WorldWideScience

Sample records for chemically deposed layer

  1. Chemically deposed layer sytems for the realization of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} band conductors; Chemisch deponierte Schichtsysteme zur Realisierung von YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}-Bandleitern

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Sebastian

    2009-04-30

    The aim of this thesis was to produce new buffer-layer systems for biaxially texturated Ni5at%W substrates by means of chemical processes. As very promising materials for the buffer layers CaTiO{sub 3} and SrTiO{sub 3} were chosen. The production of the single layers pursued from the organometallic prestage by means of dip coating and subsequent head treatment. During the work first the single precursor solutions were to be developed. A main component of the theses forms the understanding of the texture development during the heat treatment of precursor layers on biaxially texturated metallic substrates. Based on this the growth of thick buffer layers is studied and by means of YBCO layers, which were deposed by beans of a pulsed laser, the functionality of the synthesized buffer layers proved. A further component of this thesis formes the influence of nanoscaling precipitations in thew YBCO on its superconducting properties. The YBCO deposition pursued via a variation of the TFA process, as substrate (001)-oriented SrTiO{sub 3} monocrystals were applied.

  2. Durability influence depending on the thickness and microhardness of AlTiN and TiN thin layers deposed on cutting inserts

    Science.gov (United States)

    Bădănac, A.; Lupescu, O.; Paraschiv, D.; Ungureanu, C.; Rotaru, A.

    2016-11-01

    During the exploitation process of cutting tools occurs phenomens as wear which leads to deterioration of functional parameters, performance and partial or total loss of the functioning capacity. The wear resistance of cutting tools depends by the nature of the material and by the working conditions (the quality of surface processing, lubrication quality, temperature). For increased the durability of cutting tools and increase the wear resistance are taken action which aim, improving the surface quality. For increase the surfaces quality are known different deposit methods in vacuum of materials by coating technology PVD as: aluminum-titanium nitride (AlTiN) and titanium nitride (TiN). The coatings realized by vacuum deposition have gained special attention because of their unique physical and chemical properties for example excellent resistance to oxidation at high temperatures. The most important characteristics which are checked in the deposition process of thin layers are: thickness and microhardness. The thickness and microhardness influence significantly the cutting tool durability. In this paper the authors carried out researches regarding the coatings of AlTiN and TiN in thin layers, on surface of some cutting inserts. It was studied the durability influence depending on the thickness and microhardness of AlTiN and TiN thin layers.

  3. The effect of the substrate temperature and the acceleration potential drop on the structural and physical properties of SiC thin films deposed by TVA method

    Science.gov (United States)

    Ciupina, Victor; Lungu, Cristian P.; Vladoiu, Rodica; Prodan, Gabriel C.; Antohe, Stefan; Porosnicu, Corneliu; Stanescu, Iuliana; Jepu, Ionut; Iftimie, Sorina; Prodan, Madalina; Mandes, Aurelia; Dinca, Virginia; Vasile, Eugeniu; Zarovski, Valeriu; Nicolescu, Virginia

    2014-08-01

    Crystalline Si-C thin films were prepared at substrate temperature between 200°C and 1000°C using Thermionic Vacuum Arc (TVA) method. To increase the acceleration potential drop a negative bias voltage up to -1000V was applied on the substrate. The 200nm thickness carbon thin films was deposed on glass and Si substrate and then 200-500 nm thickness Si-C layer on carbon thin films was deposed. Transmission Electron Microscopy (TEM), High Resolution Transmission Electron Microscopy (HRTEM), X-Ray Photoelectron Spectroscopy (XPS), and electrical conductivity measurement technique characterized the structure and physical characteristics of as-prepared SiC coating. At a constant acceleration potential drop, the electrical conductivity of the Si-C films deposed on C, increase with increasing of substrate temperature. On the other part, significant increases in the acceleration potential drop at constant substrate temperature lead to a variation of the crystallinity and electrical conductivity of the SiC coatings XPS analysis was performed using a Quantera SXM equipment, with monochromatic AlKα radiation at 1486.6eV. Electrical conductivity of the Si-C coating on carbon at different temperatures was measured comparing the potential drop on the sample with the potential drop on a series standard resistance in constant mode.

  4. Chemical microsensors with molecularly imprinted sensitive layers

    Science.gov (United States)

    Dickert, Franz L.; Greibl, Wolfgang; Sikorski, Renatus; Tortschanoff, Matthias; Weber, K.; Bulst, W. E.; Fischerauer, G.

    1998-12-01

    The bottleneck in the development of chemical sensors is the design of the coatings for chemical recognition of the analyte. One pronounced method is to tailor supramolecular cavities for different analytes. Polyfunctional linkers or the embedding of these materials in a polymeric matrix can improve stability and response time of the sensor. An even more favorable method to synthesize chemically sensitive layers is realized by molecular imprinting, since a rigid polymer can be generated directly on the transducer of interest and may be included in its production process. The analyte of interest acts as a template during the polymerization process and is evaporated or extracted by suitable solvents. Due to the cavities formed this polymer enriches analyte molecules, which can be detected by mass- sensitive devices such as QMB or SAW resonators or by optical measurements. This procedure allows both the detection of polycyclic aromatic hydrocarbons (PAHs) with fluorescence or mass sensitive devices. If the print PAHs are varied the polymers are tuned to the desired analyte. The enrichment of solvent vapors or other uncolored specimen by the layer can also be followed by the embedding of carbenium ions used as optical labels.

  5. Chemical solution seed layer for rabits tapes

    Science.gov (United States)

    Goyal, Amit; Paranthaman, Mariappan; Wee, Sung-Hun

    2014-06-10

    A method for making a superconducting article includes the steps of providing a biaxially textured substrate. A seed layer is then deposited. The seed layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different rare earth or transition metal cations. A superconductor layer is grown epitaxially such that the superconductor layer is supported by the seed layer.

  6. Modeling Electric Double-Layers Including Chemical Reaction Effects

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...

  7. Understanding Molecular Interactions within Chemically Selective Layered Polymer Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Gary J. Blanchard

    2009-06-30

    This work focuses on two broad issues. These are (1) the molecular origin of the chemical selectivity achieved with ultrathin polymer multilayers, and (2) how the viscoelastic properties of the polymer layers are affected by exposure to solvent and analytes. These issues are inter-related, and to understand them we need to design experiments that probe both the energetic and kinetic aspects of interfacial adsorption processes. This project focuses on controling the chemical structure, thickness, morphology and sequential ordering of polymer layers bound to interfaces using maleimide-vinyl ether and closely related alternating copolymerization chemistry and efficient covalent cross-linking reactions that allow for layer-by-layer polymer deposition. This chemistry has been developed during the funding cycle of this Grant. We have measure the equilibrium constants for interactions between specific layers within the polymer interfaces and size-controlled, surface-functionalized gold nanoparticles. The ability to control both size and functionality of gold nanoparticle model analytes allows us to evaluate the average “pore size” that characterizes our polymer films. We have measured the “bulk” viscosity and shear modulus of the ultrathin polymer films as a function of solvent overlayer identity using quartz crystal microbalance complex impedance measurements. We have measured microscopic viscosity at specific locations within the layered polymer interfaces with time-resolved fluorescence lifetime and depolarization techniques. We combine polymer, cross-linking and nanoparticle synthetic expertise with a host of characterization techniques, including QCM gravimetry and complex impedance analysis, steady state and time-resolved spectroscopies.

  8. Selective growth of graphene in layer-by-layer via chemical vapor deposition

    Science.gov (United States)

    Park, Jaehyun; An, Hyosub; Choi, Dong-Chul; Hussain, Sajjad; Song, Wooseok; An, Ki-Seok; Lee, Won-Jun; Lee, Naesung; Lee, Wan-Gyu; Jung, Jongwan

    2016-07-01

    Selective and precise control of the layer number of graphene remains a critical issue for the practical applications of graphene. First, it is highly challenging to grow a continuous and uniform few-layer graphene since once the monolayer graphene fully covers a copper (Cu) surface, the growth of the second layer stops, resulting in mostly nonhomogeneous films. Second, from the selective adlayer growth point of view, there is no clear pathway for achieving this. We have developed the selective growth of a graphene adlayer in layer-by-layer via chemical vapor deposition (CVD) which makes it possible to stack graphene on a specific position. The key idea is to deposit a thin Cu layer (~40 nm thick) on pre-grown monolayer graphene and to apply additional growth. The thin Cu atop the graphene/Cu substrate acts as a catalyst to decompose methane (CH4) gas during the additional growth. The adlayer is grown selectively on the pre-grown graphene, and the thin Cu is removed through evaporation during CVD, eventually forming large-area and uniform double layer graphene. With this technology, highly uniform graphene films with precise thicknesses of 1 to 5 layers and graphene check patterns with 1 to 3 layers were successfully demonstrated. This method provides precise LBL growth for a uniform graphene film and a technique for the design of new graphene devices.Selective and precise control of the layer number of graphene remains a critical issue for the practical applications of graphene. First, it is highly challenging to grow a continuous and uniform few-layer graphene since once the monolayer graphene fully covers a copper (Cu) surface, the growth of the second layer stops, resulting in mostly nonhomogeneous films. Second, from the selective adlayer growth point of view, there is no clear pathway for achieving this. We have developed the selective growth of a graphene adlayer in layer-by-layer via chemical vapor deposition (CVD) which makes it possible to stack graphene

  9. Advanced titania buffer layer architectures prepared by chemical solution deposition

    Science.gov (United States)

    Kunert, J.; Bäcker, M.; Brunkahl, O.; Wesolowski, D.; Edney, C.; Clem, P.; Thomas, N.; Liersch, A.

    2011-08-01

    Chemical solution deposition (CSD) was used to grow high-quality (100) oriented films of SrTiO3 (STO) on CSD CaTiO3 (CTO), Ba0.1Ca0.9TiO3 (BCT) and STO seed and template layers. These template films bridge the lattice misfit between STO and the nickel-tungsten (NiW) substrate, assisting in dense growth of textured STO. Additional niobium (Nb) doping of the STO buffer layer reduces oxygen diffusion which is necessary to avoid undesired oxidation of the NiW. The investigated templates offer suitable alternatives to established standard buffer systems like La2Zr2O7 (LZO) and CeO2 for coated conductors.

  10. The double-layered chemical structure in DB white dwarfs

    CERN Document Server

    Althaus, L G

    2004-01-01

    We study the structure and evolution of white dwarf stars with helium-rich atmospheres (DB) in a self-consistent way with the predictions of time-dependent element diffusion. Our treatment of diffusion includes gravitational settling and chemical and thermal diffusion. OPAL radiative opacities for arbitrary metallicity and carbon-and oxygen-rich compositions are employed. Emphasis is placed on the evolution of the diffusion-modeled double-layered chemical structure. This structure, which is characterized by a pure helium envelope atop an intermediate remnant shell rich in helium, carbon and oxygen, is expected for pulsating DB white dwarfs, assuming that they are descendants of hydrogen-deficient PG1159 post-AGB stars. We find that, depending on the stellar mass, if DB white dwarf progenitors are formed with a helium content smaller than \\approx 10^-3 M_*, a single-layered configuration is expected to emerge during the DB pulsation instability strip. We also explore the consequences of diffusively evolving ch...

  11. Atomic Layer Deposition of Chemical Passivation Layers and High Performance Anti-Reflection Coatings on Back-Illuminated Detectors

    Science.gov (United States)

    Hoenk, Michael E. (Inventor); Greer, Frank (Inventor); Nikzad, Shouleh (Inventor)

    2014-01-01

    A back-illuminated silicon photodetector has a layer of Al2O3 deposited on a silicon oxide surface that receives electromagnetic radiation to be detected. The Al2O3 layer has an antireflection coating deposited thereon. The Al2O3 layer provides a chemically resistant separation layer between the silicon oxide surface and the antireflection coating. The Al2O3 layer is thin enough that it is optically innocuous. Under deep ultraviolet radiation, the silicon oxide layer and the antireflection coating do not interact chemically. In one embodiment, the silicon photodetector has a delta-doped layer near (within a few nanometers of) the silicon oxide surface. The Al2O3 layer is expected to provide similar protection for doped layers fabricated using other methods, such as MBE, ion implantation and CVD deposition.

  12. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability.

    Science.gov (United States)

    Gunjakar, Jayavant L; Kim, Tae Woo; Kim, Hyo Na; Kim, In Young; Hwang, Seong-Ju

    2011-09-28

    Mesoporous layer-by-layer ordered nanohybrids highly active for visible light-induced O(2) generation are synthesized by self-assembly between oppositely charged 2D nanosheets of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) and layered titanium oxide. The layer-by-layer ordering of two kinds of 2D nanosheets is evidenced by powder X-ray diffraction and cross-sectional high resolution-transmission electron microscopy. Upon the interstratification process, the original in-plane atomic arrangements and electronic structures of the component nanosheets remain intact. The obtained heterolayered nanohybrids show a strong absorption of visible light and a remarkably depressed photoluminescence signal, indicating an effective electronic coupling between the two component nanosheets. The self-assembly between 2D inorganic nanosheets leads to the formation of highly porous stacking structure, whose porosity is controllable by changing the ratio of layered titanate/Zn-Cr-LDH. The resultant heterolayered nanohybrids are fairly active for visible light-induced O(2) generation with a rate of ∼1.18 mmol h(-1) g(-1), which is higher than the O(2) production rate (∼0.67 mmol h(-1) g(-1)) by the pristine Zn-Cr-LDH material, that is, one of the most effective visible light photocatalysts for O(2) production, under the same experimental condition. This result highlights an excellent functionality of the Zn-Cr-LDH-layered titanate nanohybrids as efficient visible light active photocatalysts. Of prime interest is that the chemical stability of the Zn-Cr-LDH is significantly improved upon the hybridization, a result of the protection of the LDH lattice by highly stable titanate layer. The present findings clearly demonstrate that the layer-by-layer-ordered assembly between inorganic 2D nanosheets is quite effective not only in improving the photocatalytic activity of the component semiconductors but also in synthesizing novel porous LDH-based hybrid materials with improved chemical

  13. BI-LAYER HYBRID BIOCOMPOSITES: CHEMICAL RESISTANT AND PHYSICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Mohammad Jawaid,

    2012-02-01

    Full Text Available Bi-layer hybrid biocomposites were fabricated by hand lay-up technique by reinforcing oil palm empty fruit bunch (EFB and jute fibre mats with epoxy matrix. Hybrid composites were prepared by varying the relative weight fraction of the two fibres. The physical (void content, density, dimensional stability, and chemical resistant properties of hybrid composites were evaluated. When the jute fibre loading increased in hybrid composites, physical and chemical resistant properties of hybrid composites were enhanced. Void content of hybrid composites decreased with an increase in jute fibre loading because jute fibres showed better fibre/matrix interface bonding, which leads to a reduction in voids. The density of hybrid composite increased as the quantity of jute fibre loading increased. The hybridization of the jute fibres with EFB composite improved the dimensional stability of the hybrid composites. The performance of hybrid composites towards chemical reagents improved with an increase in jute fibre loading as compared to the EFB composite. The combination of oil palm EFB/jute fibres with epoxy matrix produced hybrid biocomposites material that is competitive to synthetic composites.

  14. Structural properties of produced CuO/NiO/glass thin layers Produced by chemical method

    Directory of Open Access Journals (Sweden)

    A. Ramezani

    2016-12-01

    Full Text Available Nickel Oxide and Copper oxide on Nickel Oxide thin layers were produced by chemical bath deposition method. There nano structures were investigated by SEM and EDAX analysis. By producing CuO/NiO/glass sandwich layers nano structure of NiO/glass layer changed and fraction of voids decreases. In sandwich layer physical property of outer layer was dominant

  15. Photoluminescence of amorphous carbon films fabricated by layer-by-layer hydrogen plasma chemical annealing method

    Institute of Scientific and Technical Information of China (English)

    徐骏; 黄晓辉; 李伟; 王立; 陈坤基

    2002-01-01

    A method in which nanometre-thick film deposition was alternated with hydrogen plasma annealing (layer-by-layermethod) was applied to fabricate hydrogenated amorphous carbon films in a conventional plasma-enhanced chemicalvapour deposition system. It was found that the hydrogen plasma treatment could decrease the hydrogen concentrationin the films and change the sp2/sp3 ratio to some extent by chemical etching. Blue photoluminescence was observed atroom temperature, as a result of the reduction of sp2 clusters in the films.

  16. A numerical model for chemical reaction on slag layer surface and slag layer behavior in entrained-flow gasifier

    Directory of Open Access Journals (Sweden)

    Liu Sheng

    2013-01-01

    Full Text Available The paper concerns with slag layer accumulation, chemical reaction on slag layer surface, and slag layer flow, heat and mass transfer on the wall of entrained-flow coal gasifier. A slag layer model is developed to simulate slag layer behaviors in the coal gasifier. This 3-D model can predict temperature, slag particle disposition rate, disposition particle composition, and syngas distribution in the gasifier hearth. The model is used to evaluate the effects of O2/coal ratio on slag layer behaviors.

  17. SiC multi-layer protective coating on carbon obtained by thermionic vacuum arc method

    Science.gov (United States)

    Ciupina, V.; Lungu, C. P.; Vladoiu, R.; Epure, T.-D.; Prodan, G.; Roşca, C.; Porosnicu, C.; Jepu, I.; Belc, M.; Prodan, M.; Stanescu, I. M.; Stefanov, C.; Contulov, M.; Mandes, A.; Dinca, V.; Vasile, E.; Zarovschi, V.; Nicolescu, V.

    2013-09-01

    SiC single-layer or multi-layer on C used to improve the oxidation resistance and tribological properties of C have been obtained by Thermionic Vacuum Arc (TVA) method. The 200nm thickness carbon thin films was deposed on glass or Si substrate and then 100÷500 nm thickness SiC successively layers on carbon thin film was deposed. The microstructure and mechanical characteristics of as-prepared SiC coating were investigated by Transmission Electron Microscopy (TEM, STEM), Energy Dispersive X-Ray Spectroscopy (EDS), Electron Scattering Chemical Analysis (ESCA) and tribological techniques. Samples containing SiC single-layer or multi-layer coating on carbon were investigated up to 1000°C. The results of thermal treatments reveals the increase of oxidation resistance with increase of the number of SiC layers. The mechanism of oxidation protection is based on the reaction between SiC and elemental oxygen resulting SiO2 and CO. The tribological behavior of SiC coatings was evaluated with a tribometer with ball-on-disk configuration from CSM device with 6mm diameter sapphire ball, sliding speed in dry conditions being 0.2m/s, with normal contact loads of 0.5N, 1N, 1.5N and 2N, under unlubricated conditions. The friction coefficient on SiC was compared with the friction coefficient on uncoated carbon layer. Electrical surface resistance of SiC coating on carbon at different temperatures was measured comparing the potential drop on the sample with the potential drop on a series standard resistance in constant mode.

  18. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    Science.gov (United States)

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  19. The Impact of the chemical Propulsion on the Ozone Layer

    Science.gov (United States)

    Alexeyev, Yu. S.; Serbin, V. V.; Fomin, S. P.; Petlyak, O. G.

    The space activity is considered in the investigation real trend changes of total column ozone amounts (TCO). In combustion gas of all propulsion systems, especially solid ones, there are main ozone destroyers - Cl, NOx, OH, condensed particles Al2O3 etc. During every launch several tons such substances are practically immediately going into the atmosphere on 20-30 km altitude (i.e. layer with maximum ozone concentration) inaccessible for other ozone destroyers. The determination real consequences interaction between combustion gas and stratospheric ozone is the urgent problem of the practical astronautics. The analytical estimates for atmospheric ozone destroyed in a rocket plume are made more then 20 years. The results very differ even for the same rocket types and prognoses vary from extremely pessimistic to restrained optimistic ones. Such divergence is a result, first of all, high chemical kinetics calculations sensitivity to the rate constants values varying more then several times for the numerous reactions taking into account, initial data for a rocket plume, initial data for the atmosphere performance etc. The wide known comparisons the calculated results with the real TCO change above the space-vehicle launching sites are absent till now despite the regular TCO space monitoring is conducted since 1978 year. In the article the analyses of the spline-interpolation total ozone mapping spectrometer (TOMS) measurements [1,2] is presented. We have examined 773 launches space rockets ARIAN, CZ, DELTA, PROTON, SHUTTLE, TITAN, ZENIT families was made for period since 1978 until 2001 year. For every launch the ozone level maps for regions corresponding to 10o latitude on 20o longitude during 7 days elapsed time have been built. For ~30% launches we have exposed the areas with TCO decreased on 15-20 Dobson units. The areas have shape either "spots" with 200-300km diameter or "stripes" 200-300km width parallel to plume. Such local ozone "holes" appear in 1-2 days

  20. Modeling and simulation of chemically stimulated hydrogel layers using the multifield theory

    Science.gov (United States)

    Sobczyk, Martin; Wallmersperger, Thomas

    2016-04-01

    Polyelectrolyte hydrogels are ionic gels with viscoelastic properties. They are able to reversibly swell and deswell in response to different external stimuli. In the present work stacked layers of hydrogels - also referred to as hydrogel layers - under chemical stimulation are numerically investigated. For this, a set of coupled partial differential equations describing the chemical, the electrical and the mechanical field is solved by using the finite element method. The swelling behavior of the hydrogel layers - obtained by a novel approach for the osmotic pressure - is in excellent agreement with other investigations available in the literature.

  1. Analytical Capability of Defocused µ-SORS in the Chemical Interrogation of Thin Turbid Painted Layers.

    Science.gov (United States)

    Conti, Claudia; Realini, Marco; Botteon, Alessandra; Colombo, Chiara; Noll, Sarah; Elliott, Stephen R; Matousek, Pavel

    2016-01-01

    A recently developed micrometer-scale spatially offset Raman spectroscopy (μ-SORS) method provides a new analytical capability for investigating non-destructively the chemical composition of sub-surface, micrometer-scale thickness, diffusely scattering layers at depths beyond the reach of conventional confocal Raman microscopy. Here, we demonstrate experimentally, for the first time, the capability of μ-SORS to determine whether two detected chemical components originate from two separate layers or whether the two components are mixed together in a single layer. Such information is important in a number of areas, including conservation of cultural heritage objects, and is not available, for highly turbid media, from conventional Raman microscopy, where axial (confocal) scanning is not possible due to an inability to facilitate direct imaging within the highly scattering sample. This application constitutes an additional capability for μ-SORS in addition to its basic capacity to determine the overall chemical make-up of layers in a turbid system.

  2. Hematite Surface Activation by Chemical Addition of Tin Oxide Layer.

    Science.gov (United States)

    Carvalho, Waldemir M; Souza, Flavio L

    2016-09-05

    In this study, the effect of tin (Sn(4+) ) modification on the surface of hematite electrodes synthesized by an aqueous solution route at different times (2, 5, 10, 18, and 24 h) is investigated. As confirmed from X-ray diffraction results, the as-synthesized electrode exhibits an oxyhydroxide phase, which is converted into a pure hematite phase after being subjected to additional thermal treatment at 750 °C for 30 min. The tin-modified hematite electrode is prepared by depositing a solution of Sn(4+) precursor on the as-synthesized electrode, followed by thermal treatment under the same abovementioned conditions. This modification results in an enhancement of the photocurrent response for all hematite electrodes investigated and attains the highest values of around 1.62 and 2.3 mA cm(-2) at 1.23 and 1.4 V versus RHE, respectively, for electrodes obtained in short synthesis times (2 h). Contact angle measurements suggest that the deposition of Sn(4+) on the hematite electrode provides a more hydrophilic surface, which favors a chemical reaction at the interface between the electrode and electrolyte. This result generates new perspectives for understanding the deposition of Sn(4+) on the hematite electrode surface, which is in contrast with several studies previously reported; these studies state that the enhancement in photocurrent density is related to either the induction of an increased donor charge density or shift in the flat-band potential, which favors charge separation.

  3. Synthesis of magnetic tunnel junctions with full in situ atomic layer and chemical vapor deposition processes

    Energy Technology Data Exchange (ETDEWEB)

    Mantovan, R., E-mail: roberto.mantovan@mdm.imm.cnr.it [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Vangelista, S.; Kutrzeba-Kotowska, B.; Cocco, S.; Lamperti, A.; Tallarida, G. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Mameli, D. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Dipartimento di Scienze Chimiche, Universita di Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Dipartimento di Scienza dei Materiali, Universita degli studi Milano-Bicocca, Via R Cozzi 53, 20125 Milano (Italy)

    2012-05-01

    Magnetic tunnel junctions, i.e. the combination of two ferromagnetic electrodes separated by an ultrathin tunnel oxide barrier, are core elements in a large variety of spin-based devices. We report on the use of combined chemical vapor and atomic layer deposition processes for the synthesis of magnetic tunnel junctions with no vacuum break. Structural, chemical and morphological characterizations of selected ferromagnetic and oxide layers are reported, together with the evidence of tunnel magnetoresistance effect in patterned Fe/MgO/Co junctions.

  4. Significance of vapor phase chemical reactions on CVD rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories

    Science.gov (United States)

    Gokoglu, Suleyman A.

    1988-01-01

    This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.

  5. Investigation of the redox property of a metalloprotein layer self-assembled on various chemical linkers.

    Science.gov (United States)

    Chung, Yong-Ho; Lee, Taek; Min, Junhong; Choi, Jeong-Woo

    2011-10-01

    Myogloblin, a well-known metalloprotein, was immobilized on a gold surface using various chemical linkers to investigate the length effect of chemical linker on the electron transfer in protein layers, because chemical linkers play roles in the pathway that transfers the electron from the protein to the gold substrate and act as protein immobilization reagents. Chemical linkers with 2, 6, 11, and 16 carbons were utilized to confirm length-effects. The immobilization of protein and chemical linker was validated with surface plasmon resonance (SPR) and atomic force microscopy (AFM). The electrochemical property was evaluated by cyclic voltammetry (CV) and chronocoulometry (CC). In those results, redox peaks of immobilized protein were controlled via the length of chemical linkers, and it could be directly applied to the realization of bioelectronic device.

  6. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.

    2013-04-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  7. Layer-by-layer fabrication of chemical-bonded graphene coating for solid-phase microextraction.

    Science.gov (United States)

    Zhang, Suling; Du, Zhuo; Li, Gongke

    2011-10-01

    A new fabrication strategy of the graphene-coated solid-phase microextraction (SPME) fiber is developed. Graphite oxide was first used as starting coating material that covalently bonded to the fused-silica substrate using 3-aminopropyltriethoxysilane (APTES) as cross-linking agent and subsequently deoxidized by hydrazine to give the graphene coating in situ. The chemical bonding between graphene and the silica fiber improve its chemical stability, and the obtained fiber was stable enough for more than 150 replicate extraction cycles. The graphene coating was wrinkled and folded, like the morphology of the rough tree bark. Its performance is tested by headspace (HS) SPME of polycyclic aromatic hydrocarbons (PAHs) followed by GC/MS analysis. The results showed that the graphene-coated fiber exhibited higher enrichment factors (EFs) from 2-fold for naphthalene to 17-fold for B(b)FL as compared to the commercial polydimethylsioxane (PDMS) fiber, and the EFs increased with the number of condensed rings of PAHs. The strong adsorption affinity was believed to be mostly due to the dominant role of π-π stacking interaction and hydrophobic effect, according to the results of selectivity study for a variety of organic compounds including PAHs, the aromatic compounds with different substituent groups, and some aliphatic hydrocarbons. For PAHs analysis, the graphene-coated fiber showed good precision (<11%), low detection limits (1.52-2.72 ng/L), and wide linearity (5-500 ng/L) under the optimized conditions. The repeatability of fiber-to-fiber was 4.0-10.8%. The method was applied to simultaneous analysis of eight PAHs with satisfactory recoveries, which were 84-102% for water samples and 72-95% for soil samples, respectively.

  8. Deposition and Characterization of TRISO Coating Layers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. K.; Choi, D. J.; Lee, H. K.; Kim, J. K.; Kim, J. H.; Chun, J. H. [KAIST, Daejeon (Korea, Republic of)

    2007-03-15

    Zirconium carbide has been chosen and studied as an advanced material of silicon carbide. In order to collect data on the basic properties and characteristics of Zirconium carbide, studies have been conducted using various methods. As a result of chemically vapor deposed subliming zirconium tetrachloride(ZrCl4) and using methane(CH4) as a source in hydrogen atmosphere, graphite film is deposited.. Zirconium carbide was deposited on the sample where silicon carbide was deposited on a graphite substrate using Zirconium sponge as a Zirconium source. In terms of physical characteristics, the deposited Zirconium carbide showed higher strength, but slightly lower elastic modulus than silicon carbide. In order to evaluate the mechanical properties of a coating layer in pre-irradiation step, internal pressure induced method and direct strength measurement method is carried out. In the internal pressure induced method, in order to produce the requirement pressure, pressure media is used. In the direct strength measurement method, the indentation experiment that indent on a hemisphere shell with plate indenter is conducted. For this method, the finite element analysis is used and the analysis is verified by indentation experiments. To measure the strength of TRISO particle SiC coating, SiC hemisphere shell is performed through grinding and heat treatment. Through the finite element analysis, strength evaluation equation is suggested. Using suggested equation, Strength evaluation is performed and the strength value shows 1025MPa as a result of statistical analysis.

  9. CHEMICALLY DEPOSITED SILVER FILM USED AS A SERS-ACTIVE OVER COATING LAYER FOR POLYMER FILM

    Institute of Scientific and Technical Information of China (English)

    Xiao-ning Liu; Gi Xue; Yun Lu; Jun Zhang; Fen-ting Li; Chen-chen Xue; Stephen Z.D. Cheng

    2001-01-01

    When colloidal silver particles were chemically deposited onto polymer film as an over-coating layer, surfaceenhanced Raman scattering (SERS) spectra could be collected for the surface analysis. SERS measurements of liquid crystal film were successfully performed without disturbing the surface morphology.

  10. Initiated-chemical vapor deposition of organosilicon layers: Monomer adsorption, bulk growth, and process window definition

    NARCIS (Netherlands)

    Aresta, G.; Palmans, J.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Organosilicon layers have been deposited from 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane (V3D3) by means of the initiated-chemical vapor deposition (i-CVD) technique in a deposition setup, ad hoc designed for the engineering of multilayer moisture permeation barriers. The application of Fourier

  11. Comprehensive optical studies on SnS layers synthesized by chemical bath deposition

    Science.gov (United States)

    Gedi, Sreedevi; Minnam Reddy, Vasudeva Reddy; Park, Chinho; Chan-Wook, Jeon; Ramakrishna Reddy, K. T.

    2015-04-01

    A simple non-vacuum and cost effective wet chemical technique, chemical bath deposition was used to prepare tin sulphide (SnS) layers on glass substrates. The layers were formed by varying bath temperature in the range, 40-80 °C, keeping other deposition parameters as constant. An exhaustive investigation on their optical properties with bath temperature was made using the transmittance and reflectance measurements. The absorption coefficient was evaluated from the optical transmittance data utilizing Lambert's principle and is >104 cm-1 for all the as-prepared layers. The energy band gap of the layers was determined from the differential reflectance spectra that varied from 1.41 eV to 1.30 eV. Consequently, refractive index and extinction coefficient were obtained from Pankov relations and dispersion constants were calculated using Wemple-Didomenico method. In addition, other optical parameters such as the optical conductivity, dielectric constants, dissipation factor, high frequency dielectric constant and relaxation time were also calculated. Finally electrical parameters such as resistivity, carrier mobility and carrier density of as-prepared layers were estimated using optical data. A detailed analysis of the dependence of all above mentioned parameters on bath temperature is reported and discussed for a clean understanding of electronic characteristics of SnS layers.

  12. Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs

    Science.gov (United States)

    Bioud, Youcef A.; Boucherif, Abderraouf; Belarouci, Ali; Paradis, Etienne; Drouin, Dominique; Arès, Richard

    2016-10-01

    We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As2O3. Finally, a qualitative model is proposed to explain the porous As2O3 layer formation on p-GaAs substrate.

  13. Chemical vapour deposition of tungsten and tungsten silicide layers for applications in novel silicon technology

    CERN Document Server

    Li, F X

    2002-01-01

    This work was a detailed investigation into the Chemical Vapour Deposition (CVD) of tungsten and tungsten silicide for potential applications in integrated circuit (IC) and other microelectronic devices. These materials may find novel applications in contact schemes for transistors in advanced ICs, buried high conductivity layers in novel Silicon-On-Insulator (SOI) technology and in power electronic devices. The CVD techniques developed may also be used for metal coating of recessed or enclosed features which may occur in novel electronic or electromechanical devices. CVD of tungsten was investigated using the silicon reduction reaction of WF sub 6. W layers with an optimum self-limiting thickness of 100 nm and resistivity 20 mu OMEGA centre dot cm were produced self-aligned to silicon. A hydrogen passivation technique was developed as part of the wafer pre-clean schedule and proved essential in achieving optimum layer thickness. Layers produced by this approach are ideal for intimate contact to shallow junct...

  14. Hot-Wire Chemical Vapor Deposition of Few-Layer Graphene on Copper Substrates

    Science.gov (United States)

    Soler, Víctor-Manuel Freire; Badia-Canal, Jordi; Roca, Carles Corbella; Miralles, Esther Pascual; Serra, Enric Bertran; Bella, José-Luís Andújar

    2013-01-01

    Chemical vapor deposition (CVD) of graphene on copper is an efficient technology for producing high-quality graphene for large areas. The objective of this work is to deposit graphene/few-layer graphene (FLG) using different types of copper substrate by a new hot-wire CVD process. We carried out the processes at temperatures below 1000 °C with acetylene (C2H2) as a precursor gas. After a general characterization of the samples, the results mostly indicate the formation of FLG on copper samples by this method. Nevertheless, the presence of pure, crystalline, and sufficiently flat surfaces is needed for depositing high-quality graphene layers.

  15. High Quality SiGe Layer Deposited by a New Ultrahigh Vacuum Chemical Vapor Deposition System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An ultrahigh vacuum chemical vapor deposition (UHV/CVD) system is developed and the details of its construction and operation are reported. Using high purity SiH4 and GeH4 reactant gases,the Si0.82Ge0.18 layer is deposited at 550℃. With the measurements by double crystal X-ray diffraction (DCXRD), transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS) techniques, it is shown that the crystalline quality of the SiGe layer is good,and the underlying SiGe/Si heterointerface is sharply defined.

  16. Atomic Layer Deposition Al2O3 Coatings Significantly Improve Thermal, Chemical, and Mechanical Stability of Anodic TiO2 Nanotube Layers

    Science.gov (United States)

    2017-01-01

    We report on a very significant enhancement of the thermal, chemical, and mechanical stability of self-organized TiO2 nanotubes layers, provided by thin Al2O3 coatings of different thicknesses prepared by atomic layer deposition (ALD). TiO2 nanotube layers coated with Al2O3 coatings exhibit significantly improved thermal stability as illustrated by the preservation of the nanotubular structure upon annealing treatment at high temperatures (870 °C). In addition, a high anatase content is preserved in the nanotube layers against expectation of the total rutile conversion at such a high temperature. Hardness of the resulting nanotube layers is investigated by nanoindentation measurements and shows strongly improved values compared to uncoated counterparts. Finally, it is demonstrated that Al2O3 coatings guarantee unprecedented chemical stability of TiO2 nanotube layers in harsh environments of concentrated H3PO4 solutions. PMID:28291942

  17. Chemical mechanical polishing of transparent conductive layers using spherical cationic polymer microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Shoji, E-mail: nagaoka@kmt-iri.go.jp [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Ryu, Naoya [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Yamanouchi, Akio [Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Shirosaki, Tomohiro [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Horikawa, Maki [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Sakurai, Hideo; Takafuji, Makoto; Ihara, Hirotaka [Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan)

    2015-02-02

    Spherical cationic polymer microbeads were used to chemically mechanically polish transparent conductive oxide (TCO) layers without the need for inorganic abrasives. Poly(methyl acrylate) (PMA) was used as the polymer matrix. Surface cationization of the spherical PMA microbeads was achieved by aminolysis using 1,2-diaminoethane. The amino group content of the microbeads was controlled using the aminolysis reaction time. The surface roughness of the TCO polished using the cationic polymer microbeads was similar to that of TCO polished with an inorganic abrasive. The microbead-polished TCO layer was slightly thinner than the unpolished TCO layer. The sheet resistance of the TCO layer polished using the microbeads was lower than that polished using the inorganic abrasive. The TCO polishing ability of the microbeads was dependent on their cationic properties and softness. - Highlights: • Indium tin oxide (ITO) layer was planarized using cationic polymer microbeads. • Cationic polymer microbeads planarized, while retaining ITO layer thickness • Cationic polymer microbeads did not degrade the sheet resistance of ITO. • Cationic polymer microbeads could planarize the ITO surface without damaging.

  18. Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    S. Karamat; S. Sonuşen; Ü. Çelik; Y. Uysallı; E. Özgönül; A. Oral

    2015-01-01

    The present competition of graphene electronics demands an efficient route which produces high quality and large area graphene. Chemical vapour deposition technique, where hydrocarbons dissociate in to active carbon species and form graphene layer on the desired metal catalyst via nucleation is considered as the most suitable method. In this study, single layer graphene with the presence of few layer single crystal graphene grains were grown on Pt foil via chemical vapour deposition. The higher growth temperature changes the surface morphology of the Pt foil so a delicate process of hydrogen bubbling was used to peel off graphene from Pt foil samples with the mechanical support of photoresist and further transferred to SiO2/Si substrates for analysis. Optical microscopy of the graphene transferred samples showed the regions of single layer along with different oriented graphene domains. Two type of interlayer stacking sequences, Bernal and twisted, were observed in the graphene grains. The presence of different stacking sequences in the graphene layers influence the electronic and optical properties;in Bernal stacking the band gap can be tunable and in twisted stacking the overall sheet resistance can be reduced. Grain boundaries of Pt provides low energy sites to the carbon species, therefore the nucleation of grains are more at the boundaries. The stacking order and the number of layers in grains were seen more clearly with scanning electron microscopy. Raman spectroscopy showed high quality graphene samples due to very small D peak. 2D Raman peak for single layer graphene showed full width half maximum (FWHM) value of 30 cm ? 1. At points A, B and C, Bernal stacked grain showed FWHM values of 51.22, 58.45 and 64.72 cm ? 1, while twisted stacked grain showed the FWHM values of 27.26, 28.83 and 20.99 cm ? 1, respectively. FWHM values of 2D peak of Bernal stacked grain showed an increase of 20–30 cm ? 1 as compare to single layer graphene which showed its

  19. Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    S. Karamat

    2015-08-01

    Full Text Available The present competition of graphene electronics demands an efficient route which produces high quality and large area graphene. Chemical vapour deposition technique, where hydrocarbons dissociate in to active carbon species and form graphene layer on the desired metal catalyst via nucleation is considered as the most suitable method. In this study, single layer graphene with the presence of few layer single crystal graphene grains were grown on Pt foil via chemical vapour deposition. The higher growth temperature changes the surface morphology of the Pt foil so a delicate process of hydrogen bubbling was used to peel off graphene from Pt foil samples with the mechanical support of photoresist and further transferred to SiO2/Si substrates for analysis. Optical microscopy of the graphene transferred samples showed the regions of single layer along with different oriented graphene domains. Two type of interlayer stacking sequences, Bernal and twisted, were observed in the graphene grains. The presence of different stacking sequences in the graphene layers influence the electronic and optical properties; in Bernal stacking the band gap can be tunable and in twisted stacking the overall sheet resistance can be reduced. Grain boundaries of Pt provides low energy sites to the carbon species, therefore the nucleation of grains are more at the boundaries. The stacking order and the number of layers in grains were seen more clearly with scanning electron microscopy. Raman spectroscopy showed high quality graphene samples due to very small D peak. 2D Raman peak for single layer graphene showed full width half maximum (FWHM value of 30 cm−1. At points A, B and C, Bernal stacked grain showed FWHM values of 51.22, 58.45 and 64.72 cm−1, while twisted stacked grain showed the FWHM values of 27.26, 28.83 and 20.99 cm−1, respectively. FWHM values of 2D peak of Bernal stacked grain showed an increase of 20–30 cm−1 as compare to single layer graphene

  20. Viscous-shock-layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous-shock-layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially-symmetric flow fields. Solutions were obtained using an implicit finite-difference scheme and results are presented for hypersonic flow over spherically-blunted cone configurations at freestream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  1. Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  2. Chemical deposition of selenium layers for selenization of sputtered and electrodeposited Cu–Zn–Sn metallic layers for photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Delbos, Sebastien; Benmoussa, Marya; Bodeux, Romain; Gougaud, Corentin; Naghavi, Negar, E-mail: negar.naghavi@edf.fr

    2015-08-31

    One of the key steps for high efficiency kesterite based solar cells is the control of the growth conditions of the kesterite phase from precursors. In this work, chemical deposition was used to introduce the selenium needed for Cu–Zn–Sn selenization and Cu{sub 2}ZnSnSe{sub 4} (CZTSe) synthesis. The influence of annealing time and precursor morphology based on deposition techniques (electrodeposition or sputtering) on the reaction path and kinetics of growth and degradation of kesterite phase was studied using scanning electron microscopy, X-ray diffraction and Raman characterizations. Important differences were detected between porous electrodeposited precursors and dense sputtered precursors. It was suggested that this difference comes from the morphology of the precursors, and that a control of the morphology is critical for the control of the annealing processes in CZTSe synthesis. - Highlights: • Cu–Zn–Sn metallic precursors deposited by co-sputtering and co-electrodeposition • Annealing of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) using chemical deposition of Se layer • Kinetics of the formation and decomposition of CZTSe • Role of the morphology and composition of precursors on the CZTSe properties.

  3. Chemical-Vapor-Deposited Graphene as Charge Storage Layer in Flash Memory Device

    Directory of Open Access Journals (Sweden)

    W. J. Liu

    2016-01-01

    Full Text Available We demonstrated a flash memory device with chemical-vapor-deposited graphene as a charge trapping layer. It was found that the average RMS roughness of block oxide on graphene storage layer can be significantly reduced from 5.9 nm to 0.5 nm by inserting a seed metal layer, which was verified by AFM measurements. The memory window is 5.6 V for a dual sweep of ±12 V at room temperature. Moreover, a reduced hysteresis at the low temperature was observed, indicative of water molecules or −OH groups between graphene and dielectric playing an important role in memory windows.

  4. Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam

    KAUST Repository

    Chen, Wei

    2013-03-01

    High-quality, large-area graphene films with few layers are synthesized on commercial nickel foams under optimal chemical vapor deposition conditions. The number of graphene layers is adjusted by varying the rate of the cooling process. It is found that the capacitive properties of graphene films are related to the number of graphene layers. Owing to the close attachment of graphene films on the nickel substrate and the low charge-transfer resistance, the specific capacitance of thinner graphene films is almost twice that of the thicker ones and remains stable up to 1000 cycles. These results illustrate the potential for developing high-performance graphene-based electrical energy storage devices. © 2012 Elsevier B.V. All rights reserved.

  5. Spiral growth of few-layer MoS2 by chemical vapor deposition

    Science.gov (United States)

    Dong, X.; Yan, C.; Tomer, D.; Li, C. H.; Li, L.

    2016-08-01

    Growth spirals exhibit appealing properties due to a preferred layer stacking and lack of inversion symmetry. Here, we report spiral growth of MoS2 during chemical vapor deposition on SiO2/Si and epitaxial graphene/SiC substrates, and their physical and electronic properties. We determine the layer-dependence of the MoS2 bandgap, ranging from 2.4 eV for the monolayer to a constant of 1.3 eV beyond the fifth layer. We further observe that spirals predominantly initiate at the step edges of the SiC substrate, based on which we propose a growth mechanism driven by screw dislocation created by the coalescence of two growth fronts at steps.

  6. Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mantovan, R., E-mail: roberto.mantovan@mdm.imm.cnr.it; Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Chikoidze, E.; Dumont, Y. [GEMaC, Université de Versailles St. Quentin en Yvelines-CNRS, Versailles (France); Fanciulli, M. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Milano (Italy)

    2014-05-07

    R-Fe-O (R = rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er{sub 2}O{sub 3} and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO{sub 3} and ErFe{sub 2}O{sub 4} phases develop following subsequent thermal annealing processes at 850 °C in air and N{sub 2}. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

  7. Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition

    Science.gov (United States)

    Mantovan, R.; Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G.; Chikoidze, E.; Dumont, Y.; Fanciulli, M.

    2014-05-01

    R-Fe-O (R = rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er2O3 and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO3 and ErFe2O4 phases develop following subsequent thermal annealing processes at 850 °C in air and N2. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

  8. Microstructural characterization of chemical bath deposited and sputtered Zn(O,S) buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Gautron, E., E-mail: eric.gautron@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Buffière, M. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); 44solar, 14 rue Kepler, 44240 La Chapelle sur Erdre (France); Harel, S.; Assmann, L.; Arzel, L.; Brohan, L. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Kessler, J. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); 44solar, 14 rue Kepler, 44240 La Chapelle sur Erdre (France); Barreau, N. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2013-05-01

    The present work aims at investigating the microstructure of Zn(O,S) buffer layers relative to their deposition route, namely either chemical bath deposition (CBD) or RF co-sputtering process (PVD) under pure Ar. The core of the study consists of cross-sectional transmission electron microscopy (TEM) characterization of the differently grown Zn(O,S) thin films on co-evaporated Cu(In,Ga)Se{sub 2} (CIGSe) absorbers. It shows that the morphology of Zn(O,S) layer deposited on CIGSe using CBD process is made of a thin layer of well oriented ZnS sphalerite-(111) and/or ZnS wurtzite-(0002) planes parallel to CIGSe chalcopyrite-(112) planes at the interface with CIGSe followed by misoriented nanometer-sized ZnS crystallites in an amorphous phase. As far as (PVD)Zn(O,S) is concerned, the TEM analyses reveal two different microstructures depending on the S-content in the films: for [S] / ([O] + [S]) = 0.6, the buffer layer is made of ZnO zincite and ZnS wurtzite crystallites grown nearly coherently to each other, with (0002) planes nearly parallel with CIGSe-(112) planes, while for [S] / ([O] + [S]) = 0.3, it is made of ZnO zincite type crystals with O atoms substituted by S atoms, with (0002) planes perfectly aligned with CIGSe-(112) planes. Such microstructural differences can explain why photovoltaic performances are dependent on the Zn(O,S) buffer layer deposition route. - Highlights: ► Zn(O,S) layers were grown by chemical bath (CBD) or physical vapor (PVD) deposition. ► For CBD, a 3 nm ZnS layer is followed by ZnS nano-crystallites in an amorphous phase. ► For PVD with [S] / ([O] + [S]) = 0.3, the layer has a Zn(O,S) zincite structure. ► For PVD with [S] / ([O] + [S]) = 0.6, ZnS wurtzite and ZnO zincite phases are mixed.

  9. Investigation into the Effect of Concentration of Benzotriazole on the Selective Layer Surface in the Chemical Mechanical Planarization Process

    Science.gov (United States)

    Ilie, Filip; Laurian, Tiberiu

    2015-12-01

    During selective layer chemical mechanical planarization (CMP), the surface layer is selectively oxidized and removed. Material removal rate in selective layer CMP depends on the depth of removal, pH of the solution, slurry chemistry, potential, percentage of oxidizer, and the applied load. Benzotriazole (BTA) has been used as a corrosion inhibitor in the CMP process. The role of BTA is to prevent corrosion of a pattern via a chemical reaction that forms a Cu-BTA passive film on the selective-layer surface. This paper focuses on the concentration effect of BTA in the slurry of a selective layer CMP process by measuring the friction force during CMP and the modification of the selective layer films immersed in slurries containing various concentrations of BTA. Additionally; the friction characteristics with the concentration of BTA in the selective layer CMP slurry. The effect of BTA concentration was verified using an empirical model based on the friction energy ( E f).

  10. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    Science.gov (United States)

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-03-27

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales.

  11. Chemically deposited CdS by an ammonia-free process for solar cells window layers

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa-Landin, R. [Centro de Investigacion y Estudios Avanzados del IPN, Unidad Queretaro, Apdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico); Departamento de Fisica, Universidad de Sonora, Apdo. Postal 88, 83190 Hermosillo, Son. (Mexico); Sastre-Hernandez, J.; Vigil-Galan, O. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional UP Adolfo Lopez Mateos, Edif. 9, 07738 Mexico, DF (Mexico); Ramirez-Bon, R. [Centro de Investigacion y Estudios Avanzados del IPN, Unidad Queretaro, Apdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico)

    2010-02-15

    Chemically deposited CdS window layers were studied on two different transparent conductive substrates, namely indium tin oxide (ITO) and fluorine doped tin oxide (FTO), to determine the influence of their properties on CdS/CdTe solar cells performance. Three types of CdS films obtained from different chemical bath deposition (CBD) processes were studied. The three CBD processes employed sodium citrate as the complexing agent in partial or full substitution of ammonia. The CdS films were studied by X-ray diffraction, optical transmission spectroscopy and atomic force microscopy. CdS/CdTe devices were completed by depositing 3 {mu}m thick CdTe absorbent layers by means of the close-spaced vapor transport technique (CSVT). Evaporated Cu-Au was used as the back contact in all the solar cells. Dark and under illumination J-V characteristic and quantum efficiency measurements were done on the CdS/CdTe devices to determine their conversion efficiency and spectral response. The efficiency of the cells depended on the window layer and on the transparent contact with values between 5.7% and 8.7%. (author)

  12. Plasma chemical reduction of model corrosion brass layers prepared in soil

    Science.gov (United States)

    Radkova, Lucie; Mikova, Petra; Prikryl, Radek; Krcma, Frantisek

    2016-08-01

    The brass plates of (50 × 10 × 1) mm3 were prepared with model corrosion layer because the real archaeological artifacts could be damaged during the method optimization. Samples corroded naturally more than 2 years in the soil. Excavated samples were treated in the low pressure (150 Pa) quartz glass plasma reactor (90 cm long and 9.5 cm in diameter) which was surrounded by two external copper electrodes supplied by radio-frequency generator (13.56 MHz). The experiments were carried out in a hydrogen-argon gas mixture at mass flows of 30 sccm for hydrogen and 20 sccm for argon for 90 min. The plasma power was 100, 200, 300 and 400 W in continuous and pulsed mode. Maximum sample temperature was set at 120 °C. The whole process was monitored by optical emission spectroscopy and the obtained data were used to calculate the relative intensity of OH radicals and rotational temperature. The results showed that the higher power had the greater maximum intensity of the OH radicals and rapidly degraded the corrosion layer. Corrosion layer was not completely removed during the reduction, but due to the reactions which occur in the plasma corrosion layer became brittle and after plasma chemical treatment can be removed easily. Finally, the SEM-EDX analysis of the surface composition confirmed removal of chlorine and oxygen from the corrosion products layers. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  13. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation

    Science.gov (United States)

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-01-01

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon’s neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn’t been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg−1 cm−1 compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides. PMID:26041686

  14. Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Sharma

    2014-01-01

    Full Text Available Aluminium-doped zinc oxide (ZnO:Al grown by expanding thermal plasma chemical vapour deposition (ETP-CVD has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO:Al on CIGS solar cell stacks, one should be aware that high substrate temperature processing (i.e., >200°C can damage the crucial underlying layers/interfaces (such as CIGS/CdS and CdS/i-ZnO. In this paper, the potential of adopting ETP-CVD ZnO:Al in CIGS solar cells is assessed: the effect of substrate temperature during film deposition on both the electrical properties of the ZnO:Al and the eventual performance of the CIGS solar cells was investigated. For ZnO:Al films grown using the high thermal budget (HTB condition, lower resistivities, ρ, were achievable (~5 × 10−4 Ω·cm than those grown using the low thermal budget (LTB conditions (~2 × 10−3 Ω·cm, whereas higher CIGS conversion efficiencies were obtained for the LTB condition (up to 10.9% than for the HTB condition (up to 9.0%. Whereas such temperature-dependence of CIGS device parameters has previously been linked with chemical migration between individual layers, we demonstrate that in this case it is primarily attributed to the prevalence of shunt currents.

  15. Analysis of viscous losses in the chemical interface layer of Love wave sensors.

    Science.gov (United States)

    Jakoby, B; Vellekoop, M J

    2000-01-01

    Love waves have been introduced as highly effective devices for liquid-sensing applications. For chemical sensors, a microacoustic delay line featuring a multilayered waveguide supporting a generalised Love wave mode can be used in an oscillator setup. The top layer of the waveguide is a chemical interface, which selectively adsorbs certain target molecules in the adjacent liquid. The increase in mass density caused by adsorption can be detected as changes in the oscillation frequency. Commonly used interface materials show viscoelastic losses leading to an unwanted damping of the wave. To keep the signal-to-noise ratio high, the total insertion loss of the delay line should be kept as low as possible. Furthermore, it must not exceed a certain value to allow the electronic circuitry to sustain the oscillation. We analyzed the viscoelastic losses, which strongly depend on the frequency being used. By means of the proposed theoretical approach, the maximum thickness of the interface layer can be determined not to exceed the losses that can be handled by the driving electronics.

  16. Chemical Stability of Titania and Alumina Thin Films Formed by Atomic Layer Deposition.

    Science.gov (United States)

    Correa, Gabriela C; Bao, Bo; Strandwitz, Nicholas C

    2015-07-15

    Thin films formed by atomic layer deposition (ALD) are being examined for a variety of chemical protection and diffusion barrier applications, yet their stability in various fluid environments is not well characterized. The chemical stability of titania and alumina thin films in air, 18 MΩ water, 1 M KCl, 1 M HNO3, 1 M H2SO4, 1 M HCl, 1 M KOH, and mercury was studied. Films were deposited at 150 °C using trimethylaluminum-H2O and tetrakis(dimethylamido)titanium-H2O chemistries for alumina and titania, respectively. A subset of samples were heated to 450 and 900 °C in inert atmosphere. Films were examined using spectroscopic ellipsometry, atomic force microscopy, optical microscopy, scanning electron microscopy, and X-ray diffraction. Notably, alumina samples were found to be unstable in pure water, acid, and basic environments in the as-synthesized state and after 450 °C thermal treatment. In pure water, a dissolution-precipitation mechanism is hypothesized to cause surface roughening. The stability of alumina films was greatly enhanced after annealing at 900 °C in acidic and basic solutions. Titania films were found to be stable in acid after annealing at or above 450 °C. All films showed a composition-independent increase in measured thickness when immersed in mercury. These results provide stability-processing relationships that are important for controlled etching and protective barrier layers.

  17. Atomic layer chemical vapor deposition of ZrO2-based dielectric films: Nanostructure and nanochemistry

    Science.gov (United States)

    Dey, S. K.; Wang, C.-G.; Tang, D.; Kim, M. J.; Carpenter, R. W.; Werkhoven, C.; Shero, E.

    2003-04-01

    A 4 nm layer of ZrOx (targeted x˜2) was deposited on an interfacial layer (IL) of native oxide (SiO, t˜1.2 nm) surface on 200 mm Si wafers by a manufacturable atomic layer chemical vapor deposition technique at 300 °C. Some as-deposited layers were subjected to a postdeposition, rapid thermal annealing at 700 °C for 5 min in flowing oxygen at atmospheric pressure. The experimental x-ray diffraction, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and high-resolution parallel electron energy loss spectroscopy results showed that a multiphase and heterogeneous structure evolved, which we call the Zr-O/IL/Si stack. The as-deposited Zr-O layer was amorphous ZrO2-rich Zr silicate containing about 15% by volume of embedded ZrO2 nanocrystals, which transformed to a glass nanoceramic (with over 90% by volume of predominantly tetragonal-ZrO2 (t-ZrO2) and monoclinic-ZrO2 (m-ZrO2) nanocrystals) upon annealing. The formation of disordered amorphous regions within some of the nanocrystals, as well as crystalline regions with defects, probably gave rise to lattice strains and deformations. The interfacial layer (IL) was partitioned into an upper SiO2-rich Zr silicate and the lower SiOx. The latter was substoichiometric and the average oxidation state increased from Si0.86+ in SiO0.43 (as-deposited) to Si1.32+ in SiO0.66 (annealed). This high oxygen deficiency in SiOx was indicative of the low mobility of oxidizing specie in the Zr-O layer. The stacks were characterized for their dielectric properties in the Pt/{Zr-O/IL}/Si metal oxide-semiconductor capacitor (MOSCAP) configuration. The measured equivalent oxide thickness (EOT) was not consistent with the calculated EOT using a bilayer model of ZrO2 and SiO2, and the capacitance in accumulation (and therefore, EOT and kZr-O) was frequency dispersive, trends well documented in literature. This behavior is qualitatively explained in terms of the multilayer nanostructure and nanochemistry that

  18. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.

    Science.gov (United States)

    Rongy, L; Goyal, N; Meiburg, E; De Wit, A

    2007-09-21

    Density differences across an autocatalytic chemical front traveling horizontally in covered thin layers of solution trigger hydrodynamic flows which can alter the concentration profile. We theoretically investigate the spatiotemporal evolution and asymptotic dynamics resulting from such an interplay between isothermal chemical reactions, diffusion, and buoyancy-driven convection. The studied model couples the reaction-diffusion-convection evolution equation for the concentration of an autocatalytic species to the incompressible Stokes equations ruling the evolution of the flow velocity in a two-dimensional geometry. The dimensionless parameter of the problem is a solutal Rayleigh number constructed upon the characteristic reaction-diffusion length scale. We show numerically that the asymptotic dynamics is one steady vortex surrounding, deforming, and accelerating the chemical front. This chemohydrodynamic structure propagating at a constant speed is quite different from the one obtained in the case of a pure hydrodynamic flow resulting from the contact between two solutions of different density or from the pure reaction-diffusion planar traveling front. The dynamics is symmetric with regard to the middle of the layer thickness for positive and negative Rayleigh numbers corresponding to products, respectively, lighter or heavier than the reactants. A parametric study shows that the intensity of the flow, the propagation speed, and the deformation of the front are increasing functions of the Rayleigh number and of the layer thickness. In particular, the asymptotic mixing length and reaction-diffusion-convection speed both scale as square root Ra for Ra>5. The velocity and concentration fields in the asymptotic dynamics are also found to exhibit self-similar properties with Ra. A comparison of the dynamics in the case of a monostable versus bistable kinetics is provided. Good agreement is obtained with experimental data on the speed of iodate-arsenous acid fronts

  19. Surface properties of solids and surface acoustic waves: Application to chemical sensors and layer characterization

    Science.gov (United States)

    Krylov, V. V.

    1995-09-01

    A general phenomenological approach is given for the description of mechanical surface properties of solids and their influence on surface acoustic wave propogation. Surface properties under consideration may be changes of the stress distribution in subsurface atomic layers, the presence of adsorbed gas molecules, surface degradation as a result of impacts from an aggressive environment, damage due to mechanical manufacturing or polishing, deposition of thin films or liquid layers, surface corrugations, etc. If the characteristic thickness of the affected layers is much less than the wavelengths of the propagating surface waves, then the effects of all these irregularities can be described by means of non-classical boundary conditions incorporating the integral surface parameters such as surface tension, surface moduli of elasticity and surface mass density. The effect of surface properties on the propagation of Rayleigh surface waves is analysed in comparison with the results of traditional approaches, in particular with Auld's energy perturbation method. One of the important implications of the above-mentioned boudnary conditions is that they are adequate for the description of the effect of rarely distributed adsorbed atoms or molecules. This allows, in particular, to obtain a rigorous theoretical description of chemical sensors using surface acoustic waves and to derive analytical expressions for their sensitivity.

  20. Effect of Reaction Temperature of CdS Buffer Layers by Chemical Bath Deposition Method.

    Science.gov (United States)

    Kim, Hye Jin; Kim, Chae-Woong; Jung, Duk Young; Jeong, Chaehwan

    2016-05-01

    This study investigated CdS deposition on a Cu(In,Ga)Se2 (CIGS) film via chemical bath deposition (CBD) in order to obtain a high-quality optimized buffer layer. The thickness and reaction temperature (from 50 degrees C to 65 degrees C) were investigated, and we found that an increase in the reaction temperature during CBD, resulted in a thicker CdS layer. We obtained a thin film with a thickness of 50 nm at a reaction temperature of 60 degrees C, which also exhibited the highest photoelectric conversion efficiency for use in solar cells. Room temperature time-resolved photoluminescence (TR-PL) measurements were performed on the Cu(In,Ga)Se2 (CIGS) thin film and CdS/CIGS samples to determine the recombination process of the photo-generated minority carrier. The device performance was found to be dependent on the thickness of the CdS layer. As the thickness of the CdS increases, the fill factor and the series resistance increased to 61.66% and decreased to 8.35 Ω, respectively. The best condition was observed at a reaction temperature of 60 degrees C, and its conversion efficiency was 12.20%.

  1. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G.

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnOx-CVD layers.

  2. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor.

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnO(x)-CVD layers.

  3. Chemical composition and metabolizable energy values of corn germ meal obtained by wet milling for layers

    Directory of Open Access Journals (Sweden)

    CS Albuquerque

    2014-03-01

    Full Text Available An experiment was carried out to determine the chemical composition, metabolizable energy values, and coefficients of nutrient digestibility of corn germ meal for layers. The chemical composition of corn germ meal was determined, and then a metabolism assay was performed to determine its apparent metabolizable energy (AME and apparent metabolizable energy corrected for nitrogen (AMEn values and its dry matter and gross energy apparent metabolizability coefficients (CAMDM and CAMGE, respectively. In the 8-day assay (four days of adaptation and four days of total excreta collection, 60 29-week-old white Lohman LSL layers were used. A completely randomized experimental design, with three treatments with five replicates of four birds each, was applied. Treatments consisted of a reference diet and two test diets, containing 20 or 30% corn germ meal. Results were submitted to analysis of variance and means were compared by the Tukey tests at 5% probability level. The chemical composition of corn germ meal was: 96.39% dry matter, 49.48% ether extract, 1.87% ashes, 7243 kcal gross energy/kg, 11.48% protein, 0.19% methionine, 0.21% cystine, 0.48% lysine, 0.40% threonine, 0.72% arginine, 0.35% isoleucine, 0.83% leucine, 0.57% valine, and 0.37% histidine, on as-fed basis. There were no statistical differences in AME, AMEn, CAMDM, and CAMGE values with the inclusion of 20 and 30% corn germ meal in the diets. On dry matter basis, AME, AMEn, CAMDM, and CAMGE values of corn germ meal were: 4,578 and 4,548 kcal/kg, 4,723 and 4,372 kcal/kg, 64.95 and 61.86%, respectively.

