explicit Modelling of the Belgian Major Endurance Event 'The 100 km Dodentocht'.

    Steffie Van Nieuland

    Full Text Available 'The 100 km Dodentocht', which takes place annually and has its start in Bornem, Belgium, is a long distance march where participants have to cover a 100 km trail in at most 24 hours. The approximately 11 000 marchers per edition are tracked by making use of passive radio-frequency-identification (RFID. These tracking data were analyzed to build a spatially explicit marching model that gives insights into the dynamics of the event and allows to evaluate the effect of changes in the starting procedure of the event. For building the model, the empirical distribution functions (edf of the marching speeds at every section of the trail in between two consecutive checkpoints and of the checkpoints where marchers retire, are determined, taking into account age, gender, and marching speeds at previous sections. These distribution functions are then used to sample the consecutive speeds and retirement, and as such to simulate the times when individual marchers pass by the consecutive checkpoints. We concluded that the data-driven model simulates the event reliably. Furthermore, we tested three scenarios to reduce the crowdiness along the first part of the trail and in this way were able to conclude that either the start should be moved to a location outside the town center where the streets are at least 25% wider, or that the marchers should start in two groups at two different locations, and that these groups should ideally merge at about 20 km after the start. The crowdiness at the start might also be reduced by installing a bottleneck at the start in order to limit the number of marchers that can pass per unit of time. Consequently, the operating hours of the consecutive checkpoints would be longer. The developed framework can likewise be used to analyze and improve the operation of other endurance events if sufficient tracking data are available.

  4. Modeling the Bergeron-Findeisen Process Using PDF Methods With an Explicit Representation of Mixing

    Jeffery, C.; Reisner, J.

    2005-12-01

    Currently, the accurate prediction of cloud droplet and ice crystal number concentration in cloud resolving, numerical weather prediction and climate models is a formidable challenge. The Bergeron-Findeisen process in which ice crystals grow by vapor deposition at the expense of super-cooled droplets is expected to be inhomogeneous in nature--some droplets will evaporate completely in centimeter-scale filaments of sub-saturated air during turbulent mixing while others remain unchanged [Baker et al., QJRMS, 1980]--and is unresolved at even cloud-resolving scales. Despite the large body of observational evidence in support of the inhomogeneous mixing process affecting cloud droplet number [most recently, Brenguier et al., JAS, 2000], it is poorly understood and has yet to be parameterized and incorporated into a numerical model. In this talk, we investigate the Bergeron-Findeisen process using a new approach based on simulations of the probability density function (PDF) of relative humidity during turbulent mixing. PDF methods offer a key advantage over Eulerian (spatial) models of cloud mixing and evaporation: the low probability (cm-scale) filaments of entrained air are explicitly resolved (in probability space) during the mixing event even though their spatial shape, size and location remain unknown. Our PDF approach reveals the following features of the inhomogeneous mixing process during the isobaric turbulent mixing of two parcels containing super-cooled water and ice, respectively: (1) The scavenging of super-cooled droplets is inhomogeneous in nature; some droplets evaporate completely at early times while others remain unchanged. (2) The degree of total droplet evaporation during the initial mixing period depends linearly on the mixing fractions of the two parcels and logarithmically on Damköhler number (Da)---the ratio of turbulent to evaporative time-scales. (3) Our simulations predict that the PDF of Lagrangian (time-integrated) subsaturation (S) goes as

  5. Spatially explicit models for inference about density in unmarked or partially marked populations

    Chandler, Richard B.; Royle, J. Andrew

    2013-01-01

    Recently developed spatial capture–recapture (SCR) models represent a major advance over traditional capture–recapture (CR) models because they yield explicit estimates of animal density instead of population size within an unknown area. Furthermore, unlike nonspatial CR methods, SCR models account for heterogeneity in capture probability arising from the juxtaposition of animal activity centers and sample locations. Although the utility of SCR methods is gaining recognition, the requirement that all individuals can be uniquely identified excludes their use in many contexts. In this paper, we develop models for situations in which individual recognition is not possible, thereby allowing SCR concepts to be applied in studies of unmarked or partially marked populations. The data required for our model are spatially referenced counts made on one or more sample occasions at a collection of closely spaced sample units such that individuals can be encountered at multiple locations. Our approach includes a spatial point process for the animal activity centers and uses the spatial correlation in counts as information about the number and location of the activity centers. Camera-traps, hair snares, track plates, sound recordings, and even point counts can yield spatially correlated count data, and thus our model is widely applicable. A simulation study demonstrated that while the posterior mean exhibits frequentist bias on the order of 5–10% in small samples, the posterior mode is an accurate point estimator as long as adequate spatial correlation is present. Marking a subset of the population substantially increases posterior precision and is recommended whenever possible. We applied our model to avian point count data collected on an unmarked population of the northern parula (Parula americana) and obtained a density estimate (posterior mode) of 0.38 (95% CI: 0.19–1.64) birds/ha. Our paper challenges sampling and analytical conventions in ecology by demonstrating

  6. Spatially explicit modeling of conflict zones between wildlife and snow sports: prioritizing areas for winter refuges.

    Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël

    2011-04-01

    Outdoor winter recreation exerts an increasing pressure upon mountain ecosystems, with unpredictable, free-ranging activities (e.g., ski mountaineering, snowboarding, and snowshoeing) representing a major source of stress for wildlife. Mitigating anthropogenic disturbance requires the spatially explicit prediction of the interference between the activities of humans and wildlife. We applied spatial modeling to localize conflict zones between wintering Black Grouse (Tetrao tetrix), a declining species of Alpine timberline ecosystems, and two free-ranging winter sports (off-piste skiing [including snow-boarding] and snowshoeing). Track data (snow-sports and birds' traces) obtained from aerial photographs taken over a 585-km transect running along the timberline, implemented within a maximum entropy model, were used to predict the occurrence of snow sports and Black Grouse as a function of landscape characteristics. By modeling Black Grouse presence in the theoretical absence of free-ranging activities and ski infrastructure, we first estimated the amount of habitat reduction caused by these two factors. The models were then extrapolated to the altitudinal range occupied by Black Grouse, while the spatial extent and intensity of potential conflict were assessed by calculating the probability of human-wildlife co-occurrence. The two snow-sports showed different distribution patterns. Skiers' occurrence was mainly determined by ski-lift presence and a smooth terrain, while snowshoers' occurrence was linked to hiking or skiing routes and moderate slopes. Wintering Black Grouse avoided ski lifts and areas frequented by free-ranging snow sports. According to the models, Black Grouse have faced a substantial reduction of suitable wintering habitat along the timberline transect: 12% due to ski infrastructure and another 16% when adding free-ranging activities. Extrapolating the models over the whole study area results in an overall habitat loss due to ski infrastructure of

  7. Chemical kinetics and combustion modeling

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  8. Modeling Loop Reorganization Free Energies of Acetylcholinesterase: A Comparison of Explicit and Implicit Solvent Models

    Olson, Mark

    2004-01-01

    ... screening of charge-charge interactions. This paper compares different solvent models applied to the problem of estimating the free-energy difference between two loop conformations in acetylcholinesterase...

  9. Explicit Interaction

    Löwgren, Jonas; Eriksen, Mette Agger; Linde, Per

    2006-01-01

    We report an ongoing study of palpable computing to support surgical rehabilitation, in the general field of interaction design for ubiquitous computing. Through explorative design, fieldwork and participatory design techniques, we explore the design principle of explicit interaction as an interp...

  10. A new approach to spatially explicit modelling of forest dynamics: spacing, ageing and neighbourhood competition of mangrove trees

    Berger, U.; Hildenbrandt, H.

    2000-01-01

    This paper presents a new approach to spatially explicit modelling that enables the influence of neighbourhood effects on the dynamics of forests and plant communities to be analysed. We refer to this approach as 'field of neighbourhood' (FON). It combines the 'neighbourhood philosophy' of

  11. Development and Validation of Spatially Explicit Habitat Models for Cavity-nesting Birds in Fishlake National Forest, Utah

    Randall A., Jr. Schultz; Thomas C., Jr. Edwards; Gretchen G. Moisen; Tracey S. Frescino

    2005-01-01

    The ability of USDA Forest Service Forest Inventory and Analysis (FIA) generated spatial products to increase the predictive accuracy of spatially explicit, macroscale habitat models was examined for nest-site selection by cavity-nesting birds in Fishlake National Forest, Utah. One FIA-derived variable (percent basal area of aspen trees) was significant in the habitat...

  12. Chemical modeling of waste sludges

    Weber, C.F.; Beahm, E.C.

    1996-10-01

    The processing of waste from underground storage tanks at the Oak Ridge National Laboratory (ORNL) and other facilities will require an understanding of the chemical interactions of the waste with process chemicals. Two aspects of sludge treatment should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids, and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns. It is likely that the treatment of waste tank sludge will begin with washing, followed by basic or acidic leaching. The dissolved materials will be in a solution that has a high ionic strength where activity coefficients are far from unity. Activity coefficients are needed in order to calculate solubilities. Several techniques are available for calculating these values, and each technique has its advantages and disadvantages. The techniques adopted and described here is the Pitzer method. Like any of the methods, prudent use of this approach requires that it be applied within concentration ranges where the experimental data were fit, and its use in large systems should be preceded by evaluating subsystems. While much attention must be given to the development of activity coefficients, other factors such as coprecipitation of species and Ostwald ripening must also be considered when one aims to interpret results of sludge tests or to predict results of treatment strategies. An understanding of sludge treatment processes begins with the sludge tests themselves and proceeds to a general interpretation with the aid of modeling. One could stop with only data from the sludge tests, in which case the table of data would become an implicit model. However, this would be a perilous approach in situations where processing difficulties could be costly or result in concerns for the environment or health and safety

  13. Hydroclimatology of Dual Peak Cholera Incidence in Bengal Region: Inferences from a Spatial Explicit Model

    Bertuzzo, E.; Mari, L.; Righetto, L.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2010-12-01

    The seasonality of cholera and its relation with environmental drivers are receiving increasing interest and research efforts, yet they remain unsatisfactorily understood. A striking example is the observed annual cycle of cholera incidence in the Bengal region which exhibits two peaks despite the main environmental drivers that have been linked to the disease (air and sea surface temperature, zooplankton density, river discharge) follow a synchronous single-peak annual pattern. A first outbreak, mainly affecting the coastal regions, occurs in spring and it is followed, after a period of low incidence during summer, by a second, usually larger, peak in autumn also involving regions situated farther inland. A hydroclimatological explanation for this unique seasonal cycle has been recently proposed: the low river spring flows favor the intrusion of brackish water (the natural environment of the causative agent of the disease) which, in turn, triggers the first outbreak. The summer rising river discharges have a temporary dilution effect and prompt the repulsion of contaminated water which lowers the disease incidence. However, the monsoon flooding, together with the induced crowding of the population and the failure of the sanitation systems, can possibly facilitate the spatial transmission of the disease and promote the autumn outbreak. We test this hypothesis using a mechanistic, spatially explicit model of cholera epidemic. The framework directly accounts for the role of the river network in transporting and redistributing cholera bacteria among human communities as well as for the annual fluctuation of the river flow. The model is forced with the actual environmental drivers of the region, namely river flow and temperature. Our results show that these two drivers, both having a single peak in the summer, can generate a double peak cholera incidence pattern. Besides temporal patterns, the model is also able to qualitatively reproduce spatial patterns characterized

  14. Spatially Explicit Modeling Reveals Cephalopod Distributions Match Contrasting Trophic Pathways in the Western Mediterranean Sea.

    Patricia Puerta

    Full Text Available Populations of the same species can experience different responses to the environment throughout their distributional range as a result of spatial and temporal heterogeneity in habitat conditions. This highlights the importance of understanding the processes governing species distribution at local scales. However, research on species distribution often averages environmental covariates across large geographic areas, missing variability in population-environment interactions within geographically distinct regions. We used spatially explicit models to identify interactions between species and environmental, including chlorophyll a (Chla and sea surface temperature (SST, and trophic (prey density conditions, along with processes governing the distribution of two cephalopods with contrasting life-histories (octopus and squid across the western Mediterranean Sea. This approach is relevant for cephalopods, since their population dynamics are especially sensitive to variations in habitat conditions and rarely stable in abundance and location. The regional distributions of the two cephalopod species matched two different trophic pathways present in the western Mediterranean Sea, associated with the Gulf of Lion upwelling and the Ebro river discharges respectively. The effects of the studied environmental and trophic conditions were spatially variant in both species, with usually stronger effects along their distributional boundaries. We identify areas where prey availability limited the abundance of cephalopod populations as well as contrasting effects of temperature in the warmest regions. Despite distributional patterns matching productive areas, a general negative effect of Chla on cephalopod densities suggests that competition pressure is common in the study area. Additionally, results highlight the importance of trophic interactions, beyond other common environmental factors, in shaping the distribution of cephalopod populations. Our study presents

  15. Explicit all-atom modeling of realistically sized ligand-capped nanocrystals

    Kaushik, Ananth P.; Clancy, Paulette

    2012-01-01

    We present a study of an explicit all-atom representation of nanocrystals of experimentally relevant sizes (up to 6 nm), capped with alkyl chain ligands, in vacuum. We employ all-atom molecular dynamics simulation methods in concert with a well

  16. Explicit time integration of finite element models on a vectorized, concurrent computer with shared memory

    Gilbertsen, Noreen D.; Belytschko, Ted

    1990-01-01

    The implementation of a nonlinear explicit program on a vectorized, concurrent computer with shared memory is described and studied. The conflict between vectorization and concurrency is described and some guidelines are given for optimal block sizes. Several example problems are summarized to illustrate the types of speed-ups which can be achieved by reprogramming as compared to compiler optimization.

  17. A Conceptual Model for the Design and Delivery of Explicit Thinking Skills Instruction

    Kassem, Cherrie L.

    2005-01-01

    Developing student thinking skills is an important goal for most educators. However, due to time constraints and weighty content standards, thinking skills instruction is often embedded in subject matter, implicit and incidental. For best results, thinking skills instruction requires a systematic design and explicit teaching strategies. The…

  18. Modeling Complex Chemical Systems: Problems and Solutions

    van Dijk, Jan

    2016-09-01

    Non-equilibrium plasmas in complex gas mixtures are at the heart of numerous contemporary technologies. They typically contain dozens to hundreds of species, involved in hundreds to thousands of reactions. Chemists and physicists have always been interested in what are now called chemical reduction techniques (CRT's). The idea of such CRT's is that they reduce the number of species that need to be considered explicitly without compromising the validity of the model. This is usually achieved on the basis of an analysis of the reaction time scales of the system under study, which identifies species that are in partial equilibrium after a given time span. The first such CRT that has been widely used in plasma physics was developed in the 1960's and resulted in the concept of effective ionization and recombination rates. It was later generalized to systems in which multiple levels are effected by transport. In recent years there has been a renewed interest in tools for chemical reduction and reaction pathway analysis. An example of the latter is the PumpKin tool. Another trend is that techniques that have previously been developed in other fields of science are adapted as to be able to handle the plasma state of matter. Examples are the Intrinsic Low Dimension Manifold (ILDM) method and its derivatives, which originate from combustion engineering, and the general-purpose Principle Component Analysis (PCA) technique. In this contribution we will provide an overview of the most common reduction techniques, then critically assess the pros and cons of the methods that have gained most popularity in recent years. Examples will be provided for plasmas in argon and carbon dioxide.

  19. Chemical model reduction under uncertainty

    Malpica Galassi, Riccardo

    2017-03-06

    A general strategy for analysis and reduction of uncertain chemical kinetic models is presented, and its utility is illustrated in the context of ignition of hydrocarbon fuel–air mixtures. The strategy is based on a deterministic analysis and reduction method which employs computational singular perturbation analysis to generate simplified kinetic mechanisms, starting from a detailed reference mechanism. We model uncertain quantities in the reference mechanism, namely the Arrhenius rate parameters, as random variables with prescribed uncertainty factors. We propagate this uncertainty to obtain the probability of inclusion of each reaction in the simplified mechanism. We propose probabilistic error measures to compare predictions from the uncertain reference and simplified models, based on the comparison of the uncertain dynamics of the state variables, where the mixture entropy is chosen as progress variable. We employ the construction for the simplification of an uncertain mechanism in an n-butane–air mixture homogeneous ignition case, where a 176-species, 1111-reactions detailed kinetic model for the oxidation of n-butane is used with uncertainty factors assigned to each Arrhenius rate pre-exponential coefficient. This illustration is employed to highlight the utility of the construction, and the performance of a family of simplified models produced depending on chosen thresholds on importance and marginal probabilities of the reactions.

  20. EPS Mid-Career Award 2011. Are there multiple memory systems? Tests of models of implicit and explicit memory.

    Shanks, David R; Berry, Christopher J

    2012-01-01

    This article reviews recent work aimed at developing a new framework, based on signal detection theory, for understanding the relationship between explicit (e.g., recognition) and implicit (e.g., priming) memory. Within this framework, different assumptions about sources of memorial evidence can be framed. Application to experimental results provides robust evidence for a single-system model in preference to multiple-systems models. This evidence comes from several sources including studies of the effects of amnesia and ageing on explicit and implicit memory. The framework allows a range of concepts in current memory research, such as familiarity, recollection, fluency, and source memory, to be linked to implicit memory. More generally, this work emphasizes the value of modern computational modelling techniques in the study of learning and memory.

  1. Improvement, Verification, and Refinement of Spatially-Explicit Exposure Models in Risk Assessment - FishRand Spatially-Explicit Bioaccumulation Model Demonstration

    2015-08-01

    Unaccounted dynamic habitats and resultant changes in wildlife usage;  Simplified foraging strategies (lacking important considerations such as...and water exposures, fish foraging strategies, and PCB uptake. Figure 2 additionally shows the comparison of standard deviations across the...area (1, 2, and 5) at the Tyndall AFB site. ....................................... 22  Figure 5. Comparison of model predictions to site data for

  2. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    Rachel R. Sleeter

    2015-06-01

    Full Text Available Spatially-explicit state-and-transition simulation models of land use and land cover (LULC increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS, a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age, spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest. Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  3. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.

    2015-01-01

    Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  4. Explicit solution of the quantum three-body Calogero-Sutherland model

    Perelomov, A.M.; Zaugg, P.

    1998-01-01

    Quantum integrable systems generalizing Calogero-Sutherland systems were introduced by Olshanetsky and Perelomov (1977). Recently, it was proved that for systems with trigonometric potential, the series in the product of two wave functions is a deformation of the Clebsch-Gordan series. This yields recursion relations for the wave functions of those systems. In this note, this approach is used to compute the explicit expressions for the three-body Calogero-Sutherland wave functions, which are the Jack polynomials. We conjecture that similar results are also valid for the more general two-parameters deformation introduced by Macdonald.

  5. Explicit and implicit springback simulation in sheet metal forming using fully coupled ductile damage and distortional hardening model

    Yetna n'jock, M.; Houssem, B.; Labergere, C.; Saanouni, K.; Zhenming, Y.

    2018-05-01

    The springback is an important phenomenon which accompanies the forming of metallic sheets especially for high strength materials. A quantitative prediction of springback becomes very important for newly developed material with high mechanical characteristics. In this work, a numerical methodology is developed to quantify this undesirable phenomenon. This methodoly is based on the use of both explicit and implicit finite element solvers of Abaqus®. The most important ingredient of this methodology consists on the use of highly predictive mechanical model. A thermodynamically-consistent, non-associative and fully anisotropic elastoplastic constitutive model strongly coupled with isotropic ductile damage and accounting for distortional hardening is then used. An algorithm for local integration of the complete set of the constitutive equations is developed. This algorithm considers the rotated frame formulation (RFF) to ensure the incremental objectivity of the model in the framework of finite strains. This algorithm is implemented in both explicit (Abaqus/Explicit®) and implicit (Abaqus/Standard®) solvers of Abaqus® through the users routine VUMAT and UMAT respectively. The implicit solver of Abaqus® has been used to study spingback as it is generally a quasi-static unloading. In order to compare the methods `efficiency, the explicit method (Dynamic Relaxation Method) proposed by Rayleigh has been also used for springback prediction. The results obtained within U draw/bending benchmark are studied, discussed and compared with experimental results as reference. Finally, the purpose of this work is to evaluate the reliability of different methods predict efficiently springback in sheet metal forming.

  6. The explicit treatment of model uncertainties in the presence of aleatory and epistemic parameter uncertainties in risk and reliability analysis

    Ahn, Kwang Il; Yang, Joon Eon

    2003-01-01

    In the risk and reliability analysis of complex technological systems, the primary concern of formal uncertainty analysis is to understand why uncertainties arise, and to evaluate how they impact the results of the analysis. In recent times, many of the uncertainty analyses have focused on parameters of the risk and reliability analysis models, whose values are uncertain in an aleatory or an epistemic way. As the field of parametric uncertainty analysis matures, however, more attention is being paid to the explicit treatment of uncertainties that are addressed in the predictive model itself as well as the accuracy of the predictive model. The essential steps for evaluating impacts of these model uncertainties in the presence of parameter uncertainties are to determine rigorously various sources of uncertainties to be addressed in an underlying model itself and in turn model parameters, based on our state-of-knowledge and relevant evidence. Answering clearly the question of how to characterize and treat explicitly the forgoing different sources of uncertainty is particularly important for practical aspects such as risk and reliability optimization of systems as well as more transparent risk information and decision-making under various uncertainties. The main purpose of this paper is to provide practical guidance for quantitatively treating various model uncertainties that would often be encountered in the risk and reliability modeling process of complex technological systems

  7. Economic model predictive control theory, formulations and chemical process applications

    Ellis, Matthew; Christofides, Panagiotis D

    2017-01-01

    This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes. In addition to being...

  8. Probing the role of interfacial waters in protein-DNA recognition using a hybrid implicit/explicit solvation model

    Li, Shen; Bradley, Philip

    2013-01-01

    When proteins bind to their DNA target sites, ordered water molecules are often present at the protein-DNA interface bridging protein and DNA through hydrogen bonds. What is the role of these ordered interfacial waters? Are they important determinants of the specificity of DNA sequence recognition, or do they act in binding in a primarily non-specific manner, by improving packing of the interface, shielding unfavorable electrostatic interactions, and solvating unsatisfied polar groups that are inaccessible to bulk solvent? When modeling details of structure and binding preferences, can fully implicit solvent models be fruitfully applied to protein-DNA interfaces, or must the individualistic properties of these interfacial waters be accounted for? To address these questions, we have developed a hybrid implicit/explicit solvation model that specifically accounts for the locations and orientations of small numbers of DNA-bound water molecules while treating the majority of the solvent implicitly. Comparing the performance of this model to its fully implicit counterpart, we find that explicit treatment of interfacial waters results in a modest but significant improvement in protein sidechain placement and DNA sequence recovery. Base-by-base comparison of the performance of the two models highlights DNA sequence positions whose recognition may be dependent on interfacial water. Our study offers large-scale statistical evidence for the role of ordered water for protein DNA recognition, together with detailed examination of several well-characterized systems. In addition, our approach provides a template for modeling explicit water molecules at interfaces that should be extensible to other systems. PMID:23444044

  9. An unified framework to integrate biotic, abiotic processes and human activities in spatially explicit models of agricultural landscapes

    Fabrice eVinatier

    2016-02-01

    Full Text Available Recent concern over possible ways to sustain ecosystem services has triggered important research worldwide on ecosystem processes at the landscape scale. Understanding this complexity of landscape functioning calls for coupled and spatially-explicit modelling approaches. However, disciplinary boundaries have limited the number of multi-process studies at the landscape scale, and current progress in coupling processes at this scale often reveals strong imbalance between biotic and abiotic processes, depending on the core discipline of the modellers. We propose a spatially-explicit, unified conceptual framework that allows researchers from different fields to develop a shared view of agricultural landscapes. In particular,we distinguish landscape elements that are mobile in space and represent biotic or abiotic objects (for example water, fauna or flora populations, and elements that are immobile and represent fixed landscape elements with a given geometry (for example ditch section or plot. The shared representation of these elements allows setting common objects and spatio-temporal process boundaries that may otherwise differ between disciplines. We present guidelines and an assessment of the applicability of this framework to a virtual landscape system with realistic properties. This framework allows the complex system to be represented with a limited set of concepts but leaves the possibility to include current modelling strategies specific to biotic or abiotic disciplines. Future operational challenges include model design, space and time discretization, and the availability of both landscape modelling platforms and data.

  10. Chemical reactor modeling multiphase reactive flows

    Jakobsen, Hugo A

    2014-01-01

    Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics.  The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...

  11. Modelling Students' Visualisation of Chemical Reaction

    Cheng, Maurice M. W.; Gilbert, John K.

    2017-01-01

    This paper proposes a model-based notion of "submicro representations of chemical reactions". Based on three structural models of matter (the simple particle model, the atomic model and the free electron model of metals), we suggest there are two major models of reaction in school chemistry curricula: (a) reactions that are simple…

  12. Low Cloud Feedback to Surface Warming in the World's First Global Climate Model with Explicit Embedded Boundary Layer Turbulence

    Parishani, H.; Pritchard, M. S.; Bretherton, C. S.; Wyant, M. C.; Khairoutdinov, M.; Singh, B.

    2017-12-01

    Biases and parameterization formulation uncertainties in the representation of boundary layer clouds remain a leading source of possible systematic error in climate projections. Here we show the first results of cloud feedback to +4K SST warming in a new experimental climate model, the ``Ultra-Parameterized (UP)'' Community Atmosphere Model, UPCAM. We have developed UPCAM as an unusually high-resolution implementation of cloud superparameterization (SP) in which a global set of cloud resolving arrays is embedded in a host global climate model. In UP, the cloud-resolving scale includes sufficient internal resolution to explicitly generate the turbulent eddies that form marine stratocumulus and trade cumulus clouds. This is computationally costly but complements other available approaches for studying low clouds and their climate interaction, by avoiding parameterization of the relevant scales. In a recent publication we have shown that UP, while not without its own complexity trade-offs, can produce encouraging improvements in low cloud climatology in multi-month simulations of the present climate and is a promising target for exascale computing (Parishani et al. 2017). Here we show results of its low cloud feedback to warming in multi-year simulations for the first time. References: Parishani, H., M. S. Pritchard, C. S. Bretherton, M. C. Wyant, and M. Khairoutdinov (2017), Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence, J. Adv. Model. Earth Syst., 9, doi:10.1002/2017MS000968.

  13. Formulation of an explicit-multiple-time-step time integration method for use in a global primitive equation grid model

    Chao, W. C.

    1982-01-01

    With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.

  14. An Explicit Structural Model of Root Hair and Soil Interactions Parameterised by Synchrotron X-ray Computed Tomography.

    Keyes, Samuel David; Zygalakis, Konstantinos C; Roose, Tiina

    2017-12-01

    The rhizosphere is a zone of fundamental importance for understanding the dynamics of nutrient acquisition by plant roots. The canonical difficulty of experimentally investigating the rhizosphere led long ago to the adoption of mathematical models, the most sophisticated of which now incorporate explicit representations of root hairs and rhizosphere soil. Mathematical upscaling regimes, such as homogenisation, offer the possibility of incorporating into larger-scale models the important mechanistic processes occurring at the rhizosphere scale. However, we lack concrete descriptions of all the features required to fully parameterise models at the rhizosphere scale. By combining synchrotron X-ray computed tomography (SRXCT) and a novel root growth assay, we derive a three-dimensional description of rhizosphere soil structure suitable for use in multi-scale modelling frameworks. We describe an approach to mitigate sub-optimal root hair detection via structural root hair growth modelling. The growth model is explicitly parameterised with SRXCT data and simulates three-dimensional root hair ideotypes in silico, which are suitable for both ideotypic analysis and parameterisation of 3D geometry in mathematical models. The study considers different hypothetical conditions governing root hair interactions with soil matrices, with their respective effects on hair morphology being compared between idealised and image-derived soil/root geometries. The studies in idealised geometries suggest that packing arrangement of soil affects hair tortuosity more than the particle diameter. Results in field-derived soil suggest that hair access to poorly mobile nutrients is particularly sensitive to the physical interaction between the growing hairs and the phase of the soil in which soil water is present (i.e. the hydrated textural phase). The general trends in fluid-coincident hair length with distance from the root, and their dependence on hair/soil interaction mechanisms, are

  15. Chemical equilibrium models of interstellar gas clouds

    Freeman, A.

    1982-10-01

    This thesis contains work which helps towards our understanding of the chemical processes and astrophysical conditions in interstellar clouds, across the whole range of cloud types. The object of the exercise is to construct a mathematical model representing a large system of two-body chemical reactions in order to deduce astrophysical parameters and predict molecular abundances and chemical pathways. Comparison with observations shows that this type of model is valid but also indicates that our knowledge of some chemical reactions is incomplete. (author)

  16. The Explicit Wake Parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF

    P. J. H. Volker

    2015-11-01

    Full Text Available We describe the theoretical basis, implementation, and validation of a new parametrisation that accounts for the effect of large offshore wind farms on the atmosphere and can be used in mesoscale and large-scale atmospheric models. This new parametrisation, referred to as the Explicit Wake Parametrisation (EWP, uses classical wake theory to describe the unresolved wake expansion. The EWP scheme is validated for a neutral atmospheric boundary layer against filtered in situ measurements from two meteorological masts situated a few kilometres away from the Danish offshore wind farm Horns Rev I. The simulated velocity deficit in the wake of the wind farm compares well to that observed in the measurements, and the velocity profile is qualitatively similar to that simulated with large eddy simulation models and from wind tunnel studies. At the same time, the validation process highlights the challenges in verifying such models with real observations.

  17. Explicit modeling the progressive interface damage in fibrous composite: Analytical vs. numerical approach

    Kushch, V.I.; Shmegera, S.V.; Mishnaevsky, Leon

    2011-01-01

    of the multiple inclusion problem by means of complex potentials. The second, finite element model of FRC is based on the cohesive zone model of interface. Simulation of progressive debonding in FRC using the many-fiber models of composite has been performed. The advantageous features and applicability areas...... of both models are discussed. It has been shown that the developed models provide detailed analysis of the progressive debonding phenomena including the interface crack cluster formation, overall stiffness reduction and induced anisotropy of the effective elastic moduli of composite....

  18. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations.

    Ernest Ohene Asare

    Full Text Available Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture.

  19. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations.

    Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne

    2016-01-01

    Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture.

  20. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    Kouramas, K.I.; Faí sca, N.P.; Panos, C.; Pistikopoulos, E.N.

    2011-01-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques

  1. Aggregate and Individual Replication Probability within an Explicit Model of the Research Process

    Miller, Jeff; Schwarz, Wolf

    2011-01-01

    We study a model of the research process in which the true effect size, the replication jitter due to changes in experimental procedure, and the statistical error of effect size measurement are all normally distributed random variables. Within this model, we analyze the probability of successfully replicating an initial experimental result by…

  2. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain

    Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.

    2010-09-01

    A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.

  3. BETR global - A geographically-explicit global-scale multimedia contaminant fate model

    MacLeod, Matthew; Waldow, Harald von; Tay, Pascal; Armitage, James M.; Woehrnschimmel, Henry; Riley, William J.; McKone, Thomas E.; Hungerbuhler, Konrad

    2011-01-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15 o x 15 o grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5). - Two new software implementations of the Berkeley-Trent Global Contaminant Fate Model are available. The new model software is illustrated using a case study of the global fate of decamethylcyclopentasiloxane (D5).

  4. Spatially explicit modeling of particulate nutrient flux in Large global rivers

    Cohen, S.; Kettner, A.; Mayorga, E.; Harrison, J. A.

    2017-12-01

    Water, sediment, nutrient and carbon fluxes along river networks have undergone considerable alterations in response to anthropogenic and climatic changes, with significant consequences to infrastructure, agriculture, water security, ecology and geomorphology worldwide. However, in a global setting, these changes in fluvial fluxes and their spatial and temporal characteristics are poorly constrained, due to the limited availability of continuous and long-term observations. We present results from a new global-scale particulate modeling framework (WBMsedNEWS) that combines the Global NEWS watershed nutrient export model with the spatially distributed WBMsed water and sediment model. We compare the model predictions against multiple observational datasets. The results indicate that the model is able to accurately predict particulate nutrient (Nitrogen, Phosphorus and Organic Carbon) fluxes on an annual time scale. Analysis of intra-basin nutrient dynamics and fluxes to global oceans is presented.

  5. An open and extensible framework for spatially explicit land use change modelling: the lulcc R package

    Moulds, S.; Buytaert, W.; Mijic, A.

    2015-10-01

    We present the lulcc software package, an object-oriented framework for land use change modelling written in the R programming language. The contribution of the work is to resolve the following limitations associated with the current land use change modelling paradigm: (1) the source code for model implementations is frequently unavailable, severely compromising the reproducibility of scientific results and making it impossible for members of the community to improve or adapt models for their own purposes; (2) ensemble experiments to capture model structural uncertainty are difficult because of fundamental differences between implementations of alternative models; and (3) additional software is required because existing applications frequently perform only the spatial allocation of change. The package includes a stochastic ordered allocation procedure as well as an implementation of the CLUE-S algorithm. We demonstrate its functionality by simulating land use change at the Plum Island Ecosystems site, using a data set included with the package. It is envisaged that lulcc will enable future model development and comparison within an open environment.

  6. Design and application of a technologically explicit hybrid energy-economy policy model with micro and macro economic dynamics

    Bataille, Christopher G. F.

    2005-11-01

    Are further energy efficiency gains, or more recently greenhouse gas reductions, expensive or cheap? Analysts provide conflicting advice to policy makers based on divergent modelling perspectives, a 'top-down/bottom-up debate' in which economists use equation based models that equilibrate markets by maximizing consumer welfare, and technologists use technology simulation models that minimize the financial cost of providing energy services. This thesis summarizes a long term research project to find a middle ground between these two positions that is more useful to policy makers. Starting with the individual components of a behaviourally realistic and technologically explicit simulation model (ISTUM---Inter Sectoral Technology Use Model), or "hybrid", the individual sectors of the economy are linked using a framework of micro and macro economic feedbacks. These feedbacks are taken from the economic theory that informs the computable general equilibrium (CGE) family of models. Speaking in the languages of both economists and engineers, the resulting "physical" equilibrium model of Canada (CIMS---Canadian Integrated Modeling System), equilibrates energy and end-product markets, including imports and exports, for seven regions and 15 economic sectors, including primary industry, manufacturing, transportation, commerce, residences, governmental infrastructure and the energy supply sectors. Several different policy experiments demonstrate the value-added of the model and how its results compare to top-down and bottom-up practice. In general, the results show that technical adjustments make up about half the response to simulated energy policy, and macroeconomic demand adjustments the other half. Induced technical adjustments predominate with minor policies, while the importance of macroeconomic demand adjustment increases with the strength of the policy. Results are also shown for an experiment to derive estimates of future elasticity of substitution (ESUB) and

  7. BETR Global - A geographically explicit global-scale multimedia contaminant fate model

    Macleod, M.; Waldow, H. von; Tay, P.; Armitage, J. M.; Wohrnschimmel, H.; Riley, W.; McKone, T. E.; Hungerbuhler, K.

    2011-04-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15{sup o} x 15{sup o} grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5).

  8. Prediction of Chemical Function: Model Development and ...

    The United States Environmental Protection Agency’s Exposure Forecaster (ExpoCast) project is developing both statistical and mechanism-based computational models for predicting exposures to thousands of chemicals, including those in consumer products. The high-throughput (HT) screening-level exposures developed under ExpoCast can be combined with HT screening (HTS) bioactivity data for the risk-based prioritization of chemicals for further evaluation. The functional role (e.g. solvent, plasticizer, fragrance) that a chemical performs can drive both the types of products in which it is found and the concentration in which it is present and therefore impacting exposure potential. However, critical chemical use information (including functional role) is lacking for the majority of commercial chemicals for which exposure estimates are needed. A suite of machine-learning based models for classifying chemicals in terms of their likely functional roles in products based on structure were developed. This effort required collection, curation, and harmonization of publically-available data sources of chemical functional use information from government and industry bodies. Physicochemical and structure descriptor data were generated for chemicals with function data. Machine-learning classifier models for function were then built in a cross-validated manner from the descriptor/function data using the method of random forests. The models were applied to: 1) predict chemi

  9. Deterministic Compilation of Temporal Safety Properties in Explicit State Model Checking

    National Aeronautics and Space Administration — The translation of temporal logic specifications constitutes an essen- tial step in model checking and a major influence on the efficiency of formal verification via...

  10. Using Satellite Remote Sensing Data in a Spatially Explicit Price Model

    Brown, Molly E.; Pinzon, Jorge E.; Prince, Stephen D.

    2007-01-01

    Famine early warning organizations use data from multiple disciplines to assess food insecurity of communities and regions in less-developed parts of the World. In this paper we integrate several indicators that are available to enhance the information for preparation for and responses to food security emergencies. The assessment uses a price model based on the relationship between the suitability of the growing season and market prices for coarse grain. The model is then used to create spatially continuous maps of millet prices. The model is applied to the dry central and northern areas of West Africa, using satellite-derived vegetation indices for the entire region. By coupling the model with vegetation data estimated for one to four months into the future, maps are created of a leading indicator of potential price movements. It is anticipated that these maps can be used to enable early warning of famine and for planning appropriate responses.

  11. Communication: Role of explicit water models in the helix folding/unfolding processes

    Palazzesi, Ferruccio; Salvalaglio, Matteo; Barducci, Alessandro; Parrinello, Michele

    2016-09-01

    In the last years, it has become evident that computer simulations can assume a relevant role in modelling protein dynamical motions for their ability to provide a full atomistic image of the processes under investigation. The ability of the current protein force-fields in reproducing the correct thermodynamics and kinetics systems behaviour is thus an essential ingredient to improve our understanding of many relevant biological functionalities. In this work, employing the last developments of the metadynamics framework, we compare the ability of state-of-the-art all-atom empirical functions and water models to consistently reproduce the folding and unfolding of a helix turn motif in a model peptide. This theoretical study puts in evidence that the choice of the water models can influence the thermodynamic and the kinetics of the system under investigation, and for this reason cannot be considered trivial.

  12. A spatially explicit model of functional connectivity for the endangered Przewalski's gazelle (Procapra przewalskii in a patchy landscape.

    Chunlin Li

    Full Text Available Habitat fragmentation, associated with human population expansion, impedes dispersal, reduces gene flow and aggravates inbreeding in species on the brink of extinction. Both scientific and conservation communities increasingly realize that maintaining and restoring landscape connectivity is of vital importance in biodiversity conservation. Prior to any conservation initiatives, it is helpful to present conservation practitioners with a spatially explicit model of functional connectivity for the target species or landscape.Using Przewalski's gazelle (Procapra przewalskii as a model of endangered ungulate species in highly fragmented landscape, we present a model providing spatially explicit information to inform the long-term preservation of well-connected metapopulations. We employed a Geographic Information System (GIS and expert-literature method to create a habitat suitability map, to identify potential habitats and to delineate a functional connectivity network (least-cost movement corridors and paths for the gazelle. Results indicated that there were limited suitable habitats for the gazelle, mainly found to the north and northwest of the Qinghai Lake where four of five potential habitat patches were identified. Fifteen pairs of least-cost corridors and paths were mapped connecting eleven extant populations and two neighboring potential patches. The least-cost paths ranged from 0.2 km to 26.8 km in length (averaging 12.4 km and were all longer than corresponding Euclidean distances.The model outputs were validated and supported by the latest findings in landscape genetics of the species, and may provide impetus for connectivity conservation programs. Dispersal barriers were examined and appropriate mitigation strategies were suggested. This study provides conservation practitioners with thorough and visualized information to reserve the landscape connectivity for Przewalski's gazelle. In a general sense, we proposed a heuristic framework

  13. Explicit representation and parametrised impacts of under ice shelf seas in the z∗ coordinate ocean model NEMO 3.6

    P. Mathiot

    2017-07-01

    Full Text Available Ice-shelf–ocean interactions are a major source of freshwater on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean–sea ice model NEMO (Nucleus for European Modelling of the Ocean currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface, inclusion of open sub-ice-shelf cavities leads to a decrease in sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of high-salinity shelf water on the Ross and Weddell sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the overturning circulation under the ice shelves by introducing a prescribed meltwater flux over the depth range of the ice shelf base, rather than at the surface, is also assessed. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf to those from the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely used three equation ice shelf melting formulation, which enables an interactive computation of melting, is tested. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for the Amery, Getz and George VI ice shelves are considerably overestimated.

