WorldWideScience

Sample records for chemically bonded phases

  1. Persistent local chemical bonds in intermetallic phase formation

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yanwen [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian, Xiufang, E-mail: xfbian@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Qin, Xubo [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang, Shuo; Huang, Yuying [Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2014-05-01

    We found a direct evidence for the existence of the local chemical Bi–In bonds in the BiIn{sub 2} melt. These bonds are strong and prevail, dominating the structure evolution of the intermetallic clusters. From the local structure of the melt-quenched BiIn{sub 2} ribbon, the chemical Bi–In bonds strengthen compared with those in the equilibrium solidified alloy. The chemical bonds in BiIn{sub 2} melt retain to solid during a rapid quenching process. The results suggest that the intermetallic clusters in the melt evolve into the as-quenched intermetallic phase, and the intermetallic phase originates from the chemical bonds between unlike atoms in the melt. The chemical bonds preserve the chemical ordered clusters and dominate the clusters evolution.

  2. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot

    2014-01-01

    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  3. Layer-by-layer fabrication of chemical-bonded graphene coating for solid-phase microextraction.

    Science.gov (United States)

    Zhang, Suling; Du, Zhuo; Li, Gongke

    2011-10-01

    A new fabrication strategy of the graphene-coated solid-phase microextraction (SPME) fiber is developed. Graphite oxide was first used as starting coating material that covalently bonded to the fused-silica substrate using 3-aminopropyltriethoxysilane (APTES) as cross-linking agent and subsequently deoxidized by hydrazine to give the graphene coating in situ. The chemical bonding between graphene and the silica fiber improve its chemical stability, and the obtained fiber was stable enough for more than 150 replicate extraction cycles. The graphene coating was wrinkled and folded, like the morphology of the rough tree bark. Its performance is tested by headspace (HS) SPME of polycyclic aromatic hydrocarbons (PAHs) followed by GC/MS analysis. The results showed that the graphene-coated fiber exhibited higher enrichment factors (EFs) from 2-fold for naphthalene to 17-fold for B(b)FL as compared to the commercial polydimethylsioxane (PDMS) fiber, and the EFs increased with the number of condensed rings of PAHs. The strong adsorption affinity was believed to be mostly due to the dominant role of π-π stacking interaction and hydrophobic effect, according to the results of selectivity study for a variety of organic compounds including PAHs, the aromatic compounds with different substituent groups, and some aliphatic hydrocarbons. For PAHs analysis, the graphene-coated fiber showed good precision (<11%), low detection limits (1.52-2.72 ng/L), and wide linearity (5-500 ng/L) under the optimized conditions. The repeatability of fiber-to-fiber was 4.0-10.8%. The method was applied to simultaneous analysis of eight PAHs with satisfactory recoveries, which were 84-102% for water samples and 72-95% for soil samples, respectively.

  4. YNi and its hydrides: Phase stabilities, electronic structures and chemical bonding properties from first principles

    International Nuclear Information System (INIS)

    Matar, S.F.; Nakhl, M.; Al Alam, A.F.; Ouaini, N.; Chevalier, B.

    2010-01-01

    Graphical abstract: Base centered orthorhombic YNiH X structure. For x = 3, only H1 and H2 are present. Highest hydrogen content YNiH 4 is obtained when H3 are added. - Abstract: Within density functional theory, establishing the equations of states of YNi in two different controversial structures in the literature, leads to determine the orthorhombic FeB-type as the ground state one with small energy difference. For YNiH 3 and YNiH 4 hydrides crystallizing in the orthorhombic CrB-type structure the geometry optimization and the ab initio determination of the H atomic positions show that the stability of hydrogen decreases from the tri- to the tetra- hydride. New states brought by hydrogen within the valence band lead to its broadening and to enhanced localization of metal density of states. The chemical bonding analysis shows a preferential Ni-H bonding versus Y-H.

  5. YNi and its hydrides: Phase stabilities, electronic structures and chemical bonding properties from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Matar, S.F., E-mail: matar@icmcb-bordeaux.cnrs.fr [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France); Nakhl, M. [Universite Libanaise, Laboratoire de Chimie-Physique des Materiaux LCPM, Fanar (Lebanon); Al Alam, A.F.; Ouaini, N. [Universite Saint-Esprit de Kaslik, Faculte des Sciences et de Genie Informatique, Jounieh (Lebanon); Chevalier, B. [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France)

    2010-11-25

    Graphical abstract: Base centered orthorhombic YNiH{sub X} structure. For x = 3, only H1 and H2 are present. Highest hydrogen content YNiH{sub 4} is obtained when H3 are added. - Abstract: Within density functional theory, establishing the equations of states of YNi in two different controversial structures in the literature, leads to determine the orthorhombic FeB-type as the ground state one with small energy difference. For YNiH{sub 3} and YNiH{sub 4} hydrides crystallizing in the orthorhombic CrB-type structure the geometry optimization and the ab initio determination of the H atomic positions show that the stability of hydrogen decreases from the tri- to the tetra- hydride. New states brought by hydrogen within the valence band lead to its broadening and to enhanced localization of metal density of states. The chemical bonding analysis shows a preferential Ni-H bonding versus Y-H.

  6. Chemically bonded carbon nanotubes on modified gold substrate as novel unbreakable solid phase microextraction fiber

    International Nuclear Information System (INIS)

    Bagheri, H.; Ayazi, Z.; Sistani, H.

    2011-01-01

    A new technique is introduced for preparation of an unbreakable fiber using gold wire as a substrate for solid phase microextraction (SPME). A gold wire is used as a solid support, onto which a first film is deposited that consists of a two-dimensional polymer obtained by hydrolysis of a self-assembled monolayer of 3-(trimethoxysilyl)-1-propanthiol. This first film is covered with a layer of 3-(triethoxysilyl)-propylamine. Next, a stationary phase of oxidized multi-walled carbon nanotubes was chemically bound to the surface. The synthetic strategy was verified by Fourier transform infrared spectroscopy and scanning electron microscopy. Thermal stability of new fiber was examined by thermogravimetric analysis. The applicability of the novel coating was verified by its employment as a SPME fiber for isolation of diazinon and fenthion, as model compounds. Parameters influencing the extraction process were optimized to result in limits of detection as low as 0.2 ng mL -1 for diazinon, and 0.3 ng mL -1 for fenthion using the time-scheduled selected ion monitoring mode. The method was successfully applied to real water, and the recoveries for spiked samples were 104% for diazinon and 97% for fenthion. (author)

  7. Phase transitions in liquids with directed intermolecular bonding

    OpenAIRE

    Son, L.; Ryltcev, R.

    2005-01-01

    Liquids with quasi - chemical bonding between molecules are described in terms of vertex model. It is shown that this bonding results in liquid - liquid phase transition, which occurs between phases with different mean density of intermolecular bonds. The transition may be suggested to be a universal phenomena for those liquids.

  8. Several new phases in RE-Mg-Ge systems (RE = rare earth metal) - syntheses, structures, and chemical bonding

    International Nuclear Information System (INIS)

    Suen, Nian-Tzu; Bobev, Svilen

    2012-01-01

    Reported are the synthesis and structural characterization of Ce_5Mg_8Ge_8 (its own structure type), CeMg_2_-_xGe_2_+_x (BaAl_4-type structure), RE_4Mg_7Ge_6 (RE = Ce-Nd, Sm; La_4Mg_7Ge_6-type structure), and RE_4Mg_5Ge_6 (RE = Ce, Pr; Tm_4Zn_5Ge_6-type structure). The structures of these compounds have been established by single-crystal and powder X-ray diffraction. These compounds are closely related to each other not only in their chemical compositions but also in their structures. A common structural feature of all are MgGe_4 tetrahedra, which are connected by corner- and/or edge-sharing into complex polyanionic frameworks with the rare-earth metal atoms filling the ''empty'' space. The structures are compared to known types of structures, and we have investigated the chemical bonding in Ce_5Mg_8Ge_8 with electronic structure calculations, which were carried out by the tight-bonding linear muffin-tin orbital (TB-LMTO) method. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. A Comprehensive Study on the Electronic State of Hydrogen in α-Phase PdH(D)x-Does a Chemical Bond Between Pd and H(D) Exist?

    Science.gov (United States)

    Dekura, Shun; Kobayashi, Hirokazu; Ikeda, Ryuichi; Maesato, Mitsuhiko; Yoshino, Haruka; Ohba, Masaaki; Ishimoto, Takayoshi; Kawaguchi, Shogo; Kubota, Yoshiki; Yoshioka, Satoru; Matsumura, Syo; Sugiyama, Takeharu; Kitagawa, Hiroshi

    2018-06-12

    The palladium(Pd)-hydrogen(H) system is one of the most famous hydrogen storage systems. Although there has been much research on β-phase PdH(D)x, we comprehensively investigated the nature of the interaction between Pd and H(D) in α-phase PdH(D)x (x H(D) chemical bond for the first time, by various in situ experimental techniques and first-principles theoretical calculations. The lattice expansion by H(D) dissolution in the α-phase lattice suggests the existence of interaction between Pd and H(D). The decrease of magnetic susceptibility and the increase of electrical resistivity indicate that the electronic states are changed by the H(D) dissolution in the α phase. In situ solid-state 1H and 2H NMR results and first-principles theoretical calculations revealed that a Pd-H(D) chemical bond exists in the α phase, but the bonding character of the Pd-H(D) chemical bond in the α phase is quite different from that in the β phase; the nature of the Pd-H(D) chemical bond in the α phase is a localized covalent bond whereas that in the β phase is a metallic bond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Solvent-free thermoplastic-poly(dimethylsiloxane) bonding mediated by UV irradiation followed by gas-phase chemical deposition of an adhesion linker

    Science.gov (United States)

    Ahn, S. Y.; Lee, N. Y.