  4. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface

    Institute of Scientific and Technical Information of China (English)

    Chandaneswar Midya

    2012-01-01

    An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible Buid over a linearly shrinking surface is presented. The Row is permeated by an externally applied magnetic Geld normal to the plane of the flow. The equations governing the Row and concentration Reid are reduced into a set of nonlinear ordinary differential equations using similarity variables. Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall mass flux (PMF) as boundary conditions. The study reveals that the concentration over a shrinking sheet is signiRcantly different from that of a stretching surface. It s found that te solute boundary layer thickness is enhanced with the increasing values of the Schmidt number and the power-law index parameter, but decreases with enhanced vaJues of magnetic and reaction rate parameters for the PSC case. For the PMF case, the solute boundary layer thickness decreases with the increase of the Schmidt number, magnetic and reaction rate parameter for power-law index parameter n = 0. Negative solute boundary layer thickness is observed for the PMF case when n = 1 and 2, and these facts may not be realized in real-world applications.%An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible fluid over a linearly shrinking surface is presented.The flow is permeated by an externally applied magnetic field normal to the plane of the flow.The equations governing the flow and concentration field are reduced into a set of nonlinear ordinary differential equations using similarity variables.Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall

  5. A Tri-Layer Proton-Conducting Electrolyte for Chemically Stable Operation in Solid Oxide Fuel Cells

    KAUST Repository

    Bi, Lei

    2013-10-07

    Two BaZr0.7Pr0.1Y0.2O3-δ (BZPY) layers were used to sandwich a BaCe0.8Y0.2O3-δ (BCY) layer to produce a tri-layer electrolyte consisting of BZPY/BCY/BZPY. The BZPY layers significantly improved the chemical stability of the BCY electrolyte layer, which was not stable when tested alone, suggesting that the BZPY layer effectively protected the BCY layer from CO2 reaction, which is the major problem of BCY-based materials. A fuel cell with this sandwiched electrolyte supported on a Ni-based composite anode showed a reasonable cell performance, reaching 185 mW cm-2 at 700 oC, in spite of the relatively large electrolyte thickness (about 65 µm).

  6. Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

    Science.gov (United States)

    Holmes, Heather A.

    Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on

  7. Characterization of chemical bath deposited buffer layers for thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, D.; Efstathiadis, H.; Haldar, P. [College of Nanoscale Science and Engineering, University at Albany - State University of New York, 257 Fuller Rd., Albany, NY 12203 (United States); Sun, R. [Angstrom Sun Technologies Inc., 33 Nagog Park, Acton, MA 01720 (United States)

    2010-10-15

    Cadmium sulfide (CdS), indium sulfide (In{sub 2}S{sub 3}) and zinc sulfide (ZnS) thin films have been deposited by chemical bath deposition (CBD) for buffer layer applications in Cu-chalcopyrite-based thin film solar cells. Films were characterized by scanning electron microscopy (SEM), UV-Vis transmission, X-ray photoelectron spectroscopy (XPS), grazing-incidence X-ray diffraction (GIXRD), and spectroscopic ellipsometry. Results indicate CdS can be deposited with low oxygen content and high light transmission over 245-1700 nm. CBD-ZnS and CBD-InS both exhibit 5-10% less light transmission than CdS in the same thickness range. In terms of light transmission and degree of impurities CdS appears to be a better buffer material than CBD-ZnS or CBD-InS. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    2016-11-01

    Full Text Available Hexagonal boron nitrite (h-BN is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.

  9. Wet Etching of Heat Treated Atomic Layer Chemical Vapor Deposited Zirconium Oxide in HF Based Solutions

    Science.gov (United States)

    Balasubramanian, Sriram; Raghavan, Srini

    2008-06-01

    Alternative materials are being considered to replace silicon dioxide as gate dielectric material. Of these, the oxides of hafnium and zirconium show the most promise. However, integrating these new high-k materials into the existing complementary metal-oxide-semiconductor (CMOS) process remains a challenge. One particular area of concern is the wet etching of heat treated high-k dielectrics. In this paper, work done on the wet etching of heat treated atomic layer chemical vapor deposited (ALCVD) zirconium oxide in HF based solutions is presented. It was found that heat treated material, while refractory to wet etching at room temperature, is more amenable to etching at higher temperatures when methane sulfonic acid is added to dilute HF solutions. Selectivity over SiO2 is still a concern.

  10. On the segregation of chemical species in a clear boundary layer over heterogeneous land surfaces

    Directory of Open Access Journals (Sweden)

    H. G. Ouwersloot

    2011-07-01

    Full Text Available We have systematically studied the inability of boundary layer turbulence to efficiently mix reactive species. This creates regions where the species are accumulated in a correlated or anti-correlated way, thereby modifying the mean reactivity. Here, we quantify this modification by the intensity of segregation, IS, and analyse the driving mechanisms: heterogeneity of the surface moisture and heat fluxes, various background wind patterns and non-uniform isoprene emissions. For typical conditions in the Amazon rain forest, applying homogeneous surface forcings, the isoprene-OH reaction rate is altered by less than 10 %. This is substantially smaller than the previously assumed IS of 50 % in recent large-scale model analyses of tropical rain forest chemistry. Spatial heterogeneous surface emissions enhance the segregation of species, leading to alterations of the chemical reaction rates of up to 20 %. For these cases, spatial segregation is induced by heterogeneities of the surface properties: a cool and wet forested patch characterized by high isoprene emissions is alternated with a warm and dry patch that represents pasture with relatively low isoprene emissions. The intensities of segregation are enhanced when the background wind direction is parallel to the borders between the patches and reduced in case of a perpendicular wind direction. The effects of segregation on trace gas concentrations vary per species. For the highly reactive OH, the differences in concentration averaged over the boundary layer are less than 2 % compared to homogeneous surface conditions, while the isoprene concentration is increased by as much as 12 % due to the reduced chemical reaction rates. These processes take place at the sub-grid scale of chemistry transport models and therefore need to be parameterized.

  11. Physical, chemical, and thermal interactions in the Pleasant Bay Layered Gabbro-Diorite Intrusion, Maine

    Science.gov (United States)

    Patwardhan, K.; Algeo, J.

    2012-12-01

    The approximately 3 km thick Pleasant Bay Layered Intrusion (PBLI) is interpreted to have formed (420 Ma) by repeated intrusions of gabbroic magma into a partly solidified dioritic magma chamber (Wiebe, 1993; Waight et. al., 2001) during the earliest stage of the Acadian orogeny (Tucker et. al., 2001). Typical field relationships in the PBLI include gradational gabbro-diorite layers of variable thicknesses with pipes of silicic composition intruding along the chilled lower contacts of gabbroic layers, chilled gabbroic blobs encased within diorite, and composite dikes consisting of intermingled gabbro blobs of rounded and/or angular geometries within a dioritic or granitic matrix. Detailed studies of similar relationships in the nearby Isle au Haut Igneous Complex (IHIC) have indicated that where diorite underlies gabbro, residual silicic melt was extracted from the underlying partly solidified diorite by compaction and migrated upwards to form a thin layer of buoyant melt that underwent a Rayleigh-Taylor (R-T) type instability producing the silicic pipes which were subsequently arrested by solidification of the overlying gabbro (Chapman & Rhodes, 1992; Patwardhan & Marsh, 2011). Whereas in the IHIC pipes typically are 11-12 cm in diameter and spaced ~30 cm apart, instability features in the PBLI occur at varying scales with pipe diameters commonly ranging from 4 to 100 cm and pipe spacing varying between 20 to 150 cm. Strong compositional differences between the gabbro (~48 wt.% SiO2), diorite (~57 wt.% SiO2), and pipes (~66 wt.% SiO2) correspond to significant differences in estimated density, liquid viscosity, and temperature (near liquidus gabbro: 2.68 g/cm3, 102.3 poise, 1210 oC, partly crystallized diorite: 2.61 g/cm3, 990 oC, and silicic melt derived from partly crystallized diorite: 2.36 g/cm3, 105 poise). The thickness of the buoyant silicic layer and the ascent rate of the pipes emanating from this layer are calculated using estimated viscosity ratios and

  12. Chemical resistance of thin film materials based on metal oxides grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sammelselg, Väino, E-mail: vaino.sammelselg@ut.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu (Estonia); Netšipailo, Ivan; Aidla, Aleks; Tarre, Aivar; Aarik, Lauri; Asari, Jelena; Ritslaid, Peeter; Aarik, Jaan [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2013-09-02

    Etching rate of technologically important metal oxide thin films in hot sulphuric acid was investigated. The films of Al-, Ti-, Cr-, and Ta-oxides studied were grown by atomic layer deposition (ALD) method on silicon substrates from different precursors in large ranges of growth temperatures (80–900 °C) in order to reveal process parameters that allow deposition of coatings with higher chemical resistance. The results obtained demonstrate that application of processes that yield films with lower concentration of residual impurities as well as crystallization of films in thermal ALD processes leads to significant decrease of etching rate. Crystalline films of materials studied showed etching rates down to values of < 5 pm/s. - Highlights: • Etching of atomic layer deposited thin metal oxide films in hot H{sub 2}SO{sub 4} was studied. • Smallest etching rates of < 5 pm/s for TiO{sub 2}, Al{sub 2}O{sub 3}, and Cr{sub 2}O{sub 3} were reached. • Highest etching rate of 2.8 nm/s for Al{sub 2}O{sub 3} was occurred. • Remarkable differences in etching of non- and crystalline films were observed.

  13. Boundary layer chemical vapour synthesis of self-organised ferromagnetically filled radial-carbon-nanotube structures.

    Science.gov (United States)

    Boi, Filippo S; Wilson, Rory M; Mountjoy, Gavin; Ibrar, Muhammad; Baxendale, Mark

    2014-01-01

    Boundary layer chemical vapour synthesis is a new technique that exploits random fluctuations in the viscous boundary layer between a laminar flow of pyrolysed metallocene vapour and a rough substrate to yield ferromagnetically filled radial-carbon-nanotube structures departing from a core agglomeration of spherical nanocrystals individually encapsulated by graphitic shells. The fluctuations create the thermodynamic conditions for the formation of the central agglomeration in the vapour which subsequently defines the spherically symmetric diffusion gradient that initiates the radial growth. The radial growth is driven by the supply of vapour feedstock by local diffusion gradients created by endothermic graphitic-carbon formation at the vapour-facing tips of the individual nanotubes and is halted by contact with the isothermal substrate. The radial structures are the dominant product and the reaction conditions are self-sustaining. Ferrocene pyrolysis yields three common components in the nanowire encapsulated by multiwall carbon nanotubes, Fe3C, α-Fe, and γ-Fe. Magnetic tuning in this system can be achieved through the magnetocrystalline and shape anisotropies of the encapsulated nanowire. Here we demonstrate proof that alloying of the encapsulated nanowire is an additional approach to tuning of the magnetic properties of these structures by synthesis of radial-carbon-nanotube structures with γ-FeNi encapsulated nanowires.

  14. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene

    Science.gov (United States)

    Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, Grzegorz

    2016-07-01

    We investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication.

  15. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  16. EUV-induced physico-chemical changes in near-surface layers of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bartnik, A., E-mail: abartnik@wat.edu.pl [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); Chernyayeva, O.; Sobczak, J.W. [Institute of Physical Chemistry Polish Academy of Sciences, 44-52 Kasprzaka Street, 01-224 Warsaw (Poland)

    2011-04-15

    In this work a laser-plasma EUV source based on a gas puff target was used for micro- and nanostructuring of polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and poly-oxydiphenylene-pyromellitimide (Kapton HN) foils. The plasma radiation was focused using a gold-plated grazing incidence ellipsoidal collector. The collector allowed for effective focusing of Kr plasma radiation from the wavelength range {lambda} = 9-70 nm. The polymer foils were irradiated in the focal plane or at some distance downstream the focal plane of the EUV collector. The surface morphology of the irradiated polymer samples was investigated using a scanning electron microscope (SEM) and the chemical changes by X-ray photoelectron spectroscopy (XPS). Different kinds of micro- and nanostructures created in near-surface layers of the polymers were obtained. The form of the structures depends on the type of polymer and the EUV exposure. In case of PEN even a single shot was sufficient to obtain visible changes in surface morphology. In case of Kapton clearly visible surface modification requires tens of EUV pulses. To investigate the changes in the chemical structure XPS spectra, corresponding to the valence band of the polymer samples, were measured. Significant differences were revealed in the XPS spectra of irradiated and not-irradiated polymers showing decrease of functional groups containing oxygen was indicated.

  17. Tribochemical interaction between nanoparticles and surfaces of selective layer during chemical mechanical polishing

    Energy Technology Data Exchange (ETDEWEB)

    Ilie, Filip, E-mail: filip@meca.omtr.pub.ro [Polytechnic University of Bucharest, Department of Machine Elements and Tribology (Romania)

    2013-11-15

    Nanoparticles have been widely used in polish slurries such as those in the chemical mechanical polishing (CMP) process. For understanding the mechanisms of CMP, an atomic force microscope (AFM) is used to characterize polished surfaces of selective layers, after a set of polishing experiments. To optimize the CMP polishing process, one needs to get information on the interaction between the nano-abrasive slurry nanoparticles and the surface of selective layer being polished. The slurry used in CMP process of the solid surfaces is slurry with large nanoparticle size colloidal silica sol nano-abrasives. Silica sol nano-abrasives with large nanoparticle are prepared and characterized by transmission electron microscopy, particles colloidal size, and Zeta potential in this paper. The movement of nanoparticles in liquid and the interaction between nanoparticles and solid surfaces coating with selective layer are very important to obtain an atomic alloy smooth surface in the CMP process. We investigate the nanoparticle adhesion and removal processes during CMP and post-CMP cleaning. The mechanical interaction between nanoparticles and the wafer surface was studied using a microcontact wear model. This model considers the nanoparticle effects between the polishing interfaces during load balancing. Experimental results on polishing and cleaning are compared with numerical analysis. This paper suggests that during post-CMP cleaning, a combined effort in chemical and mechanical interaction (tribochemical interactions) would be effective in removal of small nanoparticles during cleaning. For large nanoparticles, more mechanical forces would be more effective. CMP results show that the removal rate has been improved to 367 nm/min and root mean square (RMS) of roughness has been reduced from 4.4 to 0.80 nm. Also, the results show that the silica sol nano-abrasives about 100 nm are of higher stability (Zeta potential is −65 mV) and narrow distribution of nanoparticle

  18. Chemical models for martian weathering profiles: Insights into formation of layered phyllosilicate and sulfate deposits

    Science.gov (United States)

    Zolotov, Mikhail Yu.; Mironenko, Mikhail V.

    2016-09-01

    Numerical chemical models for water-basalt interaction have been used to constrain the formation of stratified mineralogical sequences of Noachian clay-bearing rocks exposed in the Mawrth Vallis region and in other places on cratered martian highlands. The numerical approaches are based on calculations of water-rock type chemical equilibria and models which include rates of mineral dissolution. Results show that the observed clay-bearing sequences could have formed through downward percolation and neutralization of acidic H2SO4-HCl solutions. A formation of weathering profiles by slightly acidic fluids equilibrated with current atmospheric CO2 requires large volumes of water and is inconsistent with observations. Weathering by solutions equilibrated with putative dense CO2 atmospheres leads to consumption of CO2 to abundant carbonates which are not observed in clay stratigraphies. Weathering by H2SO4-HCl solutions leads to formation of amorphous silica, Al-rich clays, ferric oxides/oxyhydroxides, and minor titanium oxide and alunite at the top of weathering profiles. Mg-Fe phyllosilicates, Ca sulfates, zeolites, and minor carbonates precipitate from neutral and alkaline solutions at depth. Acidic weathering causes leaching of Na, Mg, and Ca from upper layers and accumulation of Mg-Na-Ca sulfate-chloride solutions at depth. Neutral MgSO4 type solutions dominate in middle parts of weathering profiles and could occur in deeper layers owing to incomplete alteration of Ca minerals and a limited trapping of Ca to sulfates. Although salts are not abundant in the Noachian geological formations, the results suggest the formation of Noachian salty solutions and their accumulation at depth. A partial freezing and migration of alteration solutions could have separated sulfate-rich compositions from low-temperature chloride brines and contributed to the observed diversity of salt deposits. A Hesperian remobilization and release of subsurface MgSO4 type solutions into newly

  19. Interrogating chemical variation via layer-by-layer SERS during biofouling and cleaning of nanofiltration membranes with further investigations into cleaning efficiency.

    Science.gov (United States)

    Cui, Li; Chen, Pengyu; Zhang, Bifeng; Zhang, Dayi; Li, Junyi; Martin, Francis L; Zhang, Kaisong

    2015-12-15

    Periodic chemical cleaning is an essential step to maintain nanofiltration (NF) membrane performance and mitigate biofouling, a major impediment in high-quality water reclamation from wastewater effluent. To target the important issue of how to clean and control biofouling more efficiently, this study developed surface-enhanced Raman spectroscopy (SERS) as a layer-by-layer tool to interrogate the chemical variations during both biofouling and cleaning processes. The fact that SERS only reveals information on the surface composition of biofouling directly exposed to cleaning reagents makes it ideal for evaluating cleaning processes and efficiency. SERS features were highly distinct and consistent with different biofouling stages (bacterial adhesion, rapid growth, mature and aged biofilm). Cleaning was performed on two levels of biofouling after 18 h (rapid growth of biofilm) and 48 h (aged biofilm) development. An opposing profile of SERS bands between biofouling and cleaning was observed and this suggests a layer-by-layer cleaning mode. In addition, further dynamic biochemical and infrastructural changes were demonstrated to occur in the more severe 48-h biofouling, resulting in the easier removal of sessile cells from the NF membrane. Biofouling substance-dependent cleaning efficiency was also evaluated using the surfactant sodium dodecyl sulfate (SDS). SDS appeared more efficient in cleaning lipid than polysaccharide and DNA. Protein and DNA were the predominant residual substances (irreversible fouling) on NF membrane leading to permanent flux loss. The chemical information revealed by layer-by-layer SERS will lend new insights into the optimization of cleaning reagents and protocols for practical membrane processes.

  20. Indium sulfide thin films as window layer in chemically deposited solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Loredo, S. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Peña-Méndez, Y., E-mail: yolapm@gmail.com [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Calixto-Rodriguez, M. [Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, C.P. 62760 Emiliano Zapata, Morelos (Mexico); Messina-Fernández, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo” S/N, C.P. 63190 Tepic, Nayarit (Mexico); Alvarez-Gallegos, A. [Universidad Autónoma del Estado de Morelos, Centro de Investigación en Ingeniería y Ciencias Aplicadas, Av. Universidad 1001, C.P. 62209, Cuernavaca Morelos (Mexico); Vázquez-Dimas, A.; Hernández-García, T. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico)

    2014-01-01

    Indium sulfide (In{sub 2}S{sub 3}) thin films have been synthesized by chemical bath deposition technique onto glass substrates using In(NO{sub 3}){sub 3} as indium precursor and thioacetamide as sulfur source. X-ray diffraction studies have shown that the crystalline state of the as-prepared and the annealed films is β-In{sub 2}S{sub 3}. Optical band gap values between 2.27 and 2.41 eV were obtained for these films. The In{sub 2}S{sub 3} thin films are photosensitive with an electrical conductivity value in the range of 10{sup −3}–10{sup −7} (Ω cm){sup −1}, depending on the film preparation conditions. We have demonstrated that the In{sub 2}S{sub 3} thin films obtained in this work are suitable candidates to be used as window layer in thin film solar cells. These films were integrated in SnO{sub 2}:F/In{sub 2}S{sub 3}/Sb{sub 2}S{sub 3}/PbS/C–Ag solar cell structures, which showed an open circuit voltage of 630 mV and a short circuit current density of 0.6 mA/cm{sup 2}. - Highlights: • In{sub 2}S{sub 3} thin films were deposited using the Chemical Bath Deposition technique. • A direct energy band gap between 2.41 to 2.27 eV was evaluated for the In{sub 2}S{sub 3} films. • We made chemically deposited solar cells using the In{sub 2}S{sub 3} thin films.

  1. Large-Area Growth of Uniform Single-Layer MoS2 Thin Films by Chemical Vapor Deposition.

    Science.gov (United States)

    Baek, Seung Hyun; Choi, Yura; Choi, Woong

    2015-12-01

    We report the largest-size thin films of uniform single-layer MoS2 on sapphire substrates grown by chemical vapor deposition based on the reaction of gaseous MoO3 and S evaporated from solid sources. The as-grown thin films of single-layer MoS2 were continuous and uniform in thickness for more than 4 cm without the existence of triangular-shaped MoS2 clusters. Compared to mechanically exfoliated crystals, the as-grown single-layer MoS2 thin films possessed consistent chemical valence states and crystal structure along with strong photoluminescence emission and optical absorbance at high energy. These results demonstrate that it is possible to scale up the growth of uniform single-layer MoS2 thin films, providing potentially important implications on realizing high-performance MoS2 devices.

  2. Ab-initio investigation of the influence of chemical compounds on graphene layer properties in fabricated IR detector

    Science.gov (United States)

    Ruta, L.; Wozny, J.; Szczecinska, N.; Lisik, Z.

    2016-11-01

    In this work, the influence of H2O, NaOH and propanol on properties of graphene layer placed on SiO2 has been investigated. These chemical particles are present during technological steps required for a device fabrication and may lead to significant changes of graphene properties. The investigation has been done by means of ab-initio simulation based on the DFT method. A MedeA-VASP package was used to investigate behavior of graphene layer in the vicinity of chemical compounds. Presented studies show that properties of graphene are significantly modified when particles of H2O and NaOH are captured in-between graphene layer and SiO2. Special attention should be paid to NaOH which, according to simulations, decays and modifies the properties of graphene layer.

  3. Effect of various chemical agents used in gingival retraction systems on smear layer: Scanning electron microscope study

    Directory of Open Access Journals (Sweden)

    Krishna Shivraj Lahoti

    2016-01-01

    Full Text Available Background: Chemical agents used for gingival retraction affects the smear layer. Aim: To determine the effect of three different chemical agents used for gingival retraction systems on smear layer. Materials and Methods: Four human premolars were prepared using air-rotor with air-water spray to receive full crown restoration. Three of them were treated with 21.3% aluminum chloride for 10 min, 0.05% oxymetazoline hydrochloride for 10 min, and expasyl for 2 min, respectively. One sample was left untreated. Then, the tooth specimens were rinsed with tap water to remove any residue of test materials. All the samples (treated and untreated were processed by scanning electron microscope (SEM. Processed samples were examined under SEM at ×2400 to evaluate the effect of chemical agents on smear layer. Results: SEM examination revealed that 0.05% oxymetazoline hydrochloride for 10 min produced no alteration to smear layer followed by minimum alteration by expasyl for 2 min and complete removal of smear layer with etching of dentin with 21.3% aluminum chloride for 10 min. Conclusion: 0.05% oxymetazoline hydrochloride and expasyl are kind to smear layer.

  4. Hydrogen generation via photoelectrochemical water splitting using chemically exfoliated MoS2 layers

    Directory of Open Access Journals (Sweden)

    R. K. Joshi

    2016-01-01

    Full Text Available Study on hydrogen generation has been of huge interest due to increasing demand for new energy sources. Photoelectrochemical reaction by catalysts was proposed as a promising technique for hydrogen generation. Herein, we report the hydrogen generation via photoelectrochecmial reaction using films of exfoliated 2-dimensional (2D MoS2, which acts as an efficient photocatalyst. The film of chemically exfoliated MoS2 layers was employed for water splitting, leading to hydrogen generation. The amount of hydrogen was qualitatively monitored by observing overpressure of a water container. The high photo-current generated by MoS2 film resulted in hydrogen evolution. Our work shows that 2D MoS2 is one of the promising candidates as a photocatalyst for light-induced hydrogen generation. High photoelectrocatalytic efficiency of the 2D MoS2 shows a new way toward hydrogen generation, which is one of the renewable energy sources. The efficient photoelectrocatalytic property of the 2D MoS2 is possibly due to availability of catalytically active edge sites together with minimal stacking that favors the electron transfer.

  5. Formation of a Molecular Wire Using the Chemically Adsorbed Monomolecular Layer Having Pyrrolyl Groups

    Directory of Open Access Journals (Sweden)

    Kazufumi Ogawa

    2011-01-01

    Full Text Available A molecular wire containing polypyrrolyl conjugate bonds has been prepared by a chemical adsorption technique using 1,1,1-trichloro-12-pyrrolyl-1-siladodecane (PNN and an electrooxidative polymerization technique, and the conductivity of the molecular wire without any dopant has been measured by using AFM/STM at room temperature. When sample dimension measured was about 0.3 nm (thickness of the conductive portion in the PNN monomolecular layer ×100 μm (the average width of an electric path ×2 mm (the distance between Pt positive electrode and the AFM tip covered with Au, the conductivity of the polymerized PNN molecular wire at room temperature was larger than 1.6 × 105 S/cm both in an atmosphere and in a vacuum chamber of 10−5 Torr. The activation energy obtained by Arrhenius' plots was almost zero in the temperature range between 320 and 450 K.

  6. Hydrogen generation via photoelectrochemical water splitting using chemically exfoliated MoS{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, R. K., E-mail: r.joshi@unsw.edu.au, E-mail: alwarappan@cecri.res.in; Sahajwalla, V. [Centre for Sustainable Materials Research and Technology, School of Materials Science and Engineering, University of New South Wales, NSW 2052 (Australia); Shukla, S.; Saxena, S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai (India); Lee, G.-H. [Department of Material Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Alwarappan, S., E-mail: r.joshi@unsw.edu.au, E-mail: alwarappan@cecri.res.in [CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India)

    2016-01-15

    Study on hydrogen generation has been of huge interest due to increasing demand for new energy sources. Photoelectrochemical reaction by catalysts was proposed as a promising technique for hydrogen generation. Herein, we report the hydrogen generation via photoelectrochecmial reaction using films of exfoliated 2-dimensional (2D) MoS{sub 2}, which acts as an efficient photocatalyst. The film of chemically exfoliated MoS{sub 2} layers was employed for water splitting, leading to hydrogen generation. The amount of hydrogen was qualitatively monitored by observing overpressure of a water container. The high photo-current generated by MoS{sub 2} film resulted in hydrogen evolution. Our work shows that 2D MoS{sub 2} is one of the promising candidates as a photocatalyst for light-induced hydrogen generation. High photoelectrocatalytic efficiency of the 2D MoS{sub 2} shows a new way toward hydrogen generation, which is one of the renewable energy sources. The efficient photoelectrocatalytic property of the 2D MoS{sub 2} is possibly due to availability of catalytically active edge sites together with minimal stacking that favors the electron transfer.

  7. Chemical composition of aerosol in the atmospheric surface layer of the East Antarctica coastal zone

    Directory of Open Access Journals (Sweden)

    L. P. Golobokova

    2016-01-01

    Full Text Available Chemical composition of aerosol in the ground layer of the coastal zone in East Antarctica is analyzed in the article. The aerosol samples were taken in 2006–2015 during seasonal works of the Russian Antarctic Expeditions (RAE, namely, these were 52nd–53rd, 55th, and 58th–60th expeditions. Samples were taken in the 200‑km band of the sea-shore zone along routes of the research vessels (REV «Akademik Fedorov» and «Akademik Treshnikov» as well as on territories of the Russian stations Molodezhnaya and Mirny. Although the results obtained did show the wide range of the aerosol concentrations and a certain variability of their chemical composition, some common features of the variability were revealed. Thus, during the period from 2006 to 2014 a decrease of average values of the sums were noted. Spatially, a tendency of decreasing of the ion concentrations was found in the direction from the station Novolazarevskaya to the Molodezhnaya one, but the concentrations increased from the Molodezhnaya to the station Mirny. The sum of ions of the aerosol in the above mentioned coastal zone was, on the average, equal to 2.44 μg/m3, and it was larger than that on the territory of the Antarctic stations Molodezhnaya (0,29 μg/m3 and Mirny (0,50 ág / m3. The main part to the sum of the aerosol ions on the Antarctic stations was contributed by Na+, Ca2+, Cl−, SO4 2−. The main ions in aerosol composition in the coastal zone are ions Na+ and Cl−. The dominant contribution of the sea salt and SO4 2− can be traced in not only the composition of atmospheric aerosols, but also in the chemical composition of the fresh snow in the coastal areas of East Antarctica: at the Indian station Maitri, on the Larsemann Hills, and in a boring located in 55.3 km from the station Progress (K = 1.4÷6.1. It was noted that values of the coefficient of enrichment K of these ions decreases as someone moves from a shore to inland. Estimation of

  8. Preparation of SmBiO3 buffer layer on YSZ substrate by an improved chemical solution deposition route

    Science.gov (United States)

    Zhu, Xiaolei; Pu, Minghua; Zhao, Yong

    2016-12-01

    A quick route for chemical solution deposition (CSD) has been developed to prepare SmBiO3 (SBO) layers on yttria stabilized zirconia (YSZ) substrates rapidly by using of solid state decomposition (SSD) technique. The proper conditions for volatilization of lactic acid, which as solvent in precursor coated layer, and SBO growth are 115°C for 30 min and 794°C for 60 min in flowing Ar gas. The coated layers are amorphous structure of mixture oxides and quasi-crystal structure of SBO before and after growth, respectively. The total time by this quick CSD route for organic solvent volatilization, salts decomposed and layer growth is not up to 2 h, which are much less than that needed for traditional CSD of over 10 h. SBO layer is directly epitaxial growth on YSZ substrate without any lattice rotation. SBO layer prepared by this quick route as well as that by traditional route are suitable for the growth of YBCO. The superconducting transition temperature and critical current density of the coated YBCO layer on SBO/YSZ obtained by this quick route are up to 90 K and 1.66 MA/cm2. These results may be the usable reference for continuous preparation of SBO buffer layer on IBAD-YSZ/Ni-based alloy tapes.

  9. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy.

    Science.gov (United States)

    Samad, Leith; Bladow, Sage M; Ding, Qi; Zhuo, Junqiao; Jacobberger, Robert M; Arnold, Michael S; Jin, Song

    2016-07-26

    The fascinating semiconducting and optical properties of monolayer and few-layer transition metal dichalcogenides, as exemplified by MoS2, have made them promising candidates for optoelectronic applications. Controllable growth of heterostructures based on these layered materials is critical for their successful device applications. Here, we report a direct low temperature chemical vapor deposition (CVD) synthesis of MoS2 monolayer/multilayer vertical heterostructures with layer-controlled growth on a variety of layered materials (SnS2, TaS2, and graphene) via van der Waals epitaxy. Through precise control of the partial pressures of the MoCl5 and elemental sulfur precursors, reaction temperatures, and careful tracking of the ambient humidity, we have successfully and reproducibly grown MoS2 vertical heterostructures from 1 to 6 layers over a large area. The monolayer MoS2 heterostructure was verified using cross-sectional high resolution transmission electron microscopy (HRTEM) while Raman and photoluminescence spectroscopy confirmed the layer-controlled MoS2 growth and heterostructure electronic interactions. Raman, photoluminescence, and energy dispersive X-ray spectroscopy (EDS) mappings verified the uniform coverage of the MoS2 layers. This reaction provides an ideal method for the scalable layer-controlled growth of transition metal dichalcogenide heterostructures via van der Waals epitaxy for a variety of optoelectronic applications.

  10. Mixing and non-equilibrium chemical reaction in a compressible mixing layer. M.S. Thesis Final Report

    Science.gov (United States)

    Steinberger, Craig J.

    1991-01-01

    The effects of compressibility, chemical reaction exothermicity, and non-equilibrium chemical modeling in a reacting plane mixing layer were investigated by means of two dimensional direct numerical simulations. The chemical reaction was irreversible and second order of the type A + B yields Products + Heat. The general governing fluid equations of a compressible reacting flow field were solved by means of high order finite difference methods. Physical effects were then determined by examining the response of the mixing layer to variation of the relevant non-dimensionalized parameters. The simulations show that increased compressibility generally results in a suppressed mixing, and consequently a reduced chemical reaction conversion rate. Reaction heat release was found to enhance mixing at the initial stages of the layer growth, but had a stabilizing effect at later times. The increased stability manifested itself in the suppression or delay of the formation of large coherent structures within the flow. Calculations were performed for a constant rate chemical kinetics model and an Arrhenius type kinetic prototype. The choice of the model was shown to have an effect on the development of the flow. The Arrhenius model caused a greater temperature increase due to reaction than the constant kinetic model. This had the same effect as increasing the exothermicity of the reaction. Localized flame quenching was also observed when the Zeldovich number was relatively large.

  11. Few-Layer Nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with Highly Tunable Chemical Potential

    KAUST Repository

    Kong, Desheng

    2010-06-09

    A topological insulator (TI) represents an unconventional quantum phase of matter with insulating bulk band gap and metallic surface states. Recent theoretical calculations and photoemission spectroscopy measurements show that group V-VI materials Bi2Se3, Bi2Te3, and Sb2Te3 are TIs with a single Dirac cone on the surface. These materials have anisotropic, layered structures, in which five atomic layers are covalently bonded to form a quintuple layer, and quintuple layers interact weakly through van der Waals interaction to form the crystal. A few quintuple layers of these materials are predicted to exhibit interesting surface properties. Different from our previous nanoribbon study, here we report the synthesis and characterizations of ultrathin Bi2Te3 and Bi2Se3 nanoplates with thickness down to 3 nm (3 quintuple layers), via catalyst-free vapor-solid (VS) growth mechanism. Optical images reveal thickness-dependent color and contrast for nanoplates grown on oxidized silicon (300 nm SiO2/Si). As a new member of TI nanomaterials, ultrathin TI nanoplates have an extremely large surface-to-volume ratio and can be electrically gated more effectively than the bulk form, potentially enhancing surface state effects in transport measurements. Low-temperature transport measurements of a single nanoplate device, with a high-k dielectric top gate, show decrease in carrier concentration by several times and large tuning of chemical potential. © 2010 American Chemical Society.

  12. An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition

    Science.gov (United States)

    Liu, Rongzheng; Liu, Malin; Chang, Jiaxing; Shao, Youlin; Liu, Bing

    2015-12-01

    Tristructural-isotropic (TRISO) particle has been successful in high temperature gas cooled reactor (HTGR), but an improved design is required for future development. In this paper, the coating layers are reconsidered, and an improved design of TRISO particle with porous SiC inner layer is proposed. Three methods of preparing the porous SiC layer, called high methyltrichlorosilane (MTS) concentration method, high Ar concentration method and hexamethyldisilane (HMDS) method, are experimentally studied. It is indicated that porous SiC layer can be successfully prepared and the density of SiC layer can be adjusted by tuning the preparation parameters. Microstructure and characterization of the improved TRISO coated particle are given based on scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering and energy dispersive X-ray (EDX) analysis. It can be found that the improved TRISO coated particle with porous SiC layer can be mass produced successfully. The formation mechanisms of porous SiC layer are also discussed based on the fluidized bed-chemical vapor deposition principle.

  13. STUDY OF THE VARIABILITY IN CHEMICAL COMPOSITION OF BARK LAYERS OF QUERCUS SUBER L. FROM DIFFERENT PRODUCTION AREAS

    Directory of Open Access Journals (Sweden)

    Patricia Jové

    2011-04-01

    Full Text Available Cork is the bark of the cork oak tree (Quercus suber L, a renewable and biodegradable raw bioresource concentrated mainly in the Mediterranean region. Development of its potential uses as a biosorbent will require the investigation of its chemical composition; such information can be of help to understand its interactions with organic pollutants. The present study investigates the summative chemical composition of three bark layers (back, cork, and belly of five Spanish cork samples and one cork sample from Portugal. Suberin was the main component in all the samples (21.1 to 53.1%, followed by lignin (14.8 to 31%, holocellulose (2.3 to 33.6%, extractives (7.3 to 20.4%, and ash (0.4 to 3.3%. The Kruskal-Wallis test was used to determine whether the variations in chemical composition with respect to the production area and bark layers were significant. The results indicate that, with respect to the bark layer, significant differences were found only for suberin and holocellulose contents: they were higher in the belly and cork than in the back. Based on the results presented, cork is a material with a lot of potential because of its heterogeneity in chemical composition.

  14. Interface diffusion and chemical reaction of PZT layer/Si(111)sample during the annealing treatment in air

    Institute of Scientific and Technical Information of China (English)

    ZHU, Yong-Fa(朱永法); CAO, Li-Li(曹立礼); YAN, Pei-Yu(阎培渝); LI, Long-Tu(李龙土); YI, Tao(易涛)

    2000-01-01

    The interface diffusion and chemical reaction between a PZT (PbZrxTi1-xO3) layer and a Si(111) substrate during the annealing treatment in air have been studied by using XPS (XRay Photoelectron Spectroscopy) and AES (Auger Electron Spectroscopy). The results indicate that the Ti element in the PZT precursor reacted with residual carbou and silicon, diffused from the Si substrate, to form TiCx, TiSix species in the PZT layer during the thermal treatment. A great interface diffusion and chemical reactiou took place on the interface of PZT/Si also. The silicon atoms diffused from silicon substrate onto the surface of PZT layer. The oxygen atoms, which came from air, diffused into silicon substrate also and reacted with Si atoms to form a SiO2 interlayer between the PZT layer and the Si (111) substrate. The thickness of SiO2 interlayer was proportional to the square root of treatment time. The formation of the SiO2 interlayer was governed by the diffusion of oxygen in the PZT layer at low annealing temperature, and governed by the diffusion of oxygen in SiO2 interlayer at high annealing temperature. The apparent activation energy of the interface oxidation reaction was about 39.1 kJ/mol.

  15. Design of a Three-Layer Antireflection Coating for High Efficiency Indium Phosphide Solar Cells Using a Chemical Oxide as First Layer

    Science.gov (United States)

    Moulot, Jacques; Faur, Mircea; Faur, Maria; Goradia, Chandra; Goradia, Manju; Bailey, Sheila

    1995-01-01

    It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 microns of the illuminated surface of the cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with the p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally, a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown, thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3- layer AR coating for thermally diffused p(+)n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p(+) emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as a fairly efficient antireflective layer yielding a measured record high AM0, 25 C, open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3, MgF2 or

  16. Studies on the sea surface microlayer. II. The layer of sudden change of physical and chemical properties.

    Science.gov (United States)

    Zhang, Zhengbin; Liu, Liansheng; Liu, Chunying; Cai, Weijun

    2003-08-01

    Seawater samples of the sea surface microlayer were obtained from the ocean, coastal waters, and laboratory imitation experiments adopting glass plate, rotating drum, screen, and funnel samplers. The result was that surface microlayer samples of thickness 50 microm could be taken, not by the popular screen and funnel techniques, but by glass plate or rotating drum techniques. The layer of sudden change of physical and chemical properties in the surface microlayer was found at 50 microm below the sea-air interface. These physical and chemical properties included tens of physical and chemical parameters, such as concentrations of organic matter, nutrients, and dissolved trace metals, biochemical oxygen demand, chemical oxygen demand chlorophyll-a, surface tensions, and pH. Therefore, it was suggested that the layer of sudden change of physical and chemical properties in surface seawater should serve as a basis for defining the sea surface microlayer should, and be regarded as the practical operational thickness of the sea surface microlayer. The apparent sampling thickness of the sea surface microlayer from surface seawater should be 50+/-10 microm.

  17. Amelioration de l'adhesion de revetements organiques deposes par plasma froid sur polymeres pour applications biomedicales

    Science.gov (United States)

    Sbai, Marouan

    Plasma surface modification is commonly used in biomedical field, for example to enhance cell adhesion and growth surrounding the stent covers without affecting its bulk properties. Plasma polymer (PP) deposition used to create thin films rich in functional groups, e.g. primary amines, known to enhance the cellular response and allow grafting of biomolecules especially on stent grafts. Thin film adhesion to stent polymeric cover should be considered especially as they will evolve in a biological environment. The aim of this project is to evaluate the adhesion of PP on polytetrafluoroethylene (PTFE) and polyethyleneterephthalate (PET). Thereafter, an ammonia plasma treatment on PTFE is performed prior to deposition of PP to optimize the PP/PTFE adhesion. PP studied here (referred to as "LP") is prepared from a mixture of ethylene (C2H4) and ammonia (NH3). It is deposited on two supports, PET and PTFE. The interfacial adhesion between the LP coating and the substrate was evaluated by "Peel-test 180 °" according to ASTM F1842. Staining of the surface after peel test followed by an image analysis was performed to determine the percentage of removed coating. Adhesion optimization is done by varying operating plasma parameters such as power, pressure and pretreatment time. Chemical analyses and wettability of LP and pretreated surfaces in dry and wet conditions are characterized by XPS and contact angle measurements, respectively. The adhesion of LP/PET was excellent in a dry environment (water, respectively). However, 56% to 75% of the LP is removed from virgin PTFE in a dry and wet environment, respectively; percentages can be substantially reduced by plasma pretreatment (0% and 8+/-3% in air and 30min in deionized water). Almost no delamination was observed with NH3 plasma pretreatment at 15s, 100 mTorr and 50W. N2 plasma pretreatment, for comparison, proves much less effective. The LP/PTFE adhesion is considerably improved by plasma pretreatment compared to

  18. The Eff ect of Fabrication Conditions for GDC Buff er Layer on Electro chemical Performance of Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Jung-Hoon Song; Myung Geun Jung; Hye Won Park; Hyung-Tae Lim

    2013-01-01

    A Gd-doped ceria (GDC) buff er layer is required between a conventional yttria-stabilized zirconia (YSZ) electrolyte and a La-Sr-Co-Fe-O3 (LSCF) cathode to prevent their chemical reaction. In this study, the eff ect of varying the conditions for fabricating the GDC buff er layer, such as sintering temperature and amount of sintering aid, on the solid oxide fuel cell (SOFC) performance was investigated. A finer GDC powder (i.e., ultra-high surface area), a higher sintering temperature (∼1290℃), and a larger amount of sintering aid (∼12%) resulted in improved densification of the buff er layer; however, the electrochemical performance of an anode-supported cell containing this GDC buff er layer was poor. These conflicting results are attributed to the formation of (Zr, Ce)O2 and/or excess cobalt grain boundaries (GBs) at higher sintering temperatures with a large amount of sintering aid (i.e., cobalt oxide). A cell comprising of a cobalt-free GDC buff er layer, which was fabricated using a low-temperature process, had lower cell resistance and higher stability. The results indicate that electrochemical performance and stability of SOFCs strongly depend on fabrication conditions for the GDC buff er layer.

  19. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé, Alexander W.

    2015-08-18

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  20. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Rytlewski, Piotr [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowskiej–Curie 55, 87-100 Toruń (Poland); Żenkiewicz, Marian [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2015-08-15

    Highlights: • We modified polylactide surface layer with chemical, plasma or laser methods. • We tested selected properties and surface structure of modified samples. • We stated that the plasma treatment appears to be the most beneficial. - Abstract: The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm{sup 2} was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  1. Structural and optical properties of ZnO nanorods grown chemically on sputtered GaN buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, R.; Joshi, Pranav [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Singh, Devendra; Mohanta, Pravanshu [Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Srinivasa, R.S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Major, S.S., E-mail: syed@iitb.ac.in [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2014-03-31

    ZnO nanorods were grown on 200 nm thick sputtered ZnO and GaN buffer layers on quartz substrates by chemical bath deposition. Field emission scanning electron microscopy and X-ray diffraction studies show that the ZnO nanorods on GaN buffer layer possess larger diameter and smaller lengths and are vertically misaligned, compared to those grown on ZnO buffer layer. These differences are attributed to lack of complete c-axis orientation of crystallites in GaN buffer layer, its lattice mismatch with that of ZnO and a hindered nucleation process of ZnO on GaN surface, owing to a finite nucleation barrier and limited surface diffusion. Photoluminescence spectrum of ZnO nanorods on GaN buffer layer, however, exhibits a much stronger near-band-edge luminescence and drastically suppressed defect luminescence compared to the luminescence spectrum of the nanorods grown on ZnO buffer layer. Deconvolution of the photoluminescence peaks and Raman studies indicate significant reduction of oxygen vacancies and gallium incorporation in the ZnO nanorods grown on GaN buffer layer. These observations suggest the possibility of exchange reaction mediated by the aqueous medium, particularly during the initial stages of growth. - Highlights: • ZnO nanorods were grown on sputtered GaN buffer layer deposited on quartz. • ZnO nanorods on polycrystalline GaN show limited vertical alignment of c-axis. • ZnO nanorods on GaN show high band edge and negligible defect luminescence. • Raman and photoluminescence studies indicate solution mediated interface reaction.

  2. Near-infrared chemical imaging used for in-line analysis of inside adhesive layers in textile laminates.

    Science.gov (United States)

    Mirschel, Gabriele; Daikos, Olesya; Scherzer, Tom; Steckert, Carsten

    2016-08-17

    This paper demonstrates for the first time that near-infrared (NIR) chemical imaging can be used for in-line analysis of textile lamination processes. In particular, it was applied for the quantitative determination of the applied coating weight and for monitoring of the spatial distribution of hot melt adhesive layers using chemometric approaches for spectra evaluation. Layers with coating weights between about 25 and 130 g m(-2) were used for the lamination of polyester fabrics and nonwovens as well as for polyurethane foam. It was shown that quantitative data with adequate precision can be actually obtained for layers applied to materials with significantly heterogeneous surface structure such as foam or for hidden layers inside fabric laminates. Even the coating weight and the homogeneity of adhesive layers in composites consisting of black textiles only could be quantitatively analyzed. The prediction errors (RMSEP) determined in an external validation of each calibration model were found to range from about 2 g m(-2) to 6 g m(-2) depending on the specific system under investigation. All calibration models were applied for chemical imaging in order to prove their performance for monitoring the thickness and the homogeneity of adhesive layers in the various textile systems. Moreover, they were used for the detection of irregularities and coating defects. Investigations were carried out with a large hyperspectral camera mounted above a conveyor. Therefore, this method allows large-area monitoring of the properties of laminar materials. Consequently, it is potentially suited for process and quality control during the lamination of fabrics, foams and other materials in field-scale.

  3. Surface reactivity and layer analysis of chemisorbed reaction films in the surface-chemical environment of alkyl octadecenoates

    Indian Academy of Sciences (India)

    R B Choudhary; O N Anand; O S Tyagi

    2009-05-01

    Studies on surface reactivity of substrate iron (Fe-particles) were made in the tribo-chemical environment of alkyl octadecenoates. Two alkyl octadecenoates namely ethyl octadecenoate and methyl 12-hydroxy octadecenoate, slightly different in their chemical nature, were taken for preparing the chemisorbed reaction films (CRF) at the temperature 100 ± 5°C. The reaction products collected in the composite (amorphous) phase were isolated into three different solvent-soluble fractions (sub-layer films) using polar solvents of increasing polar strength. The FTIR analysis of these films showed that these were primarily organic in nature and were composed of alkyl and/or aryl hydroxy ethers, unsaturated hydroxy ketones, and aromatic structures chemically linked with iron surface. These reaction films also contained large amount of iron (Fe). Further, these film fractions also showed varying thermal behaviour during thermal decomposition in the temperature range of 50-800°C when thermally evaluated in the nitrogen environment.

  4. Single- and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition

    Science.gov (United States)

    John, Robin; Ashokreddy, A.; Vijayan, C.; Pradeep, T.

    2011-04-01

    Increasing interest in graphene research in basic sciences and applications emphasizes the need for an economical means of synthesizing it. We report a method for the synthesis of graphene on commercially available stainless steel foils using direct thermal chemical vapor deposition. Our method of synthesis and the use of relatively cheap precursors such as ethanol (CH3CH2OH) as a source of carbon and SS 304 as the substrate proved to be economically viable. The presence of single- and few-layer graphene was confirmed using confocal Raman microscopy/spectroscopy. X-ray photoelectron spectroscopic measurements were further used to establish the influence of various elemental species present in stainless steel on graphene growth. The role of cooling rate on surface migration of certain chemical species (oxides of Fe, Cr and Mn) that promote or hinder the growth of graphene is probed. Such analysis of the chemical species present on the surface can be promising for graphene based catalytic research.

  5. Spinel-structured surface layers for facile Li ion transport and improved chemical stability of lithium manganese oxide spinel

    Science.gov (United States)

    Lee, Hae Ri; Seo, Hyo Ree; Lee, Boeun; Cho, Byung Won; Lee, Kwan-Young; Oh, Si Hyoung

    2017-01-01

    Li-ion conducting spinel-structured oxide layer with a manganese oxidation state close to being tetravalent was prepared on aluminum-doped lithium manganese oxide spinel for improving the electrochemical performances at the elevated temperatures. This nanoscale surface layer provides a good ionic conduction path for lithium ion transport to the core and also serves as an excellent chemical barrier for protecting the high-capacity core material from manganese dissolution into the electrolyte. In this work, a simple wet process was employed to prepare thin LiAlMnO4 and LiMg0.5Mn1.5O4 layers on the surface of LiAl0.1Mn1.9O4. X-ray absorption studies revealed an oxidation state close to tetravalent manganese on the surface layer of coated materials. Materials with these surface coating layers exhibited excellent capacity retentions superior to the bare material, without undermining the lithium ion transport characteristics and the high rate performances.

  6. Ni nanoparticles prepared by simple chemical method for the synthesis of Ni/NiO-multi-layered graphene by chemical vapor deposition

    Science.gov (United States)

    Ali, Mokhtar; Remalli, Nagarjuna; Gedela, Venkataramana; Padya, Balaji; Jain, Pawan Kumar; Al-Fatesh, Ahmed; Rana, Usman Ali; Srikanth, Vadali V. S. S.

    2017-02-01

    A new chemical method was used to obtain a high yield of nickel nanoparticles (Ni-NPs). The effect of solvent (distilled water, ethylene glycol, and ethanol) and surfactant (oleic acid and polyvinyl pyrrolidinone) on the morphology and crystallinity of the synthesized Ni-NPs has been investigated. The experimental results revealed that among the solvents mentioned above, ethanol gives the best results in terms of complete reduction, controlled morphology and size distribution of Ni-NPs. The surfactants played an important role in impeding the agglomeration and surface oxidation of Ni-NPs. The surfactants also affected the morphology of the Ni-NPs. The synthesized Ni-NPs are found to be quite stable in air. The best of the synthesized Ni-NPs were effectively used as catalysts for the synthesis of Ni/NiO-multi-layered graphene using catalytic chemical vapor deposition technique.

  7. Calculation of eddy viscosity in a compressible turbulent boundary layer with mass injection and chemical reaction

    Science.gov (United States)

    Omori, S.; Gross, K. W.

    1973-01-01

    The turbulent kinetic energy equation is coupled with boundary layer equations to solve the characteristics of compressible turbulent boundary layers with mass injection and combustion. The Reynolds stress is related to the turbulent kinetic energy using the Prandtl-Wieghardt formulation. When a lean mixture of hydrogen and nitrogen is injected through a porous plate into the subsonic turbulent boundary layer of air flow and ignited by external means, the turbulent kinetic energy increases twice as much as that of noncombusting flow with the same mass injection rate of nitrogen. The magnitudes of eddy viscosity between combusting and noncombusting flows with injection, however, are almost the same due to temperature effects, while the distributions are different. The velocity profiles are significantly affected by combustion. If pure hydrogen as a transpiration coolant is injected into a rocket nozzle boundary layer flow of combustion products, the temperature drops significantly across the boundary layer due to the high heat capacity of hydrogen. At a certain distance from the wall hydrogen reacts with the combustion products, liberating an extensive amount of heat.

  8. Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions

    Science.gov (United States)

    Rodionov, I. A.; Zvereva, I. A.

    2016-03-01

    The photocatalytic properties of layered perovskite-like oxides corresponding to the Ruddlesen-Popper, Dion-Jacobson and Aurivillius phases are considered. Of the photocatalytic reactions, the focus is on the reactions of water splitting, hydrogen evolution from aqueous solutions of organic substances and degradation of model organic pollutants. Possibilities to conduct these reactions under UV and visible light in the presence of layered perovskite-like oxides and composite photocatalysts based on them are shown. The specific surface area, band gap energy, particle morphology, cation and anion doping and surface modification are considered as factors that affect the photocatalytic activity. Special attention is paid to the possibilities to enhance the photocatalytic activity by intercalation, ion exchange and exfoliation, which are inherent in this class of compounds. Conclusions are made about the prospects for the use of layered perovskite-like oxides in photocatalysis. The bibliography includes 253 references.

  9. Chemical characterization of the regularly arranged surface layers of Clostridium thermosaccharolyticum and Clostridium thermohydrosulfuricum.

    Science.gov (United States)

    Sleytr, U B; Thorne, K J

    1976-04-01

    Clostridum thermosaccharolyticum and Clostridium thermohydrosulfuricum possess as outermost cell wall layer a tetragonal or hexagonal ordered array of macromolecules. The subunits of the surface layer can be detached from isolated cell walls with urea (8M) or guanidine-HCl (4 to 5 M). Triton X-100, dithiothreitol, ethylenediaminetetracetate, and KCl (3 M) had no visible effect on the regular arrays. Sodium dodecyl sulfate-polyacrylamide electrophroesis showed that, in both organisms, the surface layer is composed of glycoprotein of molecular weight 140,000. The glycoprotein from both microorganisms has a predominantly acidic amino acid composition and an acidic isoelectric point after isoelectric focusing on polyacrylamide gels. The glycocomponent is composed of glucose, galactose, mannose, and rhamnose.

  10. The Synthesis, Structures, and Chemical Properties of Macrocyclic Ligands Covalently Bonded into Layered Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Clearfield, Abraham [Texas A & M Univ., College Station, TX (United States)

    2014-11-01

    In this part of the proposal we have concentrated on the surface functionalization of α-zirconium phosphate of composition Zr(O3POH)2•H2O. It is a layered compound that can be prepared as particles as small as 30 nm to single crystals in the range of cm. This compound is an ion exchanger with a capacity of 6.64 meq per gram. It finds use as a catalyst, proton conductor, sensors, biosensors, in kidney dialysis and drug delivery. By functionalizing the surface additional uses are contemplated as will be described. The layers consist of the metal, with 4+ charge, that is positioned slightly above and below the mean layer plane and bridged by three of the four phosphate oxygens. The remaining POH groups point into the interlayer space creating double rows of POH groups but single arrays on the surface layers. The surface groups are reactive and we were able to bond silanes, isocyanates, epoxides, acrylates ` and phosphates to the surface POH groups. The layers are easily exfoliated or filled with ions by ion exchange or molecules by intercalation reactions. Highlights of our work include, in addition to direct functionalization of the surfaces, replacement of the protons on the surface with ions of different charge. This allows us to bond phosphates, biophosphates, phosphonic acids and alcohols to the surface. By variation of the ion charge of the ions that replace the surface protons, different surface structures are obtained. We have already shown that polymer fillers, catalysts and Janus particles may be prepared. The combination of surface functionalization with the ability to insert molecules and ions between the layers allow for a rich development of numerous useful other applications as well as nano-surface chemistry.

  11. Strain and Structure Heterogeneity in MoS2 Atomic Layers Grown by Chemical Vapour Deposition

    Science.gov (United States)

    2014-11-18

    with second-layer MoS2 stripes grown along the GBs, indicated by the white arrows. Scale bar, 5 mm. (e) Annular dark-field scanning TEM image of defect...lattice of monolayer MoS2 (Fig. 1e) can be seen from the annular dark field scanning TEM imaging. The brighter atomic sites are Mo atoms, while the...strains in MoS2 layer as a function of the applied strain on PDMS are shown in Fig. 4i, where a linear relationship is predicted within the range of 5

  12. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces.

    Science.gov (United States)

    Chassé, Alexander W; Ohno, Tsutomu; Higgins, Steven R; Amirbahman, Aria; Yildirim, Nadir; Parr, Thomas B

    2015-08-18

    The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  13. Cu(In,Ga)Se{sub 2} solar cells with double layered buffers grown by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.Q.; Shi, J.H.; Zhang, D.W.; Liu, Q.Q.; Sun, Z.; Chen, Y.W. [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062 (China); Yang, Z. [Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Huang, S.M., E-mail: engp5591@yahoo.com [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062 (China)

    2011-10-31

    In based mixture In{sub x}(OH,S){sub y} buffer layers deposited by chemical bath deposition technique are a viable alternative to the traditional cadmium sulfide buffer layer in thin film solar cells. We report on the results of manipulating the absorber/buffer interface between the chalcopyrite Cu(In,Ga)Se{sub 2} (CIGS) absorber and CdS or ZnS buffer by addition of a thin In based mixture layer. It is shown that the presence of thin In{sub x}(OH,S){sub y} at the CIGS absorber/CdS or ZnS buffer interfaces greatly improve the solar cell performances. The performances of CIGS cells using dual buffer layers composed of In{sub x}(OH,S){sub y}/CdS or In{sub x}(OH,S){sub y}/ZnS increased by 22.4% and 51.6%, as compared to the single and standard CdS or ZnS buffered cells, respectively.

  14. The Effect of High Temperature Annealing on the Grain Characteristics of a Thin Chemical Vapor Deposition Silicon Carbide Layer.

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen; Philippus M van Rooyen; Mary Lou Dunzik-Gougar

    2013-08-01

    The unique combination of thermo-mechanical and physiochemical properties of silicon carbide (SiC) provides interest and opportunity for its use in nuclear applications. One of the applications of SiC is as a very thin layer in the TRi-ISOtropic (TRISO) coated fuel particles for high temperature gas reactors (HTGRs). This SiC layer, produced by chemical vapor deposition (CVD), is designed to withstand the pressures of fission and transmutation product gases in a high temperature, radiation environment. Various researchers have demonstrated that macroscopic properties can be affected by changes in the distribution of grain boundary plane orientations and misorientations [1 - 3]. Additionally, various researchers have attributed the release behavior of Ag through the SiC layer as a grain boundary diffusion phenomenon [4 - 6]; further highlighting the importance of understanding the actual grain characteristics of the SiC layer. Both historic HTGR fission product release studies and recent experiments at Idaho National Laboratory (INL) [7] have shown that the release of Ag-110m is strongly temperature dependent. Although the maximum normal operating fuel temperature of a HTGR design is in the range of 1000-1250°C, the temperature may reach 1600°C under postulated accident conditions. The aim of this specific study is therefore to determine the magnitude of temperature dependence on SiC grain characteristics, expanding upon initial studies by Van Rooyen et al, [8; 9].

  15. Structural, optical and electrical study of undoped GaN layers obtained by metalorganic chemical vapor deposition on sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rangel-Kuoppa, Victor-Tapio, E-mail: tapio.rangel@gmail.co [Institute of Semiconductor and Solid State Physics, Johannes Kepler Universitaet, A-4040 Linz (Austria); Aguilar, Cesia Guarneros [Seccion de Electronica del Estado Solido, Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, A.P. 14740, C.P. 07360, Mexico, Distrito Federal (Mexico); Sanchez-Resendiz, Victor, E-mail: victors@sees.cinvestav.m [Seccion de Electronica del Estado Solido, Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, A.P. 14740, C.P. 07360, Mexico, Distrito Federal (Mexico)

    2011-01-31

    We investigate optical, structural and electrical properties of undoped GaN grown on sapphire. The layers were prepared in a horizontal reactor by low pressure metal organic chemical vapor deposition at temperatures of 900 {sup o}C and 950 {sup o}C on a low temperature grown (520 {sup o}C) GaN buffer layer on (0001) sapphire substrate. The growth pressure was kept at 10,132 Pa. The photoluminescence study of such layers revealed a band-to-band emission around 366 nm and a yellow band around 550 nm. The yellow band intensity decreases with increasing deposition temperature. X-ray diffraction, atomic force microscopy and scanning electron microscopy studies show the formation of hexagonal GaN layers with a thickness of around 1 {mu}m. The electrical study was performed using temperature dependent Hall measurements between 35 and 373 K. Two activation energies are obtained from the temperature dependent conductivity, one smaller than 1 meV and the other one around 20 meV. For the samples grown at 900 {sup o}C the mobilities are constant around 10 and 20 cm{sup 2} V{sup -1} s{sup -1}, while for the sample grown at 950 {sup o}C the mobility shows a thermally activated behavior with an activation energy of 2.15 meV.

  16. Structural and chemical characterisation of titanium deuteride films covered by nanoscale evaporated palladium layers

    NARCIS (Netherlands)

    Lisowski, W.; Keim, E.G.; Berg, van den A.H.J.; Smithers, M.A.

    2006-01-01

    Thin titanium deuteride (TiDy) films, covered by an ultra-thin palladium layer, have been compared with the corresponding titanium and palladium films using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The TiD

  17. Interfacial structure of tungsten layers formed by selective low pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Stacy, W.T.; Broadbent, E.K.; Norcott, M.H.

    1985-02-01

    We have analyzed the interfacial structure of selectively deposited LPCVD tungsten on monocrystalline silicon, polycrystalline silicon, and polycrystalline aluminum substrates. Cross-sectional specimens were examined by transmission electron microscopy to determine the amount of substrate consumed by the selective deposition process and to assess the degree of lateral encroachment under masking SiO/sub 2/ layers for different conditions of deposition and surface preparation. The tungsten-silicon interfacial structure was found to depend strongly on the initia surface preparation. Immersion in a dilute HF solution resulted in a smooth interface, while a glow-discharge treatment (CF/sub 4/ + O/sub 2/) led to highly irregular interfaces, which, in extreme cases, contained tunnels extending 1 ..mu..m or more into the silicon substrate. Layers formed in WF/sub 6/ plus H/sub 2/ were found to consist of two layers, of which the lower layer i formed by the substrate reduction of WF/sub 6/.