  14. Air quality modeling: evaluation of chemical and meteorological parameterizations

    Kim, Youngseob

    2011-01-01

    The influence of chemical mechanisms and meteorological parameterizations on pollutant concentrations calculated with an air quality model is studied. The influence of the differences between two gas-phase chemical mechanisms on the formation of ozone and aerosols in Europe is low on average. For ozone, the large local differences are mainly due to the uncertainty associated with the kinetics of nitrogen monoxide (NO) oxidation reactions on the one hand and the representation of different pathways for the oxidation of aromatic compounds on the other hand. The aerosol concentrations are mainly influenced by the selection of all major precursors of secondary aerosols and the explicit treatment of chemical regimes corresponding to the nitrogen oxides (NO x ) levels. The influence of the meteorological parameterizations on the concentrations of aerosols and their vertical distribution is evaluated over the Paris region in France by comparison to lidar data. The influence of the parameterization of the dynamics in the atmospheric boundary layer is important; however, it is the use of an urban canopy model that improves significantly the modeling of the pollutant vertical distribution (author) [fr

  15. Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment

    Cowan-Ellsberry, Christina E.; McLachlan, Michael S.; Arnot, Jon A.; MacLeod, Matthew; McKone, Thomas E.; Wania, Frank

    2008-11-01

    Fate and exposure modeling has not thus far been explicitly used in the risk profile documents prepared to evaluate significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of POP and PBT chemicals in the environment. The goal of this paper is to motivate the use of fate and exposure models in preparing risk profiles in the POP assessment procedure by providing strategies for incorporating and using models. The ways that fate and exposure models can be used to improve and inform the development of risk profiles include: (1) Benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio for known POPs, thereby opening the possibility of combining this ratio with the relative emissions and relative toxicity to arrive at a measure of relative risk. (2) Directly estimating the exposure of the environment, biota and humans to provide information to complement measurements, or where measurements are not available or are limited. (3) To identify the key processes and chemical and/or environmental parameters that determine the exposure; thereby allowing the effective prioritization of research or measurements to improve the risk profile. (4) Predicting future time trends including how quickly exposure levels in remote areas would respond to reductions in emissions. Currently there is no standardized consensus model for use in the risk profile context. Therefore, to choose the appropriate model the risk profile developer must evaluate how appropriate an existing model is for a specific setting and whether the assumptions and input data are relevant in the context of the application

  16. Modeling exposure to persistent chemicals in hazard and risk assessment.

    Cowan-Ellsberry, Christina E; McLachlan, Michael S; Arnot, Jon A; Macleod, Matthew; McKone, Thomas E; Wania, Frank

    2009-10-01

    Fate and exposure modeling has not, thus far, been explicitly used in the risk profile documents prepared for evaluating the significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of persistent organic pollutants (POP) and persistent, bioaccumulative, and toxic (PBT) chemicals in the environment. The goal of this publication is to motivate the use of fate and exposure models in preparing risk profiles in the POP assessment procedure by providing strategies for incorporating and using models. The ways that fate and exposure models can be used to improve and inform the development of risk profiles include 1) benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio for known POPs, thereby opening the possibility of combining this ratio with the relative emissions and relative toxicity to arrive at a measure of relative risk; 2) directly estimating the exposure of the environment, biota, and humans to provide information to complement measurements or where measurements are not available or are limited; 3) to identify the key processes and chemical or environmental parameters that determine the exposure, thereby allowing the effective prioritization of research or measurements to improve the risk profile; and 4) forecasting future time trends, including how quickly exposure levels in remote areas would respond to reductions in emissions. Currently there is no standardized consensus model for use in the risk profile context. Therefore, to choose the appropriate model the risk profile developer must evaluate how appropriate an existing model is for a specific setting and

  17. Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems

    Khajuria, Harish; Pistikopoulos, Efstratios N.

    2011-01-01

    objective is to fast track H2 purity to a set point value of 99.99%. To perform this task, a rigorous and systematic framework is employed. First, a high fidelity detailed dynamic model is built to represent the system's real operation, and understand its

  18. Modelling explicit tides in the Indonesian seas: An important process for surface sea water properties.

    Nugroho, Dwiyoga; Koch-Larrouy, Ariane; Gaspar, Philippe; Lyard, Florent; Reffray, Guillaume; Tranchant, Benoit

    2017-06-16

    Very intense internal tides take place in Indonesian seas. They dissipate and affect the vertical distribution of temperature and currents, which in turn influence the survival rates and transports of most planktonic organisms at the base of the whole marine ecosystem. This study uses the INDESO physical model to characterize the internal tides spatio-temporal patterns in the Indonesian Seas. The model reproduced internal tide dissipation in agreement with previous fine structure and microstructure observed in-situ in the sites of generation. The model also produced similar water mass transformation as the previous parameterization of Koch-Larrouy et al. (2007), and show good agreement with observations. The resulting cooling at the surface is 0.3°C, with maxima of 0.8°C at the location of internal tides energy, with stronger cooling in austral winter. The cycle of spring tides and neap tides modulates this impact by 0.1°C to 0.3°C. These results suggest that mixing due to internal tides might also upwell nutrients at the surface at a frequency similar to the tidal frequencies. Implications for biogeochemical modelling are important. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Explicit Foreground and Background Modeling in The Classification of Text Blocks in Scene Images

    Sriman, Bowornrat; Schomaker, Lambertus

    2015-01-01

    Achieving high accuracy for classifying foreground and background is an interesting challenge in the field of scene image analysis because of the wide range of illumination, complex background, and scale changes. Classifying fore- ground and background using bag-of-feature model gives a good result.

  20. An explicit statistical model of learning lexical segmentation using multiple cues

    Çöltekin, Ça ̆grı; Nerbonne, John; Lenci, Alessandro; Padró, Muntsa; Poibeau, Thierry; Villavicencio, Aline

    2014-01-01

    This paper presents an unsupervised and incremental model of learning segmentation that combines multiple cues whose use by children and adults were attested by experimental studies. The cues we exploit in this study are predictability statistics, phonotactics, lexical stress and partial lexical

  1. Explicit model predictive control applications in power systems: an AGC study for an isolated industrial system

    Jiang, Hao; Lin, Jin; Song, Yonghua

    2016-01-01

    Model predictive control (MPC), that can consider system constraints, is one of the most advanced control technology used nowadays. In power systems, MPC is applied in a way that an optimal control sequence is given every step by an online MPC controller. The main drawback is that the control law...

  2. Spatially explicit Schistosoma infection risk in eastern Africa using Bayesian geostatistical modelling

    Schur, Nadine; Hürlimann, Eveline; Stensgaard, Anna-Sofie

    2013-01-01

    are currently infected with either S. mansoni, or S. haematobium, or both species concurrently. Country-specific population-adjusted prevalence estimates range between 12.9% (Uganda) and 34.5% (Mozambique) for S. mansoni and between 11.9% (Djibouti) and 40.9% (Mozambique) for S. haematobium. Our models revealed...

  3. Spatially explicit modeling of blackbird abundance in the Prairie Pothole Region

    Forcey, Greg M.; Thogmartin, Wayne E.; Linz, George M.; McKann, Patrick C.; Crimmins, Shawn M.

    2015-01-01

    Knowledge of factors influencing animal abundance is important to wildlife biologists developing management plans. This is especially true for economically important species such as blackbirds (Icteridae), which cause more than $100 million in crop damages annually in the United States. Using data from the North American Breeding Bird Survey, the National Land Cover Dataset, and the National Climatic Data Center, we modeled effects of regional environmental variables on relative abundance of 3 blackbird species (red-winged blackbird,Agelaius phoeniceus; yellow-headed blackbird, Xanthocephalus xanthocephalus; common grackle, Quiscalus quiscula) in the Prairie Pothole Region of the central United States. We evaluated landscape covariates at 3 logarithmically related spatial scales (1,000 ha, 10,000 ha, and 100,000 ha) and modeled weather variables at the 100,000-ha scale. We constructed models a priori using information from published habitat associations. We fit models with WinBUGS using Markov chain Monte Carlo techniques. Both landscape and weather variables contributed strongly to predicting blackbird relative abundance (95% credibility interval did not overlap 0). Variables with the strongest associations with blackbird relative abundance were the percentage of wetland area and precipitation amount from the year before bird surveys were conducted. The influence of spatial scale appeared small—models with the same variables expressed at different scales were often in the best model subset. This large-scale study elucidated regional effects of weather and landscape variables, suggesting that management strategies aimed at reducing damages caused by these species should consider the broader landscape, including weather effects, because such factors may outweigh the influence of localized conditions or site-specific management actions. The regional species distributional models we developed for blackbirds provide a tool for understanding these broader

  4. The “Destabilizing” Effect of Cannibalism in a Spatially Explicit Three-Species Age Structured Predator-Prey Model

    Aladeen Al Basheer

    2017-01-01

    Full Text Available Cannibalism, the act of killing and consumption of conspecifics, is generally considered to be a stabilising process in ODE models of predator-prey systems. On the other hand, Sun et al. were the first to show that cannibalism can cause Turing instability, in the classical Rosenzweig-McArthur two-species PDE model, which is an impossibility without cannibalism. Magnússon’s classic work is the first to show that cannibalism in a structured three-species predator-prey ODE model can actually be destabilising. In the current manuscript we consider the PDE form of the three-species model proposed in Magnússon’s classic work. We prove that, in the absence of cannibalism, Turing instability is an impossibility in this model, for any range of parameters. However, the inclusion of cannibalism can cause Turing instability. Thus, to the best of our knowledge, we report the first cannibalism induced Turing instability result, in spatially explicit three-species age structured predator-prey systems. We also show that, in the classical ODE model proposed by Magnússon, cannibalism can act as a life boat mechanism, for the prey.

  5. HABSEED: a Simple Spatially Explicit Meta-Populations Model Using Remote Sensing Derived Habitat Quality Data

    Heumann, B. W.; Guichard, F.; Seaquist, J. W.

    2005-05-01

    The HABSEED model uses remote sensing derived NPP as a surrogate for habitat quality as the driving mechanism for population growth and local seed dispersal. The model has been applied to the Sahel region of Africa. Results show that the functional response of plants to habitat quality alters population distribution. Plants more tolerant of medium quality habitat have greater distributions to the North while plants requiring only the best habitat are limited to the South. For all functional response types, increased seed production results in diminishing returns. Functional response types have been related to life history tradeoffs and r-K strategies based on the results. Results are compared to remote sensing derived vegetation land cover.

  6. Simulated x-ray scattering of protein solutions using explicit-solvent models

    Park, Sanghyun; Bardhan, Jaydeep P.; Makowski, Lee; Roux, Benoit

    2009-01-01

    X-ray solution scattering shows new promise for the study of protein structures, complementing crystallography and nuclear magnetic resonance. In order to realize the full potential of solution scattering, it is necessary to not only improve experimental techniques but also develop accurate and efficient computational schemes to relate atomistic models to measurements. Previous computational methods, based on continuum models of water, have been unable to calculate scattering patterns accurately, especially in the wide-angle regime which contains most of the information on the secondary, tertiary, and quaternary structures. Here we present a novel formulation based on the atomistic description of water, in which scattering patterns are calculated from atomic coordinates of protein and water. Without any empirical adjustments, this method produces scattering patterns of unprecedented accuracy in the length scale between 5 and 100 A, as we demonstrate by comparing simulated and observed scattering patterns for myoglobin and lysozyme.

  7. An explicit canopy BRDF model and inversion. [Bidirectional Reflectance Distribution Function

    Liang, Shunlin; Strahler, Alan H.

    1992-01-01

    Based on a rigorous canopy radiative transfer equation, the multiple scattering radiance is approximated by the asymptotic theory, and the single scattering radiance calculation, which requires an numerical intergration due to considering the hotspot effect, is simplified. A new formulation is presented to obtain more exact angular dependence of the sky radiance distribution. The unscattered solar radiance and single scattering radiance are calculated exactly, and the multiple scattering is approximated by the delta two-stream atmospheric radiative transfer model. The numerical algorithms prove that the parametric canopy model is very accurate, especially when the viewing angles are smaller than 55 deg. The Powell algorithm is used to retrieve biospheric parameters from the ground measured multiangle observations.

  8. Modeling spatially- and temporally-explicit water stress indices for use in life cycle assessment

    Scherer, L.; Venkatesh, A.; Karuppiah, R.; Usadi, A.; Pfister, S.; Hellweg, S.

    2013-12-01

    Water scarcity is a regional issue in many areas across the world, and can affect human health and ecosystems locally. Water stress indices (WSIs) have been developed as quantitative indicators of such scarcities - examples include the Falkenmark indicator, Social Water Stress Index, and the Water Supply Stress Index1. Application of these indices helps us understand water supply and demand risks for multiple users, including those in the agricultural, industrial, residential and commercial sectors. Pfister et al.2 developed a method to calculate WSIs that were used to estimate characterization factors (CFs) in order to quantify environmental impacts of freshwater consumption within a life cycle assessment (LCA) framework. Global WSIs were based on data from the WaterGAP model3, and presented as annual averages for watersheds. Since water supply and demand varies regionally and temporally, the resolution used in Pfister et al. does not effectively differentiate between seasonal and permanent water scarcity. This study aims to improve the temporal and spatial resolution of the water scarcity calculations used to estimate WSIs and CFs. We used the Soil and Water Assessment Tool (SWAT)4 hydrological model to properly simulate water supply in different world regions with high spatial and temporal resolution, and coupled it with water use data from WaterGAP3 and Pfister et al.5. Input data to SWAT included weather, land use, soil characteristics and a digital elevation model (DEM), all from publicly available global data sets. Potential evapotranspiration, which affects water supply, was determined using an improved Priestley-Taylor approach. In contrast to most other hydrological studies, large reservoirs, water consumption and major water transfers were simulated. The model was calibrated against observed monthly discharge, actual evapotranspiration, and snow water equivalents wherever appropriate. Based on these simulations, monthly WSIs were calculated for a few

  9. Spatially explicit modeling of lesser prairie-chicken lek density in Texas

    Timmer, Jennifer M.; Butler, M.J.; Ballard, Warren; Boal, Clint W.; Whitlaw, Heather A.

    2014-01-01

    As with many other grassland birds, lesser prairie-chickens (Tympanuchus pallidicinctus) have experienced population declines in the Southern Great Plains. Currently they are proposed for federal protection under the Endangered Species Act. In addition to a history of land-uses that have resulted in habitat loss, lesser prairie-chickens now face a new potential disturbance from energy development. We estimated lek density in the occupied lesser prairie-chicken range of Texas, USA, and modeled anthropogenic and vegetative landscape features associated with lek density. We used an aerial line-transect survey method to count lesser prairie-chicken leks in spring 2010 and 2011 and surveyed 208 randomly selected 51.84-km(2) blocks. We divided each survey block into 12.96-km(2) quadrats and summarized landscape variables within each quadrat. We then used hierarchical distance-sampling models to examine the relationship between lek density and anthropogenic and vegetative landscape features and predict how lek density may change in response to changes on the landscape, such as an increase in energy development. Our best models indicated lek density was related to percent grassland, region (i.e., the northeast or southwest region of the Texas Panhandle), total percentage of grassland and shrubland, paved road density, and active oil and gas well density. Predicted lek density peaked at 0.39leks/12.96km(2) (SE=0.09) and 2.05leks/12.96km(2) (SE=0.56) in the northeast and southwest region of the Texas Panhandle, respectively, which corresponds to approximately 88% and 44% grassland in the northeast and southwest region. Lek density increased with an increase in total percentage of grassland and shrubland and was greatest in areas with lower densities of paved roads and lower densities of active oil and gas wells. We used the 2 most competitive models to predict lek abundance and estimated 236 leks (CV=0.138, 95% CI=177-306leks) for our sampling area. Our results suggest that

  10. High Performance Programming Using Explicit Shared Memory Model on the Cray T3D

    Saini, Subhash; Simon, Horst D.; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    The Cray T3D is the first-phase system in Cray Research Inc.'s (CRI) three-phase massively parallel processing program. In this report we describe the architecture of the T3D, as well as the CRAFT (Cray Research Adaptive Fortran) programming model, and contrast it with PVM, which is also supported on the T3D We present some performance data based on the NAS Parallel Benchmarks to illustrate both architectural and software features of the T3D.

  11. Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models

    Hubalek, Friedrich; Posedel, Petra

    expressions for the asymptotic covariance matrix. We develop in detail the martingale estimating function approach for a bivariate model, that is not a diffusion, but admits jumps. We do not use ergodicity arguments. We assume that both, logarithmic returns and instantaneous variance are observed...... on a discrete grid of fixed width, and the observation horizon tends to infinity. This anaysis is a starting point and benchmark for further developments concerning optimal martingale estimating functions, and for theoretical and empirical investigations, that replace the (actually unobserved) variance process...

  12. Stable explicit coupling of the Yee scheme with a linear current model in fluctuating magnetized plasmas

    Silva, Filipe da; Pinto, Martin Campos; Després, Bruno; Heuraux, Stéphane

    2015-01-01

    This work analyzes the stability of the Yee scheme for non-stationary Maxwell's equations coupled with a linear current model with density fluctuations. We show that the usual procedure may yield unstable scheme for physical situations that correspond to strongly magnetized plasmas in X-mode (TE) polarization. We propose to use first order clustered discretization of the vectorial product that gives back a stable coupling. We validate the schemes on some test cases representative of direct numerical simulations of X-mode in a magnetic fusion plasma including turbulence

  13. Analyzing key constraints to biogas production from crop residues and manure in the EU—A spatially explicit model

    Persson, U. Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates’ biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures’ carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent). PMID:28141827

  14. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model.

    Einarsson, Rasmus; Persson, U Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates' biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures' carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent).

  15. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model.

    Rasmus Einarsson

    Full Text Available This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates' biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures' carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops, or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent.

  16. Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols

    Lin, Renping; Zhu, Jiang; Zheng, Fei

    2016-12-01

    The East Asian summer monsoon (EASM) experienced decadal transitions over the past few decades, and the associated "wetter-South-drier-North" shifts in rainfall patterns in China significantly affected the social and economic development in China. Two viewpoints stand out to explain these decadal shifts, regarding the shifts either a result of internal variability of climate system or that of external forcings (e.g. greenhouse gases (GHGs) and anthropogenic aerosols). However, most climate models, for example, the Atmospheric Model Intercomparison Project (AMIP)-type simulations and the Coupled Model Intercomparison Project (CMIP)-type simulations, fail to simulate the variation patterns, leaving the mechanisms responsible for these shifts still open to dispute. In this study, we conducted a successful simulation of these decadal transitions in a coupled model where we applied ocean data assimilation in the model free of explicit aerosols and GHGs forcing. The associated decadal shifts of the three-dimensional spatial structure in the 1990s, including the eastward retreat, the northward shift of the western Pacific subtropical high (WPSH), and the south-cool-north-warm pattern of the upper-level tropospheric temperature, were all well captured. Our simulation supports the argument that the variations of the oceanic fields are the dominant factor responsible for the EASM decadal transitions.

  17. Water transport through tall trees: A vertically-explicit, analytical model of xylem hydraulic conductance in stems.

    Couvreur, Valentin; Ledder, Glenn; Manzoni, Stefano; Way, Danielle A; Muller, Erik B; Russo, Sabrina E

    2018-05-08

    Trees grow by vertically extending their stems, so accurate stem hydraulic models are fundamental to understanding the hydraulic challenges faced by tall trees. Using a literature survey, we showed that many tree species exhibit continuous vertical variation in hydraulic traits. To examine the effects of this variation on hydraulic function, we developed a spatially-explicit, analytical water transport model for stems. Our model allows Huber ratio, stem-saturated conductivity, pressure at 50% loss of conductivity, leaf area, and transpiration rate to vary continuously along the hydraulic path. Predictions from our model differ from a matric flux potential model parameterized with uniform traits. Analyses show that cavitation is a whole-stem emergent property resulting from nonlinear pressure-conductivity feedbacks that, with gravity, cause impaired water transport to accumulate along the path. Because of the compounding effects of vertical trait variation on hydraulic function, growing proportionally more sapwood and building tapered xylem with height, as well as reducing xylem vulnerability only at branch tips while maintaining transport capacity at the stem base, can compensate for these effects. We therefore conclude that the adaptive significance of vertical variation in stem hydraulic traits is to allow trees to grow tall and tolerate operating near their hydraulic limits. This article is protected by copyright. All rights reserved.

  18. Spatially-explicit LCIA model for marine eutrophication as a tool for sustainability assessment

    Cosme, Nuno Miguel Dias; Hauschild, Michael Zwicky

    2014-01-01

    The increasing emissions from human activities are overrunning the ecosystems’ natural capacity to absorb them. Nutrient emissions, mostly nitrogen- and phosphorus-forms (N, P) from e.g. agricultural runoff and combustion processes, may lead to social-economic impacts and environmental quality......-enrichment to impacts on marine ecosystems. Emitted nitrogen reaches marine coastal waters where it promotes the growth of phytoplankton biomass in the surface photic zone from where it eventually sinks to bottom waters. This downward flux of organic matter is respired there by bacteria resulting in the consumption...... of dissolved oxygen. An excessive depletion of oxygen affects the exposed organisms and loss of species diversity may be expected. A model framework was built to estimate the potential impacts arising from N-emissions (see figure). It combines the fate of N in rivers and coastal waters, the exposure...

  19. Modelling of friction anisotropy of deepdrawing sheet in ABAQUS/EXPLICIT

    F. Stachowicz

    2010-07-01

    Full Text Available This paper presents the experimental and numerical results of rectangular cup drawing of steel sheets. The aim of the experimental study was to analyze material behavior under deformation. The received results were further used to verify the results from numerical simulation by taking friction and material anisotropy into consideration. A 3D parametric finite element (FE model was built using the FE-package ABAQUS/Standard. ABAQUS allows analyzing physical models of real processes putting special emphasis on geometrical non-linearities caused by large deformations, material non-linearities and complex friction conditions. Frictional properties of the deep drawing quality steel sheet were determined by using the pin-on-disc tribometer. It shows that the friction coefficient value depends on the measured angle from the rolling direction and corresponds to the surface topography. A quadratic Hill anisotropic yield criterion was compared with Huber-Mises yield criterion having isotropic hardening. Plastic anisotropy is the result of the distortion of the yield surface shape due to the material microstructural state. The sensitivity of constitutive laws to the initial data characterizing material behavior isalso presented. It is found that plastic anisotropy of the matrix in ductile sheet metal has influence on deformation behavior of the material. If the material and friction anisotropy are taken into account in the finite element analysis, this approach undoubtedly gives the most approximate numerical results to real processes. This paper is the first part of the study of numerical investigation using ABAQUS and mainly deals with the most influencing parameters in a forming process to simulate the sheet metal forming of rectangular cup.

  20. The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modeling framework models: tracer transport results

    Jr, William I Gustafson; Berg, Larry K; Easter, Richard C; Ghan, Steven J

    2008-01-01

    All estimates of aerosol indirect effects on the global energy balance have either completely neglected the influence of aerosol on convective clouds or treated the influence in a highly parameterized manner. Embedding cloud-resolving models (CRMs) within each grid cell of a global model provides a multiscale modeling framework for treating both the influence of aerosols on convective as well as stratiform clouds and the influence of clouds on the aerosol, but treating the interactions explicitly by simulating all aerosol processes in the CRM is computationally prohibitive. An alternate approach is to use horizontal statistics (e.g., cloud mass flux, cloud fraction, and precipitation) from the CRM simulation to drive a single-column parameterization of cloud effects on the aerosol and then use the aerosol profile to simulate aerosol effects on clouds within the CRM. Here, we present results from the first component of the Explicit-Cloud Parameterized-Pollutant parameterization to be developed, which handles vertical transport of tracers by clouds. A CRM with explicit tracer transport serves as a benchmark. We show that this parameterization, driven by the CRM's cloud mass fluxes, reproduces the CRM tracer transport significantly better than a single-column model that uses a conventional convective cloud parameterization

  1. The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modeling framework models: tracer transport results

    Jr, William I Gustafson; Berg, Larry K; Easter, Richard C; Ghan, Steven J [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, PO Box 999, MSIN K9-30, Richland, WA (United States)], E-mail: William.Gustafson@pnl.gov

    2008-04-15

    All estimates of aerosol indirect effects on the global energy balance have either completely neglected the influence of aerosol on convective clouds or treated the influence in a highly parameterized manner. Embedding cloud-resolving models (CRMs) within each grid cell of a global model provides a multiscale modeling framework for treating both the influence of aerosols on convective as well as stratiform clouds and the influence of clouds on the aerosol, but treating the interactions explicitly by simulating all aerosol processes in the CRM is computationally prohibitive. An alternate approach is to use horizontal statistics (e.g., cloud mass flux, cloud fraction, and precipitation) from the CRM simulation to drive a single-column parameterization of cloud effects on the aerosol and then use the aerosol profile to simulate aerosol effects on clouds within the CRM. Here, we present results from the first component of the Explicit-Cloud Parameterized-Pollutant parameterization to be developed, which handles vertical transport of tracers by clouds. A CRM with explicit tracer transport serves as a benchmark. We show that this parameterization, driven by the CRM's cloud mass fluxes, reproduces the CRM tracer transport significantly better than a single-column model that uses a conventional convective cloud parameterization.

  2. A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America

    Govind, Ajit; Chen, Jing Ming; Margolis, Hank; Ju, Weimin; Sonnentag, Oliver; Giasson, Marc-André

    2009-04-01

    SummaryA spatially explicit, process-based hydro-ecological model, BEPS-TerrainLab V2.0, was developed to improve the representation of ecophysiological, hydro-ecological and biogeochemical processes of boreal ecosystems in a tightly coupled manner. Several processes unique to boreal ecosystems were implemented including the sub-surface lateral water fluxes, stratification of vegetation into distinct layers for explicit ecophysiological representation, inclusion of novel spatial upscaling strategies and biogeochemical processes. To account for preferential water fluxes common in humid boreal ecosystems, a novel scheme was introduced based on laboratory analyses. Leaf-scale ecophysiological processes were upscaled to canopy-scale by explicitly considering leaf physiological conditions as affected by light and water stress. The modified model was tested with 2 years of continuous measurements taken at the Eastern Old Black Spruce Site of the Fluxnet-Canada Research Network located in a humid boreal watershed in eastern Canada. Comparison of the simulated and measured ET, water-table depth (WTD), volumetric soil water content (VSWC) and gross primary productivity (GPP) revealed that BEPS-TerrainLab V2.0 simulates hydro-ecological processes with reasonable accuracy. The model was able to explain 83% of the ET, 92% of the GPP variability and 72% of the WTD dynamics. The model suggests that in humid ecosystems such as eastern North American boreal watersheds, topographically driven sub-surface baseflow is the main mechanism of soil water partitioning which significantly affects the local-scale hydrological conditions.

  3. Modeling the fate of nitrogen on the catchment scale using a spatially explicit hydro-biogeochemical simulation system

    Klatt, S.; Butterbach-Bahl, K.; Kiese, R.; Haas, E.; Kraus, D.; Molina-Herrera, S. W.; Kraft, P.

    2015-12-01

    The continuous growth of the human population demands an equally growing supply for fresh water and food. As a result, available land for efficient agriculture is constantly diminishing which forces farmers to cultivate inferior croplands and intensify agricultural practices, e.g., increase the use of synthetic fertilizers. This intensification of marginal areas in particular will cause a dangerous rise in nitrate discharge into open waters or even drinking water resources. In order to reduce the amount of nitrate lost by surface runoff or lateral subsurface transport, bufferstrips have proved to be a valuable means. Current laws, however, promote rather static designs (i.e., width and usage) even though a multitude of factors, e.g., soil type, slope, vegetation and the nearby agricultural management, determines its effectiveness. We propose a spatially explicit modeling approach enabling to assess the effects of those factors on nitrate discharge from arable lands using the fully distributed hydrology model CMF coupled to the complex biogeochemical model LandscapeDNDC. Such a modeling scheme allows to observe the displacement of dissolved nutrients in both vertical and horizontal directions and serves to estimate both their uptake by the vegetated bufferstrip and loss to the environment. First results indicate a significant reduction of nitrate loss in the presence of a bufferstrip (2.5 m). We show effects induced by various buffer strip widths and plant cover on the nitrate retention.

  4. Chemical Kinetic Models for Advanced Engine Combustion

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-22

    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  5. Mathematical modeling a chemical engineer's perspective

    Rutherford, Aris

    1999-01-01

    Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus

  6. A High-Resolution Spatially Explicit Monte-Carlo Simulation Approach to Commercial and Residential Electricity and Water Demand Modeling

    Morton, April M [ORNL; McManamay, Ryan A [ORNL; Nagle, Nicholas N [ORNL; Piburn, Jesse O [ORNL; Stewart, Robert N [ORNL; Surendran Nair, Sujithkumar [ORNL

    2016-01-01

    Abstract As urban areas continue to grow and evolve in a world of increasing environmental awareness, the need for high resolution spatially explicit estimates for energy and water demand has become increasingly important. Though current modeling efforts mark significant progress in the effort to better understand the spatial distribution of energy and water consumption, many are provided at a course spatial resolution or rely on techniques which depend on detailed region-specific data sources that are not publicly available for many parts of the U.S. Furthermore, many existing methods do not account for errors in input data sources and may therefore not accurately reflect inherent uncertainties in model outputs. We propose an alternative and more flexible Monte-Carlo simulation approach to high-resolution residential and commercial electricity and water consumption modeling that relies primarily on publicly available data sources. The method s flexible data requirement and statistical framework ensure that the model is both applicable to a wide range of regions and reflective of uncertainties in model results. Key words: Energy Modeling, Water Modeling, Monte-Carlo Simulation, Uncertainty Quantification Acknowledgment This manuscript has been authored by employees of UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  7. Analytical explicit formulas of average run length for long memory process with ARFIMA model on CUSUM control chart

    Wilasinee Peerajit

    2017-12-01

    Full Text Available This paper proposes the explicit formulas for the derivation of exact formulas from Average Run Lengths (ARLs using integral equation on CUSUM control chart when observations are long memory processes with exponential white noise. The authors compared efficiency in terms of the percentage of absolute difference to a similar method to verify the accuracy of the ARLs between the values obtained by the explicit formulas and numerical integral equation (NIE method. The explicit formulas were based on Banach fixed point theorem which was used to guarantee the existence and uniqueness of the solution for ARFIMA(p,d,q. Results showed that the two methods are similar in good agreement with the percentage of absolute difference at less than 0.23%. Therefore, the explicit formulas are an efficient alternative for implementation in real applications because the computational CPU time for ARLs from the explicit formulas are 1 second preferable over the NIE method.

  8. A risk explicit interval linear programming model for uncertainty-based environmental economic optimization in the Lake Fuxian watershed, China.

    Zhang, Xiaoling; Huang, Kai; Zou, Rui; Liu, Yong; Yu, Yajuan

    2013-01-01

    The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of "low risk and high return efficiency" in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management.

  9. A Risk Explicit Interval Linear Programming Model for Uncertainty-Based Environmental Economic Optimization in the Lake Fuxian Watershed, China

    Xiaoling Zhang

    2013-01-01

    Full Text Available The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers’ preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of “low risk and high return efficiency” in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management.

  10. Modeling spatially explicit fire impact on gross primary production in interior Alaska using satellite images coupled with eddy covariance

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Welp, Lisa R.; Liu, Jinxun; Liu, Shuguang

    2013-01-01

    In interior Alaska, wildfires change gross primary production (GPP) after the initial disturbance. The impact of fires on GPP is spatially heterogeneous, which is difficult to evaluate by limited point-based comparisons or is insufficient to assess by satellite vegetation index. The direct prefire and postfire comparison is widely used, but the recovery identification may become biased due to interannual climate variability. The objective of this study is to propose a method to quantify the spatially explicit GPP change caused by fires and succession. We collected three Landsat images acquired on 13 July 2004, 5 August 2004, and 6 September 2004 to examine the GPP recovery of burned area from 1987 to 2004. A prefire Landsat image acquired in 1986 was used to reconstruct satellite images assuming that the fires of 1987–2004 had not occurred. We used a light-use efficiency model to estimate the GPP. This model was driven by maximum light-use efficiency (Emax) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR). We applied this model to two scenarios (i.e., an actual postfire scenario and an assuming-no-fire scenario), where the changes in Emax and FPAR were taken into account. The changes in Emax were represented by the change in land cover of evergreen needleleaf forest, deciduous broadleaf forest, and shrub/grass mixed, whose Emax was determined from three fire chronosequence flux towers as 1.1556, 1.3336, and 0.5098 gC/MJ PAR. The changes in FPAR were inferred from NDVI change between the actual postfire NDVI and the reconstructed NDVI. After GPP quantification for July, August, and September 2004, we calculated the difference between the two scenarios in absolute and percent GPP changes. Our results showed rapid recovery of GPP post-fire with a 24% recovery immediately after burning and 43% one year later. For the fire scars with an age range of 2–17 years, the recovery rate ranged from 54% to 95%. In addition to the averaging

  11. Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance

    Sourrouille, Lucas; Casana, Rodolfo

    2016-01-01

    We have studied the existence of self-dual solitonic solutions in a generalization of the Abelian Chern-Simons-Higgs model. Such a generalization introduces two different nonnegative functions, ω_1(|ϕ|) and ω(|ϕ|), which split the kinetic term of the Higgs field, |D_μϕ|"2→ω_1(|ϕ|)|D_0ϕ|"2-ω(|ϕ|)|D_kϕ|"2, breaking explicitly the Lorentz covariance. We have shown that a clean implementation of the Bogomolnyi procedure only can be implemented whether ω(|ϕ|)∝β|ϕ|"2"β"-"2 with β≥1. The self-dual or Bogomolnyi equations produce an infinity number of soliton solutions by choosing conveniently the generalizing function ω_1(|ϕ|) which must be able to provide a finite magnetic field. Also, we have shown that by properly choosing the generalizing functions it is possible to reproduce the Bogomolnyi equations of the Abelian Maxwell-Higgs and Chern-Simons-Higgs models. Finally, some new self-dual |ϕ|"6-vortex solutions have been analyzed from both theoretical and numerical point of view.

  12. Reducing fertilizer-nitrogen losses from rowcrop landscapes: Insights and implications from a spatially explicit watershed model

    McLellan, Eileen; Schilling, Keith; Robertson, Dale M.

    2015-01-01

    We present conceptual and quantitative models that predict changes in fertilizer-derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer-derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi-Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.

  13. Galactic chemical evolution in hierarchical formation models

    Arrigoni, Matias

    2010-10-01

    The chemical properties and abundance ratios of galaxies provide important information about their formation histories. Galactic chemical evolution has been modelled in detail within the monolithic collapse scenario. These models have successfully described the abundance distributions in our Galaxy and other spiral discs, as well as the trends of metallicity and abundance ratios observed in early-type galaxies. In the last three decades, however, the paradigm of hierarchical assembly in a Cold Dark Matter (CDM) cosmology has revised the picture of how structure in the Universe forms and evolves. In this scenario, galaxies form when gas radiatively cools and condenses inside dark matter haloes, which themselves follow dissipationless gravitational collapse. The CDM picture has been successful at predicting many observed properties of galaxies (for example, the luminosity and stellar mass function of galaxies, color-magnitude or star formation rate vs. stellar mass distributions, relative numbers of early and late-type galaxies, gas fractions and size distributions of spiral galaxies, and the global star formation history), though many potential problems and open questions remain. It is therefore interesting to see whether chemical evolution models, when implemented within this modern cosmological context, are able to correctly predict the observed chemical properties of galaxies. With the advent of more powerfull telescopes and detectors, precise observations of chemical abundances and abundance ratios in various phases (stellar, ISM, ICM) offer the opportunity to obtain strong constraints on galaxy formation histories and the physics that shapes them. However, in order to take advantage of these observations, it is necessary to implement detailed modeling of chemical evolution into a modern cosmological model of hierarchical assembly.

  14. Chemical Kinetic Modeling of 2-Methylhexane Combustion

    Mohamed, Samah Y.

    2015-03-30

    Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important for investigating the combustion behavior of diesel, gasoline, and aviation fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values and rate rules. These update provides a better agreement with rapid compression machine measurements of ignition delay time, while also strengthening the fundamental basis of the model.

  15. Inferring the past and present connectivity across the range of a North American leaf beetle: combining ecological niche modeling and a geographically explicit model of coalescence.

    Dellicour, Simon; Fearnley, Shannon; Lombal, Anicée; Heidl, Sarah; Dahlhoff, Elizabeth P; Rank, Nathan E; Mardulyn, Patrick

    2014-08-01

    The leaf beetle Chrysomela aeneicollis occurs across Western North America, either at high elevation or in small, isolated populations along the coast, and thus has a highly fragmented distribution. DNA sequence data (three loci) were collected from five regions across the species range. Population connectivity was examined using traditional ecological niche modeling, which suggested that gene flow could occur among regions now and in the past. We developed geographically explicit coalescence models of sequence evolution that incorporated a two-dimensional representation of the hypothesized ranges suggested by the niche-modeling estimates. We simulated sequence data according to these models and compared them to observed sequences to identify most probable scenarios regarding the migration history of C. aeneicollis. Our results disagreed with initial niche-modeling estimates by clearly rejecting recent connectivity among regions, and were instead most consistent with a long period of range fragmentation, extending well beyond the last glacial maximum. This application of geographically explicit models of coalescence has highlighted some limitations of the use of climatic variables for predicting the present and past range of a species and has explained aspects of the Pleistocene evolutionary history of a cold-adapted organism in Western North America. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  16. Comparing implicit and explicit semantic access of direct and indirect word pairs in schizophrenia to evaluate models of semantic memory.

    Neill, Erica; Rossell, Susan Lee

    2013-02-28

    Semantic memory deficits in schizophrenia (SZ) are profound, yet there is no research comparing implicit and explicit semantic processing in the same participant sample. In the current study, both implicit and explicit priming are investigated using direct (LION-TIGER) and indirect (LION-STRIPES; where tiger is not displayed) stimuli comparing SZ to healthy controls. Based on a substantive review (Rossell and Stefanovic, 2007) and meta-analysis (Pomarol-Clotet et al., 2008), it was predicted that SZ would be associated with increased indirect priming implicitly. Further, it was predicted that SZ would be associated with abnormal indirect priming explicitly, replicating earlier work (Assaf et al., 2006). No specific hypotheses were made for implicit direct priming due to the heterogeneity of the literature. It was hypothesised that explicit direct priming would be intact based on the structured nature of this task. The pattern of results suggests (1) intact reaction time (RT) and error performance implicitly in the face of abnormal direct priming and (2) impaired RT and error performance explicitly. This pattern confirms general findings regarding implicit/explicit memory impairments in SZ whilst highlighting the unique pattern of performance specific to semantic priming. Finally, priming performance is discussed in relation to thought disorder and length of illness. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Equilibrator: Modeling Chemical Equilibria with Excel

    Vander Griend, Douglas A.

    2011-01-01

    Equilibrator is a Microsoft Excel program for learning about chemical equilibria through modeling, similar in function to EQS4WIN, which is no longer supported and does not work well with newer Windows operating systems. Similar to EQS4WIN, Equilibrator allows the user to define a system with temperature, initial moles, and then either total…

  18. An explicit asymptotic model for the surface wave in a viscoelastic half-space based on applying Rabotnov's fractional exponential integral operators

    Wilde, M. V.; Sergeeva, N. V.

    2018-05-01

    An explicit asymptotic model extracting the contribution of a surface wave to the dynamic response of a viscoelastic half-space is derived. Fractional exponential Rabotnov's integral operators are used for describing of material properties. The model is derived by extracting the principal part of the poles corresponding to the surface waves after applying Laplace and Fourier transforms. The simplified equations for the originals are written by using power series expansions. Padè approximation is constructed to unite short-time and long-time models. The form of this approximation allows to formulate the explicit model using a fractional exponential Rabotnov's integral operator with parameters depending on the properties of surface wave. The applicability of derived models is studied by comparing with the exact solutions of a model problem. It is revealed that the model based on Padè approximation is highly effective for all the possible time domains.

  19. Surface Protonation at the Rutile (110) Interface: Explicit Incorporation of Solvation Structure within the Refined MUSIC Model Framework

    Machesky, Michael L. [Illinois State Water Survey, Champaign, IL; Predota, M. [University of South Bohemia, Czech Republic; Wesolowski, David J [ORNL

    2008-01-01

    The detailed solvation structure at the (110) surface of rutile ({alpha}-TiO{sub 2}) in contact with bulk liquid water has been obtained primarily from experimentally verified classical molecular dynamics (CMD) simulations of the ab initio-optimized surface in contact with SPC/E water. The results are used to explicitly quantify H-bonding interactions, which are then used within the refined MUSIC model framework to predict surface oxygen protonation constants. Quantum mechanical molecular dynamics (QMD) simulations in the presence of freely dissociable water molecules produced H-bond distributions around deprotonated surface oxygens very similar to those obtained by CMD with nondissociable SPC/E water, thereby confirming that the less computationally intensive CMD simulations provide accurate H-bond information. Utilizing this H-bond information within the refined MUSIC model, along with manually adjusted Ti-O surface bond lengths that are nonetheless within 0.05 {angstrom} of those obtained from static density functional theory (DFT) calculations and measured in X-ray reflectivity experiments (as well as bulk crystal values), give surface protonation constants that result in a calculated zero net proton charge pH value (pHznpc) at 25 C that agrees quantitatively with the experimentally determined value (5.4 {+-} 0.2) for a specific rutile powder dominated by the (110) crystal face. Moreover, the predicted pH{sub znpc} values agree to within 0.1 pH unit with those measured at all temperatures between 10 and 250 C. A slightly smaller manual adjustment of the DFT-derived Ti-O surface bond lengths was sufficient to bring the predicted pH{sub znpc} value of the rutile (110) surface at 25 C into quantitative agreement with the experimental value (4.8 {+-} 0.3) obtained from a polished and annealed rutile (110) single crystal surface in contact with dilute sodium nitrate solutions using second harmonic generation (SHG) intensity measurements as a function of ionic

  20. Surface Protonation at the Rutile (110) Interface: Explicit Incorporation of Solvation Structure within the Refined MUSIC Model Framework

    Machesky, Michael L.; Predota, M.; Wesolowski, David J.