    2015-07-01

    Here, we introduce a solvent-free strategy for bonding various thermoplastic substrates with poly(dimethylsiloxane) (PDMS) using ultraviolet (UV) irradiation followed by the gas-phase chemical deposition of aminosilane on the UV-irradiated thermoplastic substrates. The thermoplastic substrates were first irradiated with UV for surface hydrophilic treatment and were then grafted with vacuum-evaporated aminosilane, where the alkoxysilane side reacted with the oxidized surface of the thermoplastic substrate. Next, the amine-terminated thermoplastic substrates were treated with corona discharge to oxidize the surface and were bonded with PDMS, which was also oxidized via corona discharge. The two substrates were then hermetically sealed and pressed under atmospheric pressure for 30 min at 60 °C. This process enabled the formation of a robust siloxane bond (Si-O-Si) between the thermoplastic substrate and PDMS under relatively mild conditions using an inexpensive and commercially available UV lamp and Tesla coil. Various thermoplastic substrates were examined for bonding with PDMS, including poly(methylmethacrylate) (PMMA), polycarbonate (PC), poly(ethyleneterephthalate) (PET) and polystyrene (PS). Surface characterizations were performed by measuring the contact angle and performing x-ray photoelectron spectroscopy analysis, and the bond strength was analyzed by conducting various mechanical force measurements such as pull, delamination, leak and burst tests. The average bond strengths for the PMMA-PDMS, PC-PDMS, PET-PDMS and PS-PDMS assemblies were measured at 823.6, 379.3, 291.2 and 229.0 kPa, respectively, confirming the highly reliable performance of the introduced bonding strategy.

  11. The chemical bond in inorganic chemistry the bond valence model

    CERN Document Server

    Brown, I David

    2016-01-01

    The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.

  12. Structure of adsorbed monolayers. The surface chemical bond

    International Nuclear Information System (INIS)

    Somorjai, G.A.; Bent, B.E.

    1984-06-01

    This paper attempts to provide a summary of what has been learned about the structure of adsorbed monolayers and about the surface chemical bond from molecular surface science. While the surface chemical bond is less well understood than bonding of molecules in the gas phase or in the solid state, our knowledge of its properties is rapidly accumulating. The information obtained also has great impact on many surface science based technologies, including heterogeneous catalysis and electronic devices. It is hoped that much of the information obtained from studies at solid-gas interfaces can be correlated with molecular behavior at solid-liquid interfaces. 31 references, 42 figures, 1 table

  13. A quantitative assay of cortisol in human plasma by high performance liquid chromatography using a selective chemically bonded stationary phase

    NARCIS (Netherlands)

    van den Berg, J.H.M.; Mol, C.R.; Deelder, R.S.; Thijssen, J.H.H.

    1977-01-01

    The extraction and subsequent liquid chromatographic analysis of human plasma samples for cortisol is described. Extraction and chromatography are optimized, resulting in a recovery for cortisol of 96% and a detection limit of 1 microgram cortisol in 100 ml plasma. The application of two chemically

  14. "Vibrational bonding": a new type of chemical bond is discovered.

    Science.gov (United States)

    Rhodes, Christopher J; Macrae, Roderick M

    2015-01-01

    A long-sought but elusive new type of chemical bond, occurring on a minimum-free, purely repulsive potential energy surface, has recently been convincingly shown to be possible on the basis of high-level quantum-chemical calculations. This type of bond, termed a vibrational bond, forms because the total energy, including the dynamical energy of the nuclei, is lower than the total energy of the dissociated products, including their vibrational zero-point energy. For this to be the case, the ZPE of the product molecule must be very high, which is ensured by replacing a conventional hydrogen atom with its light isotope muonium (Mu, mass = 1/9 u) in the system Br-H-Br, a natural transition state in the reaction between Br and HBr. A paramagnetic species observed in the reaction Mu +Br2 has been proposed as a first experimental sighting of this species, but definitive identification remains challenging.

  15. Silica chemically bonded N-propyl kriptofix 21 and 22 with immobilized palladium nanoparticles for solid phase extraction and preconcentration of some metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj, 75914-353 (Iran, Islamic Republic of); Niknam, Khodabakhsh, E-mail: niknam@pgu.ac.ir [Chemistry Department, Faculty of Sciences, Persian Gulf University, Bushehr, 75169 (Iran, Islamic Republic of); Zamani, Saeed; Abasi Larki, Habib [Chemistry Department, Islamic Azad University, Omidiyeh Branch, Omidiyeh (Iran, Islamic Republic of); Roosta, Mostafa [Chemistry Department, Yasouj University, Yasouj, 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2013-08-01

    Silica gel chemically bonded N-propyl kriptofix 21 (SBNPK 21) and N-propyl kriptofix 22 (SBNPK 22) and subsequently immobilized with palladium nanoparticles (PNP-SBNPK 21 and PNP-SBNPK 22) to produce two new complexing lipophilic materials. Then these novel sorbents were applied for the enrichment of some metal ions and their subsequent determination by flame atomic absorption spectroscopy (FAAS). The influences of the variables including pH, amount of solid phase, sample flow rate, eluent conditions and sample volume on the metal ion recoveries were investigated. The detection limit of proposed method was in the interval 2.1–2.3 and 1.7–2.8 ng mL{sup −1} for PNP-SBNPK 21 and PNP-SBNPK 22 respectively, while the preconcentration factor was 80 for two sorbents. The relative standard deviations of recoveries were between 1.23–1.31 and 1.28–1.49 for PNP-SBNPK 21 and PNP-SBNPK 22 respectively. The method has high sorption-preconcentration efficiency even in the presence of various interfering ions. Due to the reasonable selectivity of proposed method, the relative standard deviation of recoveries of all understudied metal ions in some complicated matrices was less than 3.0%. Highlights: • Highly selective sorbents for solid phase extraction were synthesized. • The method has been successfully applied for the determination of trace metals ions. • Excellent properties of the sorbent have been illustrated in detail.

  16. Quantum mechanical facets of chemical bonds

    International Nuclear Information System (INIS)

    Daudel, R.

    1976-01-01

    To define the concept of bond is both a central problem of quantum chemistry and a difficult one. The concept of bond appeared little by little in the mind of chemists from empirical observations. From the wave-mechanical viewpoint it is not an observable. Therefore there is no precise operator associated with that concept. As a consequence there is not a unique approach to the idea of chemical bond. This is why it is preferred to present various quantum mechanical facets, e.g. the energetic facet, the density facet, the partitioning facet and the functional facet, of that important concept. (Auth.)

  17. Thai students' mental model of chemical bonding

    Science.gov (United States)

    Sarawan, Supawadee; Yuenyong, Chokchai

    2018-01-01

    This Research was finding the viewing about concept of chemical bonding is fundamental to subsequent learning of various other topics related to this concept in chemistry. Any conceptions about atomic structures that students have will be shown their further learning. The purpose of this study is to interviews conceptions held by high school chemistry students about metallic bonding and to reveal mental model of atomic structures show according to the educational level. With this aim, the questionnaire prepared making use of the literature and administered for analysis about mental model of chemical bonding. It was determined from the analysis of answers of questionnaire the 10th grade, 11th grade and 12th grade students. Finally, each was shown prompts in the form of focus cards derived from curriculum material that showed ways in which the bonding in specific metallic substances had been depicted. Students' responses revealed that learners across all three levels prefer simple, realistic mental models for metallic bonding and reveal to chemical bonding.

  18. Chemically bonded ceramic matrix composites: Densification and conversion to diffusion bonding

    International Nuclear Information System (INIS)

    Johnson, B.R.; Guelguen, M.A.; Kriven, W.M.

    1995-01-01

    Chemically bonded ceramics appear to be a promising alternative route for near-net shape fabrication of multi-phase ceramic matrix composites (CMC's). The hydraulic (and refractory) properties of fine mono-calcium aluminate (CaAl 2 O 4 ) powders were used as the chemically bonding matrix phase, while calcia stabilized zirconia powders were the second phase material. Samples containing up to 70 wt% (55 vol%) zirconia have been successfully compacted and sintered. Various processing techniques were evaluated. Processing was optimized based on material properties, dilatometry and simultaneous thermal analysis (DTA/TGA). The physical characteristics of this novel CMC were characterized by hardness, density, and fracture toughness testing. Microstructures were evaluated by SEM and phase identification was verified using XRD

  19. Electronic structure, chemical bonding, phase stability, and ground-state properties of YNi2-x(Co/Cu)xB2C

    International Nuclear Information System (INIS)

    Ravindran, P.; Johansson, B.; Eriksson, O.