  18. Quantifying the effect of medium composition on the diffusive mass transfer of hydrophobic organic chemicals through unstirred boundary layers

    DEFF Research Database (Denmark)

    Mayer, Philipp; Karlson, U.; Christensen, P.S.

    2005-01-01

    Unstirred boundary layers (UBLs) often act as a bottleneck for the diffusive transport of hydrophobic organic compounds (HOCs) in the environment. Therefore, a microscale technique was developed for quantifying mass transfer through a 100-μm thin UBL, with the medium composition of the UBL...... as the controllable factor. The model compound fluoranthene had to (1) partition from a contaminated silicone disk (source) into the medium, (2) then diffuse through 100 μm of medium (UBL), and finally (3) partition into a clean silicone layer (sink). The diffusive mass transfer from source to sink was monitored over...... of magnitude. These results demonstrate that medium constituents, which normally are believed to bind hydrophobic organic chemicals, actually can enhance the diffusive mass transfer of HOCs in the vicinity of a diffusion source (e.g., contaminated soil particles). The technique can be used to evaluate...

  19. Nonlinear optical characterization of GaN layers grown by MOCVD on sapphire[Metal Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tiginyanu, I.M.; Kravetsky, I.V.; Pavlidis, D.; Eisenbach, A.; Hildebrandt, R.; Marowsky, G.; Hartnagel, H.L.

    2000-07-01

    Optical second and third harmonic generation measurements were carried out on GaN layers grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. The measured d{sub 33} is 33 times the d{sub 11} of quartz. The angular dependence of second-harmonic intensity as well as the measured ratios d{sub 33}/d{sub 15} = {minus}2.02 and d{sub 33}/d{sub 31} = {minus}2.03 confirm the wurzite structure of the studied GaN layers with the optical c-axis oriented perpendicular to the sample surface. Fine oscillations were observed in the measured second and third harmonic angular dependencies. A simple model based on the interference of the fundamental beam in the sample was used to explain these oscillations.

  20. Chemical composition and electronic structure of the passive layer formed on stainless steels in a glucose-oxidase solution

    Energy Technology Data Exchange (ETDEWEB)

    Marconnet, C. [Laboratoire de Genie des Procedes et des Materiaux, Ecole Centrale Paris, Grande Voie des Vignes, 92290 CHATENAY-MALABRY (France)], E-mail: cyril.marconnet@yahoo.fr; Wouters, Y. [Science et Ingenierie des Materiaux et Procedes, Institut National Polytechnique de Grenoble, F-38402 Saint-Martin d' Heres Cedex (France); Miserque, F. [Laboratoire de Reactivite des Surfaces et des Interfaces, CEA Saclay, Bat. 391, 91191 GIF-SUR-YVETTE (France); Dagbert, C. [Laboratoire de Genie des Procedes et des Materiaux, Ecole Centrale Paris, Grande Voie des Vignes, 92290 CHATENAY-MALABRY (France)], E-mail: catherine.dagbert@ecp.fr; Petit, J.-P. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, INPG, F-38402 Saint-Martin d' Heres Cedex (France); Galerie, A. [Science et Ingenierie des Materiaux et Procedes, Institut National Polytechnique de Grenoble, F-38402 Saint-Martin d' Heres Cedex (France); Feron, D. [Service de Corrosion et du Comportement des Materiaux dans leur Environnement, CEA Saclay, Bat. 458, 91191 GIF-SUR-YVETTE (France)

    2008-12-01

    This article deals with the interaction between the passive layer formed on UNS S30403 and S31254 stainless steels and an enzymatic solution containing glucose oxidase (GOx) and its substrate D-glucose. This enzymatic solution is often used to reproduce in laboratory the ennoblement occuring in non-sterile aerated aqueous environments because of the biofilm settlement on the surface of the metallic material. GOx catalyses the oxidation of D-glucose to gluconic acid by reducing oxygen to hydrogen peroxide and produces an organic acid. Thanks to photocurrent measurements, XPS analysis and Mott-Schottky diagrams, it is here shown that such an environment generates modifications in the chemical composition and electronic structure of the passive layer: it induces a relative enrichment of the n-type semi-conducting phase containing chromium (chromine Cr{sub 2}O{sub 3}) and an increase of the donors density in the space charge region.

  1. Chemical order and selection of the mechanism for strain relaxation in epitaxial FePd(Pt) thin layers

    Science.gov (United States)

    Halley, D.; Marty, A.; Bayle-Guillemaud, P.; Gilles, B.; Attane, J. P.; Samson, Y.

    2004-11-01

    We observed that the relaxation mechanism of the epitaxial strain is dramatically dependent on the chemical ordering within the L10 structure in FePd(Pt) thin films. In disordered or weakly ordered layers, the relaxation takes place though perfect (1)/(2)[101] dislocations, whereas well-ordered films relax through the partial 1/6[112] Shockley dislocations, piled-up within microtwins, with a huge impact on both the morphology and the magnetic properties of the film. We show that the antiphase boundary energy is the key factor preventing the propagation of perfect dislocations in ordered alloys.

  2. Effect of conventional chemical treatment on the microbial population in a biofouling layer of reverse osmosis systems.

    Science.gov (United States)

    Bereschenko, L A; Prummel, H; Euverink, G J W; Stams, A J M; van Loosdrecht, M C M

    2011-01-01

    The impact of conventional chemical treatment on initiation and spatiotemporal development of biofilms on reverse osmosis (RO) membranes was investigated in situ using flow cells placed in parallel with the RO system of a full-scale water treatment plant. The flow cells got the same feed (extensively pre-treated fresh surface water) and operational conditions (temperature, pressure and membrane flux) as the full-scale installation. With regular intervals both the full-scale RO membrane modules and the flow cells were cleaned using conventional chemical treatment. For comparison some flow cells were not cleaned. Sampling was done at different time periods of flow cell operation (i.e., 1, 5, 10 and 17 days and 1, 3, 6 and 12 months). The combination of molecular (FISH, DGGE, clone libraries and sequencing) and microscopic (field emission scanning electron, epifluorescence and confocal laser scanning microscopy) techniques made it possible to thoroughly analyze the abundance, composition and 3D architecture of the emerged microbial layers. The results suggest that chemical treatment facilitates initiation and subsequent maturation of biofilm structures on the RO membrane and feed-side spacer surfaces. Biofouling control might be possible only if the cleaning procedures are adapted to effectively remove the (dead) biomass from the RO modules after chemical treatment.

  3. Expanding thermal plasma chemical vapour deposition of ZnO:Al layers for CIGS solar cells

    NARCIS (Netherlands)

    Sharma, K.; Williams, B.L.; Mittal, A.; Knoops, H.C.M.; Kniknie, B.J.; Bakker, N.J.; Kessels, W.M.M.; Schropp, R.E.I.; Creatore, M.

    2014-01-01

    Aluminium-doped zinc oxide (ZnO:Al) grown by expanding thermal plasma chemical vapour deposition (ETP-CVD) has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO

  4. Tunable Electronic Transport Properties of 2D Layered Double Hydroxide Crystalline Microsheets with Varied Chemical Compositions.

    Science.gov (United States)

    Zhao, Yibing; Hu, Hai; Yang, Xiaoxia; Yan, Dongpeng; Dai, Qing

    2016-09-01

    Transistors based on layered double hydroxides (LDH) single microcrystal are fabricated, whose conductivity of LDH can be tuned by varying metal cations or interlayer anions, but weakly affected by external electric field. The carrier mobility can reach about 1 × 10(-5) cm(2) V(-1) s(-1) , a value comparable to that of organic C60-based transistors. This work paves a way for future electrical applications of LDH.

  5. Crystal-chemical features and properties of layered bismuth vanadate-titanate

    Energy Technology Data Exchange (ETDEWEB)

    Osipyan, V.G.; Kostanyan, K.A.; Savchenko, L.M.

    1986-04-01

    It has been established that Bi/sub 13/V/sub 5/TiO/sub 34/ belongs to the ferroelectric family of bismuth-containing compounds with a layered compound. The formula unit Bi/sub 2/1//sub 6/ + V/sub 5///sub 6/ Ti1//sub 6/ O/sub 5/2/3 corresponds to a layered structure of (Bi/sub 2/O/sub 2/) (Bi/sub 1///sub 6/ V/sub 5///sub 6/ Ti/sub 1///sub 6/ O/sub 3/2/3)/sup 2 -/ with one perovskite-like layer between ions of bismuthyl (Bi/sub 2/O/sub 2/)/sup 2 +/. The dielectric properties indicate that Bi/sub 13/V/sub 5/TiO/sub 34/ has ferroelectric properties. The solid-phase process of formation of the compound from a mixture of the initial oxides takes place in one stage in the temperature range 600-800 C.

  6. Scanning transmission electron microscope analysis of amorphous-Si insertion layers prepared by catalytic chemical vapor deposition, causing low surface recombination velocities on crystalline silicon wafers

    OpenAIRE

    2012-01-01

    Microstructures of stacked silicon-nitride/amorphous-silicon/crystalline-silicon (SiN_x/a-Si/c-Si) layers prepared by catalytic chemical vapor deposition were investigated with scanning transmission electron microscopy to clarify the origin of the sensitive dependence of surface recombination velocities (SRVs) of the stacked structure on the thickness of the a-Si layer. Stacked structures with a-Si layers with thicknesses greater than 10 nm exhibit long effective carrier lifetimes, while thos...

  7. Synthesis and characterization of graphene layers prepared by low-pressure chemical vapor deposition using triphenylphosphine as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Mastrapa, G.C.; Maia da Costa, M.E.H. Maia [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ (Brazil); Larrude, D.G., E-mail: dunigl@vdg.fis.puc-rio.br [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ (Brazil); Freire, F.L. [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ (Brazil); Brazilian Center for Physical Research, 22290-180, Rio de Janeiro, RJ (Brazil)

    2015-09-15

    The synthesis of a single-layer graphene using a low-pressure Chemical Vapor Deposition (CVD) system with triphenylphosphine as precursor is reported. The amount of triphenylphosphine used as precursor was in the range of 10–40 mg. Raman spectroscopy was employed to analyze samples prepared with 10 mg of the precursor, and these spectra were found typical of graphene. The Raman measurements indicate that the progressive degradation of graphene occurs as the amount of triphenylphosphine increases. X-ray photoelectron spectroscopy measurements were performed to investigate the different chemical environments involving carbon and phosphorous atoms. Scanning electron microscopy and transmission electron microscopy were also employed and the results reveal the formation of dispersed nanostructures on top of the graphene layer, In addition, the number of these nanostructures is directly related to the amount of precursor used for sample growth. - Highlights: • We grow graphene using the solid precursor triphenylphosphine. • Raman analysis confirms the presence of monolayer graphene. • SEM images show the presence of small dark areas dispersed on the graphene surface. • Raman I{sub D}/I{sub G} ratio increases in the dark region of the graphene surface.

  8. Stability of a laminar premixed supersonic free shear layer with chemical reactions

    Science.gov (United States)

    Menon, S.; Anderson, J. D., Jr.; Pai, S. I.

    1984-01-01

    The stability of a two-dimensional compressible supersonic flow in the wake of a flat plate is discussed. The fluid is a multi-species mixture which is undergoing finite rate chemical reactions. The spatial stability of an infinitesimal disturbance in the fluid is considered. Numerical solutions of the eigenvalue stability equations for both reactive and nonreactive supersonic flows are presented and discussed. The chemical reactions have significant influence on the stability behavior. For instance, a neutral eigenvalue is observed near the freestream Mach number of 2.375 for the nonreactive case, but disappears when the reaction is turned on. For reactive flows, the eigenvalues are not very dependent on the free stream Mach number.

  9. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chemically Reactive Solute Distribution in a Steady MHD Boundary Layer Flow over a Stretching Surface

    Directory of Open Access Journals (Sweden)

    M.S Uddin

    2011-01-01

    Full Text Available The paper is concerned to find the distribution of the chemically reactant solute in the MHD flow of an electrically conducting viscous incompressible fluid over a stretching surface. The first order chemical reaction and the variable solute distribution along the surface are taken into consideration. The governing partial differential equations along with appropriate boundary conditions for flow field and reactive solute are transformed into a set of non-linear self-similar ordinary differential equations by using scaling group of transformations. An exact analytic solution is obtained for the velocity field. Using this velocity field, we obtain numerical solution for the reactant concentration field. It reveals from the study that the values of concentration profile enhances with the increase of the magnetic field and decreases with increase of Schmidt number as well as the reaction rate parameter. Most importantly, when the solute distribution along the surface increases then the concentration profile decreases.

  11. Importance of the H2 abundance in protoplanetary disk ices for the molecular layer chemical composition

    CERN Document Server

    Wakelam, V; Hersant, F; Dutrey, A; Semenov, D; Majumdar, L; Guilloteau, S

    2016-01-01

    Protoplanetary disks are the target of many chemical studies (both observational and theoretical) as they contain the building material for planets. Their large vertical and radial gradients in density and temperature make them challenging objects for chemical models. In the outer part of these disks, the large densities and low temperatures provide a particular environment where the binding of species onto the dust grains can be very efficient and can affect the gas-phase chemical composition. We attempt to quantify to what extent the vertical abundance profiles and the integrated column densities of molecules predicted by a detailed gas-grain code are affected by the treatment of the molecular hydrogen physisorption at the surface of the grains. We performed three different models using the Nautilus gas-grain code. One model uses a H2 binding energy on the surface of water (440 K) and produces strong sticking of H2. Another model uses a small binding energy of 23 K (as if there were already a monolayer of H...

  12. Two-Dimensional Atomic-Layered Alloy Junctions for High-Performance Wearable Chemical Sensor.

    Science.gov (United States)

    Cho, Byungjin; Kim, Ah Ra; Kim, Dong Jae; Chung, Hee-Suk; Choi, Sun Young; Kwon, Jung-Dae; Park, Sang Won; Kim, Yonghun; Lee, Byoung Hun; Lee, Kyu Hwan; Kim, Dong-Ho; Nam, Jaewook; Hahm, Myung Gwan

    2016-08-03

    We first report that two-dimensional (2D) metal (NbSe2)-semiconductor (WSe2)-based flexible, wearable, and launderable gas sensors can be prepared through simple one-step chemical vapor deposition of prepatterned WO3 and Nb2O5. Compared to a control device with a Au/WSe2 junction, gas-sensing performance of the 2D NbSe2/WSe2 device was significantly enhanced, which might have resulted from the formation of a NbxW1-xSe2 transition alloy junction lowering the Schottky barrier height. This would make it easier to collect charges of channels induced by molecule adsorption, improving gas response characteristics toward chemical species including NO2 and NH3. 2D NbSe2/WSe2 devices on a flexible substrate provide gas-sensing properties with excellent durability under harsh bending. Furthermore, the device stitched on a T-shirt still performed well even after conventional cleaning with a laundry machine, enabling wearable and launderable chemical sensors. These results could pave a road toward futuristic gas-sensing platforms based on only 2D materials.

  13. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics.

    Science.gov (United States)

    Moon, Hanul; Seong, Hyejeong; Shin, Woo Cheol; Park, Won-Tae; Kim, Mincheol; Lee, Seungwon; Bong, Jae Hoon; Noh, Yong-Young; Cho, Byung Jin; Yoo, Seunghyup; Im, Sung Gap

    2015-06-01

    Insulating layers based on oxides and nitrides provide high capacitance, low leakage, high breakdown field and resistance to electrical stresses when used in electronic devices based on rigid substrates. However, their typically high process temperatures and brittleness make it difficult to achieve similar performance in flexible or organic electronics. Here, we show that poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) prepared via a one-step, solvent-free technique called initiated chemical vapour deposition (iCVD) is a versatile polymeric insulating layer that meets a wide range of requirements for next-generation electronic devices. Highly uniform and pure ultrathin films of pV3D3 with excellent insulating properties, a large energy gap (>8 eV), tunnelling-limited leakage characteristics and resistance to a tensile strain of up to 4% are demonstrated. The low process temperature, surface-growth character, and solvent-free nature of the iCVD process enable pV3D3 to be grown conformally on plastic substrates to yield flexible field-effect transistors as well as on a variety of channel layers, including organics, oxides, and graphene.

  14. Kinetic limitation of chemical ordering in Bi2Te3-x Se x layers grown by molecular beam epitaxy.

    Science.gov (United States)

    Schreyeck, S; Brunner, K; Kirchner, A; Bass, U; Grauer, S; Schumacher, C; Gould, C; Karczewski, G; Geurts, J; Molenkamp, L W

    2016-04-13

    We study the chemical ordering in Bi2Te3-x Se x grown by molecular beam epitaxy on Si substrates. We produce films in the full composition range from x = 0 to 3, and determine their material properties using energy dispersive x-ray spectroscopy, x-ray diffraction and Raman spectroscopy. By fitting the parameters of a kinetic growth model to these results, we obtain a consistent description of growth at a microscopic level. Our main finding is that despite the incorporation of Se in the central layer being much more probable than that of Te, the formation of a fully ordered Te-Bi-Se-Bi-Te layer is prevented by kinetic of the growth process. Indeed, the Se concentration in the central layer of Bi2Te2Se1 reaches a maximum of only ≈ 75% even under ideal growth conditions. A second finding of our work is that the intensity ratio of the 0 0 12 and 0 0 6 x-ray reflections serves as an experimentally accessible quantitative measure of the degree of ordering in these films.

  15. Chemical bath deposited rutile TiO2 compact layer toward efficient planar heterojunction perovskite solar cells

    Science.gov (United States)

    Liang, Chao; Wu, Zhenhua; Li, Pengwei; Fan, Jiajie; Zhang, Yiqiang; Shao, Guosheng

    2017-01-01

    TiO2 is a best choice of electron transport layers in perovskite solar cells, due to its high electron mobility and stability. However, traditional TiO2 processing method requires rather high annealing temperature (>500 °C), preventing it from application to flexible devices. Here, we show that TiO2 thin films can be synthesized via chemical bath deposition below 100 °C. Typically, a compact layer of rutile TiO2 is deposited onto fluorine-doped tin oxide (FTO) coated substrates, in an aqueous TiCl4 solution at 70 °C. Through the optimization of precursor concentration and ultraviolet-ozone surface modification, over 12% power conversion efficiency can be achieved for CH3NH3PbI3 based perovskite solar cells. These findings offer a potential low-temperature technical solution in using TiO2 thin film as an effective transport layer for flexible perovskite solar cells.

  16. ZnO thin films fabricated by chemical bath deposition, used as buffer layer in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lare, Y. [Laboratoire sue l' Energie Solaire, Universite de Lome, Lome (Togo); Godoy, A. [Facultad Ciencias de la Salud, Universidad Diego Portales, Ejercito 141, Santiago de Chile (Chile); Cattin, L. [Universite de Nantes, Nantes Atlantique Universites, IMN, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes, F-44000 France (France); Jondo, K. [Laboratoire sue l' Energie Solaire, Universite de Lome, Lome (Togo); Abachi, T. [Ecole Normale Superieure, Kouba, Alger (Algeria); Diaz, F.R. [Laboratorio de Polimeros, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Correo 22, Santiago (Chile); Morsli, M. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes, F-44000 France (France); Napo, K. [Laboratoire sue l' Energie Solaire, Universite de Lome, Lome (Togo); del Valle, M.A. [Laboratorio de Polimeros, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Correo 22, Santiago (Chile); Bernede, J.C., E-mail: jean-christian.bernede@univ-nantes.fr [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes, F-44000 France (France)

    2009-04-15

    ZnO thin films synthetized by chemical bath deposition are used as buffer layer between the anode and the organic electron donor in organic solar cells. Films deposited from zinc nitrate solutions are annealed in room air at 300 deg. C for half an hour. The X-ray diffraction and microanalysis studies show that ZnO polycrystalline thin films are obtained. The solar cells used are based on the couple copper phthalocyanine as electron donor and (N,N-diheptyl-3,4,9,10-perylenetetracarboxylicdiimide-PTCDI-C7) as electron acceptor. It is shown that the presence of the ZnO buffer layer improves the energy conversion efficiency of the cells. Such improvement could be attributed to a better energy level alignment at the anode/electron donor interface. The anode roughness induced by the ZnO buffer layer can also transform the planar interface organic electron donor/electron acceptor into roughen topography. This increases the interface area, where carrier separation takes place, which improves solar cells performances.

  17. Thermal And Chemical Non-Equilibrium Effects In The Wake Of A Boundary-Layer Sized Object In Hypersonic Flows

    Science.gov (United States)

    Birrer, Marcel; Stemmer, Christian; Adams, Nikolaus N.

    2011-05-01

    Investigations of hypersonic boundary-layer flows around a cubical obstacle with a height in the order of half the boundary layer thickness were carried out in this work. Special interest was laid on the influence of chemical non-equilibrium effects on the wake flow of the obstacle. Direct numerical simulations were conducted using three different gas models, a caloric perfect, an equilibrium and a chemical non-equilibrium gas model. The geometry was chosen as a wedge with a six degree half angle, according to the aborted NASA HyBoLT free flight experiment. At 0.5 m downstream of the leading edge, a surface trip was positioned. The free-stream flow was set to Mach 8.5 with air conditions taken from the 1976 standard atmosphere at an altitude of 42 km according to the predicted flight path. The simulations were done in three steps for all models. First, two-dimensional calculations of the whole configuration including the leading edge and the obstacle were conducted. These provide constant span-wise profiles for detailed, steady three-dimensional simulations around the close vicinity of the obstacle. A free-stream Mach number of about 6.3 occurs behind the shock. A cross-section in the wake of the object then delivers the steady inflow for detailed unsteady simulations of the wake. Perturbations at unstable frequencies, obtained from a bi-global secondary stability analysis, were added to these profiles. The solutions are time-Fourier transformed to investigate the unsteady downstream development of the different modes due to the interaction with the base-flow containing two counter-rotating vortices. Results will be presented that show the influence of the presence of chemical non-equilibrium on the instability in the wake of the object leading to a laminar or a turbulent wake.

  18. Physical defect formation in few layer graphene-like carbon on metals: influence of temperature, acidity, and chemical functionalization.

    Science.gov (United States)

    Schumacher, Christoph M; Grass, Robert N; Rossier, Michael; Athanassiou, Evagelos K; Stark, Wendelin J

    2012-03-06

    A systematical examination of the chemical stability of cobalt metal nanomagnets with a graphene-like carbon coating is used to study the otherwise rather elusive formation of nanometer-sized physical defects in few layer graphene as a result of acid treatments. We therefore first exposed the core-shell nanomaterial to well-controlled solutions of altering acidity and temperature. The release of cobalt into these solutions over time offered a simple tool to monitor the progress of particle degradation. The results suggested that the oxidative damage of the graphene-like coatings was the rate-limiting step during particle degradation since only fully intact or entirely emptied carbon shells were found after the experiments. If ionic noble metal species were additionally present in the acidic solutions, the noble metal was found to reduce on the surface of specific, defective particles. The altered electrochemical gradients across the carbon shells were however not found to lead to a faster release of cobalt from the particles. The suggested mechanistic insight was further confirmed by the covalent chemical functionalization of the particle surface with chemically inert aryl species, which leads to an additional thickening of the shells. This leads to reduced cobalt release rates as well as slower noble metal reduction rates depending on the augmentation of the shell thickness.

  19. Characterization of nitrogen doped silicon-carbon multi-layer nanostructures obtained by TVA method

    Science.gov (United States)

    Ciupina, Victor; Vasile, Eugeniu; Porosnicu, Corneliu; Prodan, Gabriel C.; Lungu, Cristian P.; Vladoiu, Rodica; Jepu, Ionut; Mandes, Aurelia; Dinca, Virginia; Caraiane, Aureliana; Nicolescu, Virginia; Dinca, Paul; Zaharia, Agripina

    2016-09-01

    Ionized nitrogen doped Si-C multi-layer thin films used to increase the oxidation resistance of carbon have been obtained by Thermionic Vacuum Arc (TVA) method. The 100 nm thickness carbon thin films were deposed on silicon or glass substrates and then seven N doped Si-C successively layers on carbon were deposed. To characterize the microstructure, tribological and electrical properties of as prepared N-SiC multi-layer films, Transmission Electron Microscopy (TEM, STEM), Energy Dispersive X-Ray Spectroscopy (EDXS), electrical and tribological techniques were achieved. Samples containing multi-layer N doped Si-C coating on carbon were investigated up to 1000°C. Oxidation protection is based on the reaction between SiC and elemental oxygen, resulting SiO2 and CO2, and also on the reaction involving N, O and Si-C, resulting silicon oxynitride (SiNxOy) with a continuously vary composition, and because nitrogen can acts as a trapping barrier for oxygen. The tribological properties of structures were studied using a tribometer with ball-on-disk configuration from CSM device with sapphire ball. The measurements show that the friction coefficient on the N-SiC is smaller than friction coefficient on uncoated carbon layer. Electrical conductivity at different temperatures was measured in constant current mode. The results confirm the fact that conductivity is greater when nitrogen content is greater. To justify the temperature dependence of conductivity we assume a thermally activated electrical transport mechanism.

  20. Surface chemical/binding reaction of coated Li layer by lithium vapor injectors in LIGHT-1

    Energy Technology Data Exchange (ETDEWEB)

    Ashikawa, Naoko, E-mail: ashikawa@lhd.nifs.ac.jp [National Institute for Fusion Science (Japan); Hirooka, Yoshi; Tsuchiya, Hayato; Chung, K.-S.; Masuzaki, Suguru; Nagayama, Yoshio [National Institute for Fusion Science (Japan)

    2010-11-15

    The Lithium Injection Gettering of Hydrogen and its Transport (LIGHT-1) experiment has begun at the NIFS. To study the material probes installed in the cylindrical vacuum chamber, the chemical characteristics for lithium are analyzed using X-ray photoelectron spectroscopy (XPS). The characteristics of chemical binding between lithium and other impurities are shown to be oxide bindings. In addition, the influence of the vacuum vent effect due to exposure to air was determined in both solid lithium and lithium-coated probes in LIGHT-1. Using the peak positions of Li{sub 2}O and pure lithium, the thickness of the coated lithium is estimated. For the SS316 target, the coated lithium shows two different peaks, Li1s and Fe3p, located at a similar binding energy region. Thus, the real lithium intensities can be measured by the separation of the peaks. After this analysis, the coated thickness of lithium is estimated to be from 8 to 20 nm, and it is not uniform in the Z-axis direction, probably due to erosion by glow discharge.

  1. CVD钨沉积层组织控制%Control the Microstructure of Tungsten Layer Fabricated by Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    马捷; 张永志; 魏建忠; 蒙丽娟

    2011-01-01

    The microstructure of tungsten layer fabricated by chemical vapor deposition was changed by supplying the reactive gas WF6 and H2 discontinuously. The effect of the technics principle of chemical vapor deposition on the tungsten layer's microstructure and properties had been analyzed. And the condition of stress on the surface and crack on the fracture surface had been discussed. The results show that the microstructure of Tungsten layer is changed from layered columnar grains to equiaxed grains with the decreasing of cyclical deposition time. And the surface appearances are spherical grains, which are no longer tending to grow in a single direction, meanwhile the deposits are of high purity and high density. The stress on the surface is reduced and the direction of the propagating cracks has been changed. The expansion of the crack can be effectively blocked.%以WF6和H2为反应气体,采用间断供应反应气体方法改变CVD钨沉积层显微组织形貌.研究了间断沉积工艺参数对沉积层显微组织及性能的影响,讨论了间断沉积层的表面应力状态及断口裂纹扩展情况.结果表明:采用间断化学气相沉积法钨层的显微组织随周期沉积时间的缩短,柱状晶晶粒长度尺寸变小,形态逐渐接近等轴晶;沉积层表面形貌呈圆球状,沉积层生长界面不再趋向于单一方向;钨层保持了连续CVD钨的高纯度、高密度特性.且采用间断供应反应气体沉积方法显著降低了钨制品表面的残余应力,使裂纹扩展方向发生改变,有效阻碍了裂纹的深入扩展.

  2. Synthesis and Characterization of Mass Produced High Quality Few Layered Graphene Sheets via a Chemical Method

    KAUST Repository

    Khenfouch, Mohammed

    2014-04-01

    Graphene is a two-dimensional crystal of carbon atoms arranged in a honeycomb lattice. It is a zero band gap semimetal with very unique physical and chemical properties which make it useful for many applications such as ultra-high-speed field-effect transistors, p-n junction diodes, terahertz oscillators, and low-noise electronic, NEMS and sensors. When the high quality mass production of this nanomaterial is still a big challenge, we developed a process which will be an important step to achieve this goal. Atomic Force Microscopy, Scanning Electron Microscopy, Scanning tunneling microscopy, High Resolution Transmission Electron Microscopy, X-Ray Diffraction, Raman spectroscopy, Energy Dispersive X-ray system were investigated to characterize and examine the quality of this product.

  3. Shallow chemical bath deposition of ZnS buffer layer for environmentally benign solar cell devices

    Science.gov (United States)

    Choubey, R. K.; Kumar, Sunil; Lan, C. W.

    2014-06-01

    Zinc sulfide (ZnS) thin film was grown by a shallow chemical bath deposition (SCBD) technique. In this technique a highly conducting hot plate was used to heat the substrate, while higher thermal gradient was achieved by a shallow bath of the ZnS solution. Consequently, homogeneous nucleation is reduced and quality of ZnS thin films can be improved by shaking. The main advantage of this technique over a traditional one is that the use of solution can be reduced greatly, which is crucial for cost reduction in practice. The effects of shaking on growth kinetics and film properties were investigated by characterizing the as-grown ZnS thin films by x-ray diffraction, transmittance and scanning electron microscopy (SEM).

  4. Grout diffusion characteristics during chemical grouting in a deep water-bearing sand layer

    Institute of Scientific and Technical Information of China (English)

    Wang Dangliang; Sui Wanghua

    2012-01-01

    The deep,loose bottom aquifer of the eastern air shaft in the Xinglongzhuang Coal Mine was used to develop an experimental model of shaft grouting through Model deep soil.Lab experiments using chemical grouting were done to study the grout.The grouted soil shapes and osmotic pressure were measured during the experiments.The tested characteristics of the grouted soil show that the diffusion mode of grout in saturated sandy soil is a combination of split compaction and osmosis.More specifically,the shape of the grouted soil is determined by split compaction while the size of the grouted soil shape is determined by osmosis.Sensor test results indicate that the main reason for the non-uniform grout diffusion is the anisotropic osmotic pressure field surrounding the grouting holes.

  5. Properties of Erbium Doped Hydrogenated Amorphous Carbon Layers Fabricated by Sputtering and Plasma Assisted Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2008-01-01

    Full Text Available We report about properties of carbon layers doped with Er3+ ions fabricated by Plasma Assisted Chemical Vapor Deposition (PACVD and by sputtering on silicon or glass substrates. The structure of the samples was characterized by X-ray diffraction and their composition was determined by Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analysis. The Absorbance spectrum was taken in the spectral range from 400 nm to 600 nm. Photoluminescence spectra were obtained using two types of Ar laser (λex=514.5 nm, lex=488 nm and also using a semiconductor laser (λex=980 nm. Samples fabricated by magnetron sputtering exhibited typical emission at 1530 nm when pumped at 514.5 nm. 

  6. Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition

    Science.gov (United States)

    Das, Shantanu; Drucker, Jeff

    2017-03-01

    The nucleation density and average size of graphene crystallites grown using cold wall chemical vapor deposition (CVD) on 4 μm thick Cu films electrodeposited on W substrates can be tuned by varying growth parameters. Growth at a fixed substrate temperature of 1000 °C and total pressure of 700 Torr using Ar, H2 and CH4 mixtures enabled the contribution of total flow rate, CH4:H2 ratio and dilution of the CH4/H2 mixture by Ar to be identified. The largest variation in nucleation density was obtained by varying the CH4:H2 ratio. The observed morphological changes are analogous to those that would be expected if the deposition rate were varied at fixed substrate temperature for physical deposition using thermal evaporation. The graphene crystallite boundary morphology progresses from irregular/jagged through convex hexagonal to regular hexagonal as the effective C deposition rate decreases. This observation suggests that edge diffusion of C atoms along the crystallite boundaries, in addition to H2 etching, may contribute to shape evolution of the graphene crystallites. These results demonstrate that graphene grown using cold wall CVD follows a nucleation and growth mechanism similar to hot wall CVD. As a consequence, the vast knowledge base relevant to hot wall CVD may be exploited for graphene synthesis by the industrially preferable cold wall method.

  7. Effect of treatment temperature on surface wettability of methylcyclosiloxane layer formed by chemical vapor deposition

    Science.gov (United States)

    Ishizaki, Takahiro; Sasagawa, Keisuke; Furukawa, Takuya; Kumagai, Sou; Yamamoto, Erina; Chiba, Satoshi; Kamiyama, Naosumi; Kiguchi, Takayoshi

    2016-08-01

    The surface wettability of the native Si oxide surfaces were tuned by chemical adsorption of 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS) molecules through thermal CVD method at different temperature. Water contact angle measurements revealed that the water contact angles of the TMCTS-modified Si oxide surfaces at the temperature of 333-373 K were found to be in the range of 92 ± 2-102 ± 2°. The advancing and receding water contact angle of the surface prepared at 333 K were found to be 97 ± 2/92 ± 2°, showing low contact angle hysteresis surface. The water contact angles of the surfaces prepared at the temperature of 373-413 K increased with an increase in the treatment temperature. When the treatment temperature was more than 423 K, the water contact angles of TMCTS-modified surfaces were found to become more than 150°, showing superhydrophobic surface. AFM study revealed that the surface roughness of the TMCTS-modified surface increased with an increase in the treatment temperature. This geometric morphology enhanced the surface hydrophobicity. The surface roughness could be fabricated due to the hydrolysis/condensation reactions in the gas phase during CVD process. The effect of the treatment temperature on the reactivity of the TMCTS molecules were also investigated using a thermogravimetric analyzer.

  8. Chemical spray deposition of zinc oxide nanostructured layers from zinc acetate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dedova, T.; Klauson, J.; Mere, A.; Volobujeva, O.; Krunks, M. [Department of Materials Science, Tallinn University of Technology, Tallinn (Estonia); Badre, C.; Pauporte, T. [Laboratoire d' Electrochimie et de Chimie Analytique, UMR 7575, ENSCP, Paris (France); Nisumaa, R. [Centre for Materials Research, Tallinn University of Technology, Tallinn (Estonia)

    2008-10-15

    Zinc oxide (ZnO) films were deposited by chemical spray from zinc acetate aqueous solutions using continuous and pulsed spray modes. ZnO films were characterized by scanning electron microscopy, atomic force microscopy, optical transmittance, and water contact angle (CA) measurements. ZnO films with highly structured surfaces comprising nanoneedles or nanorods with root mean square roughness (Sq) up to 60 nm were grown using the continuous spray mode. Doping with In or using pulsed spray mode leads to smoother ZnO surfaces with Sq of 20 nm. The optical transmittance of the film is controlled by its surface morphology and internal scattering. Water contact angle measurements reveal that as-sprayed ZnO films with nanoneedle or nanorod-like crystals on the surface are hydrophilic with CA{proportional_to}10 . Structured surfaces become hydrophobic with CA{proportional_to}134 after treatment with stearic acid. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Bioactive titanate layers formed on titanium and its alloys by simple chemical and heat treatments.

    Science.gov (United States)

    Kokubo, Tadashi; Yamaguchi, Seiji

    2015-01-01

    To reveal general principles for obtaining bone-bonding bioactive metallic titanium, Ti metal was heat-treated after exposure to a solution with different pH. The material formed an apatite layer at its surface in simulated body fluid when heat-treated after exposure to a strong acid or alkali solution, because it formed a positively charged titanium oxide and negatively charged sodium titanate film on its surface, respectively. Such treated these Ti metals tightly bonded to living bone. Porous Ti metal heat-treated after exposure to an acidic solution exhibited not only osteoconductive, but also osteoinductive behavior. Porous Ti metal exposed to an alkaline solution also exhibits osteoconductivity as well as osteoinductivity, if it was subsequently subjected to acid and heat treatments. These acid and heat treatments were not effective for most Ti-based alloys. However, even those alloys exhibited apatite formation when they were subjected to acid and heat treatment after a NaOH treatment, since the alloying elements were removed from the surface by the latter. The NaOH and heat treatments were also not effective for Ti-Zr-Nb-Ta alloys. These alloys displayed apatite formation when subjected to CaCl2 treatment after NaOH treatment, forming Ca-deficient calcium titanate at their surfaces after subsequent heat and hot water treatments. The bioactive Ti metal subjected to NaOH and heat treatments has been clinically used as an artificial hip joint material in Japan since 2007. A porous Ti metal subjected to NaOH, HCl and heat treatments has successfully undergone clinical trials as a spinal fusion device.

  10. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    Science.gov (United States)

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  11. Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma.

    Science.gov (United States)

    Kim, So Hyun; Cui, Yidan; Lee, Min Jung; Nam, Seong-Won; Oh, Doori; Kang, Seong Ho; Kim, Youn Sang; Park, Sungsu

    2011-01-21

    This study describes a simple and low cost method for fabricating enclosed transparent hydrophilic nanochannels by coating low-viscosity PDMS (monoglycidyl ether-terminated polydimethylsiloxane) as an adhesion layer onto the surface of the nanotrenches that are molded with a urethane-based UV-curable polymer, Norland Optical Adhesive (NOA 63). In detail, the nanotrenches made of NOA 63 were replicated from a Si master mold and coated with 6 nm thick layer of PDMS. These nanotrenches underwent an oxygen plasma treatment and finally were bound to a cover glass by chemical bonding between silanol and hydroxyl groups. Hydrophobic recovery that is observed in the bulk PDMS was not observed in the thin film of PDMS on the mold and the PDMS-coated nanochannel maintained its surface hydrophilicity for at least one month. The potentials of the nanochannels for bioapplications were demonstrated by stretching λ-DNA (48,502 bp) in the channels. Therefore, this fabrication approach provides a practical solution for the simple fabrication of the nanochannels for bioapplications.

  12. Chemical Reaction Effects on an Unsteady MHD Mixed Convective and Radiative Boundary Layer Flow over a Circular Cylinder

    Directory of Open Access Journals (Sweden)

    T. Poornima

    2016-01-01

    Full Text Available A mathematical model is presented for an optically dense fluid past an isothermal circular cylinder with chemical reaction taking place in it. A constant, static, magnetic field is applied transverse to the cylinder surface. The cylinder surface is maintained at a constant temperature. New variables are introduced to transform the complex geometry into a simple shape and the boundary layer conservation equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, Crank-Nicolson finite difference scheme. Numerical computations are made and the effects of the various material parameters on the velocity, temperature and concentration as well as the surface skin friction and surface heat and mass transfer rates are illustrated graphs and tables. Increasing magnetohydrodynamic body force parameter (M is found to decelerate the flow but enhance temperatures. Thermal radiation is seen to reduce both velocity and temperature in the boundary layer. Local Nusselt number is also found to be enhanced with increasing radiation parameter.

  13. Physical and chemical properties of the regional mixed layer of Mexico's Megapolis

    Science.gov (United States)

    Baumgardner, D.; Grutter, M.; Allan, J.; Ochoa, C.; Rappenglueck, B.; Russell, L. M.; Arnott, P.

    2009-08-01

    The concentration of gases and aerosol particles have been measured at the mountain site of Altzomoni, 4010 m in altitude, located 60 km southeast of Mexico City, 50 km east of Puebla and 70 km northeast of Cuernavaca. The objective of this study was to evaluate the properties of gases and particles in the Regional Mixed Layer (RML) of Mexico's Megapolis. Altzomoni is generally above the RML from late evening until late morning at which time the arrival of the RML is marked by increasing concentrations of CO and aerosol particles that reach their maxima in mid-afternoon. The average diurnal cycles for fourteen days in March, 2006 were evaluated during which time the synoptic scale circulation had three principal patterns: from the east (E), southwest (SW) and west northwest (WNW). The original hypothesis was that air arriving from the direction of Mexico City would have much higher concentrations of anthropogenic gases and particles than air from Puebla or Cuernavaca, due to the relatively large differences in populations. In fact, not only were the average, maximum concentrations of CO and O3 (0.3 and 0.1 ppmv) approximately the same for air originating from the WNW and E, but the average maximum concentrations of Peroxyacyl nitrates (PAN,PPN) and particle organic matter (POM) in air from the E exceeded those in air from the WNW. Comparisons of measurements from the mountain site with those made by aircraft during the same period, using the same type of aerosol mass spectrometer, show that the total masses of POM, NO3-, SO42- and NH4+ were approximately the same from aircraft measurements made over Mexico City and when winds were from the east at the mountain site. In contrast 75% of the total aerosol mass at the mountain site was POM whereas over Mexico City the fraction of POM was less than 60%. The measurements suggest the occasional influence of emissions from the nearby volcano, Popocatepetl, as well as possible incursions of biomass combustion; however, the

  14. Thin film solar cells with Si nanocrystallites embedded in amorphous intrinsic layers by hot-wire chemical vapor deposition.

    Science.gov (United States)

    Park, Seungil; Parida, Bhaskar; Kim, Keunjoo

    2013-05-01

    We investigated the thin film growths of hydrogenated silicon by hot-wire chemical vapor deposition with different flow rates of SiH4 and H2 mixture ambient and fabricated thin film solar cells by implementing the intrinsic layers to SiC/Si heterojunction p-i-n structures. The film samples showed the different infrared absorption spectra of 2,000 and 2,100 cm(-1), which are corresponding to the chemical bonds of SiH and SiH2, respectively. The a-Si:H sample with the relatively high silane concentration provides the absorption peak of SiH bond, but the microc-Si:H sample with the relatively low silane concentration provides the absorption peak of SiH2 bond as well as SiH bond. Furthermore, the microc-Si:H sample showed the Raman spectral shift of 520 cm(-1) for crystalline phase Si bonds as well as the 480 cm(-1) for the amorphous phase Si bonds. These bonding structures are very consistent with the further analysis of the long-wavelength photoconduction tail and the formation of nanocrystalline Si structures. The microc-Si:H thin film solar cell has the photovoltaic behavior of open circuit voltage similar to crystalline silicon thin film solar cell, indicating that microc-Si:H thin film with the mixed phase of amorphous and nanocrystalline structures show the carrier transportation through the channel of nanocrystallites.

  15. Thin-layer chromatography and mass spectrometry coupled using proximal probe thermal desorption with electrospray or atmospheric pressure chemical ionization.

    Science.gov (United States)

    Ovchinnikova, Olga S; Van Berkel, Gary J

    2010-06-30

    An atmospheric pressure proximal probe thermal desorption sampling method coupled with secondary ionization by electrospray or atmospheric pressure chemical ionization was demonstrated for the mass spectrometric analysis of a diverse set of compounds (dyestuffs, pharmaceuticals, explosives and pesticides) separated on various high-performance thin-layer chromatography plates. Line scans along or through development lanes on the plates were carried out by moving the plate relative to a stationary heated probe positioned close to or just touching the stationary phase surface. Vapors of the compounds thermally desorbed from the surface were drawn into the ionization region of a combined electrospray ionization/atmospheric pressure chemical ionization source where they merged with reagent ions and/or charged droplets from a corona discharge or an electrospray emitter and were ionized. The ionized components were then drawn through the atmospheric pressure sampling orifice into the vacuum region of a triple quadrupole mass spectrometer and detected using full scan, single ion monitoring, or selected reaction monitoring mode. Studies of variable parameters and performance metrics including the proximal probe temperature, gas flow rate into the ionization region, surface scan speed, read-out resolution, detection limits, and surface type are discussed.

  16. A novel and easy chemical-clock synthesis of nanocrystalline iron-cobalt bearing layered double hydroxides.

    Science.gov (United States)

    Hadi, Jebril; Grangeon, Sylvain; Warmont, Fabienne; Seron, Alain; Greneche, Jean-Marc

    2014-11-15

    A novel synthesis of cobalt-iron layered double hydroxide (LDH) with interlayer chlorides was investigated. The method consists in mixing concentrated solutions of hexaamminecobalt(III) trichloride with ferrous chloride at room temperature and in anoxic conditions. Four initial Fe/Co atomic ratios have been tried out (0.12, 0.6, 1.2 and 1.8). Neither heating nor addition of alkali was employed for adjusting the pH and precipitating the metal hydroxides. Still, each mixture led to the spontaneous precipitation of a LDH-rich solid having a crystal-chemistry that depended on the initial solution Fe/Co. These LDHs phases were carefully characterized by mean of X-ray diffraction, (57)Fe Mössbauer spectrometry, transmission electron microscopy and chemical analysis (total dissolution and phenanthroline method). Solution Eh and pH were also monitored during the synthesis. Increasing initial Fe/Co ratio impacted the dynamic of the observed stepwise reaction and the composition of the resulting product. Once the two solutions are mixed, a spontaneous and abrupt color change occurs after an induction time which depends on the starting Fe/Co ratio. This makes the overall process acting as a chemical clock. This spontaneous generation of CoFe-LDH arises from the interplay between redox chemistries of iron and cobalt-ammonium complexes.

  17. Plasma-enhanced chemical vapor deposition of low- loss as-grown germanosilicate layers for optical waveguides

    Science.gov (United States)

    Ay, Feridun; Agan, Sedat; Aydinli, Atilla

    2004-08-01

    We report on systematic growth and characterization of low-loss germanosilicate layers for use in optical waveguides. Plasma enhanced chemical vapor deposition (PECVD) technique was used to grow the films using silane, germane and nitrous oxide as precursor gases. Chemical composition was monitored by Fourier transform infrared (FTIR) spectroscopy. N-H bond concentration of the films decreased from 0.43x1022 cm-3 down to below 0.06x1022 cm-3, by a factor of seven as the GeH4 flow rate increased from 0 to 70 sccm. A simultaneous decrease of O-H related bonds was also observed by a factor of 10 in the same germane flow range. The measured TE rate increased from 5 to 50 sccm, respectively. In contrast, the propagation loss values for TE polarization at λ=632.8 nm were found to increase from are 0.20 +/- 0.02 to 6.46 +/- 0.04 dB/cm as the germane flow rate increased from 5 to 50 sccm, respectively. In contrast, the propagation loss values for TE polarization at λ=1550 nm were found to decrease from 0.32 +/- 0.03 down to 0.14 +/- 0.06 dB/cm for the same samples leading to the lowest values reported so far in the literature, eliminating the need for high temperature annealing as is usually done for these materials to be used in waveguide devices.

  18. Study on CexLa1-xO2 Buffer Layer used in Coated Conductors by Chemical Solution Method

    DEFF Research Database (Denmark)

    Zhao, Yue; Suo, Hongli; Grivel, Jean-Claude

    2009-01-01

    Developing multi-functional single buffer layer is one of the most important challenges for simplification of coated conductors configuration. Ladoped CeO2 films were prepared by chemical solution method. And surface morphology and texture quality of the La-doped CeO2 films were investigated...... method. It suggects that Ce0.9La0.1O2 film prepared by chemical solution route have a promising prospect for the simplification of coated conductors configuration....... in details. The results show that the as-obtained pore-free Ce0.9La0.1O2 film are epitaxially deposited on the textured NiW substrate. The 120nm thickness Ce0.9La0.1O2 film is obtained though multi-coating route. The YBCO film with Tco=90.5K, which is deposited on Ce0.9La0.1O2/NiW metallic template by PLD...

  19. Influence of NH{sub 3}.H{sub 2}O additive on the photovoltaic performance of dye-sensitized solar cells with chemical sintered scattering layers

    Energy Technology Data Exchange (ETDEWEB)

    Lan Zhang, E-mail: lanzhang@hqu.edu.cn [Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Quanzhou 362021 (China); Key Laboratory of Functional Materials for Fujian Higher Education, Huaqiao University, Quanzhou 362021 (China); Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou 362021 (China); Wu Jihuai, E-mail: jhwu@hqu.edu.cn [Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Quanzhou 362021 (China); Key Laboratory of Functional Materials for Fujian Higher Education, Huaqiao University, Quanzhou 362021 (China); Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou 362021 (China); Lin Jianming; Huang, Miaoliang [Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Quanzhou 362021 (China); Key Laboratory of Functional Materials for Fujian Higher Education, Huaqiao University, Quanzhou 362021 (China); Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou 362021 (China)

    2011-11-30

    Graphical abstract: Chemical sintered bi-functional nanocrystalline TiO{sub 2} layers for highly efficient photoelectrodes. Display Omitted Highlights: > A chemical sintered bi-functional nanocrystalline TiO{sub 2} layer was prepared. > The nanocrystalline TiO{sub 2} layer can offer both light-scattering and electron generating properties. > The DSSC with this nanocrystalline TiO{sub 2} layer in the photoelectrode shows obviously enhanced photovoltaic performance. > The influence of additional amount of NH{sub 3}.H{sub 2}O chemical sintering agent on the photovoltaic performance of DSSCs was studied. - Abstract: A bi-functional nanocrystalline TiO{sub 2} (nc-TiO{sub 2}) layer able to offer both light-scattering and electron generating properties was prepared with a simple method through adding the basic NH{sub 3}.H{sub 2}O agent into an acid nc-TiO{sub 2} paste to form some big rod-like nc-TiO{sub 2} aggregates by the chemical sintering process. The influence of additional amount of NH{sub 3}.H{sub 2}O on the photovoltaic performance of the dye-sensitized solar cell with this bi-functional nc-TiO{sub 2} layer in the photoelectrode was studied. It was found that through controlling the additional amount of NH{sub 3}.H{sub 2}O and the thickness of the bi-functional nc-TiO{sub 2} layer, the highest energy conversion efficiency about 8.11% could be obtained, which was much higher than that of the dye-sensitized solar cell containing a single nc-TiO{sub 2} layer prepared with the original acid nc-TiO{sub 2} paste (4.34%).

  20. Impact of thickness of GaN buffer layer on properties of AlN/GaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We studied the impact of the thickness of GaN buffer layer on the properties of distributed Bragg reflector (DBR) grown by metalorganic chemical vapor deposition (MOCVD). The samples were characterized by using metallographic microscope, transmission electron microscope (TEM), atomic force microscopy (AFM), X-ray diffractometer (XRD) and spectrophotometer. The results show that the thickness of the GaN buffer layer can significantly affect the properties of the DBR structure and there is an optimal thickness of the GaN buffer layer. This work would be helpful for the growth of high quality DBR structures.

  1. Aqueous Chemical Solution Deposition of Novel, Thick and Dense Lattice-Matched Single Buffer Layers Suitable for YBCO Coated Conductors: Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    Isabel van Driessche

    2012-09-01

    Full Text Available In this work we present the preparation and characterization of cerium doped lanthanum zirconate (LCZO films and non-stoichiometric lanthanum zirconate (LZO buffer layers on metallic Ni-5% W substrates using chemical solution deposition (CSD, starting from aqueous precursor solutions. La2Zr2O7 films doped with varying percentages of Ce at constant La concentration (La0.5CexZr1−xOy were prepared as well as non-stoichiometric La0.5+xZr0.5−xOy buffer layers with different percentages of La and Zr ratios. The variation in the composition of these thin films enables the creation of novel buffer layers with tailored lattice parameters. This leads to different lattice mismatches with the YBa2Cu3O7−x (YBCO superconducting layer on top and with the buffer layers or substrate underneath. This possibility of minimized lattice mismatch should allow the use of one single buffer layer instead of the current complicated buffer architectures such as Ni-(5% W/LZO/LZO/CeO2. Here, single, crack-free LCZO and non-stoichiometric LZO layers with thicknesses of up to 140 nm could be obtained in one single CSD step. The crystallinity and microstructure of these layers were studied by XRD, and SEM and the effective buffer layer action was studied using XPS depth profiling.

  2. Thickness-Dependent Binding Energy Shift in Few-Layer MoS2 Grown by Chemical Vapor Deposition.

    Science.gov (United States)

    Lin, Yu-Kai; Chen, Ruei-San; Chou, Tsu-Chin; Lee, Yi-Hsin; Chen, Yang-Fang; Chen, Kuei-Hsien; Chen, Li-Chyong

    2016-08-31

    The thickness-dependent surface states of MoS2 thin films grown by the chemical vapor deposition process on the SiO2-Si substrates are investigated by X-ray photoelectron spectroscopy. Raman and high-resolution transmission electron microscopy suggest the thicknesses of MoS2 films to be ranging from 3 to 10 layers. Both the core levels and valence band edges of MoS2 shift downward ∼0.2 eV as the film thickness increases, which can be ascribed to the Fermi level variations resulting from the surface states and bulk defects. Grainy features observed from the atomic force microscopy topographies, and sulfur-vacancy-induced defect states illustrated at the valence band spectra imply the generation of surface states that causes the downward band bending at the n-type MoS2 surface. Bulk defects in thick MoS2 may also influence the Fermi level oppositely compared to the surface states. When Au contacts with our MoS2 thin films, the Fermi level downshifts and the binding energy reduces due to the hole-doping characteristics of Au and easy charge transfer from the surface defect sites of MoS2. The shift of the onset potentials in hydrogen evolution reaction and the evolution of charge-transfer resistances extracted from the impedance measurement also indicate the Fermi level varies with MoS2 film thickness. The tunable Fermi level and the high chemical stability make our MoS2 a potential catalyst. The observed thickness-dependent properties can also be applied to other transition-metal dichalcogenides (TMDs), and facilitates the development in the low-dimensional electronic devices and catalysts.

  3. Evolution of trace gas concentrations and the chemical properties of particles at the top of the Mexico City boundary layer.

    Science.gov (United States)

    Ochoa, C.; Baumgardner, D.; Grutter, M.

    2007-05-01

    The Altzomoni ridge is located in the Cortez Pass, in a national park, between the volcanoes of Iztaccíhuatl and Popocatépetl, at an altitude of 4010 m, and 60 km to the SE of the center of Mexico City. This region is isolated from local emissions from combustion yet there is a daily incursion of pollution from either the Mexico City basin, when winds are from the west or from the Puebla valley when winds are from the east. This was the motivation for setting up instruments at this site to measure the concentrations of trace gases and the physical, chemical and optical properties of aerosol particles. Measurements were begun during the last week of November, 2005 and continued until early June, 2006. The concentrations of CN, CO2 and CO clearly indicate that the site is in the free troposphere at night and early morning, but the regional boundary layer grows to altitudes above the site every day. Hence, this site is ideal for making observations of atmospheric chemistry at the interface between rural and urban regions. The preliminary analyses have shown that the "free tropospheric" values of CN, particle bound polycyclic aromatic hydrocarbons (PPAH) and black carbon (BC) rarely decrease below 1000 cm-3, 4 ng m-3, 100 ng m-3, respectively, suggesting the presence of a residual layer of contaminants. Nighttime CO and O3 are usually above 0.1 and 0.05 ppm. The CO concentration at the measurement site is a tenth of the Mexico City value and reached its maximum approximately six hours after the maximum in the city center. The maximum O3 in Mexico City and Altzomoni are frequently the same concentration but with no repeatable pattern in the phase differences. The highly linear relationship between BC and CO reflects the removal and dilution processes, i.e. the average ratio between BC and CO in Mexico City is 1000:1 whereas it is 3000:1 in Altzomoni. This relationship also depends on the origin of the boundary layer air, i.e. whether it comes from the east or west

  4. Chemical stability and electrical performance of dual-active-layered zinc-tin-oxide/indium-gallium-zinc-oxide thin-film transistors using a solution process.

    Science.gov (United States)

    Kim, Chul Ho; Rim, You Seung; Kim, Hyun Jae

    2013-07-10

    We investigated the chemical stability and electrical properties of dual-active-layered zinc-tin-oxide (ZTO)/indium-gallium-zinc-oxide (IGZO) structures (DALZI) with the durability of the chemical damage. The IGZO film was easily corroded or removed by an etchant, but the DALZI film was effectively protected by the high chemical stability of ZTO. Furthermore, the electrical performance of the DALZI thin-film transistor (TFT) was improved by densification compared to the IGZO TFT owing to the passivation of the pin holes or pore sites and the increase in the carrier concentration due to the effect of Sn(4+) doping.

  5. Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Theelen, M.; Boumans, T.; Stegeman, F.; Colberts, F.; Illiberi, A.; Berkum, J. van; Barreau, N.; Vroon, Z.; Zeman, M.

    2014-01-01

    Sputtered aluminum doped zinc oxide (ZnO:Al) layers on borosilicate glass were exposed to damp heat (85 C/85% relative humidity) for 2876 h to accelerate the physical and chemical degradation behavior. The ZnO:Al samples were characterized by electrical, compositional and optical measurements before

  6. In situ growth of noble metal nanoparticles on graphene oxide sheets and direct construction of functionalized porous-layered structure on gravimetric microsensors for chemical detection.

    Science.gov (United States)

    Xu, Pengcheng; Yu, Haitao; Li, Xinxin

    2012-11-11

    Noble metal nanoparticles are directly and homogeneously grown onto graphene-oxide (GO) sheets in oleylamine. After the oleylamine is removed, the GO sheets are exfoliated by the nanoparticle pillars to further form hierarchical GO nanostructures with molecule accessible nanopores. With specific sensing-groups modified, the porous-layered nanostructure can be constructed onto resonant microcantilevers for chemical sensing.

  7. Liming effects on the chemical composition of the organic surface layer of a mature Norway spruce stand (Picea abies [L.] Karst.)

    NARCIS (Netherlands)

    Rosenberg, W.; Nierop, K.G.J.; Knicker, H.; Jager, de P.A.; Kreutzer, K.; Weiá, T.

    2003-01-01

    The application of lime in a mature Norway spruce (Picea abies [L.] Karst.) forest in southern Germany induced major changes in the activity of soil organisms and root growth. Since this may influence the chemical compostion of the soil organic matter (SOM) of the organic surface layer, its composit

  8. Chemical vapor deposition and analysis of thermally insulating ZrO{sub 2} layers on injection molds

    Energy Technology Data Exchange (ETDEWEB)

    Atakan, Burak; Khlopyanova, Victoria; Mausberg, Simon; Kandzia, Adrian; Pflitsch, Christian [Thermodynamik (IVG) and Cenide, Universitaet Duisburg-Essen, Lotharstr. 1, 47057 Duisburg (Germany); Mumme, Frank [Kunststoff-Institut Luedenscheid, Karolinenstrasse 8, 58507 Luedenscheid (Germany)

    2015-07-15

    High quality injection molding requires a precise control of cooling rates. Thermal barrier coating (TBC) of zirconia with a thickness of 20-40 μm on polished stainless steel molds could provide the necessary insulating effect. This paper presents results of zirconia deposition on stainless steel substrates using chemical vapor deposition (CVD) aiming to provide the process parameters for the deposition of uniform zirconia films with such a thickness. The deposition was performed with zirconium (IV) acetylacetonate (Zr(C{sub 5}H{sub 7}O{sub 2}){sub 4}) as precursor and synthetic air as co-reactant, which allows deposition at temperatures below 600 C. The experiments were carried out in a hot-wall reactor at pressures between 7.5 mbar and 500 mbar and in a temperature range from 450 C to 600 C. Important growth parameters were characterized and growth rates between 1 and 2.5 μm/h were achieved. Thick and well adhering zirconia layers of 38 μm could be produced on steel within 40 h. The transient heat transfer rate upon contact with a hot surface was also evaluated experimentally with the thickest coatings. These exhibit a good TBC performance. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Atomic-layer chemical-vapor-deposition of TiN thin films on Si(100) and Si(111)

    CERN Document Server

    Kim, Y S; Kim, Y D; Kim, W M

    2000-01-01

    An atomic-layer chemical vapor deposition (AL-CVD) system was used to deposit TiN thin films on Si(100) and Si(111) substrates by cyclic exposures of TiCl sub 4 and NH sub 3. The growth rate was measured by using the number of deposition cycles, and the physical properties were compared with those of TiN films grown by using conventional deposition methods. To investigate the growth mechanism, we suggest a growth model for TiN n order to calculate the growth rate per cycle with a Cerius program. The results of the calculation with the model were compared with the experimental values for the TiN film deposited using the AL-CVD method. The stoichiometry of the TiN film was examined by using Auger electron spectroscopy, and the chlorine and the oxygen impurities were examined. The x-ray diffraction and the transmission electron microscopy results for the TiN film exhibited a strong (200) peak and a randomly oriented columnar microstructure. The electrical resistivity was found to decrease with increasing deposit...