    2008-01-01

    The detailed solvation structure at the (110) surface of rutile (α-TiO 2 ) in contact with bulk liquid water has been obtained primarily from experimentally verified classical molecular dynamics (CMD) simulations of the ab initio-optimized surface in contact with SPC/E water. The results are used to explicitly quantify H-bonding interactions, which are then used within the refined MUSIC model framework to predict surface oxygen protonation constants. Quantum mechanical molecular dynamics (QMD) simulations in the presence of freely dissociable water molecules produced H-bond distributions around deprotonated surface oxygens very similar to those obtained by CMD with nondissociable SPC/E water, thereby confirming that the less computationally intensive CMD simulations provide accurate H-bond information. Utilizing this H-bond information within the refined MUSIC model, along with manually adjusted Ti-O surface bond lengths that are nonetheless within 0.05 (angstrom) of those obtained from static density functional theory (DFT) calculations and measured in X-ray reflectivity experiments (as well as bulk crystal values), give surface protonation constants that result in a calculated zero net proton charge pH value (pHznpc) at 25 C that agrees quantitatively with the experimentally determined value (5.4 ± 0.2) for a specific rutile powder dominated by the (110) crystal face. Moreover, the predicted pH znpc values agree to within 0.1 pH unit with those measured at all temperatures between 10 and 250 C. A slightly smaller manual adjustment of the DFT-derived Ti-O surface bond lengths was sufficient to bring the predicted pH znpc value of the rutile (110) surface at 25 C into quantitative agreement with the experimental value (4.8 ± 0.3) obtained from a polished and annealed rutile (110) single crystal surface in contact with dilute sodium nitrate solutions using second harmonic generation (SHG) intensity measurements as a function of ionic strength. Additionally, the H

  1. Polarographic validation of chemical speciation models

    Duffield, J.R.; Jarratt, J.A.

    2001-01-01

    It is well established that the chemical speciation of an element in a given matrix, or system of matrices, is of fundamental importance in controlling the transport behaviour of the element. Therefore, to accurately understand and predict the transport of elements and compounds in the environment it is a requirement that both the identities and concentrations of trace element physico-chemical forms can be ascertained. These twin requirements present the analytical scientist with considerable challenges given the labile equilibria, the range of time scales (from nanoseconds to years) and the range of concentrations (ultra-trace to macro) that may be involved. As a result of this analytical variability, chemical equilibrium modelling has become recognised as an important predictive tool in chemical speciation analysis. However, this technique requires firm underpinning by the use of complementary experimental techniques for the validation of the predictions made. The work reported here has been undertaken with the primary aim of investigating possible methodologies that can be used for the validation of chemical speciation models. However, in approaching this aim, direct chemical speciation analyses have been made in their own right. Results will be reported and analysed for the iron(II)/iron(III)-citrate proton system (pH 2 to 10; total [Fe] = 3 mmol dm -3 ; total [citrate 3- ] 10 mmol dm -3 ) in which equilibrium constants have been determined using glass electrode potentiometry, speciation is predicted using the PHREEQE computer code, and validation of predictions is achieved by determination of iron complexation and redox state with associated concentrations. (authors)

  2. Chemical kinetics and modeling of planetary atmospheres

    Yung, Yuk L.

    1990-01-01

    A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.

  3. Numerical study on two-point contact by an explicit integration finite element method : A contribution to the modeling of flange squeal

    Yang, Z.; Li, Z.; Dollevoet, R.P.B.J.; Tournay, H; Grassie, S

    2015-01-01

    The precise mechanism which activates squeal, especially flange squeal has not been fully explained. The complex non-Hertzian contact and the broad-band high frequency feature bring great challenges to the modelling work of flange squeal. In this paper, an explicit integration finite element method

  4. Large scale spatially explicit modeling of blue and green water dynamics in a temperate mid-latitude basin

    Du, Liuying; Rajib, Adnan; Merwade, Venkatesh

    2018-07-01

    Looking only at climate change impacts provides partial information about a changing hydrologic regime. Understanding the spatio-temporal nature of change in hydrologic processes, and the explicit contributions from both climate and land use drivers, holds more practical value for water resources management and policy intervention. This study presents a comprehensive assessment on the spatio-temporal trend of Blue Water (BW) and Green Water (GW) in a 490,000 km2 temperate mid-latitude basin (Ohio River Basin) over the past 80 years (1935-2014), and from thereon, quantifies the combined as well as relative contributions of climate and land use changes. The Soil and Water Assessment Tool (SWAT) is adopted to simulate hydrologic fluxes. Mann-Kendall and Theil-Sen statistical tests are performed on the modeled outputs to detect respectively the trend and magnitude of changes at three different spatial scales - the entire basin, regional level, and sub-basin level. Despite the overall volumetric increase of both BW and GW in the entire basin, changes in their annual average values during the period of simulation reveal a distinctive spatial pattern. GW has increased significantly in the upper and lower parts of the basin, which can be related to the prominent land use change in those areas. BW has increased significantly only in the lower part, likely being associated with the notable precipitation change there. Furthermore, the simulation under a time-varying climate but constant land use scenario identifies climate change in the Ohio River Basin to be influential on BW, while the impact is relatively nominal on GW; whereas, land use change increases GW remarkably, but is counterproductive on BW. The approach to quantify combined/relative effects of climate and land use change as shown in this study can be replicated to understand BW-GW dynamics in similar large basins around the globe.

  5. Spatially explicit habitat models for 28 fishes from the Upper Mississippi River System (AHAG 2.0)

    Ickes, Brian S.; Sauer, J.S.; Richards, N.; Bowler, M.; Schlifer, B.

    2014-01-01

    perhaps why). Our goal was to develop regionalized models, and to assess and describe circumstances when a good fit was not possible. Seven fish species composed the Lentic guild. Good fits were achieved for six Upper Reach models. In the Lower Reach, no model produced good fits for the Lentic guild. This was due to (1) lentic species being much less prominent in the Lower Reach study areas, and (2) those that do express greater prominence principally do so only in the La Grange reach of the Illinois River. Thus, developing Lower Reach models for Lentic species will require parsing La Grange from the other two Lower Reach study areas and fitting separate models. We did not do that as part of this study, but it could be done at a later time. Nine species comprised the Lotic guild. Good fits were achieved for seven Upper Reach models and six Lower Reach models. Four species had good fits for both regions (flathead catfish, blue sucker, sauger, and shorthead redhorse). Three species showed zoogeographic zonation, with a good model fit in one of the regions, but not in the region in which they were absent or rarely occurred (blue catfish, rock bass, and skipjack herring). Twelve species comprised the Generalist guild. Good fits were achieved for five Upper Reach models and eight Lower Reach models. Six species had good fits for both regions (brook silverside, emerald shiner, freshwater drum, logperch, longnose gar, and white bass). Two species showed zoogeographic zonation, with a good model fit in one of the regions, but not in the region in which they were absent or rarely occurred (red shiner and blackstripe topminnow). Poorly fit models were almost always due to the diagnostic variable “field station,” a surrogate for river mile. In these circumstances, the residuals for “field station” were non-randomly distributed and often strongly ordered. This indicates either fitting “pool scale” models for these species and regions, or explicitly model covariances

  6. Fuzzy risk explicit interval linear programming model for end-of-life vehicle recycling planning in the EU.

    Simic, Vladimir

    2015-01-01

    End-of-life vehicles (ELVs) are vehicles that have reached the end of their useful lives and are no longer registered or licensed for use. The ELV recycling problem has become very serious in the last decade and more and more efforts are made in order to reduce the impact of ELVs on the environment. This paper proposes the fuzzy risk explicit interval linear programming model for ELV recycling planning in the EU. It has advantages in reflecting uncertainties presented in terms of intervals in the ELV recycling systems and fuzziness in decision makers' preferences. The formulated model has been applied to a numerical study in which different decision maker types and several ELV types under two EU ELV Directive legislative cases were examined. This study is conducted in order to examine the influences of the decision maker type, the α-cut level, the EU ELV Directive and the ELV type on decisions about vehicle hulks procuring, storing unprocessed hulks, sorting generated material fractions, allocating sorted waste flows and allocating sorted metals. Decision maker type can influence quantity of vehicle hulks kept in storages. The EU ELV Directive and decision maker type have no influence on which vehicle hulk type is kept in the storage. Vehicle hulk type, the EU ELV Directive and decision maker type do not influence the creation of metal allocation plans, since each isolated metal has its regular destination. The valid EU ELV Directive eco-efficiency quotas can be reached even when advanced thermal treatment plants are excluded from the ELV recycling process. The introduction of the stringent eco-efficiency quotas will significantly reduce the quantities of land-filled waste fractions regardless of the type of decision makers who will manage vehicle recycling system. In order to reach these stringent quotas, significant quantities of sorted waste need to be processed in advanced thermal treatment plants. Proposed model can serve as the support for the European

  7. Modelling Chemical Preservation of Plantain Hybrid Fruits

    Ogueri Nwaiwu

    2017-08-01

    Full Text Available New plantain hybrids plants have been developed but not much has been done on the post-harvest keeping quality of the fruits and how they are affected by microbial colonization. Hence fruits from a tetraploid hybrid PITA 2 (TMPx 548-9 obtained by crossing plantain varieties Obino l’Ewai and Calcutta 4 (AA and two local triploid (AAB plantain landraces Agbagba and Obino l’Ewai were subjected to various concentrations of acetic, sorbic and propionic acid to determine the impact of chemical concentration, chemical type and plantain variety on ripening and weight loss of plantain fruits. Analysis of titratable acidity, moisture content and total soluble solids showed that there were no significant differences between fruits of hybrid and local varieties. The longest time to ripening from harvest (24 days was achieved with fruits of Agbagba treated with 3% propionic acid. However, fruits of PITA 2 hybrid treated with propionic and sorbic acid at 3% showed the longest green life which indicated that the chemicals may work better at higher concentrations. The Obino l’Ewai cultivar had the highest weight loss for all chemical types used. Modelling data obtained showed that plantain variety had the most significant effect on ripening and indicates that ripening of the fruits may depend on the plantain variety. It appears that weight loss of fruits from the plantain hybrid and local cultivars was not affected by the plantain variety, chemical type. The chemicals at higher concentrations may have an effect on ripening of the fruits and will need further investigation.

  8. Thai students' mental model of chemical bonding

    Sarawan, Supawadee; Yuenyong, Chokchai

    2018-01-01

    This Research was finding the viewing about concept of chemical bonding is fundamental to subsequent learning of various other topics related to this concept in chemistry. Any conceptions about atomic structures that students have will be shown their further learning. The purpose of this study is to interviews conceptions held by high school chemistry students about metallic bonding and to reveal mental model of atomic structures show according to the educational level. With this aim, the questionnaire prepared making use of the literature and administered for analysis about mental model of chemical bonding. It was determined from the analysis of answers of questionnaire the 10th grade, 11th grade and 12th grade students. Finally, each was shown prompts in the form of focus cards derived from curriculum material that showed ways in which the bonding in specific metallic substances had been depicted. Students' responses revealed that learners across all three levels prefer simple, realistic mental models for metallic bonding and reveal to chemical bonding.

  9. Modeling chemical reactions for drug design.

    Gasteiger, Johann

    2007-01-01

    Chemical reactions are involved at many stages of the drug design process. This starts with the analysis of biochemical pathways that are controlled by enzymes that might be downregulated in certain diseases. In the lead discovery and lead optimization process compounds have to be synthesized in order to test them for their biological activity. And finally, the metabolism of a drug has to be established. A better understanding of chemical reactions could strongly help in making the drug design process more efficient. We have developed methods for quantifying the concepts an organic chemist is using in rationalizing reaction mechanisms. These methods allow a comprehensive modeling of chemical reactivity and thus are applicable to a wide variety of chemical reactions, from gas phase reactions to biochemical pathways. They are empirical in nature and therefore allow the rapid processing of large sets of structures and reactions. We will show here how methods have been developed for the prediction of acidity values and of the regioselectivity in organic reactions, for designing the synthesis of organic molecules and of combinatorial libraries, and for furthering our understanding of enzyme-catalyzed reactions and of the metabolism of drugs.

  10. Exploring Contextual Models in Chemical Patent Search

    Urbain, Jay; Frieder, Ophir

    We explore the development of probabilistic retrieval models for integrating term statistics with entity search using multiple levels of document context to improve the performance of chemical patent search. A distributed indexing model was developed to enable efficient named entity search and aggregation of term statistics at multiple levels of patent structure including individual words, sentences, claims, descriptions, abstracts, and titles. The system can be scaled to an arbitrary number of compute instances in a cloud computing environment to support concurrent indexing and query processing operations on large patent collections.

  11. Modelling chemical behavior of water reactor fuel

    Ball, R G.J.; Hanshaw, J; Mason, P K; Mignanelli, M A [AEA Technology, Harwell (United Kingdom)

    1997-08-01

    For many applications, large computer codes have been developed which use correlation`s, simplifications and approximations in order to describe the complex situations which may occur during the operation of nuclear power plant or during fault scenarios. However, it is important to have a firm physical basis for simplifications and approximations in such codes and, therefore, there has been an emphasis on modelling the behaviour of materials and processes on a more detailed or fundamental basis. The application of fundamental modelling techniques to simulated various chemical phenomena in thermal reactor fuel systems are described in this paper. These methods include thermochemical modelling, kinetic and mass transfer modelling and atomistic simulation and examples of each approach are presented. In each of these applications a summary of the methods are discussed together with the assessment process adopted to provide the fundamental parameters which form the basis of the calculation. (author). 25 refs, 9 figs, 2 tabs.

  12. Track models and radiation chemical yields

    Chatterjee, A.; Magee, J.L.

    1987-01-01

    The authors are concerned only with systems in which single track effects dominate and radiation chemical yields are sums of yields for individual tracks. The authors know that the energy deposits of heavy particle tracks are composed of spurs along the particle trajectory (about one-half of the energy) and a more diffuse pattern composed of the tracks of knock-on electrons, called the penumbra (about one-half of the energy). The simplest way to introduce the concept of a unified track model for heavy particles is to consider the special case of the track of a heavy particle with an LET below 0.2-0.3eV/A, which in practice limits us to protons, deuterons, or particles with energy above 100 MeV per nucleon. At these LET values, to a good approximation, spurs formed by the main particle track can be considered to remain isolated throughout the radiation chemical reactions

  13. Cumulus parameterizations in chemical transport models

    Mahowald, Natalie M.; Rasch, Philip J.; Prinn, Ronald G.

    1995-12-01

    Global three-dimensional chemical transport models (CTMs) are valuable tools for studying processes controlling the distribution of trace constituents in the atmosphere. A major uncertainty in these models is the subgrid-scale parametrization of transport by cumulus convection. This study seeks to define the range of behavior of moist convective schemes and point toward more reliable formulations for inclusion in chemical transport models. The emphasis is on deriving convective transport from meteorological data sets (such as those from the forecast centers) which do not routinely include convective mass fluxes. Seven moist convective parameterizations are compared in a column model to examine the sensitivity of the vertical profile of trace gases to the parameterization used in a global chemical transport model. The moist convective schemes examined are the Emanuel scheme [Emanuel, 1991], the Feichter-Crutzen scheme [Feichter and Crutzen, 1990], the inverse thermodynamic scheme (described in this paper), two versions of a scheme suggested by Hack [Hack, 1994], and two versions of a scheme suggested by Tiedtke (one following the formulation used in the ECMWF (European Centre for Medium-Range Weather Forecasting) and ECHAM3 (European Centre and Hamburg Max-Planck-Institut) models [Tiedtke, 1989], and one formulated as in the TM2 (Transport Model-2) model (M. Heimann, personal communication, 1992). These convective schemes vary in the closure used to derive the mass fluxes, as well as the cloud model formulation, giving a broad range of results. In addition, two boundary layer schemes are compared: a state-of-the-art nonlocal boundary layer scheme [Holtslag and Boville, 1993] and a simple adiabatic mixing scheme described in this paper. Three tests are used to compare the moist convective schemes against observations. Although the tests conducted here cannot conclusively show that one parameterization is better than the others, the tests are a good measure of the

  14. Towards anatomic scale agent-based modeling with a massively parallel spatially explicit general-purpose model of enteric tissue (SEGMEnT_HPC).

    Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary

    2015-01-01

    Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis.

  15. Xe-129 NMR chemical shift in Xe@C-60 calculated at experimental conditions: Essential role of the relativity, dynamics, and explicit solvent

    Standara, Stanislav; Kulhánek, P.; Marek, R.; Straka, Michal

    2013-01-01

    Roč. 34, č. 22 (2013), s. 1890-1898 ISSN 0192-8651 R&D Projects: GA ČR GA203/09/2037; GA ČR GA13-03978S Grant - others:7th European Community Framework Program(XE) FP7-286154; CEITEC-Central European Institute of Technology (European Regional Development)(XE) CZ.1.05/1.1.00/02.0068; Operational Program Research and Development for Innovations(XE) CZ.1.05/3.2.00/08.0144 Institutional support: RVO:61388963 Keywords : Xe-129 NMR * Xe@C-60 * dynamical averaging * explicit solvent * relativistic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.601, year: 2013

  16. Coupled sulfur isotopic and chemical mass transfer modeling: Approach and application to dynamic hydrothermal processes

    Janecky, D.R.

    1988-01-01

    A computational modeling code (EQPSreverse arrowS) has been developed to examine sulfur isotopic distribution pathways coupled with calculations of chemical mass transfer pathways. A post processor approach to EQ6 calculations was chosen so that a variety of isotopic pathways could be examined for each reaction pathway. Two types of major bounding conditions were implemented: (1) equilibrium isotopic exchange between sulfate and sulfide species or exchange only accompanying chemical reduction and oxidation events, and (2) existence or lack of isotopic exchange between solution species and precipitated minerals, parallel to the open and closed chemical system formulations of chemical mass transfer modeling codes. All of the chemical data necessary to explicitly calculate isotopic distribution pathways is generated by most mass transfer modeling codes and can be input to the EQPS code. Routines are built in to directly handle EQ6 tabular files. Chemical reaction models of seafloor hydrothermal vent processes and accompanying sulfur isotopic distribution pathways illustrate the capabilities of coupling EQPSreverse arrowS with EQ6 calculations, including the extent of differences that can exist due to the isotopic bounding condition assumptions described above. 11 refs., 2 figs

  17. Modeling the Chemical Complexity in Titan's Atmosphere

    Vuitton, Veronique; Yelle, Roger; Klippenstein, Stephen J.; Horst, Sarah; Lavvas, Panayotis

    2018-06-01

    Titan's atmospheric chemistry is extremely complicated because of the multiplicity of chemical as well as physical processes involved. Chemical processes begin with the dissociation and ionization of the most abundant species, N2 and CH4, by a variety of energy sources, i.e. solar UV and X-ray photons, suprathermal electrons (reactions involving radicals as well as positive and negative ions, all possibly in some excited electronic and vibrational state. Heterogeneous chemistry at the surface of the aerosols could also play a significant role. The efficiency and outcome of these reactions depends strongly on the physical characteristics of the atmosphere, namely pressure and temperature, ranging from 1.5×103 to 10-10 mbar and from 70 to 200 K, respectively. Moreover, the distribution of the species is affected by molecular diffusion and winds as well as escape from the top of the atmosphere and condensation in the lower stratosphere.Photochemical and microphysical models are the keystones of our understanding of Titan's atmospheric chemistry. Their main objective is to compute the distribution and nature of minor chemical species (typically containing up to 6 carbon atoms) and haze particles, respectively. Density profiles are compared to the available observations, allowing to identify important processes and to highlight those that remain to be constrained in the laboratory, experimentally and/or theoretically. We argue that positive ion chemistry is at the origin of complex organic molecules, such as benzene, ammonia and hydrogen isocyanide while neutral-neutral radiative association reactions are a significant source of alkanes. We find that negatively charged macromolecules (m/z ~100) attract the abundant positive ions, which ultimately leads to the formation of the aerosols. We also discuss the possibility that an incoming flux of oxygen from Enceladus, another Saturn's satellite, is responsible for the presence of oxygen-bearing species in Titan's reductive

  18. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    Kouramas, K.I.

    2011-08-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques. The algorithm features two key steps: (i) a dynamic programming step, in which the mp-MPC problem is decomposed into a set of smaller subproblems in which only the current control, state variables, and constraints are considered, and (ii) a multi-parametric programming step, in which each subproblem is solved as a convex multi-parametric programming problem, to derive the control variables as an explicit function of the states. The key feature of the proposed method is that it overcomes potential limitations of previous methods for solving multi-parametric programming problems with dynamic programming, such as the need for global optimization for each subproblem of the dynamic programming step. © 2011 Elsevier Ltd. All rights reserved.

  19. UNCERTAINTIES IN GALACTIC CHEMICAL EVOLUTION MODELS

    Côté, Benoit; Ritter, Christian; Herwig, Falk; O’Shea, Brian W.; Pignatari, Marco; Jones, Samuel; Fryer, Chris L.

    2016-01-01

    We use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number of SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions, along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model

  20. Physical and Chemical Environmental Abstraction Model

    Nowak, E.

    2000-01-01

    As directed by a written development plan (CRWMS M and O 1999a), Task 1, an overall conceptualization of the physical and chemical environment (P/CE) in the emplacement drift is documented in this Analysis/Model Report (AMR). Included are the physical components of the engineered barrier system (EBS). The intended use of this descriptive conceptualization is to assist the Performance Assessment Department (PAD) in modeling the physical and chemical environment within a repository drift. It is also intended to assist PAD in providing a more integrated and complete in-drift geochemical model abstraction and to answer the key technical issues raised in the U.S. Nuclear Regulatory Commission (NRC) Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). EBS-related features, events, and processes (FEPs) have been assembled and discussed in ''EBS FEPs/Degradation Modes Abstraction'' (CRWMS M and O 2000a). Reference AMRs listed in Section 6 address FEPs that have not been screened out. This conceptualization does not directly address those FEPs. Additional tasks described in the written development plan are recommended for future work in Section 7.3. To achieve the stated purpose, the scope of this document includes: (1) the role of in-drift physical and chemical environments in the Total System Performance Assessment (TSPA) (Section 6.1); (2) the configuration of engineered components (features) and critical locations in drifts (Sections 6.2.1 and 6.3, portions taken from EBS Radionuclide Transport Abstraction (CRWMS M and O 2000b)); (3) overview and critical locations of processes that can affect P/CE (Section 6.3); (4) couplings and relationships among features and processes in the drifts (Section 6.4); and (5) identities and uses of parameters transmitted to TSPA by some of the reference AMRs (Section 6.5). This AMR originally considered a design with backfill, and is now being updated (REV 00 ICN1) to address

  1. Chemical Transport Models on Accelerator Architectures

    Linford, J.; Sandu, A.

    2008-12-01

    Heterogeneous multicore chipsets with many layers of polymorphic parallelism are becoming increasingly common in high-performance computing systems. Homogeneous co-processors with many streaming processors also offer unprecedented peak floating-point performance. Effective use of parallelism in these new chipsets is paramount. We present optimization techniques for 3D chemical transport models to take full advantage of emerging Cell Broadband Engine and graphical processing unit (GPU) technology. Our techniques achieve 2.15x the per-node performance of an IBM BlueGene/P on the Cell Broadband Engine, and a strongly-scalable 1.75x the per-node performance of an IBM BlueGene/P on an NVIDIA GeForce 8600.

  2. A kinetic model for chemical neurotransmission

    Ramirez-Santiago, Guillermo; Martinez-Valencia, Alejandro; Fernandez de Miguel, Francisco

    Recent experimental observations in presynaptic terminals at the neuromuscular junction indicate that there are stereotyped patterns of cooperativeness in the fusion of adjacent vesicles. That is, a vesicle in hemifusion process appears on the side of a fused vesicle and which is followed by another vesicle in a priming state while the next one is in a docking state. In this talk we present a kinetic model for this morphological pattern in which each vesicle state previous to the exocytosis is represented by a kinetic state. This chain states kinetic model can be analyzed by means of a Master equation whose solution is simulated with the stochastic Gillespie algorithm. With this approach we have reproduced the responses to the basal release in the absence of stimulation evoked by the electrical activity and the phenomena of facilitation and depression of neuromuscular synapses. This model offers new perspectives to understand the underlying phenomena in chemical neurotransmission based on molecular interactions that result in the cooperativity between vesicles during neurotransmitter release. DGAPA Grants IN118410 and IN200914 and Conacyt Grant 130031.

  3. Chemical cleaning specification: few tube test model

    Hampton, L.V.; Simpson, J.L.

    1979-09-01

    The specification is for the waterside chemical cleaning of the 2 1/4 Cr - 1 Mo steel steam generator tubes. It describes the reagents and conditions for post-chemical cleaning passivation of the evaporator tubes

  4. Chemical Mechanism Solvers in Air Quality Models

    John C. Linford

    2011-09-01

    Full Text Available The solution of chemical kinetics is one of the most computationally intensivetasks in atmospheric chemical transport simulations. Due to the stiff nature of the system,implicit time stepping algorithms which repeatedly solve linear systems of equations arenecessary. This paper reviews the issues and challenges associated with the construction ofefficient chemical solvers, discusses several families of algorithms, presents strategies forincreasing computational efficiency, and gives insight into implementing chemical solverson accelerated computer architectures.

  5. Modelling the collective response of heterogeneous cell populations to stationary gradients and chemical signal relay

    Pineda, M.; Eftimie, R.

    2017-12-01

    The directed motion of cell aggregates toward a chemical source occurs in many relevant biological processes. Understanding the mechanisms that control this complex behavior is of great relevance for our understanding of developmental biological processes and many diseases. In this paper, we consider a self-propelled particle model for the movement of heterogeneous subpopulations of chemically interacting cells towards an imposed stable chemical gradient. Our simulations show explicitly how self-organisation of cell populations (which could lead to engulfment or complete cell segregation) can arise from the heterogeneity of chemotactic responses alone. This new result complements current theoretical and experimental studies that emphasise the role of differential cell-cell adhesion on self-organisation and spatial structure of cellular aggregates. We also investigate how the speed of individual cell aggregations increases with the chemotactic sensitivity of the cells, and decreases with the number of cells inside the aggregates

  6. A mesoscale chemical transport model (MEDIUM) nested in a global chemical transport model (MEDIANTE)

    Claveau, J; Ramaroson, R [Office National d` Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1998-12-31

    The lower stratosphere and upper troposphere (UT-LS) are frequently subject to mesoscale or local scale exchange of air masses occurring along discontinuities. This exchange (e.g. downward) can constitute one of the most important source of ozone from the stratosphere down to the middle troposphere where strong mixing dilutes the air mass and competing the non-linear chemistry. The distribution of the chemical species in the troposphere and the lower stratosphere depends upon various source emissions, e.g. from polluted boundary layer or from aircraft emissions. Global models, as well as chemical transport models describe the climatological state of the atmosphere and are not able to describe correctly the stratosphere and troposphere exchange. Mesoscale models go further in the description of smaller scales and can reasonably include a rather detailed chemistry. They can be used to assess the budget of NO{sub x} from aircraft emissions in a mesoscale domain. (author) 4 refs.

  7. A mesoscale chemical transport model (MEDIUM) nested in a global chemical transport model (MEDIANTE)

    Claveau, J.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    The lower stratosphere and upper troposphere (UT-LS) are frequently subject to mesoscale or local scale exchange of air masses occurring along discontinuities. This exchange (e.g. downward) can constitute one of the most important source of ozone from the stratosphere down to the middle troposphere where strong mixing dilutes the air mass and competing the non-linear chemistry. The distribution of the chemical species in the troposphere and the lower stratosphere depends upon various source emissions, e.g. from polluted boundary layer or from aircraft emissions. Global models, as well as chemical transport models describe the climatological state of the atmosphere and are not able to describe correctly the stratosphere and troposphere exchange. Mesoscale models go further in the description of smaller scales and can reasonably include a rather detailed chemistry. They can be used to assess the budget of NO{sub x} from aircraft emissions in a mesoscale domain. (author) 4 refs.

  8. The Impact of Modeling Assumptions in Galactic Chemical Evolution Models

    Côté, Benoit; O'Shea, Brian W.; Ritter, Christian; Herwig, Falk; Venn, Kim A.

    2017-02-01

    We use the OMEGA galactic chemical evolution code to investigate how the assumptions used for the treatment of galactic inflows and outflows impact numerical predictions. The goal is to determine how our capacity to reproduce the chemical evolution trends of a galaxy is affected by the choice of implementation used to include those physical processes. In pursuit of this goal, we experiment with three different prescriptions for galactic inflows and outflows and use OMEGA within a Markov Chain Monte Carlo code to recover the set of input parameters that best reproduces the chemical evolution of nine elements in the dwarf spheroidal galaxy Sculptor. This provides a consistent framework for comparing the best-fit solutions generated by our different models. Despite their different degrees of intended physical realism, we found that all three prescriptions can reproduce in an almost identical way the stellar abundance trends observed in Sculptor. This result supports the similar conclusions originally claimed by Romano & Starkenburg for Sculptor. While the three models have the same capacity to fit the data, the best values recovered for the parameters controlling the number of SNe Ia and the strength of galactic outflows, are substantially different and in fact mutually exclusive from one model to another. For the purpose of understanding how a galaxy evolves, we conclude that only reproducing the evolution of a limited number of elements is insufficient and can lead to misleading conclusions. More elements or additional constraints such as the Galaxy’s star-formation efficiency and the gas fraction are needed in order to break the degeneracy between the different modeling assumptions. Our results show that the successes and failures of chemical evolution models are predominantly driven by the input stellar yields, rather than by the complexity of the Galaxy model itself. Simple models such as OMEGA are therefore sufficient to test and validate stellar yields. OMEGA

  9. Single Event Kinetic Modelling without Explicit Generation of Large Networks: Application to Hydrocracking of Long Paraffins Modélisation cinétique par événements constitutifs sans génération explicite de grands réseaux : application à l’hydrocraquage des paraffines longues

    Guillaume D.

    2011-08-01

    Full Text Available The single event modelling concept allows developing kinetic models for the simulation of refinery processes. For reaction networks with several hundreds of thousands of species, as is the case for catalytic reforming, rigorous relumping by carbon atom number and branching degree were efficiently employed by assuming chemical equilibrium in each lump. This relumping technique yields a compact lumped model without any loss of information, but requires the full detail of an explicitly generated reaction network. Classic network generation techniques become impractical when the hydrocarbon species contain more than approximately 20 carbon atoms, because of the extremely rapid growth of reaction network. Hence, implicit relumping techniques were developed in order to compute lumping coefficients without generating the detailed reaction network. Two alternative and equivalent approaches are presented, based either on structural classes or on lateral chain decomposition. These two methods are discussed and the lateral chain decomposition method is applied to the kinetic modelling of long chain paraffin hydroisomerization and hydrocracking. The lateral chain decomposition technique is exactly equivalent to the original calculation method based on the explicitly generated detailed reaction network, as long as Benson’s group contribution method is used to calculate the necessary thermodynamic data in both approaches. Le concept de modélisation par événements constitutifs permet de développer des modèles cinétiques pour la simulation des procédés de raffinage. Pour des réseaux réactionnels de centaines de milliers d'espèces, comme cela est le cas pour le reformage catalytique, le regroupement rigoureux par nombre d'atomes de carbone et degré de ramification a été utilisé efficacement en faisant l'hypothèse de l'équilibre chimique dans chaque groupe. Cette technique de regroupement conduit à un modèle regroupé compact sans perte d

  10. GPGPU-based explicit finite element computations for applications in biomechanics: the performance of material models, element technologies, and hardware generations.

    Strbac, V; Pierce, D M; Vander Sloten, J; Famaey, N

    2017-12-01

    Finite element (FE) simulations are increasingly valuable in assessing and improving the performance of biomedical devices and procedures. Due to high computational demands such simulations may become difficult or even infeasible, especially when considering nearly incompressible and anisotropic material models prevalent in analyses of soft tissues. Implementations of GPGPU-based explicit FEs predominantly cover isotropic materials, e.g. the neo-Hookean model. To elucidate the computational expense of anisotropic materials, we implement the Gasser-Ogden-Holzapfel dispersed, fiber-reinforced model and compare solution times against the neo-Hookean model. Implementations of GPGPU-based explicit FEs conventionally rely on single-point (under) integration. To elucidate the expense of full and selective-reduced integration (more reliable) we implement both and compare corresponding solution times against those generated using underintegration. To better understand the advancement of hardware, we compare results generated using representative Nvidia GPGPUs from three recent generations: Fermi (C2075), Kepler (K20c), and Maxwell (GTX980). We explore scaling by solving the same boundary value problem (an extension-inflation test on a segment of human aorta) with progressively larger FE meshes. Our results demonstrate substantial improvements in simulation speeds relative to two benchmark FE codes (up to 300[Formula: see text] while maintaining accuracy), and thus open many avenues to novel applications in biomechanics and medicine.

  11. Evaluating the effect of corridors and landscape heterogeneity on dispersal probability: a comparison of three spatially explicit modelling approaches

    Jepsen, J. U.; Baveco, J. M.; Topping, C. J.

    2004-01-01

    preferences of the modeller, rather than by a critical evaluation of model performance. We present a comparison of three common spatial simulation approaches (patch-based incidence-function model (IFM), individual-based movement model (IBMM), individual-based population model including detailed behaviour...

  12. Models and Modelling Tools for Chemical Product and Process Design

    Gani, Rafiqul

    2016-01-01

    The design, development and reliability of a chemical product and the process to manufacture it, need to be consistent with the end-use characteristics of the desired product. One of the common ways to match the desired product-process characteristics is through trial and error based experiments......-based framework is that in the design, development and/or manufacturing of a chemical product-process, the knowledge of the applied phenomena together with the product-process design details can be provided with diverse degrees of abstractions and details. This would allow the experimental resources...... to be employed for validation and fine-tuning of the solutions from the model-based framework, thereby, removing the need for trial and error experimental steps. Also, questions related to economic feasibility, operability and sustainability, among others, can be considered in the early stages of design. However...

  13. The impact of convection in the West African monsoon region on global weather forecasts - explicit vs. parameterised convection simulations using the ICON model

    Pante, Gregor; Knippertz, Peter

    2017-04-01

    The West African monsoon is the driving element of weather and climate during summer in the Sahel region. It interacts with mesoscale convective systems (MCSs) and the African easterly jet and African easterly waves. Poor representation of convection in numerical models, particularly its organisation on the mesoscale, can result in unrealistic forecasts of the monsoon dynamics. Arguably, the parameterisation of convection is one of the main deficiencies in models over this region. Overall, this has negative impacts on forecasts over West Africa itself but may also affect remote regions, as waves originating from convective heating are badly represented. Here we investigate those remote forecast impacts based on daily initialised 10-day forecasts for July 2016 using the ICON model. One set of simulations employs the default setup of the global model with a horizontal grid spacing of 13 km. It is compared with simulations using the 2-way nesting capability of ICON. A second model domain over West Africa (the nest) with 6.5 km grid spacing is sufficient to explicitly resolve MCSs in this region. In the 2-way nested simulations, the prognostic variables of the global model are influenced by the results of the nest through relaxation. The nest with explicit convection is able to reproduce single MCSs much more realistically compared to the stand-alone global simulation with parameterised convection. Explicit convection leads to cooler temperatures in the lower troposphere (below 500 hPa) over the northern Sahel due to stronger evaporational cooling. Overall, the feedback of dynamic variables from the nest to the global model shows clear positive effects when evaluating the output of the global domain of the 2-way nesting simulation and the output of the stand-alone global model with ERA-Interim re-analyses. Averaged over the 2-way nested region, bias and root mean squared error (RMSE) of temperature, geopotential, wind and relative humidity are significantly reduced in

  14. Modeling Behavior by Coastal River Otter (Lontra Canadensis in Response to Prey Availability in Prince William Sound, Alaska: A Spatially-Explicit Individual-Based Approach.

    Shannon E Albeke

    Full Text Available Effects of climate change on animal behavior and cascading ecosystem responses are rarely evaluated. In coastal Alaska, social river otters (Lontra Canadensis, largely males, cooperatively forage on schooling fish and use latrine sites to communicate group associations and dominance. Conversely, solitary otters, mainly females, feed on intertidal-demersal fish and display mutual avoidance via scent marking. This behavioral variability creates "hotspots" of nutrient deposition and affects plant productivity and diversity on the terrestrial landscape. Because the abundance of schooling pelagic fish is predicted to decline with climate change, we developed a spatially-explicit individual-based model (IBM of otter behavior and tested six scenarios based on potential shifts to distribution patterns of schooling fish. Emergent patterns from the IBM closely mimicked observed otter behavior and landscape use in the absence of explicit rules of intraspecific attraction or repulsion. Model results were most sensitive to rules regarding spatial memory and activity state following an encounter with a fish school. With declining availability of schooling fish, the number of social groups and the time simulated otters spent in the company of conspecifics declined. Concurrently, model results suggested an elevation of defecation rate, a 25% increase in nitrogen transport to the terrestrial landscape, and significant changes to the spatial distribution of "hotspots" with declines in schooling fish availability. However, reductions in availability of schooling fish could lead to declines in otter density over time.

  15. Modeling release of chemicals from multilayer materials into food

    Huang Xiu-Ling

    2016-01-01

    Full Text Available The migration of chemicals from materials into food is predictable by various mathematical models. In this article, a general mathematical model is developed to quantify the release of chemicals through multilayer packaging films based on Fick's diffusion. The model is solved numerically to elucidate the effects of different diffusivity values of different layers, distribution of chemical between two adjacent layers and between material and food, mass transfer at the interface of material and food on the migration process.

  16. ‘Safety Matters Have Become Too Important for Management to Leave it Up to the Workers’ –The Nordic OSH Model Between Implicit and Explicit Frameworks

    Johnny Dyreborg

    2011-01-01

    Full Text Available In a globalized economy it is relevant to question whether the Nordic Working Environment (WE model will remain as the basic and implicit framework for the governance of the WE. This paper explores institutional changes in the governance of the WE, and critically examines how a more explicit and market-oriented framework might influence the governance of the WE in the Nordic countries. Firstly, the paper examines the changes in the governance of the WE at the societal level (Denmark for the period 1954 - 2007, and identifies institutional logics informing these changes. Secondly, the paper examines changes in the governance of the WE at the level of the construction sector, using case material from four of the largest construction projects completed in Denmark in recent years. The analyses reveal three discrete periods, representing distinct logics influencing the governance of the WE, i.e., the logic of the state, the logic of democracy and the logic of the market. The logic of the state and the logic of democracy represent an implicit framework, whereas the logic of the market entails a shift to a more explicit framework. The shift to a more explicit framework for the governance of the WE, is also identified at the level of the construction sector. This leads to a pivotal shift in the clients' and the construction companies' relationship with the institutional environment in the four large construction projects. From worker representatives being the primary stakeholders, to a shift where the fulcrum of the development of the WE lies between management, the state and stakeholders in the companies' environment. This shift opens up a range of new and more market-oriented approaches to the governance of the WE that seems to challenge the extant Nordic WE model.

  17. Fate modelling of chemical compounds with incomplete data sets

    Birkved, Morten; Heijungs, Reinout

    2011-01-01

    Impact assessment of chemical compounds in Life Cycle Impact Assessment (LCIA) and Environmental Risk Assessment (ERA) requires a vast amount of data on the properties of the chemical compounds being assessed. These data are used in multi-media fate and exposure models, to calculate risk levels...... in an approximate way. The idea is that not all data needed in a multi-media fate and exposure model are completely independent and equally important, but that there are physical-chemical and biological relationships between sets of chemical properties. A statistical model is constructed to underpin this assumption...... and other indicators. ERA typically addresses one specific chemical, but in an LCIA, the number of chemicals encountered may be quite high, up to hundreds or thousands. This study explores the development of meta-models, which are supposed to reflect the “true”multi-media fate and exposure model...

  18. Spatially explicit models of full-season productivity and implications for landscape management of Golden-winged Warblers in the western Great Lakes Region: Chapter 9

    Peterson, Sean M.; Streby, Henry M.; Andersen, David E.