    1998-01-01

    In order to understand the role of Ni site substitution on the electronic structure and chemical bonding in YNi 2 B 2 C, we have made systematic electronic-structure studies on YNi 2 B 2 C as a function of Co and Cu substitution using the supercell approach within the local density approximation. The equilibrium volume, bulk modulus (B 0 ) and its pressure derivative (B 0 ' ), Grueneisen constant (γ G ), Debye temperature (Θ D ), cohesive energy (E c ), and heat of formation (ΔH) are calculated for YNi 2-x (Co/Cu) x B 2 C (x=0,0.5,1.0,1.5,2). From the total energy, electron-energy band structure, site decomposed density of states, and charge-density contour we have analyzed the structural stability and chemical bonding behavior of YNi 2 B 2 C as a function of Co/Cu substitution. We find that the simple rigid band model successfully explains the electronic structure and structural stability of Co/Cu substitution for Ni. In addition to studying the chemical bonding and electronic structure we present a somewhat speculative analysis of the general trends in the behavior of critical temperature for superconductivity as a function of alloying. copyright 1998 The American Physical Society

  20. The chemical bond as an emergent phenomenon.

    Science.gov (United States)

    Golden, Jon C; Ho, Vinh; Lubchenko, Vassiliy

    2017-05-07

    We first argue that the covalent bond and the various closed-shell interactions can be thought of as symmetry broken versions of one and the same interaction, viz., the multi-center bond. We use specially chosen molecular units to show that the symmetry breaking is controlled by density and electronegativity variation. We show that the bond order changes with bond deformation but in a step-like fashion, regions of near constancy separated by electronic localization transitions. These will often cause displacive transitions as well so that the bond strength, order, and length are established self-consistently. We further argue on the inherent relation of the covalent, closed-shell, and multi-center interactions with ionic and metallic bonding. All of these interactions can be viewed as distinct sectors on a phase diagram with density and electronegativity variation as control variables; the ionic and covalent/secondary sectors are associated with on-site and bond-order charge density wave, respectively, the metallic sector with an electronic fluid. While displaying a contiguity at low densities, the metallic and ionic interactions represent distinct phases separated by discontinuous transitions at sufficiently high densities. Multi-center interactions emerge as a hybrid of the metallic and ionic bond that results from spatial coexistence of delocalized and localized electrons. In the present description, the issue of the stability of a compound is that of the mutual miscibility of electronic fluids with distinct degrees of electron localization, supra-atomic ordering in complex inorganic compounds coming about naturally. The notions of electronic localization advanced hereby suggest a high throughput, automated procedure for screening candidate compounds and structures with regard to stability, without the need for computationally costly geometric optimization.

  1. Proposal of new bonding technique 'Instantaneous Liquid Phase (ILP) Bonding'

    International Nuclear Information System (INIS)

    Zhang, Yue-Chang; Nakagawa, Hiroji; Matsuda, Fukuhisa.

    1987-01-01

    A new bonding technique named ''Instantaneous Liquid Phase (ILP) bonding'' suitable mainly for welding dissimilar materials was proposed by which instantaneous melting of one or two of the faying surfaces is utilized. The processes of ILP bonding are mainly consisted of three stages, namely the first stage forming thin liquid layer by rapid heating, the second stage joining both specimens by thin liquid layer, and the third stage cooling the specimens rapidly to avoid the formation of brittle layer. The welding temperatures of the specimens to be welded in ILP bonding are generally differentiated from each other. ILP bonding was applied for a variety of combinations of dissimilar materials of aluminum, aluminum alloys, titanium, titanium alloy, carbon steel, austenitic stainless steel, copper and tungsten, and for similar materials of stainless steel and nickel-base alloy. There were no microvoids in these welding joints, and the formation of brittle layer at the bonding interface was suppressed. The welded joints of Al + Ti, Cu + carbon steel and Cu + austenitic stainless steel showed the fracture in base metal having lower tensile strength. Further, the welded joints of Al + carbon steel, Al alloy + Ti, Al alloy + carbon steel or + austenitic stainless steel, Ti + carbon steel or + austenitic stainless steel showed better tensile properties in the comparison with diffusion welding. Furthermore, ILP bonding was available for welding same materials susceptible to hot cracking. Because of the existence of liquid layer, the welding pressure required was extremely low, and preparation of faying surface by simple tooling or polishing by no.80 emery paper was enough. The change in specimen length before and after welding was relatively little, only depending on the thickness of liquid layer. The welding time was very short, and thus high welding efficiency was obtained. (author)

  2. X-ray diffraction and chemical bonding

    International Nuclear Information System (INIS)

    Bats, J.W.

    1976-01-01

    Chemical bonds are investigated in sulfamic acid (H 3 N-SO 3 ), sodium sulfonlate dihydrate (H 2 NC 6 H 4 SO 3 Na.2H 2 O), 2,5-dimercaptothiadiazole (HS-C 2 N 2 S-SH), sodium cyanide dihydrate (NaCN.2H 2 O), sodium thiocyanate (NaSCN) and ammonium thiocyanate (NH 4 SCN) by X-ray diffraction, and if necessary completed with neutron diffraction. Crystal structures and electron densities are determined together with bond length and angles. Also the effects of thermal motion are discussed

  3. Graphene composites containing chemically bonded metal oxides

    Indian Academy of Sciences (India)

    the oxide layers are chemically bonded to graphene (Zhang ... sists of three glass chambers, one to contain the metal halide. (TiCl4, SiCl4 ... In this step, the metal halide reacts with the oxygen function- ... 1·0 g of FeCl3 were vigorously stirred in 30 ml of ethylene ... Reaction with water vapour results in hydrolysis of the un-.

  4. Gas-phase acylation of aminopropyl-silica gel in the synthesis of some chemically bonded silica materials for analytical applications

    International Nuclear Information System (INIS)

    Basiuk, Vladimir; Khil'chevskaya, E.G.

    1991-01-01

    Gas-phase acylation of aminopropyl-silica gel with aliphatic dicarboxylic (succinic, adipic and sebacic) and 4-aminobenzoic acids is proposed as a rapid and efficient one-step method for the synthesis of carboxyalkyl- and 4-aminophenylamidopropyl-silica gels, usually used as zwitterion exchangers for liquid chromatography and matrices for multi-step syntheses of silica-bound aromatic azo reagents for the sorption and chromatographic separation of metal ions. Acylation degrees of 59-90% are achieved after 0.5 h. IR spectra of the acylation products and near-UV-visible spectra for bonded aromatic azo compounds, based on 4-aminobenzamidopropyl-silica gel, are presented. Some positive and negative aspects of the gas-phase acylation are discussed. (author). 34 refs.; 2 figs.; 2 tabs

  5. Bonding pathways of high-pressure chemical transformations

    International Nuclear Information System (INIS)

    Hu Anguang; Zhang Fan

    2013-01-01

    A three-stage bonding pathway towards high-pressure chemical transformations from molecular precursors or intermediate states has been identified by first-principles simulations. With the evolution of principal stress tensor components in the response of chemical bonding to compressive loading, the three stages can be defined as the van der Waals bonding destruction, a bond breaking and forming reaction, and equilibrium of new bonds. The three-stage bonding pathway leads to the establishment of a fundamental principle of chemical bonding under compression. It reveals that during high-pressure chemical transformation, electrons moving away from functional groups follow anti-addition, collision-free paths to form new bonds in counteracting the local stress confinement. In applying this principle, a large number of molecular precursors were identified for high-pressure chemical transformations, resulting in new materials. (fast track communication)

  6. Using chemical imaging to study bonding of dissimilar alloys

    International Nuclear Information System (INIS)

    Wuhrer, R.; Phillips, M.R.; Huggett, P.

    2002-01-01

    Full text: New welding techniques are currently being developed to bond very dissimilar materials such as cast irons or wear resistant steels welded to mild steel. X-ray mapping and chemical phase imaging provides useful information on the mass transport across the interface as well as phase segregation within the weld joint. Cast iron / steel and wear resistant steel / mild steel weld joints were mounted in a bakelite mount, cross-sectioned with a diamond wafering blade and polished to an optical finish using diamond abrasives. X-ray maps were collected at over a range of accelerating voltages using a Moran Scientific energy dispersive x-ray analysis and mapping system. These elemental x-ray maps were used to generate scatter plots, where pixel frequency versus element concentration profiles are plotted against each other in two or three dimensions for selected elements within the sample. The clusters observed in these plots correspond to different phases within the weld seam. The contributing pixels to each cluster can be used to reconstruct the spatial distribution of its associated phase in a chemical image of the specimen. Of particular interest to this study were the branches and links between clusters in each scatter plot and how these features correlate the chemical distribution of elements both in and around the bond region. Preliminary analysis indicated that these links and branches in the scatter plot correspond to solid solutions between chemical phases and diffusion gradients. Proper interpretation of these scatter plots will provide a better understanding of the chemical processes involved in welding dissimilar materials. Copyright (2002) Australian Society for Electron Microscopy Inc

  7. Melting and related precursor cooperative phenomena in chemically bonded assemblies

    International Nuclear Information System (INIS)

    March, N.H.

    2004-09-01

    A number of experimental studies of condensed matter assemblies with different types of chemical bonding will provide the focus of this work. Condensed compounds X(CH 3 ) 4 , with X = C,Si or Ge, are the first of such assemblies; two phase boundaries in the pressure temperature plane being studied: melting and a solid phase boundary heralding orientational disordering of molecules still however on a lattice. Secondly, directionally bonded d-electron transition metals such as Ni, Pd and Nb will be treated. Here, melting is the main focus, but the precursor transition is now the separation of a high-temperature ductile solid from a lower temperature mechanically brittle phase. A dislocation-mediated model of these transitions is discussed, leading into the third area of covalently bonded solids graphite and silicon. Here topological defect models again provide the focus; both dislocations and rotation-dislocations now being invoked. Some qualitative suggestions are made to interpret the melting curve of graphite subjected to high pressure. (author)

  8. Teaching and Learning the Concept of Chemical Bonding

    Science.gov (United States)

    Levy Nahum, Tami; Mamlok-Naaman, Rachel; Hofstein, Avi; Taber, Keith S.