  10. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  11. A Comparative Study on Structural and Optical Properties of ZnO Micro-Nanorod Arrays Grown on Seed Layers Using Chemical Bath Deposition and Spin Coating Methods

    Directory of Open Access Journals (Sweden)

    Sibel MORKOÇ KARADENİZ

    2016-11-01

    Full Text Available In this study, Zinc Oxide (ZnO seed layers were prepared on Indium Tin Oxide (ITO substrates by using Chemical Bath Deposition (CBD method and Sol-gel Spin Coating (SC method. ZnO micro-nanorod arrays were grown on ZnO seed layers by using Hydrothermal Synthesis method. Seed layer effects of structural and optical properties of ZnO arrays were characterized. X-ray diffractometer (XRD, Scanning Electron Microscopy (SEM and Ultraviolet Visible (UV-Vis Spectrometer were used for analyses. ZnO micro-nanorod arrays consisted of a single crystalline wurtzite ZnO structure for each seed layer. Besides, ZnO rod arrays were grown smoothly and vertically on SC seed layer, while ZnO rod arrays were grown randomly and flower like structures on CBD seed layer. The optical absorbance peaks found at 422 nm wavelength in the visible region for both ZnO arrays. Optical bandgap values were determined by using UV-Vis measurements at 3.12 and 3.15 eV for ZnO micro-nanorod arrays on CBD seed layer and for ZnO micro-nanorod arrays on SC-seed layer respectively.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.13443

  12. Microstructures of GaN Buffer Layers Grown on Si(111) Using Rapic Thermal Process Low-Pressure Metalorganic Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    CHEN Peng; ZHENG You-Dou; JIANG Shu-Sheng; FENG Duan; Z. C. Huang; SHEN Bo; ZHU Jian-Min; CHEN Zhi-Zhong; ZHOU Yu-Gang; XIE Shi-Yong; ZHANG Rong; HAN Ping; GU Shu-Lin

    2000-01-01

    Microstructures of GaN buffer layers grown on Si (111) substrates using rapid thermal process low-pressure metalorganic chemical vapor deposition are investigated by an atomic force microscope (AFM) and a high resolution transmission electron microscope (HRTEM). AFM images show that the islands appear in the GaN buffer layer after annealing at high temperature. Cross-sectional HRTEM micrographs of the buffer region of these samples indicate that there are bunched steps on the surface of the Si substrate and a lot of domains in GaN misorienting each other with small angles. The boundaries of those dowains locate near the bunched steps,and the regions of the film on a terrace between steps have the same crystal orientation. An amorphous-like layer, about 3 nm thick, can also be observed between the GaN buffer layer and the Si substrate.

  13. Effect of electrical parameters on morphology, chemical composition, and photoactivity of the nano-porous titania layers synthesized by pulse-microarc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Bayati, M.R., E-mail: bayati@iust.ac.i [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box: 16845-161, Tehran (Iran, Islamic Republic of); Center of Excellence for Advanced Materials, Iran University of Science and Technology, P.O. Box: 16845-195, Tehran (Iran, Islamic Republic of); Moshfegh, A.Z. [Department of Physics, Sharif University of Technology, P.O. Box: 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Golestani-Fard, F. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box: 16845-161, Tehran (Iran, Islamic Republic of); Center of Excellence for Advanced Materials, Iran University of Science and Technology, P.O. Box: 16845-195, Tehran (Iran, Islamic Republic of)

    2010-03-01

    TiO{sub 2} layers were grown via pulse type microarc oxidation process under different applied voltages, frequencies, and duty cycles. Surface chemical composition and phase structure of the synthesized layers were studied utilizing X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Furthermore, scanning electron microscope (SEM) and atomic force microscope (AFM) were employed to investigate surface morphology and topography of the layers. It was revealed that the layers had a porous structure with both anatase and rutile phases. The anatase relative content in the layers increased with the applied frequency; meanwhile, it decreased with duty cycle at low applied voltages, but increased with duty cycle at high applied voltages. The topographical evaluations showed that the surface of the layers is rough with an average roughness of about 1.8-9.9 nm. It was also found that the pore size decreased with the current frequency and increased with duty cycle at a fixed applied voltage. Photocatalytic performance of the layers was also examined by measuring the decomposition rate of methylene blue solution under ultraviolet irradiation of the surface. It was also found that about 94% of methylene blue solution was decomposed on the synthesized catalysts after 160 min UV irradiation of the surface.

  14. Wet chemical synthesis of quantum confined nanostructured tin oxide thin films by successive ionic layer adsorption and reaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Murali, K.V., E-mail: kvmuralikv@gmail.com [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Nehru Arts and Science College, Kanhangad, Kerala 671314 (India); Ragina, A.J. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Nehru Arts and Science College, Kanhangad, Kerala 671314 (India); Preetha, K.C. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Sree Narayana College, Kannur, Kerala 670007 (India); Deepa, K.; Remadevi, T.L. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Pazhassi Raja N.S.S. College, Mattannur, Kerala 670702 (India)

    2013-09-01

    Graphical abstract: - Highlights: • Quantum confined SnO{sub 2} thin films were synthesized at 80 °C by SILAR technique. • Film formation mechanism is discussed. • Films with snow like crystallite morphology offer high specific surface area. • The blue-shifted value of band gap confirmed the quantum confinement effect. • Present synthesis has advantages – low cost, low temperature and green friendly. - Abstract: Quantum confined nanostructured SnO{sub 2} thin films were synthesized at 353 K using ammonium chloride (NH{sub 4}Cl) and other chemicals by successive ionic layer adsorption and reaction technique. Film formation mechanism is discussed. Structural, morphological, optical and electrical properties were investigated and compared with the as-grown and annealed films fabricated without NH{sub 4}Cl solution. SnO{sub 2} films were polycrystalline with crystallites of tetragonal structure with grain sizes lie in the 5–8 nm range. Films with snow like crystallite morphology offer high specific surface area. The blue-shifted value of band gap of as-grown films confirmed the quantum confinement effect of grains. Refractive index of the films lies in the 2.1–2.3 range. Films prepared with NH{sub 4}Cl exhibit relatively lower resistivity of the order of 10{sup 0}–10{sup −1} Ω cm. The present synthesis has advantages such as low cost, low temperature and green friendly, which yields small particle size, large surface–volume ratio, and high crystallinity SnO{sub 2} films.

  15. Chemical reactive features of novel amino acids intercalated layered double hydroxides in As(III) and As(V) adsorption.

    Science.gov (United States)

    Shen, Liang; Jiang, Xiuli; Chen, Zheng; Fu, Dun; Li, Qingbiao; Ouyang, Tong; Wang, Yuanpeng

    2017-06-01

    Layered double hydroxides (LDHs) intercalated with amino acids such as methionine (Met) were synthesized as new adsorbents to remediate arsenic-polluted water. This Zn2Al-Met-LDHs, identified with the formula of Zn0.7Al0.3(OH)2(Met)0.3·0.32H2O, has good thermal stability. Adsorption experiments with Zn2Al-Met-LDHs showed that the residual arsenic in solution could be reduced below the regulation limit, and this adsorption process fitted Langmuir isotherm and the pseudo-second-order kinetics well. A remarkably high removal efficiency and the maximum adsorption capacity for As(III) were achieved, 96.7% and 94.1 mg/g, respectively, at 298 K. The desorption efficiency of As(III) from the arsenic-saturated Zn2Al-Met-LDHs (<8.7%), far less than that of As(V), promises a specific and reliable uptake of As(III) in sorts of solutions. More importantly, a complete and in-depth spectra analysis through FTIR, XPS and NMR was conducted to explain the excellent performance of Zn2Al-Met-LDHs in arsenic removal. Herein, two special chemical reactions were proposed as the dominant mechanisms, i.e., hydrogen bonding between the carboxyl group of the host Met and the hydroxyl group of As(III) or As(V), and the formation of a chelate ring between the guest As(III) and the S, N bidentate ligands of the intercalated Met in the LDHs.

  16. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D{sub 2}O ice beneath a H{sub 2}O ice layer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui, E-mail: ryang73@ustc.edu; Gudipati, Murthy S., E-mail: gudipati@jpl.nasa.gov [Science Division, Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 183-301, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2014-03-14

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D{sub 2}O ices by novel infrared (IR) laser ablation of a layered non-absorbing D{sub 2}O ice (spectator) containing the analytes and an ablation-active IR-absorbing H{sub 2}O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H{sub 2}O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D{sub 2}O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D{sub 2}O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H{sub 2}O molecules in the shockwave. We call this “shockwave mediated surface resonance enhanced subsurface ablation” technique as “two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers.” This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes—ablation and

  17. Chemical properties of rain events during the AMMA campaign: an evidence of dust and biogenic influence in the convective systems

    Directory of Open Access Journals (Sweden)

    K. Desboeufs

    2010-06-01

    Full Text Available This paper documents the chemical composition of 7 rain events associated with mesoscale convective systems sampled at the supersite of Banizoumbou, Niger, during the first special observation periods (June–July 2006 of the African Monsoon Multidisciplinary Analyses (AMMA experiment. Time-resolved rain sampling was performed in order to discriminate the local dust scavenged at the beginning of rain event from the aerosol particles incorporated in the cloud at the end of the rain. The total elemental composition is dominated by Al, Si, Fe and Ca, indicating a high influence of dust and limited marine or anthropogenic contribution. After the aerosol wash-out, the elemental concentrations normalized to Al and the microscopic observations of diatoms, a tracer of the Bodélé depression, both indicate that the total elemental composition of rainwater is controlled by dust originating from North-Eastern Saharan sources and probably incorporated in the convective cloud from the Harmattan layer. The low variability of the rain composition over the measurement period indicates a regional and temporal homogeneity of dust composition in the Harmattan layer. In the dissolved phase, the dominant anions are nitrate (NO3, sulphate (SO42− and chloride (Cl. However, between June and July we observe an increasing contribution of the organic anions (formate, acetate, oxalate associated with biogenic emissions to the total ion composition. These results confirm the large influence of biogenic emissions on the rain composition over Sahel during the wet season. The paper concludes on the capacity of mesoscale convective systems to carry simultaneously dust and biogenic compounds originating from different locations and depose them jointly. It also discusses the potential biogeochemical impact of such a phenomenon.

  18. Characterization of GaN/AlGaN epitaxial layers grown by metalorganic chemical vapour deposition for high electron mobility transistor applications

    Indian Academy of Sciences (India)

    Bhubesh Chander Joshi; Manish Mathew; B C Joshi; D Kumar; C Dhanavantri

    2010-01-01

    GaN and AlGaN epitaxial layers are grown by a metalorganic chemical vapour deposition (MOCVD) system. The crystalline quality of these epitaxially grown layers is studied by different characterization techniques. PL measurements indicate band edge emission peak at 363.8 nm and 312 nm for GaN and AlGaN layers respectively. High resolution XRD (HRXRD) peaks show FWHM of 272 and 296 arcsec for the (0 0 0 2) plane of GaN and GaN in GaN/AlGaN respectively. For GaN buffer layer, the Hall mobility is 346 cm2/V-s and carrier concentration is 4.5 × 1016 /cm3. AFM studies on GaN buffer layer show a dislocation density of 2 × 108/cm2 by wet etching in hot phosphoric acid. The refractive indices of GaN buffer layer on sapphire at 633 nm are 2.3544 and 2.1515 for TE and TM modes respectively.

  19. Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co and Mn with Li in Layered Lithium Transition-Metal Oxide Cathode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zheng, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lv, Dongping [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wei, Yi [Peking Univ., Beijing (China); Zheng, Jiaxin [Peking Univ., Beijing (China); Wang, Zhiguo [Univ. of Electronic Science and Technology of China, Chengdu (China); Kuppan, Saravanan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, Jianguo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luo, Langli [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Danny J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olszta, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amine, Khalil [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Jun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xiao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pan, Feng [Peking Univ., Beijing (China); Chen, Guoying [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Jiguang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Chong M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-06

    Capacity and voltage fading of layer structured cathode based on lithium transition metal oxide is closely related to the lattice position and migration behavior of the transition metal ions. However, it is scarcely clear about the behavior of each of these transition metal ions. We report direct atomic resolution visualization of interatomic layer mixing of transition metal (Ni, Co, Mn) and lithium ions in layer structured oxide cathodes for lithium ion batteries. Using chemical imaging with aberration corrected scanning transmission electron microscope (STEM) and DFT calculations, we discovered that in the layered cathodes, Mn and Co tend to reside almost exclusively at the lattice site of transition metal (TM) layer in the structure or little interlayer mixing with Li. In contrast, Ni shows high degree of interlayer mixing with Li. The fraction of Ni ions reside in the Li layer followed a near linear dependence on total Ni concentration before reaching saturation. The observed distinctively different behavior of Ni with respect to Co and Mn provides new insights on both capacity and voltage fade in this class of cathode materials based on lithium and TM oxides, therefore providing scientific basis for selective tailoring of oxide cathode materials for enhanced performance.

  20. Relationships among equivalent oxide thickness, nanochemistry, and nanostructure in atomic layer chemical-vapor-deposited Hf-O films on Si

    Science.gov (United States)

    Dey, S. K.; Das, A.; Tsai, M.; Gu, D.; Floyd, M.; Carpenter, R. W.; De Waard, H.; Werkhoven, C.; Marcus, S.

    2004-05-01

    The relationships among the equivalent oxide thickness (EOT), nanochemistry, and nanostructure of atomic layer chemical-vapor-deposited (ALCVD) Hf-O-based films, with oxide and nitrided oxide interlayers on Si substrates, were studied using x-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) in annular dark-field imaging (ADF), and parallel electron energy-loss spectroscopy (PEELS), capacitance-voltage, and leakage-current-voltage measurements. The XPS (Hf 4f binding energy shift) studies indicated the formation of Hf-O-Si bonds in as-deposited amorphous films, the amount of which was influenced by the interlayer composition and annealing conditions. After post-deposition annealing in N2 and O2, the Hf-O layers were nanocrystalline. Although HRTEM images showed a structurally sharp interface between the Hf-O layer and the interlayer, angle-resolved XPS, ADF imaging, and PEELS in the STEM revealed a chemically diffused HfSiOx region in between. This interdiffusion was observed by the detection of Si (using Si L edge) and Hf (using Hf O2,3 edge) in the Hf-O layer and the interlayer. For an annealed Hf-O/interlayer stack, with an ALCVD target thickness of 4.0 nm for the Hf-O layer on 1.2 nm of nitrided chemical oxide, the experimentally measured EOT and leakage current (at -1 V) were 1.52 nm and ˜10-8 A/cm2. A three-layer (1.2 nm interlayer of nitrided chemical oxide/compositionally graded, 2 nm region of HfSiOx/2 nm HfO2 layer) capacitor model was used to determine the respective contributions to the measured EOT, and the dielectric permittivity of the interlayer was found to be 6.06. These studies clearly indicate that a total EOT of 1 nm and below is attainable in the Hf-N-O-Si/Si-N-O system.

  1. Nonmixing layers

    Science.gov (United States)

    Gaillard, Pierre; Giovangigli, Vincent; Matuszewski, Lionel

    2016-12-01

    We investigate the impact of nonideal diffusion on the structure of supercritical cryogenic binary mixing layers. This situation is typical of liquid fuel injection in high-pressure rocket engines. Nonideal diffusion has a dramatic impact in the neighborhood of chemical thermodynamic stability limits where the components become quasi-immiscible and ultimately form a nonmixing layer. Numerical simulations are performed for mixing layers of H2 and N2 at a pressure of 100 atm and temperature around 120-150 K near chemical thermodynamic stability limits.

  2. Optimization of the ZnS Buffer Layer by Chemical Bath Deposition for Cu(In,Ga)Se2 Solar Cells.

    Science.gov (United States)

    Jeon, Dong-Hwan; Hwang, Dae-Kue; Kim, Dae-Hwan; Kang, Jin-Kyu; Lee, Chang-Seop

    2016-05-01

    We evaluated a ZnS buffer layer prepared using a chemical bath deposition (CBD) process for application in cadmium-free Cu(In,Ga)Se2 (CIGS) solar cells. The ZnS buffer layer showed good transmittance (above 90%) in the spectral range from 300 to 800 nm and was non-toxic compared with the CdS buffer layers normally used in CIGS solar cells. The CBD process was affected by several deposition conditions. The deposition rate was dependent on the ammonia concentration (complexing agent). When the ammonia concentration was either too high or low, a decrease in the deposition rate was observed. In addition, post heat treatments at high temperatures had detrimental influences on the ZnS buffer layers because portions of the ZnS thin films were transformed into ZnO. With optimized deposition conditions, a CIGS solar cell with a ZnS buffer layer showed an efficiency of 14.18% with a 0.23 cm2 active area under 100 mW/cm2 illumination.

  3. I/S and C/S mixed layers, some indicators of recent physical-chemical changes in active geothermal systems: The case study of Chipilapa (El Salvador)

    Energy Technology Data Exchange (ETDEWEB)

    Beaufort, D.; Papapanagiotou, P.; patrier, P.; Fouillac, A.M.; Traineau, H.

    1996-01-24

    I/S and C/S mixed layers from the geothermal field of Chipilapa (El Salvador) have been studied in details in order to reevaluate their potential use as indicator of the thermodynamic conditions in which they were formed. It is funded that overprinting of clay bearing alteration stages is common. For a given alteration stage, the spatial variation of I/S and C/S mixed layer ininerals is controlled by kinetics of mixed layer transformation and not only by temperature. Clay geo-thermometers cannot give reliable results because the present crystal-chemical states of the I/S and C/S mixed layers is not their initial state, it was aquired during the overall hydrothermal history which post dated the nucleation of smectitic clay material at high temperature. Occurrences of smectites or smectite-rich mixed layers at high temperature in reservoirs is a promising guide for reconstruct the zones in which boiling or mixing of non isotherinal fluids occurred very recently or still presently.

  4. Soft chemical control of the crystal and magnetic structure of a layered mixed valent manganite oxide sulfide

    Directory of Open Access Journals (Sweden)

    Jack N. Blandy

    2015-04-01

    Full Text Available Oxidative deintercalation of copper ions from the sulfide layers of the layered mixed-valent manganite oxide sulfide Sr2MnO2Cu1.5S2 results in control of the copper-vacancy modulated superstructure and the ordered arrangement of magnetic moments carried by the manganese ions. This soft chemistry enables control of the structures and properties of these complex materials which complement mixed-valent perovskite and perovskite-related transition metal oxides.

  5. Influence of a Thiolate Chemical Layer on GaAs (100 Biofunctionalization: An Original Approach Coupling Atomic Force Microscopy and Mass Spectrometry Methods

    Directory of Open Access Journals (Sweden)

    Alex Bienaime

    2013-10-01

    Full Text Available Widely used in microelectronics and optoelectronics; Gallium Arsenide (GaAs is a III-V crystal with several interesting properties for microsystem and biosensor applications. Among these; its piezoelectric properties and the ability to directly biofunctionalize the bare surface, offer an opportunity to combine a highly sensitive transducer with a specific bio-interface; which are the two essential parts of a biosensor. To optimize the biorecognition part; it is necessary to control protein coverage and the binding affinity of the protein layer on the GaAs surface. In this paper; we investigate the potential of a specific chemical interface composed of thiolate molecules with different chain lengths; possessing hydroxyl (MUDO; for 11-mercapto-1-undecanol (HS(CH211OH or carboxyl (MHDA; for mercaptohexadecanoic acid (HS(CH215CO2H end groups; to reconstitute a dense and homogeneous albumin (Rat Serum Albumin; RSA protein layer on the GaAs (100 surface. The protein monolayer formation and the covalent binding existing between RSA proteins and carboxyl end groups were characterized by atomic force microscopy (AFM analysis. Characterization in terms of topography; protein layer thickness and stability lead us to propose the 10% MHDA/MUDO interface as the optimal chemical layer to efficiently graft proteins. This analysis was coupled with in situ MALDI-TOF mass spectrometry measurements; which proved the presence of a dense and uniform grafted protein layer on the 10% MHDA/MUDO interface. We show in this study that a critical number of carboxylic docking sites (10% is required to obtain homogeneous and dense protein coverage on GaAs. Such a protein bio-interface is of fundamental importance to ensure a highly specific and sensitive biosensor.

  6. First spectromicroscopy tests at the Taiwan synchrotron radiation research center (SRRC): chemical and topographic microimaging of layered systems

    Energy Technology Data Exchange (ETDEWEB)

    Hwu, Y. [Academia Sinica, Nankang, Taipei (Taiwan). Inst. of Physics; Tung, C.Y. [Academia Sinica, Nankang, Taipei (Taiwan). Inst. of Physics; Pieh, J.Y. [Academia Sinica, Nankang, Taipei (Taiwan). Inst. of Physics; Lee, S.D. [Academia Sinica, Nankang, Taipei (Taiwan). Inst. of Physics; Almeras, P. [Institut de Physique Appliquee, Ecole Polytechnique Federale, CH-1015 Lausanne (Switzerland); Gozzo, F. [Institut de Physique Appliquee, Ecole Polytechnique Federale, CH-1015 Lausanne (Switzerland); Berger, H. [Institut de Physique Appliquee, Ecole Polytechnique Federale, CH-1015 Lausanne (Switzerland); Margaritondo, G. [Institut de Physique Appliquee, Ecole Polytechnique Federale, CH-1015 Lausanne (Switzerland); De Stasio, G. [Institut de Physique Appliquee, Ecole Polytechnique Federale, CH-1015 Lausanne (Switzerland)]|[Istituto di Struttura della Materia del CNR, Via Enrico Fermi 38, Frascati, Roma (Italy); Mercanti, D. [Istituto di Neurobiologia del Consiglio Nazionale delle Ricerche, Viale Marx 15, 00137 Roma (Italy); Ciotti, M.T. [Istituto di Neurobiologia del Consiglio Nazionale delle Ricerche, Viale Marx 15, 00137 Roma (Italy)

    1995-07-01

    The first photoelectron spectromicroscopy experiments at the new 1.3 GeV ultrabright X-ray source of SRRC have produced interesting results concerning chemical and topographic features in three types of systems: neuron networks grown on metal substrates, cleaved surfaces of high-quality single crystals of Bi{sub 2}Ca{sub 2}SrCu{sub 2}O{sub x} (BCSCO) and Au-covered GaSe. In the case of BCSCO, a general tendency to chemical homogeneity - extremely important for sophisticated spectroscopic applications - sharply conflict with occasional evidence of chemical-contrast features related to inhomogeneties in the Sr content. No chemical inhomogeneity was observed for the GaSe-Au case, in contrast to the lateral variations both in composition and in band bending previously found at submo nolayer coverage. (orig.).

  7. Effects of Chemical versus Electrochemical Delithiation on the Oxygen Evolution Reaction Activity of Nickel-Rich Layered LiMO2.

    Science.gov (United States)

    Augustyn, Veronica; Manthiram, Arumugam

    2015-10-01

    Nickel-rich layered LiMO2 (M = transition metal) oxides doped with iron exhibit high oxygen evolution reaction (OER) activity in alkaline electrolytes. The LiMO2 oxides offer the possibility of investigating the influence of the number of d electrons on OER by tuning the oxidation state of M via chemical or electrochemical delithiation. Accordingly, we investigate here the electrocatalytic behavior of LiNi0.7Co0.3O2 and LiNi0.7Co0.2Fe0.1O2 before and after chemical delithiation. In addition to varying the oxidation state of the transition-metal ions, we find that chemical delithiation also affects the local chemical environment and morphology. The electrochemical response differs depending on whether the delithiation occurred ex situ chemically or in situ during the electrocatalysis. The results point to the important role of in situ transformation in LiMO2 in alkaline electrolytes during electrocatalytic cycling.

  8. Synchrotron-based multiple-beam FTIR chemical imaging of a multi-layered polymer in transmission and reflection: towards cultural heritage applications

    Science.gov (United States)

    Unger, Miriam; Mattson, Eric; Schmidt Patterson, Catherine; Alavi, Zahrasadet; Carson, David; Hirschmugl, Carol J.

    2013-04-01

    IRENI (infrared environmental imaging) is a recently commissioned Fourier transform infrared (FTIR) chemical imaging beamline at the Synchrotron Radiation Center in Madison, WI, USA. This novel beamline extracts 320 mrad of radiation, horizontally, from one bending magnet. The optical transport separates and recombines the beam into 12 parallel collimated beams to illuminate a commercial FTIR microspectrometer (Bruker Hyperion 3000) equipped with a focal plane array detector where single pixels in the detector image a projected sample area of either 0.54×0.54 μm2 or 2×2 μm2, depending in the measurement geometry. The 12 beams are partially overlapped and defocused, similar to wide-field microscopy, homogeneously illuminating a relatively large sample area compared to single-beam arrangements. Both transmission and reflection geometries are used to examine a model cross section from a layered polymer material. The compromises for sample preparation and measurement strategies are discussed, and the chemical composition and spatial definition of the layers are distinguished in chemical images generated from data sets. Deconvolution methods that may allow more detailed data analysis are also discussed.

  9. High-temperature degradation in plasma-enhanced chemical vapor deposition Al{sub 2}O{sub 3} surface passivation layers on crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kühnhold, Saskia [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, D-79110 Freiburg (Germany); Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Straße 21 (Germany); Saint-Cast, Pierre; Kafle, Bishal; Hofmann, Marc [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, D-79110 Freiburg (Germany); Colonna, Francesco [Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Straße 21 (Germany); Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg (Germany); Zacharias, Margit [Department of Microsystems Engineering IMTEK, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany)

    2014-08-07

    In this publication, the activation and degradation of the passivation quality of plasma-enhanced chemical vapor deposited aluminum oxide (Al{sub 2}O{sub 3}) layers with different thicknesses (10 nm, 20 nm, and 110 nm) on crystalline silicon (c-Si) during long and high temperature treatments are investigated. As indicated by Fourier Transform Infrared Spectroscopy, the concentration of tetrahedral and octahedral sites within the Al{sub 2}O{sub 3} layer changes during temperature treatments and correlates with the amount of negative fixed charges at the Si/Al{sub 2}O{sub 3} interface, which was detected by Corona Oxide Characterization of Semiconductors. Furthermore, during a temperature treatment at 820 °C for 30 min, the initial amorphous Al{sub 2}O{sub 3} layer crystallize into the γ-Al{sub 2}O{sub 3} structure and was enhanced by additional oxygen as was proven by x-ray diffraction measurements and underlined by Density Functional Theory simulations. The crystallization correlates with the increase of the optical density up to 20% while the final Al{sub 2}O{sub 3} layer thickness decreases at the same time up to 26%. All observations described above were detected to be Al{sub 2}O{sub 3} layer thickness dependent. These observations reveal novel aspects to explain the temperature induced passivation and degradation mechanisms of Al{sub 2}O{sub 3} layers at a molecular level like the origin of the negative fixe charges at the Si/SiO{sub x}/Al{sub 2}O{sub 3} interface or the phenomena of blistering. Moreover, the crystal phase of Al{sub 2}O{sub 3} does not deliver good surface passivation due to a high concentration of octahedral sites leading to a lower concentration of negative fixed charges at the interface.

  10. Diffusion barrier property of MnSi{sub x}O{sub y} layer formed by chemical vapor deposition for Cu advanced interconnect application

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Mai Phuong, E-mail: nmphuong46@gmail.com; Sutou, Yuji; Koike, Junichi, E-mail: koikej@material.tohoku.ac.jp

    2015-04-01

    An amorphous manganese oxide layers formed by chemical vapor deposition have been studied as a copper diffusion barrier. The thermal stability of the barrier layer was assessed by annealing Cu/MnSi{sub x}O{sub y}/SiO{sub 2}/Si samples at 400 °C for various times up to 10 h. Transmission electron microscopy, energy-dispersive X-ray spectroscopy (EDX), secondary ion mass spectroscopy (SIMS), capacitance-voltage and current–voltage measurements were performed. Failure of the barrier property is marked by observing the copper peak appearing in EDX and SIMS spectra data from the SiO{sub 2} region. Amorphous MnSi{sub x}O{sub y} barrier with a thickness of 1.2 nm has failed in preventing Cu diffusion into SiO{sub 2} substrate after anneal at 400°C in vacuum for 1h, as proven by the presence of Cu in the dielectric (SiO{sub 2}) layer. However, the amorphous MnSi{sub x}O{sub y} with the thickness of 2.0 nm barrier was thermally stable and could prevent Cu from inter-diffusion to the SiO{sub 2} substrate after annealing at 400 °C even up to 10 h. - Highlights: • Amorphous manganese silicate layer has been studied as a copper diffusion barrier. • The 1.2 nm-thick Mn oxide layer is too thin to become a diffusion barrier. • Good thermal stability of 2.0 nm-thick manganese silicate layer.

  11. Development of carbon nanotubes based gas diffusion layers by in situ chemical vapor deposition process for proton exchange membrane fuel cells

    Science.gov (United States)

    Kannan, A. M.; Kanagala, P.; Veedu, V.

    A proprietary in situ chemical vapor deposition (CVD) process was developed for gas diffusion layer (GDL) by growing a micro-porous layer on the macro-porous, non-woven fibrous carbon paper. The characteristics of the GDL samples such as, surface morphology, wetting characteristics, and cross-section were characterized using electron microscopes, goniometer and focused ion beam, respectively. Fuel cell performance of the GDLs was evaluated using single cell with hydrogen/oxygen as well as hydrogen/air at ambient pressure, at elevated temperature and various RH conditions using Nafion-212 as an electrolyte. The GDLs with in situ growth of micro-porous layers containing carbon nanotubes (CNTs) without any hydrophobic agent showed significant improvement in mechanical robustness as well as fuel cell performance at elevated temperature at lower RH conditions. The micro-porous layer of the GDLs as seen under scanning electron microscope showed excellent surface morphology with surface homogeneity through reinforcement by the multi-walled CNTs.

  12. Diffraction analysis of nonuniform stresses in surface layers : Application to cracked TiN coatings chemically vapor deposited on Mo

    NARCIS (Netherlands)

    Sloof, W.G.; Kooi, B.J.; Delhez, R.; Keijser, Th.H. de; Mittemeijer, E.J.

    1996-01-01

    Variations of residual stresses in layers on substrates can occur in directions parallel and perpendicular to the surface as a result of compositional inhomogeneity and/or porosity or cracks. Diffraction methods to evaluate such stress variations are presented. Comparison of the experimental value f

  13. Formation of Micro- and Nanostructures on the Nanotitanium Surface by Chemical Etching and Deposition of Titania Films by Atomic Layer Deposition (ALD

    Directory of Open Access Journals (Sweden)

    Denis V. Nazarov

    2015-12-01

    Full Text Available In this study, an integrated approach was used for the preparation of a nanotitanium-based bioactive material. The integrated approach included three methods: severe plastic deformation (SPD, chemical etching and atomic layer deposition (ALD. For the first time, it was experimentally shown that the nature of the etching medium (acidic or basic Piranha solutions and the etching time have a significant qualitative impact on the nanotitanium surface structure both at the nano- and microscale. The etched samples were coated with crystalline biocompatible TiO2 films with a thickness of 20 nm by Atomic Layer Deposition (ALD. Comparative study of the adhesive and spreading properties of human osteoblasts MG-63 has demonstrated that presence of nano- and microscale structures and crystalline titanium oxide on the surface of nanotitanium improve bioactive properties of the material.

  14. Effects of the chemical reaction and heat generation or absorption on a mixed convection boundary layer flow over a vertical stretching sheet with nonuniform slot mass transfer

    Science.gov (United States)

    Samyuktha, N.; Ravindran, R.; Ganapathirao, M.

    2017-01-01

    An analysis is performed to study the effects of the chemical reaction and heat generation or absorption on a steady mixed convection boundary layer flow over a vertical stretching sheet with nonuniform slot mass transfer. The governing boundary layer equations with boundary conditions are transformed into the dimensionless form by a group of nonsimilar transformations. Nonsimilar solutions are obtained numerically by solving the coupled nonlinear partial differential equations using the quasi-linearization technique combined with an implicit finite difference scheme. The numerical computations are carried out for different values of dimensionless parameters to display the distributions of the velocity, temperature, concentration, local skin friction coefficient, local Nusselt number, and local Sherwood number. The results obtained indicate that the local Nusselt and Sherwood numbers increase with nonuniform slot suction, but nonuniform slot injection produces the opposite effect. The local Nusselt number decreases with heat generation and increases with heat absorption.

  15. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Yang; Hong, Shao-Chyang [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Hwang, Fu-Tsai [Department of Electro-Optical Engineering, National United University, Miao-Li, 36003, Taiwan (China); Lai, Li-Wen [ITRI South, Industrial Technology Research Institute, Liujia, Tainan, 73445, Taiwan (China); Lin, Tan-Wei [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Liu, Day-Shan, E-mail: dsliu@sunws.nfu.edu.tw [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China)

    2011-10-31

    The effect of a nickel oxide (NiO{sub x}) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO{sub x}) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO{sub x} films, with and without a NiO{sub x} seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO{sub x} film, deposited on a NiO{sub x} seed layer, was found to be lower than that of a pure TiO{sub x} film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO{sub x} film deposited onto the NiO{sub x} seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO{sub x}/TiO{sub x} system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  16. Quantitative and simultaneous analysis of the polarity of polycrystalline ZnO seed layers and related nanowires grown by wet chemical deposition

    Science.gov (United States)

    Guillemin, Sophie; Parize, Romain; Carabetta, Joseph; Cantelli, Valentina; Albertini, David; Gautier, Brice; Brémond, Georges; Fong, Dillon D.; Renevier, Hubert; Consonni, Vincent

    2017-03-01

    The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscale-engineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol–gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 107 nano-objects both on the macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscale-engineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.

  17. Synthesis of few-layer graphene on a Ni substrate by using DC plasma enhanced chemical vapor deposition (PE-CVD)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hyuk; Castro, Edward Joseph; Hwang, Yong Gyoo; Lee, Choong Hun [Wonkwang University, Iksan (Korea, Republic of)

    2011-01-15

    In this work, few-layer graphene (FLG) was successfully grown on polycrystalline Ni a large scale by using DC plasma enhanced chemical vapor deposition (DC PE-CVD), which may serve as an alternative route in large-scale graphene synthesis. The synthesis time had an effect on the quality of the graphene produced. The applied DC voltage, on the other hand, influenced the minimization of the defect densities in the graphene grown. We also present a method of producing a free-standing polymethyl methacrylate (PMMA)/graphene membrane on a FeCl{sub 3(aq)} solution, which could then be transferred to the desired substrate.

  18. Chemically deposited In2S3-Ag2S layers to obtain AgInS2 thin films by thermal annealing

    Science.gov (United States)

    Lugo, S.; Peña, Y.; Calixto-Rodriguez, M.; López-Mata, C.; Ramón, M. L.; Gómez, I.; Acosta, A.

    2012-12-01

    AgInS2 thin films were obtained by the annealing of chemical bath deposited In2S3-Ag2S layers at 400 °C in N2 for 1 h. According to the XRD and EDX results the chalcopyrite structure of AgInS2 has been obtained. These films have an optical band gap, Eg, of 1.86 eV and an electrical conductivity value of 1.2 × 10-3 (Ω cm)-1.

  19. Heat and mass transfer in a dissociated laminar boundary layer of air with consideration of the finite rate of chemical reaction

    Science.gov (United States)

    Oyegbesan, A. O.; Algermissen, J.

    1986-01-01

    A numerical investigation of heat and mass transfer in a dissociated laminar boundary layer of air on an isothermal flat plate is carried out for different degrees of cooling of the wall. A finite-difference chemical model is used to study elementary reactions involving NO2 and N2O. The analysis is based on equations of continuity, momentum, energy, conservation and state for the two-dimensional viscous flow of a reacting multicomponent mixtures. Attention is given to the effects of both catalyticity and noncatalyticity of the wall.

  20. Photoluminescence study of polycrystalline photovoltaic CdS thin film layers grown by close-spaced sublimation and chemical bath deposition.

    OpenAIRE

    Abken, Anke E.; Halliday, D.P.; Durose, Ken

    2009-01-01

    Photoluminescence (PL) measurements were used to study the effect of postdeposition treatments by annealing and CdCl2 activation on polycrystalline CdS layer grown by close-spaced sublimation (CSS) and chemical bath deposition (CBD). CdS films were either annealed in a temperature range of 200–600 °C or CdCl2 treated between 300–550 °C. The development of “red,” “intermediate orange,” “yellow,” and “green” luminescence bands is discussed in comparison with PL assignments found in literature. ...

  1. Sono-chemical successive ionic layer adsorption and reaction for the synthesis of CdS quantum dots onto mesoporous TiO2 photoanodes

    Science.gov (United States)

    Kim, Jae Ho; Kim, Geon Yang; Sohn, Sang Ho

    2015-07-01

    Aiming at high efficiency of quantum dot-sensitized solar cells (QDSCs) with CdS quantum dots (QDs)/mesoporous TiO2 (mp-TiO2) photoanodes, physical properties of CdS QDs/mp-TiO2 grown by sono-chemical successive ionic layer adsorption and reaction (SC-SILAR) process were studied. It is found that SC-SILAR process has less growth time and larger absorbance of CdS QDs besides a uniform penetration into mp-TiO2 films, compared with the conventional SILAR process. Experimental results show that SC-SILAR is an effective method for growing CdS QDs with high efficiency due to an extra sono-chemical energy of acoustic cavitation.

  2. Effect of conventional chemical treatment on the microbial population in a biofouling layer of reverse osmosis systems

    NARCIS (Netherlands)

    Bereschenko, L.A.; Prummel, H.; Euverink, G.J.W.; Stams, A.J.M.; Loosdrecht, M.C.M. van

    2011-01-01

    The impact of conventional chemical treatment on initiation and spatiotemporal development of biofilms on reverse osmosis (RO) membranes was investigated in situ using flow cells placed in parallel with the RO system of a full-scale water treatment plant. The flow cells got the same feed (extensivel

  3. Measurements of Sea Salt Aerosols in the Marine Boundary Layer and Free Troposphere: Vertical Transport and Chemical Transformation

    Science.gov (United States)

    Hudson, P. K.; Murphy, D. M.; Cziczo, D. J.; Thomson, D. S.

    2002-12-01

    During the Intercontinental Transport and Chemical Transformation (ITCT) mission (Monterey, CA, spring 2002) nearly 400,000 positive and negative mass spectra of single atmospheric aerosols were acquired using the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument. The primary focus of the mission was to investigate the composition of air masses along the western coast of the United States. Of particular interest to the mission was to study the influence of anthropogenic emissions from Asia on aerosol composition. To accomplish these goals, the WP-3 aircraft, equipped with a suite of instruments including PALMS, covered a large spatial area flying from 0 - 8000 m altitude covering most of the western coastline from Canada to southern California including flights over the San Francisco and Los Angeles metropolitan areas. The in situ measurements of single particle aerosol mass spectra by PALMS allow for good spatial and vertical resolution of the aerosol composition. By observing the changes in aerosol composition as a function of altitude, the vertical transport of sea salt aerosols over marine and urban environments is examined. Using measurements of other chemical tracers along with the aerosol composition, the chemical processing of these aerosols during transport both vertically and inland can be discerned. These results add insight into the transport and chemical evolution of sea salt aerosol.

  4. Interfacial chemical reaction and multiple gap state formation on three layer cathode in organic light-emitting diode: Ca/BaF2/Alq3

    Science.gov (United States)

    Kim, Tae Gun; Lee, Hyunbok; Yi, Yeonjin; Lee, Seung Mi; Kim, Jeong Won

    2015-07-01

    A three layer cathode is a promising stack structure for long lifetime and high efficiency in organic light-emitting diodes. The interfacial chemical reactions and their effects on electronic structures for alkaline-earth metal (Ca, Ba)/Alq3 [tris(8-hydroxyquinolinato)aluminum] and Ca/BaF2/Alq3 are investigated using in-situ X-ray and ultraviolet photoelectron spectroscopy, as well as molecular model calculation. The BaF2 interlayer initially prevents direct contact between Alq3 and the reactive Ca metal, but it is dissociated into Ba and CaF2 by the addition of Ca. As the Ca thickness increases, the Ca penetrates the interlayer to directly participate in the reaction with the underlying Alq3. This series of chemical reactions takes place irrespective of the BaF2 buffer layer thickness as long as the Ca overlayer thickness is sufficient. The interface reaction between the alkaline-earth metal and Alq3 generates two energetically separated gap states in a sequential manner. This phenomenon is explained by step-by-step charge transfer from the alkaline-earth metal to the lowest unoccupied molecular orbital states of Alq3, forming new occupied states below the Fermi level.

  5. Interfacial chemical reaction and multiple gap state formation on three layer cathode in organic light-emitting diode: Ca/BaF{sub 2}/Alq{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Gun; Kim, Jeong Won, E-mail: jeongwonk@kriss.re.kr [Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Daejeon 305-340 (Korea, Republic of); Korea University of Science and Technology (UST), 206 Gajeong-ro, Daejeon 305-350 (Korea, Republic of); Lee, Hyunbok [Department of Physics, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do 200-701 (Korea, Republic of); Yi, Yeonjin [Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemoon-Gu, Seoul 120-749 (Korea, Republic of); Lee, Seung Mi [Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Daejeon 305-340 (Korea, Republic of)

    2015-07-14

    A three layer cathode is a promising stack structure for long lifetime and high efficiency in organic light-emitting diodes. The interfacial chemical reactions and their effects on electronic structures for alkaline-earth metal (Ca, Ba)/Alq{sub 3} [tris(8-hydroxyquinolinato)aluminum] and Ca/BaF{sub 2}/Alq{sub 3} are investigated using in-situ X-ray and ultraviolet photoelectron spectroscopy, as well as molecular model calculation. The BaF{sub 2} interlayer initially prevents direct contact between Alq{sub 3} and the reactive Ca metal, but it is dissociated into Ba and CaF{sub 2} by the addition of Ca. As the Ca thickness increases, the Ca penetrates the interlayer to directly participate in the reaction with the underlying Alq{sub 3}. This series of chemical reactions takes place irrespective of the BaF{sub 2} buffer layer thickness as long as the Ca overlayer thickness is sufficient. The interface reaction between the alkaline-earth metal and Alq{sub 3} generates two energetically separated gap states in a sequential manner. This phenomenon is explained by step-by-step charge transfer from the alkaline-earth metal to the lowest unoccupied molecular orbital states of Alq{sub 3}, forming new occupied states below the Fermi level.

  6. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells

    Science.gov (United States)

    Klingsporn, M.; Kirner, S.; Villringer, C.; Abou-Ras, D.; Costina, I.; Lehmann, M.; Stannowski, B.

    2016-06-01

    Nanocrystalline silicon suboxides (nc-SiOx) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO0.8:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  7. Effect of surface pretreatment on interfacial chemical bonding states of atomic layer deposited ZrO{sub 2} on AlGaN

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Wang, Hong, E-mail: ewanghong@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore and CINTRA CNRS/NTU/Thales, UMI 3288, 50 Nanyang Drive, Singapore 637553 (Singapore); Ng, Serene Lay Geok; Ji, Rong [Data Storage Institute, Agency for Science Technology and Research (A-STAR), 5 Engineering Drive 1, Singapore 117608 (Singapore); Liu, Zhi Hong [Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602 (Singapore)

    2015-09-15

    Atomic layer deposition (ALD) of ZrO{sub 2} on native oxide covered (untreated) and buffered oxide etchant (BOE) treated AlGaN surface was analyzed by utilizing x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy. Evidenced by Ga–O and Al–O chemical bonds by XPS, parasitic oxidation during deposition is largely enhanced on BOE treated AlGaN surface. Due to the high reactivity of Al atoms, more prominent oxidation of Al atoms is observed, which leads to thicker interfacial layer formed on BOE treated surface. The results suggest that native oxide on AlGaN surface may serve as a protecting layer to inhibit the surface from further parasitic oxidation during ALD. The findings provide important process guidelines for the use of ALD ZrO{sub 2} and its pre-ALD surface treatments for high-k AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors and other related device applications.

  8. Chemical bath deposition of thin semiconductor films for use as buffer layers in CuInS sub 2 thin film solar cells

    CERN Document Server

    Kaufmann, C A

    2002-01-01

    different growth phases, layer morphology and solar cell performance were sought and an improved deposition process was developed. As a result, Cd-free CulnS sub 2 thin film solar cells with efficiencies of up to 10.6%) (total area) could be produced. Overall the substitution of CdS is shown to be possible by different alternative compounds, such as Zn(OH,O) sub x S sub y or In(OH,O) sub x S sub y. In the case of In(OH,O) sub x S sub y , an understanding of the CBD process and the effect of different growth phases on the resulting solar cell characteristics could be developed. A CulnS sub 2 thin film solar cell is a multilayered semiconductor device. The solar cells discussed have a layer sequence Mo/CulnS sub 2 /buffer/i-ZnO/ZnO:Ga, where a heterojunction establishes between the p-type absorber and the n-type front contact. Conventionally the buffer consists of CdS, deposited by chemical bath deposition (CBD). Apart from providing process oriented benefits the buffer layer functions as a tool for engineering...

  9. Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP: linking condensation, evaporation and chemical reactions of organics, oxidants and water

    Directory of Open Access Journals (Sweden)

    M. Shiraiwa

    2011-12-01

    Full Text Available We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007, and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds.

    In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at ~270 K is close to unity. Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the

  10. Separation of Scaptotrigona postica workers into defined task groups by the chemical profile on their epicuticle wax layer.

    Science.gov (United States)

    Poiani, Silvana B; Morgan, E David; Drijfhout, Falko P; da Cruz-Landim, Carminda

    2014-04-01

    During evolution, the cuticle surface of insects acquired functions in communication, such as inter- and intra-specific recognition, identification of gender, physiological state, and fertility. In eusocial bees, the information in the cuticular surface is important not only to discriminate nestmates from non-nestmates but also to identify an individual's class, life phase or task. A comparative study of the cuticular surface chemical profile of workers of Scaptotrigona postica in different phases of life, i.e., newly emerged workers (NE), brood comb area workers (CA), and forager workers (FO) was undertaken by gas chromatography linked to mass spectrometry. Multivariate statistical analysis was performed to verify how workers are grouped according to their chemical profile and to determine which compounds are responsible for separating them into groups. The cuticle surface of workers contains mainly hydrocarbons and a small amount of oxygenated compounds. Multivariate statistical analysis showed qualitative and quantitative variation in relation to the life phases/tasks performed, and all groups were distinct. The most abundant compound found in NE and CA was n-heptacosane, while in FO, it was (Z)-9-heptacosene. The compounds that differentiate NE from other groups are n-tricosane and n-hexacosane. A (Z)-X-octacosene and n-nonacosane are the chemicals that distinguish CA from NE and FO, while 11- and 13-methylpentacosane, (Z)-X-hexacosene, and (Z)-9-heptacosene characterize FO as distinct from NE and CA. The probable function of alkenes is nestmate recognition, mainly in FO. The results show that the cuticle surfaces of workers are characteristic of the phase of life/task performed by workers, allowing intra-colonial recognition.

  11. Investigations of microphysical and chemical composition of aerosol in near-water layer of the atmosphere over the White Sea

    Science.gov (United States)

    Panchenko, Mikhail V.; Kozlov, Valerii S.; Pol'kin, Victor V.; Golobokova, Lyudmila P.; Pogodaeva, Tatyana V.; Khodzher, Tamara V.; Lisitzin, Alexander P.; Shevchenko, Vladimir P.

    2006-11-01

    The peculiarities of spatial-temporal variability of the submicron aerosol number density N Σ (cm -3), particle size distribution in the diameter range 0.4 to 10 μm, mass concentration of submicron aerosol Ma (μg/m 3) and the mass concentration of black carbon (soot, BC) Ms (μg/m 3), as well as chemical composition of particles (ion composition of aerosol soluble fraction) in different regions of White Sea are considered in this paper. The effect of continental and marine sources on formation of the near-water aerosol characteristics is estimated.

  12. Basic Ozone Layer Science

    Science.gov (United States)

    Learn about the ozone layer and how human activities deplete it. This page provides information on the chemical processes that lead to ozone layer depletion, and scientists' efforts to understand them.

  13. Growth of thick La{sub 2}Zr{sub 2}O{sub 7} buffer layers for coated conductors by polymer-assisted chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin, E-mail: xzhang@my.swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Yong, E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Xia, Yudong [State Key Lab of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guo, Chunsheng [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Zhang, Yong [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhang, Han [Department of Physics, Peking University, Beijing 100871 (China)

    2015-06-15

    Highlights: • We develops a low-cost and high-efficient technology of fabricating LZO buffer layers. • Sufficient thickness LZO buffer layers have been obtained on NiW (2 0 0) alloy substrate. • Highly biaxially textured YBCO thin film has been deposited on LZO/NiW. - Abstract: La{sub 2}Zr{sub 2}O{sub 7} (LZO) epitaxial films have been deposited on LaAlO{sub 3} (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm{sup 2} at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors.

  14. Platinum thin films with good thermal and chemical stability fabricated by inductively coupled plasma-enhanced atomic layer deposition at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bo-Heng [Instrument Technology Research Center, National Applied Research Laboratories, Taiwan (China); Huang, Hung Ji, E-mail: hjhuang@itrc.narl.org.tw [Instrument Technology Research Center, National Applied Research Laboratories, Taiwan (China); Huang, Sheng-Hsin [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Hsiao, Chien-Nan [Instrument Technology Research Center, National Applied Research Laboratories, Taiwan (China)

    2014-09-01

    The inductively coupled plasma-enhanced atomic layer deposition (PEALD) method was used to fabricate ultrathin and smooth Pt thin films at low temperatures without the use of a Pt seed layer. The Pt thin metal films deposited at 200 °C onto Si and glass substrates exhibited high conductivities (< 12 μΩ cm for films with a thickness greater than 8 nm) and thermal stabilities resembling those of the bulk material. The measured density of the deposited Pt thin films was 20.7 ± 6 g/cm{sup 3}. X-ray photoelectron spectra of the films showed clear 4f peaks (74.3 eV (4f{sub 5/2}) and 71.1 eV (4f{sub 7/2})), and X-ray diffraction measurements showed the (111) peak of the fcc structure. The deposited Pt layers were in crystal form. The 25.5-nm Pt films coated onto 170-nm-wide trench structures (aspect ratio of 3.5:1) exhibited good step coverage. The PEALD-deposited Pt thin films were chemically stable under high-temperature light illumination and could serve as catalysts under strongly alkaline conditions (pH = 12) during the long-term oxidization of ammonium ions. - Highlights: • Inductively coupled plasma applied to enhance atomic layer deposition (PEALD) • Smooth Pt films fabricated by PEALD at low temperature • 8-nm Pt shows clear metal peaks in XPS and XRD. • 8-nm Pt shows low electrical resistivity of 16 μΩ cm. • 8-nm Pt shows stability under strong light and pH = 12 wash by NH{sub 4}{sup +}/NaOH solution.

  15. Wet chemical synthesis and magnetic properties of single crystal Co nanochains with surface amorphous passivation Co layers

    Directory of Open Access Journals (Sweden)

    Zhou Shao-Min

    2011-01-01

    Full Text Available Abstract In this study, for the first time, high-yield chain-like one-dimensional (1D Co nanostructures without any impurity have been produced by means of a solution dispersion approach under permanent-magnet. Size, morphology, component, and structure of the as-made samples have been confirmed by several techniques, and nanochains (NCs with diameter of approximately 60 nm consisting of single-crystalline Co and amorphous Co-capped layer (about 3 nm have been materialized. The as-synthesized Co samples do not include any other adulterants. The high-quality NC growth mechanism is proposed to be driven by magnetostatic interaction because NC can be reorganized under a weak magnetic field. Room-temperature-enhanced coercivity of NCs was observed, which is considered to have potential applications in spin filtering, high density magnetic recording, and nanosensors. PACS: 61.46.Df; 75.50; 81.07.Vb; 81.07.

  16. Alternative Process for Manufacturing of Thin Layers of Boron for Neutron Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Auge, Gregoire; Partyka, Stanislas [Onet Technologies (France); Guerard, Bruno; Buffet, Jean-Claude [Institut Laue Langevin - ILL, Grenoble (France)

    2015-07-01

    Due to the worldwide shortage of helium 3, Boron-lined proportional counters are developed intensively by several groups. Up to now, thin boron containing layers for neutron detectors are essentially produced by sputtering of boron carbide (B{sub 4}C). This technology provides high quality films but it is slow and expensive. Our paper describes a novel and inexpensive technology for producing boron layers. This technology is based on chemical synthesis of boron 10 nanoparticles, and on electrophoretic deposition of these particles on metallic plates, or on metallic pieces with more complex shapes. The chemical synthesis consists in: - Heating boron 10 with lithium up to 700 deg. C under inert atmosphere: an intermetallic compound, LiB, is produced; - Hydrolysing this intermetallic compound: LiB + H{sub 2}O → B + Li{sup +} + OH{sup -} + 1/2H{sub 2}, where B is under the form of nanoparticles; - Purifying the suspension of boron nanoparticles in water, from lithium hydroxide, by successive membrane filtrations; - Evaporating the purified suspension, in order to get a powder of nanoparticles. The obtained nanoparticles have size around 300 nm, with a high porosity, of about 50%. This particle size is equivalent to about 150 nm massive particles. The nanoparticles are then put into suspension in a specific solvent, in order to perform deposition on metallic surfaces, by electrophoretic method. The solvent is chosen so that it is not electrolysed even under voltages of several tens of volts. An acid is dissolved into the solvent, so that the nanoparticles are positively charged. Deposition is performed on the cathode within about 10 min. The cathode could be an aluminium plate, or a nickel coated aluminium plate. Homogeneous deposition may also be performed on complex shapes, like grids in a Multigrid detector. A large volume of pieces, can be coated with a Boron-10 film in a few hours. The thickness of the layer can be adjusted according to the required neutron

  17. Physico-chemical properties of the potentially oxidative water and its capability of the instrumentation residual layer remotion

    Directory of Open Access Journals (Sweden)

    Daniel Silva-Herzog FLORES

    2006-11-01

    Full Text Available The purpose of the study was to elaborate the potentially oxidative water (POW and analyze some of the physico-chemical properties: pH density, superficial stress, contact angle, conductivity and REDOX potential; besides comparing its POW organic as well as non-organic matter removal capacity with hypochlorite sodium at 1% plus 17% EDTA. For the methodology the POW elaboration an electrolysis process was used and the physico-chemical properties were determined in 0, 1, 3, 5 and 7 days. For the removal capacity of teeth tartarevaluation, 30 extracted uniradicular premolars were used, divided in three groups:positive control (NaOCl at 1% + EDTA at 17%, negative control(distilled water and experimental (POW. Afterwards, the samples were observed under electronic microscopy with 2500x magnifying at the middle thirds and apical, analyzing them with the Rome scale (amount of open dental tubes. For the statistical analysis the Chi-square and the Fisher Exact Proofwas used. The results showed that the solution was constantly maintained at all times during the evaluation and there was found statistical difference between negative control and positive control and between negative control and the experimental group. With regards to the dental tartar removal it was found that there was no statistical difference between the control group and the experimental group (POW; reason why it is concluded that the POW has the capacity to remove dental tartar. Nevertheless, to be able to propose the use of the POW as an irrigator solution in Endodontics it is necessary to do further studies to evaluate its cytotoxicity and biocompability.

  18. Facile Synthesis of Layer Structured GeP3/C with Stable Chemical Bonding for Enhanced Lithium-Ion Storage

    Science.gov (United States)

    Qi, Wen; Zhao, Haihua; Wu, Ying; Zeng, Hong; Tao, Tao; Chen, Chao; Kuang, Chunjiang; Zhou, Shaoxiong; Huang, Yunhui

    2017-01-01

    Recently, metal phosphides have been investigated as potential anode materials because of higher specific capacity compared with those of carbonaceous materials. However, the rapid capacity fade upon cycling leads to poor durability and short cycle life, which cannot meet the need of lithium-ion batteries with high energy density. Herein, we report a layer-structured GeP3/C nanocomposite anode material with high performance prepared by a facial and large-scale ball milling method via in-situ mechanical reaction. The P-O-C bonds are formed in the composite, leading to close contact between GeP3 and carbon. As a result, the GeP3/C anode displays excellent lithium storage performance with a high reversible capacity up to 1109 mA h g−1 after 130 cycles at a current density of 0.1 A g−1. Even at high current densities of 2 and 5 A g−1, the reversible capacities are still as high as 590 and 425 mA h g−1, respectively. This suggests that the GeP3/C composite is promising to achieve high-energy lithium-ion batteries and the mechanical milling is an efficient method to fabricate such composite electrode materials especially for large-scale application. PMID:28240247

  19. Moments of inertia of the lunar globe, and their bearing on chemical differentiation of its outer layers.

    Science.gov (United States)

    Kopal, Z.

    1972-01-01

    It is pointed out that the observed moments of inertia of the moon, disclosed by its librations, are influenced mainly by the distribution of mass in the outer zone in which the lithostatic pressure is less than 10 kb (i.e., in the outer shell not more than 200 km deep); a conspicuous departure of such moments from those expected in hydrostatic equilibrium disclosed that these layers could never have been fluid. In the same way, the actual shape of the lunar surface cannot represent a solidified surface of a fluid, petrified at any distance from the earth. The shape of the moon and differences of its moments of inertia must reflect the way in which the initial process of cold accretion fell short of producing a globe with strictly spherically-symmetrical stratification of material. Such melting or lava flows as may have occurred at the moon's surface from time to time must have remained localized, and without much effect on the dynamical properties of the moon.

  20. High performance thin layer chromatography fingerprinting, phytochemical and physico-chemical studies of anti-diabetic herbal extracts

    Science.gov (United States)

    Itankar, Prakash R.; Sawant, Dattatray B.; Tauqeer, Mohd.; Charde, Sonal S.

    2015-01-01

    Introduction: Herbal medicines have gained increasing popularity in the last few decades, and this global resurgence of herbal medicines increases their commercial value. However, this increasing demand has resulted in a decline in their quality, primarily due to a lack of adequate regulations pertaining to herbal medicines. Aim: To develop an optimized methodology for the standardization of herbal raw materials. Materials and Methods: The present study has been designed to examine each of the five herbal anti-diabetic drugs, Gymnema sylvester R. Br., Pterocarpus marsupium Roxburgh., Enicostema littorale Blume., Syzygium cumini (L.) Skeels. and Emblica officinalis Gaertn. The in-house extracts and marketed extracts were evaluated using physicochemical parameters, preliminary phytochemical screening, quantification of polyphenols (Folin–Ciocalteu colorimetric method) and high performance thin layer chromatography (HPTLC) fingerprint profiling with reference to marker compounds in plant extracts. Results: All the plants mainly contain polyphenolic compounds and are quantified in the range of 3.6–21.72% w/w. E. officinalis contain the highest and E. littorale contain the lowest content of polyphenol among plant extracts analyzed. HPTLC fingerprinting showed that the in-house extracts were of better quality than marketed extracts. Conclusion: The results obtained from the study could be utilized for setting limits for the reference phytoconstituents (biomarker) for the quality control and quality assurance of these anti-diabetic drugs. PMID:27011722

  1. Effects of Post Annealing Treatments on the Interfacial Chemical Properties and Band Alignment of AlN/Si Structure Prepared by Atomic Layer Deposition.

    Science.gov (United States)

    Sun, Long; Lu, Hong-Liang; Chen, Hong-Yan; Wang, Tao; Ji, Xin-Ming; Liu, Wen-Jun; Zhao, Dongxu; Devi, Anjana; Ding, Shi-Jin; Zhang, David Wei

    2017-12-01

    The influences of annealing temperature in N2 atmosphere on interfacial chemical properties and band alignment of AlN/Si structure deposited by atomic layer deposition have been investigated based on x-ray photoelectron spectroscopy and spectroscopic ellipsometry. It is found that more oxygen incorporated into AlN film with the increasing annealing temperature, resulting from a little residual H2O in N2 atmosphere reacting with AlN film during the annealing treatment. Accordingly, the Si-N bonding at the interface gradually transforms to Si-O bonding with the increasing temperature due to the diffusion of oxygen from AlN film to the Si substrate. Specially, the Si-O-Al bonding state can be detected in the 900 °C-annealed sample. Furthermore, it is determined that the band gap and valence band offset increase with increasing annealing temperature.

  2. Effects of Post Annealing Treatments on the Interfacial Chemical Properties and Band Alignment of AlN/Si Structure Prepared by Atomic Layer Deposition

    Science.gov (United States)

    Sun, Long; Lu, Hong-Liang; Chen, Hong-Yan; Wang, Tao; Ji, Xin-Ming; Liu, Wen-Jun; Zhao, Dongxu; Devi, Anjana; Ding, Shi-Jin; Zhang, David Wei

    2017-02-01

    The influences of annealing temperature in N2 atmosphere on interfacial chemical properties and band alignment of AlN/Si structure deposited by atomic layer deposition have been investigated based on x-ray photoelectron spectroscopy and spectroscopic ellipsometry. It is found that more oxygen incorporated into AlN film with the increasing annealing temperature, resulting from a little residual H2O in N2 atmosphere reacting with AlN film during the annealing treatment. Accordingly, the Si-N bonding at the interface gradually transforms to Si-O bonding with the increasing temperature due to the diffusion of oxygen from AlN film to the Si substrate. Specially, the Si-O-Al bonding state can be detected in the 900 °C-annealed sample. Furthermore, it is determined that the band gap and valence band offset increase with increasing annealing temperature.

  3. Chemically Reacting MHD Boundary Layer Flow of Heat and Mass Transfer over a Moving Vertical Plate in a Porous Medium with Suction

    Directory of Open Access Journals (Sweden)

    K. GANGADHAR

    2013-01-01

    Full Text Available A mathematical model is presented for a two-dimensional, steady, incompressible electrically conducting, laminar free convection boundary layer flow of a continuously moving vertical porous plate in a chemically reactive and porous medium in the presence of a transverse magnetic field. The basic equations governing the flow are in the form of partial differential equations and have been reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformations. The problem is tackled numerically using shooting techniques with the forth order Runga-Kutta method. Pertinent results with respect to embedded parameters are displayed graphically for the velocity,temperature and concentration profiles and were discussed quantitatively.

  4. Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet

    Science.gov (United States)

    Krishnamurthy, M. R.; Gireesha, B. J.; Prasannakumara, B. C.; Gorla, Rama Subba Reddy

    2016-09-01

    A theoretically investigation has been performed to study the effects of thermal radiation and chemical reaction on MHD velocity slip boundary layer flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet. The Brownian motion and thermophoresis effects are incorporated in the present nanofluid model. A set of proper similarity variables is used to reduce the governing equations into a system of nonlinear ordinary differential equations. An efficient numerical method like Runge-Kutta-Fehlberg-45 order is used to solve the resultant equations for velocity, temperature and volume fraction of the nanoparticle. The effects of different flow parameters on flow fields are elucidated through graphs and tables. The present results have been compared with existing one for some limiting case and found excellent validation.