    2016-01-01

    The relationship between landscape structure and composition and full-season productivity (FSP) is poorly understood for most birds. For species of high conservation concern, insight into how productivity is related to landscape structure and composition can be used to develop more effective conservation strategies that increase recruitment. We monitored nest productivity and fledgling survival of Golden-winged Warblers (Vermivora chrysoptera), a species of high conservation concern, in managed forest landscapes at two sites in northern Minnesota, and one site in southeastern Manitoba, Canada from 2010 to 2012. We used logistic exposure models to identify the influence of landscape structure and composition on nest productivity and fledgling survival. We used the models to predict spatially explicit, FSP across our study sites to identify areas of low relative productivity that could be targeted for management. We then used our models of spatially explicit, FSP to simulate the impact of potential management actions on our study sites with the goal of increasing total population productivity. Unlike previous studies that suggested wetland cover types provide higher quality breeding habitat for Golden-winged Warblers, our models predicted 14% greater productivity in upland cover types. Simulated succession of a 9-ha grassland patch to a shrubby upland suitable for nesting increased the total number of fledglings produced by that patch and adjacent upland shrublands by 30%, despite decreasing individual productivity by 13%. Further simulated succession of the same patch described above into deciduous forest reduced the total number of fledglings produced to independence on a landscape by 18% because of a decrease in the area available for nesting. Simulated reduction in the cumulative length of shrubby edge within a 50-m radius of any location in our landscapes from 0.6 to 0.3 km increased FSP by 5%. Our models demonstrated that the effects of any single management

  19. Exploring the Dynamic Mechanisms of Farmland Abandonment Based on a Spatially Explicit Economic Model for Environmental Sustainability: A Case Study in Jiangxi Province, China

    Hualin Xie

    2014-03-01

    Full Text Available Farmland abandonment has important impacts on biodiversity and ecosystem recovery, as well as food security and rural sustainable development. Due to rapid urbanization and industrialization, farmland abandonment has become an increasingly important problem in many countries, particularly in China. To promote sustainable land-use management and environmental sustainability, it is important to understand the socioeconomic causes and spatial patterns of farmland abandonment. In this study, we explored the dynamic mechanisms of farmland abandonment in Jiangxi province of China using a spatially explicit economical model. The results show that the variables associated with the agricultural products yield are significantly correlated with farmland abandonment. The increasing opportunity cost of farming labor is the main factor in farmland abandonment in conjunction with a rural labor shortage due to rural-to-urban population migration and regional industrialization. Farmlands are more likely to be abandoned in areas located far from the villages and towns due to higher transportation costs. Additionally, farmers with more land but lower net income are more likely to abandon poor-quality farmland. Our results support the hypothesis that farmland abandonment takes place in locations in which the costs of cultivation are high and the potential crop yield is low. In addition, our study also demonstrates that a spatially explicit economic model is necessary to distinguish between the main driving forces of farmland abandonment. Policy implications are also provided for potential future policy decisions.

  20. Chemical Leasing business models and corporate social responsibility.

    Moser, Frank; Jakl, Thomas; Joas, Reihard; Dondi, Francesco

    2014-11-01

    Chemical Leasing is a service-oriented business model that shifts the focus from increasing sales volume of chemicals towards a value-added approach. Recent pilot projects have shown the economic benefits of introducing Chemical Leasing business models in a broad range of sectors. A decade after its introduction, the promotion of Chemical Leasing is still predominantly done by the public sector and international organizations. We show in this paper that awareness-raising activities to disseminate information on this innovative business model mainly focus on the economic benefits. We argue that selling Chemical Leasing business models solely on the grounds of economic and ecological considerations falls short of branding it as a corporate social responsibility initiative, which, for this paper, is defined as a stakeholder-oriented concept that extends beyond the organization's boundaries and is driven by an ethical understanding of the organization's responsibility for the impact of its business activities. For the analysis of Chemical Leasing business models, we introduce two case studies from the water purification and metal degreasing fields, focusing on employees and local communities as two specific stakeholder groups of the company introducing Chemical Leasing. The paper seeks to demonstrate that Chemical Leasing business models can be branded as a corporate social responsibility initiative by outlining the vast potential of Chemical Leasing to improve occupational health and safety and to strengthen the ability of companies to protect the environment from the adverse effects of the chemicals they apply.

  1. Direct versus Indirect Explicit Methods of Enhancing EFL Students' English Grammatical Competence: A Concept Checking-Based Consciousness-Raising Tasks Model

    Dang, Trang Thi Doan; Nguyen, Huong Thu

    2013-01-01

    Two approaches to grammar instruction are often discussed in the ESL literature: direct explicit grammar instruction (DEGI) (deduction) and indirect explicit grammar instruction (IEGI) (induction). This study aims to explore the effects of indirect explicit grammar instruction on EFL learners' mastery of English tenses. Ninety-four…

  2. Integrated and spatially explicit modelling of the economic value of complex environmental change and its indirect effects

    Bateman, Ian; Binner, Amy; Coombes, Emma; Day, Brett; Ferrini, Silvia; Fezzi, Carlo; Hutchins, Michael; Posen, Paulette

    2012-01-01

    Arguably the greatest challenge to contemporary research is to capture the inter-relatedness and complexity of the real world environment within models so at to better inform decision makers of the accurate and complete consequences of differing options. The paper presents an integrated model of the consequence of climate change upon land use and the secondary and subsequent effects arising subsequently. The model predicts the shift in land use which climate change is likely to induce and the...

  3. Spatially explicit integrated modeling and economic valuation of climate driven land use change and its indirect effects.

    Bateman, Ian; Agarwala, M.; Binner, A.; Coombes, E.; Day, B.; Ferrini, Silvia; Fezzi, C.; Hutchins, M.; Lovett, A.; Posen, P.

    2016-01-01

    We present an integrated model of the direct consequences of climate change on land use, and the indirect effects of induced land use change upon the natural environment. The model predicts climate-driven shifts in the profitability of alternative uses of agricultural land. Both the direct impact of climate change and the induced shift in land use patterns will cause secondary effects on the water environment, for which agriculture is the major source of diffuse pollution. We model the impact...

  4. An open and extensible framework for spatially explicit land use change modelling in R: the lulccR package (0.1.0)

    Moulds, S.; Buytaert, W.; Mijic, A.

    2015-04-01

    Land use change has important consequences for biodiversity and the sustainability of ecosystem services, as well as for global environmental change. Spatially explicit land use change models improve our understanding of the processes driving change and make predictions about the quantity and location of future and past change. Here we present the lulccR package, an object-oriented framework for land use change modelling written in the R programming language. The contribution of the work is to resolve the following limitations associated with the current land use change modelling paradigm: (1) the source code for model implementations is frequently unavailable, severely compromising the reproducibility of scientific results and making it impossible for members of the community to improve or adapt models for their own purposes; (2) ensemble experiments to capture model structural uncertainty are difficult because of fundamental differences between implementations of different models; (3) different aspects of the modelling procedure must be performed in different environments because existing applications usually only perform the spatial allocation of change. The package includes a stochastic ordered allocation procedure as well as an implementation of the widely used CLUE-S algorithm. We demonstrate its functionality by simulating land use change at the Plum Island Ecosystems site, using a dataset included with the package. It is envisaged that lulccR will enable future model development and comparison within an open environment.

  5. LANDIS 4.0 users guide. LANDIS: a spatially explicit model of forest landscape disturbance, management, and succession

    Hong S. He; Wei Li; Brian R. Sturtevant; Jian Yang; Bo Z. Shang; Eric J. Gustafson; David J. Mladenoff

    2005-01-01

    LANDIS 4.0 is new-generation software that simulates forest landscape change over large spatial and temporal scales. It is used to explore how disturbances, succession, and management interact to determine forest composition and pattern. Also describes software architecture, model assumptions and provides detailed instructions on the use of the model.

  6. Formal modeling of a system of chemical reactions under uncertainty.

    Ghosh, Krishnendu; Schlipf, John

    2014-10-01

    We describe a novel formalism representing a system of chemical reactions, with imprecise rates of reactions and concentrations of chemicals, and describe a model reduction method, pruning, based on the chemical properties. We present two algorithms, midpoint approximation and interval approximation, for construction of efficient model abstractions with uncertainty in data. We evaluate computational feasibility by posing queries in computation tree logic (CTL) on a prototype of extracellular-signal-regulated kinase (ERK) pathway.

  7. Building an explicit de Sitter

    Louis, Jan; Hamburg Univ.; Rummel, Markus; Valandro, Roberto; Westphal, Alexander

    2012-11-01

    We construct an explicit example of a de Sitter vacuum in type IIB string theory that realizes the proposal of Kaehler uplifting. As the large volume limit in this method depends on the rank of the largest condensing gauge group we carry out a scan of gauge group ranks over the Kreuzer-Skarke set of toric Calabi-Yau threefolds. We find large numbers of models with the largest gauge group factor easily exceeding a rank of one hundred. We construct a global model with Kaehler uplifting on a two-parameter model on CP 4 11169 , by an explicit analysis from both the type IIB and F-theory point of view. The explicitness of the construction lies in the realization of a D7 brane configuration, gauge flux and RR and NS flux choices, such that all known consistency conditions are met and the geometric moduli are stabilized in a metastable de Sitter vacuum with spontaneous GUT scale supersymmetry breaking driven by an F-term of the Kaehler moduli.

  8. Building an explicit de Sitter

    Louis, Jan [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik; Rummel, Markus; Valandro, Roberto [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2012-11-15

    We construct an explicit example of a de Sitter vacuum in type IIB string theory that realizes the proposal of Kaehler uplifting. As the large volume limit in this method depends on the rank of the largest condensing gauge group we carry out a scan of gauge group ranks over the Kreuzer-Skarke set of toric Calabi-Yau threefolds. We find large numbers of models with the largest gauge group factor easily exceeding a rank of one hundred. We construct a global model with Kaehler uplifting on a two-parameter model on CP{sup 4}{sub 11169}, by an explicit analysis from both the type IIB and F-theory point of view. The explicitness of the construction lies in the realization of a D7 brane configuration, gauge flux and RR and NS flux choices, such that all known consistency conditions are met and the geometric moduli are stabilized in a metastable de Sitter vacuum with spontaneous GUT scale supersymmetry breaking driven by an F-term of the Kaehler moduli.

  9. Explicit treatment for Dirichlet, Neumann and Cauchy boundary conditions in POD-based reduction of groundwater models

    Gosses, Moritz; Nowak, Wolfgang; Wöhling, Thomas

    2018-05-01

    In recent years, proper orthogonal decomposition (POD) has become a popular model reduction method in the field of groundwater modeling. It is used to mitigate the problem of long run times that are often associated with physically-based modeling of natural systems, especially for parameter estimation and uncertainty analysis. POD-based techniques reproduce groundwater head fields sufficiently accurate for a variety of applications. However, no study has investigated how POD techniques affect the accuracy of different boundary conditions found in groundwater models. We show that the current treatment of boundary conditions in POD causes inaccuracies for these boundaries in the reduced models. We provide an improved method that splits the POD projection space into a subspace orthogonal to the boundary conditions and a separate subspace that enforces the boundary conditions. To test the method for Dirichlet, Neumann and Cauchy boundary conditions, four simple transient 1D-groundwater models, as well as a more complex 3D model, are set up and reduced both by standard POD and POD with the new extension. We show that, in contrast to standard POD, the new method satisfies both Dirichlet and Neumann boundary conditions. It can also be applied to Cauchy boundaries, where the flux error of standard POD is reduced by its head-independent contribution. The extension essentially shifts the focus of the projection towards the boundary conditions. Therefore, we see a slight trade-off between errors at model boundaries and overall accuracy of the reduced model. The proposed POD extension is recommended where exact treatment of boundary conditions is required.

  10. Hard and soft mathematical models for simulation in some analytical chemical system. Modelos matematicos duros y blandos para la simulacion de sistemas quimicos analiticos

    Lacalle, P.

    1989-07-01

    In order to determine ion-metallic species with xantene derivates as reagents, different mathematical models in some ion-pair spectrophotometric system have been applied haro mathematical models-based in physical-chemical laws-versus soft mathematical models-empirical and ranoom-have been compared explicits mathematical functions for simulation and optimization of the studied system have been obtained. That optimization has been done using some derivaties methods. Stochastics models in time-dependent systems have been applied. (Author)

  11. Bayesian inference of chemical kinetic models from proposed reactions

    Galagali, Nikhil; Marzouk, Youssef M.

    2015-01-01

    © 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model

  12. Exploring spatial change and gravity center movement for ecosystem services value using a spatially explicit ecosystem services value index and gravity model.

    He, Yingbin; Chen, Youqi; Tang, Huajun; Yao, Yanmin; Yang, Peng; Chen, Zhongxin

    2011-04-01

    Spatially explicit ecosystem services valuation and change is a newly developing area of research in the field of ecology. Using the Beijing region as a study area, the authors have developed a spatially explicit ecosystem services value index and implemented this to quantify and spatially differentiate ecosystem services value at 1-km grid resolution. A gravity model was developed to trace spatial change in the total ecosystem services value of the Beijing study area from a holistic point of view. Study results show that the total value of ecosystem services for the study area decreased by 19.75% during the period 1996-2006 (3,226.2739 US$×10(6) in 1996, 2,589.0321 US$×10(6) in 2006). However, 27.63% of the total area of the Beijing study area increased in ecosystem services value. Spatial differences in ecosystem services values for both 1996 and 2006 are very clear. The center of gravity of total ecosystem services value for the study area moved 32.28 km northwestward over the 10 years due to intensive human intervention taking place in southeast Beijing. The authors suggest that policy-makers should pay greater attention to ecological protection under conditions of rapid socio-economic development and increase the area of green belt in the southeastern part of Beijing.

  13. Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California: a decision-support tool for management

    Coates, Peter S.; Casazza, Michael L.; Brussee, Brianne E.; Ricca, Mark A.; Gustafson, K. Benjamin; Overton, Cory T.; Sanchez-Chopitea, Erika; Kroger, Travis; Mauch, Kimberly; Niell, Lara; Howe, Kristy; Gardner, Scott; Espinosa, Shawn; Delehanty, David J.

    2014-01-01

    Greater sage-grouse (Centrocercus urophasianus, hereafter referred to as “sage-grouse”) populations are declining throughout the sagebrush (Artemisia spp.) ecosystem, including millions of acres of potential habitat across the West. Habitat maps derived from empirical data are needed given impending listing decisions that will affect both sage-grouse population dynamics and human land-use restrictions. This report presents the process for developing spatially explicit maps describing relative habitat suitability for sage-grouse in Nevada and northeastern California. Maps depicting habitat suitability indices (HSI) values were generated based on model-averaged resource selection functions informed by more than 31,000 independent telemetry locations from more than 1,500 radio-marked sage-grouse across 12 project areas in Nevada and northeastern California collected during a 15-year period (1998–2013). Modeled habitat covariates included land cover composition, water resources, habitat configuration, elevation, and topography, each at multiple spatial scales that were relevant to empirically observed sage-grouse movement patterns. We then present an example of how the HSI can be delineated into categories. Specifically, we demonstrate that the deviation from the mean can be used to classify habitat suitability into three categories of habitat quality (high, moderate, and low) and one non-habitat category. The classification resulted in an agreement of 93–97 percent for habitat versus non-habitat across a suite of independent validation datasets. Lastly, we provide an example of how space use models can be integrated with habitat models to help inform conservation planning. In this example, we combined probabilistic breeding density with a non-linear probability of occurrence relative to distance to nearest lek (traditional breeding ground) using count data to calculate a composite space use index (SUI). The SUI was then classified into two categories of use

  14. Skeeter Buster: a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies.

    Krisztian Magori

    2009-09-01

    Full Text Available Dengue is the most important mosquito-borne viral disease affecting humans. The only prevention measure currently available is the control of its vectors, primarily Aedes aegypti. Recent advances in genetic engineering have opened the possibility for a new range of control strategies based on genetically modified mosquitoes. Assessing the potential efficacy of genetic (and conventional strategies requires the availability of modeling tools that accurately describe the dynamics and genetics of Ae. aegypti populations.We describe in this paper a new modeling tool of Ae. aegypti population dynamics and genetics named Skeeter Buster. This model operates at the scale of individual water-filled containers for immature stages and individual properties (houses for adults. The biology of cohorts of mosquitoes is modeled based on the algorithms used in the non-spatial Container Inhabiting Mosquitoes Simulation Model (CIMSiM. Additional features incorporated into Skeeter Buster include stochasticity, spatial structure and detailed population genetics. We observe that the stochastic modeling of individual containers in Skeeter Buster is associated with a strongly reduced temporal variation in stage-specific population densities. We show that heterogeneity in container composition of individual properties has a major impact on spatial heterogeneity in population density between properties. We detail how adult dispersal reduces this spatial heterogeneity. Finally, we present the predicted genetic structure of the population by calculating F(ST values and isolation by distance patterns, and examine the effects of adult dispersal and container movement between properties.We demonstrate that the incorporated stochasticity and level of spatial detail have major impacts on the simulated population dynamics, which could potentially impact predictions in terms of control measures. The capacity to describe population genetics confers the ability to model the outcome

  15. A review of a method for dynamic load distribution, dynamical modeling, and explicit internal force control when two manipulators mutually lift and transport a rigid body object

    Unseren, M.A.

    1997-01-01

    The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system

  16. A review of a method for dynamic load distribution, dynamical modeling, and explicit internal force control when two manipulators mutually lift and transport a rigid body object

    Unseren, M.A.

    1997-04-20

    The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  17. Coupling between solute transport and chemical reactions models

    Samper, J.; Ajora, C.

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs

  18. The role of spatially explicit models in land-use change research: a case study for cropping patterns in China

    Verburg, P.H.; Veldkamp, A.

    2001-01-01

    Single research methodologies do not suffice for a complete analysis of land-use change. Instead, a sequence of methodologies is needed that link up and integrate disciplinary components over a range of spatial and temporal scales. In this paper, a modelling methodology is presented aiming at the

  19. Engineered Barrier System: Physical and Chemical Environment Model

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  20. Spatially explicit integrated modeling and economic valuation of climate driven land use change and its indirect effects.

    Bateman, Ian; Agarwala, Matthew; Binner, Amy; Coombes, Emma; Day, Brett; Ferrini, Silvia; Fezzi, Carlo; Hutchins, Michael; Lovett, Andrew; Posen, Paulette

    2016-10-01

    We present an integrated model of the direct consequences of climate change on land use, and the indirect effects of induced land use change upon the natural environment. The model predicts climate-driven shifts in the profitability of alternative uses of agricultural land. Both the direct impact of climate change and the induced shift in land use patterns will cause secondary effects on the water environment, for which agriculture is the major source of diffuse pollution. We model the impact of changes in such pollution on riverine ecosystems showing that these will be spatially heterogeneous. Moreover, we consider further knock-on effects upon the recreational benefits derived from water environments, which we assess using revealed preference methods. This analysis permits a multi-layered examination of the economic consequences of climate change, assessing the sequence of impacts from climate change through farm gross margins, land use, water quality and recreation, both at the individual and catchment scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Approach to chemical equilibrium in thermal models

    Boal, D.H.

    1984-01-01

    The experimentally measured (μ - , charged particle)/(μ - ,n) and (p,n/p,p') ratios for the emission of energetic nucleons are used to estimate the time evolution of a system of secondary nucleons produced in a direct interaction of a projectile or captured muon. The values of these ratios indicate that chemical equilibrium is not achieved among the secondary nucleons in noncomposite induced reactions, and this restricts the time scale for the emission of energetic nucleons to be about 0.7 x 10 -23 sec. It is shown that the reason why thermal equilibrium can be reached so rapidly for a particular nucleon species is that the sum of the particle spectra produced in multiple direct reactions looks surprisingly thermal. The rate equations used to estimate the reaction times for muon and nucleon induced reactions are then applied to heavy ion collisions, and it is shown that chemical equilibrium can be reached more rapidly, as one would expect

  2. Reconstructing the 2003/2004 H3N2 influenza epidemic in Switzerland with a spatially explicit, individual-based model

    2011-01-01

    Background Simulation models of influenza spread play an important role for pandemic preparedness. However, as the world has not faced a severe pandemic for decades, except the rather mild H1N1 one in 2009, pandemic influenza models are inherently hypothetical and validation is, thus, difficult. We aim at reconstructing a recent seasonal influenza epidemic that occurred in Switzerland and deem this to be a promising validation strategy for models of influenza spread. Methods We present a spatially explicit, individual-based simulation model of influenza spread. The simulation model bases upon (i) simulated human travel data, (ii) data on human contact patterns and (iii) empirical knowledge on the epidemiology of influenza. For model validation we compare the simulation outcomes with empirical knowledge regarding (i) the shape of the epidemic curve, overall infection rate and reproduction number, (ii) age-dependent infection rates and time of infection, (iii) spatial patterns. Results The simulation model is capable of reproducing the shape of the 2003/2004 H3N2 epidemic curve of Switzerland and generates an overall infection rate (14.9 percent) and reproduction numbers (between 1.2 and 1.3), which are realistic for seasonal influenza epidemics. Age and spatial patterns observed in empirical data are also reflected by the model: Highest infection rates are in children between 5 and 14 and the disease spreads along the main transport axes from west to east. Conclusions We show that finding evidence for the validity of simulation models of influenza spread by challenging them with seasonal influenza outbreak data is possible and promising. Simulation models for pandemic spread gain more credibility if they are able to reproduce seasonal influenza outbreaks. For more robust modelling of seasonal influenza, serological data complementing sentinel information would be beneficial. PMID:21554680

  3. The application of chemical leasing business models in Mexico.

    Schwager, Petra; Moser, Frank

    2006-03-01

    To better address the requirements of the changing multilateral order, the United Nations Industrial Development Organization (UNIDO) Cleaner Production Programme, in 2004, developed the new Sustainable Industrial Resource Management (SIRM) approach. This approach is in accordance with the principles decided at the United Nations Conference on Environment and Development (UNCED) in Rio de Janeiro, Brazil in 1992. Unlike the traditional approaches to environmental management, the SIRM concept captures the idea of achieving sustainable industrial development through the implementation of circular material and energy flows in the entire production chain and reduction of the amount of material and energy used with greater efficiency solutions. The SIRM approach seeks to develop new models to encourage a shift from selling products to supplying services, modifying, in this manner, the supplier/user relationship and resulting in a win-win situation for the economy and the environment. Chemical Leasing represents such a new service-oriented business model and is currently being promoted by UNIDO's Cleaner Production Programme. MAIN FEATURES. One of the potential approaches to address the problems related to ineffective use and over-consumption of chemicals is the development and implementation of Chemical Leasing business models. These provide concrete solutions to the effective management of chemicals and on the ways negative releases to the environment can be reduced. The Chemical Leasing approach is a strategy that addresses the obligations of the changing international chemicals policy by focusing on a more service-oriented strategy. Mexico is one of the countries that were selected for the implementation of UNIDO's demonstration project to promote Chemical Leasing models in the country. The target sector of this project is the chemical industry, which is expected to shift their traditional business concept towards a more service and value-added approach. This is

  4. Multi-scale modelling and simulation of the thermo-hydro-mechanical behavior of concrete with explicit representation of cracking

    Tognevi, Amen

    2012-01-01

    The concrete structures of nuclear power plants can be subjected to moderate thermo-hydric loadings characterized by temperatures of the order of hundred of degrees in service conditions as well as in accidental ones. These loadings can be at the origin of important disorders, in particular cracking which accelerate hydric transfers in the structure. In the framework of the study of durability of these structures, a coupled thermo-hydro-mechanical model denoted THMs has been developed at Laboratoire d'Etude du Comportement des Betons et des Argiles (LECBA) of CEA Saclay in order to perform simulations of the concrete behavior submitted to such loadings. In this work, we focus on the improvement in the model THMs in one hand of the assessment of the mechanical and hydro-mechanical parameters of the unsaturated micro-cracked material and in the other hand of the description of cracking in terms of opening and propagation. The first part is devoted to the development of a model based on a multi-scale description of cement-based materials starting from the scale of the main hydrated products (portlandite, ettringite, C-S-H etc.) to the macroscopic scale of the cracked material. The investigated parameters are obtained at each scale of the description by applying analytical homogenization techniques. The second part concerns a fine numerical description of cracking. To this end, we choose to use combined finite element and discrete element methods. This procedure is presented and illustrated through a series of mechanical tests in order to show the feasibility of the method and to proceed to its validation. Finally, we apply the procedure to a heated wall and the proposed method for estimating the permeability shows the interest to take into account an anisotropic permeability tensor when dealing with mass transfers in cracked concrete structures. (author) [fr

  5. CDMetaPOP: An individual-based, eco-evolutionary model for spatially explicit simulation of landscape demogenetics

    Landguth, Erin L; Bearlin, Andrew; Day, Casey; Dunham, Jason B.

    2016-01-01

    1. Combining landscape demographic and genetics models offers powerful methods for addressing questions for eco-evolutionary applications.2. Using two illustrative examples, we present Cost–Distance Meta-POPulation, a program to simulate changes in neutral and/or selection-driven genotypes through time as a function of individual-based movement, complex spatial population dynamics, and multiple and changing landscape drivers.3. Cost–Distance Meta-POPulation provides a novel tool for questions in landscape genetics by incorporating population viability analysis, while linking directly to conservation applications.

  6. Parameter Estimates in Differential Equation Models for Chemical Kinetics

    Winkel, Brian

    2011-01-01

    We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…

  7. Learning of Chemical Equilibrium through Modelling-Based Teaching

    Maia, Poliana Flavia; Justi, Rosaria

    2009-01-01

    This paper presents and discusses students' learning process of chemical equilibrium from a modelling-based approach developed from the use of the "Model of Modelling" diagram. The investigation was conducted in a regular classroom (students 14-15 years old) and aimed at discussing how modelling-based teaching can contribute to students…

  8. Chemical Kinetic Modeling of 2-Methylhexane Combustion

    Mohamed, Samah Y.; Sarathy, Mani

    2015-01-01

    necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values

  9. A grand model for chemical product design

    Fung, Ka Y.; Ng, Ka M.; Zhang, Lei

    2016-01-01

    , a pricing model, an economic model as well as factors such as company strategy, government policies and regulations. This article introduces the model and highlights selected aspects of the model with two case studies. One is a die attach adhesive that illustrates how pricing affects profitability, and how...... product composition changes with market conditions. Another is a hand lotion that illustrates how product quality affects the profit.(C) 2016 Elsevier Ltd. All rights reserved....

  10. New trajectory-driven aerosol and chemical process model Chemical and Aerosol Lagrangian Model (CALM

    P. Tunved

    2010-11-01

    Full Text Available A new Chemical and Aerosol Lagrangian Model (CALM has been developed and tested. The model incorporates all central aerosol dynamical processes, from nucleation, condensation, coagulation and deposition to cloud formation and in-cloud processing. The model is tested and evaluated against observations performed at the SMEAR II station located at Hyytiälä (61° 51' N, 24° 17' E over a time period of two years, 2000–2001. The model shows good agreement with measurements throughout most of the year, but fails in reproducing the aerosol properties during the winter season, resulting in poor agreement between model and measurements especially during December–January. Nevertheless, through the rest of the year both trends and magnitude of modal concentrations show good agreement with observation, as do the monthly average size distribution properties. The model is also shown to capture individual nucleation events to a certain degree. This indicates that nucleation largely is controlled by the availability of nucleating material (as prescribed by the [H2SO4], availability of condensing material (in this model 15% of primary reactions of monoterpenes (MT are assumed to produce low volatile species and the properties of the size distribution (more specifically, the condensation sink. This is further demonstrated by the fact that the model captures the annual trend in nuclei mode concentration. The model is also used, alongside sensitivity tests, to examine which processes dominate the aerosol size distribution physical properties. It is shown, in agreement with previous studies, that nucleation governs the number concentration during transport from clean areas. It is also shown that primary number emissions almost exclusively govern the CN concentration when air from Central Europe is advected north over Scandinavia. We also show that biogenic emissions have a large influence on the amount of potential CCN observed

  11. An implicit-explicit approach for atmospheric transport-chemistry problems

    J.G. Verwer (Jan); J.G. Blom (Joke); W. Hundsdorfer (Willem)

    1995-01-01

    textabstractWe investigate numerical algorithms for use in air pollution models. The emphasis lies on time integration aspects in connection with advection, vertical turbulent diffusion and stiff chemical transformations. The time integration scheme considered is a 2nd-order implicit-explicit BDF

  12. A spatially explicit whole-system model of the lignocellulosic bioethanol supply chain: an assessment of decentralised processing potential

    Shah Nilay

    2008-07-01

    Full Text Available Abstract Background Lignocellulosic bioethanol technologies exhibit significant capacity for performance improvement across the supply chain through the development of high-yielding energy crops, integrated pretreatment, hydrolysis and fermentation technologies and the application of dedicated ethanol pipelines. The impact of such developments on cost-optimal plant location, scale and process composition within multiple plant infrastructures is poorly understood. A combined production and logistics model has been developed to investigate cost-optimal system configurations for a range of technological, system scale, biomass supply and ethanol demand distribution scenarios specific to European agricultural land and population densities. Results Ethanol production costs for current technologies decrease significantly from $0.71 to $0.58 per litre with increasing economies of scale, up to a maximum single-plant capacity of 550 × 106 l year-1. The development of high-yielding energy crops and consolidated bio-processing realises significant cost reductions, with production costs ranging from $0.33 to $0.36 per litre. Increased feedstock yields result in systems of eight fully integrated plants operating within a 500 × 500 km2 region, each producing between 1.24 and 2.38 × 109 l year-1 of pure ethanol. A limited potential for distributed processing and centralised purification systems is identified, requiring developments in modular, ambient pretreatment and fermentation technologies and the pipeline transport of pure ethanol. Conclusion The conceptual and mathematical modelling framework developed provides a valuable tool for the assessment and optimisation of the lignocellulosic bioethanol supply chain. In particular, it can provide insight into the optimal configuration of multiple plant systems. This information is invaluable in ensuring (near-cost-optimal strategic development within the sector at the regional and national scale. The framework

  13. Detailed Chemical Kinetic Modeling of Hydrazine Decomposition

    Meagher, Nancy E.; Bates, Kami R.

    2000-01-01

    The purpose of this research project is to develop and validate a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. Hydrazine is used extensively in aerospace propulsion, and although liquid hydrazine is not considered detonable, many fuel handling systems create multiphase mixtures of fuels and fuel vapors during their operation. Therefore, a thorough knowledge of the decomposition chemistry of hydrazine under a variety of conditions can be of value in assessing potential operational hazards in hydrazine fuel systems. To gain such knowledge, a reasonable starting point is the development and validation of a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. A reasonably complete mechanism was published in 1996, however, many of the elementary steps included had outdated rate expressions and a thorough investigation of the behavior of the mechanism under a variety of conditions was not presented. The current work has included substantial revision of the previously published mechanism, along with a more extensive examination of the decomposition behavior of hydrazine. An attempt to validate the mechanism against the limited experimental data available has been made and was moderately successful. Further computational and experimental research into the chemistry of this fuel needs to be completed.

  14. Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)

    Rose, Clémence; Chaumerliac, Nadine; Deguillaume, Laurent; Perroux, Hélène; Mouchel-Vallon, Camille; Leriche, Maud; Patryl, Luc; Armand, Patrick

    2018-02-01

    The new detailed aqueous-phase mechanism Cloud Explicit Physico-chemical Scheme (CLEPS 1.0), which describes the oxidation of isoprene-derived water-soluble organic compounds, is coupled with a warm microphysical module simulating the activation of aerosol particles into cloud droplets. CLEPS 1.0 was then extended to CLEPS 1.1 to include the chemistry of the newly added dicarboxylic acids dissolved from the particulate phase. The resulting coupled model allows the prediction of the aqueous-phase concentrations of chemical compounds originating from particle scavenging, mass transfer from the gas-phase and in-cloud aqueous chemical reactivity. The aim of the present study was more particularly to investigate the effect of particle scavenging on cloud chemistry. Several simulations were performed to assess the influence of various parameters on model predictions and to interpret long-term measurements conducted at the top of Puy de Dôme (PUY, France) in marine air masses. Specific attention was paid to carboxylic acids, whose predicted concentrations are on average in the lower range of the observations, with the exception of formic acid, which is rather overestimated in the model. The different sensitivity runs highlight the fact that formic and acetic acids mainly originate from the gas phase and have highly variable aqueous-phase reactivity depending on the cloud acidity, whereas C3-C4 carboxylic acids mainly originate from the particulate phase and are supersaturated in the cloud.

  15. Exploring a multi-scale method for molecular simulation in continuum solvent model: Explicit simulation of continuum solvent as an incompressible fluid.

    Xiao, Li; Luo, Ray

    2017-12-07

    We explored a multi-scale algorithm for the Poisson-Boltzmann continuum solvent model for more robust simulations of biomolecules. In this method, the continuum solvent/solute interface is explicitly simulated with a numerical fluid dynamics procedure, which is tightly coupled to the solute molecular dynamics simulation. There are multiple benefits to adopt such a strategy as presented below. At this stage of the development, only nonelectrostatic interactions, i.e., van der Waals and hydrophobic interactions, are included in the algorithm to assess the quality of the solvent-solute interface generated by the new method. Nevertheless, numerical challenges exist in accurately interpolating the highly nonlinear van der Waals term when solving the finite-difference fluid dynamics equations. We were able to bypass the challenge rigorously by merging the van der Waals potential and pressure together when solving the fluid dynamics equations and by considering its contribution in the free-boundary condition analytically. The multi-scale simulation method was first validated by reproducing the solute-solvent interface of a single atom with analytical solution. Next, we performed the relaxation simulation of a restrained symmetrical monomer and observed a symmetrical solvent interface at equilibrium with detailed surface features resembling those found on the solvent excluded surface. Four typical small molecular complexes were then tested, both volume and force balancing analyses showing that these simple complexes can reach equilibrium within the simulation time window. Finally, we studied the quality of the multi-scale solute-solvent interfaces for the four tested dimer complexes and found that they agree well with the boundaries as sampled in the explicit water simulations.

  16. Property Model-Based Chemcal Substitution and Chemical Formulation Design

    Jhamb, Spardha Virendra; Liang, Xiaodong; Hukkerikar, Amol Shivajirao

    Chemical-based products including structured product formulations and single molecule products have proven to be a boon to mankind and have been a significant part of our economies. Our life and the changes around us cannot be imagined without the presence or involvement of chemicals. But like...... with environmentally benign chemicals. Additionally, the decisions taken during chemical product design also have an impact on the process and product performance and are influenced by company strategy, availability of market and government policies [2]. Hence, undoubtedly there is a need to develop a systematic...... [3] will also be highlighted. A set of new group contribution-based models for a number of useful properties of amino acids will be presented. Through examples on substitution of chemicals from chemical-based products from various sectors namely cosmetics and personal care, pharmaceutical and food...

  17. Prediction of Chemical Function: Model Development and Application

    The United States Environmental Protection Agency’s Exposure Forecaster (ExpoCast) project is developing both statistical and mechanism-based computational models for predicting exposures to thousands of chemicals, including those in consumer products. The high-throughput (...

  18. Importance of predictor variables for models of chemical function

    U.S. Environmental Protection Agency — Importance of random forest predictors for all classification models of chemical function. This dataset is associated with the following publication: Isaacs , K., M....

  19. Enhancing the design of in situ chemical barriers with multicomponent reactive transport modeling

    Sevougian, S.D.; Steefel, C.I.; Yabusaki, S.B.

    1994-11-01

    This paper addresses the need for systematic control of field-scale performance in the emplacement and operation of in situ chemical treatment barriers; in particular, it addresses the issue of how the local coupling of reaction kinetics and material heterogeneities at the laboratory or bench scale can be accurately upscaled to the field. The authors have recently developed modeling analysis tools that can explicitly account for all relevant chemical reactions that accompany the transport of reagents and contaminants through a chemically and physically heterogeneous subsurface rock or soil matrix. These tools are incorporated into an enhanced design methodology for in situ chemical treatment technologies, and the new methodology is demonstrated in the ongoing design of a field experiment for the In Situ Redox Manipulation (ISRM) project at the U.S. Department of Energy (DOE) Hanford Site. The ISRM design approach, which systematically integrates bench-scale and site characterization information, provides an ideal test for the new reactive transport techniques. The need for the enhanced chemistry capability is demonstrated by an example that shows how intra-aqueous redox kinetics can affect the transport of reactive solutes. Simulations are carried out on massively parallel computer architectures to resolve the influence of multiscale heterogeneities on multicomponent, multidimensional reactive transport. The technology will soon be available to design larger-scale remediation schemes

  20. A chemical model for the interstellar medium in galaxies

    Bovino, S.; Grassi, Tommaso; Capelo, P. R.; Schleicher, D. R. G.; Banerjee, R.

    2016-01-01

    Aims: We present and test chemical models for three-dimensional hydrodynamical simulations of galaxies. We explore the effect of changing key parameters such as metallicity, radiation, and non-equilibrium versus equilibrium metal cooling approximations on the transition between the gas phases in the interstellar medium. Methods: The microphysics was modelled by employing the public chemistry package KROME, and the chemical networks were tested to work in a wide range of densities and temp...

  1. NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES

    SILVA R. G.

    1999-01-01

    Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.

  2. Thermodynamically consistent model calibration in chemical kinetics

    Goutsias John

    2011-05-01

    Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new

  3. Center for Integrated Nanotechnologies (CINT) Chemical Release Modeling Evaluation

    Stirrup, Timothy Scott [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-20

    This evaluation documents the methodology and results of chemical release modeling for operations at Building 518, Center for Integrated Nanotechnologies (CINT) Core Facility. This evaluation is intended to supplement an update to the CINT [Standalone] Hazards Analysis (SHA). This evaluation also updates the original [Design] Hazards Analysis (DHA) completed in 2003 during the design and construction of the facility; since the original DHA, additional toxic materials have been evaluated and modeled to confirm the continued low hazard classification of the CINT facility and operations. This evaluation addresses the potential catastrophic release of the current inventory of toxic chemicals at Building 518 based on a standard query in the Chemical Information System (CIS).

  4. On microscopic simulations of systems with model chemical reactions

    Gorecki, J.; Gorecka, J.N.

    1998-01-01

    Large scale computer simulations of model chemical systems play the role of idealized experiments in which theories may be tested. In this paper we present two applications of microscopic simulations based on the reactive hard sphere model. We investigate the influence of internal fluctuations on an oscillating chemical system and observe how they modify the phase portrait of it. Another application, we consider, is concerned with the propagation of a chemical wave front associated with a thermally activated reaction. It is shown that the nonequilibrium effects increase the front velocity if compared with the velocity of the front generated by a nonactivated process characterized by the same rate constant. (author)

  5. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States.

    Ajaz Ahmed, Mukhtar Ahmed; Abd-Elrahman, Amr; Escobedo, Francisco J; Cropper, Wendell P; Martin, Timothy A; Timilsina, Nilesh

    2017-09-01

    Understanding ecosystem processes and the influence of regional scale drivers can provide useful information for managing forest ecosystems. Examining more local scale drivers of forest biomass and water yield can also provide insights for identifying and better understanding the effects of climate change and management on forests. We used diverse multi-scale datasets, functional models and Geographically Weighted Regression (GWR) to model ecosystem processes at the watershed scale and to interpret the influence of ecological drivers across the Southeastern United States (SE US). Aboveground forest biomass (AGB) was determined from available geospatial datasets and water yield was estimated using the Water Supply and Stress Index (WaSSI) model at the watershed level. Our geostatistical model examined the spatial variation in these relationships between ecosystem processes, climate, biophysical, and forest management variables at the watershed level across the SE US. Ecological and management drivers at the watershed level were analyzed locally to identify whether drivers contribute positively or negatively to aboveground forest biomass and water yield ecosystem processes and thus identifying potential synergies and tradeoffs across the SE US region. Although AGB and water yield drivers varied geographically across the study area, they were generally significantly influenced by climate (rainfall and temperature), land-cover factor1 (Water and barren), land-cover factor2 (wetland and forest), organic matter content high, rock depth, available water content, stand age, elevation, and LAI drivers. These drivers were positively or negatively associated with biomass or water yield which significantly contributes to ecosystem interactions or tradeoff/synergies. Our study introduced a spatially-explicit modelling framework to analyze the effect of ecosystem drivers on forest ecosystem structure, function and provision of services. This integrated model approach facilitates

  6. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs.

    Teshager, Awoke Dagnew; Gassman, Philip W; Secchi, Silvia; Schoof, Justin T; Misgna, Girmaye

    2016-04-01

    Applications of the Soil and Water Assessment Tool (SWAT) model typically involve delineation of a watershed into subwatersheds/subbasins that are then further subdivided into hydrologic response units (HRUs) which are homogeneous areas of aggregated soil, landuse, and slope and are the smallest modeling units used within the model. In a given standard SWAT application, multiple potential HRUs (farm fields) in a subbasin are usually aggregated into a single HRU feature. In other words, the standard version of the model combines multiple potential HRUs (farm fields) with the same landuse/landcover, soil, and slope, but located at different places of a subbasin (spatially non-unique), and considers them as one HRU. In this study, ArcGIS pre-processing procedures were developed to spatially define a one-to-one match between farm fields and HRUs (spatially unique HRUs) within a subbasin prior to SWAT simulations to facilitate input processing, input/output mapping, and further analysis at the individual farm field level. Model input data such as landuse/landcover (LULC), soil, crop rotation, and other management data were processed through these HRUs. The SWAT model was then calibrated/validated for Raccoon River watershed in Iowa for 2002-2010 and Big Creek River watershed in Illinois for 2000-2003. SWAT was able to replicate annual, monthly, and daily streamflow, as well as sediment, nitrate and mineral phosphorous within recommended accuracy in most cases. The one-to-one match between farm fields and HRUs created and used in this study is a first step in performing LULC change, climate change impact, and other analyses in a more spatially explicit manner.

  7. Hydrologic Drivers of Soil Organic Carbon Erosion and Burial: Insights from a Spatially-explicit Model of a Degraded Landscape at the Calhoun Critical Zone Observatory

    Dialynas, Y. G.; Bras, R. L.; Richter, D. D., Jr.