    2010-01-01

    Chemical bonding is one of the key and basic concepts in chemistry. The learning of many of the concepts taught in chemistry, in both secondary schools as well as in the colleges, is dependent upon understanding fundamental ideas related to chemical bonding. Nevertheless, the concept is perceived by teachers, as well as by learners, as difficult,…

  9. Mercury stabilization in chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A. S.; Singh, D.; Jeong, S. Y.

    2000-01-01

    Mercury stabilization and solidification is a significant challenge for conventional stabilization technologies. This is because of the stringent regulatory limits on leaching of its stabilized products. In a conventional cement stabilization process, Hg is converted at high pH to its hydroxide, which is not a very insoluble compound; hence the preferred route for Hg sulfidation to convert it into insoluble cinnabar (HgS). Unfortunately, efficient formation of this compound is pH-dependent. At a high pH, one obtains a more soluble Hg sulfate, in a very low pH range, insufficient immobilization occurs because of the escape of hydrogen sulfide, while efficient formation of HgS occurs only in a moderately acidic region. Thus, the pH range of 4 to 8 is where stabilization with Chemically Bonded Phosphate Ceramics (CBPC) is carried out. This paper discusses the authors experience on bench-scale stabilization of various US Department of Energy (DOE) waste streams containing Hg in the CBPC process. This process was developed to treat DOE's mixed waste streams. It is a room-temperature-setting process based on an acid-base reaction between magnesium oxide and monopotassium phosphate solution that forms a dense ceramic within hours. For Hg stabilization, addition of a small amount ( 2 S or K 2 S is sufficient in the binder composition. Here the Toxicity Characteristic Leaching Procedure (TCLP) results on CBPC waste forms of surrogate waste streams representing secondary Hg containing wastes such as combustion residues and Delphi DETOXtrademark residues are presented. The results show that although the current limit on leaching of Hg is 0.2 mg/L, the results from the CBPC waste forms are at least one order lower than this stringent limit. Encouraged by these results on surrogate wastes, they treated actual low-level Hg-containing mixed waste from their facility at Idaho. TCLP results on this waste are presented here. The efficient stabilization in all these cases is

  10. Bonding in phase change materials: concepts and misconceptions

    Science.gov (United States)

    Jones, R. O.

    2018-04-01

    Bonding concepts originating in chemistry are surveyed from a condensed matter perspective, beginning around 1850 with ‘valence’ and the word ‘bond’ itself. The analysis of chemical data in the 19th century resulted in astonishing progress in understanding the connectivity and stereochemistry of molecules, almost without input from physicists until the development of quantum mechanics in 1925 and afterwards. The valence bond method popularized by Pauling and the molecular orbital methods of Hund, Mulliken, Bloch, and Hückel play major roles in the subsequent development, as does the central part played by the kinetic energy in covalent bonding (Ruedenberg and others). ‘Metallic’ (free electron) and related approaches, including pseudopotential and density functional theories, have been remarkably successful in understanding structures and bonding in molecules and solids. We discuss these concepts in the context of phase change materials, which involve the rapid and reversible transition between amorphous and crystalline states, and note the confusion that some have caused, in particular ‘resonance’ and ‘resonant bonding’.

  11. Closing in on chemical bonds by opening up relativity theory.

    Science.gov (United States)

    Whitney, Cynthia K

    2008-03-01

    This paper develops a connection between the phenomenology of chemical bonding and the theory of relativity. Empirical correlations between electron numbers in atoms and chemical bond stabilities in molecules are first reviewed and extended. Quantitative chemical bond strengths are then related to ionization potentials in elements. Striking patterns in ionization potentials are revealed when the data are viewed in an element-independent way, where element-specific details are removed via an appropriate scaling law. The scale factor involved is not explained by quantum mechanics; it is revealed only when one goes back further, to the development of Einstein's special relativity theory.

  12. One hundred years of Lewis Chemical Bond!

    Indian Academy of Sciences (India)

    2016-09-20

    Sep 20, 2016 ... Chemists knew how many electrons are there in each element and were also aware of stable electronic configurations. For example, 'inert gases' having. 8 electrons in the valence shell (now known as s and p orbitals) were very stable. Bonding in polar molecules, called electrovalent those days, such as ...

  13. Unicorns in the world of chemical bonding models.

    Science.gov (United States)

    Frenking, Gernot; Krapp, Andreas

    2007-01-15

    The appearance and the significance of heuristically developed bonding models are compared with the phenomenon of unicorns in mythical saga. It is argued that classical bonding models played an essential role for the development of the chemical science providing the language which is spoken in the territory of chemistry. The advent and the further development of quantum chemistry demands some restrictions and boundary conditions for classical chemical bonding models, which will continue to be integral parts of chemistry. Copyright (c) 2006 Wiley Periodicals, Inc.

  14. Structure and chemical bond characteristics of LaB6

    International Nuclear Information System (INIS)

    Bai Lina; Ma Ning; Liu Fengli

    2009-01-01

    The structure and chemical bond characteristics of LaB 6 have been achieved by means of the density functional theory using the state-of-the-art full-potential linearized augmented plane wave (FPLAPW) method, which are implemented within the EXCITING code. The results show our optimized lattice constant a (4.158 A), parameter z (0.1981) and bulk modulus B (170.4 GPa) are in good agreement with the corresponding experimental data. Electron localization function (ELF) shows the La-La bond mainly is ionic bond, La-B bond is between ionic and covalent bond while the covalent bond between the nearest neighbor B atoms (B2 and B3) is a little stronger than that between the nearer neighbor B atoms (B1 and B4).

  15. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    Science.gov (United States)

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-05-01

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Bonding effectiveness to different chemically pre-treated dental zirconia.

    Science.gov (United States)

    Inokoshi, Masanao; Poitevin, André; De Munck, Jan; Minakuchi, Shunsuke; Van Meerbeek, Bart

    2014-09-01

    The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia. Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed. Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability. Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia. As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.

  17. Benchmarking Density Functionals for Chemical Bonds of Gold

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    Gold plays a major role in nanochemistry, catalysis, and electrochemistry. Accordingly, hundreds of studies apply density functionals to study chemical bonding with gold, yet there is no systematic attempt to assess the accuracy of these methods applied to gold. This paper reports a benchmark aga...

  18. Effect of raw material ratios on the compressive strength of magnesium potassium phosphate chemically bonded ceramics

    International Nuclear Information System (INIS)

    Wang, Ai-juan; Yuan, Zhi-long; Zhang, Jiao; Liu, Lin-tao; Li, Jun-ming; Liu, Zheng

    2013-01-01

    The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH 2 PO 4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH 2 PO 4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH 2 PO 4 ratio might be explained by the existence of the weak phase KH 2 PO 4 . However, the low value of compressive strength with the higher MgO-to-KH 2 PO 4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH 2 PO 4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH 2 PO 4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics. - Highlights: • High packing density and amorphous hydrated phase improved the compressive strength. • Residual KH 2 PO 4 and poor bonding phase lower the compressive strength. • MPCBC fabricated with optimized parameters had the highest compressive strength

  19. Bonding and compressibility in molecular and polymeric phases of solid CO2

    International Nuclear Information System (INIS)

    Gracia, L; Marques, M; Beltran, A; Pendas, A Martin; Recio, J M

    2004-01-01

    We present the results of a theoretical study of the response of molecular CO 2 -I and CO 2 -III, and polymeric CO 2 -V polymorphs to hydrostatic pressure. Total energy calculations and geometry optimizations have been performed under the local density functional approximation combining a pseudopotential and planewave scheme as implemented in the VASP code. Using the atoms in molecules theory, the network of inter- and intra-molecular chemical bonds of the different phases are rigorously characterized in terms of the values of the electron density and the Laplacian at the bond critical points. The chemical graph of a hypothetical orthorhombic structure displays bonding features that are associated with a precursor geometry of polymeric carbon four-fold coordinated phases. In addition, the bulk compressibility is decomposed into atomic and molecular contributions with the aim of providing a better understanding of the reasons that explain the emergence of low compressible polymorphs at high pressures

  20. Some concepts in condensed phase chemical kinetics

    International Nuclear Information System (INIS)

    Adelman, S.A.

    1986-01-01

    Some concepts in condensed phase chemical kinetics which have emerged from a recent rigorous statistical mechanical treatment of condensed phase chemical reaction dynamics (S.A. Adelman, Adv. Chem. Phys.53:61 (1983)) are discussed in simple physical terms

  1. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    International Nuclear Information System (INIS)

    Lichtenberger, D.L.

    1991-10-01

    The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies has been developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. This relationship has been used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. We have been able to obtain a direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal. The ionization energies have also been used to correlate the rates of carbonyl substitution reactions of (η 5 -C 5 H 4 X)Rh(CO) 2 complexes, and to reveal the electronic factors that control the stability of the transition state. The extent that the electronic features of these bonding interactions transfer to other chemical systems is being investigated in terms of the principle of additivity of ligand electronic effects. Specific examples under study include metal- phosphines, metal-halides, and metallocenes. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C 60 molecule, buckminsterfullerene, and its interaction with a metal surface. The high-resolution valence ionizations in the gas phase reveal the high symmetry of the molecule, and studies of thin films of C 60 reveal weak intermolecular interactions. Scanning tunneling and atomic force microscopy reveal the arrangement of spherical molecules on gold substrates, with significant delocalization of charge from the metal surface. 21 refs

  2. Revisiting isoreticular MOFs of alkaline earth metals: a comprehensive study on phase stability, electronic structure, chemical bonding, and optical properties of A-IRMOF-1 (A = Be, Mg, Ca, Sr, Ba).