  5. Atomic layer deposition of Al{sub 2}O{sub 3} on germanium-tin (GeSn) and impact of wet chemical surface pre-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Suyog, E-mail: suyog@stanford.edu; Chen, Robert; Harris, James S.; Saraswat, Krishna C. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2013-12-09

    GeSn is quickly emerging as a potential candidate for high performance Si-compatible transistor technology. Fabrication of high-ĸ gate stacks on GeSn with good interface properties is essential for realizing high performance field effect transistors based on this material system. We demonstrate an effective surface passivation scheme for n-Ge{sub 0.97}Sn{sub 0.03} alloy using atomic layer deposition (ALD) of Al{sub 2}O{sub 3}. The effect of pre-ALD wet chemical surface treatment is analyzed and shown to be critical in obtaining a good quality interface between GeSn and Al{sub 2}O{sub 3}. Using proper surface pre-treatment, mid-gap trap density for the Al{sub 2}O{sub 3}/GeSn interface of the order of 10{sup 12} cm{sup −2} has been achieved.

  6. Current induced annealing and electrical characterization of single layer graphene grown by chemical vapor deposition for future interconnects in VLSI circuits

    Science.gov (United States)

    Prasad, Neetu; Kumari, Anita; Bhatnagar, P. K.; Mathur, P. C.; Bhatia, C. S.

    2014-09-01

    Single layer graphene (SLG) grown by chemical vapor deposition (CVD) has been investigated for its prospective application as horizontal interconnects in very large scale integrated circuits. However, the major bottleneck for its successful application is its degraded electronic transport properties due to the resist residual trapped in the grain boundaries and on the surface of the polycrystalline CVD graphene during multi-step lithographic processes, leading to increase in its sheet resistance up to 5 MΩ/sq. To overcome this problem, current induced annealing has been employed, which helps to bring down the sheet resistance to 10 kΩ/sq (of the order of its initial value). Moreover, the maximum current density of ˜1.2 × 107 A/cm2 has been obtained for SLG (1 × 2.5 μm2) on SiO2/Si substrate, which is about an order higher than that of conventionally used copper interconnects.

  7. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.

    Science.gov (United States)

    Sayago, Isabel; Matatagui, Daniel; Fernández, María Jesús; Fontecha, José Luis; Jurewicz, Izabela; Garriga, Rosa; Muñoz, Edgar

    2016-02-01

    A Love-wave device with graphene oxide (GO) as sensitive layer has been developed for the detection of chemical warfare agent (CWA) simulants. Sensitive films were fabricated by airbrushing GO dispersions onto Love-wave devices. The resulting Love-wave sensors detected very low CWA simulant concentrations in synthetic air at room temperature (as low as 0.2 ppm for dimethyl-methylphosphonate, DMMP, a simulant of sarin nerve gas, and 0.75 ppm for dipropylene glycol monomethyl ether, DPGME, a simulant of nitrogen mustard). High responses to DMMP and DPGME were obtained with sensitivities of 3087 and 760 Hz/ppm respectively. Very low limit of detection (LOD) values (9 and 40 ppb for DMMP and DPGME, respectively) were calculated from the achieved experimental data. The sensor exhibited outstanding sensitivity, good linearity and repeatability to all simulants tested. The detection mechanism is here explained in terms of hydrogen bonding formation between the tested CWA simulants and GO.

  8. Restricted access molecularly imprinted polymers obtained by bovine serum albumin and/or hydrophilic monomers' external layers: a comparison related to physical and chemical properties.

    Science.gov (United States)

    Santos, Mariane Gonçalves; Moraes, Gabriel de Oliveira Isac; Nakamura, Maurício Gustavo; dos Santos-Neto, Álvaro José; Figueiredo, Eduardo Costa

    2015-11-21

    Molecularly imprinting polymers (MIPs) can be modified with external layers in order to obtain restricted access molecularly imprinted polymers (RAMIPs) able to exclude macromolecules and retain low weight compounds. These modifications have been frequently achieved using hydrophilic monomers, chemically bound on the MIP surface. Recently, our group proposed a new biocompatible RAMIP based on the formation of a bovine serum albumin coating on the surface of MIP particles. This material has been used to extract drugs directly from untreated human plasma samples, but its physicochemical evaluation has not been carried out yet, mainly in comparison with RAMIPs obtained by hydrophilic monomers. Thus, we proposed in this paper a comparative study involving the surface composition, microscopic aspect, selectivity, binding kinetics, adsorption and macromolecule elimination ability of these different materials. We concluded that the synthesis procedure influences the size and shape of particles and that hydrophilic co-monomer addition as well as coating with BSA do not alter the chemical recognition ability of the material. The difference between imprinted and non-imprinted polymers' adsorption was evident (suggesting that imprinted polymers have a better capacity to bind the template than the non-imprinted ones). The Langmuir model presents the best fit to describe the materials' adsorption profile. The polymer covered with hydrophilic monomers presented the best adsorption for the template in an aqueous medium, probably due to a hydrophilic layer on its surface. We also concluded that an association of the hydrophilic monomers with the bovine serum albumin coating is important to obtain materials with higher capacity of macromolecule exclusion.

  9. Screw-dislocation-driven growth of two-dimensional few-layer and pyramid-like WSe₂ by sulfur-assisted chemical vapor deposition.

    Science.gov (United States)

    Chen, Liang; Liu, Bilu; Abbas, Ahmad N; Ma, Yuqiang; Fang, Xin; Liu, Yihang; Zhou, Chongwu

    2014-11-25

    Two-dimensional (2D) layered tungsten diselenides (WSe2) material has recently drawn a lot of attention due to its unique optoelectronic properties and ambipolar transport behavior. However, direct chemical vapor deposition (CVD) synthesis of 2D WSe2 is not as straightforward as other 2D materials due to the low reactivity between reactants in WSe2 synthesis. In addition, the growth mechanism of WSe2 in such CVD process remains unclear. Here we report the observation of a screw-dislocation-driven (SDD) spiral growth of 2D WSe2 flakes and pyramid-like structures using a sulfur-assisted CVD method. Few-layer and pyramid-like WSe2 flakes instead of monolayer were synthesized by introducing a small amount of sulfur as a reducer to help the selenization of WO3, which is the precursor of tungsten. Clear observations of steps, helical fringes, and herringbone contours under atomic force microscope characterization reveal the existence of screw dislocations in the as-grown WSe2. The generation and propagation mechanisms of screw dislocations during the growth of WSe2 were discussed. Back-gated field-effect transistors were made on these 2D WSe2 materials, which show on/off current ratios of 10(6) and mobility up to 44 cm(2)/(V·s).

  10. Fast chemical bath deposition of Zn(O,S) buffer layers for Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Buffiere, M., E-mail: Marie.Buffiere@cnrs-imn.fr; Harel, S.; Arzel, L.; Deudon, C.; Barreau, N.; Kessler, J.

    2011-08-31

    In order to decrease the deposition time of chemical bath deposited (CBD) Zn(O,S) buffer layers in CIGSe solar cell, the alternative CBD route using H{sub 2}O{sub 2} as additional oxygen source has been investigated. The morphology and the optical properties of the Zn(O,S) thin films grown with and without additive have been compared through scanning electron microscopy (SEM) observations and UV-visible transmission T({lambda}) and reflectivity R({lambda}) measurements, respectively. It is observed that deposition time shorter than 5 min is sufficient to achieve films with similar properties to those deposited following the standard recipe in 15 min. The characteristics of CIGSe/Zn(O,S) structures for which the Zn(O,S) growth has been interrupted after different bath immersion durations have been investigated by XPS measurements. The evolution of the In3d and Zn2p{sub 3/2} signals reveals that after 2 min of deposition, the Zn(O,S) layer grown by the alternative process completely covers the CIGSe and suggests that the increase of the Zn(O,S) growth rate is most probably due to the acceleration of cluster mechanism growth. A comparative study of devices buffered with the so-called fast and standard Zn(O,S) shows similar efficiencies in either case after light soaking.

  11. The Effect of Sintering Oxygen Partial Pressure on a SmBiO3 Buffer Layer for Coated Conductors via Chemical Solution Deposition

    Directory of Open Access Journals (Sweden)

    Xiaolei Zhu

    2016-10-01

    Full Text Available The application of high-temperature YBa2Cu3O7−δ (YBCO superconducting material is a considerable prospect for the growing energy shortages. Here, SmBiO3 (SBO films were deposited on (100-orientated yttrium-stabilized zirconia (YSZ simple crystal substrates via the chemical solution deposition (CSD approach for coated conductors, and the effects of sintering oxygen partial pressure on SBO films were studied. The crystalline structures and surface morphologies of SBO films were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and atomic force microscope (AFM. The optimized growth temperature, the intensity ratios of the SBO (200 peak to the SBO (111 peak, and the crystallinities of SBO films increased with the sintering oxygen partial pressure. The SEM and AFM images displayed a smooth and well-distributed surface in the argon atmosphere. The subsequent YBCO films with superconducting transition temperatures (Tc = 89.5 K, 90.2 K, and 86.2 K and critical current densities (Jc = 0.88 MA/cm2, 1.69 MA/cm2, and 0.09 MA/cm2; 77 K, self-field were deposited to further check the qualities of the SBO layer. These results indicated that sintering oxygen partial pressure had an effect on the epitaxial growth of the SBO buffer layer and YBCO superconducting properties. The experimental results may be a usable reference for the epitaxial growth of YBCO-coated conductors and other oxides.

  12. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.

    Science.gov (United States)

    Kim, Hyungki; Song, Intek; Park, Chibeom; Son, Minhyeok; Hong, Misun; Kim, Youngwook; Kim, Jun Sung; Shin, Hyun-Joon; Baik, Jaeyoon; Choi, Hee Cheul

    2013-08-27

    We report that high-quality single-layer graphene (SLG) has been successfully synthesized directly on various dielectric substrates including amorphous SiO2/Si by a Cu-vapor-assisted chemical vapor deposition (CVD) process. The Cu vapors produced by the sublimation of Cu foil that is suspended above target substrates without physical contact catalyze the pyrolysis of methane gas and assist nucleation of graphene on the substrates. Raman spectra and mapping images reveal that the graphene formed on a SiO2/Si substrate is almost defect-free and homogeneous single layer. The overall quality of graphene grown by Cu-vapor-assisted CVD is comparable to that of the graphene grown by regular metal-catalyzed CVD on a Cu foil. While Cu vapor induces the nucleation and growth of SLG on an amorphous substrate, the resulting SLG is confirmed to be Cu-free by synchrotron X-ray photoelectron spectroscopy. The SLG grown by Cu-vapor-assisted CVD is fabricated into field effect transistor devices without transfer steps that are generally required when SLG is grown by regular CVD process on metal catalyst substrates. This method has overcome two important hurdles previously present when the catalyst-free CVD process is used for the growth of SLG on fused quartz and hexagonal boron nitride substrates, that is, high degree of structural defects and limited size of resulting graphene, respectively.

  13. The S-Layer Proteins of Two Bacillus stearothermophilus Wild-Type Strains Are Bound via Their N-Terminal Region to a Secondary Cell Wall Polymer of Identical Chemical Composition

    Science.gov (United States)

    Egelseer, Eva Maria; Leitner, Karl; Jarosch, Marina; Hotzy, Christoph; Zayni, Sonja; Sleytr, Uwe B.; Sára, Margit

    1998-01-01

    Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition. PMID:9515918

  14. Estimation of MHD boundary layer slip flow over a permeable stretching cylinder in the presence of chemical reaction through numerical and artificial neural network modeling

    Directory of Open Access Journals (Sweden)

    P. Bala Anki Reddy

    2016-09-01

    Full Text Available In this paper, the prediction of the magnetohydrodynamic boundary layer slip flow over a permeable stretched cylinder with chemical reaction is investigated by using some mathematical techniques, namely Runge–Kutta fourth order method along with shooting technique and artificial neural network (ANN. A numerical method is implemented to approximate the flow of heat and mass transfer characteristics as a function of some input parameters, explicitly the curvature parameter, magnetic parameter, permeability parameter, velocity slip, Grashof number, solutal Grashof number, Prandtl number, temperature exponent, Schmidt number, concentration exponent and chemical reaction parameter. The non-linear partial differential equations of the governing flow are converted into a system of highly non-linear ordinary differential equations by using the suitable similarity transformations, which are then solved numerically by a Runge–Kutta fourth order along with shooting technique and then ANN is applied to them. The Back Propagation Neural Network is applied for forecasting the desired outputs. The reported numerical values and the ANN values are in good agreement than those published works on various special cases. According to the findings of this study, the ANN approach is reliable, effective and easily applicable for simulating heat and mass transfer flow over a stretched cylinder.

  15. Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP: linking condensation, evaporation and chemical reactions of organics, oxidants and water

    Directory of Open Access Journals (Sweden)

    M. Shiraiwa

    2012-03-01

    Full Text Available We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007, and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system and the computational constraints, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds.

    In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at ~270 K is close to unity (Winkler et al., 2006. Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative

  16. Organic Matter Fractions and Quality of the Surface Layer of a Constructed and Vegetated Soil After Coal Mining. I - Humic Substances and Chemical Characterization

    Directory of Open Access Journals (Sweden)

    Otávio dos Anjos Leal

    2015-06-01

    Full Text Available After open coal mining, soils are “constructed”, which usually contain low levels and quality of organic matter (OM. Therefore, the use of plant species for revegetation and reclamation of degraded areas is essential. This study evaluated the distribution of carbon (C in the chemical fractions as well as the chemical characteristics and humification degree of OM in a soil constructed after coal mining under cultivation of perennial grasses. The experiment was established in 2003 with the following treatments: Hemarthria altissima (T1, Paspalum notatum (T2, Cynodon dactilon (T3, Urochloa brizantha (T4, bare constructed soil (T5, and natural soil (T6. In 2009, soil samples were collected from the 0.00-0.03 m layer and the total organic carbon stock (TOC and C stock in the chemical fractions: acid extract (CHCl, fulvic acid (CFA, humic acid (CHA, and humin (CHU were determined. The humic acid (HA fraction was characterized by infrared spectroscopy and the laser-induced fluorescence index (ILIF of OM was also calculated. After six years, differences were only observed in the CHA stocks, which were highest in T1 (0.89 Mg ha-1 and T4 (1.06 Mg ha-1. The infrared spectra of HA in T1, T2 and T4 were similar to T6, with greater contribution of aliphatic organic compounds than in the other treatments. In this way, ILIF decreased in the sequence T5>T3>T4>T1>T2>T6, indicating higher OM humification in T3 and T5 and more labile OM in the other treatments. Consequently, the potential of OM quality recovery in the constructed soil was greatest in treatments T1 and T4.

  17. Metallorganic chemical vapor deposition and atomic layer deposition approaches for the growth of hafnium-based thin films from dialkylamide precursors for advanced CMOS gate stack applications

    Science.gov (United States)

    Consiglio, Steven P.

    To continue the rapid progress of the semiconductor industry as described by Moore's Law, the feasibility of new material systems for front end of the line (FEOL) process technologies needs to be investigated, since the currently employed polysilicon/SiO2-based transistor system is reaching its fundamental scaling limits. Revolutionary breakthroughs in complementary-metal-oxide-semiconductor (CMOS) technology were recently announced by Intel Corporation and International Business Machines Corporation (IBM), with both organizations revealing significant progress in the implementation of hafnium-based high-k dielectrics along with metal gates. This announcement was heralded by Gordon Moore as "...the biggest change in transistor technology since the introduction of polysilicon gate MOS transistors in the late 1960s." Accordingly, the study described herein focuses on the growth of Hf-based dielectrics and Hf-based metal gates using chemical vapor-based deposition methods, specifically metallorganic chemical vapor deposition (MOCVD) and atomic layer deposition (ALD). A family of Hf source complexes that has received much attention recently due to their desirable properties for implementation in wafer scale manufacturing is the Hf dialkylamide precursors. These precursors are room temperature liquids and possess sufficient volatility and desirable decomposition characteristics for both MOCVD and ALD processing. Another benefit of using these sources is the existence of chemically compatible Si dialkylamide sources as co-precursors for use in Hf silicate growth. The first part of this study investigates properties of MOCVD-deposited HfO2 and HfSixOy using dimethylamido Hf and Si precursor sources using a customized MOCVD reactor. The second part of this study involves a study of wet and dry surface pre-treatments for ALD growth of HfO2 using tetrakis(ethylmethylamido)hafnium in a wafer scale manufacturing environment. The third part of this study is an investigation of

  18. AB stacked few layer graphene growth by chemical vapor deposition on single crystal Rh(1 1 1) and electronic structure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kordatos, Apostolis [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece); Kelaidis, Nikolaos, E-mail: n.kelaidis@inn.demokritos.gr [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece); Giamini, Sigiava Aminalragia [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece); University of Athens, Department of Physics, Section of Solid State Physics, Athens, 15684 Greece (Greece); Marquez-Velasco, Jose [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece); National Technical University of Athens, Department of Physics, Athens, 15784 Greece (Greece); Xenogiannopoulou, Evangelia; Tsipas, Polychronis; Kordas, George; Dimoulas, Athanasios [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece)

    2016-04-30

    Highlights: • Growth of non-defective few layer graphene on Rh(1 1 1) substrates using an ambient- pressure CVD method. • Control of graphene stacking order via the cool-down rate. • Graphene is grown with a mainly AB-stacking geometry on single-crystalline Rhodium for a slow cool-down rate and non-AB for a very fast cool-down. • Good epitaxial orientation of the surface is presented through the RHEED data and confirmed with ARPES characterization for the lower cool-down rate, where graphene's ΓK direction a perfectly aligned with the ΓK direction of the Rh(1 1 1) single crystal. - Abstract: Graphene synthesis on single crystal Rh(1 1 1) catalytic substrates is performed by Chemical Vapor Deposition (CVD) at 1000 °C and atmospheric pressure. Raman analysis shows full substrate coverage with few layer graphene. It is found that the cool-down rate strongly affects the graphene stacking order. When lowered, the percentage of AB (Bernal) -stacked regions increases, leading to an almost full AB stacking order. When increased, the percentage of AB-stacked graphene regions decreases to a point where almost a full non AB-stacked graphene is grown. For a slow cool-down rate, graphene with AB stacking order and good epitaxial orientation with the substrate is achieved. This is indicated mainly by Raman characterization and confirmed by Reflection high-energy electron diffraction (RHEED) imaging. Additional Scanning Tunneling Microscopy (STM) topography data confirm that the grown graphene is mainly an AB-stacked structure. The electronic structure of the graphene/Rh(1 1 1) system is examined by Angle resolved Photo-Emission Spectroscopy (ARPES), where σ and π bands of graphene, are observed. Graphene's ΓK direction is aligned with the ΓK direction of the substrate, indicating no significant contribution from rotated domains.

  19. Physical and chemical properties of the regional mixed layer of Mexico's Megapolis – Part 2: Evaluation of measured and modeled trace gases and particle size distributions

    Directory of Open Access Journals (Sweden)

    C. Ochoa

    2012-04-01

    Full Text Available This study extends the work of Baumgardner et al. (2009 in which measurements of trace gases and particles, at a remote, high altitude mountain site, 60 km from Mexico City were analyzed with respect to the origin of the air masses. In the current evaluation, the temperature, water vapor, ozone (O3, carbon monoxide (CO, acyl peroxy nitrate (APN and particle size distributions (PSDs of the mass concentrations of sulfate, nitrate, ammonium and organic mass (OM were simulated with the WRF-Chem chemical transport model and compared with the measurements at the mountain site. The model predictions of the diurnal trends of the gases were well correlated with the measurements before the regional mixed layer (RML reached the measurement site but underestimated the concentration after that time. The differences are caused by an over rapid growth of the boundary layer by the model and too much dilution. There also is more O3 being actually produced by photochemical production downwind of the emission sources than predicted by the model.

    The measured and modeled PSDs compare very well with respect to their general shape and diameter of the peak concentrations. The spectra are lognormal with most of the mass in the accumulation mode and the geometric diameter centered at 200±20 nm, showing little observed or predicted change with respect to the time when the RML is above the Altzomoni research station. Only the total mass changed with time and air mass origin. The invariability of average diameter of the accumulation mode suggests that there is very little growth of the particles by condensation or coagulation past about six hours of aging downwind of the major sources of anthropogenic emissions in Mexico's Megapolis. This could greatly simplify parameterization in climate models although it is not known at this time if this invariance can be extended to other megacity regions.

  20. Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Theelen, Mirjam, E-mail: mirjam.theelen@tno.nl [TNO, Thin Film Technology (Netherlands); Delft University of Technology, Photovoltaic Materials and Devices (Netherlands); Boumans, Twan; Stegeman, Felix; Colberts, Fallon; Illiberi, Andrea [TNO, Thin Film Technology (Netherlands); Berkum, Jurgen van [Philips Innovation Services (Netherlands); Barreau, Nicolas [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS (France); Vroon, Zeger [TNO, Thin Film Technology (Netherlands); Zeman, Miro [Delft University of Technology, Photovoltaic Materials and Devices (Netherlands)

    2014-01-01

    Sputtered aluminum doped zinc oxide (ZnO:Al) layers on borosilicate glass were exposed to damp heat (85 °C/85% relative humidity) for 2876 h to accelerate the physical and chemical degradation behavior. The ZnO:Al samples were characterized by electrical, compositional and optical measurements before and after degradation. Hall measurements show that the carrier concentration stayed constant, while the Hall mobility decreased and the overall resistivity thus increased. This can be explained by the increase of potential barriers at the grain boundaries due to the occurrence of space charge regions caused by additional electron trapping sites. X-Ray Diffraction and optical measurements show that the crystal structure and transmission in the range 300–1100 nm do no change, hereby confirming that the bulk structure stays constant. Furthermore, on the surface, white spots appeared, containing elements that migrated from the glass, like silicon and calcium, which reacted with elements from the environment, including oxygen, carbon and chlorine. Depth profiling showed that the increase of the potential barrier is caused by the diffusion of H{sub 2}O/OH{sup −} through the grain boundaries leading to the formation of Zn(OH){sub 2} or similar species or adsorption of species. They also indicate the presence of chloride and sulfide in the top layer and the possible presence of Zn{sub 5}(OH){sub 8}Cl{sub 2}·H{sub 2}O and Zn{sub 4}SO{sub 4}(OH){sub 6}·nH{sub 2}O - Highlights: • Damp heat treatment of polycrystalline ZnO:Al leads to increased resistivity. • Degradation in electrical properties is due to decreased mobility. • Damp heat exposure does not influence optical properties between 300 and 1100 nm. • Water as well as carbon, chlorine and sulfur diffuse into the ZnO:Al bulk. • Possible reaction products are zinc hydroxide and zinc hydrocarbonate.

  1. Photoluminescence study of polycrystalline photovoltaic CdS thin film layers grown by close-spaced sublimation and chemical bath deposition

    Science.gov (United States)

    Abken, Anke E.; Halliday, D. P.; Durose, Ken

    2009-03-01

    Photoluminescence (PL) measurements were used to study the effect of postdeposition treatments by annealing and CdCl2 activation on polycrystalline CdS layer grown by close-spaced sublimation (CSS) and chemical bath deposition (CBD). CdS films were either annealed in a temperature range of 200-600 °C or CdCl2 treated between 300-550 °C. The development of "red," "intermediate orange," "yellow," and "green" luminescence bands is discussed in comparison with PL assignments found in literature. PL spectra from CdS layer grown by CSS are dominated by the yellow band with transitions at 2.08 and 1.96 eV involving (Cdi-A), (VS-A) complex states where A represents an acceptor. Green luminescence bands are observed at 2.429 and 2.393 eV at higher annealing temperature of 500-600 °C or CdCl2 treatment above 450 °C, and these peaks are associated with zero and a longitudinal optical phonon replica of "free-to-bound" transitions. As grown CBD-CdS films show a prominent red band with four main peaks located at 1.43, 1.54, 1.65, and 1.77 eV, believed to be phonon replicas coupled with local vibrational modes. This remains following postdeposition treatment. The red luminescence is associated with VS surface states and in the case of CdCl2 treatment with (VCd-ClS) centers. Postdeposition treatments of CBD and CdS promote the evolution of an intermediate orange band at 2.00 eV, most likely a donor-acceptor pair, and a yellow band at 2.12 eV correlated with (Cdi-VCd) centers. The green luminescence bands observed at 2.25 and 2.34 eV are associated with transitions from deep donor states (e.g., Cdi) to the valence band. These states form due to crystallinity enhancement and lattice conversion during annealing or CdCl2 activation. Observed changes in PL bands provide detailed information about changes in radiative recombination centers in CdS layer, which are suggested to occur during device processing of CdTe/CdS thin film solar cells.

  2. Growth of carbon nanofiber coatings on nickel thin films on fused silica by catalytic thermal chemical vapor deposition: On the use of titanium, titanium–tungsten and tantalum as adhesion layers

    NARCIS (Netherlands)

    Thakur, D.B.; Tiggelaar, R.M.; Gardeniers, J.G.E.; Lefferts, L.; Seshan, K.

    2009-01-01

    Coatings of carbon nanofiber (CNF) layers were synthesized on fused silica substrates using a catalytic thermal chemical vapor deposition process (C-TCVD). The effects of various adhesion layers–titanium, titanium–tungsten and tantalum–under the nickel thin film on the attachment of carbon nanofiber

  3. Investigation of the influence of the chemical composition of HSLA steel grades on the microstructure homogeneity during hot rolling in continuous rolling mills using a fast layer model

    Science.gov (United States)

    Schmidtchen, M.; Rimnac, A.; Warczok, P.; Kozeschnik, E.; Bernhard, C.; Bragin, S.; Kawalla, R.; Linzer, B.

    2016-03-01

    The newly developed LaySiMS simulation tool provides new insight for inhomogeneous material flow and microstructure evolution in an endless strip production (ESP) plant. A deepened understanding of the influence of inhomogeneities in initial material state, temperature profile and material flow and their impact on the finished product can be reached e.g. by allowing for variable layer thickness distributions in the roll gap. Coupling temperature, deformation work and work hardening/recrystallization phenomena accounts for covering important effects in the roll gap. The underlying concept of the LaySiMS approach will be outlined and new insight gained regarding microstructural evolution, shear and inhomogeneous stress and strain states in the roll gap as well as local residual stresses will be presented. For the case of thin slab casting and direct rolling (TSDR) the interrelation of inhomogeneous initial state, micro structure evolution and dissolution state of micro alloying elements within the roughing section of an ESP line will be discussed. Special emphasis is put on the influence of the local chemical composition arising from direct charging on throughthickness homogeneity of the final product. It is concluded that, due to the specific combination of large reductions in the high reduction mills (HRM) and the highly inhomogeneous inverse temperature profile, the ESP-concept provides great opportunities for homogenizing the microstructure across the strip thickness.

  4. Hot-wire chemical vapor deposition prepared aluminum doped p-type microcrystalline silicon carbide window layers for thin film silicon solar cells

    Science.gov (United States)

    Chen, Tao; Köhler, Florian; Heidt, Anna; Carius, Reinhard; Finger, Friedhelm

    2014-01-01

    Al-doped p-type microcrystalline silicon carbide (µc-SiC:H) thin films were deposited by hot-wire chemical vapor deposition at substrate temperatures below 400 °C. Monomethylsilane (MMS) highly diluted in hydrogen was used as the SiC source in favor of SiC deposition in a stoichiometric form. Aluminum (Al) introduced from trimethylaluminum (TMAl) was used as the p-type dopant. The material property of Al-doped p-type µc-SiC:H thin films deposited with different deposition pressure and filament temperature was investigated in this work. Such µc-SiC:H material is of mainly cubic (3C) SiC polytype. For certain conditions, like high deposition pressure and high filament temperature, additional hexagonal phase and/or stacking faults can be observed. P-type µc-SiC:H thin films with optical band gap E04 ranging from 2.0 to 2.8 eV and dark conductivity ranging from 10-5 to 0.1 S/cm can be prepared. Such transparent and conductive p-type µc-SiC:H thin films were applied in thin film silicon solar cells as the window layer, resulting in an improved quantum efficiency at wavelengths below 480 nm.

  5. Nanocrystalline-Si-dot multi-layers fabrication by chemical vapor deposition with H-plasma surface treatment and evaluation of structure and quantum confinement effects

    Directory of Open Access Journals (Sweden)

    Daisuke Kosemura

    2014-01-01

    Full Text Available 100-nm-thick nanocrystalline silicon (nano-Si-dot multi-layers on a Si substrate were fabricated by the sequential repetition of H-plasma surface treatment, chemical vapor deposition, and surface oxidation, for over 120 times. The diameter of the nano-Si dots was 5–6 nm, as confirmed by both the transmission electron microscopy and X-ray diffraction analysis. The annealing process was important to improve the crystallinity of the nano-Si dot. We investigated quantum confinement effects by Raman spectroscopy and photoluminescence (PL measurements. Based on the experimental results, we simulated the Raman spectrum using a phenomenological model. Consequently, the strain induced in the nano-Si dots was estimated by comparing the experimental and simulated results. Taking the estimated strain value into consideration, the band gap modulation was measured, and the diameter of the nano-Si dots was calculated to be 5.6 nm by using PL. The relaxation of the q ∼ 0 selection rule model for the nano-Si dots is believed to be important to explain both the phenomena of peak broadening on the low-wavenumber side observed in Raman spectra and the blue shift observed in PL measurements.

  6. Room temperature novel chemical synthesis of Cu{sub 2}ZnSnS{sub 4} (CZTS) absorbing layer for photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, N.M.; Dubal, D.P.; Dhawale, D.S. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (M.S) (India); Lokhande, C.D., E-mail: l_chandrakant@yahoo.com [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (M.S) (India); Kim, J.H.; Moon, J.H. [Department of Materials Science and Engineering, Chonnam National University (Korea, Republic of)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Simple and inexpensive method for the synthesis of CZTS films. Black-Right-Pointing-Pointer Structural, morphological and optical properties. Black-Right-Pointing-Pointer Find great application in solar cells with efficiency 0.12%. -- Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been prepared by a novel chemical successive ionic layer adsorption and reaction (SILAR) method. These films were annealed in vacuum at 673 K and further characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis spectroscopy, electrical, and wettability studies. The X-ray diffraction studies showed the formation of kesterite structure of CZTS films. Scanning electron micrograph revealed the formation of densely packed, compact and large grained CZTS films. The CZTS films showed high optical absorption (10{sup 4} cm{sup -1}) exhibiting band gap energy of 1.55 eV. Wettability test revealed the hydrophilic nature of CZTS films. The CZTS thin films showed semiconducting behavior with p-type electrical conductivity. Further photovoltaic activity of these films was studied by forming the photoelectrochemical cell.

  7. Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells.

    Science.gov (United States)

    Ho Yeon, Deuk; Chandra Mohanty, Bhaskar; Lee, Seung Min; Soo Cho, Yong

    2015-09-23

    Here we report the highest energy conversion efficiency and good stability of PbS thin film-based depleted heterojunction solar cells, not involving PbS quantum dots. The PbS thin films were grown by the low cost chemical bath deposition (CBD) process at relatively low temperatures. Compared to the quantum dot solar cells which require critical and multistep complex procedures for surface passivation, the present approach, leveraging the facile modulation of the optoelectronic properties of the PbS films by the CBD process, offers a simpler route for optimization of PbS-based solar cells. Through an architectural modification, wherein two band-aligned junctions are stacked without any intervening layers, an enhancement of conversion efficiency by as much as 30% from 3.10 to 4.03% facilitated by absorption of a wider range of solar spectrum has been obtained. As an added advantage of the low band gap PbS stacked over a wide gap PbS, the devices show stability over a period of 10 days.

  8. Soret and Dufour effects on mixed convection unsteady MHD boundary layer flow over stretching sheet in porous medium with chemically reactive species

    Institute of Scientific and Technical Information of China (English)

    A.NAYAK; S.PANDA; D.K.PHUKAN

    2014-01-01

    This paper studies the thermal-diffusion and diffusion thermo-effects in the hydro-magnetic unsteady flow by a mixed convection boundary layer past an imperme-able vertical stretching sheet in a porous medium in the presence of chemical reaction. The velocity of the stretching surface, the surface temperature, and the concentration are assumed to vary linearly with the distance along the surface. The governing partial differential equations are transformed into self-similar unsteady equations using similarity transformations and solved numerically by the Runge-Kutta fourth order scheme in as-sociation with the shooting method for the whole transient domain from the initial state to the final steady state flow. Numerical results for the velocity, the temperature, the concentration, the skin friction, and the Nusselt and Sherwood numbers are shown graph-ically for various flow parameters. The results reveal that there is a smooth transition of flow from unsteady state to the final steady state. A special case of our results is in good agreement with an earlier published work.

  9. Impact of post-deposition annealing on interfacial chemical bonding states between AlGaN and ZrO{sub 2} grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong [Novitas, Nanoelectronics Center of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Wang, Hong, E-mail: ewanghong@ntu.edu.sg [Novitas, Nanoelectronics Center of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); CINTRA CNRS/NTU/Thales, UMI 3288, 50 Nanyang Drive (Singapore); Ng, Serene Lay Geok; Ji, Rong [Data Storage Institute, Agency for Science Technology and Research (A-STAR), 5 Engineering Drive 1, 117608 (Singapore); Liu, Zhi Hong [Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602 (Singapore)

    2015-03-02

    The effect of post-deposition annealing on chemical bonding states at interface between Al{sub 0.5}Ga{sub 0.5}N and ZrO{sub 2} grown by atomic layer deposition (ALD) is studied by angle-resolved x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that both of Al-O/Al 2p and Ga-O/Ga 3d area ratio decrease at annealing temperatures lower than 500 °C, which could be attributed to “clean up” effect of ALD-ZrO{sub 2} on AlGaN. Compared to Ga spectra, a much larger decrease in Al-O/Al 2p ratio at a smaller take-off angle θ is observed, which indicates higher effectiveness of the passivation of Al-O bond than Ga-O bond through “clean up” effect near the interface. However, degradation of ZrO{sub 2}/AlGaN interface quality due to re-oxidation at higher annealing temperature (>500 °C) is also found. The XPS spectra clearly reveal that Al atoms at ZrO{sub 2}/AlGaN interface are easier to get oxidized as compared with Ga atoms.

  10. Photoluminescence characteristics of CdS layers deposited in a chemical bath and their correlation to CdS/CdTe solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Perez, R.; Aguilar-Hernandez, J.; Sastre-Hernandez, J.; Ximello-Quiebras, N.; Contreras-Puente, G.; Vigil-Galan, O.; Moreno-Garcia, E. [Escuela Superior de Fisica y Matematicas del IPN, Edificio 9, UPALM, DF 07738 (Mexico); Santana-Rodriguez, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Coyoacan 04510, DF (Mexico); Morales-Acevedo, A. [CINVESTAV-IPN, Depto. de Ingenieria Electrica, Avenida IPN No. 2508, DF 07360 (Mexico)

    2006-06-15

    In this work, we study CdS films processed by chemical bath deposition (CBD) using different thiourea concentrations in the bath solution with post-thermal treatments using CdCl{sub 2}. We study the effects of the thiourea concentration on the photovoltaic performance of the CdS/CdTe solar cells, by the analysis of the I-V curve, for S/Cd ratios in the CBD solution from 3 to 8. In this range of S/Cd ratios the CdS/CdTe solar cells show variations of the open circuit voltage (V{sub oc}), the short circuit current (J{sub sc}) and the fill factor (FF). Other experimental data such as the optical transmittance and photoluminescence were obtained in order to correlate to the I-V characteristics of the solar cells. The best performance of CdS-CdTe solar cells made with CdS films obtained with a S/Cd ratio of 6 is explained in terms of the sulfur vacancies to sulfur interstitials ratio in the CBD-CdS layers. (author)

  11. Current induced annealing and electrical characterization of single layer graphene grown by chemical vapor deposition for future interconnects in VLSI circuits

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Neetu, E-mail: neetu.prasad@south.du.ac.in, E-mail: neetu23686@gmail.com; Kumari, Anita; Bhatnagar, P. K.; Mathur, P. C. [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India); Bhatia, C. S. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-09-15

    Single layer graphene (SLG) grown by chemical vapor deposition (CVD) has been investigated for its prospective application as horizontal interconnects in very large scale integrated circuits. However, the major bottleneck for its successful application is its degraded electronic transport properties due to the resist residual trapped in the grain boundaries and on the surface of the polycrystalline CVD graphene during multi-step lithographic processes, leading to increase in its sheet resistance up to 5 MΩ/sq. To overcome this problem, current induced annealing has been employed, which helps to bring down the sheet resistance to 10 kΩ/sq (of the order of its initial value). Moreover, the maximum current density of ∼1.2 × 10{sup 7 }A/cm{sup 2} has been obtained for SLG (1 × 2.5 μm{sup 2}) on SiO{sub 2}/Si substrate, which is about an order higher than that of conventionally used copper interconnects.

  12. Control of thickness and chemical properties of atomic layer deposition overcoats for stabilizing Cu/γ-Al2 O3 catalysts.

    Science.gov (United States)

    O'Neill, Brandon J; Sener, Canan; Jackson, David H K; Kuech, Thomas F; Dumesic, James A

    2014-12-01

    Whereas sintering and leaching of copper nanoparticles during liquid-phase catalytic processing can be prevented by using atomic layer deposition (ALD) to overcoat the nanoparticles with AlOx , this acidic overcoat leads to reversible deactivation of the catalyst by resinification and blocking of the pores within the overcoat during hydrogenation of furfural. We demonstrate that decreasing the overcoat thickness from 45 to 5 ALD cycles is an effective method to increase the rate per gram of catalyst and to decrease the rate of deactivation for catalysts pretreated at 673 K, and a fully regenerable copper catalyst can be produced with only five ALD cycles of AlOx . Moreover, although an overcoat of MgOx does not lead to stabilization of copper nanoparticles against sintering and leaching during liquid-phase hydrogenation reactions, the AlOx overcoat can be chemically modified to decrease acidity and deactivation through the addition of MgOx , while maintaining stability of the copper nanoparticles.

  13. The impact of snow nitrate photolysis on boundary layer chemistry and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland in a global chemical transport model

    Science.gov (United States)

    Zatko, Maria; Geng, Lei; Alexander, Becky; Sofen, Eric; Klein, Katarina

    2016-03-01

    The formation and recycling of reactive nitrogen (NO, NO2, HONO) at the air-snow interface has implications for air quality and the oxidation capacity of the atmosphere in snow-covered regions. Nitrate (NO3-) photolysis in snow provides a source of oxidants (e.g., hydroxyl radical) and oxidant precursors (e.g., nitrogen oxides) to the overlying boundary layer, and alters the concentration and isotopic (e.g., δ15N) signature of NO3- preserved in ice cores. We have incorporated an idealized snowpack with a NO3- photolysis parameterization into a global chemical transport model (Goddard Earth Observing System (GEOS) Chemistry model, GEOS-Chem) to examine the implications of snow NO3- photolysis for boundary layer chemistry, the recycling and redistribution of reactive nitrogen, and the preservation of ice-core NO3- in ice cores across Antarctica and Greenland, where observations of these parameters over large spatial scales are difficult to obtain. A major goal of this study is to examine the influence of meteorological parameters and chemical, optical, and physical snow properties on the magnitudes and spatial patterns of snow-sourced NOx fluxes and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland. Snow-sourced NOx fluxes are most influenced by temperature-dependent quantum yields of NO3- photolysis, photolabile NO3- concentrations in snow, and concentrations of light-absorbing impurities (LAIs) in snow. Despite very different assumptions about snowpack properties, the range of model-calculated snow-sourced NOx fluxes are similar in Greenland (0.5-11 × 108 molec cm-2 s-1) and Antarctica (0.01-6.4 × 108 molec cm-2 s-1) due to the opposing effects of higher concentrations of both photolabile NO3- and LAIs in Greenland compared to Antarctica. Despite the similarity in snow-sourced NOx fluxes, these fluxes lead to smaller factor increases in mean austral summer boundary layer mixing ratios of total nitrate (HNO3+ NO3-), NOx, OH

  14. Characterization of CBD-CdS layers with different S/Cd ratios in the chemical bath and their relation with the efficiency of CdS/CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Galan, O. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico)]. E-mail: osvaldo@esfm.ipn.mx; Morales-Acevedo, A. [CINVESTAV-IPN, Electrical Engineering Departament, Av. IPN No 2508, 07360 Mexico D. F. (Mexico); Cruz-Gandarilla, F. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Jimenez-Escamilla, M.G. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Aguilar-Hernandez, J. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Contreras-Puente, G. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Sastre-Hernandez, J. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Sanchez-Meza, E. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Ramon-Garcia, M.L. [Centro de Investigaciones en Energia.UNAM. Privada Xochicalco s/n Col. Centro Temixco. CP. 62580 Morelos (Mexico)

    2007-05-31

    In previous papers we have reported the improvement of the efficiency of CdS/CdTe solar cells by varying the thiourea/CdCl{sub 2} ratio (R {sub tc}) in the chemical bath solution used for the deposition of the CdS layers. In this work, a more complete study concerning the physical properties of Chemical Bath Deposited (CBD) CdS layers studied by photoluminescence, X-ray diffraction and optical spectroscopy are correlated to the I-V characteristics under AM 1.5 sunlight and the spectral response of CdS/CdTe solar cells. It is confirmed that the optimum R {sub tc} for the CBD CdS films is R {sub tc} = 5, since in this case the best solar cells were obtained and these films show the better optical and structural characteristics.

  15. Physical and chemical properties of the regional mixed layer of Mexico's Megapolis Part II: evaluation of measured and modeled trace gases and particle size distributions

    Directory of Open Access Journals (Sweden)

    C. Ochoa

    2012-11-01

    Full Text Available This study extends the work of Baumgardner et al. (2009 in which measurements of trace gases and particles, at a remote, high altitude mountain site, 60 km from Mexico City were analyzed with respect to the origin of the air masses. In the current evaluation, the temperature, water vapor mixing ratio (WMR, ozone (O3, carbon monoxide (CO, sulfur dioxide (SO2 and acyl peroxy nitrate (APN are simulated with the WRF-Chem chemical transport model and compared with the measurements at the mountain site. Comparisons between the model and measurements are also evaluated for particle size distributions (PSDs of the mass concentrations of sulfate, nitrate, ammonium and organic mass (OM. The model predictions of the diurnal trends in temperature, WMR and trace gases were generally well correlated; 13 of the 18 correlations were significant at a confidence level of <0.01. Less satisfactory were the average hourly differences between model and measurements that showed predicted values within expected, natural variation for only 10 of the 18 comparisons. The model performed best when comparing with the measurements during periods when the air originated from the east. In that case all six of the parameters being compared had average differences between the model and measurements less than the expected standard deviation. For the cases when the air masses are from the southwest or west northwest, only two of the comparisons from each case showed differences less than the expected standard deviation. The differences appear to be a result of an overly rapid growth of the boundary layer predicted by the model and too much dilution. There also is more O3 being produced, most likely by photochemical production, downwind of the emission sources than is predicted by the model.

    The measured and modeled PSD compare very well with respect to their general shape and the diameter of the peak concentrations. The spectra are log

  16. Vacuum-deposited wave-guiding layers on STW resonators based on LiTaO(3) substrate as love wave sensors for chemical and biochemical sensing in liquids.

    Science.gov (United States)

    Barié, Nicole; Stahl, Ullrich; Rapp, Michael

    2010-05-01

    A promising approach to apply the Love wave concept to commercially available low-loss surface acoustic wave (SAW) devices of the type Murata SAF 380 is presented. Thin wave-guiding layers of variable thickness are coated on the piezoelectric substrate of the devices. Two different layer materials were used: sputtered SiO(2) and a new polymer in this field, paryleneC (poly-[2-chloro-p-xylylene]). Insertion loss, resonance frequency, frequency changes during protein precipitation and noise of the devices are discussed as a function of the thickness of the wave-guiding layer. It is demonstrated that the application of an optimized wave-guiding layer increases the sensitivity. When using SiO(2) as wave-guiding layer, an optimum layer thickness of 4 microm leads to a detection limit of 1.7 pg/mm(2). Therefore, the detection limit is improved by factor 7.7 as compared to uncoated SAW devices. Parylene-coated devices reach a detection limit of 2.9 pg/mm(2) at an optimum layer thickness of 0.5 microm. This corresponds to an improvement by factor 4.3. As the SAW devices used in this study are commercially available at low costs, applying appropriate wave-guiding layers permits an application as chemical or biochemical sensors with excellent sensitivities. Moreover, parylene-coated devices combine the sensitivity increase by excitation of Love waves with an excellent protective effect against corrosive attacks by the surrounding medium. Therefore, these sensors are most suitable for biosensing in conducting buffer solutions.

  17. EVOLUTION OF CHEMICAL CONDITIONS AND ESTIMATED PLUTONIUM SOLUBILITY IN THE RESIDUAL WASTE LAYER DURING POST-CLOSURE AGING OF TANK 18

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.

    2012-02-29

    This document updates the Eh-pH transitions from grout aging simulations and the plutonium waste release model of Denham (2007, Rev. 1) based on new data. New thermodynamic data for cementitious minerals are used for the grout simulations. Newer thermodynamic data, recommended by plutonium experts (Plutonium Solubility Peer Review Report, LA-UR-12-00079), are used to estimate solubilities of plutonium at various pore water compositions expected during grout aging. In addition, a new grout formula is used in the grout aging simulations and apparent solubilities of coprecipitated plutonium are estimated using data from analysis of Tank 18 residual waste. The conceptual model of waste release and the grout aging simulations are done in a manner similar to that of Denham (2007, Rev. 1). It is assumed that the pore fluid composition passing from the tank grout into the residual waste layer controls the solubility, and hence the waste release concentration of plutonium. Pore volumes of infiltrating fluid of an assumed composition are reacted with a hypothetical grout block using The Geochemist's Workbench{reg_sign} and changes in pore fluid chemistry correspond to the number of pore fluid volumes reacted. As in the earlier document, this results in three states of grout pore fluid composition throughout the simulation period that are termed Reduced Region II, Oxidized Region II, and Oxidized Region III. The one major difference from the earlier document is that pyrite is used to account for reducing capacity of the tank grout rather than pyrrhotite. This poises Eh at -0.47 volts during Reduced Region II. The major transitions in pore fluid composition are shown. Plutonium solubilities are estimated for discrete PuO2(am,hyd) particles and for plutonium coprecipitated with iron phases in the residual waste. Thermodynamic data for plutonium from the Nuclear Energy Agency are used to estimate the solubilities of the discrete particles for the three stages of pore fluid

  18. Material design of plasma-enhanced chemical vapour deposition SiCH films for low-k cap layers in the further scaling of ultra-large-scale integrated devices-Cu interconnects

    Directory of Open Access Journals (Sweden)

    Hideharu Shimizu, Shuji Nagano, Akira Uedono, Nobuo Tajima, Takeshi Momose and Yukihiro Shimogaki

    2013-01-01

    Full Text Available Cap layers for Cu interconnects in ultra-large-scale integrated devices (ULSIs, with a low dielectric constant (k-value and strong barrier properties against Cu and moisture diffusion, are required for the future further scaling of ULSIs. There is a trade-off, however, between reducing the k-value and maintaining strong barrier properties. Using quantum mechanical simulations and other theoretical computations, we have designed ideal dielectrics: SiCH films with Si–C2H4–Si networks. Such films were estimated to have low porosity and low k; thus they are the key to realizing a cap layer with a low k and strong barrier properties against diffusion. For fabricating these ideal SiCH films, we designed four novel precursors: isobutyl trimethylsilane, diisobutyl dimethylsilane, 1, 1-divinylsilacyclopentane and 5-silaspiro [4,4] noname, based on quantum chemical calculations, because such fabrication is difficult by controlling only the process conditions in plasma-enhanced chemical vapor deposition (PECVD using conventional precursors. We demonstrated that SiCH films prepared using these newly designed precursors had large amounts of Si–C2H4–Si networks and strong barrier properties. The pore structure of these films was then analyzed by positron annihilation spectroscopy, revealing that these SiCH films actually had low porosity, as we designed. These results validate our material and precursor design concepts for developing a PECVD process capable of fabricating a low-k cap layer.

  19. Effect of hydrogen on passivation quality of SiN{sub x}/Si-rich SiN{sub x} stacked layers deposited by catalytic chemical vapor deposition on c-Si wafers

    Energy Technology Data Exchange (ETDEWEB)

    Thi, Trinh Cham, E-mail: s1240009@jaist.ac.jp; Koyama, Koichi; Ohdaira, Keisuke; Matsumura, Hideki

    2015-01-30

    We investigate the role of hydrogen content and fixed charges of catalytic chemical vapor deposited (Cat-CVD) SiN{sub x}/Si-rich SiN{sub x} stacked layers on the quality of crystalline silicon (c-Si) surface passivation. Calculated density of fixed charges is on the order of 10{sup 12} cm{sup −2}, which is high enough for effective field effect passivation. Hydrogen content in the films is also found to contribute significantly to improvement in passivation quality of the stacked layers. Furthermore, Si-rich SiN{sub x} films deposited with H{sub 2} dilution show better passivation quality of SiN{sub x}/Si-rich SiN{sub x} stacked layers than those prepared without H{sub 2} dilution. Effective minority carrier lifetime (τ{sub eff}) in c-Si passivated by SiN{sub x}/Si-rich SiN{sub x} stacked layers is as high as 5.1 ms when H{sub 2} is added during Si-rich SiN{sub x} deposition, which is much higher than the case of using Si-rich SiN{sub x} films prepared without H{sub 2} dilution showing τ{sub eff} of 3.3 ms. - Highlights: • Passivation mechanism of Si-rich SiN{sub x}/SiN{sub x} stacked layers is investigated. • H atoms play important role in passivation quality of the stacked layer. • Addition of H{sub 2} gas during Si-rich SiN{sub x} film deposition greatly enhances effective minority carrier lifetime (τ{sub eff}). • For a Si-rich SiN{sub x} film with refractive index of 2.92, τ{sub eff} improves from 3.3 to 5.1 ms by H{sub 2} addition.

  20. Amorphous indium-gallium-zinc-oxide thin-film transistors using organic-inorganic hybrid films deposited by low-temperature plasma-enhanced chemical vapor deposition for all dielectric layers

    Science.gov (United States)

    Hsu, Chao-Jui; Chang, Ching-Hsiang; Chang, Kuei-Ming; Wu, Chung-Chih

    2017-01-01

    We investigated the deposition of high-performance organic-inorganic hybrid dielectric films by low-temperature (close to room temperature) inductively coupled plasma chemical vapor deposition (ICP-CVD) with hexamethyldisiloxane (HMDSO)/O2 precursor gas. The hybrid films exhibited low leakage currents and high breakdown fields, suitable for thin-film transistor (TFT) applications. They were successfully integrated into the gate insulator, the etch-stop layer, and the passivation layer for bottom-gate staggered amorphous In-Ga-Zn-O (a-IGZO) TFTs having the etch-stop configuration. With the double-active-layer configuration having a buffer a-IGZO back-channel layer grown in oxygen-rich atmosphere for better immunity against plasma damage, the etch-stop-type bottom-gate staggered a-IGZO TFTs with good TFT characteristics were successfully demonstrated. The TFTs showed good field-effect mobility (μFE), threshold voltage (V th), subthreshold swing (SS), and on/off ratio (I on/off) of 7.5 cm2 V-1 s-1, 2.38 V, 0.38 V/decade, and 2.2 × 108, respectively, manifesting their usefulness for a-IGZO TFTs.

  1. The investigation of structure, chemical composition, hydrogen isotope trapping and release processes in deposition layers on surfaces exposed to DIII-D divertor plasma

    Energy Technology Data Exchange (ETDEWEB)

    Buzhinskij, O.I.; Opimach, I.V.; Barsuk, V.A. [TRINITI, Troitsk (Russian Federation); Arkhipov, I.I. [Russian Academy of Science, Moscow (Russian Federation). Inst. of Physical Chemistry; West, W.P.; Wong, C.P.C. [General Atomics, San Diego, CA (United States); Whyte, D. [Univ. of California, San Diego, CA (United States); Wampler, W.R. [Sandia National Labs., Albuquerque, NM (United States)

    1998-05-01

    The exposure of ATG graphite sample to DIII-D divertor plasma was provided by the DiMES (Divertor Material Evaluation System) mechanism. The graphite sample arranged to receive the parallel heat flux on a small region of the surface was exposed to 600ms of outer strike point plasma. The sample was constructed to collect the eroded material directed downward into a trapping zone onto s Si disk collector. The average heat flux onto the graphite sample during the exposure was about 200W/cm{sup 2}, and the parallel heat flux was about 10 KW/cm{sup 2}. After the exposure the graphite sample and Si collector disk were analyzed using SEM, NRA, RBS, Auger spectroscopy. IR and Raman spectroscopy. The thermal desorption was studied also. The deposited coating on graphite sample is amorphous carbon layer. Just upstream of the high heat flux zone the redeposition layer has a globular structure. The deposition layer on Si disk is composed also from carbon but has a diamond-like structure. The areal density of C and D in the deposited layer on Si disk varied in poloidal and toroidal directions. The maximum D/C areal density ratio is about 0.23, maximum carbon density is about 3.8 {times} 10{sup 18}cm{sup {minus}2}, maximum D area density is about 3 {times} 10{sup 17}cm{sup 2}. The thermal desorption spectrum had a peak at 1,250K.

  2. Multi-layers castings

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2010-01-01

    Full Text Available In paper is presented the possibility of making of multi-layers cast steel castings in result of connection of casting and welding coating technologies. First layer was composite surface layer on the basis of Fe-Cr-C alloy, which was put directly in founding process of cast carbon steel 200–450 with use of preparation of mould cavity method. Second layer were padding welds, which were put with use of TIG – Tungsten Inert Gas surfacing by welding technology with filler on Ni matrix, Ni and Co matrix with wolfram carbides WC and on the basis on Fe-Cr-C alloy, which has the same chemical composition with alloy, which was used for making of composite surface layer. Usability for industrial applications of surface layers of castings were estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  3. Effect of Chemical Reaction on Convective Heat Transfer of Boundary Layer Flow in Nanofluid over a Wedge with Heat Generation/Absorption and Suction

    Directory of Open Access Journals (Sweden)

    R. M. Kasmani

    2016-01-01

    Full Text Available The aim of the present study is to examine the convective heat transfer of nanofluid past a wedge subject to first-order chemical reaction, heat generation/absorption and suction effects. The influence of wedge angle parameter, thermophoresis, Dufour and Soret type diffusivity are included. The local similarity transformation is applied to convert the governing nonlinear partial differential equations into ordinary differential equations. Shooting method integrated with fourth-order Runge-Kutta method is used to solve the ordinary differential equations. The skin friction, heat and mass transfer rates as well as the effects of various parameters on velocity, temperature and solutal concentration profiles are analyzed. The results indicate that when the chemical reaction parameter increases, the heat transfer coefficient increases while the mass transfer coefficient decreases. The effect of chemical reaction parameter is very important in solutal concentration field compared to velocity and temperature profiles since it decreases the solutal concentration of the nanoparticle.

  4. Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes

    Science.gov (United States)

    Alnoor, Hatim; Pozina, Galia; Khranovskyy, Volodymyr; Liu, Xianjie; Iandolo, Donata; Willander, Magnus; Nur, Omer

    2016-04-01

    Low temperature aqueous chemical synthesis (LT-ACS) of zinc oxide (ZnO) nanorods (NRs) has been attracting considerable research interest due to its great potential in the development of light-emitting diodes (LEDs). The influence of the molar ratio of the zinc acetate (ZnAc): KOH as a ZnO seed layer precursor on the density of interface defects and hence the presence of non-radiative recombination centers in LT-ACS of ZnO NRs/GaN LEDs has been systematically investigated. The material quality of the as-prepared seed layer as quantitatively deduced by the X-ray photoelectron spectroscopy is found to be influenced by the molar ratio. It is revealed by spatially resolved cathodoluminescence that the seed layer molar ratio plays a significant role in the formation and the density of defects at the n-ZnO NRs/p-GaN heterostructure interface. Consequently, LED devices processed using ZnO NRs synthesized with molar ratio of 1:5 M exhibit stronger yellow emission (˜575 nm) compared to those based on 1:1 and 1:3 M ratios as measured by the electroluminescence. Furthermore, seed layer molar ratio shows a quantitative dependence of the non-radiative defect densities as deduced from light-output current characteristics analysis. These results have implications on the development of high-efficiency ZnO-based LEDs and may also be helpful in understanding the effects of the ZnO seed layer on defect-related non-radiative recombination.

  5. Chemical Speciation of Sulfur in Marine Cloud Droplets and Particles: Analysis of Individual Particles from Marine Boundary Layer over the California Current

    Energy Technology Data Exchange (ETDEWEB)

    William R. Wiley Environmental Sciences Laboratory, Pacific Northwest National Laboratory; Gilles, Mary K; Hopkins, Rebecca J.; Desyaterik, Yury; Tivanski, Alexei V.; Zaveri, Rahul A.; Berkowitz, Carl M.; Tyliszczak, Tolek; Gilles, Mary K.; Laskin, Alexander

    2008-03-12

    Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a combination of complementary microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X-rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOF-SIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from air masses that originated over the open ocean and then passed through the area of the California current located along the northern California coast. Based on composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3-) and non-sea salt sulfate (nss-SO42-) in sea-salt particles with characteristic ratios of nss-S/Na>0.10 and CH3SO3-/nss-SO42->0.6.

  6. Chemical composition analysis and product consistency tests to support enhanced Hanford waste glass models. Results for the third set of high alumina outer layer matrix glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-12-01

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for 14 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. All of the measured sums of oxides for the study glasses fell within the interval of 96.9 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. The PCT results were normalized to both the targeted and measured compositions of the study glasses. Several of the glasses exhibited increases in normalized concentrations (NCi) after the canister centerline cooled (CCC) heat treatment. Five of the glasses, after the CCC heat treatment, had NCB values that exceeded that of the Environmental Assessment (EA) benchmark glass. These results can be combined with additional characterization, including X-ray diffraction, to determine the cause of the higher release rates.

  7. Metal-organic chemical vapor deposition of high-k dielectric Ce–Al–O layers from various metal-organic precursors for metal–insulator–metal capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Abrutis, A., E-mail: adulfas.abrutis@chf.vu.lt [Dept. of General and Inorganic Chemistry, Vilnius University, 24 Naugarduko, LT-03225 Vilnius (Lithuania); Lukosius, M. [IHP, ImTechnologiepark 25, 15230, Frankfurt Oder (Germany); Skapas, M.; Stanionyte, S.; Kubilius, V. [Dept. of General and Inorganic Chemistry, Vilnius University, 24 Naugarduko, LT-03225 Vilnius (Lithuania); Wenger, Ch. [IHP, ImTechnologiepark 25, 15230, Frankfurt Oder (Germany); Zauner, A. [Air Liquide CRCD, 1 Chemin de la Porte des Loges, 78354 Les Loges-en-Josas (France)

    2013-06-01

    The possibilities to grow thin layers of high-k dielectric CeAlO{sub 3} by pulsed injection metal-organic chemical vapor deposition using different metal-organic (MO) precursors have been investigated. Three pairs of MO precursors were studied for the growth of the films: Ce (IV) and Al(III) 2,2,6,6-tetramethylheptane-3,5-dionates, Ce tetrakis(1-methoxy-2-methyl-2-propoxide)-diethylaluminumethoxide and tris(isopropylcyclopentadienyl)cerium-tris(diethylamino)aluminum. Under optimized conditions, all three pairs of investigated precursors enabled the growth of close to stoichiometric Ce–Al–O films at reasonably low temperatures, 400–450 °C, however, crystalline CeAlO{sub 3} phase was not present in as-deposited layers. Films were grown on Si(100) and Si(100)/TiN substrates. Two kinds of TiN electrodes were used — amorphous TiN (15–30 nm thick) and crystalline TiN (70–100 nm thick) layers, grown by chemical vapor deposition and physical vapor deposition techniques, respectively. The pure tetragonal CeAlO{sub 3} phase was crystallized in films by a short annealing in Ar or N{sub 2} at 800–850 °C. Required annealing conditions (temperature and annealing duration) depended on the selected precursors and substrates. Thermomechanical degradation of Si/TiN/Ce–Al–O structures was observed by Scaning Electron Microscopy after the annealing of the samples. Lower degradation degree was observed for structures with a thin amorphous TiN layer. - Highlights: • Systematic results on the growth of Ce–Al–O layers on Si and Si/TiN substrates • Various combinations of Ce and Al metal-organic precursors were compared. • Crystallization of Ce–Al–O films into pure CeAlO{sub 3} phase by annealing was studied. • Problems of Ce–Al–O application in Si/TiN/Ce–Al–O/Au capacitors are discussed.

  8. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    Science.gov (United States)

    Fleutot, Benoit; Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie

    2017-04-01

    Li4Ti5O12 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li3PO4 coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li3PO4 coated Li4Ti5O12 is improved at high C-rate by the surface modification (improvement of 30 mAh g-1 at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  9. ZnO/CdS/CuInSe{sub 2} photovoltaic cells fabricated using chemical bath deposited CdS buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, S.N.; Lam, W.W.; Qiu, C.X.; Shih, I. [Department of Electrical Engineering, McGill University, Montreal, PQ (Canada)

    1997-04-14

    CdS thin films have been prepared by using chemical bath deposition. The effects of bath temperature and concentration of NH{sub 4}OH were studied. Optimum deposition conditions were established. The resulted CdS thin films exhibit optical transmissions in excess of 90 over the majority of the solar spectrum. ZnO/CdS/CuInSe{sub 2} solar cells were fabricated on electrodeposited CuInSe{sub 2} thin films. A conversion efficiency of 6.3 was obtained with an active area of 7.8 mm{sup 2} (no AR coating)

  10. Dynamics of 3D representation of interfaces in UV-induced chemical vapor deposition: experiments, modeling, and simulation for silicon nitride thin layers

    Science.gov (United States)

    Flicstein, Jean; Guillonneau, E.; Marquez, Jose; How Kee Chun, L. S.; Maisonneuve, D.; David, C.; Wang, Zh. Z.; Palmier, Jean F.; Courant, J. L.