    2017-12-01

    Soil erosion and burial of organic material may constitute a substantial sink of atmospheric CO2. Attempts to quantify impacts of soil erosion on the soil-atmosphere C exchange are limited by difficulties in accounting for the fate of eroded soil organic carbon (SOC), a key factor in estimating of the net effect of erosion on the C cycle. Processes that transport SOC are still inadequately represented in terrestrial carbon (C) cycle models. This study investigates hydrologic controls on SOC redistribution across the landscape focusing on dynamic feedbacks between watershed hydrology, soil erosional processes, and SOC burial. We use tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation), a spatially-explicit model of SOC dynamics coupled with a physically-based hydro-geomorphic model. tRIBS-ECO systematically accounts for the fate of eroded SOC across the watershed: Rainsplash erosion and sheet erosion redistribute SOC from upland sites to depositional environments, altering depth-dependent soil biogeochemical properties in diverse soil profiles. Eroded organic material is transferred with sediment and can be partially oxidized upon transport, or preserved from decomposition by burial. The model was applied in the Calhoun Critical Zone Observatory (CZO), a site that is recovering from some of the most serious agricultural erosion in North America. Soil biogeochemical characteristics at multiple soil horizons were used to initialize the model and test performance. Remotely sensed soil moisture data (NASA SMAP) were used for model calibration. Results show significant rates of hydrologically-induced burial of SOC at the Calhoun CZO. We find that organic material at upland eroding soil profiles is largely mobilized by rainsplash erosion. Sheet erosion mainly drives C transport in lower elevation clayey soils. While SOC erosion and deposition rates declined with recent reforestation at the study site, the

  8. Explicit dissipative structures

    Roessler, O.E.

    1987-01-01

    Dissipative structures consisting of a few macrovariables arise out of a sea of reversible microvariables. Unexpected residual effects of the massive underlying reversibility, on the macrolevel, cannot therefore be excluded. In the age of molecular-dynamics simulations, explicit dissipative structures like excitable systems (explicit observers) can be generated in a computer from first reversible principles. A class of classical, 1-D Hamiltonian systems of chaotic type is considered which has the asset that the trajectorial behavior in phase space can be understood geometrically. If, as nuatural, the number of particle types is much smaller than that of particles, the Gibbs symmetry must be taken into account. The permutation invariance drastically changes the behavior in phase space (quasi-periodization). The explicity observer becomes effectively reversible on a short time scale. In consequence, his ability to measure microscopic motions is suspended in a characteristic fashion. Unlike quantum mechanics whose holistic nature cannot be transcended, the present holistic (internal-interface) effects - mimicking the former to some extent - can be understood fully in principle

  9. Modeling flow and solute transport at a tile drain field site by explicit representation of preferential flow structures: Equifinality and uncertainty

    Zehe, E.; Klaus, J.

    2011-12-01

    Rapid flow in connected preferential flow paths is crucial for fast transport of water and solutes through soils, especially at tile drained field sites. The present study tests whether an explicit treatment of worm burrows is feasible for modeling water flow, bromide and pesticide transport in structured heterogeneous soils with a 2-dimensional Richards based model. The essence is to represent worm burrows as morphologically connected paths of low flow resistance and low retention capacity in the spatially highly resolved model domain. The underlying extensive database to test this approach was collected during an irrigation experiment, which investigated transport of bromide and the herbicide Isoproturon at a 900 sqm tile drained field site. In a first step we investigated whether the inherent uncertainty in key data causes equifinality i.e. whether there are several spatial model setups that reproduce tile drain event discharge in an acceptable manner. We found a considerable equifinality in the spatial setup of the model, when key parameters such as the area density of worm burrows and the maximum volumetric water flows inside these macropores were varied within the ranges of either our measurement errors or measurements reported in the literature. Thirteen model runs yielded a Nash-Sutcliffe coefficient of more than 0.9. Also, the flow volumes were in good accordance and peak timing errors where less than or equal to 20 min. In the second step we investigated thus whether this "equifinality" in spatial model setups may be reduced when including the bromide tracer data into the model falsification process. We simulated transport of bromide for the 13 spatial model setups, which performed best with respect to reproduce tile drain event discharge, without any further calibration. Four of this 13 model setups allowed to model bromide transport within fixed limits of acceptability. Parameter uncertainty and equifinality could thus be reduced. Thirdly, we selected

  10. Modeling food matrix effects on chemical reactivity: Challenges and perspectives.

    Capuano, Edoardo; Oliviero, Teresa; van Boekel, Martinus A J S

    2017-06-29

    The same chemical reaction may be different in terms of its position of the equilibrium (i.e., thermodynamics) and its kinetics when studied in different foods. The diversity in the chemical composition of food and in its structural organization at macro-, meso-, and microscopic levels, that is, the food matrix, is responsible for this difference. In this viewpoint paper, the multiple, and interconnected ways the food matrix can affect chemical reactivity are summarized. Moreover, mechanistic and empirical approaches to explain and predict the effect of food matrix on chemical reactivity are described. Mechanistic models aim to quantify the effect of food matrix based on a detailed understanding of the chemical and physical phenomena occurring in food. Their applicability is limited at the moment to very simple food systems. Empirical modeling based on machine learning combined with data-mining techniques may represent an alternative, useful option to predict the effect of the food matrix on chemical reactivity and to identify chemical and physical properties to be further tested. In such a way the mechanistic understanding of the effect of the food matrix on chemical reactions can be improved.

  11. Toward a comprehensive model of chemical transport in porous media

    Miller, C.W.

    1983-02-01

    A chemical transport model, CHEMTRN, that includes advection, dispersion/diffusion, complexation, sorption, precipitation or dissolution of solids, and the dissociation of water has been written. The transport, mass action and site constraint equations are written in a differential/algebraic form and solved simultaneously. The sorption process is modelled by either ion-exchange or surface complexation. The model has been used to investigate the applicability of a k/sub D/ model for simulating the transport of chemical species in groundwater systems, to simulate precipitation/dissolution of minerals, and to consider the effect of surface complexation on sorption

  12. Property Modelling for Applications in Chemical Product and Process Design

    Gani, Rafiqul

    such as database, property model library, model parameter regression, and, property-model based product-process design will be presented. The database contains pure component and mixture data for a wide range of organic chemicals. The property models are based on the combined group contribution and atom...... is missing, the atom connectivity based model is employed to predict the missing group interaction. In this way, a wide application range of the property modeling tool is ensured. Based on the property models, targeted computer-aided techniques have been developed for design and analysis of organic chemicals......, polymers, mixtures as well as separation processes. The presentation will highlight the framework (ICAS software) for property modeling, the property models and issues such as prediction accuracy, flexibility, maintenance and updating of the database. Also, application issues related to the use of property...

  13. Engineered Barrier System: Physical and Chemical Environment Model

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  14. Extension of association models to complex chemicals

    Avlund, Ane Søgaard

    Summary of “Extension of association models to complex chemicals”. Ph.D. thesis by Ane Søgaard Avlund The subject of this thesis is application of SAFT type equations of state (EoS). Accurate and predictive thermodynamic models are important in many industries including the petroleum industry......; CPA and sPC-SAFT. Phase equilibrium and monomer fraction calculations with sPC-SAFT for methanol are used in the thesis to illustrate the importance of parameter estimation when using SAFT. Different parameter sets give similar pure component vapor pressure and liquid density results, whereas very...... association is presented in the thesis, and compared to the corresponding lattice theory. The theory for intramolecular association is then applied in connection with sPC-SAFT for mixtures containing glycol ethers. Calculations with sPC-SAFT (without intramolecular association) are presented for comparison...

  15. The Role of Explicit and Implicit Self-Esteem in Peer Modeling of Palatable Food Intake: A Study on Social Media Interaction among Youngsters

    Bevelander, Kirsten E.; Anschütz, Doeschka J.; Creemers, Daan H. M.; Kleinjan, Marloes; Engels, Rutger C. M. E.

    2013-01-01

    Objective This experimental study investigated the impact of peers on palatable food intake of youngsters within a social media setting. To determine whether this effect was moderated by self-esteem, the present study examined the roles of global explicit self-esteem (ESE), body esteem (BE) and implicit self-esteem (ISE). Methods Participants (N = 118; 38.1% boys; M age 11.14±.79) were asked to play a computer game while they believed to interact online with a same-sex normal-weight remote confederate (i.e., instructed peer) who ate either nothing, a small or large amount of candy. Results Participants modeled the candy intake of peers via a social media interaction, but this was qualified by their self-esteem. Participants with higher ISE adjusted their candy intake to that of a peer more closely than those with lower ISE when the confederate ate nothing compared to when eating a modest (β = .26, p = .05) or considerable amount of candy (kcal) (β = .32, p = .001). In contrast, participants with lower BE modeled peer intake more than those with higher BE when eating nothing compared to a considerable amount of candy (kcal) (β = .21, p = .02); ESE did not moderate social modeling behavior. In addition, participants with higher discrepant or “damaged” self-esteem (i.e., high ISE and low ESE) modeled peer intake more when the peer ate nothing or a modest amount compared to a substantial amount of candy (kcal) (β = −.24, p = .004; β = −.26, pesteem or damaged self-esteem may be more at risk to peer influences on food intake. PMID:24015251

  16. The role of explicit and implicit self-esteem in peer modeling of palatable food intake: a study on social media interaction among youngsters.

    Bevelander, Kirsten E; Anschütz, Doeschka J; Creemers, Daan H M; Kleinjan, Marloes; Engels, Rutger C M E

    2013-01-01

    This experimental study investigated the impact of peers on palatable food intake of youngsters within a social media setting. To determine whether this effect was moderated by self-esteem, the present study examined the roles of global explicit self-esteem (ESE), body esteem (BE) and implicit self-esteem (ISE). Participants (N = 118; 38.1% boys; M age 11.14±.79) were asked to play a computer game while they believed to interact online with a same-sex normal-weight remote confederate (i.e., instructed peer) who ate either nothing, a small or large amount of candy. Participants modeled the candy intake of peers via a social media interaction, but this was qualified by their self-esteem. Participants with higher ISE adjusted their candy intake to that of a peer more closely than those with lower ISE when the confederate ate nothing compared to when eating a modest (β = .26, p = .05) or considerable amount of candy (kcal) (β = .32, p = .001). In contrast, participants with lower BE modeled peer intake more than those with higher BE when eating nothing compared to a considerable amount of candy (kcal) (β = .21, p = .02); ESE did not moderate social modeling behavior. In addition, participants with higher discrepant or "damaged" self-esteem (i.e., high ISE and low ESE) modeled peer intake more when the peer ate nothing or a modest amount compared to a substantial amount of candy (kcal) (β = -.24, p = .004; β = -.26, pesteem or damaged self-esteem may be more at risk to peer influences on food intake.

  17. The role of explicit and implicit self-esteem in peer modeling of palatable food intake: a study on social media interaction among youngsters.

    Kirsten E Bevelander

    Full Text Available OBJECTIVE: This experimental study investigated the impact of peers on palatable food intake of youngsters within a social media setting. To determine whether this effect was moderated by self-esteem, the present study examined the roles of global explicit self-esteem (ESE, body esteem (BE and implicit self-esteem (ISE. METHODS: Participants (N = 118; 38.1% boys; M age 11.14±.79 were asked to play a computer game while they believed to interact online with a same-sex normal-weight remote confederate (i.e., instructed peer who ate either nothing, a small or large amount of candy. RESULTS: Participants modeled the candy intake of peers via a social media interaction, but this was qualified by their self-esteem. Participants with higher ISE adjusted their candy intake to that of a peer more closely than those with lower ISE when the confederate ate nothing compared to when eating a modest (β = .26, p = .05 or considerable amount of candy (kcal (β = .32, p = .001. In contrast, participants with lower BE modeled peer intake more than those with higher BE when eating nothing compared to a considerable amount of candy (kcal (β = .21, p = .02; ESE did not moderate social modeling behavior. In addition, participants with higher discrepant or "damaged" self-esteem (i.e., high ISE and low ESE modeled peer intake more when the peer ate nothing or a modest amount compared to a substantial amount of candy (kcal (β = -.24, p = .004; β = -.26, p<.0001, respectively. CONCLUSION: Youngsters conform to the amount of palatable food eaten by peers through social media interaction. Those with lower body esteem or damaged self-esteem may be more at risk to peer influences on food intake.

  18. High accuracy navigation information estimation for inertial system using the multi-model EKF fusing adams explicit formula applied to underwater gliders.

    Huang, Haoqian; Chen, Xiyuan; Zhang, Bo; Wang, Jian

    2017-01-01

    The underwater navigation system, mainly consisting of MEMS inertial sensors, is a key technology for the wide application of underwater gliders and plays an important role in achieving high accuracy navigation and positioning for a long time of period. However, the navigation errors will accumulate over time because of the inherent errors of inertial sensors, especially for MEMS grade IMU (Inertial Measurement Unit) generally used in gliders. The dead reckoning module is added to compensate the errors. In the complicated underwater environment, the performance of MEMS sensors is degraded sharply and the errors will become much larger. It is difficult to establish the accurate and fixed error model for the inertial sensor. Therefore, it is very hard to improve the accuracy of navigation information calculated by sensors. In order to solve the problem mentioned, the more suitable filter which integrates the multi-model method with an EKF approach can be designed according to different error models to give the optimal estimation for the state. The key parameters of error models can be used to determine the corresponding filter. The Adams explicit formula which has an advantage of high precision prediction is simultaneously fused into the above filter to achieve the much more improvement in attitudes estimation accuracy. The proposed algorithm has been proved through theory analyses and has been tested by both vehicle experiments and lake trials. Results show that the proposed method has better accuracy and effectiveness in terms of attitudes estimation compared with other methods mentioned in the paper for inertial navigation applied to underwater gliders. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Bayesian molecular design with a chemical language model

    Ikebata, Hisaki; Hongo, Kenta; Isomura, Tetsu; Maezono, Ryo; Yoshida, Ryo

    2017-04-01

    The aim of computational molecular design is the identification of promising hypothetical molecules with a predefined set of desired properties. We address the issue of accelerating the material discovery with state-of-the-art machine learning techniques. The method involves two different types of prediction; the forward and backward predictions. The objective of the forward prediction is to create a set of machine learning models on various properties of a given molecule. Inverting the trained forward models through Bayes' law, we derive a posterior distribution for the backward prediction, which is conditioned by a desired property requirement. Exploring high-probability regions of the posterior with a sequential Monte Carlo technique, molecules that exhibit the desired properties can computationally be created. One major difficulty in the computational creation of molecules is the exclusion of the occurrence of chemically unfavorable structures. To circumvent this issue, we derive a chemical language model that acquires commonly occurring patterns of chemical fragments through natural language processing of ASCII strings of existing compounds, which follow the SMILES chemical language notation. In the backward prediction, the trained language model is used to refine chemical strings such that the properties of the resulting structures fall within the desired property region while chemically unfavorable structures are successfully removed. The present method is demonstrated through the design of small organic molecules with the property requirements on HOMO-LUMO gap and internal energy. The R package iqspr is available at the CRAN repository.

  20. Non-equilibrium Quasi-Chemical Nucleation Model

    Gorbachev, Yuriy E.

    2018-04-01

    Quasi-chemical model, which is widely used for nucleation description, is revised on the basis of recent results in studying of non-equilibrium effects in reacting gas mixtures (Kolesnichenko and Gorbachev in Appl Math Model 34:3778-3790, 2010; Shock Waves 23:635-648, 2013; Shock Waves 27:333-374, 2017). Non-equilibrium effects in chemical reactions are caused by the chemical reactions themselves and therefore these contributions should be taken into account in the corresponding expressions for reaction rates. Corrections to quasi-equilibrium reaction rates are of two types: (a) spatially homogeneous (caused by physical-chemical processes) and (b) spatially inhomogeneous (caused by gas expansion/compression processes and proportional to the velocity divergency). Both of these processes play an important role during the nucleation and are included into the proposed model. The method developed for solving the generalized Boltzmann equation for chemically reactive gases is applied for solving the set of equations of the revised quasi-chemical model. It is shown that non-equilibrium processes lead to essential deviation of the quasi-stationary distribution and therefore the nucleation rate from its traditional form.

  1. Making the Tacit Explicit

    Blasco, Maribel

    2015-01-01

    The article proposes an approach, broadly inspired by culturally inclusive pedagogy, to facilitate international student academic adaptation based on rendering tacit aspects of local learning cultures explicit to international full degree students, rather than adapting them. Preliminary findings...... are presented from a focus group-based exploratory study of international student experiences at different stages of their studies at a Danish business school, one of Denmark’s most international universities. The data show how a major source of confusion for these students has to do with the tacit logics...... and expectations that shape how the formal steps of the learning cycle are understood and enacted locally, notably how learning and assessment moments are defined and related to one another. Theoretically, the article draws on tacit knowledge and sense-making theories to analyse student narratives...

  2. Unicorns in the world of chemical bonding models.

    Frenking, Gernot; Krapp, Andreas

    2007-01-15

    The appearance and the significance of heuristically developed bonding models are compared with the phenomenon of unicorns in mythical saga. It is argued that classical bonding models played an essential role for the development of the chemical science providing the language which is spoken in the territory of chemistry. The advent and the further development of quantum chemistry demands some restrictions and boundary conditions for classical chemical bonding models, which will continue to be integral parts of chemistry. Copyright (c) 2006 Wiley Periodicals, Inc.

  3. Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes

    Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico

    2017-12-01

    Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.

  4. Consequence and Resilience Modeling for Chemical Supply Chains

    Stamber, Kevin L.; Vugrin, Eric D.; Ehlen, Mark A.; Sun, Amy C.; Warren, Drake E.; Welk, Margaret E.

    2011-01-01

    The U.S. chemical sector produces more than 70,000 chemicals that are essential material inputs to critical infrastructure systems, such as the energy, public health, and food and agriculture sectors. Disruptions to the chemical sector can potentially cascade to other dependent sectors, resulting in serious national consequences. To address this concern, the U.S. Department of Homeland Security (DHS) tasked Sandia National Laboratories to develop a predictive consequence modeling and simulation capability for global chemical supply chains. This paper describes that capability , which includes a dynamic supply chain simulation platform called N_ABLE(tm). The paper also presents results from a case study that simulates the consequences of a Gulf Coast hurricane on selected segments of the U.S. chemical sector. The case study identified consequences that include impacted chemical facilities, cascading impacts to other parts of the chemical sector. and estimates of the lengths of chemical shortages and recovery . Overall. these simulation results can DHS prepare for and respond to actual disruptions.

  5. Using an Explicit Emission Tagging Method in Global Modeling of Source-Receptor Relationships for Black Carbon in the Arctic: Variations, Sources and Transport Pathways

    Wang, Hailong; Rasch, Philip J.; Easter, Richard C.; Singh, Balwinder; Zhang, Rudong; Ma, Po-Lun; Qian, Yun; Ghan, Steven J.; Beagley, Nathaniel

    2014-11-27

    We introduce an explicit emission tagging technique in the Community Atmosphere Model to quantify source-region-resolved characteristics of black carbon (BC), focusing on the Arctic. Explicit tagging of BC source regions without perturbing the emissions makes it straightforward to establish source-receptor relationships and transport pathways, providing a physically consistent and computationally efficient approach to produce a detailed characterization of the destiny of regional BC emissions and the potential for mitigation actions. Our analysis shows that the contributions of major source regions to the global BC burden are not proportional to the respective emissions due to strong region-dependent removal rates and lifetimes, while the contributions to BC direct radiative forcing show a near-linear dependence on their respective contributions to the burden. Distant sources contribute to BC in remote regions mostly in the mid- and upper troposphere, having much less impact on lower-level concentrations (and deposition) than on burden. Arctic BC concentrations, deposition and source contributions all have strong seasonal variations. Eastern Asia contributes the most to the wintertime Arctic burden. Northern Europe emissions are more important to both surface concentration and deposition in winter than in summer. The largest contribution to Arctic BC in the summer is from Northern Asia. Although local emissions contribute less than 10% to the annual mean BC burden and deposition within the Arctic, the per-emission efficiency is much higher than for major non-Arctic sources. The interannual variability (1996-2005) due to meteorology is small in annual mean BC burden and radiative forcing but is significant in yearly seasonal means over the Arctic. When a slow aging treatment of BC is introduced, the increase of BC lifetime and burden is source-dependent. Global BC forcing-per-burden efficiency also increases primarily due to changes in BC vertical distributions. The

  6. Computer-Aided Multiscale Modelling for Chemical Process Engineering

    Morales Rodriguez, Ricardo; Gani, Rafiqul

    2007-01-01

    Chemical processes are generally modeled through monoscale approaches, which, while not adequate, satisfy a useful role in product-process design. In this case, use of a multi-dimensional and multi-scale model-based approach has importance in product-process development. A computer-aided framework...

  7. A Coupled Chemical and Mass Transport Model for Concrete Durability

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2012-01-01

    In this paper a general continuum theory is used to evaluate the service life of cement based materials, in terms of mass transport processes and chemical degradation of the solid matrix. The model established is a reactive mass transport model, based on an extended version of the Poisson-Nernst-...

  8. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  9. Identification of Chemical Reactor Plant’s Mathematical Model

    Pyakullya, Boris Ivanovich; Kladiev, Sergey Nikolaevich

    2015-01-01

    This work presents a solution of the identification problem of chemical reactor plant’s mathematical model. The main goal is to obtain a mathematical description of a chemical reactor plant from experimental data, which based on plant’s time response measurements. This data consists sequence of measurements for water jacket temperature and information about control input signal, which is used to govern plant’s behavior.

  10. Identification of Chemical Reactor Plant’s Mathematical Model

    Pyakillya Boris

    2015-01-01

    Full Text Available This work presents a solution of the identification problem of chemical reactor plant’s mathematical model. The main goal is to obtain a mathematical description of a chemical reactor plant from experimental data, which based on plant’s time response measurements. This data consists sequence of measurements for water jacket temperature and information about control input signal, which is used to govern plant’s behavior.

  11. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors

    Justin V. Remais

    2013-07-01

    Full Text Available Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF 3.2.1 baseline/current (2001–2004 and projected (Representative Concentration Pathway (RCP 4.5 and RCP 8.5; 2057–2059 climate data. Ten dynamic population features (DPFs were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses—including altered phenology—of disease vectors to altered climate.

  12. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors.

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H; Gambhir, Manoj; Fu, Joshua S; Liu, Yang; Remais, Justin V

    2013-09-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis , the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001-2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057-2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses-including altered phenology-of disease vectors to altered climate.

  13. Quantum-chemical modeling of smectite clays

    Aronowitz, S.; Coyne, L.; Lawless, J.; Rishpon, J.

    1982-01-01

    A self-consistent charge extended Hueckel program is used in modeling isomorphic substitution of Al(3+) by Na(+), K(+), Mg(2+), Fe(2+), and Fe(3+) in the octahedral layer of a dioctahedral smectite clay, such as montmorillonite. Upon comparison of the energies involved in the isomorphic substitution, it is found that the order for successful substitution is as follows: Al(3+), Fe(3+), Mg(2+), Fe(2+), Na(+), which is equivalent to Ca(2+), and then K(+). This ordering is found to be consistent with experimental observation. The calculations also make it possible to determine the possible penetration of metal ions into the clay's 2:1 crystalline layer. For the cases studied, this type of penetration can occur at elevated temperatures into regions where isomorphic substitution has occurred with metal ions that bear a formal charge of less than 3+. The computed behavior of the electronic structure in the presence of isomorphic substitution is found to be similar to behavior associated with semiconductors.

  14. Tacit to explicit knowledge conversion.

    Cairó Battistutti, Osvaldo; Bork, Dominik

    2017-11-01

    The ability to create, use and transfer knowledge may allow the creation or improvement of new products or services. But knowledge is often tacit: It lives in the minds of individuals, and therefore, it is difficult to transfer it to another person by means of the written word or verbal expression. This paper addresses this important problem by introducing a methodology, consisting of a four-step process that facilitates tacit to explicit knowledge conversion. The methodology utilizes conceptual modeling, thus enabling understanding and reasoning through visual knowledge representation. This implies the possibility of understanding concepts and ideas, visualized through conceptual models, without using linguistic or algebraic means. The proposed methodology is conducted in a metamodel-based tool environment whose aim is efficient application and ease of use.

  15. Multi-scenario modelling of uncertainty in stochastic chemical systems

    Evans, R. David; Ricardez-Sandoval, Luis A.

    2014-01-01

    Uncertainty analysis has not been well studied at the molecular scale, despite extensive knowledge of uncertainty in macroscale systems. The ability to predict the effect of uncertainty allows for robust control of small scale systems such as nanoreactors, surface reactions, and gene toggle switches. However, it is difficult to model uncertainty in such chemical systems as they are stochastic in nature, and require a large computational cost. To address this issue, a new model of uncertainty propagation in stochastic chemical systems, based on the Chemical Master Equation, is proposed in the present study. The uncertain solution is approximated by a composite state comprised of the averaged effect of samples from the uncertain parameter distributions. This model is then used to study the effect of uncertainty on an isomerization system and a two gene regulation network called a repressilator. The results of this model show that uncertainty in stochastic systems is dependent on both the uncertain distribution, and the system under investigation. -- Highlights: •A method to model uncertainty on stochastic systems was developed. •The method is based on the Chemical Master Equation. •Uncertainty in an isomerization reaction and a gene regulation network was modelled. •Effects were significant and dependent on the uncertain input and reaction system. •The model was computationally more efficient than Kinetic Monte Carlo

  16. Progress in Chemical Kinetic Modeling for Surrogate Fuels

    Pitz, W J; Westbrook, C K; Herbinet, O; Silke, E J

    2008-06-06

    Gasoline, diesel, and other alternative transportation fuels contain hundreds to thousands of compounds. It is currently not possible to represent all these compounds in detailed chemical kinetic models. Instead, these fuels are represented by surrogate fuel models which contain a limited number of representative compounds. We have been extending the list of compounds for detailed chemical models that are available for use in fuel surrogate models. Detailed models for components with larger and more complicated fuel molecular structures are now available. These advancements are allowing a more accurate representation of practical and alternative fuels. We have developed detailed chemical kinetic models for fuels with higher molecular weight fuel molecules such as n-hexadecane (C16). Also, we can consider more complicated fuel molecular structures like cyclic alkanes and aromatics that are found in practical fuels. For alternative fuels, the capability to model large biodiesel fuels that have ester structures is becoming available. These newly addressed cyclic and ester structures in fuels profoundly affect the reaction rate of the fuel predicted by the model. Finally, these surrogate fuel models contain large numbers of species and reactions and must be reduced for use in multi-dimensional models for spark-ignition, HCCI and diesel engines.

  17. SMART: a spatially explicit bio-economic model for assessing and managing demersal fisheries, with an application to italian trawlers in the strait of sicily.

    Tommaso Russo

    Full Text Available Management of catches, effort and exploitation pattern are considered the most effective measures to control fishing mortality and ultimately ensure productivity and sustainability of fisheries. Despite the growing concerns about the spatial dimension of fisheries, the distribution of resources and fishing effort in space is seldom considered in assessment and management processes. Here we propose SMART (Spatial MAnagement of demersal Resources for Trawl fisheries, a tool for assessing bio-economic feedback in different management scenarios. SMART combines information from different tasks gathered within the European Data Collection Framework on fisheries and is composed of: 1 spatial models of fishing effort, environmental characteristics and distribution of demersal resources; 2 an Artificial Neural Network which captures the relationships among these aspects in a spatially explicit way and uses them to predict resources abundances; 3 a deterministic module which analyzes the size structure of catches and the associated revenues, according to different spatially-based management scenarios. SMART is applied to demersal fishery in the Strait of Sicily, one of the most productive fisheries of the Mediterranean Sea. Three of the main target species are used as proxies for the whole range exploited by trawlers. After training, SMART is used to evaluate different management scenarios, including spatial closures, using a simulation approach that mimics the recent exploitation patterns. Results evidence good model performance, with a noteworthy coherence and reliability of outputs for the different components. Among others, the main finding is that a partial improvement in resource conditions can be achieved by means of nursery closures, even if the overall fishing effort in the area remains stable. Accordingly, a series of strategically designed areas of trawling closures could significantly improve the resource conditions of demersal fisheries in

  18. SMART: a spatially explicit bio-economic model for assessing and managing demersal fisheries, with an application to italian trawlers in the strait of sicily.

    Russo, Tommaso; Parisi, Antonio; Garofalo, Germana; Gristina, Michele; Cataudella, Stefano; Fiorentino, Fabio

    2014-01-01

    Management of catches, effort and exploitation pattern are considered the most effective measures to control fishing mortality and ultimately ensure productivity and sustainability of fisheries. Despite the growing concerns about the spatial dimension of fisheries, the distribution of resources and fishing effort in space is seldom considered in assessment and management processes. Here we propose SMART (Spatial MAnagement of demersal Resources for Trawl fisheries), a tool for assessing bio-economic feedback in different management scenarios. SMART combines information from different tasks gathered within the European Data Collection Framework on fisheries and is composed of: 1) spatial models of fishing effort, environmental characteristics and distribution of demersal resources; 2) an Artificial Neural Network which captures the relationships among these aspects in a spatially explicit way and uses them to predict resources abundances; 3) a deterministic module which analyzes the size structure of catches and the associated revenues, according to different spatially-based management scenarios. SMART is applied to demersal fishery in the Strait of Sicily, one of the most productive fisheries of the Mediterranean Sea. Three of the main target species are used as proxies for the whole range exploited by trawlers. After training, SMART is used to evaluate different management scenarios, including spatial closures, using a simulation approach that mimics the recent exploitation patterns. Results evidence good model performance, with a noteworthy coherence and reliability of outputs for the different components. Among others, the main finding is that a partial improvement in resource conditions can be achieved by means of nursery closures, even if the overall fishing effort in the area remains stable. Accordingly, a series of strategically designed areas of trawling closures could significantly improve the resource conditions of demersal fisheries in the Strait of

  19. A zero-dimensional model for electrothermal-chemical launchers

    Song Shengyi; Chen Li; Sun Chengwei

    2002-01-01

    In this paper a zero-dimensional (0-D) model for the electrothermal-chemical (ETC) launchers has been established, where the propellant is an energetic work liquid. The model consists of three parts to correspond to three steps of the process in ETC launching. The results calculated with the model are well compared to the measured ones. Additionally, the dependence of chamber pressure, mass fraction of burnt propellant and muzzle velocity of projectile on capillary current has been investigated

  20. Regression analysis of a chemical reaction fouling model

    Vasak, F.; Epstein, N.

    1996-01-01

    A previously reported mathematical model for the initial chemical reaction fouling of a heated tube is critically examined in the light of the experimental data for which it was developed. A regression analysis of the model with respect to that data shows that the reference point upon which the two adjustable parameters of the model were originally based was well chosen, albeit fortuitously. (author). 3 refs., 2 tabs., 2 figs

  1. Producing Distribution Maps for a Spatially-Explicit Ecosystem Model Using Large Monitoring and Environmental Databases and a Combination of Interpolation and Extrapolation

    Arnaud Grüss

    2018-01-01

    Full Text Available To be able to simulate spatial patterns of predator-prey interactions, many spatially-explicit ecosystem modeling platforms, including Atlantis, need to be provided with distribution maps defining the annual or seasonal spatial distributions of functional groups and life stages. We developed a methodology combining extrapolation and interpolation of the predictions made by statistical habitat models to produce distribution maps for the fish and invertebrates represented in the Atlantis model of the Gulf of Mexico (GOM Large Marine Ecosystem (LME (“Atlantis-GOM”. This methodology consists of: (1 compiling a large monitoring database, gathering all the fisheries-independent and fisheries-dependent data collected in the northern (U.S. GOM since 2000; (2 compiling a large environmental database, storing all the environmental parameters known to influence the spatial distribution patterns of fish and invertebrates of the GOM; (3 fitting binomial generalized additive models (GAMs to the large monitoring and environmental databases, and geostatistical binomial generalized linear mixed models (GLMMs to the large monitoring database; and (4 employing GAM predictions to infer spatial distributions in the southern GOM, and GLMM predictions to infer spatial distributions in the U.S. GOM. Thus, our methodology allows for reasonable extrapolation in the southern GOM based on a large amount of monitoring and environmental data, and for interpolation in the U.S. GOM accurately reflecting the probability of encountering fish and invertebrates in that region. We used an iterative cross-validation procedure to validate GAMs. When a GAM did not pass the validation test, we employed a GAM for a related functional group/life stage to generate distribution maps for the southern GOM. In addition, no geostatistical GLMMs were fit for the functional groups and life stages whose depth, longitudinal and latitudinal ranges within the U.S. GOM are not entirely covered by

  2. A Coupled Chemical and Mass Transport Model for Concrete Durability

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2012-01-01

    -Raphson iteration scheme arising from the non-linearity. The overall model is a transient problem, solved using a single parameter formulation. The sorption hysteresis and chemical equilibrium is included as source or sink terms. The advantages with this formulation is that each node in the discrete system has...... their individual sorption hysteresis isotherm which is of great importance when describing non fully water saturated system e.g. caused by time depended boundary conditions. Chemical equilibrium is also established in each node of the discrete system, where the rate of chemical degradation is determined.......g. charge balance, from the mass transport calculation could cause the above mentioned numerical problems. Two different test cases are studied, the sorption hysteresis in different depth of the sample, caused by time depended boundary condition and the chemical degradation of the solid matrix in a ten year...

  3. A kinetic model for chemical reactions without barriers: transport coefficients and eigenmodes

    Alves, Giselle M; Kremer, Gilberto M; Marques, Wilson Jr; Soares, Ana Jacinta

    2011-01-01

    The kinetic model of the Boltzmann equation proposed in the work of Kremer and Soares 2009 for a binary mixture undergoing chemical reactions of symmetric type which occur without activation energy is revisited here, with the aim of investigating in detail the transport properties of the reactive mixture and the influence of the reaction process on the transport coefficients. Accordingly, the non-equilibrium solutions of the Boltzmann equations are determined through an expansion in Sonine polynomials up to the first order, using the Chapman–Enskog method, in a chemical regime for which the reaction process is close to its final equilibrium state. The non-equilibrium deviations are explicitly calculated for what concerns the thermal–diffusion ratio and coefficients of shear viscosity, diffusion and thermal conductivity. The theoretical and formal analysis developed in the present paper is complemented with some numerical simulations performed for different concentrations of reactants and products of the reaction as well as for both exothermic and endothermic chemical processes. The results reveal that chemical reactions without energy barrier can induce an appreciable influence on the transport properties of the mixture. Oppositely to the case of reactions with activation energy, the coefficients of shear viscosity and thermal conductivity become larger than those of an inert mixture when the reactions are exothermic. An application of the non-barrier model and its detailed transport picture are included in this paper, in order to investigate the dynamics of the local perturbations on the constituent number densities, and velocity and temperature of the whole mixture, induced by spontaneous internal fluctuations. It is shown that for the longitudinal disturbances there exist two hydrodynamic sound modes, one purely diffusive hydrodynamic mode and one kinetic mode

  4. A kinetic model for chemical reactions without barriers: transport coefficients and eigenmodes

    Alves, Giselle M.; Kremer, Gilberto M.; Marques, Wilson, Jr.; Jacinta Soares, Ana

    2011-03-01

    The kinetic model of the Boltzmann equation proposed in the work of Kremer and Soares 2009 for a binary mixture undergoing chemical reactions of symmetric type which occur without activation energy is revisited here, with the aim of investigating in detail the transport properties of the reactive mixture and the influence of the reaction process on the transport coefficients. Accordingly, the non-equilibrium solutions of the Boltzmann equations are determined through an expansion in Sonine polynomials up to the first order, using the Chapman-Enskog method, in a chemical regime for which the reaction process is close to its final equilibrium state. The non-equilibrium deviations are explicitly calculated for what concerns the thermal-diffusion ratio and coefficients of shear viscosity, diffusion and thermal conductivity. The theoretical and formal analysis developed in the present paper is complemented with some numerical simulations performed for different concentrations of reactants and products of the reaction as well as for both exothermic and endothermic chemical processes. The results reveal that chemical reactions without energy barrier can induce an appreciable influence on the transport properties of the mixture. Oppositely to the case of reactions with activation energy, the coefficients of shear viscosity and thermal conductivity become larger than those of an inert mixture when the reactions are exothermic. An application of the non-barrier model and its detailed transport picture are included in this paper, in order to investigate the dynamics of the local perturbations on the constituent number densities, and velocity and temperature of the whole mixture, induced by spontaneous internal fluctuations. It is shown that for the longitudinal disturbances there exist two hydrodynamic sound modes, one purely diffusive hydrodynamic mode and one kinetic mode.

  5. Towards consensus in comparative chemical characterization modeling for LCIA

    Hauschild, Michael Zwicky; Bachmann, Till; Huijbregts, Mark

    2006-01-01

    work within, for instance, the OECD, and guidance from a series of expert workshops held between 2002 and 2005, preliminary guidelines focusing on chemical fate, and human and ecotoxic effects were established. For further elaboration of the fate-, exposure- and effect-sides of the modeling, six models...... by the Task Force and the model providers. While the compared models and their differences are important tools to further advance LCA science, the consensus model is intended to provide a generally agreed and scientifically sound method to calculate consistent characterization factors for use in LCA practice...... and to be the basis of the “recommended practice” for calculation of characterization factors for chemicals under authority of the UNEP/SETAC Life Cycle Initiative....

  6. Model of wet chemical etching of swift heavy ions tracks

    Gorbunov, S. A.; Malakhov, A. I.; Rymzhanov, R. A.; Volkov, A. E.

    2017-10-01

    A model of wet chemical etching of tracks of swift heavy ions (SHI) decelerated in solids in the electronic stopping regime is presented. This model takes into account both possible etching modes: etching controlled by diffusion of etchant molecules to the etching front, and etching controlled by the rate of a reaction of an etchant with a material. Olivine ((Mg0.88Fe0.12)2SiO4) crystals were chosen as a system for modeling. Two mechanisms of chemical activation of olivine around the SHI trajectory are considered. The first mechanism is activation stimulated by structural transformations in a nanometric track core, while the second one results from neutralization of metallic atoms by generated electrons spreading over micrometric distances. Monte-Carlo simulations (TREKIS code) form the basis for the description of excitations of the electronic subsystem and the lattice of olivine in an SHI track at times up to 100 fs after the projectile passage. Molecular dynamics supplies the initial conditions for modeling of lattice relaxation for longer times. These simulations enable us to estimate the effects of the chemical activation of olivine governed by both mechanisms. The developed model was applied to describe chemical activation and the etching kinetics of tracks of Au 2.1 GeV ions in olivine. The estimated lengthwise etching rate (38 µm · h-1) is in reasonable agreement with that detected in the experiments (24 µm · h-1).

  7. Modeling dynamics of biological and chemical components of aquatic ecosystems

    Lassiter, R.R.

    1975-05-01

    To provide capability to model aquatic ecosystems or their subsystems as needed for particular research goals, a modeling strategy was developed. Submodels of several processes common to aquatic ecosystems were developed or adapted from previously existing ones. Included are submodels for photosynthesis as a function of light and depth, biological growth rates as a function of temperature, dynamic chemical equilibrium, feeding and growth, and various types of losses to biological populations. These submodels may be used as modules in the construction of models of subsystems or ecosystems. A preliminary model for the nitrogen cycle subsystem was developed using the modeling strategy and applicable submodels. (U.S.)

  8. Multi-scale modeling for sustainable chemical production.

    Zhuang, Kai; Bakshi, Bhavik R; Herrgård, Markus J

    2013-09-01

    With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes associated with the development and implementation of a sustainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process, chemical industry, economy, and ecosystem. In addition, we propose a multi-scale approach for integrating the existing models into a cohesive framework. The major benefit of this proposed framework is that the design and decision-making at each scale can be informed, guided, and constrained by simulations and predictions at every other scale. In addition, the development of this multi-scale framework would promote cohesive collaborations across multiple traditionally disconnected modeling disciplines to achieve sustainable chemical production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fluorine in the solar neighborhood: Chemical evolution models

    Spitoni, E.; Matteucci, F.; Jönsson, H.; Ryde, N.; Romano, D.

    2018-04-01

    Context. In light of new observational data related to fluorine abundances in solar neighborhood stars, we present chemical evolution models testing various fluorine nucleosynthesis prescriptions with the aim to best fit those new data. Aim. We consider chemical evolution models in the solar neighborhood testing various nucleosynthesis prescriptions for fluorine production with the aim of reproducing the observed abundance ratios [F/O] versus [O/H] and [F/Fe] versus [Fe/H]. We study in detail the effects of various stellar yields on fluorine production. Methods: We adopted two chemical evolution models: the classical two-infall model, which follows the chemical evolution of halo-thick disk and thin disk phases; and the one-infall model, which is designed only for thin disk evolution. We tested the effects on the predicted fluorine abundance ratios of various nucleosynthesis yield sources, that is, asymptotic giant branch (AGB) stars, Wolf-Rayet (W-R) stars, Type II and Type Ia supernovae, and novae. Results: The fluorine production is dominated by AGB stars but the W-R stars are required to reproduce the trend of the observed data in the solar neighborhood with our chemical evolution models. In particular, the best model both for the two-infall and one-infall cases requires an increase by a factor of 2 of the W-R yields. We also show that the novae, even if their yields are still uncertain, could help to better reproduce the secondary behavior of F in the [F/O] versus [O/H] relation. Conclusions: The inclusion of the fluorine production by W-R stars seems to be essential to reproduce the new observed ratio [F/O] versus [O/H] in the solar neighborhood. Moreover, the inclusion of novae helps to reproduce the observed fluorine secondary behavior substantially.

  10. Minimizing Erosion and Agro-Pollutants Transport from Furrow Irrigated Fields to the Nearby Water Body Using Spatially-Explicit Agent Based Model and Decision Optimization Platform

    Ghoveisi, H.; Al Dughaishi, U.; Kiker, G.