    Science.gov (United States)

    Yang, Li-Ming; Vajeeston, Ponniah; Ravindran, Ponniah; Fjellvåg, Helmer; Tilset, Mats

    2011-06-07

    Formation energies, chemical bonding, electronic structure, and optical properties of metal-organic frameworks of alkaline earth metals, A-IRMOF-1 (where A = Be, Mg, Ca, Sr, or Ba), have been systemically investigated with DFT methods. The unit cell volumes and atomic positions were fully optimized with the Perdew-Burke-Ernzerhof functional. By fitting the E-V data into the Murnaghan, Birch and Universal equation of states (UEOS), the bulk modulus and its pressure derivative were estimated and provided almost identical results. The data indicate that the A-IRMOF-1 series are soft materials. The estimated bandgap values are all ca. 3.5 eV, indicating a nonmetallic behavior which is essentially metal independent within this A-IRMOF-1 series. The calculated formation energies for the A-IRMOF-1 series are -61.69 (Be), -62.53 (Mg), -66.56 (Ca), -65.34 (Sr), and -64.12 (Ba) kJ mol(-1) and are substantially more negative than that of Zn-based IRMOF-1 (MOF-5) at -46.02 kJ mol(-1). From the thermodynamic point of view, the A-IRMOF-1 compounds are therefore even more stable than the well-known MOF-5. The linear optical properties of the A-IRMOF-1 series were systematically investigated. The detailed analysis of chemical bonding in the A-IRMOF-1 series reveals the nature of the A-O, O-C, H-C, and C-C bonds, i.e., A-O is a mainly ionic interaction with a metal dependent degree of covalency. The O-C, H-C, and C-C bonding interactions are as anticipated mainly covalent in character. Furthermore it is found that the geometry and electronic structures of the presently considered MOFs are not very sensitive to the k-point mesh involved in the calculations. Importantly, this suggests that sampling with Γ-point only will give reliable structural properties for MOFs. Thus, computational simulations should be readily extended to even more complicated MOF systems.

  3. Vitrified chemically bonded phosphate ceramics for immobilization of radioisotopes

    Science.gov (United States)

    Wagh, Arun S.

    2016-04-05

    A method of immobilizing a radioisotope and vitrified chemically bonded phosphate ceramic (CBPC) articles formed by the method are described. The method comprises combining a radioisotope-containing material, MgO, a source of phosphate, and optionally, a reducing agent, in water at a temperature of less than 100.degree. C. to form a slurry; curing the slurry to form a solid intermediate CBPC article comprising the radioisotope therefrom; comminuting the intermediate CBPC article, mixing the comminuted material with glass frits, and heating the mixture at a temperature in the range of about 900 to about 1500.degree. C. to form a vitrified CBPC article comprising the radioisotope immobilized therein.

  4. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials.

    Science.gov (United States)

    Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Siegrist, Theo; Singh, David J

    2016-05-19

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.

  5. Hydrogen concentration profiles and chemical bonding in silicon nitride

    International Nuclear Information System (INIS)

    Peercy, P.S.; Stein, H.J.; Doyle, B.L.; Picraux, S.T.

    1978-01-01

    The complementary technique of nuclear reaction analysis and infrared absorption were used to study the concentration profile and chemical bonding of hydrogen in silicon nitride for different preparation and annealing conditions. Silicon nitride prepared by chemical vapor deposition from ammonia-silane mixtures is shown to have hydrogen concentrations of 8.1 and 6.5 at.% for deposition temperatures of 750 and 900 0 C, respectively. Plasma deposition at 300 0 C from these gases results in hydrogen concentrations of approximately 22 at.%. Comparison of nuclear reaction analysis and infrared absorption measurements after isothermal annealing shows that all of the hydrogen retained in the films remains bonded to either silicon or nitrogen and that hydrogen release from the material on annealing is governed by various trap energies involving at least two N-H and one Si-H trap. Reasonable estimates of the hydrogen release rates can be made from the effective diffusion coefficient obtained from measurements of hydrogen migration in hydrogen implanted and annealed films

  6. Nature of chemical bond through positron angular correlation

    International Nuclear Information System (INIS)

    Ramasamy, S.; Nagarajan, T.

    1979-01-01

    Two photon angular distribution of positron annihilation is measured for compounds (1) m- and (2) p-nitroanilines, (3) m- and (4) p-methylsulphonyl-N, N-dimethylanilines and (5) p-phenylthio- and (6) p-phenoxyanilines in order to investigate the phenomenon of resonance and the involvement of d-orbitals of sulphur in chemical bonding. The FWHM is the same (10.8 mrad) for compounds (1) and (2) indicating that the resonance in the p-isomer does not change the annihilation characteristic much. The measured FWHM (9.4 mrad) for compound (4) is much broader than that of compound (3) (FWHM = 7.7 mrad). In the case of p-isomer, there is the involvement of d-orbitals of sulphur in bond formation. FWHM for compounds (5) and (6) are almost same (8.4 mrad). In this pair the only difference is that the sulphur in one case is replaced by oxygen in the other. Since there is not enough scope for excess electrons to be accomodated at oxygen or sulphur, there is no preferential annihilation of positron at these centres. (auth.)

  7. Electronic structure and chemical bond in technetium dimer

    International Nuclear Information System (INIS)

    Klyagina, A.P.; Fursova, V.D.; Levin, A.A.; Gutsev, G.L.

    1987-01-01

    DV-X α method is used to study electron structure and peculiarities of chemical bond in Tc 2 and Tc 2 2+ dimers. Electron state characteristics are calculated in the basis of numerical Hartree-Fock functions for d 6 s 1 - and d 5 s 2 -configurations of Tc atom and for Tc 2 2+ ion d 5 s 1 -configuration. Disposition order for valence MO in Tc and Tc 2 2+ calculated for the given configurations is presented. It is shown that quinary bond with π u 4 dσ g 2 σ g 4 sσ g 2 δ u 2 configuration corresponds to the ground state of Tc 2 molecule. In Tc 2 some weakening of binding for π- and δ-orbitals and strengthening of total σ-binding in comparison with Mo 2 takes place. In Tc + and Tc 2+ MO composition is slightly changed, but a shift of 2σ-MO relatively MO consisting of d-AO is occured

  8. Chemical bond activation observed with an x-ray laser

    International Nuclear Information System (INIS)

    Beye, Martin; Öberg, Henrik; Xin, Hongliang

    2016-01-01

    The concept of bonding and anti-bonding orbitals is fundamental in chemistry. The population of those orbitals and the energetic difference between the two reflect the strength of the bonding interaction. Weakening the bond is expected to reduce this energetic splitting, but the transient character of bond-activation has so far prohibited direct experimental access. Lastly, we apply time-resolved soft X-ray spectroscopy at a free-electron laser to directly observe the decreased bonding–anti-bonding splitting following bond-activation using an ultra short optical laser pulse.

  9. Understanding the triple nature of the chemical bond on submicroscopic level

    OpenAIRE

    Klun, Tina

    2017-01-01

    The master’s thesis addresses three definitions of chemical bond with particular emphasis on the sub-microscopic level in a comprehensive manner. Slovenian pupils are taught about chemical bond for the first time in the eighth grade of primary school as part of learning about the connection between particles. Due to the abstract nature of the notion chemical bond, it is essential that pupils are encouraged to learn about the topic on the macroscopic, sub microscopic and symbolic level as this...

  10. Chemical Bond Parameters in Sr3MRhO6 (M=Rare earth)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chemical bond parameters, that is, bond covalency, bond valence, macroscopic linear susceptibility, and oxidation states of elements in Sr3MRhO6 (M=Sm, Eu, Tb, Dy, Ho, Er, Yb) have been calculated. The results indicate that the bond covalency of M-O decreases sharply with the decrease of ionic radius of M3+ from Sm to Yb, while no obvious trend has been found for Rh-O and Sr-O bonds. The global instability index indicates that the crystal structures of Sr3MrhO6 (M = Sm, Eu, Tb, Dy, Ho) have strained bonds.

  11. Atomic bonding of precipitate and phase transformation of Al-Cu-Mg alloy

    International Nuclear Information System (INIS)

    Gao Yingjun; Hou Xianhua; Mo Qifeng; Wei Chengyang; Qin Xiaobing

    2007-01-01

    Atomic bonding of the GPB zone and S'' phase of Al-Cu-Mg alloys in early aging stage are calculated using the empirical electron theory (EET) in solid. The results show that not only the covalence bond-network is very strong in GPB zone, but the whole covalence bond energy of S'' phase is also very large, and all the primary bond-net framework of these precipitates can consolidate the matrix of alloy. Phase transformation from GPB zone to S'' phase is explained reasonably based on atomic bonding and total binding capacity of Al and Cu atoms in these precipitates

  12. Phase formation at bonded vanadium and stainless steel interfaces

    International Nuclear Information System (INIS)

    Summers, T.S.E.