    2001-06-01

    We study the surface dynamics of silicon nitride films deposited by UV-induced low pressure chemical vapor pressure. Atomic force microscopy measurements show that the surface reaches a scale invariant stationary state coherent wit the Kardar-Parisi-Zhang (KPZ) equation. Discrete geometry techniques are oriented to extra morphological characteristics of surface and bulk which corresponds to computer simulated photodeposit. This allows to determine the physical origin of KPZ scaling to be al ow value of the surface sticking probability, and connected to the surface concentration of activate charged centers, which permits to start the evaluation of the Monte Carlo-molecular dynamics simulator.

  11. Spray-Pyrolyzed Three-Dimensional CuInS2 Solar Cells on Nanocrystalline-Titania Electrodes with Chemical-Bath-Deposited Inx(OH)ySz Buffer Layers

    Science.gov (United States)

    Nguyen, Duy-Cuong; Mikami, Yuki; Tsujimoto, Kazuki; Ryo, Toshihiro; Ito, Seigo

    2012-10-01

    Three-dimensional (3D) compound solar cells with the structure of TiO2/compact TiO2/florin-doped tin-oxide-coated glass plates> have been fabricated by spray pyrolysis deposition of CuInS2 and chemical-bath deposition of Inx(OH)ySz for the light absorber and buffer layer, respectively. The effect of deposition and annealing conditions of Inx(OH)ySz on the photovoltaic properties of 3D CuInS2 solar cells was investigated. Inx(OH)ySz annealed in air ambient showed a better cell performance than those annealed in nitrogen ambient and without annealing. The improvement of the performance of cells with Inx(OH)ySz buffer layers annealed in air ambient is due to the increase in oxide concentration in the buffer layers [confirmed by X-ray photoelectron spectroscopy (XPS) measurement]. Among cells with Inx(OH)ySz buffer layers deposited for 1, 1.5, 1.75, and 2 h, that with Inx(OH)ySz deposited for 1.75 h showed the best cell performance. The best cell performance was observed for Inx(OH)ySz deposited for 1.75 h with annealing at 300 °C for 30 min in air ambient, and cell parameters were 22 mA cm-2 short-circuit photocurrent density, 0.41 V open-circuit voltage, 0.35 fill factor, and 3.2% conversion efficiency.

  12. Vertical transport rates and concentrations of OH and Cl radicals in the Tropical Tropopause Layer from observations of CO2 and halocarbons: implications for distributions of long- and short-lived chemical species

    Directory of Open Access Journals (Sweden)

    T. P. Bui

    2010-07-01

    Full Text Available Rates for large-scale vertical transport of air in the Tropical Tropopause Layer (TTL were determined using high-resolution, in situ observations of CO2 concentrations in the tropical upper troposphere and lower stratosphere during the NASA Tropical Composition, Cloud and Climate Coupling (TC4 campaign in August 2007. Upward movement of trace gases in the deep tropics was notably slower in TC4 than during the Costa Rica AURA Validation Experiment (CR-AVE, in January 2006. Transport rates in the TTL were combined with in situ measurements of chlorinated and brominated organic compounds from whole air samples to determine chemical loss rates for reactive chemical species, providing empirical vertical profiles for 24-h mean concentrations of hydroxyl radicals (OH and chlorine atoms in the TTL. The analysis shows that important short-lived species such as CHCl3, CH2Cl2, and CH2Br2 have longer chemical lifetimes than the time for transit of the TTL, implying that these species, which are not included in most models, could readily reach the stratosphere and make significant contributions of chlorine and/or bromine to stratospheric loading.

  13. Vertical transport rates and concentrations of OH and Cl radicals in the Tropical Tropopause Layer from Observations of CO2 and halocarbons: implications for distributions of long- and short-lived chemical species

    Directory of Open Access Journals (Sweden)

    T. P. Bui

    2010-03-01

    Full Text Available Rates for large-scale vertical transport of air in the Tropical Tropopause Layer (TTL were determined using high-resolution, in situ observations of CO2 concentrations in the tropical upper troposphere and lower stratosphere during the NASA Tropical Composition, Cloud and Climate Coupling (TC4 campaign in August 2007. Upward movement of trace gases in the deep tropics was notably slower in TC4 than during the Costa Rica AURA Validation Experiment (CR-AVE, in January 2006. Transport rates in the TTL were combined with in situ measurements of chlorinated and brominated organic compounds from whole air samples to determine chemical loss rates for reactive chemical species, providing empirical vertical profiles for 24-h mean concentrations of hydroxyl radicals (OH and chlorine atoms in the TTL. The analysis shows that important short-lived species such as CHCl3, CH2Cl2, and CH2Br2 have longer chemical lifetimes than the time for transit of the TTL, implying that these species, which are not included in most models, could readily reach the stratosphere and make significant contributions of chlorine and/or bromine to stratospheric loading.

  14. Molecularly imprinted layer-coated silica nanoparticles for selective solid-phase extraction of bisphenol A from chemical cleansing and cosmetics samples

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Rong; Zhao Wenhui; Zhai Meijuan; Wei Fangdi; Cai Zheng; Sheng Na [School of Pharmacy, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu 210029 (China); Hu Qin, E-mail: huqin@njmu.edu.cn [School of Pharmacy, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu 210029 (China)

    2010-01-25

    Highly selective molecularly imprinted layer-coated silica nanoparticles for bisphenol A (BPA) were synthesized by molecular imprinting technique with a sol-gel process on the supporter of silica nanoparticles. The BPA-imprinted silica nanoparticles were characterized by fourier transform infrared spectrometer, transmission electron microscope, dynamic adsorption and static adsorption tests. The equilibrium association constant, K{sub a}, and the apparent maximum number of binding sites, Q{sub max}, were estimated to be 1.25 x 10{sup 5} mL {mu}mol{sup -1} and 16.4 {mu}mol g{sup -1}, respectively. The BPA-imprinted silica nanoparticles solid-phase extraction (SPE) column had higher selectivity for BPA than the commercial C18-SPE column. The results of the study indicated that the prepared BPA-imprinted silica nanoparticles exhibited high adsorption capacity and selectivity, and offered a fast kinetics for the rebinding of BPA. The BPA-imprinted silica nanoparticles were successfully used in SPE to selectively enrich and determine BPA from shampoo, bath lotion and cosmetic cream samples.

  15. Preservation of Fe complexes into layered double hydroxides improves the efficiency and the chemical stability of Fe complexes used as heterogeneous photo-Fenton catalysts

    Science.gov (United States)

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Lu, Yonghong; Zhu, Nengwu; Hu, Zhixian

    2013-12-01

    Fe complexes ([Fe(Ox)3]3- and [Fe(Cit)2]3-) have been heterogenized through preservation into MgAl-layered double hydroxides (LDHs). The SEM images and N2 adsorption-desorption isotherm showed that the obtained products were mesoporous materials and the specific surface area of LDHs/Fe-complex composites were obviously greater than pristine LDHs, which is beneficial for the adsorption of organic pollutants. Measurement of adsorptive and heterogeneous photo-Fenton degradation of methylene blue (MB) suggested that the LDHs/Fe-complex composites had an excellent adsorption capacity at different pHs and the adsorption isotherm modeled well with the Langmuir equation. The enhancement of adsorption capacity may be attributed to the external hydroxyl groups of LDHs. MB was enriched on the surface of LDHs/Fe-complex composites, which favors MB degradation in situ. The obtained composites displayed an high photocatalytic activity in a pH range from 4.0 to 6.0 with dissolved Fe cation at a low concentration. Therefore, Fe complexes intercalated into LDHs can be an effective heterogeneous Fenton catalyst for oxidation of organic pollutants in a relatively wide pH range.

  16. Molecularly imprinted layer-coated silica nanoparticles for selective solid-phase extraction of bisphenol A from chemical cleansing and cosmetics samples.

    Science.gov (United States)

    Zhu, Rong; Zhao, Wenhui; Zhai, Meijuan; Wei, Fangdi; Cai, Zheng; Sheng, Na; Hu, Qin

    2010-01-25

    Highly selective molecularly imprinted layer-coated silica nanoparticles for bisphenol A (BPA) were synthesized by molecular imprinting technique with a sol-gel process on the supporter of silica nanoparticles. The BPA-imprinted silica nanoparticles were characterized by fourier transform infrared spectrometer, transmission electron microscope, dynamic adsorption and static adsorption tests. The equilibrium association constant, K(a), and the apparent maximum number of binding sites, Q(max), were estimated to be 1.25 x 10(5) mL micromol(-1) and 16.4 micromol g(-1), respectively. The BPA-imprinted silica nanoparticles solid-phase extraction (SPE) column had higher selectivity for BPA than the commercial C18-SPE column. The results of the study indicated that the prepared BPA-imprinted silica nanoparticles exhibited high adsorption capacity and selectivity, and offered a fast kinetics for the rebinding of BPA. The BPA-imprinted silica nanoparticles were successfully used in SPE to selectively enrich and determine BPA from shampoo, bath lotion and cosmetic cream samples.

  17. Studies on chemical bath deposited CdS buffer layers for CIGS thin film solar cells%CIGS薄膜太阳能电池缓冲层CdS薄膜的制备研究

    Institute of Scientific and Technical Information of China (English)

    何丽秋

    2016-01-01

    目前CdS材料的制备方法有很多种,但是最常用的是化学水浴法。本文研究了浓度、反应溶液pH值、温度、沉积时间对CdS缓冲层薄膜的影响,对CIGS薄膜太阳能电池缓冲层CdS薄膜的制备方法进行了论述。%At present,the preparation methods of CdS has many kinds,The chemical bath deposition(CBD)is the most commonly method.In this review,the effects of concentration,pH,temperature and deposition time on the CdS buffer layer were studied.The preparation methods of CIGS thin film for CdS thin film solar cells were discussed.

  18. 一个化工过程运行系统的多层信息集成平台%A Multi-layer Information Integration Platform for Chemical Process Operation Systems

    Institute of Scientific and Technical Information of China (English)

    钱宇; 李荷华; 李秀喜

    2004-01-01

    In the process industry, automation and process control systems are widely implemented, information integration is however far away from satisfactory. It remains a hard job for senior managers to make decisions based on the plant-wide real-time integrated information. This paper proposes a multi-layer information integration platform. In the data integration level, the standard for the exchange of product (STEP) and the extensible markup language (XML) are used to unify these data of the chemical process. In the model integration level, the models are integrated by using the neutral model repository and CAPE-OPEN. In the integration of process task, the common object request broker architecture (CORBA) is used as the communication mediator. The XML is taken as the data standard. A uniform information platform is thus constructed and realized. The proposed information integration platform is satisfactorily implemented to solve the Tennessee Eastman (TE) problem.

  19. A (Bio-Chemical Field-Effect Sensor with Macroporous Si as Substrate Material and a SiO2 / LPCVD-Si3N4 Double Layer as pH Transducer

    Directory of Open Access Journals (Sweden)

    Hans Lüth

    2002-01-01

    Full Text Available Macroporous silicon has been etched from n-type Si, using a vertical etching cell where no rear side contact on the silicon wafer is necessary. The resulting macropores have been characterised by means of Scanning Electron Microscopy (SEM. After etching, SiO2 was thermally grown on the top of the porous silicon as an insulating layer and Si3N4 was deposited by means of Low Pressure Chemical Vapour Deposition (LPCVD as transducer material to fabricate a capacitive pH sensor. In order to prepare porous biosensors, the enzyme penicillinase has been additionally immobilised inside the porous structure. Electrochemical measurements of the pH sensor and the biosensor with an Electrolyte/Insulator/Semiconductor (EIS structure have been performed in the Capacitance/Voltage (C/V and Constant capacitance (ConCap mode.

  20. Developmental changes in electrophysiological properties and a transition from electrical to chemical coupling between excitatory layer 4 neurons in the rat barrel cortex

    Directory of Open Access Journals (Sweden)

    Fliza eValiullina

    2016-01-01

    Full Text Available During development, sensory systems switch from an immature to an adult mode of function along with the emergence of the active cortical states. Here, we used patch-clamp recordings from neocortical slices in vitro to characterize the developmental changes in the basic electrophysiological properties of excitatory L4 neurons and their connectivity before and after the developmental switch, which occurs in the rat barrel cortex in vivo at postnatal day P8. Prior to the switch, L4 neurons had lower resting membrane potentials, higher input resistance, lower membrane capacity, as well as action potentials (APs with smaller amplitudes, longer durations and higher AP thresholds compared to the neurons after the switch. A sustained firing pattern also emerged around the switch. Dual patch-clamp recordings from L4 neurons revealed that recurrent connections between L4 excitatory cells do not exist before and develop rapidly across the switch. In contrast, electrical coupling between these neurons waned around the switch. We suggest that maturation of electrophysiological features, particularly acquisition of a sustained firing pattern, and a transition from the immature electrical to mature chemical synaptic coupling between excitatory L4 neurons, contributes to the developmental switch in the cortical mode of function.

  1. Formation and characterization of the MgO protecting layer deposited by plasma-enhanced metal-organic chemical-vapor deposition

    CERN Document Server

    Kang, M S; Byun, J C; Kim, D S; Choi, C K; Lee, J Y; Kim, K H

    1999-01-01

    MgO films were prepared on Si(100) and soda-lime glass substrates by using plasma-enhanced metal-organic chemical-vapor deposition. Various ratios of the O sub 2 /CH sub 3 MgO sup t Bu gas mixture and various gas flow rates were tested for the film fabrications. Highly (100)-oriented MgO films with good crystallinity were obtained with a 10 sccm CH sub 3 MgO sup t Bu flow without an O sub 2 gas flow. About 5 % carbon was contained in all the MgO films. The refractive index and the secondary electron emission coefficient for the best quality film were 1.43 and 0.45, respectively. The sputtering rate was about 0.2 nm/min for 10 sup 1 sup 1 cm sup - sup 3 Ar sup + ion density. Annealing at 500 .deg. C in an Ar ambient promoted the grain size without inducing a phase transition.

  2. Soft-chemical synthesis and catalytic activity of Ni-Al and Co-Al layered double hydroxides (LDHs intercalated with anions with different charge density

    Directory of Open Access Journals (Sweden)

    Takahiro Takei

    2014-09-01

    Full Text Available Co-Al and Ni-Al layered double hydroxides (LDHs intercalated with three types of anionic molecules, dodecylsulfate (C12H25SO4−, DS, di-2-ethylsulfosuccinate ([COOC2H3EtBu]2C2H3SO3−, D2ES, and polytungstate (H2W12O4210−, HWO were prepared by means of ion-exchange and co-precipitation processes. With the use of DS and D2ES as intercalation agents, high crystallinity was maintained after intercalation into the LDHs. In the case of HWO, the intercalated LDHs could be obtained by ion-exchange as well as co-precipitation with a decline in the crystallinity; however, unreacted LDH was detected in the ion-exchange samples, and some unwanted phases such as hydroxide and pyrochlore were generated by the co-precipitation process. The maximum specific surface area and pore volume of the Ni-Al sample with intercalated HWO, prepared by the ion-exchange process were 74 m2/g and 0.174 mL/g, respectively. The occupancies of DS, D2ES, and HWO within the interlayer space were approximately 0.3–0.4, 0.5–0.6, and 0.1–0.2, respectively, in the Co-Al and Ni-Al LDHs. Analysis of the catalytic activity demonstrated that the DS-intercalated Ni-Al LDH sample exhibited relatively good catalytic activity for conversion of cyclohexanol to cyclohexanone.

  3. Effect of a Ti capping layer on thermal stability of NiSi formed from Ni thin films deposited by metal-organic chemical vapor deposition using a Ni(iPr-DAD)2 precursor

    Science.gov (United States)

    Park, Jingyu; Jeon, Heeyoung; Kim, Hyunjung; Jang, Woochool; Kang, Chunho; Yuh, Junhan; Jeon, Hyeongtag

    2015-02-01

    Ni films were deposited by metal-organic chemical vapor deposition (MOCVD) using a novel Ni precursor, bis(1,4-di-isopropyl-1,3-diazabutadienyl)nickel [Ni(iPr-DAD)2], and NH3 gas. To optimize process conditions, the deposition temperature and reactant partial pressure were varied from 200 to 350 °C and from 0.2 to 0.99 Torr, respectively. Ni films deposited at 300 °C with a reactant pressure of 0.8 Torr exhibited excellent quality, and had a low carbon impurity concentration of around 4%. In addition, a sacrificial Ti capping layer was deposited by an in situ e-beam evaporator on top of the Ni films to enhance the thermal stability of the subsequently formed NiSi films. Both the Ti-capped and uncapped Ni films were annealed by a two-step method, with a first annealing conducted at 500 °C, followed by wet etching and then a second annealing carried out from 500 to 900 °C. The Ti capping layer did not affect the silicidation kinetic process, but by acting as an oxygen scavenger, it did enhance the morphological stability of the NiSi films and thus improve their electrical properties.

  4. EVOLUTION OF CHEMICAL CONDITIONS AND ESTIMATED SOLUBILITY CONTROLS ON RADIONUCLIDES IN THE RESIDUAL WASTE LAYER DURING POST-CLOSURE AGING OF HIGH-LEVEL WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.; Millings, M.

    2012-08-28

    This document provides information specific to H-Area waste tanks that enables a flow and transport model with limited chemical capabilities to account for varying waste release from the tanks through time. The basis for varying waste release is solubilities of radionuclides that change as pore fluids passing through the waste change in composition. Pore fluid compositions in various stages were generated by simulations of tank grout degradation. The first part of the document describes simulations of the degradation of the reducing grout in post-closure tanks. These simulations assume flow is predominantly through a water saturated porous medium. The infiltrating fluid that reacts with the grout is assumed to be fluid that has passed through the closure cap and into the tank. The results are three stages of degradation referred to as Reduced Region II, Oxidized Region II, and Oxidized Region III. A reaction path model was used so that the transitions between each stage are noted by numbers of pore volumes of infiltrating fluid reacted. The number of pore volumes to each transition can then be converted to time within a flow and transport model. The bottoms of some tanks in H-Area are below the water table requiring a different conceptual model for grout degradation. For these simulations the reacting fluid was assumed to be 10% infiltrate through the closure cap and 90% groundwater. These simulations produce an additional four pore fluid compositions referred to as Conditions A through D and were intended to simulate varying degrees of groundwater influence. The most probable degradation path for the submerged tanks is Condition C to Condition D to Oxidized Region III and eventually to Condition A. Solubilities for Condition A are estimated in the text for use in sensitivity analyses if needed. However, the grout degradation simulations did not include sufficient pore volumes of infiltrating fluid for the grout to evolve to Condition A. Solubility controls for use

  5. EVOLUTION OF CHEMICAL CONDITIONS AND ESTIMATED SOLUBILITY CONTROLS ON RADIONUCLIDES IN THE RESIDUAL WASTE LAYER DURING POST-CLOSURE AGING OF HIGH-LEVEL WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.; Millings, M.

    2012-08-28

    This document provides information specific to H-Area waste tanks that enables a flow and transport model with limited chemical capabilities to account for varying waste release from the tanks through time. The basis for varying waste release is solubilities of radionuclides that change as pore fluids passing through the waste change in composition. Pore fluid compositions in various stages were generated by simulations of tank grout degradation. The first part of the document describes simulations of the degradation of the reducing grout in post-closure tanks. These simulations assume flow is predominantly through a water saturated porous medium. The infiltrating fluid that reacts with the grout is assumed to be fluid that has passed through the closure cap and into the tank. The results are three stages of degradation referred to as Reduced Region II, Oxidized Region II, and Oxidized Region III. A reaction path model was used so that the transitions between each stage are noted by numbers of pore volumes of infiltrating fluid reacted. The number of pore volumes to each transition can then be converted to time within a flow and transport model. The bottoms of some tanks in H-Area are below the water table requiring a different conceptual model for grout degradation. For these simulations the reacting fluid was assumed to be 10% infiltrate through the closure cap and 90% groundwater. These simulations produce an additional four pore fluid compositions referred to as Conditions A through D and were intended to simulate varying degrees of groundwater influence. The most probable degradation path for the submerged tanks is Condition C to Condition D to Oxidized Region III and eventually to Condition A. Solubilities for Condition A are estimated in the text for use in sensitivity analyses if needed. However, the grout degradation simulations did not include sufficient pore volumes of infiltrating fluid for the grout to evolve to Condition A. Solubility controls for use

  6. Exposing and deposing hyper-economized school science

    Science.gov (United States)

    Bencze, John Lawrence

    2010-06-01

    Despite indications of the problematic nature of laissez faire capitalism, such as the convictions of corporate leaders and the global financial crisis that appeared to largely stem from a de-regulated financial services industry, it seems clear that societies and environments continue to be strongly influenced by hyper-economized worldviews and practices. Given the importance of societal acceptance of a potentially dominant ideological perspective, it is logical to assume that it would be critical for students to be prepared to function in niches prioritizing unrestricted for-profit commodity exchanges. Indeed, in their article in this issue, Lyn Carter and Ranjith Dediwalage appear to support this claim in their analyses of the large-scale and expensive Australian curriculum and instruction project, Sustainability by the Bay. More specifically, they effectively demonstrate that this project manifests several characteristics that would suggest neoliberal and neoconservative influences—ideological perspectives that they argue are largely fundamental to the functioning of the global economic system. In this forum article, possible adverse effects of neoliberalism and neoconservatism on school science are discussed—with further justification for Carter and Dediwalage's concerns. Additionally, however, this article raises the possibility of subverting neoliberalism and neoconservatism in science education through application of communitarian ideals.

  7. Deposing the Cool Corona of KPD 0005+5106

    CERN Document Server

    Werner, J J D K

    2005-01-01

    The ROSAT PSPC pulse height spectrum of the peculiar He-rich hot white dwarf KPD 0005+5106 provided a great surprise when first analysed by Fleming, Werner & Barstow (1993). It defied the best non-LTE modelling attempts in terms of photospheric emission from He-dominated atmospheres including C, N and O and was instead interpreted as the first evidence for a coronal plasma around a white dwarf. We show here that a recent high resolution Chandra LETGS spectrum has more structure than expected from a thermal bremsstrahlung continuum and lacks the narrow lines of H-like and He-like C expected from a coronal plasma. Moreover, a coronal model requires a total luminosity more than two orders of magnitude larger than that of the star itself. Instead, the observed 20-80 AA flux is consistent with photospheric models containing trace amounts of heavier elements such as Fe. The soft X-ray flux is highly sensitive to the adopted metal abundance and provides a metal abundance diagnostic. The weak X-ray emission at 1 ...

  8. 隔盐层对滨海盐土理化性质的影响%Effects of Salt-isolation Layer on Physico-chemical Properties of Coastal Saline Soil

    Institute of Scientific and Technical Information of China (English)

    张薇; 李素艳; 孙向阳; 张冬华; 王琳琳; 张涛; 翟鹏辉

    2013-01-01

    In this paper ,the coastal saline soil in Dagang district of Tianjin was taken as the re-search object ,ceramsite ,zeolite and vermiculite selected as insulation material to reduce salt con-tent of soil were laid both at the bottom and jamb wall of tree well respectively with the thickness of 10 cm .The results showed that :using zeolite as the salt-isolation layers made the soil bulk density decrease by 8 .05% and the soil permeability increase .Using zeolite and vermiculite as the salt-isolation layers the total porosity increase by 19.9% and 15.3% .Salt-isolation layers with ze-olite and vermiculite the non-capillary porosity of soil increase by 3 .64 times and 2 .99 times re-spectively .T he results also indicated that :three kinds of materials all could reduce the saltness and the rank of reflecting the ability of reducing saltness was as follows :zeolite>ceramsite>ver-miculite .The desalination rate with ceramsite ,zeolite and vermiculite was 60 .6% ,72 .4% ,40 .2%respectively .At last ,it demonstrated that using ceramsite ,zeolite and vermiculite as the salt-isola-tion layers all could reduce pH markedly .In the coastal saline land ,taking ceramic ,zeolite and vermiculite as salt-isolated layers can improve the physical and chemical properties of soil and op-timize the micro-environment for plants .%为探索盐碱地降盐改土的方法,以天津市大港区滨海盐土为研究对象,选取了陶粒、沸石、蛭石3种材料,分别在树穴底部和侧壁铺设10 cm厚的隔离层,研究了其对盐碱土理化性质的改良作用。结果表明:以沸石作为隔盐层可使土壤容重下降8.05%,土壤通透性增强;以沸石和蛭石作为隔盐层,土壤总孔隙度分别上升19.9%和15.3%,土壤非毛管孔隙度分别增加3.64倍和2.99倍,更有利于降水的下渗。3种材料均有降盐效果,陶粒、沸石、蛭石作为隔盐层的脱盐率分别为60.6%、72.4%、40.2%,其降盐能力表

  9. Processes for multi-layer devices utilizing layer transfer

    Science.gov (United States)

    Nielson, Gregory N; Sanchez, Carlos Anthony; Tauke-Pedretti, Anna; Kim, Bongsang; Cederberg, Jeffrey; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2015-02-03

    A method includes forming a release layer over a donor substrate. A plurality of devices made of a first semiconductor material are formed over the release layer. A first dielectric layer is formed over the plurality of devices such that all exposed surfaces of the plurality of devices are covered by the first dielectric layer. The plurality of devices are chemically attached to a receiving device made of a second semiconductor material different than the first semiconductor material, the receiving device having a receiving substrate attached to a surface of the receiving device opposite the plurality of devices. The release layer is etched to release the donor substrate from the plurality of devices. A second dielectric layer is applied over the plurality of devices and the receiving device to mechanically attach the plurality of devices to the receiving device.

  10. Study on advanced Ce0.9La0.1O2/Gd2Zr2O7 buffer layers architecture towards all chemical solution processed coated conductors

    DEFF Research Database (Denmark)

    Yue, Zhao; Ma, L.; Wu, W.

    2015-01-01

    Chemical solution deposition is a versatile technique to deposit functional oxide films with low cost. In this study, this approach was employed to grow multi-layered, second-generation, high-temperature superconductors ("coated conductors") with high superconducting properties. The Ce0.9La0.1O2/...

  11. Modeling hydrodynamic flows in plasma fluxes when depositing metal layer on the surface of catalyst converters

    Science.gov (United States)

    Chinakhov, D. A.; Sarychev, V. D.; Granovsky, A. Yu; Solodsky, S. A.; Nevsky, S. A.; Konovalov, S. V.

    2017-01-01

    Air pollution with harmful substances resulting from combustion of liquid hydrocarbons and emitted into atmosphere became one of the global environmental problems in the late 20th century. The systems of neutralization capable to reduce toxicity of exhaust gases several times are very important for making environmentally safer combustion products discharged into the atmosphere. As revealed in the literature review, one of the most promising purification procedures is neutralization of burnt gases by catalyst converter systems. The principal working element in the converter is a catalytic layer of metals deposited on ceramics, with thickness 20-60 micron and a well-developed micro-relief. The paper presents a thoroughly substantiated new procedure of deposing a nano-scale surface layer of metal-catalyst particles, furthering the utilization of catalysts on a new level. The paper provides description of mathematical models and computational researches into plasma fluxes under high-frequency impulse input delivered to electrode material, explorations of developing Kelvin-Helmholtz, Marangoni and magnetic hydrodynamic instabilities on the surface of liquid electrode metal droplet in the nano-scale range of wavelengths to obtain a flow of nano-meter particles of cathode material. The authors have outlined a physical and mathematical model of magnetic and hydrodynamic instability for the case of melt flowing on the boundary with the molten metal with the purpose to predict the interphase shape and mutual effect of formed plasma jet and liquid metal droplet on the electrode in the nano-scale range of wavelengths at high-frequency impact on the boundary “electrode-liquid layer”.

  12. Chemical composition and optical properties of aerosols in the lower mixed layer and the free troposphere. Final report of the AFS project; Chemische Zusammensetzung und optische Eigenschaften des Aerosols in der freien Troposphaere. Abschlussbericht zum AFS-Projekt

    Energy Technology Data Exchange (ETDEWEB)

    Asseng, H. [Freie Univ. Berlin (Germany). Inst. fuer Weltraumwissenschaften]|[Max-Planck-Institut fuer Chemie, Mainz (Germany). Abt. Biogeochemie; Fischer, J. [Freie Univ. Berlin (Germany). Inst. fuer Weltraumwissenschaften; Helas, G. [Max-Planck-Institut fuer Chemie, Mainz (Germany). Abt. Biogeochemie; Weller, M. [Deutscher Wetterdienst, Potsdam (Germany). Meteorologisches Observatorium

    2001-08-02

    Aerosol radiative forcing is the largest unknown in current climate models and, as a result, in predicting future climate. Accurate vertically-resolved measurements of aerosol optical properties are an important element of improved climate prediction (IPCC). The present project has contributed to this objective. Jets of directly and remotely determined radiation data have been provided suitable to cut down the uncertainty of column- or layer related optical aerosol parameters. In the present case mean values and profiles of spectral scattering - and absorption coefficients have been retrieved from ground based and airborne sky-radiance/solar irradiance measurements. Available analyses of size and chemical composition of sampled particles (adjoined projects) have been also taken into consideration. The retrieved parameters have served as an input for modelling the radiative transfer exactly for the real time of measurements. Closure procedures yielded finally realistic spectral scattering - and absorption coefficients typically for the lower troposphere in a mostly rural Central European region. (orig.) [German] Die ungenuegende Kenntnis strahlungswirksamer, optischer Aerosolparameter ist laut IPCC die groesste Unbekannte bei der Modellierung des Klimas und seiner Veraenderung. Wissenschaft und Technik bemuehen sich in sog. Schliessungsexperimenten aus der Ueberbestimmung direkt und indirekt gemessener Aerosolparameter genaue(re) Kenntnis (Mittelwert/Variation) ueber deren Klimawirksamkeit zu erlangen. Im vorliegenden Projekt wurden aus verschiedenen passiven, spektralen Messungen von Streulicht und Transmission der Atmosphaere in verschiedenen Hoehen sowie aus der Beruecksichtigung von Partikelanalysen Dritter, Streu- und Absorptionskoeffizienten des Aerosols der gesamten Luftsaeule und in vertikaler Aufloesung abgeleitet. Strahlungstransportmodellierungen mit den gewonnenen Aerosolparametern als input engten ueber den Vergleich mit den Messungen deren Grad an

  13. Study on IPL identification of typical protection layers in chemical enterprise%化工企业典型保护层中独立保护层的识别研究

    Institute of Scientific and Technical Information of China (English)

    万古军; 党文义; 张广文

    2013-01-01

    According to the requirements of independence,functionality,integrity,reliability,auditability,access security and management of change for an independent protection layer (IPL),an IPL identificatio on typical protection layer in chemical enterprise was conducted.The results showed that the inherently safer design and the emergency response of factory and community were not treated as IPL generally.As IPL,the elements of basic process control systems (BPCS)should be isolated from similar devices in the safety instrumented function (SIF).The requirements of probability of failure on demand (PFD) should be met and the required action must be taken in the time available for BPCS.For the critical alarms and human response,besides the indication for action required by the operator must be detectable,the time available to take the action must be adequate.Moreover,the action should be unique and operable.SIF must be functionally independent from BPCS and meet requirements of SIL.The required action must be taken in the time available for SIF.The physical and postrelease protection devices should be independent from the other IPLs.The appropriate PFD value should be evaluated according to their practical running environment.The results of this paper can instruct the enterprise to identify IPL correctly in layer of protection analysis (LOPA).%按照独立保护层(IPL)独立性、功能性、完整性、可靠性、可审查性、安全许可保护性和变更管理的要求,对化工企业典型保护层进行了IPL识别.结果表明:本质安全设计、工厂和社区应急响应一般不作为IPL;作为IPL,基本过程控制系统(BPCS)应在物理上与安全仪表功能(SIF)分离,并满足要求时失效概率(PFD)的要求,在规定时间内完成所要求的动作;关键报警和人员响应应满足操作人员能得到采取行动的指示或报警,有足够的响应时间,任务应具有单一性和可操作性;SIF应在功能上独立于BPCS,SIF各元件

  14. Chemical Emergencies

    Science.gov (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  15. Peeling Back the Layers

    Science.gov (United States)

    2004-01-01

    NASA's Mars Exploration Rover Spirit took this panoramic camera image of the rock target named 'Mazatzal' on sol 77 (March 22, 2004). It is a close-up look at the rock face and the targets that will be brushed and ground by the rock abrasion tool in upcoming sols. Mazatzal, like most rocks on Earth and Mars, has layers of material near its surface that provide clues about the history of the rock. Scientists believe that the top layer of Mazatzal is actually a coating of dust and possibly even salts. Under this light coating may be a more solid portion of the rock that has been chemically altered by weathering. Past this layer is the unaltered rock, which may give scientists the best information about how Mazatzal was formed. Because each layer reveals information about the formation and subsequent history of Mazatzal, it is important that scientists get a look at each of them. For this reason, they have developed a multi-part strategy to use the rock abrasion tool to systematically peel back Mazatzal's layers and analyze what's underneath with the rover's microscopic imager, and its Moessbauer and alpha particle X-ray spectrometers. The strategy began on sol 77 when scientists used the microscopic imager to get a closer look at targets on Mazatzal named 'New York,' 'Illinois' and 'Arizona.' These rock areas were targeted because they posed the best opportunity for successfully using the rock abrasion tool; Arizona also allowed for a close-up look at a range of tones. On sol 78, Spirit's rock abrasion tool will do a light brushing on the Illinois target to preserve some of the surface layers. Then, a brushing of the New York target should remove the top coating of any dust and salts and perhaps reveal the chemically altered rock underneath. Finally, on sol 79, the rock abrasion tool will be commanded to grind into the New York target, which will give scientists the best chance of observing Mazatzal's interior. The Mazatzal targets were named after the home states of

  16. Studies on the reactive deposition of TiN{sub x} and TiO{sub x} in a DC magnetron plasma; Untersuchungen zur reaktiven Abscheidung von TiN{sub x} und TiO{sub x} in einem DC-Magnetronplasma

    Energy Technology Data Exchange (ETDEWEB)

    Wrehde, Stefan

    2009-10-30

    In the present thesis experiments in a magnetron coating plasma on the (reactive) deposition of Ti, Ti{sub x}, and TiO{sub x} layers were performed. The aim was to meet by correlation of measurements of the ion and energy current on the substrate during the coating procedure with studies of the properties of the deposed layers statements about the connections of deposition conditions and layer properties. The layers deposed in the argon plasma without reactive gas contained beside titanium as main component also small concentrations of oxygen in the range of 8..15%, no completely pure respectively metallic titanium layers could be deposed. In the layers deposed in the argon-nitrogen plasma the increasing nitrogen admixture to the plasma leads mto an increasing nitridation of the layers. The measurements of the crystal structure show higher macroscopical stresses in the layers deposed in the unbalanced mode. From the combination of the higher thicknesses and densities of the layers deposed in the unbalanced mode in this operation mode of the magnetron higher deposition rates result. In the argon-oxygen plasma at increasing oxygen part it comes to a distinct increasement of the oxygen concentration at simultaneous decreasement of the relative titanium concentration in the deposed layers. The deposition in the unbalanced mode leads against the that in the balanced mode to a slightly lower oxygen concentration in the layers. The measurements of the crystal structure show also a lower oxygen insertion and tendentially lower macroscopical stresses in the layers deposed in the unbalanced mode. The measured densities of the layers deposed in the unbalanced mode are distinctly lower than to be expected, and above all smaller than those of the layers deposed in the balanced mode.

  17. Disorder and transport of silver in some layered metal sulfides

    NARCIS (Netherlands)

    Gerards, Anthonius Gijsbertus

    1987-01-01

    The chemical and physical properties of compounds with a layered structure are strongly determined by the two-dimensional nature of the bonding, viz. strong bonding within the layers and much weaker bonds between the layers; graphite is an example of such and anisotropic solid. the layered transitio

  18. Electrochemical and chemical dissolution behavior of Zn-Fe alloy coatings and its application to the analysis of Zn-Fe alloy layer. Zn-Fe kei mekki so no bunkyokuter dot yokai kyodo to teiryo bunseki eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Tanimoto, S.; Funahashi, Y.; Matsumura, Y. (Kawasaki Steel Corp., Tokyo (Japan))

    1991-11-01

    As surface treated steel sheets, steel sheets with Zn-Fe coatings as well as double-layer steel sheets with Fe-P alloy coatings on Zn-Fe alloy coatings are often used practically. Two treatment methods, which are used to dissolve only alloy layers without dissolving steel sheets in order to find amount and composition of alloy layersr have already been reported. This report investigates the mechanisms of these methods, particularly the mechanisms to control dissolution of steel sheets. In the alkali-dissolution method, Zn-Fe alloy coatings are dissolved in a strong alkaline solution(NaOH-triethanolamine (TEA)-H{sub 2}O{sub 2}). In this case, steel sheets are insoluble because passive films are formed on the surface. In the cathodic polarization electrolysis method, alloy layers are electrolyzed({minus}l.2V) and dissolved in an ammonium nitrate-0-phen electrolyte. At this potential, dissolution of steel sheets can be prevented by the 0-phen films adsorbed on the surface. Consequently, the alkali-dissolution mehtod and the cathodic polarization electrolysis method are applicable to the quantitative analysis of Zn-rich layer (Fe is 40% or less) coatings and that of Fe-rich layer(Fe is 70% or less) coatings, respectively. 18 refs., 8 figs., 7 tabs.

  19. Layer-by-Layer Assembly Onto Gold Nanoparticles of Various Size

    Science.gov (United States)

    Kilroy, Andrew; Kessler, Sarah; Dobbins, Tabbetha

    This research focuses on the potential applications of coated gold nanoparticles in medicine. By coating gold nanoparticles in layers of polyelectrolytes, with a final layer of antibodies which targets chemicals uniquely exhibited by cancer cells, we eventually hope to selectively attach the nanoparticles to the cancer cells. The coated nanoparticles are assembled through layer-by-layer coulombic attraction due to the passive zeta potential of the particle and the charged nature of the polyelectrolytes. This poster will explore the potential usefulness of variously sized nanoparticles with various thickness of polyelectrolyte layers.

  20. Supercritical fluid chemical deposition of Pd nanoparticles on magnesium–scandium alloy for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Couillaud, Samuel; Kirikova, Marina [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Zaïdi, Warda; Bonnet, Jean-Pierre [LRCS, UMR CNRS 6007, 33 rue Saint-Leu, 80039-Amiens (France); Marre, Samuel; Aymonier, Cyril [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Zhang, Junxian; Cuevas, Fermin; Latroche, Michel [ICMPE, CNRS-UPEC, UMR 7182, 2-8 rue Henri Dunant, 94320-Thiais (France); Aymard, Luc [LRCS, UMR CNRS 6007, 33 rue Saint-Leu, 80039-Amiens (France); Bobet, Jean-Louis, E-mail: bobet@icmcb-bordeaux.cnrs.fr [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France)

    2013-10-15

    Highlights: •Nanoparticles of Pd were deposed on the binary compound Mg{sub 0.65}Sc{sub 0.35} using the Supercritical Fluid Chemical Deposition (SFCD) method. •Numerous parameters were tested and optimized in order to obtain a homogeneous deposition. •At the first step, Pd@Mg0.65Sc0.35 decomposes into ScH{sub 2} and MgH{sub 2} under hydrogen pressure (1 MPa) at 330 °C. •The mixture, after decomposition absorbs hydrogen reversibly on Mg/MgH{sub 2} couple with good kinetics. -- Abstract: The deposition of Pd nanoparticles on the binary compound Mg{sub 0.65}Sc{sub 0.35} using the Supercritical Fluid Chemical Deposition (SFCD) method was performed. There, the SFCD operating parameters (co-solvent, temperature, CO{sub 2} and hydrogen pressure, reaction time) have been optimized to obtain homogeneous deposition of Pd nanoparticles (around 10 nm). The hydrogenation properties of the optimized Pd@Mg{sub 0.65}Sc{sub 0.35} material were determined and compared to those of Mg{sub 0.65}Sc{sub 0.35}Pd{sub 0.024}. The latter compound forms at 300 °C and 1 MPa of H{sub 2} a hydride that crystallizes in the fluorite structure, absorbs reversibly 1.5 wt.% hydrogen and exhibits fast kinetics. In contrast, Pd@Mg{sub 0.65}Sc{sub 0.35} compound decomposes into ScH{sub 2} and MgH{sub 2} during hydrogen absorption under the same conditions. However, reversible sorption reaches 3.3 wt.% of hydrogen while keeping good kinetics. The possible roles of Pd on the hydrogen-induced alloy decomposition are discussed.

  1. PRESSURE DRIVEN CONDUCTING POLYMER MEMBRANES DERIVED FROM LAYER BY LAYER FORMATION AND CHARACTERIZATION: A REVIEW

    Directory of Open Access Journals (Sweden)

    IZZATI IZNI YUSOFF

    2016-08-01

    Full Text Available The layer-by-layer method is a technique used for the fabrication of ultra-thin defect free films which involves alternating sequential adsorption of polycations and polyanions, while conducting polymer is characterized by a conjugated structure of alternating single and double bonds. The use of layer-by-layer in producing a membrane for separation has received considerable interest due to its properties. However, the introduction of conducting polymer as a base membrane is relatively new. Therefore, in this review, we discuss in detail three types of LBL techniques (dip, spin and spray layer-by-layer along with their parameters. We will also summarize current developments on the characterization of modified membrane prepared using the layer-by-layer techniques in terms of morphology, physical and chemical properties, and separation performances.

  2. Protecting the ozone layer.

    Science.gov (United States)

    Munasinghe, M; King, K

    1992-06-01

    Stratospheric ozone layer depletion has been recognized as a problem by the Vienna Convention for the Protection of the Ozone Layer and the 1987 Montreal Protocol (MP). The ozone layer shields the earth from harmful ultraviolet radiation (UV-B), which is more pronounced at the poles and around the equator. Industrialized countries have contributed significantly to the problem by releasing chlorofluorocarbons (CFCs) and halons into the atmosphere. The effect of these chemicals, which were known for their inertness, nonflammability, and nontoxicity, was discovered in 1874. Action to deal with the effects of CFCs and halons was initiated in 1985 in a 49-nation UN meeting. 21 nations signed a protocol limiting ozone depleting substances (ODS): CFCs and halons. Schedules were set based on each country's use in 1986; the target phaseout was set for the year 2000. The MP restricts trade in ODSs and weights the impact of substances to reflect the extent of damage; i.e., halons are 10 times more damaging than CFCs. ODS requirements for developing countries were eased to accommodate scarce resources and the small fraction of ODS emissions. An Interim Multilateral Fund under the Montreal Protocol (IMFMP) was established to provide loans to finance the costs to developing countries in meeting global environmental requirements. The IMFMP is administered by the World Bank, the UN Environmental Program, and the UN Development Program. Financing is available to eligible countries who use .3 kg of ODS/person/year. Rapid phaseout in developed countries has occurred due to strong support from industry and a lower than expected cost. Although there are clear advantages to rapid phaseout, there were no incentives included in the MP for rapid phaseout. Some of the difficulties occur because the schedules set minimum targets at the lowest possible cost. Also, costs cannot be minimized by a country-specific and ODS-specific process. The ways to improve implementation in scheduling and

  3. Visualization of deuterium dead layer by atom probe tomography

    KAUST Repository

    Gemma, Ryota

    2012-12-01

    The first direct observation, by atom probe tomography, of a deuterium dead layer is reported for Fe/V multilayered film loaded with D solute atoms. The thickness of the dead layers was measured to be 0.4-0.5 nm. The dead layers could be distinguished from chemically intermixed layers. The results suggest that the dead layer effect occurs even near the interface of the mixing layers, supporting an interpretation that the dead layer effect cannot be explained solely by electronic charge transfer but also involves a modulation of rigidity. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Innovative layer-by-layer processing for flame retardant behavior of cotton fabric

    Science.gov (United States)

    Flame retardant behavior has been prepared by the layer-by layer assemblies of kaolin/casein with inorganic chemicals on cotton fabrics. Three different kinds of cotton fabrics (print cloth, mercerized print cloth, and mercerized twill fabric) were prepared with solutions of mixture of BPEI, urea, ...

  5. Chemical use

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a summary of research and activities related to chemical use on Neal Smith National Wildlife Refuge between 1992 and 2009. The chemicals used on the Refuge...

  6. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  7. Innovation in Layer-by-Layer Assembly.

    Science.gov (United States)

    Richardson, Joseph J; Cui, Jiwei; Björnmalm, Mattias; Braunger, Julia A; Ejima, Hirotaka; Caruso, Frank

    2016-12-14

    Methods for depositing thin films are important in generating functional materials for diverse applications in a wide variety of fields. Over the last half-century, the layer-by-layer assembly of nanoscale films has received intense and growing interest. This has been fueled by innovation in the available materials and assembly technologies, as well as the film-characterization techniques. In this Review, we explore, discuss, and detail innovation in layer-by-layer assembly in terms of past and present developments, and we highlight how these might guide future advances. A particular focus is on conventional and early developments that have only recently regained interest in the layer-by-layer assembly field. We then review unconventional assemblies and approaches that have been gaining popularity, which include inorganic/organic hybrid materials, cells and tissues, and the use of stereocomplexation, patterning, and dip-pen lithography, to name a few. A relatively recent development is the use of layer-by-layer assembly materials and techniques to assemble films in a single continuous step. We name this "quasi"-layer-by-layer assembly and discuss the impacts and innovations surrounding this approach. Finally, the application of characterization methods to monitor and evaluate layer-by-layer assembly is discussed, as innovation in this area is often overlooked but is essential for development of the field. While we intend for this Review to be easily accessible and act as a guide to researchers new to layer-by-layer assembly, we also believe it will provide insight to current researchers in the field and help guide future developments and innovation.

  8. NiO gate GaN-based enhancement-mode hetrojunction field-effect transistor with extremely low on-resistance using metal organic chemical vapor deposition regrown Ge-doped layer

    Science.gov (United States)

    Suzuki, Asamira; Choe, Songbeak; Yamada, Yasuhiro; Otsuka, Nobuyuki; Ueda, Daisuke

    2016-12-01

    In this paper, we present a normally-off GaN-based transistor with an extremely low on-resistance (R on) fabricated by using a Ge-doped n++-GaN layer for ohmic contacts. We developed a novel GaN regrowth technique using Ge as a dopant, which achieved an extremely high doping concentration of 1 × 1020 cm-3, and thereby the lowest specific contact resistance of 1.5 × 10-6 Ω·cm2. The NiO gate fabricated using an atomic layer deposition technique reduced the spacing between the source and drain electrodes. The fabricated device showed the record-breaking R on of 0.95 Ω·mm with the maximum drain current and transconductance of 1.1 A/mm and 490 mS/mm, respectively. Note that the obtained threshold voltage was 0.55 V. This extremely low R on characteristic indicates the great potential of NiO-gate GaN-based heterojunction field-effect transistors.

  9. Structure and properties of layered inorganic materials

    Institute of Scientific and Technical Information of China (English)

    Xue Duan

    2010-01-01

    @@ Inorganic layered materials are a class of advanced functional materials that have attracted considerable attention by virtue of their practical applications in a wide variety of fields. Sys-tematic studies of structure, design, synthesis, and fabrication processing may extend the range of practical utility of inor-ganic layered functional materials, in areas such as food industry,chemical industry, energy engineering, environmental engineer-ing, drug and gene delivery, electronics technology, and materials protection.

  10. Ozone Layer Observations

    Science.gov (United States)

    McPeters, Richard; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The US National Aeronautics and Space Administration (NASA) has been monitoring the ozone layer from space using optical remote sensing techniques since 1970. With concern over catalytic destruction of ozone (mid-1970s) and the development of the Antarctic ozone hole (mid-1980s), long term ozone monitoring has become the primary focus of NASA's series of ozone measuring instruments. A series of TOMS (Total Ozone Mapping Spectrometer) and SBUV (Solar Backscatter Ultraviolet) instruments has produced a nearly continuous record of global ozone from 1979 to the present. These instruments infer ozone by measuring sunlight backscattered from the atmosphere in the ultraviolet through differential absorption. These measurements have documented a 15 Dobson Unit drop in global average ozone since 1980, and the declines in ozone in the antarctic each October have been far more dramatic. Instruments that measure the ozone vertical distribution, the SBUV and SAGE (Stratospheric Aerosol and Gas Experiment) instruments for example, show that the largest changes are occurring in the lower stratosphere and upper troposphere. The goal of ozone measurement in the next decades will be to document the predicted recovery of the ozone layer as CFC (chlorofluorocarbon) levels decline. This will require a continuation of global measurements of total column ozone on a global basis, but using data from successor instruments to TOMS. Hyperspectral instruments capable of measuring in the UV will be needed for this purpose. Establishing the relative roles of chemistry and dynamics will require instruments to measure ozone in the troposphere and in the stratosphere with good vertical resolution. Instruments that can measure other chemicals important to ozone formation and destruction will also be needed.

  11. Atomic layer deposition of nanoporous biomaterials

    Directory of Open Access Journals (Sweden)

    Roger J Narayan

    2010-03-01

    Full Text Available Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.

  12. Chemical sensors

    Science.gov (United States)

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  13. Properties Research of Ceramic Layer

    Directory of Open Access Journals (Sweden)

    Z. Żółkiewicz

    2012-12-01

    Full Text Available In the method of full mould the polystyrene model, which fills the mould cavity in the course of filling by the liquid metal is subjected tothe influence of high temperature and passes from the solid, through the liquid, to the gaseous state. During this process solid and gaseousproducts of thermal decomposition of polystyrene patterns occur. The kinetics of this process is significantly influenced by the gasificationtemperature, density and mass of the polystyrene patterns. One of the basic parameters is the amount and rate of gas from the polystyrenemodel during its thermal decomposition. Specific properties of ceramic layer used for lost foam castings are required. To ensure optimalprocess flow of metal in the form proper permeability of the ceramic layer is needed.To ensure optimal conditions for technological casting method EPS patterns are tested and determined are the technological parametersand physical-chemical process in: material properties of the pattern, properties of the ceramic layer applied to the pattern, pattern gasification kinetics pouring processIn the course of the research the characteristics of polystyrene and ceramic layer were determined.

  14. Multilayer Article Characterized by Low Coefficient of Thermal Expansion Outer Layer

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2004-01-01

    A multilayer article comprises a substrate comprising a ceramic or a silicon-containing metal alloy. The ceramic is a Si-containing ceramic or an oxide ceramic with or without silicon. An outer layer overlies the substrate and at least one intermediate layer is located between the outer layer and thc substrate. An optional bond layer is disposed between thc 1 least one intermediate layer and thc substrate. The at least one intermediate layer may comprise an optional chemical barrier layer adjacent the outer layer, a mullite-containing layer and an optional chemical barrier layer adjacent to the bond layer or substrate. The outer layer comprises a compound having a low coefficient of thermal expansion selected from one of the following systems: rare earth (RE) silicates; at least one of hafnia and hafnia-containing composite oxides; zirconia-containing composite oxides and combinations thereof.

  15. Growth of ferroelectric Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} epitaxial films by ultraviolet pulsed laser irradiation of chemical solution derived precursor layers

    Energy Technology Data Exchange (ETDEWEB)

    Queraltó, A.; Pérez del Pino, A., E-mail: aperez@icmab.es; Mata, M. de la; Tristany, M.; Gómez, A.; Obradors, X.; Puig, T. [Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia (Spain); Arbiol, J. [Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08010 Barcelona, Catalonia (Spain)

    2015-06-29

    Highly crystalline epitaxial Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} (BST) thin-films are grown on (001)-oriented LaNiO{sub 3}-buffered LaAlO{sub 3} substrates by pulsed laser irradiation of solution derived barium-zirconium-titanium precursor layers using a UV Nd:YAG laser source at atmospheric conditions. The structural analyses of the obtained films, studied by X-ray diffractometry and transmission electron microscopy, demonstrate that laser processing allows the growth of tens of nm-thick BST epitaxial films with crystalline structure similar to that of films obtained through conventional thermal annealing methods. However, the fast pulsed nature of the laser employed leads to crystallization kinetic evolution orders of magnitude faster than in thermal treatments. The combination of specific photothermal and photochemical mechanisms is the main responsible for the ultrafast epitaxial laser-induced crystallization. Piezoresponse microscopy measurements demonstrate equivalent ferroelectric behavior in laser and thermally annealed films, being the piezoelectric constant ∼25 pm V{sup −1}.

  16. Chemical intolerance

    DEFF Research Database (Denmark)

    Dantoft, Thomas Meinertz; Andersson, Linus; Nordin, Steven;

    2015-01-01

    Chemical intolerance (CI) is a term used to describe a condition in which the sufferer experiences a complex array of recurrent unspecific symptoms attributed to low-level chemical exposure that most people regard as unproblematic. Severe CI constitutes the distinguishing feature of multiple...... chemical sensitivity (MCS). The symptoms reported by CI subjects are manifold, involving symptoms from multiple organs systems. In severe cases of CI, the condition can cause considerable life-style limitations with severe social, occupational and economic consequences. As no diagnostic tools for CI...

  17. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts

    2007-04-10

    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  18. Ozone Layer Protection

    Science.gov (United States)

    ... Search Search Ozone Layer Protection Share Facebook Twitter Google+ Pinterest Contact Us Ozone Layer Protection Welcome to ... Managing Refrigerant Emissions Stationary Refrigeration and Air Conditioning Car and Other Mobile Air Conditioning GreenChill Partnership Responsible ...

  19. VSWI Wetlands Advisory Layer

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset represents the DEC Wetlands Program's Advisory layer. This layer makes the most up-to-date, non-jurisdictional, wetlands mapping avaiable to the public...

  20. Thin Layer Chromatography (TLC) of Chlorophyll Pigments.

    Science.gov (United States)

    Foote, Jerry

    1984-01-01

    Background information, list of materials needed, procedures used, and discussion of typical results are provided for an experiment on the thin layer chromatography of chlorophyll pigments. The experiment works well in high school, since the chemicals used are the same as those used in paper chromatography of plant pigments. (JN)

  1. Chemical Sensing with Nanowires

    Science.gov (United States)

    Penner, Reginald M.

    2012-07-01

    Transformational advances in the performance of nanowire-based chemical sensors and biosensors have been achieved over the past two to three years. These advances have arisen from a better understanding of the mechanisms of transduction operating in these devices, innovations in nanowire fabrication, and improved methods for incorporating receptors into or onto nanowires. Nanowire-based biosensors have detected DNA in undiluted physiological saline. For silicon nanowire nucleic acid sensors, higher sensitivities have been obtained by eliminating the passivating oxide layer on the nanowire surface and by substituting uncharged protein nucleic acids for DNA as the capture strands. Biosensors for peptide and protein cancer markers, based on both semiconductor nanowires and nanowires of conductive polymers, have detected these targets at physiologically relevant concentrations in both blood plasma and whole blood. Nanowire chemical sensors have also detected several gases at the parts-per-million level. This review discusses these and other recent advances, concentrating on work published in the past three years.

  2. InN Segregation in InGaN Layers Grownby Metalorganic Chemical Vapor Deposition%MOCVD生长的InGaN薄膜中InN分凝的研究

    Institute of Scientific and Technical Information of China (English)

    秦志新; 陈志忠; 童玉珍; 陆曙; 张国义

    2001-01-01

    The amount of InN segregated in InGaN films grown by MOCVD was estimated by Xray diffraction measurement technology. In compositions in the InGaN films are measured as 0.1 ~0.34 by X-ray 2θ scan using Vegard's law. The inclusion of InN in InGaN layers was obtained as 0.068 4 % ~2. 639 6% by measuring the ratio of the integrated intensities of InN (0002) peak to that of InGaN (0002) peak in X-ray rocking curves. The theoretical diffraction intensities from InN and InGaN have been calculated according to the X-ray diffraction theory. The values of InN inclusion for all the samples were less than 3 %, which indicate that degree of phase separation of the samples was low. It was also found that the flow rate of N2 carrier gas and operation pressure strongly affect the InN inclusion in InGaN.%利用X射线衍射(XRD)技术测量了MOCVD生长的InGaN薄膜中的InN分凝量.利用Vegard定理和XRD 2θ扫描测得实验的InGaN薄膜的In组分为0.1~0.34.通过测量XRD摇摆曲线的InN(0002)和InGaN(0002)的积分强度之比测得InN在InGaN中的含量为0.0684%~2.6396%.根据XRD理论,计算出InN和InGaN的理论衍射强度.InN含量在所有样品中均小于3%,这表明样品的相分离度比较低.还发现InN在InGaN薄膜中的含量与氮气载气流量和反应室气压明显相关.

  3. Piezoelectric Resonator with Two Layers

    Science.gov (United States)

    Stephanou, Philip J. (Inventor); Black, Justin P. (Inventor)

    2013-01-01

    A piezoelectric resonator device includes: a top electrode layer with a patterned structure, a top piezoelectric layer adjacent to the top layer, a middle metal layer adjacent to the top piezoelectric layer opposite the top layer, a bottom piezoelectric layer adjacent to the middle layer opposite the top piezoelectric layer, and a bottom electrode layer with a patterned structure and adjacent to the bottom piezoelectric layer opposite the middle layer. The top layer includes a first plurality of electrodes inter-digitated with a second plurality of electrodes. A first one of the electrodes in the top layer and a first one of the electrodes in the bottom layer are coupled to a first contact, and a second one of the electrodes in the top layer and a second one of the electrodes in the bottom layer are coupled to a second contact.

  4. Substituted polyfluorene-based hole transport layer with tunable solubility

    NARCIS (Netherlands)

    Craciun, N.I.; Wildeman, J.; Blom, P.W.M.

    2010-01-01

    We report on the synthesis and electrical characterization of polyfluorene-triarylamine-based hole transport layers (HTLs). The solubility of the HTL can be tuned by adjustment of the chemical structure without loss of the charge transport properties. Double-layer polymer light-emitting diodes are c

  5. Substituted Polyfluorene-Based Hole Transport Layer with Tunable Solubility

    NARCIS (Netherlands)

    Craciun, N. I.; Wildeman, J.; Blom, P. W. M.

    2010-01-01

    We report on the synthesis and electrical characterization of polyfluorene-triarylamine-based hole transport layers (HTLs). The solubility of the HTL can be tuned by adjustment of the chemical structure without loss of the charge transport properties. Double-layer polymer light-emitting diodes are c

  6. Substituted Polyfluorene-Based Hole Transport Layer with Tunable Solubility

    OpenAIRE

    Craciun, N. I.; Wildeman, J.; Blom, P. W. M.

    2010-01-01

    We report on the synthesis and electrical characterization of polyfluorene-triarylamine-based hole transport layers (HTLs). The solubility of the HTL can be tuned by adjustment of the chemical structure without loss of the charge transport properties. Double-layer polymer light-emitting diodes are constructed with an HTL that is not soluble in toluene at room temperature, combined with a poly(p-phenylene vinylene) (PPV)-derivative-based light-emitting layer. The addition of the HTL enhances t...

  7. Building biomedical materials layer-by-layer

    Directory of Open Access Journals (Sweden)

    Paula T. Hammond

    2012-05-01

    Full Text Available In this materials perspective, the promise of water based layer-by-layer (LbL assembly as a means of generating drug-releasing surfaces for biomedical applications, from small molecule therapeutics to biologic drugs and nucleic acids, is examined. Specific advantages of the use of LbL assembly versus traditional polymeric blend encapsulation are discussed. Examples are provided to present potential new directions. Translational opportunities are discussed to examine the impact and potential for true biomedical translation using rapid assembly methods, and applications are discussed with high need and medical return.

  8. Chemical Mahjong

    Science.gov (United States)

    Cossairt, Travis J.; Grubbs, W. Tandy

    2011-01-01

    An open-access, Web-based mnemonic game is described whereby introductory chemistry knowledge is tested using mahjong solitaire game play. Several tile sets and board layouts are included that are themed upon different chemical topics. Introductory tile sets can be selected that prompt the player to match element names to symbols and metric…

  9. Chemical dispersants

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.

    2016-01-01

    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil biodeg

  10. Part I. Improved flame retardant textiles. Part II. Novel approach to layer-by-layer processing for flame retardant textiles.

    Science.gov (United States)

    In this presentation, new approaches for flame retardant textile by using supercritical carbon dioxide (scCO2) and layer-by-layer processing will be discussed. Due to its environmentally benign character, the scCO2 is considered in green chemistry as a substitute for organic solvents in chemical re...

  11. Influence of an Fe cap layer on the structural and magnetic properties of Fe49Pt51/Fe bi-layers

    Institute of Scientific and Technical Information of China (English)

    Duan Chao-Yang; Ma Bin; Wei Fu-Lin; Zhang zong-Zhi; Jin Qing-Yuan

    2009-01-01

    The influences of an Fe cap layer on the structural and magnetic properties of FePt/Fe bi-layers are investigated.Compared with single FePt alloy films, a thin Fe layer can affect the crystalline orientation and improve the chemical ordering of L10 FePt films. Moreover, the coercivity increases when a thin Fe layer covers the FePt layer. Beyond a critical thickness, however, the Fe cover layer quickens the magnetization reversal of Fe49Pt51/Fe bi-layers by their exchange coupling.

  12. NO{sub x} reduction by coke deposited on Pt/Al{sub 2}O{sub 3} in an oxidizing medium; Elimination des NO{sub x} par le coke depose sur Pt/Al{sub 2}O{sub 3} en milieu oxydant

    Energy Technology Data Exchange (ETDEWEB)

    Lunati, S.