    2017-12-01

    Maintaining water quality in agricultural watersheds is a worldwide challenge, especially where furrow irrigation is being practiced. The Yakima River Basin watershed in south central Washington State, (USA) is an example of these impacted areas with elevated load of sediments and other agricultural products due to runoff from furrow-irrigated fields. Within the Yakima basin, the Granger Drain watershed (area of 75 km2) is particularly challenged in this regard with more than 400 flood-irrigated individual parcels (area of 21 km2) growing a variety of crops from maize to grapes. Alternatives for improving water quality from furrow-irrigated parcels include vegetated filter strip (VFS) implementation, furrow water application efficiency, polyacrylamide (PAM) application and irrigation scheduling. These alternatives were simulated separately and in combinations to explore potential Best Management Practices (BMPs) for runoff-related-pollution reduction in a spatially explicit, agent based modeling system (QnD:GrangerDrain). Two regulatory scenarios were tested to BMP adoption within individual parcels. A blanket-style regulatory scenario simulated a total of 60 BMP combinations implemented in all 409 furrow-irrigated parcels. A second regulatory scenario simulated the BMPs in 119 furrow-irrigated parcels designated as "hotspots" based on a standard 12 Mg ha-1 seasonal sediment load. The simulated cumulative runoff and sediment loading from all BMP alternatives were ranked using Multiple Criteria Decision Analysis (MCDA), specifically the Stochastic Multi-Attribute Acceptability Analysis (SMAA) method. Several BMP combinations proved successful in reducing loads below a 25 NTU (91 mg L-1) regulatory sediment concentration. The QnD:GrangerDrain simulations and subsequent MCDA ranking revealed that the BMP combinations of 5 m-VFS and high furrow water efficiency were highly ranked alternatives for both the blanket and hotspot scenarios.

  11. Thermal-Chemical Model Of Subduction: Results And Tests

    Gorczyk, W.; Gerya, T. V.; Connolly, J. A.; Yuen, D. A.; Rudolph, M.

    2005-12-01

    Seismic structures with strong positive and negative velocity anomalies in the mantle wedge above subduction zones have been interpreted as thermally and/or chemically induced phenomena. We have developed a thermal-chemical model of subduction, which constrains the dynamics of seismic velocity structure beneath volcanic arcs. Our simulations have been calculated over a finite-difference grid with (201×101) to (201×401) regularly spaced Eulerian points, using 0.5 million to 10 billion markers. The model couples numerical thermo-mechanical solution with Gibbs energy minimization to investigate the dynamic behavior of partially molten upwellings from slabs (cold plumes) and structures associated with their development. The model demonstrates two chemically distinct types of plumes (mixed and unmixed), and various rigid body rotation phenomena in the wedge (subduction wheel, fore-arc spin, wedge pin-ball). These thermal-chemical features strongly perturb seismic structure. Their occurrence is dependent on the age of subducting slab and the rate of subduction.The model has been validated through a series of test cases and its results are consistent with a variety of geological and geophysical data. In contrast to models that attribute a purely thermal origin for mantle wedge seismic anomalies, the thermal-chemical model is able to simulate the strong variations of seismic velocity existing beneath volcanic arcs which are associated with development of cold plumes. In particular, molten regions that form beneath volcanic arcs as a consequence of vigorous cold wet plumes are manifest by > 20% variations in the local Poisson ratio, as compared to variations of ~ 2% expected as a consequence of temperature variation within the mantle wedge.

  12. Bayesian inference of chemical kinetic models from proposed reactions

    Galagali, Nikhil

    2015-02-01

    © 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model structure. Most existing applications of Bayesian model selection methods to chemical kinetics have been limited to comparisons among a small set of models, however. The significant computational cost of evaluating posterior model probabilities renders traditional Bayesian methods infeasible when the model space becomes large. We present a new framework for tractable Bayesian model inference and uncertainty quantification using a large number of systematically generated model hypotheses. The approach involves imposing point-mass mixture priors over rate constants and exploring the resulting posterior distribution using an adaptive Markov chain Monte Carlo method. The posterior samples are used to identify plausible models, to quantify rate constant uncertainties, and to extract key diagnostic information about model structure-such as the reactions and operating pathways most strongly supported by the data. We provide numerical demonstrations of the proposed framework by inferring kinetic models for catalytic steam and dry reforming of methane using available experimental data.

  13. Part 6: Modelling of simultaneous chemical-biological P removal ...

    drinie

    approaches taken in modelling the chemical P removal processes. In the literature .... to 2 mgP/l) for an iron dose of ~1 to 10 mg/l as Fe - refer to dashed line in Fig. 1). ...... systems exhibiting biological enhanced phosphate removal. Part 3:.

  14. QSAR modeling and chemical space analysis of antimalarial compounds

    Sidorov, Pavel; Viira, Birgit; Davioud-Charvet, Elisabeth; Maran, Uko; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2017-05-01

    Generative topographic mapping (GTM) has been used to visualize and analyze the chemical space of antimalarial compounds as well as to build predictive models linking structure of molecules with their antimalarial activity. For this, a database, including 3000 molecules tested in one or several of 17 anti- Plasmodium activity assessment protocols, has been compiled by assembling experimental data from in-house and ChEMBL databases. GTM classification models built on subsets corresponding to individual bioassays perform similarly to the earlier reported SVM models. Zones preferentially populated by active and inactive molecules, respectively, clearly emerge in the class landscapes supported by the GTM model. Their analysis resulted in identification of privileged structural motifs of potential antimalarial compounds. Projection of marketed antimalarial drugs on this map allowed us to delineate several areas in the chemical space corresponding to different mechanisms of antimalarial activity. This helped us to make a suggestion about the mode of action of the molecules populating these zones.

  15. Automated Physico-Chemical Cell Model Development through Information Theory

    Peter J. Ortoleva

    2005-11-29

    The objective of this project was to develop predictive models of the chemical responses of microbial cells to variations in their surroundings. The application of these models is optimization of environmental remediation and energy-producing biotechnical processes.The principles on which our project is based are as follows: chemical thermodynamics and kinetics; automation of calibration through information theory; integration of multiplex data (e.g. cDNA microarrays, NMR, proteomics), cell modeling, and bifurcation theory to overcome cellular complexity; and the use of multiplex data and information theory to calibrate and run an incomplete model. In this report we review four papers summarizing key findings and a web-enabled, multiple module workflow we have implemented that consists of a set of interoperable systems biology computational modules.

  16. Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement

    Leng, W.; Zhong, S.

    2008-12-01

    In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].

  17. Evaluation of Artificial Intelligence Based Models for Chemical Biodegradability Prediction

    Aleksandar Sabljic

    2004-12-01

    Full Text Available This study presents a review of biodegradability modeling efforts including a detailed assessment of two models developed using an artificial intelligence based methodology. Validation results for these models using an independent, quality reviewed database, demonstrate that the models perform well when compared to another commonly used biodegradability model, against the same data. The ability of models induced by an artificial intelligence methodology to accommodate complex interactions in detailed systems, and the demonstrated reliability of the approach evaluated by this study, indicate that the methodology may have application in broadening the scope of biodegradability models. Given adequate data for biodegradability of chemicals under environmental conditions, this may allow for the development of future models that include such things as surface interface impacts on biodegradability for example.

  18. The Role of Explicit and Implicit Self-Esteem in Peer Modeling of Palatable Food Intake: A Study on Social Media Interaction among Youngsters

    Bevelander, K.E.; Anschutz, D.J.; Creemers, D.H.M.; Kleinjan, M.; Engels, R.C.M.E.

    2013-01-01

    Objective: This experimental study investigated the impact of peers on palatable food intake of youngsters within a social media setting. To determine whether this effect was moderated by self-esteem, the present study examined the roles of global explicit self-esteem (ESE), body esteem (BE) and

  19. Hydration of Portoguese cements, measurement and modelling of chemical shrinkage

    Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.

    2008-01-01

    form of the dispersion model. The development of hydration varied between the investigated cements; based on the measured data the degree of hydration after 24 h hydration at 20 C varied between 40 and 50%. This should be taken into account when comparing properties of concrete made from the different......Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...

  20. Analysis of a Stochastic Chemical System Close to a SNIPER Bifurcation of Its Mean-Field Model

    Erban, Radek

    2009-01-01

    A framework for the analysis of stochastic models of chemical systems for which the deterministic mean-field description is undergoing a saddle-node infinite period (SNIPER) bifurcation is presented. Such a bifurcation occurs, for example, in the modeling of cell-cycle regulation. It is shown that the stochastic system possesses oscillatory solutions even for parameter values for which the mean-field model does not oscillate. The dependence of the mean period of these oscillations on the parameters of the model (kinetic rate constants) and the size of the system (number of molecules present) are studied. Our approach is based on the chemical Fokker-Planck equation. To gain some insight into the advantages and disadvantages of the method, a simple one-dimensional chemical switch is first analyzed, and then the chemical SNIPER problem is studied in detail. First, results obtained by solving the Fokker-Planck equation numerically are presented. Then an asymptotic analysis of the Fokker-Planck equation is used to derive explicit formulae for the period of oscillation as a function of the rate constants and as a function of the system size. © 2009 Society for Industrial and Applied Mathematics.

  1. CDPOP: A spatially explicit cost distance population genetics program

    Erin L. Landguth; S. A. Cushman

    2010-01-01

    Spatially explicit simulation of gene flow in complex landscapes is essential to explain observed population responses and provide a foundation for landscape genetics. To address this need, we wrote a spatially explicit, individual-based population genetics model (CDPOP). The model implements individual-based population modelling with Mendelian inheritance and k-allele...

  2. Chemical transport in a fissured rock: verification of a numerical model

    Rasmuson, A.; Narasimham, T.N.; Neretnieks.

    1982-01-01

    Due to the very long-term, high toxicity of some nuclear waste products, models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. A numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions, with or without decay and source term has been verified. The method is based on an integrated finite difference approach. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bonding any volume element in the region (that is, numerical Peclet number -3 % or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. A sensitivity analysis based on the errors in prediction introduced due to uncertainties in input parameters are likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. Work in this direction is in progress

  3. Modeling warfare in social animals: a "chemical" approach.

    Santarlasci, Alisa; Martelloni, Gianluca; Frizzi, Filippo; Santini, Giacomo; Bagnoli, Franco

    2014-01-01

    We present here a general method for modelling the dynamics of battles among social animals. The proposed method exploits the procedures widely used to model chemical reactions, but still uncommon in behavioural studies. We applied this methodology to the interpretation of experimental observations of battles between two species of ants (Lasius neglectus and Lasius paralienus), but this scheme may have a wider applicability and can be extended to other species as well. We performed two types of experiment labelled as interaction and mortality. The interaction experiments are designed to obtain information on the combat dynamics and lasted one hour. The mortality ones provide information on the casualty rates of the two species and lasted five hours. We modelled the interactions among ants using a chemical model which considers the single ant individuals and fighting groups analogously to atoms and molecules. The mean-field behaviour of the model is described by a set of non-linear differential equations. We also performed stochastic simulations of the corresponding agent-based model by means of the Gillespie event-driven integration scheme. By fitting the stochastic trajectories with the deterministic model, we obtained the probability distribution of the reaction parameters. The main result that we obtained is a dominance phase diagram, that gives the average trajectory of a generic battle, for an arbitrary number of opponents. This phase diagram was validated with some extra experiments. With respect to other war models (e.g., Lanchester's ones), our chemical model considers all phases of the battle and not only casualties. This allows a more detailed description of the battle (with a larger number of parameters), allowing the development of more sophisticated models (e.g., spatial ones), with the goal of distinguishing collective effects from the strategic ones.

  4. Modeling Warfare in Social Animals: A "Chemical" Approach

    Santarlasci, Alisa; Martelloni, Gianluca; Frizzi, Filippo; Santini, Giacomo; Bagnoli, Franco

    2014-01-01

    We present here a general method for modelling the dynamics of battles among social animals. The proposed method exploits the procedures widely used to model chemical reactions, but still uncommon in behavioural studies. We applied this methodology to the interpretation of experimental observations of battles between two species of ants (Lasius neglectus and Lasius paralienus), but this scheme may have a wider applicability and can be extended to other species as well. We performed two types of experiment labelled as interaction and mortality. The interaction experiments are designed to obtain information on the combat dynamics and lasted one hour. The mortality ones provide information on the casualty rates of the two species and lasted five hours. We modelled the interactions among ants using a chemical model which considers the single ant individuals and fighting groups analogously to atoms and molecules. The mean-field behaviour of the model is described by a set of non-linear differential equations. We also performed stochastic simulations of the corresponding agent-based model by means of the Gillespie event-driven integration scheme. By fitting the stochastic trajectories with the deterministic model, we obtained the probability distribution of the reaction parameters. The main result that we obtained is a dominance phase diagram, that gives the average trajectory of a generic battle, for an arbitrary number of opponents. This phase diagram was validated with some extra experiments. With respect to other war models (e.g., Lanchester's ones), our chemical model considers all phases of the battle and not only casualties. This allows a more detailed description of the battle (with a larger number of parameters), allowing the development of more sophisticated models (e.g., spatial ones), with the goal of distinguishing collective effects from the strategic ones. PMID:25369269

  5. Modeling warfare in social animals: a "chemical" approach.

    Alisa Santarlasci

    Full Text Available We present here a general method for modelling the dynamics of battles among social animals. The proposed method exploits the procedures widely used to model chemical reactions, but still uncommon in behavioural studies. We applied this methodology to the interpretation of experimental observations of battles between two species of ants (Lasius neglectus and Lasius paralienus, but this scheme may have a wider applicability and can be extended to other species as well. We performed two types of experiment labelled as interaction and mortality. The interaction experiments are designed to obtain information on the combat dynamics and lasted one hour. The mortality ones provide information on the casualty rates of the two species and lasted five hours. We modelled the interactions among ants using a chemical model which considers the single ant individuals and fighting groups analogously to atoms and molecules. The mean-field behaviour of the model is described by a set of non-linear differential equations. We also performed stochastic simulations of the corresponding agent-based model by means of the Gillespie event-driven integration scheme. By fitting the stochastic trajectories with the deterministic model, we obtained the probability distribution of the reaction parameters. The main result that we obtained is a dominance phase diagram, that gives the average trajectory of a generic battle, for an arbitrary number of opponents. This phase diagram was validated with some extra experiments. With respect to other war models (e.g., Lanchester's ones, our chemical model considers all phases of the battle and not only casualties. This allows a more detailed description of the battle (with a larger number of parameters, allowing the development of more sophisticated models (e.g., spatial ones, with the goal of distinguishing collective effects from the strategic ones.

  6. Implicit, explicit and speculative knowledge

    van Ditmarsch, H.; French, T.; Velázquez-Quesada, F.R.; Wáng, Y.N.

    We compare different epistemic notions in the presence of awareness of propositional variables: the logic of implicit knowledge (in which explicit knowledge is definable), the logic of explicit knowledge, and the logic of speculative knowledge. Speculative knowledge is a novel epistemic notion that

  7. The chemical bond in inorganic chemistry the bond valence model

    Brown, I David

    2016-01-01

    The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.

  8. Modeling Electric Double-Layers Including Chemical Reaction Effects

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...... for symmetric and asymmetric multi-species electrolytes and is not limited to a range of surface potentials. Numerical simulations are presented, for the case of a CaCO3 electrolyte solution in contact with a surface with rate-controlled protonation/deprotonation reactions. The surface charge and potential...... are determined by the surface reactions, and therefore they depends on the bulk solution composition and concentration...

  9. Abundance gradients in disc galaxies and chemical evolution models

    Diaz, A.I.

    1989-01-01

    The present state of abundance gradients and chemical evolution models of spiral galaxies is reviewed. An up to date compilation of abundance data in the literature concerning HII regions over galactic discs is presented. From these data Oxygen and Nitrogen radial gradients are computed. The slope of the Oxygen gradient is shown to have a break at a radius between 1.5 and 1.75 times the value of the effective radius of the disc, i.e. the radius containing half of the light of the disc. The gradient is steeper in the central parts of the disc and becomes flatter in the outer parts. N/O gradients are shown to be rather different from galaxy to galaxy and only a weak trend of N/O with O/H is found. The existing chemical evolution models for spiral galaxies are reviewed with special emphasis in the interpretation of numerical models having a large number of parameters. (author)

  10. Implicit coupling of turbulent diffusion with chemical reaction mechanisms for prognostic atmospheric dispersion models

    Berlowitz, D.R.

    1996-11-01

    In the last few decades the negative impact by humans on the thin atmospheric layer enveloping the earth, the basis for life on this planet, has increased steadily. In order to halt, or at least slow down this development, the knowledge and study of these anthropogenic influence has to be increased and possible remedies have to be suggested. An important tool for these studies are computer models. With their help the atmospheric system can be approximated and the various processes, which have led to the current situation can be quantified. They also serve as an instrument to assess short or medium term strategies to reduce this human impact. However, to assure efficiency as well as accuracy, a careful analysis of the numerous processes involved in the dispersion of pollutants in the atmosphere is called for. This should help to concentrate on the essentials and also prevent excessive usage of sometimes scarce computing resources. The basis of the presented work is the EUMAC Zooming Model (ETM), and particularly the component calculating the dispersion of pollutants in the atmosphere, the model MARS. The model has two main parts: an explicit solver, where the advection and the horizontal diffusion of pollutants are calculated, and an implicit solution mechanism, allowing the joint computation of the change of concentration due to chemical reactions, coupled with the respective influence of the vertical diffusion of the species. The aim of this thesis is to determine particularly the influence of the horizontal components of the turbulent diffusion on the existing implicit solver of the model. Suggestions for a more comprehensive inclusion of the full three dimensional diffusion operator in the implicit solver are made. This is achieved by an appropriate operator splitting. A selection of numerical approaches to tighten the coupling of the diffusion processes with the calculation of the applied chemical reaction mechanisms are examined. (author) figs., tabs., refs.

  11. Implicit and explicit ethnocentrism: revisiting the ideologies of prejudice.

    Cunningham, William A; Nezlek, John B; Banaji, Mahzarin R

    2004-10-01

    Two studies investigated relationships among individual differences in implicit and explicit prejudice, right-wing ideology, and rigidity in thinking. The first study examined these relationships focusing on White Americans' prejudice toward Black Americans. The second study provided the first test of implicit ethnocentrism and its relationship to explicit ethnocentrism by studying the relationship between attitudes toward five social groups. Factor analyses found support for both implicit and explicit ethnocentrism. In both studies, mean explicit attitudes toward out groups were positive, whereas implicit attitudes were negative, suggesting that implicit and explicit prejudices are distinct; however, in both studies, implicit and explicit attitudes were related (r = .37, .47). Latent variable modeling indicates a simple structure within this ethnocentric system, with variables organized in order of specificity. These results lead to the conclusion that (a) implicit ethnocentrism exists and (b) it is related to and distinct from explicit ethnocentrism.

  12. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 3; Material Model Development and Simulation of Experiments

    Simmons, J.; Erlich, D.; Shockey, D.

    2009-01-01

    A team consisting of Arizona State University, Honeywell Engines, Systems & Services, the National Aeronautics and Space Administration Glenn Research Center, and SRI International collaborated to develop computational models and verification testing for designing and evaluating turbine engine fan blade fabric containment structures. This research was conducted under the Federal Aviation Administration Airworthiness Assurance Center of Excellence and was sponsored by the Aircraft Catastrophic Failure Prevention Program. The research was directed toward improving the modeling of a turbine engine fabric containment structure for an engine blade-out containment demonstration test required for certification of aircraft engines. The research conducted in Phase II began a new level of capability to design and develop fan blade containment systems for turbine engines. Significant progress was made in three areas: (1) further development of the ballistic fabric model to increase confidence and robustness in the material models for the Kevlar(TradeName) and Zylon(TradeName) material models developed in Phase I, (2) the capability was improved for finite element modeling of multiple layers of fabric using multiple layers of shell elements, and (3) large-scale simulations were performed. This report concentrates on the material model development and simulations of the impact tests.

  13. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris population in central India

    Mriganka Shekhar Sarkar

    2017-11-01

    Full Text Available Background Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals’ ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger (Panthera tigris, which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. Methods We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly’s selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D2 method and the Boyce index. Results There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory

  14. Non-equilibrium reaction and relaxation dynamics in a strongly interacting explicit solvent: F + CD{sub 3}CN treated with a parallel multi-state EVB model

    Glowacki, David R., E-mail: drglowacki@gmail.com [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Department of Computer Science, University of Bristol, Bristol BS8 1UB (United Kingdom); PULSE Institute and Department of Chemistry, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Orr-Ewing, Andrew J. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Harvey, Jeremy N. [Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee (Belgium)

    2015-07-28

    We describe a parallelized linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM and TINKER. Forces are obtained using the Hellmann-Feynman relationship, giving continuous gradients, and good energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to explicitly correlated coupled cluster theory, we built a 64-state MS-EVB model designed to study the F + CD{sub 3}CN → DF + CD{sub 2}CN reaction in CD{sub 3}CN solvent (recently reported in Dunning et al. [Science 347(6221), 530 (2015)]). This approach allows us to build a reactive potential energy surface whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We ran molecular dynamics simulations to examine a range of observables which follow in the wake of the reactive event: energy deposition in the nascent reaction products, vibrational relaxation rates of excited DF in CD{sub 3}CN solvent, equilibrium power spectra of DF in CD{sub 3}CN, and time dependent spectral shifts associated with relaxation of the nascent DF. Many of our results are in good agreement with time-resolved experimental observations, providing evidence for the accuracy of our MS-EVB framework in treating both the solute and solute/solvent interactions. The simulations provide additional insight into the dynamics at sub-picosecond time scales that are difficult to resolve experimentally. In particular, the simulations show that (immediately following deuterium abstraction) the nascent DF finds itself in a non-equilibrium regime in two different respects: (1) it is highly vibrationally excited, with ∼23 kcal mol{sup −1} localized in the stretch and (2) its post-reaction solvation environment, in which it is not yet hydrogen-bonded to CD{sub 3}CN solvent molecules, is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational

  15. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris) population in central India.

    Sarkar, Mriganka Shekhar; Krishnamurthy, Ramesh; Johnson, Jeyaraj A; Sen, Subharanjan; Saha, Goutam Kumar

    2017-01-01

    Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals' ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger ( Panthera tigris ), which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly's selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D 2 method and the Boyce index. There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory and settled periods. Based on threshold limits

  16. Non-equilibrium reaction and relaxation dynamics in a strongly interacting explicit solvent: F + CD3CN treated with a parallel multi-state EVB model.

    Glowacki, David R; Orr-Ewing, Andrew J; Harvey, Jeremy N

    2015-07-28

    We describe a parallelized linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM and TINKER. Forces are obtained using the Hellmann-Feynman relationship, giving continuous gradients, and good energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to explicitly correlated coupled cluster theory, we built a 64-state MS-EVB model designed to study the F + CD3CN → DF + CD2CN reaction in CD3CN solvent (recently reported in Dunning et al. [Science 347(6221), 530 (2015)]). This approach allows us to build a reactive potential energy surface whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We ran molecular dynamics simulations to examine a range of observables which follow in the wake of the reactive event: energy deposition in the nascent reaction products, vibrational relaxation rates of excited DF in CD3CN solvent, equilibrium power spectra of DF in CD3CN, and time dependent spectral shifts associated with relaxation of the nascent DF. Many of our results are in good agreement with time-resolved experimental observations, providing evidence for the accuracy of our MS-EVB framework in treating both the solute and solute/solvent interactions. The simulations provide additional insight into the dynamics at sub-picosecond time scales that are difficult to resolve experimentally. In particular, the simulations show that (immediately following deuterium abstraction) the nascent DF finds itself in a non-equilibrium regime in two different respects: (1) it is highly vibrationally excited, with ∼23 kcal mol(-1) localized in the stretch and (2) its post-reaction solvation environment, in which it is not yet hydrogen-bonded to CD3CN solvent molecules, is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational relaxation of the nascent DF results in a spectral

  17. Integrated modelling of physical, chemical and biological weather

    Kurganskiy, Alexander

    . This is an online-coupled meteorology-chemistry model where chemical constituents and different types of aerosols are an integrated part of the dynamical model, i.e., these constituents are transported in the same way as, e.g., water vapor and cloud water, and, at the same time, the aerosols can interactively...... impact radiation and cloud micro-physics. The birch pollen modelling study has been performed for domains covering Europe and western Russia. Verification of the simulated birch pollen concentrations against in-situ observations showed good agreement obtaining the best score for two Danish sites...

  18. Explicit Instruction Elements in Core Reading Programs

    Child, Angela R.

    2012-01-01

    Classroom teachers are provided instructional recommendations for teaching reading from their adopted core reading programs (CRPs). Explicit instruction elements or what is also called instructional moves, including direct explanation, modeling, guided practice, independent practice, discussion, feedback, and monitoring, were examined within CRP…

  19. Multi-scale modeling for sustainable chemical production

    Zhuang, Kai; Bakshi, Bhavik R.; Herrgard, Markus

    2013-01-01

    associated with the development and implementation of a su stainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow......With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes...... models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process...

  20. Towards consensus in chemical characterization modeling for LCA:

    Rosenbaum, Ralf; Hauschild, Michael Zwicky; Bachmann, Till

    2006-01-01

    representing a wide range of substance property combinations. All compared models showed correlation for human health endpoints for generic organics, with high variations on individual chemicals, typically with high Kow. For the other organics and inorganics, less agreement was observed. Influential processes...... and assumptions were identified and agreed upon to implement in all models for harmonization. These were, e.g., an urban box nested in a continental box with fixed surfaces and populations, consistent biotransfer and –concentration factors from experiments or one source/model, vegetation as an exposure pathway......A comprehensive LCIA characterization model comparison is being undertaken in the UNEP/SETAC Life Cycle Initiative, focusing on toxicity impacts and directly involving the developers of all models included. The main objective is to identify where differences come from, what indispensable model...

  1. A model for chemically-induced mechanical loading on MEMS

    Amiot, Fabien

    2007-01-01

    The development of full displacement field measurements as an alternative to the optical lever technique to measure the mechanical response for microelectro-mechanical systems components in their environment calls for a modeling of chemically-induced mechanical fields (stress, strain, and displac......The development of full displacement field measurements as an alternative to the optical lever technique to measure the mechanical response for microelectro-mechanical systems components in their environment calls for a modeling of chemically-induced mechanical fields (stress, strain...... of the system free energy and its dependence on the surface amount. It is solved in the cantilever case thanks to an asymptotic analysis, and an approached closed-form solution is obtained for the interfacial stress field. Finally, some conclusions regarding the transducer efficiency of cantilevers are drawn...

  2. Modelling of the chemical state in groundwater infiltration systems

    Zysset, A.

    1993-01-01

    Groundwater is replenished by water stemming either from precipitations, lakes or rivers. The area where such an infiltration occurs is characterized by a change in the environmental conditions, such as a decrease of the flow velocity and an increase in the solid surface marking the boundary of the flow field. With these changes new chemical processes may become relevant to the transport behavior of contaminants. Since the rates of chemical processes usually are a function of the concentrations of several species, an understanding of infiltration sites may require a multicomponent approach. The present study aims at formulating a mathematical model together with its numerical solution for groundwater infiltration sites. Such a model should improve the understanding of groundwater quality changes related to infiltrating contaminants. The groundwater quality is of vital interest to men because at many places most of the drinking water originates from groundwater. In the first part of the present study two partial models are formulated: one accounting for the transport in a one-dimensional, homogeneous and saturated porous medium, the other accounting for chemical reactions. This second model is initially stated for general kinetic systems. Then, it is specified for two systems, namely for a system governed only by reactions which are fast compared to the transport processes and for a system with biologically mediated redox reactions of dissolved substrates. In the second part of the study a numerical solution to the model is developed. For this purpose, the two partial models are coupled. The coupling is either iterative as in the case of a system with fast reactions or sequential as in all other cases. The numerical solutions of simple test cases are compared to analytical solutions. In the third part the model is evaluated using observations of infiltration sites reported in the literature. (author) figs., tabs., 155 refs

  3. Computer-Aided Construction of Chemical Kinetic Models

    Green, William H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-12-31

    The combustion chemistry of even simple fuels can be extremely complex, involving hundreds or thousands of kinetically significant species. The most reasonable way to deal with this complexity is to use a computer not only to numerically solve the kinetic model, but also to construct the kinetic model in the first place. Because these large models contain so many numerical parameters (e.g. rate coefficients, thermochemistry) one never has sufficient data to uniquely determine them all experimentally. Instead one must work in “predictive” mode, using theoretical rather than experimental values for many of the numbers in the model, and as appropriate refining the most sensitive numbers through experiments. Predictive chemical kinetics is exactly what is needed for computer-aided design of combustion systems based on proposed alternative fuels, particularly for early assessment of the value and viability of proposed new fuels before those fuels are commercially available. This project was aimed at making accurate predictive chemical kinetics practical; this is a challenging goal which requires a range of science advances. The project spanned a wide range from quantum chemical calculations on individual molecules and elementary-step reactions, through the development of improved rate/thermo calculation procedures, the creation of algorithms and software for constructing and solving kinetic simulations, the invention of methods for model-reduction while maintaining error control, and finally comparisons with experiment. Many of the parameters in the models were derived from quantum chemistry calculations, and the models were compared with experimental data measured in our lab or in collaboration with others.

  4. Diabatic models with transferrable parameters for generalized chemical reactions

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2017-01-01

    Diabatic models applied to adiabatic electron-transfer theory yield many equations involving just a few parameters that connect ground-state geometries and vibration frequencies to excited-state transition energies and vibration frequencies to the rate constants for electron-transfer reactions, utilizing properties of the conical-intersection seam linking the ground and excited states through the Pseudo Jahn-Teller effect. We review how such simplicity in basic understanding can also be obtained for general chemical reactions. The key feature that must be recognized is that electron-transfer (or hole transfer) processes typically involve one electron (hole) moving between two orbitals, whereas general reactions typically involve two electrons or even four electrons for processes in aromatic molecules. Each additional moving electron leads to new high-energy but interrelated conical-intersection seams that distort the shape of the critical lowest-energy seam. Recognizing this feature shows how conical-intersection descriptors can be transferred between systems, and how general chemical reactions can be compared using the same set of simple parameters. Mathematical relationships are presented depicting how different conical-intersection seams relate to each other, showing that complex problems can be reduced into an effective interaction between the ground-state and a critical excited state to provide the first semi-quantitative implementation of Shaik’s “twin state” concept. Applications are made (i) demonstrating why the chemistry of the first-row elements is qualitatively so different to that of the second and later rows, (ii) deducing the bond-length alternation in hypothetical cyclohexatriene from the observed UV spectroscopy of benzene, (iii) demonstrating that commonly used procedures for modelling surface hopping based on inclusion of only the first-derivative correction to the Born-Oppenheimer approximation are valid in no region of the chemical

  5. Simplified Thermo-Chemical Modelling For Hypersonic Flow

    Sancho, Jorge; Alvarez, Paula; Gonzalez, Ezequiel; Rodriguez, Manuel

    2011-05-01

    Hypersonic flows are connected with high temperatures, generally associated with strong shock waves that appear in such flows. At high temperatures vibrational degrees of freedom of the molecules may become excited, the molecules may dissociate into atoms, the molecules or free atoms may ionize, and molecular or ionic species, unimportant at lower temperatures, may be formed. In order to take into account these effects, a chemical model is needed, but this model should be simplified in order to be handled by a CFD code, but with a sufficient precision to take into account the physics more important. This work is related to a chemical non-equilibrium model validation, implemented into a commercial CFD code, in order to obtain the flow field around bodies in hypersonic flow. The selected non-equilibrium model is composed of seven species and six direct reactions together with their inverse. The commercial CFD code where the non- equilibrium model has been implemented is FLUENT. For the validation, the X38/Sphynx Mach 20 case is rebuilt on a reduced geometry, including the 1/3 Lref forebody. This case has been run in laminar regime, non catalytic wall and with radiative equilibrium wall temperature. The validated non-equilibrium model is applied to the EXPERT (European Experimental Re-entry Test-bed) vehicle at a specified trajectory point (Mach number 14). This case has been run also in laminar regime, non catalytic wall and with radiative equilibrium wall temperature.

  6. Application of Physiologically Based Pharmacokinetic Models in Chemical Risk Assessment

    Moiz Mumtaz

    2012-01-01

    Full Text Available Post-exposure risk assessment of chemical and environmental stressors is a public health challenge. Linking exposure to health outcomes is a 4-step process: exposure assessment, hazard identification, dose response assessment, and risk characterization. This process is increasingly adopting “in silico” tools such as physiologically based pharmacokinetic (PBPK models to fine-tune exposure assessments and determine internal doses in target organs/tissues. Many excellent PBPK models have been developed. But most, because of their scientific sophistication, have found limited field application—health assessors rarely use them. Over the years, government agencies, stakeholders/partners, and the scientific community have attempted to use these models or their underlying principles in combination with other practical procedures. During the past two decades, through cooperative agreements and contracts at several research and higher education institutions, ATSDR funded translational research has encouraged the use of various types of models. Such collaborative efforts have led to the development and use of transparent and user-friendly models. The “human PBPK model toolkit” is one such project. While not necessarily state of the art, this toolkit is sufficiently accurate for screening purposes. Highlighted in this paper are some selected examples of environmental and occupational exposure assessments of chemicals and their mixtures.

  7. Studies on modelling of bubble driven flows in chemical reactors

    Grevskott, Sverre

    1997-12-31

    Multiphase reactors are widely used in the process industry, especially in the petrochemical industry. They very often are characterized by very good thermal control and high heat transfer coefficients against heating and cooling surfaces. This thesis first reviews recent advances in bubble column modelling, focusing on the fundamental flow equations, drag forces, transversal forces and added mass forces. The mathematical equations for the bubble column reactor are developed, using an Eulerian description for the continuous and dispersed phase in tensor notation. Conservation equations for mass, momentum, energy and chemical species are given, and the k-{epsilon} and Rice-Geary models for turbulence are described. The different algebraic solvers used in the model are described, as are relaxation procedures. Simulation results are presented and compared with experimental values. Attention is focused on the modelling of void fractions and gas velocities in the column. The energy conservation equation has been included in the bubble column model in order to model temperature distributions in a heated reactor. The conservation equation of chemical species has been included to simulate absorption of CO{sub 2}. Simulated axial and radial mass fraction profiles for CO{sub 2} in the gas phase are compared with measured values. Simulations of the dynamic behaviour of the column are also presented. 189 refs., 124 figs., 1 tab.

  8. Probabilistic consequence model of accidenal or intentional chemical releases.

    Chang, Y.-S.; Samsa, M. E.; Folga, S. M.; Hartmann, H. M.

    2008-06-02

    In this work, general methodologies for evaluating the impacts of large-scale toxic chemical releases are proposed. The potential numbers of injuries and fatalities, the numbers of hospital beds, and the geographical areas rendered unusable during and some time after the occurrence and passage of a toxic plume are estimated on a probabilistic basis. To arrive at these estimates, historical accidental release data, maximum stored volumes, and meteorological data were used as inputs into the SLAB accidental chemical release model. Toxic gas footprints from the model were overlaid onto detailed population and hospital distribution data for a given region to estimate potential impacts. Output results are in the form of a generic statistical distribution of injuries and fatalities associated with specific toxic chemicals and regions of the United States. In addition, indoor hazards were estimated, so the model can provide contingency plans for either shelter-in-place or evacuation when an accident occurs. The stochastic distributions of injuries and fatalities are being used in a U.S. Department of Homeland Security-sponsored decision support system as source terms for a Monte Carlo simulation that evaluates potential measures for mitigating terrorist threats. This information can also be used to support the formulation of evacuation plans and to estimate damage and cleanup costs.

  9. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis.

    Zhu, Hao; Tropsha, Alexander; Fourches, Denis; Varnek, Alexandre; Papa, Ester; Gramatica, Paola; Oberg, Tomas; Dao, Phuong; Cherkasov, Artem; Tetko, Igor V

    2008-04-01

    Selecting most rigorous quantitative structure-activity relationship (QSAR) approaches is of great importance in the development of robust and predictive models of chemical toxicity. To address this issue in a systematic way, we have formed an international virtual collaboratory consisting of six independent groups with shared interests in computational chemical toxicology. We have compiled an aqueous toxicity data set containing 983 unique compounds tested in the same laboratory over a decade against Tetrahymena pyriformis. A modeling set including 644 compounds was selected randomly from the original set and distributed to all groups that used their own QSAR tools for model development. The remaining 339 compounds in the original set (external set I) as well as 110 additional compounds (external set II) published recently by the same laboratory (after this computational study was already in progress) were used as two independent validation sets to assess the external predictive power of individual models. In total, our virtual collaboratory has developed 15 different types of QSAR models of aquatic toxicity for the training set. The internal prediction accuracy for the modeling set ranged from 0.76 to 0.93 as measured by the leave-one-out cross-validation correlation coefficient ( Q abs2). The prediction accuracy for the external validation sets I and II ranged from 0.71 to 0.85 (linear regression coefficient R absI2) and from 0.38 to 0.83 (linear regression coefficient R absII2), respectively. The use of an applicability domain threshold implemented in most models generally improved the external prediction accuracy but at the same time led to a decrease in chemical space coverage. Finally, several consensus models were developed by averaging the predicted aquatic toxicity for every compound using all 15 models, with or without taking into account their respective applicability domains. We find that consensus models afford higher prediction accuracy for the

  10. Advances in modeling of chemical vapor infiltration for tube fabrication

    Starr, T.L. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Technology

    1998-04-01

    The forced flow/thermal gradient chemical vapor infiltration process (FCVI) can be used for fabrication of tube-shaped components of ceramic matrix composites. Recent experimental work at Oak Ridge National Laboratory (ORNL) includes process and materials development studies using a small tube reactor. Use of FCVI for this geometry involves significant changes in fixturing as compared to disk-shaped preforms previously fabricated. The authors have used their computer model of the CVI process to simulate tube densification and to identify process modifications that will decrease processing time. This report presents recent model developments and applications.

  11. Chemical event chain model of coupled genetic oscillators.

    Jörg, David J; Morelli, Luis G; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  12. Chemical event chain model of coupled genetic oscillators

    Jörg, David J.; Morelli, Luis G.; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  13. Observed and modelledchemical weather” during ESCOMPTE

    Dufour, A.; Amodei, M.; Ancellet, G.; Peuch, V.-H.

    2005-03-01

    The new MOdèle de Chimie Atmosphérique à Grande Echelle (MOCAGE) three-dimensional multiscale chemistry and transport model (CTM) has been applied to study heavy pollution episodes observed during the ESCOMPTE experiment. The model considers the troposphere and lower stratosphere, and allows the possibility of zooming from the planetary scale down to the regional scale over limited area subdomains. Like this, it generates its own time-dependent chemical boundary conditions in the vertical and in the horizontal. This paper focuses on the evaluation and quantification of uncertainties related to chemical and transport modelling during two intensive observing periods, IOP2 and IOP4 (June 20-26 and July 10-14, 2001, respectively). Simulations are compared to the database of four-dimensional observations, which includes ground-based sites and aircraft measurements, radiosoundings, and quasi-continuous measurements of ozone by LIDARs. Thereby, the observed and modelled day-to-day variabilities in air composition both at the surface and in the vertical have been assessed. Then, three sensitivity studies are conducted concerning boundary conditions, accuracy of the emission dataset, and representation of chemistry. Firstly, to go further in the analysis of chemical boundary conditions, results from the standard grid nesting set-up and altered configurations, relying on climatologies, are compared. Along with other recent studies, this work advocates the systematic coupling of limited-area models with global CTMs, even for regional air quality studies or forecasts. Next, we evaluate the benefits of using the detailed high-resolution emissions inventory of ESCOMPTE: improvements are noticeable both on ozone reactivity and on the concentrations of various species of the ozone photochemical cycle especially primary ones. Finally, we provide some insights on the comparison of two simulations differing only by the parameterisation of chemistry and using two state

  14. "Tacit Knowledge" versus "Explicit Knowledge"

    Sanchez, Ron

    creators and carriers. By contrast, the explicit knowledge approach emphasizes processes for articulating knowledge held by individuals, the design of organizational approaches for creating new knowledge, and the development of systems (including information systems) to disseminate articulated knowledge...

  15. Simulating adsorption of U(VI) under transient groundwater flow and hydrochemistry: Physical versus chemical nonequilibrium model

    Greskowiak, J.; Hay, M.B.; Prommer, H.; Liu, C.; Post, V.E.A.; Ma, R.; Davis, J.A.; Zheng, C.; Zachara, J.M.

    2011-01-01

    Coupled intragrain diffusional mass transfer and nonlinear surface complexation processes play an important role in the transport behavior of U(VI) in contaminated aquifers. Two alternative model approaches for simulating these coupled processes were analyzed and compared: (1) the physical nonequilibrium approach that explicitly accounts for aqueous speciation and instantaneous surface complexation reactions in the intragrain regions and approximates the diffusive mass exchange between the immobile intragrain pore water and the advective pore water as multirate first-order mass transfer and (2) the chemical nonequilibrium approach that approximates the diffusion-limited intragrain surface complexation reactions by a set of multiple first-order surface complexation reaction kinetics, thereby eliminating the explicit treatment of aqueous speciation in the intragrain pore water. A model comparison has been carried out for column and field scale scenarios, representing the highly transient hydrological and geochemical conditions in the U(VI)-contaminated aquifer at the Hanford 300A site, Washington, USA. It was found that the response of U(VI) mass transfer behavior to hydrogeochemically induced changes in U(VI) adsorption strength was more pronounced in the physical than in the chemical nonequilibrium model. The magnitude of the differences in model behavior depended particularly on the degree of disequilibrium between the advective and immobile phase U(VI) concentrations. While a clear difference in U(VI) transport behavior between the two models was noticeable for the column-scale scenarios, only minor differences were found for the Hanford 300A field scale scenarios, where the model-generated disequilibrium conditions were less pronounced as a result of frequent groundwater flow reversals. Copyright 2011 by the American Geophysical Union.