    1992-01-01

    The interface between vanadium bonded to stainless steel was studies to determine whether a brittle phase formed during three joining operations. Inertia friction welds between V and 21-6-9 stainless steel were examined using TEM. In the as-welded condition, a continuous, polygranular intermetallic layer about 0.25 μm thick was present at the interface. This layer grew to about 50 μm thick during heat treatment at 1000 degrees C for two hours. Analysis of electron diffraction patterns confirmed that this intermetallic was the ω phase. The interface between vanadium and type 304, SANDVIK SAF 2205, and 21-6-9 stainless steel bonded by a co-extrusion process had intermetallic particles at the interface in the as-extruded condition. Heat treatment at 1000 degrees C for two hours caused these particles to grow into continuous layers in all three cases. Based on the appearance, composition and hardness of this interfacial intermetallic, it was also concluded to be ω phase. Bonding V to type 430 stainless steel by co-extrusion caused V-rich carbides to form at the interface due to the higher concentration of C in the type 430 than in the other stainless steels investigated. The carbide particles initially present grew into a continuous layer during a two-hour heat treatment at 1000 degrees C. Co-hipping 21-6-9 stainless steel tubing with V rod resulted in slightly more concentric specimens than the co-extruded ones, but a continuous layer of the ω phase formed during the hipping operation. This brittle layer could initiate failure during subsequent forming operations. The vanadium near the stainless steel interface in the co-extruded and co-hipped tubing in some cases was harder than before heat treatment. It was concluded that this hardening was due to thermal straining during cooling following heat treatment and that thermal strains might present a greater problem than seen here when longer tubes are used in actual applications

  13. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D.

    2010-06-29

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  14. Representations of Chemical Bonding Models in School Textbooks--Help or Hindrance for Understanding?

    Science.gov (United States)

    Bergqvist, Anna; Drechsler, Michal; De Jong, Onno; Rundgren, Shu-Nu Chang

    2013-01-01

    Models play an important and central role in science as well as in science education. Chemical bonding is one of the most important topics in upper secondary school chemistry, and this topic is dominated by the use of models. In the past decade, research has shown that chemical bonding is a topic that students find difficult, and therefore, a wide…

  15. Study of the structure and chemical bonding of crystalline Ge_4Sb_2Te_7 using first principle calculations

    International Nuclear Information System (INIS)

    Singh, Janpreet; Singh, Satvinder; Tripathi, S. K.; Singh, Gurinder; Kaura, Aman

    2016-01-01

    The atomic arrangements and chemical bonding of stable Ge_4Sb_2Te_7 (GeTe rich), a phase-change material, have been investigated by means of ab initio total energy calculations. To study the atomic arrangement, GeTe block is considered into -TeSbTeSbTe- block and -Te-Te- layer in the stacking I and II respectively. The stacking I is energetically more stable than the stacking II. The reason for more stability of the stacking I has been explained. The chemical bonding has been studied with the electronic charge density distribution around the atomic bonds. The quantity of electronic charge loosed or gained by atoms has been calculated using the Bader charge analysis. The metallic character has been studied using band structures calculations. The band gap for the stacking I and II is 0.463 and 0.219 eV respectively.

  16. Phase equilibria in chemical reactive fluid mixtures

    International Nuclear Information System (INIS)

    Maurer, Gerd

    2011-01-01

    Downstream processing is a major part of nearly all processes in the chemical industries. Most separation processes in the chemical (and related) industries for fluid mixtures are based on phase equilibrium phenomena. The majority of separation processes can be modelled assuming that chemical reactions are of no (or very minor) importance, i.e., assuming that the overall speciation remains unchanged during a separation process. However, there are also a large number of industrially important processes where the thermodynamic properties are influenced by chemical reactions. The phase equilibrium of chemical reactive mixtures has been a major research area of the author's group over nearly 40 years. In this contribution, three examples from that research are discussed. The first example deals with the vapour phase dimerisation of carboxylic acids and its consequences on phase equilibrium phenomena and phase equilibrium predictions. The second example deals with the solubility of sour gases (e.g., carbon dioxide and sulfur dioxide) in aqueous solutions of ammonia. That topic has been of interest for many years, e.g., in relation with the gasification and liquefaction of coal and, more recently, with the removal of carbon dioxide from flue gas in the 'chilled ammonia process'. The third example deals with phase equilibrium phenomena in aqueous solutions of polyelectrolytes. It deals with the phenomenon of 'counter ion condensation' and methods to model the Gibbs free energy of such solutions.

  17. Heteromolecular metal–organic interfaces: Electronic and structural fingerprints of chemical bonding

    International Nuclear Information System (INIS)

    Stadtmüller, Benjamin; Schröder, Sonja; Kumpf, Christian

    2015-01-01

    Highlights: • We present a study of molecular donor–acceptor blends adsorbed on Ag(1 1 1). • Geometric and electronic structure of blends and pristine phases are compared. • The surface bonding of the acceptor is strengthened, that of the donor weakened. • But counter intuitively, the acceptor (donor) bond length becomes larger (smaller). • This contradiction is resolved by a model based on charge transfer via the surface. - Abstract: Beside the fact that they attract highest interest in the field of organic electronics, heteromolecular structures adsorbed on metal surfaces, in particular donor–acceptor blends, became a popular field in fundamental science, possibly since some surprising and unexpected behaviors were found for such systems. One is the apparent breaking of a rather fundamental rule in chemistry, namely that stronger chemical bonds go along with shorter bond lengths, as it is, e.g., well-known for the sequence from single to triple bonds. In this review we summarize the results of heteromolecular monolayer structures adsorbed on Ag(1 1 1), which – regarding this rule – behave in a counterintuitive way. The charge acceptor moves away from the substrate while its electronic structure indicates a stronger chemical interaction, indicated by a shift of the formerly lowest unoccupied molecular orbital toward higher binding energies. The donor behaves in the opposite way, it gives away charge, hence, electronically the bonding to the surface becomes weaker, but at the same time it also approaches the surface. It looks as if the concordant link between electronic and geometric structure was broken. But both effects can be explained by a substrate-mediated charge transfer from the donor to the acceptor. The charge reorganization going along with this transfer is responsible for both, the lifting-up of the acceptor molecule and the filling of its LUMO, and also for the reversed effects at the donor molecules. In the end, both molecules

  18. Liquid phase diffusion bonding of A1070 by using metal formate coated Zn sheet

    Science.gov (United States)

    Ozawa, K.; Koyama, S.; shohji, I.

    2017-05-01

    Aluminium alloy have high strength and easily recycle due to its low melting point. Therefore, aluminium is widely used in the manufacturing of cars and electronic devices. In recent years, the most common way for bonding aluminium alloy is brazing and friction stir welding. However, brazing requires positional accuracy and results in the formation of voids by the flax residue. Moreover, aluminium is an excellent heat radiating and electricity conducting material; therefore, it is difficult to bond together using other bonding methods. Because of these limitations, liquid phase diffusion bonding is considered to the suitable method for bonding aluminium at low temperature and low bonding pressure. In this study, the effect of metal formate coating processing of zinc surface on the bond strength of the liquid phase diffusion bonded interface of A1070 has been investigated by SEM observation of the interfacial microstructures and fractured surfaces after tensile test. Liquid phase diffusion bonding was carried out under a nitrogen gas atmosphere at a bonding temperature of 673 K and 713 K and a bonding load of 6 MPa (bonding time: 15 min). As a result of the metal formate coating processing, a joint having the ultimate tensile strength of the base aluminium was provided. It is hypothesized that this is because metallic zinc is generated as a result of thermal decomposition of formate in the bonded interface at lower bonding temperatures.

  19. Microstructure properties relationship in transient liquid phase diffusion bonds made in MA 758 superalloy

    International Nuclear Information System (INIS)

    Ekrami, A.

    2003-01-01

    Transient liquid phase diffusion bonding procedure was used to join an ODS Ma 758 superalloy in two conditions, wrought fine grains, and recrystallised grains. An Ni-Cr-B-Si alloy was used as an interlayer. Bonding was carried out at 1100 d ig C for bonding hold times of 15,30, and 60 minutes under vacuum of 6x10 -4 torr. Bonded samples were homogenized at 1360 d ig C for one hour and then cooled with a rate of 15 d ig C /min. Shear and fatigue strengths of bonds were determined. The results showed that there is no effect of bonding hold times on shear strength after bonding hold time of 30 minutes. At a given bonding hold time, the shear strength of bonds made in the recrystallized condition was greater than the shear strength of bonds made in the fine grain condition. The same was true for fatigue strength at a given cycle to fracture. Transient liquid phase bonding was also carried out under pressure of 0.1 Mpa under the same temperature and bonding hold time for fine grain material. Microstructure studies of bonds made under pressure showed no effects of pressure on bond region grain size. Shear tests results also demonstrate little effects of pressure on shear strength of bonds

  20. High pressure stability analysis and chemical bonding of Ti1-xZrxN alloy: A first principle study

    International Nuclear Information System (INIS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2016-01-01

    First-principles pseudo-potential calculations have been performed to analyze the stability of Ti 1-x Zr x N alloy under high pressures. The first order phase transition from B1 to B2 phase has been observed in this alloy at high pressure. The variation of lattice parameter with the change in concentration of Zr atom in Ti 1-x Zr x N is also reported in both the phases. The calculations for density of states have been performed to understand the alloying effects on chemical bonding of Ti-Zr-N alloy.