    1997-12-12

    NO{sub x} reduction by coke deposited on Pt/Al{sub 2}O{sub 3} was studied in excess oxygen. Continuous analysis of the effluent was performed with a mass spectrometer. The coking reaction was carried out under reducing conditions with two different coking agents: cyclopentane and heptanal. In general, NO{sub x} reduction by coke deposited on Pt/Al{sub 2}O{sub 3} occurs in a wide temperature range (200 deg Cchemical nature of the carbon deposits. Thereby, a coke made from heptanal which contains oxygenated functions (carbonyl and hydroxyl groups) within the carbon structure, is more selective and reduce NO{sub x} at lower temperature than a coke made from cyclopentane which does not contain these functional groups. Based on our results, we proposed a `dual-site` reaction for NO{sub x} reduction on coked Pt/Al{sub 2}O{sub 3} catalyst. Platinum allows O{sub 2} activation by dissociative adsorption, and NO{sub 2} formation by oxidation of NO. NO{sub x} reduction occurs on carbon deposits. Reaction between NO{sub x} and coke leads to the formation of N-containing species which are decomposed in CI{sub 2}, H{sub 2}O, N{sub 2} and N{sub 2}O by reaction with activated O{sub 2}. (author) 205 refs.

  13. Modeling release of chemicals from multilayer materials into food

    Directory of Open Access Journals (Sweden)

    Huang Xiu-Ling

    2016-01-01

    Full Text Available The migration of chemicals from materials into food is predictable by various mathematical models. In this article, a general mathematical model is developed to quantify the release of chemicals through multilayer packaging films based on Fick's diffusion. The model is solved numerically to elucidate the effects of different diffusivity values of different layers, distribution of chemical between two adjacent layers and between material and food, mass transfer at the interface of material and food on the migration process.

  14. Improved electron transport layer

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention provides: a method of preparing a coating ink for forming a zinc oxide electron transport layer, comprising mixing zinc acetate and a wetting agent in water or methanol; a coating ink comprising zinc acetate and a wetting agent in aqueous solution or methanolic solution......; a method of preparing a zinc oxide electron transporting layer, which method comprises: i) coating a substrate with the coating ink of the present invention to form a film; ii) drying the film; and iii) heating the dry film to convert the zinc acetate substantially to ZnO; a method of preparing an organic...... photovoltaic device or an organic LED having a zinc oxide electron transport layer, the method comprising, in this order: a) providing a substrate bearing a first electrode layer; b) forming an electron transport layer according to the following method: i) coating a coating ink comprising an ink according...

  15. Optical and Electrical Characteristics of Graphene Double Layer Formed by a Double Transfer of Graphene Single Layers.

    Science.gov (United States)

    Kim, Young Jun; Bae, Gi Yoon; Chun, Sungwoo; Park, Wanjun

    2016-03-01

    We demonstrate formation of double layer graphene by means of a double transfer using two single graphene layers grown by a chemical vapor deposition method. It is observed that shiftiness and broadness in the double-resonance of Raman scattering are much weaker than those of bilayer graphene formed naturally. Transport characteristics examined from transmission line measurements and field effect transistors show the similar behavior with those of single layer graphene. It indicates that interlayer separation, in electrical view, is large enough to avoid correlation between layers for the double layer structure. It is also observed from a transistor with the double layer graphene that molecules adsorpted on two inner graphene surfaces in the double layered structure are isolated and conserved from ambient environment.

  16. Chemical carcinogenesis

    Directory of Open Access Journals (Sweden)

    Paula A. Oliveira

    2007-12-01

    Full Text Available The use of chemical compounds benefits society in a number of ways. Pesticides, for instance, enable foodstuffs to be produced in sufficient quantities to satisfy the needs of millions of people, a condition that has led to an increase in levels of life expectancy. Yet, at times, these benefits are offset by certain disadvantages, notably the toxic side effects of the chemical compounds used. Exposure to these compounds can have varying effects, ranging from instant death to a gradual process of chemical carcinogenesis. There are three stages involved in chemical carcinogenesis. These are defined as initiation, promotion and progression. Each of these stages is characterised by morphological and biochemical modifications and result from genetic and/or epigenetic alterations. These genetic modifications include: mutations in genes that control cell proliferation, cell death and DNA repair - i.e. mutations in proto-oncogenes and tumour suppressing genes. The epigenetic factors, also considered as being non-genetic in character, can also contribute to carcinogenesis via epigenetic mechanisms which silence gene expression. The control of responses to carcinogenesis through the application of several chemical, biochemical and biological techniques facilitates the identification of those basic mechanisms involved in neoplasic development. Experimental assays with laboratory animals, epidemiological studies and quick tests enable the identification of carcinogenic compounds, the dissection of many aspects of carcinogenesis, and the establishment of effective strategies to prevent the cancer which results from exposure to chemicals.A sociedade obtém numerosos benefícios da utilização de compostos químicos. A aplicação dos pesticidas, por exemplo, permitiu obter alimento em quantidade suficiente para satisfazer as necessidades alimentares de milhões de pessoas, condição relacionada com o aumento da esperança de vida. Os benefícios estão, por

  17. The Equatorial Ekman Layer

    CERN Document Server

    Marcotte, Florence; Soward, Andrew

    2016-01-01

    The steady incompressible viscous flow in the wide gap between spheres rotating about a common axis at slightly different rates (small Ekman number E) has a long and celebrated history. The problem is relevant to the dynamics of geophysical and planetary core flows, for which, in the case of electrically conducting fluids, the possible operation of a dynamo is of considerable interest. A comprehensive asymptotic study, in the limit E<<1, was undertaken by Stewartson (J. Fluid Mech. 1966, vol. 26, pp. 131-144). The mainstream flow, exterior to the E^{1/2} Ekman layers on the inner/outer boundaries and the shear layer on the inner sphere tangent cylinder C, is geostrophic. Stewartson identified a complicated nested layer structure on C, which comprises relatively thick quasi-geostrophic E^{2/7} (inside C) and E^{1/4} (outside C) layers. They embed a thinner E^{1/3} ageostrophic shear layer (on C), which merges with the inner sphere Ekman layer to form the E^{2/5} Equatorial Ekman layer of axial length E^{...

  18. Coacervates as prebiotic chemical reactors

    Science.gov (United States)

    Kolb, Vera M.; Swanson, Mercedes; Menger, Fredric M.

    2012-10-01

    Coacervates are colloidal systems that are comprised of two immiscible aqueous layers, the colloid-rich layer, so-called coacervate, and the colloid-poor layer, so-called equilibrium liquid. Although immiscible, the two phases are both water-rich. Coacervates are important for prebiotic chemistry, but also have various practical applications, notably as transport vehicles of personal care products and pharmaceuticals. Our objectives are to explore the potential of coacervates as prebiotic chemical reactors. Since the reaction medium in coacervates is water, this creates a challenge, since most organic reactants are not water-soluble. To overcome this challenge we are utilizing recent Green Chemistry examples of the organic reactions in water, such as the Passerini reaction. We have investigated this reaction in two coacervate systems, and report here our preliminary results.

  19. Chemical cosmology

    CERN Document Server

    Boeyens, Jan CA

    2010-01-01

    The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the LAMBDA-Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by alp

  20. Photochemistry and dynamics of the ozone layer

    Science.gov (United States)

    Prinn, R. G.; Alyea, F. N.; Cunnold, D. M.

    1978-01-01

    The paper presents a broad review of the photochemical and dynamic theories of the ozone layer. The two theories are combined into the MIT three-dimensional dynamic-chemical quasi-geostrophic model with 26 levels in the vertical spaced in logarithmic pressure coordinates between the ground and 72-km altitude. The chemical scheme incorporates the important odd nitrogen, odd hydrogen, and odd oxygen chemistry, but is simplified in the sense that it requires specification of the distributions of NO2, OH and HO2. The prognostic equations are the vorticity equation, the perturbation thermodynamic equation, and the global mean and perturbation continuity equations for ozone; diagnostic equations include the hydrostatic equation, the balance condition, and the mass continuity equation. The model is applied to the investigation of the impact of supersonic aircraft on the ozone layer.

  1. The Application of Layer Theory to Design: The Control Layer

    Science.gov (United States)

    Gibbons, Andrew S.; Langton, Matthew B.

    2016-01-01

    A theory of design layers proposed by Gibbons ("An Architectural Approach to Instructional Design." Routledge, New York, 2014) asserts that each layer of an instructional design is related to a body of theory closely associated with the concerns of that particular layer. This study focuses on one layer, the control layer, examining…

  2. Multi-layer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze' ev R.; Gonsalves, Peter R.

    2016-06-28

    Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.

  3. Method of making dense, conformal, ultra-thin cap layers for nanoporous low-k ILD by plasma assisted atomic layer deposition

    Science.gov (United States)

    Jiang, Ying-Bing; Cecchi, Joseph L.; Brinker, C. Jeffrey

    2011-05-24

    Barrier layers and methods for forming barrier layers on a porous layer are provided. The methods can include chemically adsorbing a plurality of first molecules on a surface of the porous layer in a chamber and forming a first layer of the first molecules on the surface of the porous layer. A plasma can then be used to react a plurality of second molecules with the first layer of first molecules to form a first layer of a barrier layer. The barrier layers can seal the pores of the porous material, function as a diffusion barrier, be conformal, and/or have a negligible impact on the overall ILD k value of the porous material.

  4. Silver buffer layers for YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. [Tel Aviv Univ. (Israel). Center for Technol. Education Holon

    1999-09-01

    A simple economical conventional vacuum system was used for evaporation of YBCO thin films on as-deposited unbuffered Ag layers on MgO substrates. The subsequent heat treatment was carried out in low oxygen partial pressure at a relative low temperature and short dwelling time. The films thus obtained were characterized for electrical properties using dc four probe electrical measurements and inspected for structural properties and chemical composition by scanning electron microscopy (SEM). (orig.)

  5. Intercalation compounds involving inorganic layered structures

    Directory of Open Access Journals (Sweden)

    CONSTANTINO VERA R. L.

    2000-01-01

    Full Text Available Two-dimensional inorganic networks can shown intracrystalline reactivity, i.e., simple ions, large species as Keggin ions, organic species, coordination compounds or organometallics can be incorporated in the interlayer region. The host-guest interaction usually causes changes in their chemical, catalytic, electronic and optical properties. The isolation of materials with interesting properties and making use of soft chemistry routes have given rise the possibility of industrial and technological applications of these compounds. We have been using several synthetic approaches to intercalate porphyrins and phthalocyanines into inorganic materials: smectite clays, layered double hydroxides and layered niobates. The isolated materials have been characterized by elemental and thermal analysis, X-ray diffraction, surface area measurements, scanning electronic microscopy, electronic and resonance Raman spectroscopies and EPR. The degree of layer stacking and the charge density of the matrices as well their acid-base nature were considered in our studies on the interaction between the macrocycles and inorganic hosts.

  6. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  7. Modeling interfacial liquid layers on environmental ices

    Directory of Open Access Journals (Sweden)

    M. H. Kuo

    2011-09-01

    Full Text Available Interfacial layers on ice significantly influence air-ice chemical interactions. In solute-containing aqueous systems, a liquid brine may form upon freezing due to the exclusion of impurities from the ice crystal lattice coupled with freezing point depression in the concentrated brine. The brine may be segregated to the air-ice interface where it creates a surface layer, in micropockets, or at grain boundaries or triple junctions.

    We present a model for brines and their associated liquid layers in environmental ice systems that is valid over a wide range of temperatures and solute concentrations. The model is derived from fundamental equlibrium thermodynamics and takes into account nonideal solution behavior in the brine, partitioning of the solute into the ice matrix, and equilibration between the brine and the gas phase for volatile solutes. We find that these phenomena are important to consider when modeling brines in environmental ices, especially at low temperatures. We demonstrate its application for environmentally important volatile and nonvolatile solutes including NaCl, HCl, and HNO3. The model is compared to existing models and experimental data from literature where available. We also identify environmentally relevant regimes where brine is not predicted to exist, but the QLL may significantly impact air-ice chemical interactions. This model can be used to improve the representation of air-ice chemical interactions in polar atmospheric chemistry models.

  8. Layered circle packings

    Directory of Open Access Journals (Sweden)

    David Dennis

    2005-01-01

    Full Text Available Given a bounded sequence of integers {d0,d1,d2,…}, 6≤dn≤M, there is an associated abstract triangulation created by building up layers of vertices so that vertices on the nth layer have degree dn. This triangulation can be realized via a circle packing which fills either the Euclidean or the hyperbolic plane. We give necessary and sufficient conditions to determine the type of the packing given the defining sequence {dn}.

  9. Structural properties of dopping metallic impurities on CdS thin layers

    Directory of Open Access Journals (Sweden)

    S. Ghasemzadeh

    2016-12-01

    Full Text Available (Cu,Zn-dopped CdS thin layers were deposited on glass substrates by chemical bath deposition technique. The effects of the doping on the structural properties of CdS thin layers were studied by SEM and EDAX analysis. Hetero junction layers were produced with different nano structures and different fraction of voids and metallic ions.

  10. Structural properties of dopping metallic impurities on CdS thin layers

    OpenAIRE

    S. Ghasemzadeh; H. kangarlou

    2016-01-01

    (Cu,Zn)-dopped CdS thin layers were deposited on glass substrates by chemical bath deposition technique. The effects of the doping on the structural properties of CdS thin layers were studied by SEM and EDAX analysis. Hetero junction layers were produced with different nano structures and different fraction of voids and metallic ions.

  11. Chemical Analyses

    Science.gov (United States)

    Bulluck, J. W.; Rushing, R. A.

    1994-01-01

    As a preliminary study on the effects of chemical aging of polymer materials MERL and TRI have examined two polymeric materials that are typically used for offshore umbilical applications. These two materials were Tefzel, a copolymer of ethylene and tetrafluoroethylene, and Coflon, polyvinylidene fluoride. The Coflon specimens were cut from pipe sections and exposed to H2S at various temperatures and pressures. One of these specimens was tested for methane permeation, and another for H2S permeation. The Tefzel specimens were cut from .05 mm sheet stock material and were exposed to methanol at elevated temperature and pressure. One of these specimens was exposed to methanol permeation for 2 days at 100 C and 2500 psi. An additional specimen was exposed to liquid methanol for 3 days at 150 C and 15 Bar. Virgin specimens of each material were similarly prepared and tested.

  12. Uncoated microcantilevers as chemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Thundat, Thomas G. (Knoxville, TN)

    2001-01-01

    A method and device are provided for chemical sensing using cantilevers that do not use chemically deposited, chemically specific layers. This novel device utilizes the adsorption-induced variation in the surfaces states on a cantilever. The methodology involves exciting charge carriers into or out of the surface states with photons having increasing discrete levels of energy. The excitation energy is provided as discrete levels of photon energy by scanning the wavelength of an exciting source that is illuminating the cantilever surface. When the charge carriers are excited into or out of the surface states, the cantilever bending changes due to changes in surface stress. The amount of cantilever bending with respect to an identical cantilever as a function of excitation energy is used to determine the energy levels associated with adsorbates.

  13. Chemical pleurodesis for spontaneous pneumothorax.

    Science.gov (United States)

    How, Cheng-Hung; Hsu, Hsao-Hsun; Chen, Jin-Shing

    2013-12-01

    Pneumothorax is defined as the presence of air in the pleural cavity. Spontaneous pneumothorax, occurring without antecedent traumatic or iatrogenic cause, is sub-divided into primary and secondary. The severity of pneumothorax could be varied from asymptomatic to hemodynamically compromised. Optimal management of this benign disease has been a matter of debate. In addition to evacuating air from the pleural space by simple aspiration or chest tube drainage, the management of spontaneous pneumothorax also focused on ceasing air leakage and preventing recurrences by surgical intervention or chemical pleurodesis. Chemical pleurodesis is a procedure to achieve symphysis between the two layers of pleura by sclerosing agents. In the current practice guidelines, chemical pleurodesis is reserved for patients unable or unwilling to receive surgery. Recent researches have found that chemical pleurodesis is also safe and effective in preventing pneumothorax recurrence in patients with the first episode of spontaneous pneumothorax or after thoracoscopic surgery and treating persistent air leakage after thoracoscopic surgery. In this article we aimed at exploring the role of chemical pleurodesis for spontaneous pneumothorax, including ceasing air leakage and preventing recurrence. The indications, choice of sclerosants, safety, effects, and possible side effects or complications of chemical pleurodesis are also reviewed here.

  14. Fabrication of Graphene by Cleaving Graphite Chemically

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shu-hua; ZHAO Xiao-ting; FAN Hou-gang; YANG Li-li; ZHANG Yong-jun; YANG Jing-hai

    2011-01-01

    Graphite was chemically cleaved to graphene by Billups Reaction,and the morphologies and microstructures of graphene were characterized by SEM,Raman and AFM.The results show that the graphite was first functionalized by l-iodododecane,which led to the cleavage of the graphene layer in the graphite.The second decoration cleaved the graphite further and graphene was obtained.The heights of the graphene layer were larger than 1 nm due to the organic decoration.

  15. Formation and Characterization of Stacked Nanoscale Layers of Polymers and Silanes on Silicon Surfaces

    Science.gov (United States)

    Ochoa, Rosie; Davis, Brian; Conley, Hiram; Hurd, Katie; Linford, Matthew R.; Davis, Robert C.

    2008-10-01

    Chemical surface patterning at the nanoscale is a critical component of chemically directed assembly of nanoscale devices or sensitive biological molecules onto surfaces. Complete and consistent formation of nanoscale layers of silanes and polymers is a necessary first step for chemical patterning. We explored methods of silanizing silicon substrates for the purpose of functionalizing the surfaces. The chemical functionalization, stability, flatness, and repeatability of the process was characterized by use of ellipsometry, water contact angle, and Atomic Force Microscopy (AFM). We found that forming the highest quality functionalized surfaces was accomplished through use of chemical vapor deposition (CVD). Specifically, surfaces were plasma cleaned and hydrolyzed before the silane was applied. A polymer layer less then 2 nm in thickness was electrostatically bound to the silane layer. The chemical functionalization, stability, flatness, and repeatability of the process was also characterized for the polymer layer using ellipsometry, water contact angle, and AFM.

  16. Pressure Controlled Chemical Gardens.

    Science.gov (United States)

    Bentley, Megan R; Batista, Bruno C; Steinbock, Oliver

    2016-06-30

    The dissolution of metal salts in silicate solution can result in the growth of hollow precipitate tubes. These "chemical gardens" are a model of self-organization far from the equilibrium and create permanent macroscopic structures. The reproducibility of the growth process is greatly improved if the solid salt seed is replaced by a salt solution that is steadily injected by a pump; however, this modification of the original experiment eliminates the membrane-based osmotic pump at the base of conventional chemical gardens and does not allow for analyses in terms of the involved pressure. Here we describe a new experimental method that delivers the salt solution according to a controlled hydrostatic pressure. In one form of the experiment, this pressure slowly decreases as zinc sulfate solution flows into the silicate-containing reaction vessel, whereas a second version holds the respective solution heights constant. In addition to three known growth regimes (jetting, popping, budding), we observe single tubes that fill the vessel in a horizontally undulating but vertically layered fashion (crowding). The resulting, dried product has a cylindrical shape, very low density, and one continuous connection from top to bottom. We also present phase diagrams of these growth modes and show that the flow characteristics of our experiments follow a reaction-independent Hagen-Poiseuille equation.

  17. Boundary Layer Ventilation by Convection and Coastal Processes

    Science.gov (United States)

    Dacre, H.

    2008-12-01

    Several observational studies measuring aerosol in the atmosphere have found multiple aerosol layers located above the marine boundary layer. It is hypothesized that the existence of these layers is influenced by the diurnal variation in the structure of the upwind continental boundary layer. Furthermore, collision between a sea breeze and the prevailing wind can result in enhanced convection at the coast which can also lead to elevated layers of pollution. In this study we investigate the processes responsible for ventilation of the atmospheric boundary layer near the coast using the UK Met Office Unified Model. Pollution sources are represented by the constant emission of a passive tracer everywhere over land. The ventilation processes observed include shallow convection, a sea breeze circulation and coastal outflow. Vertical distributions of tracer at the coast are validated qualitatively with AMPEP (Aircraft Measurement of chemical Processing Export fluxes of Pollutants over the UK) CO aircraft measurements and are shown to agree well.

  18. Reducing interface recombination for Cu(In,Ga)Se{sub 2} by atomic layer deposited buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Hultqvist, Adam; Bent, Stacey F. [Department of Chemical Engineering, Stanford University, Stanford, California 94305 (United States); Li, Jian V.; Kuciauskas, Darius; Dippo, Patricia; Contreras, Miguel A.; Levi, Dean H. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2015-07-20

    Partial CuInGaSe{sub 2} (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnO{sub x} buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II–VI systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.

  19. Production of carbon nanotubes: Chemical vapor deposition synthesis from liquefied petroleum gas over Fe-Co-Mo tri-metallic catalyst supported on MgO

    Science.gov (United States)

    Setyopratomo, P.; Wulan, Praswasti P. D. K.; Sudibandriyo, M.

    2016-06-01

    Carbon nanotubes were produced by chemical vapor deposition method to meet the specifications for hydrogen storage. So far, the various catalyst had been studied outlining their activities, performances, and efficiencies. In this work, tri-metallic catalyst consist of Fe-Co-Mo supported on MgO was used. The catalyst was prepared by wet-impregnation method. Liquefied Petroleum Gas (LPG) was used as carbon source. The synthesis was conducted in atmospheric fixed bed reactor at reaction temperature range 750 - 850 °C for 30 minutes. The impregnation method applied in this study successfully deposed metal component on the MgO support surface. It found that the deposited metal components might partially replace Mg(OH)2 or MgO molecules in their crystal lattice. Compare to the original MgO powder; it was significant increases in pore volume and surface area has occurred during catalyst preparation stages. The size of obtained carbon nanotubes is ranging from about 10.83 nm OD/4.09 nm ID up to 21.84 nm OD/6.51 nm ID, which means that multiwall carbon nanotubes were formed during the synthesis. Yield as much as 2.35 g.CNT/g.catalyst was obtained during 30 minutes synthesis and correspond to carbon nanotubes growth rate of 0.2 μm/min. The BET surface area of the obtained carbon nanotubes is 181.13 m2/g and around 50 % of which is contributed by mesopores. Micropore with half pore width less than 1 nm contribute about 10% volume of total micro and mesopores volume of the carbon nanotubes. The existence of these micropores is very important to increase the hydrogen storage capacity of the carbon nanotubes.

  20. CHEMICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1965-06-01

    How did life come to be on the surface of the earth? Darwin himself recognized that his basic idea of evolution by variation and natural selection must be a continuous process extending backward in time through that period in which the first living things arose and into the period of 'Chemical Evolution' which preceded it. We are approaching the examination of these events by two routes. One is to seek for evidence in the ancient rocks of the earth which were laid down prior to that time in which organisms capable of leaving their skeletons in the rocks to be fossilized were in existence. This period is sometime prior to approximately 600 million years ago. The earth is believed to have taken its present form approximately 4700 million years ago. We have found in rocks whose age is about 1000 million years certain organic molecules which are closely related to the green pigment of plants, chlorophyll. This seems to establish that green plants were already fluorishing prior to that time. We have now found in rocks of still greater age, namely, 2500 million years, the same kinds of molecules mentioned above which can be attributed to the presence of living organisms. If these molecules are as old as the rocks, we have thus shortened the time available for the generation of the complex biosynthetic sequences which give rise to these specific hydrocarbons (polyisoprenoids) to less than 2000 million years.

  1. Graphene oxide monolayers as atomically thin seeding layers for atomic layer deposition of metal oxides

    Science.gov (United States)

    Nourbakhsh, Amirhasan; Adelmann, Christoph; Song, Yi; Lee, Chang Seung; Asselberghs, Inge; Huyghebaert, Cedric; Brizzi, Simone; Tallarida, Massimo; Schmeißer, Dieter; van Elshocht, Sven; Heyns, Marc; Kong, Jing; Palacios, Tomás; de Gendt, Stefan

    2015-06-01

    Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the capacitive properties of GO with its electronic structure. Capacitance-voltage measurements showed that the capacitive behavior of Al2O3/GO depends on the oxidation level of GO. Finally, GO was successfully used as an ALD seed layer for the deposition of Al2O3 on chemically inert single layer graphene, resulting in high performance top-gated field-effect transistors.Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the

  2. Chemical information science coverage in Chemical Abstracts.

    Science.gov (United States)

    Wiggins, G

    1987-02-01

    For many years Chemical Abstracts has included in its coverage publications on chemical documentation or chemical information science. Although the bulk of those publications can be found in section 20 of Chemical Abstracts, many relevant articles were found scattered among 39 other sections of CA in 1984-1985. In addition to the scattering of references in CA, the comprehensiveness of Chemical Abstracts as a secondary source for chemical information science is called into question. Data are provided on the journals that contributed the most references on chemical information science and on the languages of publication of relevant articles.

  3. Layered Systems Engineering Engines

    Science.gov (United States)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  4. Synthesis of S-Layer Conjugates and Evaluation of Their Modifiability as a Tool for the Functionalization and Patterning of Technical Surfaces

    OpenAIRE

    Ulrike Weinert; Katrin Pollmann; Astrid Barkleit; Manja Vogel; Tobias Günther; Johannes Raff

    2015-01-01

    Chemical functional groups of surface layer (S-layer) proteins were chemically modified in order to evaluate the potential of S-layer proteins for the introduction of functional molecules. S-layer proteins are structure proteins that self-assemble into regular arrays on surfaces. One general feature of S-layer proteins is their high amount of carboxylic and amino groups. These groups are potential targets for linking functional molecules, thus producing reactive surfaces. In this work, these ...

  5. Advanced optical modelling of dynamically deposited silicon nitride layers

    Science.gov (United States)

    Borojevic, N.; Hameiri, Z.; Winderbaum, S.

    2016-07-01

    Dynamic deposition of silicon nitrides using in-line plasma enhanced chemical vapor deposition systems results in non-uniform structure of the dielectric layer. Appropriate analysis of such layers requires the optical characterization to be performed as a function of the layer's depth. This work presents a method to characterize dynamically deposited silicon nitride layers. The method is based on the fitting of experimental spectroscopic ellipsometry data via grading of Tauc-Lorentz optical parameters through the depth of the layer. When compared with the standard Tauc-Lorentz fitting procedure, used in previous studies, the improved method is demonstrating better quality fits to the experimental data and revealing more accurate optical properties of the dielectric layers. The most significant advantage of the method is the ability to extract the depth profile of the optical properties along the direction of the layer normal. This is enabling a better understanding of layers deposited using dynamic plasma enhanced chemical vapor deposition systems frequently used in the photovoltaic industry.

  6. Nature's chemicals and synthetic chemicals: comparative toxicology.

    OpenAIRE

    Ames, B N; Profet, M; Gold, L S

    1990-01-01

    The toxicology of synthetic chemicals is compared to that of natural chemicals, which represent the vast bulk of the chemicals to which humans are exposed. It is argued that animals have a broad array of inducible general defenses to combat the changing array of toxic chemicals in plant food (nature's pesticides) and that these defenses are effective against both natural and synthetic toxins. Synthetic toxins such as dioxin are compared to natural chemicals, such as indole carbinol (in brocco...

  7. Reinforcing the mineral layer

    Energy Technology Data Exchange (ETDEWEB)

    Pishchulin, V.V.; Kuntsevich, V.I.; Seryy, A.M.; Shirokov, A.P.

    1980-05-15

    A way of reinforcing the mineral layer includes drilling holes and putting in anchors that are longer than the width of the layer strip being extracted. It also includes shortening the anchors as the strip is mined and reinforcing the remaining part of the anchor in the mouth of the hole. To increase the productivity and safety of the work, the anchors are shortened by cutting them as the strip is mined and are reinforced through wedging. The device for doing this has auxilliary lengthwise grooves in the shaft located along its length at an interval equal to the width of the band being extracted.

  8. TOPICAL REVIEW Chemistry of layered d-metal pnictide oxides and their potential as candidates for new superconductors

    Directory of Open Access Journals (Sweden)

    Tadashi C Ozawa et al

    2008-01-01

    Full Text Available Layered d-metal pnictide oxides are a unique class of compounds which consist of characteristic d-metal pnictide layers and metal oxide layers. More than 100 of these layered compounds, including the recently discovered Fe-based superconducting pnictide oxides, can be classified into nine structure types. These structure types and the chemical and physical properties of the characteristic d-metal pnictide layers and metal oxide layers of the layered d-metal pnictide oxides are reviewed and discussed. Furthermore, possible approaches to design new superconductors based on these layered d-metal pnictide oxides are proposed.

  9. Rayleigh-Taylor Instability within Sediment Layers Due to Gas Retention: Preliminary Theory and Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Wells, Beric E.; Buchmiller, William C.; Rassat, Scot D.

    2013-03-21

    In Hanford underground waste storage tanks, a typical waste configuration is settled beds of waste particles beneath liquid layers. The settled beds are typically composed of layers, and these layers can have different physical and chemical properties. One postulated configuration within the settled bed is a less-dense layer beneath a more-dense layer. The different densities can be a result of different gas retention in the layers or different degrees of settling and compaction in the layers. This configuration can experience a Rayleigh-Taylor (RT) instability where the less dense lower layer rises into the upper layer. Previous studies of gas retention and release have not considered potential buoyant motion within a settle bed of solids. The purpose of this report is to provide a review of RT instabilities, discuss predictions of RT behavior for sediment layers, and summarize preliminary experimental observations of RT instabilities in simulant experiments.

  10. Bi-layer functionally gradient thick film semiconducting methane sensors

    Indian Academy of Sciences (India)

    A Banerjee; A K Haldar; J Mondal; A Sen; H S Maiti

    2002-11-01

    Gas sensors based on metal oxide semiconductors like tin dioxide are widely used for the detection of toxic and combustible gases like carbon monoxide, methane and LPG. One of the problems of such sensors is their lack of sensitivity, which to some extent, can be circumvented by using different catalysts. However, highly reactive volatile organic compounds (VOC) coming from different industrial and domestic products (e.g. paints, lacquers, varnishes etc) can play havoc on such sensors and can give rise to false alarms. Any attempt to adsorb such VOCs (e.g. by using activated charcoal) results in sorption of the detecting gases (e.g. methane) too. To get round the problem, bi-layer sensors have been developed. Such tin oxide based functionally gradient bi-layer sensors have different compositions at the top and bottom layers. Here, instead of adsorbing the VOCs, they are allowed to interact and are consumed on the top layer of the sensors and a combustible gas like methane being less reactive, penetrates the top layer and interacts with the bottom layer. By modifying the chemical compositions of the top and bottom layers and by designing the electrode-lead wire arrangement properly, the top layer can be kept electrically shunted from the bottom layer and the electrical signal generated at the bottom layer from the combustible gas is collected. Such functionally gradient sensors, being very reliable, can find applications in domestic, industrial and strategic sectors.

  11. Characterization and use of crystalline bacterial cell surface layers

    Science.gov (United States)

    Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard

    2001-10-01

    Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.

  12. Multi-layer microfluidic glass chips for microanalytical applications

    OpenAIRE

    Daridon, Antoine; Fascio, Valia; Lichtenberg, Jan; Wütrich, Rolf; Langen, Hans; Verpoorte, Elisabeth; De Rooij, Nicolaas F

    2010-01-01

    A new, versatile architecture is presented for microfluidic devices made entirely from glass, for use with reagents which would prove highly corrosive for silicon. Chips consist of three layers of glass wafers bonded together by fusion bonding. On the inside wafer faces a network of microfluidic channels is created by photolithography and wet chemical etching. Low dead-volume fluidic connections between the layers are fabricated by spark-assisted etching (SAE), a computer numerical controlled...

  13. Physical layer network coding

    DEFF Research Database (Denmark)

    Fukui, Hironori; Popovski, Petar; Yomo, Hiroyuki

    2014-01-01

    Physical layer network coding (PLNC) has been proposed to improve throughput of the two-way relay channel, where two nodes communicate with each other, being assisted by a relay node. Most of the works related to PLNC are focused on a simple three-node model and they do not take into account...

  14. Layer-Cake Earth

    Science.gov (United States)

    Tedford, Rebecca; Warny, Sophie

    2006-01-01

    In this article, the authors offer a safe, fun, effective way to introduce geology concepts to elementary school children of all ages: "coring" layer cakes. This activity introduces the concepts and challenges that geologists face and at the same time strengthens students' inferential, observational, and problem-solving skills. It also addresses…

  15. EHD lubricating layer

    Energy Technology Data Exchange (ETDEWEB)

    Shvarts, I.A.

    1978-01-01

    The simplest model of an EHD lubricating layer consists of a unipolarly charged nonconducting viscous fluid between two parallel or slightly inclined nonconducting plates. The performance of such a layer is analyzed here on the basis of the fundamental EHD equations, with a plane-parallel approximation of the flow of a thin layer under a variable upper boundary. The results of the solution indicate that the bearing capacity of such a layer between parallel plates does not depend on the viscosity of the fluid, but is proportional to the energy density of the electric field in vacuum. With the plates not parallel, the bearing capacity depends on the mobility and the diffusion of the charged fluid particles. In either case the energy of the electric field can be made to compensate for the energy dissipation due to viscous friction, and in this case or with overcompensation such as EHD bearing becomes an EHD generator. Most valuable for practical applications are fluids with a high dielectric permittivity, such as ammonia and hydrogen chloride at cryogenic temperatures. 5 references, 1 figure.

  16. MITRE sensor layer prototype

    Science.gov (United States)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  17. Tensile strength of thin resin composite layers as a function of layer thickness.

    Science.gov (United States)

    Alster, D; Feilzer, A J; De Gee, A J; Davidson, C L

    1995-11-01

    As a rule, cast restorations do not allow for free curing contraction of the resin composite luting cement. In a rigid situation, the resulting contraction stress is inversely proportional to the resin layer thickness. Adhesive technology has demonstrated, however, that thin joints may be considerably stronger than thicker ones. To investigate the effects of layer thickness and contraction stress on the tensile strength of resin composite joints, we cured cylindrical samples of a chemically initiated resin composite (Clearfil F2) in restrained conditions and subsequently loaded them in tension. The samples had a diameter of 5.35 mm and thicknesses of 50, 100, 200, 300, 400, 500, 600, and 700 microns, 1.4 mm, or 2.7 mm. None of the samples fractured due to contraction stress prior to tensile loading. Tensile strength decreased gradually from 62 +/- 2 MPa for the 50-microns layer to 31 +/- 4 MPa for the 2.7-mm layer. The failures were exclusively cohesive in resin for layers between 50 and 400 microns thick. Between 500 and 700 microns, the failures were cohesive or mixed adhesive/cohesive, while the 1.4- and 2.7-mm layers always failed in a mixed adhesive/cohesive mode. For the resin composite tested, the contraction stress did not endanger the cohesive strength. It was concluded that if adhesion to tooth structure were improved, thinner adhesive joints might enhance the clinical success of luted restorations.

  18. Chemical Reactions in Turbulent Mixing Flows

    Science.gov (United States)

    1989-10-15

    example, Levenspiel (1962). Eq. 27 would be necessary. A first guess is that it might scale with 6/z as it does for subsonic flow. i.e. -(r, s; M., -0 ) -(r...France), 45-63. KELLER. J. 0. and DAILY. J. W. (1985] "The Effect of Highly Exothermic Chemical Reaction on a Two-Dimensional Mixing Layer", LEVENSPIEL ...0. [19621 Chemical Reaction Engineering. An Introduc- ALAA J. 23(12), 1937-1945. tion to the Design of Chemical Reactors . (John Wiley). KERSTEIN. A

  19. Ultrasonic microspectroscopy characterization of chemically tempered glass

    Science.gov (United States)

    Arakawa, Mototaka; Kushibiki, Jun-ichi; Ohashi, Yuji

    2017-01-01

    We evaluated the elastic properties of the compressive stress (CS) layer of chemically tempered glass by ultrasonic microspectroscopy (UMS) in a very high frequency (VHF) range. Two commercial aluminosilicate glass specimens were prepared, and one of them was chemically tempered. Changes in elastic properties in the CS layer with the residual stress introduced by the exchange of Na+ ions for larger K+ ions were estimated by precisely measuring the densities and longitudinal and shear velocities for both the tempered and nontempered specimens. Using a single-layer model for the surface layer, we observed drastic increases in bulk-wave velocities and significant decreases in attenuation coefficients. We determined that the average elastic properties, namely, the elastic constants c 11 and c 44, and the density of the surface layer, were 9.6 and 7.1, and 1.2% larger than those of the nontempered specimen, respectively. We also estimated the distributions of the elastic properties according to the complementary error function (CEF) for the distribution of K+ ion concentration. Furthermore, using a line-focus-beam (LFB) system, we measured the frequency characteristics of the velocity (V LSAW) of leaky surface acoustic waves (LSAWs) on a water-loaded surface of the tempered specimen and clarified that the distributions of the elastic properties did not follow the CEF. The LFB system can be used for analyzing/determining details of the surface properties and is a promising tool for evaluating and characterizing chemically tempered glass and tempering process conditions.

  20. Boundary layer transition studies

    Science.gov (United States)

    Watmuff, Jonathan H.

    1995-02-01

    A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated

  1. A Review of Atomic Layer Deposition for Nanoscale Devices

    Directory of Open Access Journals (Sweden)

    Edy Riyanto

    2012-12-01

    Full Text Available Atomic layer deposition (ALD is a thin film growth technique that utilizes alternating, self-saturation chemical reactions between gaseous precursors to achieve a deposited nanoscale layers. It has recently become a subject of great interest for ultrathin film deposition in many various applications such as microelectronics, photovoltaic, dynamic random access memory (DRAM, and microelectromechanic system (MEMS. By using ALD, the conformability and extreme uniformity of layers can be achieved in low temperature process. It facilitates to be deposited onto the surface in many variety substrates that have low melting temperature. Eventually it has advantages on the contribution to the wider nanodevices.

  2. USE OF ATOMIC LAYER DEPOSITION OF FUNCTIONALIZATION OF NANOPOROUS BIOMATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.; Narayan, R.; Adiga, S.; Pellin, M.; Curtiss, L.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N.; Elam, J.

    2010-02-08

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.

  3. Using Protection Layers for a 2-Photon Water Splitting Device

    DEFF Research Database (Denmark)

    Seger, Brian; Mei, Bastian Timo; Frydendal, Rasmus;

    2015-01-01

    conditions.(2) I will follow this up by discussing how protection layers bypass the corrosion issue by creating a buffer layer.(3) Finally I will show how we integrated a photocatalyst/protection layer/(co-catalyst) scheme to produce highly efficient H2 evolution photocathodes and O2 evolution photoanodes.(3....... Vesborg, O. Hansen and I. Chorkendorff, Journal of the American Chemical Society, 135, 1057 (2013). 4. B. Mei, A. A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I. E. L. Stephens, P. C. K. Vesborg, B. Seger and I. Chorkendorff, The Journal of Physical Chemistry Letters, 5, 3456...

  4. Thin-Layer Spectroelectrochemistry on an Aqueous Micro-drop

    Energy Technology Data Exchange (ETDEWEB)

    Schroll, Cynthia A.; Chatterjee, Sayandev; Heineman, William R.; Bryan, Samuel A.

    2012-05-01

    Here we report the ability to perform thin-layer spectroelectrochemistry using an aqueous micro-drop. The thin-layer setup was evaluated using [Fe(CN){sub 6}]{sup 3-/4-} as a absorbance based model analyte and [Ru(bpy){sub 3}]{sup 3+/2+} as an emission based model analyte. The thin-layer capability of the electrochemical cell was validated with these two chemical systems using cyclic voltammetry, and UV-visible absorbance and luminescence spectroscopies. This work supports our FCRD process monitoring work and is a direct result of the collaboration under subcontract with University of Cincinnati.

  5. Graphene oxide monolayers as atomically thin seeding layers for atomic layer deposition of metal oxides.

    Science.gov (United States)

    Nourbakhsh, Amirhasan; Adelmann, Christoph; Song, Yi; Lee, Chang Seung; Asselberghs, Inge; Huyghebaert, Cedric; Brizzi, Simone; Tallarida, Massimo; Schmeisser, Dieter; Van Elshocht, Sven; Heyns, Marc; Kong, Jing; Palacios, Tomás; De Gendt, Stefan

    2015-06-28

    Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the capacitive properties of GO with its electronic structure. Capacitance-voltage measurements showed that the capacitive behavior of Al2O3/GO depends on the oxidation level of GO. Finally, GO was successfully used as an ALD seed layer for the deposition of Al2O3 on chemically inert single layer graphene, resulting in high performance top-gated field-effect transistors.

  6. Biomass-burning emissions and associated haze layers over Amazonia

    Science.gov (United States)

    Andreae, M. O.; Browell, E. V.; Gregory, G. L.; Harriss, R. C.; Hill, G. F.; Sachse, G. W.; Talbot, R. W.; Garstang, M.; Jacob, D. J.; Torres, A. L.

    1988-01-01

    The characteristics of haze layers, which were visually observed over the central Amazon Basin during many of the Amazon Boundary Layer Experiment 2A flights in July/August 1985, were investigated by remote and in situ measurements, using the broad range of instrumentation and sampling equipment on board the Electra aircraft. It was found that these layers strongly influenced the chemical and optical characteristics of the atmosphere over the eastern Amazon Basin. Relative to the regional background, the concentrations of CO, CO2, O3, and NO were significantly elevated in the plumes and haze layers, with the NO/CO ratio in fresh plumes much higher than in the aged haze layers. The haze aerosol was composed predominantly of organic material, NH4, K(+), NO3(-), SO4(2-), and organic anions (formate, acetate, and oxalate).

  7. Crack layer theory

    Science.gov (United States)

    Chudnovsky, A.

    1984-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  8. Infrared analysis of thin layers by attenuated total reflection spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rochat, N.; Chabli, A.; Bertin, F.; Vergnaud, C.; Mur, P.; Petitdidier, S.; Besson, P

    2003-09-15

    Interests in infrared spectroscopy (IRS) have been stimulated by the increasing need for non-destructive surface characterization providing structural and chemical informations about the new materials used in microelectronic devices. Standard infrared spectroscopy of thin layers is limited because of its lack of sensitivity. The use of optical configurations such as the attenuated total reflection (ATR) allows to characterize nanometric layers. This paper will present the results of a study conducted for a better understanding of the capabilities and limitations of this technique. A theoretical analysis based on a perturbation method is used to elucidate the results of ATR measurements performed on silicon oxide layers of different thickness on silicon substrates. This analysis shows that the absorbance ATR spectrum in p polarization is the image of the layer energy loss function, under specific conditions. The exact ATR spectrum simulation using a matrix formalism showed that the straightforward interpretation in terms of the layer dielectric function is limited to a very narrow layer thickness range. The fitting process of the ATR spectrum is evaluated for the interpretation of experimental spectra obtained for the growth of chemical silicon oxide layers.

  9. Layered bismuth vanadate ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Osipyan, V.G.; Savchenko, L.M.; Elbakyan, V.L.; Avakyan, P.B.

    1987-08-01

    The authors synthesize new layered bismuth vanadate ferroelectrics. The x-ray diffraction characteristics of Bi/sub 2/VO/sub 5.5/ are shown. Thermal expansion of ceramics with various compositions are presented, as are the temperature dependences of the dielectric constant of the ceramic with various compositions. Unit-cell parameters, Curie temperature, electrical conductivity and the dielectric characteristics of the compositions studied are shown.

  10. Boundary-layer theory

    CERN Document Server

    Schlichting (Deceased), Hermann

    2017-01-01

    This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

  11. Graded Recombination Layers for Multijunction Photovoltaics

    KAUST Repository

    Koleilat, Ghada I.

    2012-06-13

    Multijunction devices consist of a stack of semiconductor junctions having bandgaps tuned across a broad spectrum. In solar cells this concept is used to increase the efficiency of photovoltaic harvesting, while light emitters and detectors use it to achieve multicolor and spectrally tunable behavior. In series-connected current-matched multijunction devices, the recombination layers must allow the hole current from one cell to recombine, with high efficiency and low voltage loss, with the electron current from the next cell. We recently reported a tandem solar cell in which the recombination layer was implemented using a progression of n-type oxides whose doping densities and work functions serve to connect, with negligible resistive loss at solar current densities, the constituent cells. Here we present the generalized conditions for design of efficient graded recombination layer solar devices. We report the number of interlayers and the requirements on work function and doping of each interlayer, to bridge an work function difference as high as 1.6 eV. We also find solutions that minimize the doping required of the interlayers in order to minimize optical absorption due to free carriers in the graded recombination layer (GRL). We demonstrate a family of new GRL designs experimentally and highlight the benefits of the progression of dopings and work functions in the interlayers. © 2012 American Chemical Society.

  12. Atomic layer deposition of nanoporous biomaterials.

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.; Curtiss, L. A.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N. A.; Brigmon, R. L.; Elam, J. W.; Univ. of North Carolina; North Carolina State Univ.; Eastman Kodak Co.; North Dakota State Univ.; SRL

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials. Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.

  13. Multifunctional layered magnetic composites

    Directory of Open Access Journals (Sweden)

    Maria Siglreitmeier

    2015-01-01

    Full Text Available A fabrication method of a multifunctional hybrid material is achieved by using the insoluble organic nacre matrix of the Haliotis laevigata shell infiltrated with gelatin as a confined reaction environment. Inside this organic scaffold magnetite nanoparticles (MNPs are synthesized. The amount of MNPs can be controlled through the synthesis protocol therefore mineral loadings starting from 15 wt % up to 65 wt % can be realized. The demineralized organic nacre matrix is characterized by small-angle and very-small-angle neutron scattering (SANS and VSANS showing an unchanged organic matrix structure after demineralization compared to the original mineralized nacre reference. Light microscopy and confocal laser scanning microscopy studies of stained samples show the presence of insoluble proteins at the chitin surface but not between the chitin layers. Successful and homogeneous gelatin infiltration in between the chitin layers can be shown. The hybrid material is characterized by TEM and shows a layered structure filled with MNPs with a size of around 10 nm. Magnetic analysis of the material demonstrates superparamagnetic behavior as characteristic for the particle size. Simulation studies show the potential of collagen and chitin to act as nucleators, where there is a slight preference of chitin over collagen as a nucleator for magnetite. Colloidal-probe AFM measurements demonstrate that introduction of a ferrogel into the chitin matrix leads to a certain increase in the stiffness of the composite material.

  14. Physical Layer Network Coding

    DEFF Research Database (Denmark)

    Fukui, Hironori; Yomo, Hironori; Popovski, Petar

    2013-01-01

    Physical layer network coding (PLNC) has the potential to improve throughput of multi-hop networks. However, most of the works are focused on the simple, three-node model with two-way relaying, not taking into account the fact that there can be other neighboring nodes that can cause/receive inter......Physical layer network coding (PLNC) has the potential to improve throughput of multi-hop networks. However, most of the works are focused on the simple, three-node model with two-way relaying, not taking into account the fact that there can be other neighboring nodes that can cause....../receive interference. The way to deal with this problem in distributed wireless networks is usage of MAC-layer mechanisms that make a spatial reservation of the shared wireless medium, similar to the well-known RTS/CTS in IEEE 802.11 wireless networks. In this paper, we investigate two-way relaying in presence...

  15. Oxyfluoride Chemistry of Layered Perovskite Compounds

    Directory of Open Access Journals (Sweden)

    Yoshihiro Tsujimoto

    2012-03-01

    Full Text Available In this paper, we review recent progress and new challenges in the area of oxyfluoride perovskite, especially layered systems including Ruddlesden-Popper (RP, Dion-Jacobson (DJ and Aurivillius (AV type perovskite families. It is difficult to synthesize oxyfluoride perovskite using a conventional solid-state reaction because of the high chemical stability of the simple fluoride starting materials. Nevertheless, persistent efforts made by solid-state chemists have led to a major breakthrough in stabilizing such a mixed anion system. In particular, it is known that layered perovskite compounds exhibit a rich variety of O/F site occupation according to the synthesis used. We also present the synthetic strategies to further extend RP type perovskite compounds, with particular reference to newly synthesized oxyfluorides, Sr2CoO3F and Sr3Fe2O5+xF2−x (x ~ 0.44.

  16. Ion beam studies in strained layer superlattices

    CERN Document Server

    Pathak, A P; Bhattacharya, D P; Dev, B N; Ghosh, S; Goswami, D K; Lakshmi-Bala, S; Nageswara-Rao, S V S; Satyam, P V; Siddiqui, A M; Srivastava, S K; Turos, A

    2002-01-01

    The potential device application of semiconductor heterostructures and strained layer superlattices has been highlighted. Metal organic chemical vapour deposition grown In sub 0 sub . sub 5 sub 3 Ga sub 0 sub . sub 4 sub 7 As/InP lattice-matched structure has been irradiated by 130 MeV Ag sup 1 sup 3 sup + and studied by RBS/Channelling using 3.5 MeV He sup 2 sup + ions. Ion irradiation seems to have induced a finite tensile strain in the InGaAs layer, indicating thereby that ion beam mixing occurs at this energy. Other complementary techniques like high resolution XRD and STM are needed to conclude the structural modifications in the sample.

  17. Identifying layers in random multiphase structures

    Science.gov (United States)

    Mader, Kevin; Stampanoni, Marco

    2016-01-01

    X-Ray microscopic methods, benefiting from the large penetration depth of X-rays in many materials, enable 3D investigation of a wide variety of samples. This allows for a wide variety of physical, chemical, and biological structures to be seen and explored, in some cases even in real time. Such measurements have lead to insights into paleontology, vulcanology, genetics, and material science. The ability to see and visualize complex systems can provide otherwise unobtainable information on structure, interactions, mechanical behavior, and evolution. The field has, however, led to a massive amount of new, heterogenous, difficult to process data. We present a general, model-free approach for characterizing multiphase 3D systems and show how the method can be applied to experimental X-ray microscopy data to better understand and quantify layer structure in two typical systems: investigation of layered fibers and clay samples.

  18. Evaluation of Mercaptobenzothiazole Anticorrosive Layer on Cu Surface by Spectroscopic Ellipsometry

    Science.gov (United States)

    Nishizawa, Hideaki; Sugiura, Osamu; Matsumura, Yoshiyuki; Kinoshita, Masaharu

    2007-05-01

    Mercaptobenzothiazole (MBT) anticorrosive layer on copper surface prepared in MBT solutions was analyzed by spectroscopic ellipsometry (SE). The results showed that MBT anticorrosive layer was formed on Cu2O layer in the MBT solution at temperatures higher than 50 °C. Additionally, it was confirmed that MBT anticorrosive layer was formed in the MBT solution at room temperature by adding about 20 wt % acetone to the solution. From polishing experiments of MBT anticorrosive layer and benzotriazole (BTA) layer, it was revealed that MBT anticorrosive layer was physically stronger than BTA layer. It is considered that dishing amount in Cu chemical-mechanical polishing (CMP) can be reduced by using MBT. However, MBT anticorrosive layer was not formed in the MBT solution including Hydrogen peroxide (H2O2) suggesting that slurry should be composed without H2O2 in order to use MBT for Cu CMP.

  19. HV/CVD Grown Relaxed SiGe Buffer Layers for SiGe HMOSFETs

    Institute of Scientific and Technical Information of China (English)

    黄文韬; 罗广礼; 史进; 邓宁; 陈培毅; 钱佩信

    2003-01-01

    High-vacuum/chemical-vapor deposition (HV/CVD) system was used to grow relaxed SiGe buffer layers on Si substrates. Several methods were then used to analyze the quality of the SiGe films. X-ray diffraction and Raman spectroscopy showed that the upper layer was almost fully relaxed. Second ion mass spectroscopy showed that the Ge compositions were step-graded. Transmission electron microscopy showed that the misfit dislocations were restrained to the graded SiGe layers. Tests of the electrical properties of tensile-strained Si on relaxed SiGe buffer layers showed that their transconductances were higher than that of Si devices. These results verify the high quality of the relaxed SiGe buffer layer. The calculated critical layer thicknesses of the graded Si1-xGex layer on Si substrate and a Si layer on the relaxed SiGe buffer layer agree well with experimental results.

  20. Microfluidic chemical reaction circuits

    Science.gov (United States)

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  1. Chemical Security Analysis Center

    Data.gov (United States)

    Federal Laboratory Consortium — In 2006, by Presidential Directive, DHS established the Chemical Security Analysis Center (CSAC) to identify and assess chemical threats and vulnerabilities in the...

  2. Structural and Chemical Diversity of Tl-Based Cuprate Superconductors

    Institute of Scientific and Technical Information of China (English)

    信赢

    2003-01-01

    The Tl-based cuprate superconductor family is the largest family in crystal structure and chemical composition among all high Tc cuprate superconductors. The Tl family can be divided into two sub-families, the Tl single layer family and the Tl double layer family, based on their crystal structural characteristics. The Tl single layer family is an ideal material for investigating the evolution of crystalline formation, charge carrier density, chemical composition, transport properties, superconductivity and their relationships. The Tl family contains almostall possible crystal structures discovered in high-Tc cuprate superconductors. Tl cuprate superconductors are of great importance not only in studying high-temperature superconductivity but also in commercial applications.

  3. Diversity in S-layers.

    Science.gov (United States)

    Zhu, Chaohua; Guo, Gang; Ma, Qiqi; Zhang, Fengjuan; Ma, Funing; Liu, Jianping; Xiao, Dao; Yang, Xiaolin; Sun, Ming

    2017-01-01

    Surface layers, referred simply as S-layers, are the two-dimensional crystalline arrays of protein or glycoprotein subunits on cell surface. They are one of the most common outermost envelope components observed in prokaryotic organisms (Archaea and Bacteria). Over the past decades, S-layers have become an issue of increasing interest due to their ubiquitousness, special features and functions. Substantial work in this field provides evidences of an enormous diversity in S-layers. This paper reviews and illustrates the diversity from several different aspects, involving the S-layer-carrying strains, the structure of S-layers, the S-layer proteins and genes, as well as the functions of S-layers.

  4. Modern Thin-Layer Chromatography.

    Science.gov (United States)

    Poole, Colin F.; Poole, Salwa K.

    1989-01-01

    Some of the important modern developments of thin-layer chromatography are introduced. Discussed are the theory and instrumentation of thin-layer chromatography including multidimensional and multimodal techniques. Lists 53 references. (CW)

  5. Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells.

    Science.gov (United States)

    Hsu, Chang-Lung; Lin, Cheng-Te; Huang, Jen-Hsien; Chu, Chih-Wei; Wei, Kung-Hwa; Li, Lain-Jong

    2012-06-26

    Large-area graphene grown by chemical vapor deposition (CVD) is a promising candidate for transparent conducting electrode applications in flexible optoelectronic devices such as light-emitting diodes or organic solar cells. However, the power conversion efficiency (PCE) of the polymer photovoltaic devices using a pristine CVD graphene anode is still not appealing due to its much lower conductivity than that of conventional indium tin oxide. We report a layer-by-layer molecular doping process on graphene for forming sandwiched graphene/tetracyanoquinodimethane (TCNQ)/graphene stacked films for polymer solar cell anodes, where the TCNQ molecules (as p-dopants) were securely embedded between two graphene layers. Poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM) bulk heterojunction polymer solar cells based on these multilayered graphene/TCNQ anodes are fabricated and characterized. The P3HT/PCBM device with an anode structure composed of two TCNQ layers sandwiched by three CVD graphene layers shows optimum PCE (∼2.58%), which makes the proposed anode film quite attractive for next-generation flexible devices demanding high conductivity and transparency.

  6. DESIGN AND CALCULATION OF AERODROMECOAING WITH HEATED SURFACE LAYERS

    Directory of Open Access Journals (Sweden)

    Vadim G. Piskunov

    2009-04-01

    Full Text Available  The developed constructions with heated by surface layers for aerodromes and auto roads when developed composition of electroconductive concrete reinforced with chemical electrical conductive fibres being used was researched. The experimentally obtained characteristics of ended conductive concrete reinforced with fibers were presented. Calculation by developed heated construction of shell was made.

  7. Basis reduction for layered lattices

    NARCIS (Netherlands)

    Torreão Dassen, Erwin

    2011-01-01

    We develop the theory of layered Euclidean spaces and layered lattices. We present algorithms to compute both Gram-Schmidt and reduced bases in this generalized setting. A layered lattice can be seen as lattices where certain directions have infinite weight. It can also be interpre

  8. Reaction diffusion and solid state chemical kinetics handbook

    CERN Document Server

    Dybkov, V I

    2010-01-01

    This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate

  9. Multiresonant layered plasmonic films

    Energy Technology Data Exchange (ETDEWEB)

    DeVetter, Brent M. [Pacific Northwest National Laboratory, Richland, Washington, United States; Bernacki, Bruce E. [Pacific Northwest National Laboratory, Richland, Washington, United States; Bennett, Wendy D. [Pacific Northwest National Laboratory, Richland, Washington, United States; Schemer-Kohrn, Alan [Pacific Northwest National Laboratory, Richland, Washington, United States; Alvine, Kyle J. [Pacific Northwest National Laboratory, Richland, Washington, United States

    2017-01-01

    Multi-resonant nanoplasmonic films have numerous applications in areas such as nonlinear optics, sensing, and tamper indication. While techniques such as focused ion beam milling and electron beam lithography can produce high-quality multi-resonant films, these techniques are expensive, serial processes that are difficult to scale at the manufacturing level. Here, we present the fabrication of multi-resonant nanoplasmonic films using a layered stacking technique. Periodically-spaced gold nanocup substrates were fabricated using self-assembled polystyrene nanospheres followed by oxygen plasma etching and metal deposition via magnetron sputter coating. By adjusting etch parameters and initial nanosphere size, it was possible to achieve an optical response ranging from the visible to the near-infrared. Singly resonant, flexible films were first made by performing peel-off using an adhesive-coated polyolefin film. Through stacking layers of the nanofilm, we demonstrate fabrication of multi-resonant films at a fraction of the cost and effort as compared to top-down lithographic techniques.

  10. The Boundary Layer Radiometer

    Science.gov (United States)

    Irshad, Ranah; Bowles, N. E.; Calcutt, S. B.; Hurley, J.

    2010-10-01

    The Boundary Layer Radiometer is a small, low mass (<1kg) radiometer with only a single moving part - a scan/calibration mirror. The instrument consists of a three mirror telescope system incorporating an intermediate focus for use with miniature infrared and visible filters. It also has an integrated low power blackbody calibration target to provide long-term calibration stability The instrument may be used as an upward looking boundary layer radiometer for both the terrestrial and Martian atmospheres with appropriate filters for the mid-infrared carbon dioxide band, as well as a visible channel for the detection of aerosol components such as dust. The scan mirror may be used to step through different positions from the local horizon to the zenith, allowing the vertical temperature profile of the atmosphere to be retrieved. The radiometer uses miniature infrared filter assemblies developed for previous space-based instruments by Oxford, Cardiff and Reading Universities. The intermediate focus allows for the use of upstream blocking filters and baffles, which not only simplifies the design of the filters and focal plane assembly, but also reduces the risk of problems due to stray light. Combined with the calibration target this means it has significant advantages over previous generations of small radiometers.

  11. Layered kagome spin ice

    Science.gov (United States)

    Hamp, James; Dutton, Sian; Mourigal, Martin; Mukherjee, Paromita; Paddison, Joseph; Ong, Harapan; Castelnovo, Claudio

    Spin ice materials provide a rare instance of emergent gauge symmetry and fractionalisation in three dimensions: the effective degrees of freedom of the system are emergent magnetic monopoles, and the extensively many `ice rule' ground states are those devoid of monopole excitations. Two-dimensional (kagome) analogues of spin ice have also been shown to display a similarly rich behaviour. In kagome ice however the ground-state `ice rule' condition implies the presence everywhere of magnetic charges. As temperature is lowered, an Ising transition occurs to a charge-ordered state, which can be mapped to a dimer covering of the dual honeycomb lattice. A second transition, of Kosterlitz-Thouless or three-state Potts type, occurs to a spin-ordered state at yet lower temperatures, due to small residual energy differences between charge-ordered states. Inspired by recent experimental capabilities in growing spin ice samples with selective (layered) substitution of non-magnetic ions, in this work we investigate the fate of the two ordering transitions when individual kagome layers are brought together to form a three-dimensional pyrochlore structure coupled by long range dipolar interactions. We also consider the response to substitutional disorder and applied magnetic fields.

  12. Passivating Window/First Layer AR Coating for Space Solar Cells

    Science.gov (United States)

    Faur, Mircea; Faur, Maria; Bailey, S. G.; Flood, D. J.; Brinker, D. J.; Alterovitz, S. A.; Wheeler, D. R.; Matesscu, G.; Goradia, C.; Goradia, M.

    2004-01-01

    Chemically grown oxides, if well designed, offer excellent surface passivation of the emitter surface of space solar cells and can be used as effective passivating window/first layer AR coating. In this paper, we demonstrate the effectiveness of using a simple room temperature wet chemical technique to grow cost effective passivating layers on solar cell front surfaces after the front grid metallization step. These passivating layers can be grown both on planar and porous surfaces. Our results show that these oxide layers: (i) can effectively passivate the from the surface, (ii) can serve as an effective optical window/first layer AR coating, (iii) are chemically, thermally and UV stable, and (iv) have the potential of improving the BOL and especially the EOL efficiency of space solar cells. The potential of using this concept to simplify the III-V based space cell heterostructures while increasing their BOL and EOL efficiency is also discussed.

  13. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    1974-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  14. The Adobe Photoshop layers book

    CERN Document Server

    Lynch, Richard

    2011-01-01

    Layers are the building blocks for working in Photoshop. With the correct use of the Layers Tool, you can edit individual components of your images nondestructively to ensure that your end result is a combination of the best parts of your work. Despite how important it is for successful Photoshop work, the Layers Tool is one of the most often misused and misunderstood features within this powerful software program. This book will show you absolutely everything you need to know to work with layers, including how to use masks, blending, modes and layer management. You'll learn professional tech

  15. Metal deposition using seed layers

    Science.gov (United States)

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  16. The chemical life(1).