  16. Modelling Chemical Reasoning to Predict and Invent Reactions.

    Segler, Marwin H S; Waller, Mark P

    2017-05-02

    The ability to reason beyond established knowledge allows organic chemists to solve synthetic problems and invent novel transformations. Herein, we propose a model that mimics chemical reasoning, and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outperforms a rule-based expert system in the reaction prediction task for 180 000 randomly selected binary reactions. The data-driven model generalises even beyond known reaction types, and is thus capable of effectively (re-)discovering novel transformations (even including transition metal-catalysed reactions). Our model enables computers to infer hypotheses about reactivity and reactions by only considering the intrinsic local structure of the graph and because each single reaction prediction is typically achieved in a sub-second time frame, the model can be used as a high-throughput generator of reaction hypotheses for reaction discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. PHREEQC modelling of concrete/clay interactions in a 2D geometry with explicit effect of porosity evolution on transport properties due to mineralogical changes

    Claret, F.; Marty, N.C.M.; Tournassat, C.; Gaboreau, S.; Burnol, A.; Chiaberge, C.; Gaucher, E.C.; Munier, I.; Cochepin, B.; Michau, N.

    2010-01-01

    Document available in extended abstract form only. In the context of deep repository for radioactive waste, significant use of concrete will be made. This material constitutes a compromise between properties, technical uses and costs. Within the French concepts, concrete will be used to build access structures, drifts as well as waste disposal cells and waste packages for Intermediate Level Wastes (ILW). With this design, concrete will be at the interface with either/both the host rock, Callovo-Oxfordian argillites in our case, and/or the clay plug built with swelling clay such as bentonite. Due to the chemical disequilibrium between concrete and clay, chemical reactions can modify both chemical and physical properties of these materials (e.g. mineralogical composition, diffusion coefficient...). In order to assess the long term behaviour of concrete/clay interfaces and the evolution of their properties with time, predictive modelling have to be performed. The high chemical contrast (e.g. pH or pe at the interface) often leads to problems of numerical convergence. Our own experience showed that PHREEQC is very successful in handling such difficulties in 1D geometry. PHREEQC is also able to handle 2D geometries as presented hereafter thanks to the MIX option as well as feedback on porosity thanks to the MCD option (multi component diffusion). Indeed, 2D simulation of a drift sealing concept developed by Andra was attempted using PHREEQC with the MIX option which allows the use of different transport properties in the different cells. A basic program was developed to generate this complex 2D mesh and another one to treat the outputs under TECPLOT R . The mesh is composed of 3081 cells with a refinement of 3 cm at each interface. Such a simulation was already conducted under ALLIANCES geochemistry transport tools, but in our cases the mesh refinement and the chemistry of the system are extended and the feedback on porosity is now considered. Furthermore, the new multi

  18. Explicit Versus Implicit Income Insurance

    Thomas J. Kniesner; James P. Z‎iliak

    2001-01-01

    October 2001 (Revised from July 2001). Abstract: By supplementing income explicitly through payments or implicitly through taxes collected, income-based taxes and transfers make disposable income less variable. Because disposable income determines consumption, policies that smooth disposable income also create welfare improving consumption insurance. With data from the Panel Study of Income Dynamics we find that annual consumption variation is reduced by almost 20 percent due to explicit and ...

  19. Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows

    Magnussen, B F [The Norwegian Univ. of Science and Technology, Trondheim (Norway)

    1998-12-31

    The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.

  20. Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows

    Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)

    1997-12-31

    The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.

  1. Quantum Chemical Modeling of Enzymatic Reactions: The Case of Decarboxylation.

    Liao, Rong-Zhen; Yu, Jian-Guo; Himo, Fahmi

    2011-05-10

    We present a systematic study of the decarboxylation step of the enzyme aspartate decarboxylase with the purpose of assessing the quantum chemical cluster approach for modeling this important class of decarboxylase enzymes. Active site models ranging in size from 27 to 220 atoms are designed, and the barrier and reaction energy of this step are evaluated. To model the enzyme surrounding, homogeneous polarizable medium techniques are used with several dielectric constants. The main conclusion is that when the active site model reaches a certain size, the solvation effects from the surroundings saturate. Similar results have previously been obtained from systematic studies of other classes of enzymes, suggesting that they are of a quite general nature.

  2. Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers.

    Svelle, Stian; Tuma, Christian; Rozanska, Xavier; Kerber, Torsten; Sauer, Joachim

    2009-01-21

    The methylation of ethene, propene, and t-2-butene by methanol over the acidic microporous H-ZSM-5 catalyst has been investigated by a range of computational methods. Density functional theory (DFT) with periodic boundary conditions (PBE functional) fails to describe the experimentally determined decrease of apparent energy barriers with the alkene size due to inadequate description of dispersion forces. Adding a damped dispersion term expressed as a parametrized sum over atom pair C(6) contributions leads to uniformly underestimated barriers due to self-interaction errors. A hybrid MP2:DFT scheme is presented that combines MP2 energy calculations on a series of cluster models of increasing size with periodic DFT calculations, which allows extrapolation to the periodic MP2 limit. Additionally, errors caused by the use of finite basis sets, contributions of higher order correlation effects, zero-point vibrational energy, and thermal contributions to the enthalpy were evaluated and added to the "periodic" MP2 estimate. This multistep approach leads to enthalpy barriers at 623 K of 104, 77, and 48 kJ/mol for ethene, propene, and t-2-butene, respectively, which deviate from the experimentally measured values by 0, +13, and +8 kJ/mol. Hence, enthalpy barriers can be calculated with near chemical accuracy, which constitutes significant progress in the quantum chemical modeling of reactions in heterogeneous catalysis in general and microporous zeolites in particular.

  3. Incorporation of chemical kinetic models into process control

    Herget, C.J.; Frazer, J.W.

    1981-01-01

    An important consideration in chemical process control is to determine the precise rationing of reactant streams, particularly when a large time delay exists between the mixing of the reactants and the measurement of the product. In this paper, a method is described for incorporating chemical kinetic models into the control strategy in order to achieve optimum operating conditions. The system is first characterized by determining a reaction rate surface as a function of all input reactant concentrations over a feasible range. A nonlinear constrained optimization program is then used to determine the combination of reactants which produces the specified yield at minimum cost. This operating condition is then used to establish the nominal concentrations of the reactants. The actual operation is determined through a feedback control system employing a Smith predictor. The method is demonstrated on a laboratory bench scale enzyme reactor

  4. Cellular automaton model of mass transport with chemical reactions

    Karapiperis, T.; Blankleider, B.

    1993-10-01

    The transport and chemical reactions of solutes are modelled as a cellular automaton in which molecules of different species perform a random walk on a regular lattice and react according to a local probabilistic rule. The model describes advection and diffusion in a simple way, and as no restriction is placed on the number of particles at a lattice site, it is also able to describe a wide variety of chemical reactions. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. Simulations on one-and two-dimensional lattices show that the discrete model can be used to approximate the solutions of the continuum equations. We discuss discrepancies which arise from correlations between molecules and how these discrepancies disappear as the continuum limit is approached. Of particular interest are simulations displaying long-time behaviour which depends on long-wavelength statistical fluctuations not accounted for by the standard equations. The model is applied to the reactions a + b ↔ c and a + b → c with homogeneous and inhomogeneous initial conditions as well as to systems subject to autocatalytic reactions and displaying spontaneous formation of spatial concentration patterns. (author) 9 figs., 34 refs

  5. Eco-SpaCE: An object-oriented, spatially explicit model to assess the risk of multiple environmental stressors on terrestrial vertebrate populations

    Loos, Mark; Ragas, Ad M.J.; Plasmeijer, Rinus; Schipper, Aafke M.; Hendriks, A. Jan

    2010-01-01

    Wildlife organisms are exposed to a combination of chemical, biological and physical stressors. Information about the relative impact of each stressor can support management decisions, e.g., by the allocation of resources to counteract those stressors that cause most harm. The present paper introduces Eco-SpaCE; a novel receptor-oriented cumulative exposure model for wildlife species that includes relevant ecological processes such as spatial habitat variation, food web relations, predation, and life history. A case study is presented in which the predicted mortality due to cadmium contamination is compared with the predicted mortality due to flooding, starvation, and predation for three small mammal species (Wood mouse, Common vole, and European mole) and a predator (Little owl) living in a lowland floodplain along the river Rhine in The Netherlands. Results indicated that cadmium is the principal stressor for European mole and Little owl populations. Wood mouse and Common vole population densities were mainly influenced by flooding and food availability. Their estimated population sizes were consistent with numbers reported in literature. Predictions for cadmium accumulation and flooding stress were in agreement with field data. The large uncertainty around cadmium toxicity for wildlife leads to the conclusion that more species-specific ecotoxicological data is required for more realistic risk assessments. The predictions for starvation were subject to the limited quantitative information on biomass obtainable as food for vertebrates. It is concluded that the modelling approach employed in Eco-SpaCE, combining ecology with ecotoxicology, provides a viable option to explore the relative contribution of contamination to the overall stress in an ecosystem. This can help environmental managers to prioritize management options, and to reduce local risks.

  6. Chemical kinetic modeling of H{sub 2} applications

    Marinov, N.M.; Westbrook, C.K.; Cloutman, L.D. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-09-01

    Work being carried out at LLNL has concentrated on studies of the role of chemical kinetics in a variety of problems related to hydrogen combustion in practical combustion systems, with an emphasis on vehicle propulsion. Use of hydrogen offers significant advantages over fossil fuels, and computer modeling provides advantages when used in concert with experimental studies. Many numerical {open_quotes}experiments{close_quotes} can be carried out quickly and efficiently, reducing the cost and time of system development, and many new and speculative concepts can be screened to identify those with sufficient promise to pursue experimentally. This project uses chemical kinetic and fluid dynamic computational modeling to examine the combustion characteristics of systems burning hydrogen, either as the only fuel or mixed with natural gas. Oxidation kinetics are combined with pollutant formation kinetics, including formation of oxides of nitrogen but also including air toxics in natural gas combustion. We have refined many of the elementary kinetic reaction steps in the detailed reaction mechanism for hydrogen oxidation. To extend the model to pressures characteristic of internal combustion engines, it was necessary to apply theoretical pressure falloff formalisms for several key steps in the reaction mechanism. We have continued development of simplified reaction mechanisms for hydrogen oxidation, we have implemented those mechanisms into multidimensional computational fluid dynamics models, and we have used models of chemistry and fluid dynamics to address selected application problems. At the present time, we are using computed high pressure flame, and auto-ignition data to further refine the simplified kinetics models that are then to be used in multidimensional fluid mechanics models. Detailed kinetics studies have investigated hydrogen flames and ignition of hydrogen behind shock waves, intended to refine the detailed reactions mechanisms.

  7. Chemical equilibration of antihyperons

    Greiner, C.

    2002-01-01

    Rapid chemical equilibration of antihyperons by means of the interplay between strong annihilation on baryons and the corresponding backreactions of multi-mesonic (fusion-type) processes in the later, hadronic stage of an ultrarelativistic heavy ion collision will be discussed. Explicit rate calculations for a dynamical setup are presented. At maximum SPS energies yields of each antihyperon specie are obtained which are consistent with chemical saturated populations of T∼150-160 MeV. The proposed picture supports dynamically the popular chemical freeze-out parameters extracted within thermal models. (orig.)

  8. The TOMCAT global chemical transport model v1.6: description of chemical mechanism and model evaluation

    S. A. Monks

    2017-08-01

    Full Text Available This paper documents the tropospheric chemical mechanism scheme used in the TOMCAT 3-D chemical transport model. The current scheme includes a more detailed representation of hydrocarbon chemistry than previously included in the model, with the inclusion of the emission and oxidation of ethene, propene, butane, toluene and monoterpenes. The model is evaluated against a range of surface, balloon, aircraft and satellite measurements. The model is generally able to capture the main spatial and seasonal features of high and low concentrations of carbon monoxide (CO, ozone (O3, volatile organic compounds (VOCs and reactive nitrogen. However, model biases are found in some species, some of which are common to chemistry models and some that are specific to TOMCAT and warrant further investigation. The most notable of these biases are (1 a negative bias in Northern Hemisphere (NH winter and spring CO and a positive bias in Southern Hemisphere (SH CO throughout the year, (2 a positive bias in NH O3 in summer and a negative bias at high latitudes during SH winter and (3 a negative bias in NH winter C2 and C3 alkanes and alkenes. TOMCAT global mean tropospheric hydroxyl radical (OH concentrations are higher than estimates inferred from observations of methyl chloroform but similar to, or lower than, multi-model mean concentrations reported in recent model intercomparison studies. TOMCAT shows peak OH concentrations in the tropical lower troposphere, unlike other models which show peak concentrations in the tropical upper troposphere. This is likely to affect the lifetime and transport of important trace gases and warrants further investigation.

  9. Cellular automaton model of coupled mass transport and chemical reactions

    Karapiperis, T.

    1994-01-01

    Mass transport, coupled with chemical reactions, is modelled as a cellular automaton in which solute molecules perform a random walk on a lattice and react according to a local probabilistic rule. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. The model is applied to the reactions a + b ↔c and a + b →c, where we observe interesting macroscopic effects resulting from microscopic fluctuations and spatial correlations between molecules. We also simulate autocatalytic reaction schemes displaying spontaneous formation of spatial concentration patterns. Finally, we propose and discuss the limitations of a simple model for mineral-solute interaction. (author) 5 figs., 20 refs

  10. Modelling of structural effects on chemical reactions in turbulent flows

    Gammelsaeter, H.R.

    1997-12-31

    Turbulence-chemistry interactions are analysed using algebraic moment closure for the chemical reaction term. The coupling between turbulence and chemical length and time scales generate a complex interaction process. This interaction process is called structural effects in this work. The structural effects are shown to take place on all scales between the largest scale of turbulence and the scales of the molecular motions. The set of equations describing turbulent correlations involved in turbulent reacting flows are derived. Interactions are shown schematically using interaction charts. Algebraic equations for the turbulent correlations in the reaction rate are given using the interaction charts to include the most significant couplings. In the frame of fundamental combustion physics, the structural effects appearing on the small scales of turbulence are proposed modelled using a discrete spectrum of turbulent scales. The well-known problem of averaging the Arrhenius law, the specific reaction rate, is proposed solved using a presumed single variable probability density function and a sub scale model for the reaction volume. Although some uncertainties are expected, the principles are addressed. Fast chemistry modelling is shown to be consistent in the frame of algebraic moment closure when the turbulence-chemistry interaction is accounted for in the turbulent diffusion. The modelling proposed in this thesis is compared with experimental data for an laboratory methane flame and advanced probability density function modelling. The results show promising features. Finally it is shown a comparison with full scale measurements for an industrial burner. All features of the burner are captured with the model. 41 refs., 33 figs.

  11. To Model Chemical Reactivity in Heterogeneous Emulsions, Think Homogeneous Microemulsions.

    Bravo-Díaz, Carlos; Romsted, Laurence Stuart; Liu, Changyao; Losada-Barreiro, Sonia; Pastoriza-Gallego, Maria José; Gao, Xiang; Gu, Qing; Krishnan, Gunaseelan; Sánchez-Paz, Verónica; Zhang, Yongliang; Dar, Aijaz Ahmad

    2015-08-25

    Two important and unsolved problems in the food industry and also fundamental questions in colloid chemistry are how to measure molecular distributions, especially antioxidants (AOs), and how to model chemical reactivity, including AO efficiency in opaque emulsions. The key to understanding reactivity in organized surfactant media is that reaction mechanisms are consistent with a discrete structures-separate continuous regions duality. Aggregate structures in emulsions are determined by highly cooperative but weak organizing forces that allow reactants to diffuse at rates approaching their diffusion-controlled limit. Reactant distributions for slow thermal bimolecular reactions are in dynamic equilibrium, and their distributions are proportional to their relative solubilities in the oil, interfacial, and aqueous regions. Our chemical kinetic method is grounded in thermodynamics and combines a pseudophase model with methods for monitoring the reactions of AOs with a hydrophobic arenediazonium ion probe in opaque emulsions. We introduce (a) the logic and basic assumptions of the pseudophase model used to define the distributions of AOs among the oil, interfacial, and aqueous regions in microemulsions and emulsions and (b) the dye derivatization and linear sweep voltammetry methods for monitoring the rates of reaction in opaque emulsions. Our results show that this approach provides a unique, versatile, and robust method for obtaining quantitative estimates of AO partition coefficients or partition constants and distributions and interfacial rate constants in emulsions. The examples provided illustrate the effects of various emulsion properties on AO distributions such as oil hydrophobicity, emulsifier structure and HLB, temperature, droplet size, surfactant charge, and acidity on reactant distributions. Finally, we show that the chemical kinetic method provides a natural explanation for the cut-off effect, a maximum followed by a sharp reduction in AO efficiency with

  12. Fracture initiation associated with chemical degradation: observation and modeling

    Byoungho Choi; Zhenwen Zhou; Chudnovsky, Alexander [Illinois Univ., Dept. of Civil and Materials Engineering (M/C 246), Chicago, IL (United States); Stivala, Salvatore S. [Stevens Inst. of Technology, Dept. of Chemistry and Chemical Biology, Hoboken, NJ (United States); Sehanobish, Kalyan; Bosnyak, Clive P. [Dow Chemical Co., Freeport, TX (United States)

    2005-01-01

    The fracture initiation in engineering thermoplastics resulting from chemical degradation is usually observed in the form of a microcrack network within a surface layer of degraded polymer exposed to a combined action of mechanical stresses and chemically aggressive environment. Degradation of polymers is usually manifested in a reduction of molecular weight, increase of crystallinity in semi crystalline polymers, increase of material density, a subtle increase in yield strength, and a dramatic reduction in toughness. An increase in material density, i.e., shrinkage of the degraded layer is constrained by adjacent unchanged material results in a buildup of tensile stress within the degraded layer and compressive stress in the adjacent unchanged material due to increasing incompatibility between the two. These stresses are an addition to preexisting manufacturing and service stresses. At a certain level of degradation, a combination of toughness reduction and increase of tensile stress result in fracture initiation. A quantitative model of the described above processes is presented in these work. For specificity, the internally pressurized plastic pipes that transport a fluid containing a chemically aggressive (oxidizing) agent is used as the model of fracture initiation. Experimental observations of material density and toughness dependence on degradation reported elsewhere are employed in the model. An equation for determination of a critical level of degradation corresponding to the offset of fracture is constructed. The critical level of degradation for fracture initiation depends on the rates of toughness deterioration and build-up of the degradation related stresses as well as on the manufacturing and service stresses. A method for evaluation of the time interval prior to fracture initiation is also formulated. (Author)

  13. Assimilation of stratospheric ozone in the chemical transport model STRATAQ

    B. Grassi

    2004-09-01

    Full Text Available We describe a sequential assimilation approach useful for assimilating tracer measurements into a three-dimensional chemical transport model (CTM of the stratosphere. The numerical code, developed largely according to Kha00, uses parameterizations and simplifications allowing assimilation of sparse observations and the simultaneous evaluation of analysis errors, with reasonable computational requirements. Assimilation parameters are set by using χ2 and OmF (Observation minus Forecast statistics. The CTM used here is a high resolution three-dimensional model. It includes a detailed chemical package and is driven by UKMO (United Kingdom Meteorological Office analyses. We illustrate the method using assimilation of Upper Atmosphere Research Satellite/Microwave Limb Sounder (UARS/MLS ozone observations for three weeks during the 1996 antarctic spring. The comparison of results from the simulations with TOMS (Total Ozone Mapping Spectrometer measurements shows improved total ozone fields due to assimilation of MLS observations. Moreover, the assimilation gives indications on a possible model weakness in reproducing polar ozone values during springtime.

  14. Assimilation of stratospheric ozone in the chemical transport model STRATAQ

    B. Grassi

    2004-09-01

    Full Text Available We describe a sequential assimilation approach useful for assimilating tracer measurements into a three-dimensional chemical transport model (CTM of the stratosphere. The numerical code, developed largely according to Kha00, uses parameterizations and simplifications allowing assimilation of sparse observations and the simultaneous evaluation of analysis errors, with reasonable computational requirements. Assimilation parameters are set by using χ2 and OmF (Observation minus Forecast statistics. The CTM used here is a high resolution three-dimensional model. It includes a detailed chemical package and is driven by UKMO (United Kingdom Meteorological Office analyses. We illustrate the method using assimilation of Upper Atmosphere Research Satellite/Microwave Limb Sounder (UARS/MLS ozone observations for three weeks during the 1996 antarctic spring. The comparison of results from the simulations with TOMS (Total Ozone Mapping Spectrometer measurements shows improved total ozone fields due to assimilation of MLS observations. Moreover, the assimilation gives indications on a possible model weakness in reproducing polar ozone values during springtime.

  15. Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements

    Nandy, L.; Dutcher, C. S.

    2017-12-01

    Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.

  16. Chemical kinetics and combustion modelling with CFX 4

    Stopford, P [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)

    1998-12-31

    The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.

  17. The modelling of direct chemical kinetic effects in turbulent flames

    Lindstet, R.P. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering

    2000-06-01

    Combustion chemistry-related effects have traditionally been of secondary importance in the design of gas turbine combustors. However, the need to deal with issues such as flame stability, relight and pollutant emissions has served to bring chemical kinetics and the coupling of finite rate chemistry with turbulent flow fields to the centre of combustor design. Indeed, improved cycle efficiency and more stringent environmental legislation, as defined by the ICAO, are current key motivators in combustor design. Furthermore, lean premixed prevaporized (LPP) combustion systems, increasingly used for power generation, often operate close to the lean blow-off limit and are prone to extinction/reignition type phenomena. Thus, current key design issues require that direct chemical kinetic effects be accounted for accurately in any simulation procedure. The transported probability density function (PDF) approach uniquely offers the potential of facilitating the accurate modelling of such effects. The present paper thus assesses the ability of this technique to model kinetically controlled phenomena, such as carbon monoxide emissions and flame blow-off, through the application of a transported PDF method closed at the joint scalar level. The closure for the velocity field is at the second moment level, and a key feature of the present work is the use of comprehensive chemical kinetic mechanisms. The latter are derived from recent work by Lindstedt and co-workers that has resulted in a compact 141 reactions and 28 species mechanism for LNG combustion. The systematically reduced form used here features 14 independent C/H/O scalars, with the remaining species incorporated via steady state approximations. Computations have been performed for hydrogen/carbon dioxide and methane flames. The former (high Reynolds number) flames permit an assessment of the modelling of flame blow-off, and the methane flame has been selected to obtain an indication of the influence of differential

  18. Chemical kinetics and combustion modelling with CFX 4

    Stopford, P. [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)

    1997-12-31

    The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.

  19. CHEMICALS

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  20. Observations and Explicit Modeling of Summertime Carbonyl Formation in Beijing: Identification of Key Precursor Species and Their Impact on Atmospheric Oxidation Chemistry

    Yang, Xue; Xue, Likun; Wang, Tao; Wang, Xinfeng; Gao, Jian; Lee, Shuncheng; Blake, Donald R.; Chai, Fahe; Wang, Wenxing

    2018-01-01

    Carbonyls are an important group of volatile organic compounds (VOCs) that play critical roles in tropospheric chemistry. To better understand the formation mechanisms of carbonyl compounds, extensive measurements of carbonyls and related parameters were conducted in Beijing in summer 2008. Formaldehyde (11.17 ± 5.32 ppbv), acetone (6.98 ± 3.01 ppbv), and acetaldehyde (5.27 ± 2.24 ppbv) were the most abundant carbonyl species. Two dicarbonyls, glyoxal (0.68 ± 0.26 ppbv) and methylglyoxal (MGLY; 1.10 ± 0.44 ppbv), were also present in relatively high concentrations. An observation-based chemical box model was used to simulate the in situ production of formaldehyde, acetaldehyde, glyoxal, and MGLY and quantify their contributions to ozone formation and ROx budget. All four carbonyls showed similar formation mechanisms but exhibited different precursor distributions. Alkenes (mainly isoprene and ethene) were the dominant precursors of formaldehyde, while both alkenes (e.g., propene, i-butene, and cis-2-pentene) and alkanes (mainly i-pentane) were major precursors of acetaldehyde. For dicarbonyls, both isoprene and aromatic VOCs were the dominant parent hydrocarbons of glyoxal and MGLY. Photolysis of oxygenated VOCs was the dominant source of ROx radicals (approximately >80% for HO2 and approximately >70% for RO2) in Beijing. Ozone production occurred under a mixed-control regime with carbonyls being the key VOC species. Overall, this study provides some new insights into the formation mechanisms of carbonyls, especially their parent hydrocarbon species, and underlines the important role of carbonyls in radical chemistry and ozone pollution in Beijing. Reducing the emissions of alkenes and aromatics would be an effective way to mitigate photochemical pollution in Beijing.

  1. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Sudin eBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  2. Mass transport measurements and modeling for chemical vapor infiltration

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  3. Physical-chemical model of nanodiamond formation at explosion

    Chernyshev, A.P.; Lukyanchikov, L.A.; Lyakhov, N.Z.; Pruuel, E.R.; Sheromov, M.A.; Ten, K.A.; Titov, V.M.; Tolochko, B.P.; Zhogin, I.L.; Zubkov, P.I.

    2007-01-01

    This article presents a principally new physical-chemical model of nanodiamond formation at explosion, which describes adequately all the existing experimental data on detonation synthesis of diamonds. According to this model, the detonation wave (DW) performs activation rapidly; then the reaction mixture composition keeps varying. In the diagram C-H-O, this process results in continual motion of the point imaging the reaction mixture composition. The ratio of the diamond phase amount to the condensed carbon (CC) quantity in the explosion products is defined by the width of the section this point passes over in the diamond formation zone. Motion of the point in the area below the line H-CO results in decrease of the CC amount. Diamonds are formed by the free-radical mechanism in the unloading wave, beyond the Chapman-Jouguet plane, in a media close to a liquid state

  4. Physical-chemical model of nanodiamond formation at explosion

    Chernyshev, A.P. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Lukyanchikov, L.A. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Lyakhov, N.Z. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Pruuel, E.R. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Sheromov, M.A. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Ten, K.A. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Titov, V.M. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Tolochko, B.P. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation)]. E-mail: b.p.tolochko@inp.nsk.su; Zhogin, I.L. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Zubkov, P.I. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation)

    2007-05-21

    This article presents a principally new physical-chemical model of nanodiamond formation at explosion, which describes adequately all the existing experimental data on detonation synthesis of diamonds. According to this model, the detonation wave (DW) performs activation rapidly; then the reaction mixture composition keeps varying. In the diagram C-H-O, this process results in continual motion of the point imaging the reaction mixture composition. The ratio of the diamond phase amount to the condensed carbon (CC) quantity in the explosion products is defined by the width of the section this point passes over in the diamond formation zone. Motion of the point in the area below the line H-CO results in decrease of the CC amount. Diamonds are formed by the free-radical mechanism in the unloading wave, beyond the Chapman-Jouguet plane, in a media close to a liquid state.

  5. Chempy: A flexible chemical evolution model for abundance fitting. Do the Sun's abundances alone constrain chemical evolution models?

    Rybizki, Jan; Just, Andreas; Rix, Hans-Walter

    2017-09-01

    Elemental abundances of stars are the result of the complex enrichment history of their galaxy. Interpretation of observed abundances requires flexible modeling tools to explore and quantify the information about Galactic chemical evolution (GCE) stored in such data. Here we present Chempy, a newly developed code for GCE modeling, representing a parametrized open one-zone model within a Bayesian framework. A Chempy model is specified by a set of five to ten parameters that describe the effective galaxy evolution along with the stellar and star-formation physics: for example, the star-formation history (SFH), the feedback efficiency, the stellar initial mass function (IMF), and the incidence of supernova of type Ia (SN Ia). Unlike established approaches, Chempy can sample the posterior probability distribution in the full model parameter space and test data-model matches for different nucleosynthetic yield sets. It is essentially a chemical evolution fitting tool. We straightforwardly extend Chempy to a multi-zone scheme. As an illustrative application, we show that interesting parameter constraints result from only the ages and elemental abundances of the Sun, Arcturus, and the present-day interstellar medium (ISM). For the first time, we use such information to infer the IMF parameter via GCE modeling, where we properly marginalize over nuisance parameters and account for different yield sets. We find that 11.6+ 2.1-1.6% of the IMF explodes as core-collapse supernova (CC-SN), compatible with Salpeter (1955, ApJ, 121, 161). We also constrain the incidence of SN Ia per 103M⊙ to 0.5-1.4. At the same time, this Chempy application shows persistent discrepancies between predicted and observed abundances for some elements, irrespective of the chosen yield set. These cannot be remedied by any variations of Chempy's parameters and could be an indication of missing nucleosynthetic channels. Chempy could be a powerful tool to confront predictions from stellar

  6. Overview of chemical modeling of nuclear waste glass dissolution

    Bourcier, W.L.

    1991-02-01

    Glass dissolution takes place through metal leaching and hydration of the glass surface accompanied by development of alternation layers of varying crystallinity. The reaction which controls the long-term glass dissolution rate appears to be surface layer dissolution. This reaction is reversible because the buildup of dissolved species in solution slows the dissolution rate due to a decreased dissolution affinity. Glass dissolution rates are therefore highly dependent on silica concentrations in solution because silica is the major component of the alteration layer. Chemical modeling of glass dissolution using reaction path computer codes has successfully been applied to short term experimental tests and used to predict long-term repository performance. Current problems and limitations of the models include a poorly defined long-term glass dissolution mechanism, the use of model parameters determined from the same experiments that the model is used to predict, and the lack of sufficient validation of key assumptions in the modeling approach. Work is in progress that addresses these issues. 41 refs., 7 figs., 2 tabs

  7. Age effects on explicit and implicit memory

    Emma eWard

    2013-09-01

    Full Text Available It is well documented that explicit memory (e.g., recognition declines with age. In contrast, many argue that implicit memory (e.g., priming is preserved in healthy aging. For example, priming on tasks such as perceptual identification is often not statistically different in groups of young and older adults. Such observations are commonly taken as evidence for distinct explicit and implicit learning/memory systems. In this article we discuss several lines of evidence that challenge this view. We describe how patterns of differential age-related decline may arise from differences in the ways in which the two forms of memory are commonly measured, and review recent research suggesting that under improved measurement methods, implicit memory is not age-invariant. Formal computational models are of considerable utility in revealing the nature of underlying systems. We report the results of applying single and multiple-systems models to data on age effects in implicit and explicit memory. Model comparison clearly favours the single-system view. Implications for the memory systems debate are discussed.

  8. Age effects on explicit and implicit memory.

    Ward, Emma V; Berry, Christopher J; Shanks, David R

    2013-01-01

    It is well-documented that explicit memory (e.g., recognition) declines with age. In contrast, many argue that implicit memory (e.g., priming) is preserved in healthy aging. For example, priming on tasks such as perceptual identification is often not statistically different in groups of young and older adults. Such observations are commonly taken as evidence for distinct explicit and implicit learning/memory systems. In this article we discuss several lines of evidence that challenge this view. We describe how patterns of differential age-related decline may arise from differences in the ways in which the two forms of memory are commonly measured, and review recent research suggesting that under improved measurement methods, implicit memory is not age-invariant. Formal computational models are of considerable utility in revealing the nature of underlying systems. We report the results of applying single and multiple-systems models to data on age effects in implicit and explicit memory. Model comparison clearly favors the single-system view. Implications for the memory systems debate are discussed.

  9. Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna.

    Reenu; Vikas

    2015-09-01

    Various quantum-mechanically computed molecular and thermodynamic descriptors along with physico-chemical, electrostatic and topological descriptors are compared while developing quantitative structure-activity relationships (QSARs) for the acute toxicity of 252 diverse organic chemicals towards Daphnia magna. QSAR models based on the quantum-chemical descriptors, computed with routinely employed advanced semi-empirical and ab-initio methods, along with the electron-correlation contribution (CORR) of the descriptors, are analyzed for the external predictivity of the acute toxicity. The models with reliable internal stability and external predictivity are found to be based on the HOMO energy along with the physico-chemical, electrostatic and topological descriptors. Besides this, the total energy and electron-correlation energy are also observed as highly reliable descriptors, suggesting that the intra-molecular interactions between the electrons play an important role in the origin of the acute toxicity, which is in fact an unexplored phenomenon. The models based on quantum-chemical descriptors such as chemical hardness, absolute electronegativity, standard Gibbs free energy and enthalpy are also observed to be reliable. A comparison of the robust models based on the quantum-chemical descriptors computed with various quantum-mechanical methods suggests that the advanced semi-empirical methods such as PM7 can be more reliable than the ab-initio methods which are computationally more expensive. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Photo-chemical transport modelling of tropospheric ozone: A review

    Sharma, Sumit; Sharma, Prateek; Khare, Mukesh

    2017-06-01

    Ground level ozone (GLO), a secondary pollutant having adverse impact on human health, ecology, and agricultural productivity, apart from being a major contributor to global warming, has been a subject matter of several studies. In order to identify appropriate strategies to control GLO levels, accurate assessment and prediction is essential, for which elaborate simulation and modelling is required. Several studies have been undertaken in the past to simulate GLO levels at different scales and for various applications. It is important to evaluate these studies, widely spread over in literature. This paper aims to critically review various studies that have been undertaken, especially in the past 15 years (2000-15) to model GLO. The review has been done of the studies that range over different spatial scales - urban to regional and continental to global. It also includes a review of performance evaluation and sensitivity analysis of photo-chemical transport models in order to assess the extent of application of these models and their predictive capability. The review indicates following major findings: (a) models tend to over-estimate the night-time GLO concentrations due to limited titration of GLO with NO within the model; (b) dominance of contribution from far-off regional sources to average ozone concentration in the urban region and higher contribution of local sources during days of high ozone episodes; requiring strategies for controlling precursor emissions at both regional and local scales; (c) greater influence of NOx over VOC in export of ozone from urban regions due to shifting of urban plumes from VOC-sensitive regime to NOx-sensitive as they move out from city centres to neighbouring rural regions; (d) models with finer resolution inputs perform better to a certain extent, however, further improvement in resolutions (beyond 10 km) did not show improvement always; (e) future projections show an increase in GLO concentrations mainly due to rise in

  11. Investigation of a Monte Carlo model for chemical reactions

    Hamm, R.N.; Turner, J.E.; Stabin, M.G.

    1998-01-01

    Monte Carlo computer simulations are in use at a number of laboratories for calculating time-dependent yields, which can be compared with experiments in the radiolysis of water. We report here on calculations to investigate the validity and consistency of the procedures used for simulating chemical reactions in our code, RADLYS. Model calculations were performed of the rate constants themselves. The rates thus determined showed an expected rapid decline over the first few hundred ps and a very gradual decline thereafter out to the termination of the calculations at 4.5 ns. Results are reported for different initial concentrations and numbers of reactive species. Generally, the calculated rate constants are smallest when the initial concentrations of the reactants are largest. It is found that inhomogeneities that quickly develop in the initial random spatial distribution of reactants persist in time as a result of subsequent chemical reactions, and thus conditions may poorly approximate those assumed from diffusion theory. We also investigated the reaction of a single species of one type placed among a large number of randomly distributed species of another type with which it could react. The distribution of survival times of the single species was calculated by using three different combinations of the diffusion constants for the two species, as is sometimes discussed in diffusion theory. The three methods gave virtually identical results. (orig.)

  12. The chemical energy unit partial oxidation reactor operation simulation modeling

    Mrakin, A. N.; Selivanov, A. A.; Batrakov, P. A.; Sotnikov, D. G.

    2018-01-01

    The chemical energy unit scheme for synthesis gas, electric and heat energy production which is possible to be used both for the chemical industry on-site facilities and under field conditions is represented in the paper. The partial oxidation reactor gasification process mathematical model is described and reaction products composition and temperature determining algorithm flow diagram is shown. The developed software product verification showed good convergence of the experimental values and calculations according to the other programmes: the temperature determining relative discrepancy amounted from 4 to 5 %, while the absolute composition discrepancy ranged from 1 to 3%. The synthesis gas composition was found out practically not to depend on the supplied into the partial oxidation reactor (POR) water vapour enthalpy and compressor air pressure increase ratio. Moreover, air consumption coefficient α increase from 0.7 to 0.9 was found out to decrease synthesis gas target components (carbon and hydrogen oxides) specific yield by nearly 2 times and synthesis gas target components required ratio was revealed to be seen in the water vapour specific consumption area (from 5 to 6 kg/kg of fuel).

  13. Chemical theory and modelling through density across length scales

    Ghosh, Swapan K.

    2016-01-01

    One of the concepts that has played a major role in the conceptual as well as computational developments covering all the length scales of interest in a number of areas of chemistry, physics, chemical engineering and materials science is the concept of single-particle density. Density functional theory has been a versatile tool for the description of many-particle systems across length scales. Thus, in the microscopic length scale, an electron density based description has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. Density concept has been used in the form of single particle number density in the intermediate mesoscopic length scale to obtain an appropriate picture of the equilibrium and dynamical processes, dealing with a wide class of problems involving interfacial science and soft condensed matter. In the macroscopic length scale, however, matter is usually treated as a continuous medium and a description using local mass density, energy density and other related property density functions has been found to be quite appropriate. The basic ideas underlying the versatile uses of the concept of density in the theory and modelling of materials and phenomena, as visualized across length scales, along with selected illustrative applications to some recent areas of research on hydrogen energy, soft matter, nucleation phenomena, isotope separation, and separation of mixture in condensed phase, will form the subject matter of the talk. (author)

  14. Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602 (Japan); Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602 (Japan)

    2016-09-07

    Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.

  15. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  16. Nonlinear model predictive control for chemical looping process

    Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng

    2017-08-22

    A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to a CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.

  17. Coarse grain model for coupled thermo-mechano-chemical processes and its application to pressure-induced endothermic chemical reactions

    Antillon, Edwin; Banlusan, Kiettipong; Strachan, Alejandro

    2014-01-01

    We extend a thermally accurate model for coarse grain dynamics (Strachan and Holian 2005 Phys. Rev. Lett. 94 014301) to enable the description of stress-induced chemical reactions in the degrees of freedom internal to the mesoparticles. Similar to the breathing sphere model, we introduce an additional variable that describes the internal state of the particles and whose dynamics is governed both by an internal potential energy function and by interparticle forces. The equations of motion of these new variables are derived from a Hamiltonian and the model exhibits two desired features: total energy conservation and Galilean invariance. We use a simple model material with pairwise interactions between particles and study pressure-induced chemical reactions induced by hydrostatic and uniaxial compression. These examples demonstrate the ability of the model to capture non-trivial processes including the interplay between mechanical, thermal and chemical processes of interest in many applications. (paper)

  18. The Chemical Modeling of Electronic Materials and Interconnections

    Kivilahti, J. K.

    2002-12-01

    Thermodynamic and kinetic modeling, together with careful experimental work, is of great help for developing new electronic materials such as lead-free solders, their compatible metallizations and diffusion-barrier layers, as well as joining and bonding processes for advanced electronics manufacturing. When combined, these modeling techniques lead to a rationalization of the trial-and-error methods employed in the electronics industry, limiting experimentation and, thus, reducing significantly time-to-market of new products. This modeling provides useful information on the stabilities of phases (microstructures), driving forces for chemical reactions, and growth rates of reaction products occurring in interconnections or thin-film structures during processing, testing, and in longterm use of electronic devices. This is especially important when manufacturing advanced lead-free electronics where solder joint volumes are decreasing while the number of dissimilar reactive materials is increasing markedly. Therefore, a new concept of local nominal composition was introduced and applied together with the relevant ternary and multicomponent phase diagrams to some solder/conductor systems.

  19. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  20. Elimination kinetic model for organic chemicals in earthworms.

    Dimitrova, N.; Dimitrov, S.; Georgieva, D.; van Gestel, C.A.M.; Hankard, P.; Spurgeon, D.J.; Li, H.; Mekenyan, O.

    2010-01-01

    Mechanistic understanding of bioaccumulation in different organisms and environments should take into account the influence of organism and chemical depending factors on the uptake and elimination kinetics of chemicals. Lipophilicity, metabolism, sorption (bioavailability) and biodegradation of

  1. Chemical kinetic model uncertainty minimization through laminar flame speed measurements

    Park, Okjoo; Veloo, Peter S.; Sheen, David A.; Tao, Yujie; Egolfopoulos, Fokion N.; Wang, Hai

    2016-01-01

    Laminar flame speed measurements were carried for mixture of air with eight C3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso-butene, n-butane, and iso-butane) at the room temperature and ambient pressure. Along with C1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011, 158, 2358–2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C3 and C4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel. PMID:27890938

  2. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Rummukainen, M [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1996-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  3. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Rummukainen, M. [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1995-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  4. Dynamic Processes of Conceptual Change: Analysis of Constructing Mental Models of Chemical Equilibrium.

    Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju

    2002-01-01

    Investigates students' mental models of chemical equilibrium using dynamic science assessments. Reports that students at various levels have misconceptions about chemical equilibrium. Involves 10th grade students (n=30) in the study doing a series of hands-on chemical experiments. Focuses on the process of constructing mental models, dynamic…

  5. Understanding and making practice explicit

    Gráinne Conole

    2006-12-01

    Full Text Available This issue contains four, on the face of it, quite different papers, but on looking a little closer there are a number of interesting themes running through them that illustrate some of the key methodological and theoretical issues that e-learning researchers are currently struggling with; central to these is the issue of how do we understand and make practice explicit?

  6. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules.

    Ateshian, Gerard A; Nims, Robert J; Maas, Steve; Weiss, Jeffrey A

    2014-10-01

    Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( www.febio.org ). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the

  7. About Using Predictive Models and Tools To Assess Chemicals under TSCA

    As part of EPA's effort to promote chemical safety, OPPT provides public access to predictive models and tools which can help inform the public on the hazards and risks of substances and improve chemical management decisions.

  8. A methodology for overall consequence modeling in chemical industry

    Arunraj, N.S.; Maiti, J.

    2009-01-01

    Risk assessment in chemical process industry is a very important issue for safeguarding human and the ecosystem from damages caused to them. Consequence assessment is an integral part of risk assessment. However, the commonly used consequence estimation methods involve time-consuming complex mathematical models and simple assimilation of losses without considering all the consequence factors. This lead to the deterioration of quality of estimated risk value. So, the consequence modeling has to be performed in detail considering all major losses with optimal time to improve the decisive value of risk. The losses can be broadly categorized into production loss, assets loss, human health and safety loss, and environment loss. In this paper, a conceptual framework is developed to assess the overall consequence considering all the important components of major losses. Secondly, a methodology is developed for the calculation of all the major losses, which are normalized to yield the overall consequence. Finally, as an illustration, the proposed methodology is applied to a case study plant involving benzene extraction. The case study result using the proposed consequence assessment scheme is compared with that from the existing methodologies.

  9. Implementation of a vibrationally linked chemical reaction model for DSMC

    Carlson, A. B.; Bird, Graeme A.

    1994-01-01

    A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.

  10. Modelling Chemical Equilibrium Partitioning with the GEMS-PSI Code

    Kulik, D.; Berner, U.; Curti, E

    2004-03-01

    Sorption, co-precipitation and re-crystallisation are important retention processes for dissolved contaminants (radionuclides) migrating through the sub-surface. The retention of elements is usually measured by empirical partition coefficients (Kd), which vary in response to many factors: temperature, solid/liquid ratio, total contaminant loading, water composition, host-mineral composition, etc. The Kd values can be predicted for in-situ conditions from thermodynamic modelling of solid solution, aqueous solution or sorption equilibria, provided that stoichiometry, thermodynamic stability and mixing properties of the pure components are known (Example 1). Unknown thermodynamic properties can be retrieved from experimental Kd values using inverse modelling techniques (Example 2). An efficient, advanced tool for performing both tasks is the Gibbs Energy Minimization (GEM) approach, implemented in the user-friendly GEM-Selector (GEMS) program package, which includes the Nagra-PSI chemical thermodynamic database. The package is being further developed at PSI and used extensively in studies relating to nuclear waste disposal. (author)

  11. Modelling Chemical Equilibrium Partitioning with the GEMS-PSI Code

    Kulik, D.; Berner, U.; Curti, E.

    2004-01-01

    Sorption, co-precipitation and re-crystallisation are important retention processes for dissolved contaminants (radionuclides) migrating through the sub-surface. The retention of elements is usually measured by empirical partition coefficients (Kd), which vary in response to many factors: temperature, solid/liquid ratio, total contaminant loading, water composition, host-mineral composition, etc. The Kd values can be predicted for in-situ conditions from thermodynamic modelling of solid solution, aqueous solution or sorption equilibria, provided that stoichiometry, thermodynamic stability and mixing properties of the pure components are known (Example 1). Unknown thermodynamic properties can be retrieved from experimental Kd values using inverse modelling techniques (Example 2). An efficient, advanced tool for performing both tasks is the Gibbs Energy Minimization (GEM) approach, implemented in the user-friendly GEM-Selector (GEMS) program package, which includes the Nagra-PSI chemical thermodynamic database. The package is being further developed at PSI and used extensively in studies relating to nuclear waste disposal. (author)

  12. A Chemical Evolution Model for the Fornax Dwarf Spheroidal Galaxy

    Yuan Zhen

    2016-01-01

    Full Text Available Fornax is the brightest Milky Way (MW dwarf spheroidal galaxy and its star formation history (SFH has been derived from observations. We estimate the time evolution of its gas mass and net inflow and outflow rates from the SFH usinga simple star formation law that relates the star formation rate to the gas mass. We present a chemical evolution model on a 2D mass grid with supernovae (SNe as sources of metal enrichment. We find that a key parameter controlling the enrichment is the mass Mx of the gas to mix with the ejecta from each SN. The choice of Mx depends on the evolution of SN remnants and on the global gas dynamics. It differs between the two types of SNe involved and between the periods before and after Fornax became an MW satellite at time t = tsat. Our results indicate that due to the global gas outflow at t > tsat, part of the ejecta from each SN may directly escape from Fornax. Sample results from our model are presented and compared with data.

  13. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  14. Chemical modelling of pore water composition from PFBC residues

    Karlsson, L.G.

    1991-01-01

    The concentration of trace elements varies depending on the source of the coal and also due to the combustion process used. Mercury is one important element among the trace elements in the coal residues, generally recognised as potentially harmful to the biological system. To predict the pore water concentrations of mercury and other important constituents leached from coal combustion residues disposal sites, mechanistic data on chemical reactions are required. The present study is an application of a basially thermodynamical approach using the geochemical code EQ3NR. The presence of discrete solid phases that control the aqueous concentrations of major elements such as aluminium, calcium and silicon are identified. Solid phases are modelled in equilibrium with a hypothetical pore water at a pH range of 7-11. In this study the thermodynamic database of EQ3NR has been complemented with data for cadmium, mercury and lead taken from the OECD/NEA Thermodynamic Database and from a compilation made by Lindsay. Possible solubility limiting phases for the important trace elements arsenic, cadmium, chromium, copper, mercury, nickel and lead have been identified. Concentrations of these trace elements as a function of pH in the hypothetical pore water were calculated using mechanistic thermodynamial data. The thermodynamical approach in this study seems justified because most solid residues that are either present or expected to form during weathering have relatively fast precipitation/dissolution kinetics. (21 refs., 18 figs., 5 tabs.)

  15. Linking land use change to recreational fishery valuation with a spatially explicit behavior model: A case study from Tampa Bay, FL USA

    Drawing a link between habitat change and production and delivery of ecosystem services is a priority in coastal estuarine ecosystems. This link is needed to fully understand how human communities can influence ecosystem sustainability. Mechanistic modeling tools are highly fun...

  16. Satl model lesson in chemical kinetics | Nazir | African Journal of ...

    Studies in order to pursue kinetics and mechanism of chemical reactions are a vital component of chemical literature. SATL literature is still not available for promoting this vital aspect of chemistry teaching. A lesson pertaining to this important issue has been developed and various parameters of kinetic studies are ...

  17. Models for risk assessment of reactive chemicals in aquatic toxicology

    Freidig, Andreas Peter

    2000-01-01

    A quantitative structure property relationship (QSPR) for a,b-unsaturated carboxylates (mainly acrylates and methacrylates) was established in chapter 2. Chemical reaction rate constants were measured for 12 different chemicals with three different nucleophiles, namely H 2 O, OH - and glutathione

  18. Moderators of the Relationship between Implicit and Explicit Evaluation

    Nosek, Brian A.

    2005-01-01

    Automatic and controlled modes of evaluation sometimes provide conflicting reports of the quality of social objects. This paper presents evidence for four moderators of the relationship between automatic (implicit) and controlled (explicit) evaluations. Implicit and explicit preferences were measured for a variety of object pairs using a large sample. The average correlation was r = .36, and 52 of the 57 object pairs showed a significant positive correlation. Results of multilevel modeling analyses suggested that: (a) implicit and explicit preferences are related, (b) the relationship varies as a function of the objects assessed, and (c) at least four variables moderate the relationship – self-presentation, evaluative strength, dimensionality, and distinctiveness. The variables moderated implicit-explicit correspondence across individuals and accounted for much of the observed variation across content domains. The resulting model of the relationship between automatic and controlled evaluative processes is grounded in personal experience with the targets of evaluation. PMID:16316292

  19. Advanced deposition model for thermal activated chemical vapor deposition

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  20. High Throughput Exposure Modeling of Semi-Volatile Chemicals in Articles of Commerce (ACS)

    Risk due to chemical exposure is a function of both chemical hazard and exposure. Near-field exposures to chemicals in consumer products are identified as the main drivers of exposure and yet are not well quantified or understood. The ExpoCast project is developing a model that e...

  1. A review of a method for dynamic load distribution, dynamic modeling, and explicit internal force control when two serial link manipulators mutually lift and transport a rigid body object

    Unseren, M.A.

    1997-09-01

    The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system

  2. A review of a method for dynamic load distribution, dynamic modeling, and explicit internal force control when two serial link manipulators mutually lift and transport a rigid body object

    Unseren, M.A.

    1997-09-01

    The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  3. Modeling of non-additive mixture properties using the Online CHEmical database and Modeling environment (OCHEM

    Oprisiu Ioana

    2013-01-01

    Full Text Available Abstract The Online Chemical Modeling Environment (OCHEM, http://ochem.eu is a web-based platform that provides tools for automation of typical steps necessary to create a predictive QSAR/QSPR model. The platform consists of two major subsystems: a database of experimental measurements and a modeling framework. So far, OCHEM has been limited to the processing of individual compounds. In this work, we extended OCHEM with a new ability to store and model properties of binary non-additive mixtures. The developed system is publicly accessible, meaning that any user on the Web can store new data for binary mixtures and develop models to predict their non-additive properties. The database already contains almost 10,000 data points for the density, bubble point, and azeotropic behavior of binary mixtures. For these data, we developed models for both qualitative (azeotrope/zeotrope and quantitative endpoints (density and bubble points using different learning methods and specially developed descriptors for mixtures. The prediction performance of the models was similar to or more accurate than results reported in previous studies. Thus, we have developed and made publicly available a powerful system for modeling mixtures of chemical compounds on the Web.

  4. A spatially-explicit count data regression for modeling the density of forest cockchafer (Melolontha hippocastani larvae in the Hessian Ried (Germany

    Matthias Schmidt

    2014-10-01

    Full Text Available Background In this paper, a regression model for predicting the spatial distribution of forest cockchafer larvae in the Hessian Ried region (Germany is presented. The forest cockchafer, a native biotic pest, is a major cause of damage in forests in this region particularly during the regeneration phase. The model developed in this study is based on a systematic sample inventory of forest cockchafer larvae by excavation across the Hessian Ried. These forest cockchafer larvae data were characterized by excess zeros and overdispersion. Methods Using specific generalized additive regression models, different discrete distributions, including the Poisson, negative binomial and zero-inflated Poisson distributions, were compared. The methodology employed allowed the simultaneous estimation of non-linear model effects of causal covariates and, to account for spatial autocorrelation, of a 2-dimensional spatial trend function. In the validation of the models, both the Akaike information criterion (AIC and more detailed graphical procedures based on randomized quantile residuals were used. Results The negative binomial distribution was superior to the Poisson and the zero-inflated Poisson distributions, providing a near perfect fit to the data, which was proven in an extensive validation process. The causal predictors found to affect the density of larvae significantly were distance to water table and percentage of pure clay layer in the soil to a depth of 1 m. Model predictions showed that larva density increased with an increase in distance to the water table up to almost 4 m, after which it remained constant, and with a reduction in the percentage of pure clay layer. However this latter correlation was weak and requires further investigation. The 2-dimensional trend function indicated a strong spatial effect, and thus explained by far the highest proportion of variation in larva density. Conclusions As such the model can be used to support forest

  5. Students' Visualisation of Chemical Reactions--Insights into the Particle Model and the Atomic Model

    Cheng, Maurice M. W.

    2018-01-01

    This paper reports on an interview study of 18 Grade 10-12 students' model-based reasoning of a chemical reaction: the reaction of magnesium and oxygen at the submicro level. It has been proposed that chemical reactions can be conceptualised using two models: (i) the "particle model," in which a reaction is regarded as the simple…

  6. Higgs pair production in the MSSM with explicit CP violation

    Demir, D.A.

    1999-07-01

    In the minimal supersymmetric standard model with explicit CP violation, associated production of the lightest Higgs boson with heavier ones is analyzed. Due to explicit CP violation, the Higgs bosons are no longer CP eigenstates so that both of the heavy Higgs bosons contribute to the process. While the radiative corrections in the Higgs sector turn out to be quite important, the vertex radiative corrections remain small as in the CP conserving theory. (author)

  7. Modelling Deep Water Habitats to Develop a Spatially Explicit, Fine Scale Understanding of the Distribution of the Western Rock Lobster, Panulirus cygnus

    Hovey, Renae K.; Van Niel, Kimberly P.; Bellchambers, Lynda M.; Pember, Matthew B.

    2012-01-01

    Background The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. Methods and Findings Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables) were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand) and dominant biota (kelp, sessile invertebrates and macroalgae) within a 40 km2 area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D2 of 64 and an 80% correct classification. Conclusions Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical lobster habitats. PMID

  8. Modelling deep water habitats to develop a spatially explicit, fine scale understanding of the distribution of the western rock lobster, Panulirus cygnus.

    Renae K Hovey

    Full Text Available BACKGROUND: The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. METHODS AND FINDINGS: Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand and dominant biota (kelp, sessile invertebrates and macroalgae within a 40 km(2 area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D(2 of 64 and an 80% correct classification. CONCLUSIONS: Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical

  9. Modelling deep water habitats to develop a spatially explicit, fine scale understanding of the distribution of the western rock lobster, Panulirus cygnus.

    Hovey, Renae K; Van Niel, Kimberly P; Bellchambers, Lynda M; Pember, Matthew B

    2012-01-01

    The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables) were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand) and dominant biota (kelp, sessile invertebrates and macroalgae) within a 40 km(2) area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D(2) of 64 and an 80% correct classification. Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical lobster habitats.

  10. A geometrical description of visual sensation II:A complemented model for visual sensation explicitly taking into account the law of Fechner, and its application to Plateau's irradiation

    Ons, Bart; Verstraelen, Pol

    2010-01-01

    Plateau’s irradiation phenomenon in particular describes what one sees when observing a brighter object on a darker background and a physically congruent darker object on a brighter background: the brighter object is seen as being larger. This phenomenon occurs in many optical visual illusions and it involves some fundamental aspects of human vision. We present a general geometrical model of human visual sensation and perception, hereby taking into account the law of Fechner in addition to th...

  11. Relative power density distribution calculations of the Kori unit 1 pressurized water reactor with full-scope explicit modeling of monte carlo simulation

    Kim, J. O.; Kim, J. K.

    1997-01-01

    Relative power density distributions of the Kori unit 1 pressurized water reactor calculated by Monte Carlo modeling with the MCNP code. The Kori unit 1 core is modeled on a three-dimensional representation of the one-eighth of the reactor in-vessel component with reflective boundaries at 0 and 45 degrees. The axial core model is based on half core symmetry and is divided into four axial segments. Fission reaction density in each rod is calculated by following 100 cycles with 5,000 test neutrons in each cycle after starting with a localized neutron source and ten noncontributing settle cycles. Relative assembly power distributions are calculated from fission reaction densities of rods in assembly. After 100 cycle calculations, the system coverages to a κ value of 1.00039 ≥ 0.00084. Relative assembly power distribution is nearly the same with that of the Kori unit 1 FSAR. Applicability of the full-scope Monte Carlo simulation in the power distribution calculation is examined by the relative root mean square error of 2.159%. (author)

  12. Modeling operators' emergency response time for chemical processing operations.

    Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam

    2014-01-01

    Operators have a crucial role during emergencies at a variety of facilities such as chemical processing plants. When an abnormality occurs in the production process, the operator often has limited time to either take corrective actions or evacuate before the situation becomes deadly. It is crucial that system designers and safety professionals can estimate the time required for a response before procedures and facilities are designed and operations are initiated. There are existing industrial engineering techniques to establish time standards for tasks performed at a normal working pace. However, it is reasonable to expect the time required to take action in emergency situations will be different than working at a normal production pace. It is possible that in an emergency, operators will act faster compared to a normal pace. It would be useful for system designers to be able to establish a time range for operators' response times for emergency situations. This article develops a modeling approach to estimate the time standard range for operators taking corrective actions or following evacuation procedures in emergency situations. This will aid engineers and managers in establishing time requirements for operators in emergency situations. The methodology used for this study combines a well-established industrial engineering technique for determining time requirements (predetermined time standard system) and adjustment coefficients for emergency situations developed by the authors. Numerous videos of workers performing well-established tasks at a maximum pace were studied. As an example, one of the tasks analyzed was pit crew workers changing tires as quickly as they could during a race. The operations in these videos were decomposed into basic, fundamental motions (such as walking, reaching for a tool, and bending over) by studying the videos frame by frame. A comparison analysis was then performed between the emergency pace and the normal working pace operations

  13. Assimilation of Remotely Sensed Leaf Area Index into the Community Land Model with Explicit Carbon and Nitrogen Components using Data Assimilation Research Testbed

    Ling, X.; Fu, C.; Yang, Z. L.; Guo, W.

    2017-12-01

    Information of the spatial and temporal patterns of leaf area index (LAI) is crucial to understand the exchanges of momentum, carbon, energy, and water between the terrestrial ecosystem and the atmosphere, while both in-situ observation and model simulation usually show distinct deficiency in terms of LAI coverage and value. Land data assimilation, combined with observation and simulation together, is a promising way to provide variable estimation. The Data Assimilation Research Testbed (DART) developed and maintained by the National Centre for Atmospheric Research (NCAR) provides a powerful tool to facilitate the combination of assimilation algorithms, models, and real (as well as synthetic) observations to better understanding of all three. Here we systematically investigated the effects of data assimilation on improving LAI simulation based on NCAR Community Land Model with the prognostic carbon-nitrogen option (CLM4CN) linked with DART using the deterministic Ensemble Adjustment Kalman Filter (EAKF). Random 40-member atmospheric forcing was used to drive the CLM4CN with or without LAI assimilation. The Global Land Surface Satellite LAI data (GLASS LAI) LAI is assimilated into the CLM4CN at a frequency of 8 days, and LAI (and leaf carbon / nitrogen) are adjusted at each time step. The results show that assimilating remotely sensed LAI into the CLM4CN is an effective method for improving model performance. In detail, the CLM4-CN simulated LAI systematically overestimates global LAI, especially in low latitude with the largest bias of 5 m2/m2. While if updating both LAI and leaf carbon and leaf nitrogen simultaneously during assimilation, the analyzed LAI can be corrected, especially in low latitude regions with the bias controlled around ±1 m2/m2. Analyzed LAI could also represent the seasonal variation except for the Southern Temperate (23°S-90°S). The obviously improved regions located in the center of Africa, Amazon, the South of Eurasia, the northeast of

  14. Explicit analytical modeling of the low frequency a-Si:H/c-Si heterojunction capacitance: Analysis and application to silicon heterojunction solar cells

    Maslova, O. [Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya sq., 4, Moscow 125047 (Russian Federation); GeePs (Group of electrical engineering of Paris), CNRS UMR 8507, CentraleSupélec, Univ Paris-Sud, Sorbonne Universités-UPMC Univ Paris 06, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France); Brézard-Oudot, A.; Gueunier-Farret, M.-E.; Alvarez, J.; Kleider, J.-P. [GeePs (Group of electrical engineering of Paris), CNRS UMR 8507, CentraleSupélec, Univ Paris-Sud, Sorbonne Universités-UPMC Univ Paris 06, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France)

    2015-09-21

    We develop a fully analytical model in order to describe the temperature dependence of the low frequency capacitance of heterojunctions between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). We demonstrate that the slope of the capacitance-temperature (C-T) curve is strongly enhanced if the c-Si surface is under strong inversion conditions compared to the usually assumed depletion layer capacitance. We have extended our analytical model to integrate a very thin undoped (i) a-Si:H layer at the interface and the finite thickness of the doped a-Si:H layer that are used in high efficiency solar cells for the passivation of interface defects and to limit short circuit current losses. Finally, using our calculations, we analyze experimental data on high efficiency silicon heterojunction solar cells. The transition from the strong inversion limited behavior to the depletion layer behavior is discussed in terms of band offsets, density of states in a-Si:H, and work function of the indium tin oxide (ITO) front electrode. In particular, it is evidenced that strong inversion conditions prevail at the c-Si surface at high temperatures down to 250 K, which can only be reproduced if the ITO work function is larger than 4.7 eV.

  15. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 2; Ballistic Impact Testing

    Revilock, D. M.; Pereira, J. M.

    2009-01-01

    This report summarizes the ballistic impact testing that was conducted to provide validation data for the development of numerical models of blade-out events in fabric containment systems. The ballistic impact response of two different fiber materials - Kevlar(TradeName) 49 and Zylon(TradeName) AS (as spun) was studied by firing metal projectiles into dry woven fabric specimens using a gas gun. The shape, mass, orientation, and velocity of the projectile were varied and recorded. In most cases, the tests were designed so the projectile would perforate the specimen, allowing measurement of the energy absorbed by the fabric. The results for both Zylon and Kevlar presented here represent a useful set of data for the purposes of establishing and validating numerical models to predict the response of fabrics under conditions that simulate those of a jet engine blade-release situation. In addition, some useful empirical observations were made regarding the effects of projectile orientation and the relative performance of the different fabric materials.

  16. A review of operational, regional-scale, chemical weather forecasting models in Europe

    J. Kukkonen

    2012-01-01

    Full Text Available Numerical models that combine weather forecasting and atmospheric chemistry are here referred to as chemical weather forecasting models. Eighteen operational chemical weather forecasting models on regional and continental scales in Europe are described and compared in this article. Topics discussed in this article include how weather forecasting and atmospheric chemistry models are integrated into chemical weather forecasting systems, how physical processes are incorporated into the models through parameterization schemes, how the model architecture affects the predicted variables, and how air chemistry and aerosol processes are formulated. In addition, we discuss sensitivity analysis and evaluation of the models, user operational requirements, such as model availability and documentation, and output availability and dissemination. In this manner, this article allows for the evaluation of the relative strengths and weaknesses of the various modelling systems and modelling approaches. Finally, this article highlights the most prominent gaps of knowledge for chemical weather forecasting models and suggests potential priorities for future research directions, for the following selected focus areas: emission inventories, the integration of numerical weather prediction and atmospheric chemical transport models, boundary conditions and nesting of models, data assimilation of the various chemical species, improved understanding and parameterization of physical processes, better evaluation of models against data and the construction of model ensembles.

  17. Quantum mechanical force field for water with explicit electronic polarization.

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  18. Modeling explicit tropospheric oxidation through identifying volatile organic compound (VOC) sources, their impact on air quality and their signatures in South China

    Cheng, Hairong

    Photochemical smog, characterized by high concentrations of ozone (O 3) and fine particles, is of great concern in the urban areas like the Pearl River Delta (PRD). Ambient O3 and its precursors were simultaneously measured for the first time at a site within the inland PRD region (WQS) and a site in Hong Kong (TC) from 22 October to 01 December 2007, in order to improve our understanding of the interplay of O3 pollution between Hong Kong and the inland PRD region, to explore the relationships between O3 and its precursors, and to identify the key volatile organic compound (VOC) species and emission source categories contributing to the O3 formation. Ratio analyses for trace gases and VOCs and back trajectory calculation revealed that the air masses arriving at WQS were more aged due to regional influence, whereas the air masses at TC were mainly affected by local emissions and/or regional transport. An observation-Based Model (OBM) was employed to determine the O 3-precursor relationship. At both sites, O3 production was found to be VOC-limited. Anthropogenic hydrocarbons played a key role in O 3 production, while reducing NO emissions aided the build up of O 3 concentrations. The contribution of carbonyls to O3 formation was firstly input in the OBM by using measured data, the results showed that the net O3 production derived from the OBM agreed better with the observed O3 increment after hourly carbonyl concentrations were included. A photochemical trajectory model was developed and used for the first time to simulate the formation of photochemical pollutants at WQS, Guangzhou during photochemical pollution episodes between 12 and 17 November, 2007. Calculated photochemical ozone creation potential (POCP) indices indicated that alkanes and oxygenated organic compounds had relatively low reactivity, while alkenes and aromatics presented high reactivity. Analysis of the emission inventory found that the sum of 60 of the 139 VOC species accounted for 91% of the

  19. The Kimball Free-Cloud Model: A Failed Innovation in Chemical Education?

    Jensen, William B.

    2014-01-01

    This historical review traces the origins of the Kimball free-cloud model of the chemical bond, otherwise known as the charge-cloud or tangent-sphere model, and the central role it played in attempts to reform the introductory chemical curriculum at both the high school and college levels in the 1960s. It also critically evaluates the limitations…

  20. CONSISTENT USE OF THE KALMAN FILTER IN CHEMICAL TRANSPORT MODELS (CTMS) FOR DEDUCING EMISSIONS

    Past research has shown that emissions can be deduced using observed concentrations of a chemical, a Chemical Transport Model (CTM), and the Kalman filter in an inverse modeling application. An expression was derived for the relationship between the "observable" (i.e., the con...

  1. Representations of Chemical Bonding Models in School Textbooks--Help or Hindrance for Understanding?

    Bergqvist, Anna; Drechsler, Michal; De Jong, Onno; Rundgren, Shu-Nu Chang

    2013-01-01

    Models play an important and central role in science as well as in science education. Chemical bonding is one of the most important topics in upper secondary school chemistry, and this topic is dominated by the use of models. In the past decade, research has shown that chemical bonding is a topic that students find difficult, and therefore, a wide…

  2. Mathematical Modeling of Tin-Free Chemically-Active Antifouling Paint Behavior

    Yebra, Diego Meseguer; Kiil, Søren; Dam-Johansen, Kim

    2006-01-01

    Mathematical modeling has been used to characterize and validate the working mechanisms of tin-free, chemically-active antifouling (AF) paints. The model-based analysis of performance data from lab-scale rotary experiments has shown significant differences between antifouling technologies...... of Chemical Engineers....

  3. Application of the equations of radioactive growth and decay to geochronological models and explicit solution of the equations by Laplace transformation

    Catchen, G.L.

    1984-01-01

    A recently developed method of pore-fluid age determination assumes secular equilibrium in the 238 U decay chain. The efficacy of this approximation is investigated using computer evaluations of the equations that give the time evolution of the 238 U decay chain, i.e. the solution of the equations of radioactive growth and decay. This analysis is performed considering two alternative geochemical scenarios to that of secular equilibrium - only 238 U present initially and 238 U and 234 U present initially. In addition, the effects of the 235 U decay chain are also determined in a similar fashion. These particular examples were chosen to show that more sophisticated geochronological models for many dating applications can be developed using such computer calculations. To facilitate such analyses, a solution of the equations of radioactive growth and decay for an arbitrary initial condition is derived using the Laplace transformation method and matrix algebra. Other solutions - both general and special - that are found in some well-known textbooks are reviewed. (orig.)

  4. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    Li Rong; Yang Fuquan; Sloan, James J; Scholtz, M Trevor

    2011-01-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  5. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    Li Rong; Yang Fuquan; Sloan, James J [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Scholtz, M Trevor, E-mail: sloanj@connect.uwaterloo.ca [ORTECH Environmental, 2395 Speakman Drive, Mississauga, ON L5K 1B3 (Canada)

    2011-07-15

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  6. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    Li, Rong; Scholtz, M. Trevor; Yang, Fuquan; Sloan, James J.

    2011-07-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  7. Generating transverse response explicitly from harmonic oscillators

    Yao, Yuan; Tang, Ying; Ao, Ping

    2017-10-01

    We obtain stochastic dynamics from a system-plus-bath mechanism as an extension of the Caldeira-Leggett (CL) model in the classical regime. An effective magnetic field and response functions with both longitudinal and transverse parts are exactly generated from the bath of harmonic oscillators. The effective magnetic field and transverse response are antisymmetric matrices: the former is explicitly time-independent corresponding to the geometric magnetism, while the latter can have memory. The present model can be reduced to previous representative examples of stochastic dynamics describing nonequilibrium processes. Our results demonstrate that a system coupled with a bath of harmonic oscillators is a general approach to studying stochastic dynamics, and provides a method to experimentally implement an effective magnetic field from coupling to the environment.

  8. Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System

    Begovich, C.L.

    2002-10-28

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence on chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.

  9. Modeling strength loss in wood by chemical composition. Part I, An individual component model for southern pine

    J. E. Winandy; P. K. Lebow

    2001-01-01

    In this study, we develop models for predicting loss in bending strength of clear, straight-grained pine from changes in chemical composition. Although significant work needs to be done before truly universal predictive models are developed, a quantitative fundamental relationship between changes in chemical composition and strength loss for pine was demonstrated. In...

  10. The method of modelling of relationships between hardenability and chemical composition of the constructional alloy steels

    Dobrzanski, L.A.; Sitek, W.

    1998-01-01

    Basing on the experimental results of the hardenability investigations, which employed Jominy method, the model of the neural networks was developed and fully verified experimentally. The model makes it possible to obtain Jominy hardenability curves basing on the steel chemical composition. The model of neural networks, making it possible to design the steel chemical composition, basing on the known Jominy hardenability curve shape, was developed also and fully verified numerically. The practical usability of the models developed is presented. (author)

  11. Investigations on socio economic indicators of French Alps ski industry from an explicit spatial modelling of managed snow on ski slopes

    Spandre, Pierre; François, Hugues; Morin, Samuel; George-Marcelpoil, Emmanuelle; Lafaysse, Matthieu

    2017-04-01

    Investigations of the capacity of ski resorts to anticipate, cope with and recover from the impact of natural snow scarcity through snow management (grooming, snowmaking) have been realized in most of the major regions in terms of international ski offer although not in the French Alps hitherto. The present work therefore introduces an innovative approach for the investigation of socio economic implications of changes in snow conditions for the French Alps ski resorts based on a panel of 129 resorts representing 96% of the total French Alps ski lifts infrastructures. We integrated detailed spatial representations of ski resorts (including priority areas for snowmaking equipment) along with physically based snowpack modelling (including the physical impact of grooming and snowmaking). The viability of ski resorts was further adressed thanks to a commonly used rule based on the snow season duration at the village and ski lifts average elevations along with the development of original viability indicators of snow conditions in the French Alps ski resorts based on the specific periods for the economic success of winter sports: Christmas and February school holidays. Such indicators were correlated to the number of ski lifts tickets sales over the 2001 - 2014 period and proved to be relevant to investigate and predict the evolutions of ski lifts tickets sales under the current ski market conditions in the French Alps. Our results outlined the contrast of snow conditions between French Alps ski resorts, even when accounting for snow management, particularly regarding the geographical location of resorts (Southern versus Northern Alps), the size and related elevation range of ski resorts. Our physically based approach also allowed to compute the water and energy requirements for the production of Machine Made snow since the start of the development of snowguns in the French Alps. Our computations proved to be strongly correlated to the observed amounts of water from the

  12. A review of models for near-field exposure pathways of chemicals in consumer products

    Huang, Lei; Ernstoff, Alexi; Fantke, Peter

    2017-01-01

    able to quantify the multiple transfers of chemicals from products used near-field to humans. The present review therefore aims at an in-depth overview of modeling approaches for near-field chemical release and human exposure pathways associated with consumer products. It focuses on lower......-tier, mechanistic models suitable for life cycle assessments (LCA), chemical alternative assessment (CAA) and high-throughput screening risk assessment (HTS). Chemicals in a product enter the near-field via a defined “compartment of entry”, are transformed or transferred to adjacent compartments, and eventually end......Exposure to chemicals in consumer products has been gaining increasing attention, with multiple studies showing that near-field exposures from products is high compared to far-field exposures. Regarding the numerous chemical-product combinations, there is a need for an overarching review of models...

  13. Modeling Water and Nutrient Transport through the Soil-Root-Canopy Continuum: Explicitly Linking the Below- and Above-Ground Processes

    Kumar, P.; Quijano, J. C.; Drewry, D.

    2010-12-01

    Vegetation roots provide a fundamental link between the below ground water and nutrient dynamics and above ground canopy processes such as photosynthesis, evapotranspiration and energy balance. The “hydraulic architecture” of roots, consisting of the structural organization of the root system and the flow properties of the conduits (xylem) as well as interfaces with the soil and the above ground canopy, affect stomatal conductance thereby directly linking them to the transpiration. Roots serve as preferential pathways for the movement of moisture from wet to dry soil layers during the night, both from upper soil layer to deeper layers during the wet season (‘hydraulic descent’) and vice-versa (‘hydraulic lift’) as determined by the moisture gradients. The conductivities of transport through the root system are significantly, often orders of magnitude, larger than that of the surrounding soil resulting in movement of soil-moisture at rates that are substantially larger than that through the soil. This phenomenon is called hydraulic redistribution (HR). The ability of the deep-rooted vegetation to “bank” the water through hydraulic descent during wet periods for utilization during dry periods provides them with a competitive advantage. However, during periods of hydraulic lift these deep-rooted trees may facilitate the growth of understory vegetation where the understory scavenges the hydraulically lifted soil water. In other words, understory vegetation with relatively shallow root systems have access to the banked deep-water reservoir. These inter-dependent root systems have a significant influence on water cycle and ecosystem productivity. HR induced available moisture may support rhizosphere microbial and mycorrhizal fungi activities and enable utilization of heterogeneously distributed water and nutrient resources To capture this complex inter-dependent nutrient and water transport through the soil-root-canopy continuum we present modeling

  14. Chemical structures and theoretical models of lean premixed ...

    To better understand the chemistry involved in the lean-fuel combustion, the chemical structure of lean premixed propene-oxygen-nitrogen flames stabilized on a flat-flame burner at atmospheric pressure was determined experimentally. The species mole fraction profiles were also computed by the Premix code and three ...

  15. Characterization of the pharmacokinetics of gasoline using PBPK modeling with a complex mixtures chemical lumping approach.

    Dennison, James E; Andersen, Melvin E; Yang, Raymond S H

    2003-09-01

    Gasoline consists of a few toxicologically significant components and a large number of other hydrocarbons in a complex mixture. By using an integrated, physiologically based pharmacokinetic (PBPK) modeling and lumping approach, we have developed a method for characterizing the pharmacokinetics (PKs) of gasoline in rats. The PBPK model tracks selected target components (benzene, toluene, ethylbenzene, o-xylene [BTEX], and n-hexane) and a lumped chemical group representing all nontarget components, with competitive metabolic inhibition between all target compounds and the lumped chemical. PK data was acquired by performing gas uptake PK studies with male F344 rats in a closed chamber. Chamber air samples were analyzed every 10-20 min by gas chromatography/flame ionization detection and all nontarget chemicals were co-integrated. A four-compartment PBPK model with metabolic interactions was constructed using the BTEX, n-hexane, and lumped chemical data. Target chemical kinetic parameters were refined by studies with either the single chemical alone or with all five chemicals together. o-Xylene, at high concentrations, decreased alveolar ventilation, consistent with respiratory irritation. A six-chemical interaction model with the lumped chemical group was used to estimate lumped chemical partitioning and metabolic parameters for a winter blend of gasoline with methyl t-butyl ether and a summer blend without any oxygenate. Computer simulation results from this model matched well with experimental data from single chemical, five-chemical mixture, and the two blends of gasoline. The PBPK model analysis indicated that metabolism of individual components was inhibited up to 27% during the 6-h gas uptake experiments of gasoline exposures.

  16. Analyzing Variability in Landscape Nutrient Loading Using Spatially-Explicit Maps in the Great Lakes Basin

    Hamlin, Q. F.; Kendall, A. D.; Martin, S. L.; Whitenack, H. D.; Roush, J. A.; Hannah, B. A.; Hyndman, D. W.

    2017-12-01

    Excessive loading of nitrogen and phosphorous to the landscape has caused biologically and economically damaging eutrophication and harmful algal blooms in the Great Lakes Basin (GLB) and across the world. We mapped source-specific loads of nitrogen and phosphorous to the landscape using broadly available data across the GLB. SENSMap (Spatially Explicit Nutrient Source Map) is a 30m resolution snapshot of nutrient loads ca. 2010. We use these maps to study variable nutrient loading and provide this information to watershed managers through NOAA's GLB Tipping Points Planner. SENSMap individually maps nutrient point sources and six non-point sources: 1) atmospheric deposition, 2) septic tanks, 3) non-agricultural chemical fertilizer, 4) agricultural chemical fertilizer, 5) manure, and 6) nitrogen fixation from legumes. To model source-specific loads at high resolution, SENSMap synthesizes a wide range of remotely sensed, surveyed, and tabular data. Using these spatially explicit nutrient loading maps, we can better calibrate local land use-based water quality models and provide insight to watershed managers on how to focus nutrient reduction strategies. Here we examine differences in dominant nutrient sources across the GLB, and how those sources vary by land use. SENSMap's high resolution, source-specific approach offers a different lens to understand nutrient loading than traditional semi-distributed or land use based models.

  17. A detailed chemical kinetic model for pyrolysis of the lignin model compound chroman

    James Bland

    2013-12-01

    Full Text Available The pyrolysis of woody biomass, including the lignin component, is emerging as a potential technology for the production of renewable fuels and commodity chemicals. Here we describe the construction and implementation of an elementary chemical kinetic model for pyrolysis of the lignin model compound chroman and its reaction intermediate ortho-quinone methide (o-QM. The model is developed using both experimental and theoretical data, and represents a hybrid approach to kinetic modeling that has the potential to provide molecular level insight into reaction pathways and intermediates while accurately describing reaction rates and product formation. The kinetic model developed here can replicate all known aspects of chroman pyrolysis, and provides new information on elementary reaction steps. Chroman pyrolysis is found to proceed via an initial retro-Diels–Alder reaction to form o-QM + ethene (C2H4, followed by dissociation of o-QM to the C6H6 isomers benzene and fulvene (+ CO. At temperatures of around 1000–1200 K and above fulvene rapidly isomerizes to benzene, where an activation energy of around 270 kJ mol-1 is required to reproduce experimental observations. A new G3SX level energy surface for the isomerization of fulvene to benzene supports this result. Our modeling also suggests that thermal decomposition of fulvene may be important at around 950 K and above. This study demonstrates that theoretical protocols can provide a significant contribution to the development of kinetic models for biomass pyrolysis by elucidating reaction mechanisms, intermediates, and products, and also by supplying realistic rate coefficients and thermochemical properties.

  18. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO x , CO, volatile acids, hazardous metals, and organic chemicals. Some calculated relative emissions are summarized and insights on building simulations are discussed

  19. Chemically Aware Model Builder (camb): an R package for property and bioactivity modelling of small molecules.

    Murrell, Daniel S; Cortes-Ciriano, Isidro; van Westen, Gerard J P; Stott, Ian P; Bender, Andreas; Malliavin, Thérèse E; Glen, Robert C

    2015-01-01

    In silico predictive models have proved to be valuable for the optimisation of compound potency, selectivity and safety profiles in the drug discovery process. camb is an R package that provides an environment for the rapid generation of quantitative Structure-Property and Structure-Activity models for small molecules (including QSAR, QSPR, QSAM, PCM) and is aimed at both advanced and beginner R users. camb's capabilities include the standardisation of chemical structure representation, computation of 905 one-dimensional and 14 fingerprint type descriptors for small molecules, 8 types of amino acid descriptors, 13 whole protein sequence descriptors, filtering methods for feature selection, generation of predictive models (using an interface to the R package caret), as well as techniques to create model ensembles using techniques from the R package caretEnsemble). Results can be visualised through high-quality, customisable plots (R package ggplot2). Overall, camb constitutes an open-source framework to perform the following steps: (1) compound standardisation, (2) molecular and protein descriptor calculation, (3) descriptor pre-processing and model training, visualisation and validation, and (4) bioactivity/property prediction for new molecules. camb aims to speed model generation, in order to provide reproducibility and tests of robustness. QSPR and proteochemometric case studies are included which demonstrate camb's application.Graphical abstractFrom compounds and data to models: a complete model building workflow in one package.

  20. Development of a global 1-D chemically radiatively coupled model and an introduction to the development of a chemically coupled General Circulation Model

    Akiyoshi, H.

    1997-01-01

    A global one-dimensional, chemically and radiatively coupled model has been developed. The basic concept of the coupled model, definition of globally averaged zenith angles, the formulation of the model chemistry, radiation, the coupled processes, and profiles and diurnal variations of temperature and chemical species at a normal steady state are presented. Furthermore, a suddenly doubled CO 2 experiment and a Pinatubo aerosol increase experiment were performed with the model. The time scales of variations in ozone and temperature in the lower stratosphere of the coupled system in the doubled CO 2 experiment was long, due to a feedback process among ultra violet radiation, O(1D), NO y , NO x , and O 3 . From the Pinatubo aerosol experiment, a delay of maximum ozone decrease from the maximum aerosol loading is shown and discussed. Developments of 3-D chemical models with coupled processes are briefly described, and the ozone distribution from the first version of the 3-D model are presented. Chemical model development in National Institute for Environmental Studies (NIES) are briefly des