  1. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  2. Transient liquid phase bonding of titanium-, iron- and nickel-based alloys

    Science.gov (United States)

    Rahman, A. H. M. Esfakur

    The operating temperature of land-based gas turbines and jet engines are ever-increasing to increase the efficiency, decrease the emissions and minimize the cost. Within the engines, complex-shaped parts experience extreme temperature, fatigue and corrosion conditions. Ti-based, Ni-based and Fe-based alloys are commonly used in gas turbines and jet engines depending on the temperatures of different sections. Although those alloys have superior mechanical, high temperature and corrosion properties, severe operating conditions cause fast degradation and failure of the components. Repair of these components could reduce lifecycle costs. Unfortunately, conventional fusion welding is not very attractive, because Ti reacts very easily with oxygen and nitrogen at high temperatures, Ni-based superalloys show heat affected zone (HAZ) cracking, and stainless steels show intergranular corrosion and knife-line attack. On the other hand, transient liquid phase (TLP) bonding method has been considered as preferred joining method for those types of alloys. During the initial phase of the current work commercially pure Ti, Fe and Ni were diffusion bonded using commercially available interlayer materials. Commercially pure Ti (Ti-grade 2) has been diffusion bonded using silver and copper interlayers and without any interlayer. With a silver (Ag) interlayer, different intermetallics (AgTi, AgTi2) appeared in the joint centerline microstructure. While with a Cu interlayer eutectic mixtures and Ti-Cu solid solutions appeared in the joint centerline. The maximum tensile strengths achieved were 160 MPa, 502 MPa, and 382 MPa when Ag, Cu and no interlayers were used, respectively. Commercially pure Fe (cp-Fe) was diffusion bonded using Cu (25 m) and Au-12Ge eutectic interlayer (100 microm). Cu diffused predominantly along austenite grain boundaries in all bonding conditions. Residual interlayers appeared at lower bonding temperature and time, however, voids were observed in the joint

  3. Electronic structure imperfections and chemical bonding at graphene interfaces

    Science.gov (United States)

    Schultz, Brian Joseph

    ) fabricate graphene/metal interfaces and metal/graphene/metal sandwich structures evidencing classical anisotropic umpolung chemistry from carbon pz-orbrital charge pinning, and (Chapter 5) engineer graphene/dielectric interfaces showing electron depletion from carbon atoms at the HfO2/graphene interface. The fabrication of graphene interfaces remains a critical gap for successful commercialization of graphene-based devices, yet we demonstrate that interfacial hybridization, anisotropic charge redistribution, local chemical bonding, and discrete electronic hybridization regimes play a critical role in the electronic structure at graphene interfaces.

  4. Representational Classroom Practices that Contribute to Students' Conceptual and Representational Understanding of Chemical Bonding

    Science.gov (United States)

    Hilton, Annette; Nichols, Kim

    2011-01-01

    Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their…

  5. Thermodynamic and kinetic simulation of transient liquid-phase bonding

    Science.gov (United States)

    Lindner, Brad

    The use of numeric computational methods for the simulation of materials systems is becoming more prevalent and an understanding of these tools may soon be a necessity for Materials Engineers and Scientists. The applicability of numerical simulation methods to transient liquid-phase (TLP) bonding is evaluated using a type 316L/MBF-51 material system. The comparisons involve the calculation of bulk diffusivities, tracking of interface positions during dissolution, widening, and isothermal solidification stages, as well as comparison of elemental composition profiles. The simulations were performed with Thermo-Calc and DICTRA software packages and the experiments with differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and optical microscopic methods. Analytical methods are also discussed to enhance understanding. The results of the investigation show that while general agreement between simulations and experiments can be obtained, assumptions made with the simulation programs may cause difficulty in interpretation of the results unless the user has sufficient, mathematical, thermodynamic, kinetic, and simulation background.

  6. Influence of chemical bonding of chlorides with aluminates in cement hidratation process on corrosion steel bars in concrete

    Directory of Open Access Journals (Sweden)

    Bikić Farzet H.

    2010-01-01

    Full Text Available The presence of chlorides in concrete is a permanent subject of research because they cause corrosion of steel bars. Chlorides added to the concrete during preparation, as accelerators of the bonding of cement minerals process, enter into reaction with aluminates, creating a phase known as chloroaluminate hydrates. In everyday conditions the product of chemical bonding between chlorides and aluminates is usually monochloridealuminate C3A·CaCl2·Hx, better known as Friedel's salt. In this paper, the influence of chemical bonding of chlorides with aluminates during the process of cement hydration on corrosion of steel bars in concrete was investigated. The process of chlorides bonding with aluminates yielding monochloride aluminate is monitored by XRD analyses. It was found that the amount of chlorides bonding with aluminates increases with an increase of temperature, and as a result, reduces the amount of 'free' chlorides in concrete. Potentiodynamic measurements have shown that increase in temperature of the heat treatment of working electrodes by chlorides leads to a reduction of steel bars corrosion as a result of either the increase of the monochloride-aluminate content or the decrease of free chlorides amount. Chlorides bound in chloroaluminate hydrates do not cause activation of steel bars corrosion in concrete. It was also proven that the increase of free chlorides concentration in the concrete leads to intensification of steel bars corrosion. This additionally approves that free chlorides are only the activators of process of steel bars corrosion in the concrete.

  7. Chemical bonding of hydrogen molecules to transition metal complexes

    International Nuclear Information System (INIS)

    Kubas, G.J.

    1990-01-01

    The complex W(CO) 3 (PR 3 ) 2 (H 2 ) (CO = carbonyl; PR 3 = organophosphine) was prepared and was found to be a stable crystalline solid under ambient conditions from which the hydrogen can be reversibly removed in vacuum or under an inert atmosphere. The weakly bonded H 2 exchanges easily with D 2 . This complex represents the first stable compound containing intermolecular interaction of a sigma-bond (H-H) with a metal. The primary interaction is reported to be donation of electron density from the H 2 bonding electron pair to a vacant metal d-orbital. A series of complexes of molybdenum of the type Mo(CO)(H 2 )(R 2 PCH 2 CH 2 PR 2 ) 2 were prepared by varying the organophosphine substitutent to demonstrate that it is possible to bond either dihydrogen or dihydride by adjusting the electron-donating properties of the co-ligands. Results of infrared and NMR spectroscopic studies are reported. 20 refs., 5 fig

  8. Initiated chemical vapor deposited nanoadhesive for bonding National Ignition Facility's targets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tom [Univ. of California, Berkeley, CA (United States)

    2016-05-19

    Currently, the target fabrication scientists in National Ignition Facility Directorate at Lawrence Livermore National Laboratory (LLNL) is studying the propagation force resulted from laser impulses impacting a target. To best study this, they would like the adhesive used to glue the target substrates to be as thin as possible. The main objective of this research project is to create adhesive glue bonds for NIF’s targets that are ≤ 1 μm thick. Polyglycidylmethacrylate (PGMA) thin films were coated on various substrates using initiated chemical vapor deposition (iCVD). Film quality studies using white light interferometry reveal that the iCVD PGMA films were smooth. The coated substrates were bonded at 150 °C under vacuum, with low inflow of Nitrogen. Success in bonding most of NIF’s mock targets at thicknesses ≤ 1 μm indicates that our process is feasible in bonding the real targets. Key parameters that are required for successful bonding were concluded from the bonding results. They include inert bonding atmosphere, sufficient contact between the PGMA films, and smooth substrates. Average bond strength of 0.60 MPa was obtained from mechanical shearing tests. The bonding failure mode of the sheared interfaces was observed to be cohesive. Future work on this project will include reattempt to bond silica aerogel to iCVD PGMA coated substrates, stabilize carbon nanotube forests with iCVD PGMA coating, and kinetics study of PGMA thermal crosslinking.

  9. Noncovalent Halogen Bonding as a Mechanism for Gas-Phase Clustering

    DEFF Research Database (Denmark)

    Wegeberg, Christina; Donald, William A.; McKenzie, Christine

    2017-01-01

    in the crystalline phases of PhIO2 and its derivatives serve as models for the structures of larger gas-phase clusters, and calculations on simple model gas-phase dimer and trimer clusters result in similar motifs. This is the first account of halogen bonding playing an extensive role in gas-phase associations....

  10. Anisotropic electrical conduction and reduction in dangling-bond density for polycrystalline Si films prepared by catalytic chemical vapor deposition

    Science.gov (United States)

    Niikura, Chisato; Masuda, Atsushi; Matsumura, Hideki

    1999-07-01

    Polycrystalline Si (poly-Si) films with high crystalline fraction and low dangling-bond density were prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD. Directional anisotropy in electrical conduction, probably due to structural anisotropy, was observed for Cat-CVD poly-Si films. A novel method to separately characterize both crystalline and amorphous phases in poly-Si films using anisotropic electrical conduction was proposed. On the basis of results obtained by the proposed method and electron spin resonance measurements, reduction in dangling-bond density for Cat-CVD poly-Si films was achieved using the condition to make the quality of the included amorphous phase high. The properties of Cat-CVD poly-Si films are found to be promising in solar-cell applications.