    Science.gov (United States)

    Hodges, Nathan

    2015-01-01

    You write this narrative autoethnography to open up a conversation about our chemical lives. You go through your day with chemical mindfulness, questioning taken-for-granted ideas about natural and artificial, healthy and unhealthy, dependency and addiction, trying to understand the chemical messages we consume through the experiences of everyday life. You reflect on how messages about chemicals influence and structure our lives and why some chemicals are celebrated and some are condemned. Using a second-person narrative voice, you show how the personal is relational and the chemical is cultural. You write because you seek a connection, a chemical bond.

  17. The multiple layer solar collector

    Science.gov (United States)

    Kenna, J. P.

    1983-01-01

    An analytical model is developed for obtaining numerical solutions for differential equations describing the performance of separate layers in a multiple layer solar collector. The configurations comprises heat transfer fluid entering at the top of the collector and travelling down through several layers. A black absorber plate prevents reemission of thermal radiation. The overall performance is shown to depend on the number of layers, the heat transfer coefficient across each layer, and the absorption properties of the working fluid. It is found that the multiple layer system has a performance inferior to that of flat plate selective surface collectors. Air gaps insulating adjacent layers do not raise the efficiency enough to overcome the relative deficiency.

  18. Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition

    Science.gov (United States)

    Fang, J. S.; Sun, S. L.; Cheng, Y. L.; Chen, G. S.; Chin, T. S.

    2016-02-01

    The present paper reports Cu and Cu(Mn) films prepared layer-by-layer using an electrochemical atomic layer deposition (ECALD) method. The structure and properties of the films were investigated to elucidate their suitability as Cu interconnects for microelectronics. Previous studies have used primarily a vacuum-based atomic layer deposition to form a Cu metallized film. Herein, an entirely wet chemical process was used to fabricate a Cu film using the ECALD process by combining underpotential deposition (UPD) and surface-limited redox replacement (SLRR). The experimental results indicated that an inadequate UPD of Pb affected the subsequent SLRR of Cu and lead to the formation of PbSO4. A mechanism is proposed to explain the results. Layer-by-layer deposition of Cu(Mn) films was successfully performed by alternating the deposition cycle-ratios of SLRR-Cu and UPD-Mn. The proposed self-limiting growth method offers a layer-by-layer wet chemistry-based deposition capability for fabricating Cu interconnects.

  19. Band Gap Engineering and Layer-by-Layer Band Gap Mapping of Selenium-doped Molybdenum Disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yongji [Rice University; Liu, Zheng [Rice University; Lupini, Andrew R [ORNL; Lin, Junhao [ORNL; Pantelides, Sokrates T [ORNL; Pennycook, Stephen J [ORNL; Zhou, Wu [ORNL; Ajayan, Pullikel M [Rice University

    2014-01-01

    Ternary two-dimensional dichalcogenide alloys exhibit compositionally modulated electronic structure and hence, control of dopant concentration within each layer of these layered compounds provides a powerful way to modify their properties. The challenge then becomes quantifying and locating the dopant atoms within each layer in order to better understand and fine-tune the desired properties. Here we report the synthesis of selenium substitutionally doped molybdenum disulfide atomic layers, with a broad range of selenium concentrations, resulting in band gap modulations of over 0.2 eV. Atomic scale chemical analysis using Z-contrast imaging provides direct maps of the dopant atom distribution in individual MoS2 layers and hence a measure of the local band gaps. Furthermore, in a bilayer structure, the dopant distribution of each layer is imaged independently. We demonstrate that each layer in the bilayer contains similar doping levels, randomly distributed, providing new insights into the growth mechanism and alloying behavior in two-dimensional dichalcogenide atomic layers. The results show that growth of uniform, ternary, two-dimensional dichalcogenide alloy films with tunable electronic properties is feasible.

  20. Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.S., E-mail: jsfang@nfu.edu.tw [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Sun, S.L. [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Cheng, Y.L. [Department of Electrical Engineering, National Chi-Nan University, Nan-Tou 54561, Taiwan (China); Chen, G.S.; Chin, T.S. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China)

    2016-02-28

    Graphical abstract: - Abstract: The present paper reports Cu and Cu(Mn) films prepared layer-by-layer using an electrochemical atomic layer deposition (ECALD) method. The structure and properties of the films were investigated to elucidate their suitability as Cu interconnects for microelectronics. Previous studies have used primarily a vacuum-based atomic layer deposition to form a Cu metallized film. Herein, an entirely wet chemical process was used to fabricate a Cu film using the ECALD process by combining underpotential deposition (UPD) and surface-limited redox replacement (SLRR). The experimental results indicated that an inadequate UPD of Pb affected the subsequent SLRR of Cu and lead to the formation of PbSO{sub 4}. A mechanism is proposed to explain the results. Layer-by-layer deposition of Cu(Mn) films was successfully performed by alternating the deposition cycle-ratios of SLRR-Cu and UPD-Mn. The proposed self-limiting growth method offers a layer-by-layer wet chemistry-based deposition capability for fabricating Cu interconnects.

  1. Chemically enabled nanostructure fabrication

    Science.gov (United States)

    Huo, Fengwei

    The first part of the dissertation explored ways of chemically synthesizing new nanoparticles and biologically guided assembly of nanoparticle building blocks. Chapter two focuses on synthesizing three-layer composite magnetic nanoparticles with a gold shell which can be easily functionalized with other biomolecules. The three-layer magnetic nanoparticles, when functionalized with oligonucleotides, exhibit the surface chemistry, optical properties, and cooperative DNA binding properties of gold nanoparticle probes, while maintaining the magnetic properties of the Fe3O4 inner shell. Chapter three describes a new method for synthesizing nanoparticles asymmetrically functionalized with oligonucleotides and the use of these novel building blocks to create satellite structures. This synthetic capability allows one to introduce valency into such structures and then use that valency to direct particle assembly events. The second part of the thesis explored approaches of nanostructure fabrication on substrates. Chapter four focuses on the development of a new scanning probe contact printing method, polymer pen lithography (PPL), which combines the advantages of muCp and DPN to achieve high-throughput, flexible molecular printing. PPL uses a soft elastomeric tip array, rather than tips mounted on individual cantilevers, to deliver inks to a surface in a "direct write" manner. Arrays with as many as ˜11 million pyramid-shaped pens can be brought into contact with substrates and readily leveled optically in order to insure uniform pattern development. Chapter five describes gel pen lithography, which uses a gel to fabricate pen array. Gel pen lithography is a low-cost, high-throughput nanolithography method especially useful for biomaterials patterning and aqueous solution patterning which makes it a supplement to DPN and PPL. Chapter 6 shows a novel form of optical nanolithography, Beam Pen Lithography (BPL), which uses an array of NSOM pens to do nanoscale optical

  2. Laser alloying of the plain carbon steel surface layer

    Directory of Open Access Journals (Sweden)

    A. Radziszewska

    2008-07-01

    Full Text Available As an example of the types of features observed after laser alloying, the addition of Ta to mild carbon steel is described. The system is of interest because such alloying is beneficial in improving surface related properties. The paper describes the microstructure and properties (phase and chemical composition, microhardness of the laser alloyed surface layer. In the investigation the optical microscope, the scanning electron microscope (SEM, chemical (EDS microanalysis composition and microhardness testing methods have been used. Specimens of 0,17 %C plain steel were coated with Ta powder layers. The paints containing organic components were used as the binders during deposition of Ta powder layers on the sample surface. The thickness of Ta deposited layers amounted to 0,16 mm. The specimens were then swept through high power (of nominal power 2,5 kW CW CO2 laser radiation at different speeds.The surface alloyed layers varied in microstructure consisted of fiber like Ta2C + γ eutectics, chemical composition and microhardness. The EDS analyses revealed the enrichment of tantalum in the laser alloyed zone (LAZ. The changes of process parameters had an influence on the hardness of alloyed surface layers: by increasing scanning velocity (from 12 mm/s to 20 mm/s and decreasing laser power (from 1,8 kW to 1,35 kW, the hardness diminished. The wear tests were also carried out which showed that laser alloying of plain carbon steel surface layer led to improvement of their wear resistance.

  3. Epitaxial Growth of High-Quality Silicon Films on Double-Layer Porous Silicon

    Institute of Scientific and Technical Information of China (English)

    黄宜平; 竺士炀; 李爱珍; 王瑾; 黄靖云; 叶志镇

    2001-01-01

    The epitaxial growth of a high-quality silicon layer on double-layer porous silicon by ultra-high vacuum/chemical vapour deposition has been reported. The two-step anodization process results in a double-layer porous silicon structure with a different porosity. This double-layer porous silicon structure and an extended low-temperature annealing in a vacuum system was found to be helpful in subsequent silicon epitaxial growth. X-ray diffraction,cross-sectional transmission electron microscopy and spreading resistance testing were used in this work to study the properties of epitaxial silicon layers grown on the double-layer porous silicon. The results show that the epitaxial silicon layer is of good crystallinity and the same orientation with the silicon substrate and the porous silicon layer.

  4. Transparent layer constancy.

    Science.gov (United States)

    Faul, Franz; Ekroll, Vebjørn

    2012-11-14

    In transparency perception the visual system assigns transmission-related attributes to transparent layers. Based on a filter model of perceptual transparency we investigate to what extent these attributes remain constant across changes of background and illumination. On a computational level, we used computer simulations to test how constant the parameters of the filter model remain under realistic changes in background reflectances and illumination and found almost complete constancy. This contrasts with systematic deviations from constancy found in cross-context matches of transparent filters. We show that these deviations are of a very regular nature and can be understood as a compromise between a proximal match of the mean stimulus color and complete constancy as predicted by the filter model.

  5. Templated quasicrystalline molecular layers

    Science.gov (United States)

    Smerdon, Joe; Young, Kirsty; Lowe, Michael; Hars, Sanger; Yadav, Thakur; Hesp, David; Dhanak, Vinod; Tsai, An-Pang; Sharma, Hem Raj; McGrath, Ronan

    2014-03-01

    Quasicrystals are materials with long range ordering but no periodicity. We report scanning tunneling microscopy (STM) observations of quasicrystalline molecular layers on five-fold quasicrystal surfaces. The molecules adopt positions and orientations on the surface consistent with the quasicrystalline ordering of the substrate. Carbon-60 adsorbs atop sufficiently-separated Fe atoms on icosahedral Al-Cu-Fe to form a unique quasicrystalline lattice whereas further C60 molecules decorate remaining surface Fe atoms in a quasi-degenerate fashion. Pentacene (Pn) adsorbs at tenfold-symmetric points around surface-bisected rhombic triacontahedral clusters in icosahedral Ag-In-Yb. These systems constitute the first demonstrations of quasicrystalline molecular ordering on a template. EPSRC EP/D05253X/1, EP/D071828/1, UK BIS.

  6. Ferroelectrics based absorbing layers

    Science.gov (United States)

    Hao, Jianping; Sadaune, Véronique; Burgnies, Ludovic; Lippens, Didier

    2014-07-01

    We show that ferroelectrics-based periodic structure made of BaSrTiO3 (BST) cubes, arrayed onto a metal plate with a thin dielectric spacer film exhibit a dramatic enhancement of absorbance with value close to unity. The enhancement is found around the Mie magnetic resonance of the Ferroelectrics cubes with the backside metal layer stopping any transmitted waves. It also involves quasi-perfect impedance matching resulting in reflection suppression via simultaneous magnetic and electrical activities. In addition, it was shown numerically the existence of a periodicity optimum, which is explained from surface waves analysis along with trade-off between the resonance damping and the intrinsic loss of ferroelectrics cubes. An experimental verification in a hollow waveguide configuration with a good comparison with full-wave numerical modelling is at last reported by measuring the scattering parameters of single and dual BST cubes schemes pointing out coupling effects for densely packed structures.

  7. Wireless physical layer security

    Science.gov (United States)

    Poor, H. Vincent; Schaefer, Rafael F.

    2017-01-01

    Security in wireless networks has traditionally been considered to be an issue to be addressed separately from the physical radio transmission aspects of wireless systems. However, with the emergence of new networking architectures that are not amenable to traditional methods of secure communication such as data encryption, there has been an increase in interest in the potential of the physical properties of the radio channel itself to provide communications security. Information theory provides a natural framework for the study of this issue, and there has been considerable recent research devoted to using this framework to develop a greater understanding of the fundamental ability of the so-called physical layer to provide security in wireless networks. Moreover, this approach is also suggestive in many cases of coding techniques that can approach fundamental limits in practice and of techniques for other security tasks such as authentication. This paper provides an overview of these developments.

  8. The layers of subtitling

    Directory of Open Access Journals (Sweden)

    Elena Di Giovanni

    2016-12-01

    Full Text Available The study of subtitling, although widely practiced over the past 20 years, has generally been confined to comparative studies focusing on the product of subtitle translation, with little or no consideration of the conditions of creation and reception. Focusing on the process of subtitle production, occasional studies have touched upon the cognitive processes accompanying it, but no study so far has related these processes, and the resulting products, to various degrees of translators’ competence. This is precisely what this essay does, focusing on the different layers of subtitle translation provided for two different films and in two different contexts. By analysing the first and second versions of subtitle translations, we shall reflect on the acquisition, and application, of different subtitling competences.

  9. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere.

    Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  10. Structure and physical properties of layered ferrofluids

    Directory of Open Access Journals (Sweden)

    M. Ghominezhad

    2003-06-01

    Full Text Available We have successfully synthesised and studied the bilayer ferrofluids with sodium oleate C18H33O2-Na+ as the first layer and sodium dodecyle sulfate C12H25Na+SO-4 (SDS as the second layer surfactants. The solid phase of the ferromagnetic colloidal system was formed based on quick chemical growth. The adsorption of oleate molecule on the surface of the solid solution has been investigated by IR spectroscopy. The XRD analysis of the oxides and titration by KMnO4 show that the closest stoichiometry of Fe3O4 is achieved by the increase of Fe3+/Fe2+ molar ratio up to 2/3 with extra acidifying for prevention of uncontrolled Fe2+ excitation. The X-ray diffraction and magnetic measurements by VSM were employed for determining the particle magnetic and crystal sizes. The particle size was determined to be 9-13 nm. The magnetisation measurement of the ferrofluid indicate a saturation magnetisation of about 1.5 emu/g and reduced initial susceptibility of 6 10-3 Oe-1, which are the proper values for a superparamagnet. However, the saturation magnetisation shows a local maxima at SDS concentration about 0.07M, which is different from the behaviour presented by the mono-layer ferrofuids.

  11. Gibbs free energy assisted passivation layers

    Science.gov (United States)

    Salihoglu, Omer; Tansel, T.; Hostut, M.; Ergun, Y.; Aydinli, A.

    2016-05-01

    Reduction of surface leakage is a major challenge in most photodetectors that requires the elimination of surface oxides on etched mesas during passivation. Engineering the passivation requires close attention to chemical reactions that take place at the interface during the process. In particular, removal of surface oxides may be controlled via Gibbs reactivity. We have compared electrical performance of type-II superlattice photodetectors, designed for MWIR operation, passivated by different passivation techniques. We have used ALD deposited Al2O3, HfO2, TiO2, ZnO, PECVD deposited SiO2, Si3N4 and sulphur containing octadecanethiol (ODT) selfassembled monolayers (SAM) passivation layers on InAs/GaSb p-i-n superlattice photodetectors with cutoff wavelength at 5.1 μm. In this work, we have compared the result of different passivation techniques which are done under same conditions, same epitaxial structure and same fabrication processes. We have found that ALD deposited passivation is directly related to the Gibbs free energy of the passivation material. Gibbs free energies of the passivation layer can directly be compared with native surface oxides to check the effectiveness of the passivation layer before the experimental study.

  12. Sprayed ZnO as effective window layer for CIS/CdS solar cell

    Science.gov (United States)

    Sreejith, M. S.; Deepu, D. R.; Kartha, C. Sudha; Vijayakumar, K. P.

    2014-01-01

    Thin film solar cells were fabricated using CuInS2 as absorber layer and CdS as buffer layer. CuInS2 and CdS layers are deposited using chemical spray pyrolysis and chemical bath deposition respectively. Proper movement and collection of generated carriers really affect the performance of the cell. Introduction of a very thin layer of silver doped ZnO (ZnO:Ag) window layer between the buffer layer and ITO improves performance of the cell, with open circuit voltage of 409mV, short circuit current density of 2.89 mA/cm2, fill factor of 44.3% and conversion efficiency of 0.52%.

  13. Metallurgical investigations of dry sliding surface layer in phosphorous iron/steel friction pairs

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Surface layer behaviors of composition concentration and micro-hardness were inves-tigated on phosphorous cast irons after dry sliding. The experimental results indicate that thehardness and chemical composition unevenly distribute in the surface layer. The sliding conditionand microstructure of the pin specimen have greatly effects on the distributions.

  14. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing, E-mail: jingluo19801007@126.com; Liu, Xiaoya

    2014-10-15

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10{sup −4} to 1.2×10{sup −3} M with the detect limit of 5×10{sup −6} M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept

  15. Layer-by-layer self-assembled active electrodes for hybrid photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Kniprath, Rolf

    2008-11-18

    Solar cells based on thin organic/inorganic heterofilms are currently in the focus of research, since they represent promising candidates for cost-efficient photovoltaic energy conversion. In this type of cells, charges are separated at a heterointerface between dissimilar electrode materials. These materials either absorb light themselves, or they are sensitized by an additional absorber layer at the interface. The present work investigates photovoltaic cells which are composed of nanoporous TiO{sub 2} combined with conjugated polymers and semiconductor quantum dots (QDs). The method of layer-by-layer self-assembly of oppositely charged nanoparticles and polymers is used for the fabrication of such devices. This method allows to fabricate nanoporous films with controlled thicknesses in the range of a few hundred nanometers to several micrometers. Investigations with scanning electron (SEM) and atomic force microscopy (AFM) reveal that the surface morphology of the films depends only on the chemical structure of the polyions used in the production process, and not on their molecular weight or conformation. From dye adsorption at the internal surface of the electrodes one can estimate that the internal surface area of a 1 {mu}m thick film is up to 120 times larger than the projection plane. X-ray photoelectron spectroscopy (XPS) is used to demonstrate that during the layer-by-layer self-assembly at least 40% of the TiO{sub 2} surface is covered with polymers. This feature allows to incorporate polythiophene derivatives into the films and to use them as sensitizers for TiO{sub 2}. Further, electrodes containing CdSe or CdTe quantum dots (QDs) as sensitizers are fabricated. For the fabrication of photovoltaic cells the layer-by-layer grown films are coated with an additional polymer layer, and Au back electrodes are evaporated on top. The cells are illuminated through transparent doped SnO{sub 2} front electrodes. The I/V curves of all fabricated cells show diode

  16. Characterization of thick epitaxial GaAs layers for X-ray detection

    CERN Document Server

    Samic, H; Donchev, V; Nghia, N X; Gandouzi, M; Zazoui, M; Bourgoin, J C; El-Abbassi, H; Rath, S; Sellin, P J

    2002-01-01

    We have studied the current-voltage and capacitance-voltage characteristics of p/i/n structures made on non-intentionally doped epitaxial GaAs layers grown by the chemical reaction method. Deep level transient spectroscopy demonstrates that these layers contain a low defect concentration. X-ray photoconductivity shows that the diffusion length is large. The homogeneity of the properties of these layers, which has been evaluated over large area (cm sup 2), is confirmed by photoluminescence mapping.

  17. Silver hollow optical fibers with acrylic silicone resin coating as buffer layer for sturdy structure

    Science.gov (United States)

    Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji

    2016-03-01

    For sturdy silver hollow optical fibers, acrylic silicone resin is newly used as a buffer layer between an inner silver layer and a silica capillary. This acrylic silicone resin film prevents the glass surface from chemical and mechanical micro damages during silver plating process, which deteriorate mechanical strength of the hollow fibers. In addition, it keeps high adhesion of the silver layer with the glass surface. We discuss improvement of mechanical strength of the hollow glass fibers without deterioration of optical properties.

  18. Existing chemicals: international activities.

    Science.gov (United States)

    Purchase, J F

    1989-01-01

    The standards of care used in the protection of the health and safety of people exposed to chemicals has increased dramatically in the last decade. Standards imposed by regulation and those adopted by industry have required a greater level of knowledge about the hazards of chemicals. In the E.E.C., the 6th amendment of the dangerous substances directive imposed the requirement that al new chemicals should be tested according to prescribed programme before introduction on to the market. The development of a European inventory of existing chemicals was an integral part of the 6th amendment. It has now become clear that increased standards of care referred to above must be applied to the chemicals on the inventory list. There is, however, a considerable amount of activity already under way in various international agencies. The OECD Chemicals Programme has been involved in considering the problem of existing chemicals for some time, and is producing a priority list and action programme. The International Programme on Chemical Safety produces international chemical safety cards, health and safety guides and environmental health criteria documents. The international register of potentially toxic compounds (part of UNEP) has prepared chemical data profiles on 990 compounds. The International Agency for Research on Cancer prepared monographs on the carcinogenic risk of chemicals to man. So far 42 volumes have been prepared covering about 900 substances. IARC and IPCS also prepare periodic reports on ongoing research on carcinogenicity or toxicity (respectively) of chemicals. The chemical industry through ECETOC (the European Chemical Industry Ecology and Toxicology Centre) has mounted a major initiative on existing chemicals. Comprehensive reviews of the toxicity of selected chemicals are published (Joint Assessment of Commodity Chemicals). In its technical report no. 30 ECETOC lists reviews and evaluations by major national and international organisations, which provides

  19. Formation of conductive spontaneous via holes in AlN buffer layer on n+Si substrate by filling the vias with n-AlGaN by metal organic chemical vapor deposition and application to vertical deep ultraviolet photo-sensor

    Directory of Open Access Journals (Sweden)

    N. Kurose

    2014-12-01

    Full Text Available We have grown conductive aluminum nitride (AlN layers using the spontaneous via holes formation technique on an n+-Si substrate for vertical-type device fabrication. The size and density of the via holes are controlled through the crystal growth conditions used for the layer, and this enables the conductance of the layer to be controlled. Using this technique, we demonstrate the fabrication of a vertical-type deep ultraviolet (DUV photo-sensor. This technique opens up the possibility of fabrication of monolithically integrated on-chip DUV sensors and DUV light-emitting devices (LEDs, including amplifiers, controllers and other necessary functional circuits, on a Si substrate.

  20. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2012-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics. This volume explores: Quantum Dynamical Resonances in Ch

  1. Magnetism in layered Ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Steffens, Paul C.

    2008-07-01

    In this thesis, the magnetism of the layered Ruthenates has been studied by means of different neutron scattering techniques. Magnetic correlations in the single-layer Ruthenates of the series Ca{sub 2-x}Sr{sub x}RuO{sub 4} have been investigated as function of Sr-concentration (x=0.2 and 0.62), temperature and magnetic field. These inelastic neutron scattering studies demonstrate the coexistence of ferromagnetic paramagnon scattering with antiferromagnetic fluctuations at incommensurate wave vectors. The temperature dependence of the amplitudes and energies of both types of excitations indicate the proximity to magnetic instabilities; their competition seems to determine the complex behavior of these materials. In Ca{sub 1.8}Sr{sub 0.2}RuO{sub 4}, which shows a metamagnetic transition, the ferromagnetic fluctuations are strongly suppressed at low temperature, but appear at higher temperature or application of a magnetic field. In the high-field phase of Ca{sub 1.8}Sr{sub 0.2}RuO{sub 4} above the metamagnetic transition, a ferromagnetic magnon dominates the excitation spectrum. Polarized neutron scattering revealed the existence of a very broad signal around the zone centre, in addition to the well-known incommensurate excitations at Q=(0.3,0.3,0) in the unconventional superconductor Sr{sub 2}RuO{sub 4}. With this additional contribution, it is possible to set up a general model for the Q-dependent magnetic susceptibility, which is well consistent with the results of other measurement methods that do not resolve the Q-dependence. Upon doping with Ti, the incommensurate fluctuations are enhanced, in particular near the critical concentration for the onset of magnetic order, but no divergence down to very low temperature is observed. In the bilayer Ti-doped Ca{sub 3}Ru{sub 2}O{sub 7}, the existence of magnetic order with a propagation vector of about ((1)/(4),(1)/(4),0) has been discovered and characterized in detail. Above and below T{sub N}, excitations at this

  2. Boundary-Layer & health

    Science.gov (United States)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  3. Nanostructure Neutron Converter Layer Development

    Science.gov (United States)

    Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Kang, Jin Ho (Inventor); Lowther, Sharon E. (Inventor); Thibeault, Sheila A. (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  4. Neocortical layer 6, a review

    Directory of Open Access Journals (Sweden)

    Alex M Thomson

    2010-03-01

    Full Text Available This review attempts to summarise some of the major areas of neocortical research as it pertains to layer 6. After a brief summary of the development of this intriguing layer, the major pyramidal cell classes to be found in layer 6 are described and compared. The connections made and received by these different classes of neurones are then discussed and the possible functions of these connections, with particular reference to the shaping of responses in visual cortex and thalamus. Inhibition in layer 6 is discussed where appropriate, but not in great detail. Many types of interneurones are to be found in each cortical layer and layer 6 is no exception, but the functions of each type remain to be elucidated.

  5. Surprises of electron microscopic imaging of proteins and polymers covering gold nanoparticles layer by layer.

    Science.gov (United States)

    Pyshnaya, Inna A; Razum, Kristina V; Dolodoev, Anton S; Shashkova, Valeriya V; Ryabchikova, Elena I

    2017-02-01

    Gold nanoparticles (GNPs) are used in complicated nanoconstructions, and their preparation implies careful analysis of the intermediate and resulting products, including visualisation of the NPs. Visualisation of protein and/or organic polymer covers on GNPs using electron microscopy (EM) was a goal of this study. We covered GNPs with human serum albumin or PEG, and then added a second layer of branched or linear polyethyleneimine. EM studies were supplemented with dynamic light scattering, spectrophotometry and gel electrophoresis, which confirmed the presence and integrity of a cover on GNPs in mixtures with uranylacetate (UA) or phosphotungstic acid (PTA). Covered GNPs were contrasted 'on a drop' or in suspension with UA (pH 4.5) or PTA (pH 0.5, 3.0, 5.0 and 7.0), and studied by transmission EM. A cover on GNPs becomes visible as the result of direct interaction of UA or PTA with the components of a layer. The same NPs could look 'naked' or demonstrate a distinct cover of average electron density. The most distinct images of the layers were obtained using PTA at pH 0.5. Thus, visualisation of protein and/or polymeric layers covering the GNPs by EM depends on the type of contrasting reagent and contrasting conditions, but does not depend on surface charge of the NPs and the chemical nature of a cover.

  6. Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly.

    Science.gov (United States)

    Jasieniak, Jacek; MacDonald, Brandon I; Watkins, Scott E; Mulvaney, Paul

    2011-07-13

    Solar cells made by high temperature and vacuum processes from inorganic semiconductors are at a perceived cost disadvantage when compared with solution-processed systems such as organic and dye-sensitized solar cells. We demonstrate that totally solution processable solar cells can be fabricated from inorganic nanocrystal inks in air at temperature as low as 300 °C. Focusing on a CdTe/ZnO thin-film system, we report solar cells that achieve power conversion efficiencies of 6.9% with greater than 90% internal quantum efficiency. In our approach, nanocrystals are deposited from solution in a layer-by-layer process. Chemical and thermal treatments between layers induce large scale grain formation, turning the 4 nm CdTe particles into pinhole-free films with an optimized average crystallite size of ∼70 nm. Through capacitance-voltage measurements we demonstrate that the CdTe layer is fully depleted which enables the charge carrier collection to be maximized.

  7. Development of all chemical solution derived Ce0.9La0.1O2 − y/Gd2Zr2O7 buffer layer stack for coated conductors: influence of the post-annealing process on surface crystallinity

    DEFF Research Database (Denmark)

    Yue, Zhao; Li, Xiaofen; Khoryushin, Alexey

    2012-01-01

    Preparation and characterization of a biaxially textured Gd2Zr2O7 and Ce0.9La0.1O2 − y (CLO, cap)/Gd2Zr2O7 (GZO, barrier) buffer layer stack by the metal–organic deposition route are reported. YBa2Cu3O7 − d (YBCO) superconductor films were deposited by the pulsed-laser deposition (PLD) technique ......-field), demonstrating that the novel CLO/GZO stack is very promising for further development of low cost buffer layer architectures for coated conductors....

  8. Boundary Layer Ventilation Processes During a High Pressure Event

    Science.gov (United States)

    Gray, S. L.; Dacre, H. F.; Belcher, S. E.

    2006-12-01

    It is often assumed that ventilation of the atmospheric boundary layer is weak during high pressure events. But is this always true? Here we investigate the processes responsible for ventilation of the atmospheric boundary layer during a high pressure event that occured on the 9 May 2005 using the UK Met Office Unifed Model. Pollution sources are represented by the constant emission of a passive tracer everywhere over land. The ventilation processes observed include a sea breeze circulation, turbulent mixing across the top of the boundary layer followed by large-scale ascent, and shallow convection. Vertical distributions of tracer are validated with AMPEP (Aircraft Measurement of chemical Processing Export fluxes of Pollutants over the UK) CO aircraft measurements and are shown to agree impressively well. Budget calculations of tracers are performed in order to determine the relative importance of these ventilation processes. The sea breeze circulation was found to ventilate 26% of the boundary layer tracer by sunset of which 2% was above 2km. A combination of the sea breeze circulation and turbulent mixing ventilated 46% of the boundary layer tracer, of which 10% was above 2km. Finally, the sea breeze circulation, turbulent mixing and shallow convection processes together ventilated 52% of the tracer into the free troposphere, of which 26% was above 2km. Hence this study shows that signicant ventilation of the boundary layer can occur during high pressure events; turbulent mixing and convection processes can double the amount of pollution ventilated from the boundary layer.

  9. Tailored surface engineering of pigments by layer-by-layer coating.

    Science.gov (United States)

    Dähne, Lars; Schneider, Julia; Lewe, Dirk; Petersen, Henrik

    2015-01-01

    We have evaluated the feasibility of layer-by-layer encapsulation technology for the improvement of dye pigments used for tattoos or permanent make-up. The formation of core-shell structures is possible by coating pigments with thin films of several different polyelectrolytes using this technology. The physicochemical surface properties, such as charge density and chemical functionality, can be reproducibly varied in a wide range. Tailoring the surface properties independently from the pigment core allows one to control the rheological behaviour of pigment suspensions, to prevent aggregation between different pigments, to reduce the cytotoxicity, and to influence the response of phagocytes in order to have similar or the same uptake and bioclearance for all pigments. These properties determine the durability and colour tone stability of tattoos and permanent make-up.

  10. Oxygen-reducing catalyst layer

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O' Neill, David G. (Lake Elmo, MN)

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  11. Polymer-Layer Silicate Nanocomposites

    DEFF Research Database (Denmark)

    Potarniche, Catalina-Gabriela

    Nowadays, some of the material challenges arise from a performance point of view as well as from recycling and biodegradability. Concerning these aspects, the development of polymer layered silicate nanocomposites can provide possible solutions. This study investigates how to obtain polymer layered...... silicate nanocomposites and their structure-properties relationship. In the first part of the thesis, thermoplastic layered silicates were obtained by extrusion. Different modification methods were tested to observe the intercalation treatment effect on the silicate-modifier interactions. The silicate...

  12. Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2015-11-01

    In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.

  13. The growth of AgGaTe{sub 2} layers on glass substrates with Ag{sub 2}Te buffer layer by closed space sublimation method

    Energy Technology Data Exchange (ETDEWEB)

    Uruno, Aya; Usui, Ayaka; Takeda, Yuji; Inoue, Tomohiro [Department of Electrical Engineering and Bioscience, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051 (Japan)

    2015-06-15

    The AgGaTe{sub 2} layer growth was performed by the closed space sublimation method on the Mo/glass substrate. The Ag{sub 2}Te buffer layer was inserted between AgGaTe{sub 2} and Mo layers, to improve the quality of grown layers. Crystallographic properties were analyzed by x-ray diffraction (XRD), and the surface morphologies were analyzed by scanning electron microscopy (SEM). The Ag{sub 2}Te layer grown on the Mo/glass exhibited a membrane filter structure from the SEM observation. XRD spectra of layers grown with and without the buffer layer were compared. The AgGaTe{sub 2} layer with the Ag{sub 2}Te buffer layer exhibited peaks originating from AgGaTe{sub 2}, and a very strong diffraction peak of 112 was observed. On the other hand, it was cleared that the layer grown without the buffer layer exhibited no strong peaks associated with AgGaTe{sub 2}, but Ga-Te compounds. From this, crystallographic properties of the AgGaTe{sub 2} layer were drastically improved by the insertion of the Ag{sub 2}Te buffer layer. Moreover, the surface morphology exhibited a smooth surface when the Ag{sub 2}Te buffer layer was inserted. The nucleation site density of AgGaTe{sub 2} was probably increased since the membrane filter structure exhibited numbers of kinks at the edge. Chemical reaction between Ga and Mo was also eliminated. It was cleared that the insertion of the buffer layer and its surface morphology were an important parameter to grow high quality AgGaTe{sub 2} layers. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Sub-Transport Layer Coding

    DEFF Research Database (Denmark)

    Hansen, Jonas; Krigslund, Jeppe; Roetter, Daniel Enrique Lucani

    2014-01-01

    Packet losses in wireless networks dramatically curbs the performance of TCP. This paper introduces a simple coding shim that aids IP-layer traffic in lossy environments while being transparent to transport layer protocols. The proposed coding approach enables erasure correction while being...... oblivious to the congestion control algorithms of the utilised transport layer protocol. Although our coding shim is indifferent towards the transport layer protocol, we focus on the performance of TCP when ran on top of our proposed coding mechanism due to its widespread use. The coding shim provides gains...

  15. Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell.

    Directory of Open Access Journals (Sweden)

    Peng Gao

    Full Text Available Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment.

  16. Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell.

    Science.gov (United States)

    Gao, Peng; Liao, Zhi; Wang, Xin-Xing; Bao, Lin-Fei; Fan, Mei-Hua; Li, Xiao-Min; Wu, Chang-Wen; Xia, Shu-Wei

    2015-01-01

    Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs) pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment.

  17. Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell

    Science.gov (United States)

    Wang, Xin-xing; Bao, Lin-fei; Fan, Mei-hua; Li, Xiao-min; Wu, Chang-wen; Xia, Shu-wei

    2015-01-01

    Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs) pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment. PMID:26218932

  18. CHARGE-TRANSFER BETWEEN LAYERS IN MISFIT LAYER COMPOUNDS

    NARCIS (Netherlands)

    WIEGERS, GA

    1995-01-01

    Electron donation from MX double layers to TX(2) sandwiches, the interlayer bonding and the localization of conduction electrons in misfit layer compounds (MX)(p)(TX(2))(n) (M=Sn, Pb, Sb, Bi, rare earth metals; T=Ti, V, Cr, Nb, Ta; X=S, Se; 1.08

  19. Laser Velocimetry of Chemical Vapor Deposition Flows

    Science.gov (United States)

    1993-01-01

    Laser velocimetry (LV) is being used to measure the gas flows in chemical vapor deposition (CVD) reactors. These gas flow measurements can be used to improve industrial processes in semiconductor and optical layer deposition and to validate numerical models. Visible in the center of the picture is the graphite susceptor glowing orange-hot at 600 degrees C. It is inductively heated via the copper cool surrounding the glass reactor.

  20. Capacitive chemical sensor

    Science.gov (United States)

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  1. Tobacco and chemicals (image)

    Science.gov (United States)

    Some of the chemicals associated with tobacco smoke include ammonia, carbon dioxide, carbon monoxide, propane, methane, acetone, hydrogen cyanide and various carcinogens. Other chemicals that are associated with chewing ...

  2. Chemical Industry Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  3. Chemical Search Web Utility

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Chemical Search Web Utility is an intuitive web application that allows the public to easily find the chemical that they are interested in using, and which...

  4. Chemicals Industry Vision

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  5. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: weili.unsw@gmail.com; Varlamov, Sergey; Xue, Chaowei

    2014-09-30

    Highlights: • Crystallisation kinetic is used to analyse seed layer surface cleanliness. • Simplified RCA cleaning for the seed layer can shorten the epitaxy annealing duration. • RTA for the seed layer can improve the quality for both seed layer and epi-layer. • Epitaxial poly-Si solar cell performance is improved by RTA treated seed layer. - Abstract: This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, V{sub oc} and J{sub sc} than the one on the seed layer without RTA treatment.

  6. Studies on Synthesis and Properties of Mg-Al-nitrate Layered Double Hydroxides

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A positive Mg-Al-nitrate layered double hydroxides (LDHs) has been synthesized using a non-steady coprccipitation method. The shape, size, chemical composition, electrical property and anion exchange property of the positive nanoparticle were studied by SEM, XRD, FTIR,chemical analysis, spectroanalysis and measuring of electrophoretic mobilities. Preliminary results show the positive nanopartiele is a promising precursor ofpolymer/LDHs nanocomposite.

  7. Recovery of the Ozone Layer: The Ozone Depleting Gas Index

    Science.gov (United States)

    Hofmann, David J.; Montzka, Stephen A.

    2009-01-01

    The stratospheric ozone layer, through absorption of solar ultraviolet radiation, protects all biological systems on Earth. In response to concerns over the depletion of the global ozone layer, the U.S. Clean Air Act as amended in 1990 mandates that NASA and NOAA monitor stratospheric ozone and ozone-depleting substances. This information is critical for assessing whether the Montreal Protocol on Substances That Deplete the Ozone Layer, an international treaty that entered into force in 1989 to protect the ozone layer, is having its intended effect of mitigating increases in harmful ultraviolet radiation. To provide the information necessary to satisfy this congressional mandate, both NASA and NOAA have instituted and maintained global monitoring programs to keep track of ozone-depleting gases as well as ozone itself. While data collected for the past 30 years have been used extensively in international assessments of ozone layer depletion science, the language of scientists often eludes the average citizen who has a considerable interest in the health of Earth's protective ultraviolet radiation shield. Are the ozone-destroying chemicals declining in the atmosphere? When will these chemicals decline to pre-ozone hole levels so that the Antarctic ozone hole might disappear? Will this timing be different in the stratosphere above midlatitudes?

  8. Layer-layer competition in multiplex complex networks

    CERN Document Server

    Gómez-Gardeñes, Jesús; Gutiérrez, Gerardo; Arenas, Alex; Gómez, Sergio

    2015-01-01

    The coexistence of multiple types of interactions within social, technological and biological networks has moved the focus of the physics of complex systems towards a multiplex description of the interactions between their constituents. This novel approach has unveiled that the multiplex nature of complex systems has strong influence in the emergence of collective states and their critical properties. Here we address an important issue that is intrinsic to the coexistence of multiple means of interactions within a network: their competition. To this aim, we study a two-layer multiplex in which the activity of users can be localized in each of the layer or shared between them, favoring that neighboring nodes within a layer focus their activity on the same layer. This framework mimics the coexistence and competition of multiple communication channels, in a way that the prevalence of a particular communication platform emerges as a result of the localization of users activity in one single interaction layer. Our...

  9. Layer-by-Layer Assembly of Enzymes on Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2008-06-01

    The use of Layer-by-layer techniques for immobilizing several types of enzymes, e.g. glucose oxidase (GOx), horse radish oxidases(HRP), and choline oxidase(CHO) on carbon nanotubes and their applications for biosenseing are presented. The enzyme is immobilized on the negatively charged CNT surface by alternatively assembling a cationic polydiallyldimethyl-ammonium chloride (PDDA) layer and a enzyme layer. The sandwich-like layer structure (PDDA/enzyme/PDDA/CNT) formed by electrostatic assembling provides a favorable microenvironment to keep the bioactivity of enzyme and to prevent enzyme molecule leakage. The morphologies and electrocatalytic acitivity of the resulted enzyme film were characterized using TEM and electrochemical techniques, respectively. It was found that these enzyme-based biosensors are very sensitive, selective for detection of biomolecules, e.g. glucose, choline.

  10. Intercalation Assembly Method and Intercalation Process Control of Layered Intercalated Functional Materials

    Institute of Scientific and Technical Information of China (English)

    LI Kaitao; WANG Guirong; LI Dianqing; LIN Yanjun; DUAN Xue

    2013-01-01

    Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years.Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beijing University of Chemical Technology,the principle for the design of controlled intercalation processes in the light of future production processing requirements has been developed.Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions.

  11. Study of Cu-Inhibitor State for Post-Chemical Mechanical Polishing Cleaning

    Science.gov (United States)

    Harada, Ken; Ito, Atsushi; Kawase, Yasuhiro; Suzuki, Toshiyuki; Hara, Makoto; Sakae, Rina; Kimura, Chiharu; Aoki, Hidemitsu

    2011-05-01

    In order to reduce corrosion on the Cu surface in post-chemical mechanical polishing (CMP) cleaning, controlling the state of inhibitor layers is indispensable. In this study, to investigate the behavior of inhibitor layers in the cleaning process, Cu-benzotriazole (BTA) layers on CuOX were analyzed by electrochemical measurements and surface analysis. Electrochemical measurements revealed that Cu(I)-BTA can prevent corrosion more efficiently than Cu(II)-BTA, and surface analysis revealed that the Cu(I)-BTA layer is thin, whereas the Cu(II)-BTA layer is bulky. The Cu(I)-BTA layer is effective in preventing corrosion of the Cu surface.

  12. Chemical Physics Courses.

    Science.gov (United States)

    Lee, J.; Munn, R. W.

    1978-01-01

    This is a guide to the chemical physics major. The scope of chemical physics is presented, along with the general features of course contents and possible course structures. This information was derived from a survey of British universities and colleges offering undergraduate degree courses in chemical physics. (BB)

  13. Chemical Recycle of Plastics

    Directory of Open Access Journals (Sweden)

    Sara Fatima

    2014-11-01

    Full Text Available Various chemical processes currently prevalent in the chemical industry for plastics recycling have been discussed. Possible future scenarios in chemical recycling have also been discussed. Also analyzed are the effects on the environment, the risks, costs and benefits of PVC recycling. Also listed are the various types of plastics and which plastics are safe to use and which not after rcycle

  14. Chemicals for worldwide aquaculture

    Science.gov (United States)

    Schnick, R.A.

    1991-01-01

    Regulations and therapeutants or other safe chemicals that are approved or acceptable for use in the aquaculture industry in the US, Canada, Europe and Japan are presented, discussing also compounds that are unacceptable for aquaculture. Chemical use practices that could affect public health are considered and details given regarding efforts to increase the number of registered and acceptable chemicals.

  15. XTEM and AES study of the microstructure for high density Co-Cr-Nb-Pt double layered perpendicular magnetic recording media

    Energy Technology Data Exchange (ETDEWEB)

    Safran, G. E-mail: safran@ait.pref.akita.jp; Ariake, Jun; Honda, Naoki; Ouchi, Kazuhiro; Czigany, Zsolt; Barna, P.B.; Menyhard, M.; Radnoczi, G

    2001-10-01

    A Ti intermediate layer between permalloy and Co-Cr-Nb-Pt storage layer improved the magnetic properties of double layered media. Cr segregation, Ni and Co enrichment was found within the Ti layer by AES. XTEM study revealed reduced crystallite size of Co-Cr-Nb-Pt due to nucleation in an amorphous phase formed as a result of a chemical interaction at the interface of the Ti and permalloy layers.

  16. Chromized Layers Produced on Steel Surface by Means of CVD

    Institute of Scientific and Technical Information of China (English)

    KASPRZYCKA Ewa; BOGDA(N)SKI Bogdan; JEZIORSKI Leopold; JASI(N)SKI J(o)zef; TORBUS Roman

    2004-01-01

    Chemical vapour deposition of chromium on the surface of carbon steel has been investigated using a novel CVD method that combines the low cost of pack cementation method with advantages of vacuum technique. The processes have been performed in chromium chlorides atmosphere at a low pressure range from 1 to 800 hPa, the treatment temperature 800 to 950℃. Studies of the layers thickness, the phase composition, Cr, C and Fe depth profiles in diffusion zone have been conducted. The effect of the vacuum level during the process and the process parameters such as time and temperature on layer diffusion growth on the carbon steel surface has been investigated.

  17. Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications.

    Science.gov (United States)

    Choi, Wansuk; Choi, Jungkyu; Bang, Joona; Lee, Jung-Hyun

    2013-12-11

    Improving membrane durability associated with fouling and chlorine resistance remains one of the major challenges in desalination membrane technology. Here, we demonstrate that attractive features of graphene oxide (GO) nanosheets such as high hydrophilicity, chemical robustness, and ultrafast water permeation can be harnessed for a dual-action barrier coating layer that enhances resistance to both fouling and chlorine-induced degradation of polyamide (PA) thin-film composite (TFC) membranes while preserving their separation performance. GO multilayers were coated on the PA-TFC membrane surfaces via layer-by-layer (LbL) deposition of oppositely charged GO nanosheets. Consequently, it was shown that the conformal GO coating layer can increase the surface hydrophilicity and reduce the surface roughness, leading to the significantly improved antifouling performance against a protein foulant. It was also demonstrated that the chemically inert nature of GO nanosheets enables the GO coating layer to act as a chlorine barrier for the underlying PA membrane, resulting in a profound suppression of the membrane degradation in salt rejection upon chlorine exposure.

  18. Investigation of crystallization behavior of CIG-Se bi-layer thin films.

    Science.gov (United States)

    Park, Mi Sun; Sung, Shi-Joon; Kim, Dae-Hwan; Kang, Jin-Kyu

    2012-04-01

    Copper indium gallium diselenide (CIGSe) thin film was fabricated via a thermal treatment of GIG-Se bi-layer thin films. A CIG layer was prepared first, by a chemical solution deposition (CSD) process. The Se layer was deposited separately on the CIG layer by evaporation. The GIG-Se bi-layer then underwent a thermal treatment to cause a reaction between the two layers. In order to investigate the mechanism of CIG-Se bi-layer crystallization, the thermal treatment temperature was varied. The properties of the prepared CIGSe2 thin films were analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometry (EDS), and UV-visible spectrophotometry.

  19. Formation mechanism of the protective layer in a blast furnace hearth

    Science.gov (United States)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Xu, Meng; Liu, Feng

    2015-10-01

    A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium- bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.

  20. Formation mechanism of the protective layer in a blast furnace hearth

    Institute of Scientific and Technical Information of China (English)

    Ke-xin Jiao; Jian-liang Zhang; Zheng-jian Liu; Meng Xu; Feng Liu

    2015-01-01

    A variety of techniques, such as chemical analysis, scanning electron microscopy?energy dispersive spectroscopy, and X-ray dif-fraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of ti-tanium-bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.

  1. An optimized multilayer structure of CdS layer for CdTe solar cells application

    Energy Technology Data Exchange (ETDEWEB)

    Han Junfeng, E-mail: pkuhjf@gmail.com [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Road Yiheyuan 5, Beijing 100871 (China); Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Liao Cheng, E-mail: Cliao@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Road Yiheyuan 5, Beijing 100871 (China); Jiang Tao [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Road Yiheyuan 5, Beijing 100871 (China); Spanheimer, C.; Haindl, G.; Fu, Ganhua; Krishnakumar, V. [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Zhao Kui [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Road Yiheyuan 5, Beijing 100871 (China); Klein, A.; Jaegermann, W. [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany)

    2011-04-28

    Research highlights: > Two different methods to prepare CdS films for CdTe solar cells. > A new multilayer structure of window layer for the CdTe solar cell. > Thinner CdS window layer for the solar cell than the standard CdS layer. > Higher performance of solar cells based on the new multilayer structure. - Abstract: CdS layers grown by 'dry' (close space sublimation) and 'wet' (chemical bath deposition) methods are deposited and analyzed. CdS prepared with close space sublimation (CSS) has better crystal quality, electrical and optical properties than that prepared with chemical bath deposition (CBD). The performance of CdTe solar cell based on the CSS CdS layer has higher efficiency than that based on CBD CdS layer. However, the CSS CdS suffers from the pinholes. And consequently it is necessary to prepare a 150 nm thin film for CdTe/CdS solar cell. To improve the performance of CdS/CdTe solar cells, a thin multilayer structure of CdS layer ({approx}80 nm) is applied, which is composed of a bottom layer (CSS CdS) and a top layer (CBD CdS). That bi-layer film can allow more photons to pass through it and significantly improve the short circuit current of the CdS/CdTe solar cells.

  2. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2012-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series presents contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study o

  3. Advances in chemical Physics

    CERN Document Server

    Rice, Stuart A

    2011-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series offers contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of che

  4. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2014-01-01

    Advances in Chemical Physics is the only series of volumes available that explores the cutting edge of research in chemical physics. This is the only series of volumes available that presents the cutting edge of research in chemical physics.Includes contributions from experts in this field of research.Contains a representative cross-section of research that questions established thinking on chemical solutions.Structured with an editorial framework that makes the book an excellent supplement to an advanced graduate class in physical chemistry or chemical physics.

  5. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2011-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series offers contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of che

  6. The mechanical robustness of atomic-layer- and molecular-layer-deposited coatings on polymer substrates

    Science.gov (United States)

    Miller, David C.; Foster, Ross R.; Zhang, Yadong; Jen, Shih-Hui; Bertrand, Jacob A.; Lu, Zhixing; Seghete, Dragos; O'Patchen, Jennifer L.; Yang, Ronggui; Lee, Yung-Cheng; George, Steven M.; Dunn, Martin L.

    2009-05-01

    The mechanical robustness of atomic layer deposited alumina and recently developed molecular layer deposited aluminum alkoxide ("alucone") films, as well as laminated composite films composed of both materials, was characterized using mechanical tensile tests along with a recently developed fluorescent tag to visualize channel cracks in the transparent films. All coatings were deposited on polyethylene naphthalate substrates and demonstrated a similar evolution of damage morphology according to applied strain, including channel crack initiation, crack propagation at the critical strain, crack densification up to saturation, and transverse crack formation associated with buckling and delamination. From measurements of crack density versus applied tensile strain coupled with a fracture mechanics model, the mode I fracture toughness of alumina and alucone films was determined to be KIC=1.89±0.10 and 0.17±0.02 MPa m0.5, respectively. From measurements of the saturated crack density, the critical interfacial shear stress was estimated to be τc=39.5±8.3 and 66.6±6.1 MPa, respectively. The toughness of nanometer-scale alumina was comparable to that of alumina thin films grown using other techniques, whereas alucone was quite brittle. The use of alucone as a spacer layer between alumina films was not found to increase the critical strain at fracture for the composite films. This performance is attributed to the low toughness of alucone. The experimental results were supported by companion simulations using fracture mechanics formalism for multilayer films. To aid future development, the modeling method was used to study the increase in the toughness and elastic modulus of the spacer layer required to render improved critical strain at fracture. These results may be applied to a broad variety of multilayer material systems composed of ceramic and spacer layers to yield robust coatings for use in chemical barrier and other applications.

  7. The layer by layer selective laser synthesis of ruby

    Directory of Open Access Journals (Sweden)

    Vlasova M.

    2010-01-01

    Full Text Available In the work, features of the layer-by-layer selective laser synthesis (SLS of ruby from an Al2O3-Cr2O3 mixture are considered depending on the irradiation power, the laser beam traverse speed, the height and amount of the backfill of powder layers. It has been established that, under irradiation, a track consisting of polycrystalline textured ruby forms. The morphology of the surface of the track and its crystalline structure are determined by the irradiation conditions.

  8. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    Science.gov (United States)

    Li, Wei; Varlamov, Sergey; Xue, Chaowei

    2014-09-01

    This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, Voc and Jsc than the one on the seed layer without RTA treatment.

  9. Chemically mediated diffusion of d-metals and B through Si and agglomeration at Si-on-Mo interfaces

    NARCIS (Netherlands)

    T. Tsarfati,; Zoethout, E.; van de Kruijs, R.; F. Bijkerk,

    2009-01-01

    Chemical diffusion and interlayer formation in thin layers and at interfaces is of increasing influence in nanoscopic devices, such as nanoelectronics and reflective multilayer optics. Chemical diffusion and agglomeration at interfaces of thin Ru, Mo, Si, and B4C layers have been studied with x-ray

  10. Microfluidic electrochemical device and process for chemical imaging and electrochemical analysis at the electrode-liquid interface in-situ

    Science.gov (United States)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li; Zhu, Zihua; Marshall, Matthew J.

    2016-03-01

    A microfluidic electrochemical device and process are detailed that provide chemical imaging and electrochemical analysis under vacuum at the surface of the electrode-sample or electrode-liquid interface in-situ. The electrochemical device allows investigation of various surface layers including diffuse layers at selected depths populated with, e.g., adsorbed molecules in which chemical transformation in electrolyte solutions occurs.

  11. Development of Novel Two-dimensional Layers, Alloys and Heterostructures

    Science.gov (United States)

    Liu, Zheng

    2015-03-01

    The one-atom-think graphene has fantastic properties and attracted tremendous interests in these years, which opens a window towards various two-dimensional (2D) atomic layers. However, making large-size and high-quality 2D layers is still a great challenge. Using chemical vapor deposition (CVD) method, we have successfully synthesized a wide varieties of highly crystalline and large scale 2D atomic layers, including h-BN, metal dichalcogenides e.g. MoS2, WS2, CdS, GaSe and MoSe2 which belong to the family of binary 2D materials. Ternary 2D alloys including BCN and MoS2xSe2 (1 - x) are also prepared and characterized. In addition, synthesis of 2D heterostructures such as vertical and lateral graphene/h-BN, vertical and lateral TMDs are also demonstrated. Complementary to CVD grown 2D layers, 2D single-crystal (bulk) such as Phosphorene (P), WTe2, SnSe2, PtS2, PtSe2, PdSe2, WSe2xTe2 (1 - x), Ta2NiS5andTa2NiSe5 are also prepared by solid reactions. There work provide a better understanding of the atomic layered materials in terms of the synthesis, atomic structure, alloying and their physical properties. Potential applications of these 2D layers e.g. optoelectronic devices, energy device and smart coating have been explored.

  12. Synthesis, properties, and dispersion of few-layer graphene fluoride.

    Science.gov (United States)

    Grayfer, Ekaterina D; Makotchenko, Viktor G; Kibis, Lidiya S; Boronin, Andrei I; Pazhetnov, Egor M; Zaikovskii, Vladimir I; Fedorov, Vladimir E

    2013-09-01

    We have fluorinated few-layer graphene (FLG) by using a low-temperature fluorination route with gaseous ClF3. The treatment process resulted in a new graphene derivative with a finite approximate composition of C2F. TEM studies showed that the product consisted of thin transparent sheets with no more than 10 fluorographene layers stacked together. Spectroscopic methods revealed a predominantly covalent nature of the C-F bonds in the as-synthesized product and we found no evidence for the existence of so-called "semi-ionic" C-F bonds, as observed in bulk C(x)F. In contrast to the case of graphite and typical (thick) expanded graphites, fluorination of FLG did not lead to the intercalation of ClF3 molecules, owing to the lack of a 3D layered structure. The approximate "critical" number of graphene layers that were necessary to form a phase of intercalated compound was estimated to be more than 12, thus providing a "chemical proof" of the difference between the properties of few-layered graphenes and bulk graphites. Fluorographene C2F was successfully delaminated into thinner layers in organic solvents, which is an important property for its integration into electronic devices, nanohybrids, etc.

  13. Self-assembled Nano-layering at the Adhesive interface.

    Science.gov (United States)

    Yoshida, Y; Yoshihara, K; Nagaoka, N; Hayakawa, S; Torii, Y; Ogawa, T; Osaka, A; Meerbeek, B Van

    2012-04-01

    According to the 'Adhesion-Decalcification' concept, specific functional monomers within dental adhesives can ionically interact with hydroxyapatite (HAp). Such ionic bonding has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to manifest in the form of self-assembled 'nano-layering'. However, it remained to be explored if such nano-layering also occurs on tooth tissue when commercial MDP-containing adhesives (Clearfil SE Bond, Kuraray; Scotchbond Universal, 3M ESPE) were applied following common clinical application protocols. We therefore characterized adhesive-dentin interfaces chemically, using x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), and ultrastructurally, using (scanning) transmission electron microscopy (TEM/STEM). Both adhesives revealed nano-layering at the adhesive interface, not only within the hybrid layer but also, particularly for Clearfil SE Bond (Kuraray), extending into the adhesive layer. Since such self-assembled nano-layering of two 10-MDP molecules, joined by stable MDP-Ca salt formation, must make the adhesive interface more resistant to biodegradation, it may well explain the documented favorable clinical longevity of bonds produced by 10-MDP-based adhesives.

  14. D0 layer 0 innermost layer of silicon microstrip tracker

    Energy Technology Data Exchange (ETDEWEB)

    Hanagaki, K.; /Fermilab

    2006-01-01

    A new inner layer silicon strip detector has been built and will be installed in the existing silicon microstrip tracker in D0. They report on the motivation, design, and performance of this new detector.

  15. Variability of Biomass Burning Aerosols Layers and Near Ground

    Science.gov (United States)

    Vasilescu, Jeni; Belegante, Livio; Marmureanu, Luminita; Toanca, Flori

    2016-06-01

    The aim of this study is to characterize aerosols from both chemical and optical point of view and to explore the conditions to sense the same particles in elevated layers and at the ground. Three days of continuous measurements using a multi-wavelength depolarization lidar(RALI) and a C-ToF-AMS aerosol mass spectrometer are analyzed. The presence of smoke particles was assessed in low level layers from RALI measurements. Chemical composition of submicronic volatile/semi-volatile aerosols at ground level was monitored by the CTOF AMS Several episodes of biomass burning aerosols have been identified by both techniques due to the presence of specific markers (f60, linear particle depolarization ratio, Ängström exponent).

  16. Effect of Mo-doping concentration on the physical behaviour of sprayed ZnO layers

    Science.gov (United States)

    Reddy, T. Sreenivasulu; Reddy, M. Vasudeva; Reddy, K. T. Ramakrishna

    2015-06-01

    Mo-doped zinc oxide layers (MZO) have been prepared on cleaned glass substrates by chemical spray pyrolysis technique by varying Mo-doping concentration in the range, 0 - 5 at. %. The X-ray diffraction studies revealed that all the as prepared layers were polycrystalline in nature and exhibited wurtzite structure. The layers prepared with lower Mo-doping concentration (2 at. %), the films showed the (002) plane as the dominant peak. The optical analysis indicated that all the layers had an average optical transmittance of 80% in the visible region and the evaluated band gap varied in the range, 3.28 - 3.50 eV.

  17. Fabrication and Measurements of Hoop Strength of a Multi-Layered SiC Composite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daejong; Lee, Jongmin; Kim, Weon Ju; Park, Ji Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, the influence of the winding patterns of the SiC fiber on the fiber volume fraction and hoop strength were investigated. Silicon carbide has a low neutron absorption cross section, a high melting point, and low chemical interaction, making it possible to use as fuel cladding in light water reactors. A multi-layered SiC composite tube as the LWR fuel cladding is composed of the monolith SiC inner layer, SiC/SiC composite intermediate layer, and monolith SiC outer layer.

  18. Quantifying the growth of individual graphene layers by in situ environmental transmission electron microscopy

    DEFF Research Database (Denmark)

    Kling, Jens; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2016-01-01

    The growth dynamics of layered carbon is studied by means of in situ transmission electron microscopy in order to obtain a deeper insight into the growth by chemical vapor deposition, which at present is the technique of choice for growing layered carbon. In situ growth of layered carbon structures...... on nickel using acetylene as carbon precursor gas is studied in the electron microscope at various gas pressures. By following the growth of individual graphene layers on the Ni surface, local growth rates are determined as a function of precursor pressure. Two growth regimes are identified, an initial...

  19. Zintl layer formation during perovskite atomic layer deposition on Ge (001)

    Science.gov (United States)

    Hu, Shen; Lin, Edward L.; Hamze, Ali K.; Posadas, Agham; Wu, HsinWei; Smith, David J.; Demkov, Alexander A.; Ekerdt, John G.

    2017-02-01

    Using in situ X-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and density functional theory, we analyzed the surface core level shifts and surface structure during the initial growth of ABO3 perovskites on Ge (001) by atomic layer deposition, where A = Ba, Sr and B = Ti, Hf, Zr. We find that the initial dosing of the barium- or strontium-bis(triisopropylcyclopentadienyl) precursors on a clean Ge surface produces a surface phase that has the same chemical and structural properties as the 0.5-monolayer Ba Zintl layer formed when depositing Ba by molecular beam epitaxy. Similar binding energy shifts are found for Ba, Sr, and Ge when using either chemical or elemental metal sources. The observed germanium surface core level shifts are consistent with the flattening of the initially tilted Ge surface dimers using both molecular and atomic metal sources. Similar binding energy shifts and changes in dimer tilting with alkaline earth metal adsorption are found with density functional theory calculations. High angle angular dark field scanning transmission microscopy images of BaTiO3, SrZrO3, SrHfO3, and SrHf0.55Ti0.45O3 reveal the location of the Ba (or Sr) atomic columns between the Ge dimers. The results imply that the organic ligands dissociate from the precursor after precursor adsorption on the Ge surface, producing the same Zintl template critical for perovskite growth on Group IV semiconductors during molecular beam epitaxy.

  20. Boundary layers in stochastic thermodynamics.

    Science.gov (United States)

    Aurell, Erik; Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo

    2012-02-01

    We study the problem of optimizing released heat or dissipated work in stochastic thermodynamics. In the overdamped limit these functionals have singular solutions, previously interpreted as protocol jumps. We show that a regularization, penalizing a properly defined acceleration, changes the jumps into boundary layers of finite width. We show that in the limit of vanishing boundary layer width no heat is dissipated in the boundary layer, while work can be done. We further give an alternative interpretation of the fact that the optimal protocols in the overdamped limit are given by optimal deterministic transport (Burgers equation).