  11. Coulombic Interaction in Finnish Middle School Chemistry: A Systemic Perspective on Students' Conceptual Structure of Chemical Bonding

    Science.gov (United States)

    Joki, Jarkko; Lavonen, Jari; Juuti, Kalle; Aksela, Maija

    2015-01-01

    The aim of this study was to design a novel and holistic way to teach chemical bonding at the middle school level according to research on the teaching and learning of bonding. A further aim was to investigate high achieving middle school students' conceptual structures concerning chemical bonding by using a systemic perspective. Students in one…

  12. Microstructure and chemical bonding of DLC films deposited on ACM rubber by PACVD

    NARCIS (Netherlands)

    Martinez-Martinez, D.; Schenkel, M.; Pei, Y.T.; Sánchez-López, J.C.; Hosson, J.Th.M. De

    2011-01-01

    The microstructure and chemical bonding of DLC films prepared by plasma assisted chemical vapor deposition on acrylic rubber (ACM) are studied in this paper. The temperature variation produced by the ion impingement during plasma cleaning and subsequent film deposition was used to modify the film

  13. Representational Classroom Practices that Contribute to Students' Conceptual and Representational Understanding of Chemical Bonding

    Science.gov (United States)

    Hilton, Annette; Nichols, Kim

    2011-11-01

    Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their content-specific forms and functions, this might be avoided. The development of an understanding of and ability to use multiple representations is crucial to students' understanding of chemical bonding. This paper draws on data from a larger study involving two Year 11 chemistry classes (n = 27, n = 22). It explores the contribution of explicit instruction about multiple representations to students' understanding and representation of chemical bonding. The instructional strategies were documented using audio-recordings and the teacher-researcher's reflection journal. Pre-test-post-test comparisons showed an improvement in conceptual understanding and representational competence. Analysis of the students' texts provided further evidence of the students' ability to use multiple representations to explain macroscopic phenomena on the molecular level. The findings suggest that explicit instruction about representational form and function contributes to the enhancement of representational competence and conceptual understanding of bonding in chemistry. However, the scaffolding strategies employed by the teacher play an important role in the learning process. This research has implications for professional development enhancing teachers' approaches to these aspects of instruction around chemical bonding.

  14. Relaxation of the chemical bond skin chemisorption size matter ZTP mechanics H2O myths

    CERN Document Server

    Sun, Chang Q

    2014-01-01

    The aim of this book is to explore the detectable properties of a material to the parameters of bond and non-bond involved and to clarify the interdependence of various properties. This book is composed of four parts; Part I deals with the formation and relaxation dynamics of bond and non-bond during chemisorptions with uncovering of the correlation among the chemical bond, energy band, and surface potential barrier (3B) during reactions; Part II is focused on the relaxation of bonds between atoms with fewer neighbors than the ideal in bulk with unraveling of the bond order-length-strength (BOLS) correlation mechanism, which clarifies the nature difference between nanostructures and bulk of the same substance; Part III deals with the relaxation dynamics of bond under heating and compressing with revealing of rules on the temperature-resolved elastic and plastic properties of low-dimensional materials; Part IV is focused on the asymmetric relaxation dynamics of the hydrogen bond (O:H-O) and the anomalous behav...

  15. Atomic Charges and Chemical Bonding in Y-Ga Compounds

    Directory of Open Access Journals (Sweden)

    Yuri Grin

    2018-02-01

    Full Text Available A negative deviation from Vegard rule for the average atomic volume versus yttrium content was found from experimental crystallographic information about the binary compounds of yttrium with gallium. Analysis of the electron density (DFT calculations employing the quantum theory of atoms in molecules revealed an increase in the atomic volumes of both Y and Ga with the increase in yttrium content. The non-linear increase is caused by the strengthening of covalent Y-Ga interactions with stronger participation of genuine penultimate shell electrons (4d electrons of yttrium in the valence region. Summing the calculated individual atomic volumes for a unit cell allows understanding of the experimental trend. With increasing yttrium content, the polarity of the Y-Ga bonding and, thus its ionicity, rises. The covalency of the atomic interactions in Y-Ga compounds is consistent with their delocalization from two-center to multi-center ones.

  16. DFT modeling of the electronic and magnetic structures and chemical bonding properties of intermetallic hydrides

    International Nuclear Information System (INIS)

    Al Alam, A.F.

    2009-06-01

    This thesis presents an ab initio study of several classes of intermetallics and their hydrides. These compounds are interesting from both a fundamental and an applied points of view. To achieve this aim two complementary methods, constructed within the DFT, were chosen: (i) pseudo potential based VASP for geometry optimization, structural investigations and electron localization mapping (ELF), and (ii) all-electrons ASW method for a detailed description of the electronic structure, chemical bonding properties following different schemes as well as quantities depending on core electrons such as the hyperfine field. A special interest is given with respect to the interplay between magneto-volume and chemical interactions (metal-H) effects within the following hydrided systems: binary Laves (e.g. ScFe 2 ) and Haucke (e.g. LaNi 5 ) phases on one hand, and ternary cerium based (e.g. CeRhSn) and uranium based (e.g. U 2 Ni 2 Sn) alloys on the other hand. (author)

  17. Interaction between benzenedithiolate and gold: Classical force field for chemical bonding

    Science.gov (United States)

    Leng, Yongsheng; Krstić, Predrag S.; Wells, Jack C.; Cummings, Peter T.; Dean, David J.

    2005-06-01

    We have constructed a group of classical potentials based on ab initio density-functional theory (DFT) calculations to describe the chemical bonding between benzenedithiolate (BDT) molecule and gold atoms, including bond stretching, bond angle bending, and dihedral angle torsion involved at the interface between the molecule and gold clusters. Three DFT functionals, local-density approximation (LDA), PBE0, and X3LYP, have been implemented to calculate single point energies (SPE) for a large number of molecular configurations of BDT-1, 2 Au complexes. The three DFT methods yield similar bonding curves. The variations of atomic charges from Mulliken population analysis within the molecule/metal complex versus different molecular configurations have been investigated in detail. We found that, except for bonded atoms in BDT-1, 2 Au complexes, the Mulliken partial charges of other atoms in BDT are quite stable, which significantly reduces the uncertainty in partial charge selections in classical molecular simulations. Molecular-dynamics (MD) simulations are performed to investigate the structure of BDT self-assembled monolayer (SAM) and the adsorption geometry of S adatoms on Au (111) surface. We found that the bond-stretching potential is the most dominant part in chemical bonding. Whereas the local bonding geometry of BDT molecular configuration may depend on the DFT functional used, the global packing structure of BDT SAM is quite independent of DFT functional, even though the uncertainty of some force-field parameters for chemical bonding can be as large as ˜100%. This indicates that the intermolecular interactions play a dominant role in determining the BDT SAMs global packing structure.

  18. New conception in the theory of chemical bonding; the role of core and valence atomic orbitals in formation of chemical bonds

    International Nuclear Information System (INIS)

    Kostikova, G.P.; Kostikov, Yu.P.; Korol'kov, D.V.

    1986-01-01

    An analysis of x-ray photoelectron spectra leads to a simple and consistent conception in the theory of chemical bonding, which satisfies (unlike the simple MO-LCAO theory) the virial theorem and defines the roles of the core and valence atomic orbitals in the formation of chemical bonds. Its essence is clear from the foregoing: the exothermic effects of the formation of complexes are caused by the lowering of the energies of the core levels of the central atoms with simultaneous small changes in the energies of the core levels of the ligands despite the significant destabilization of the delocalized valence MO's in comparison to the orbital energies of the corresponding free atoms. In order to confirm these ideas, they recorded the x-ray photoelectron spectra of the valence region and the inner levels of single-crystal silicon carbide, silicon, and graphite

  19. Electronic parameters of Sr2Nb2O7 and chemical bonding

    DEFF Research Database (Denmark)

    Atuchin, V.V.; Grivel, Jean-Claude; Korotkov, A.S.

    2008-01-01

    /2)) and Delta(O-Sr) = BE(O 1s)-BE(Sr 3d(5/2)), were used to characterize the valence electron transfer on the formation of the Nb-O and Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and earlier published structural and XPS data for other Sr- or Nb...

  20. Solution and solid-phase halogen and C-H hydrogen bonding to perrhenate.

    Science.gov (United States)

    Massena, Casey J; Riel, Asia Marie S; Neuhaus, George F; Decato, Daniel A; Berryman, Orion B

    2015-01-28

    (1)H NMR spectroscopic and X-ray crystallographic investigations of a 1,3-bis(4-ethynyl-3-iodopyridinium)benzene scaffold with perrhenate reveal strong halogen bonding in solution, and bidentate association in the solid state. A nearly isostructural host molecule demonstrates significant C-H hydrogen bonding to perrhenate in the same phases.

  1. Preparation and photocatalytic activity of chemically-bonded phosphate ceramics containing TiO2

    Science.gov (United States)

    Martins, Monize Aparecida; de Lima, Bruna de Oliveira; Ferreira, Leticia Patrício; Colonetti, Emerson; Feltrin, Jucilene; De Noni, Agenor

    2017-05-01

    Titanium dioxide was incorporated into chemically-bonded phosphate ceramic for use as photocatalytic inorganic coating. The coatings obtained were applied to unglazed ceramic tiles and cured at 350 °C. The surfaces were characterized by photocatalytic activity, determined in aqueous medium, based on the degradation of methylene blue dye. The effects of the percentage of TiO2 and the thickness of the layer on the photocatalytic efficiency were evaluated. The influence of the incorporation of TiO2 on the consolidation of the phosphate matrix coating was investigated using the wear resistance test. The crystalline phases of the coatings obtained were determined by XRD. The microstructure of the surfaces was analyzed by SEM. The thermal curing treatment did not cause a phase transition from anatase to rutile. An increase in the photocatalytic activity of the coating was observed with an increase in the TiO2 content. The dye degradation indices ranged from 14.9 to 44.0%. The photocatalytic efficiency was not correlated with the thickness of the coating layer deposited. The resistance to wear decreased with an increase in the TiO2 content. Comparison with a commercial photocatalytic ceramic coating indicated that there is a range of values for the TiO2 contents which offer potential for photocatalytic applications.

  2. X-ray electron density investigation of chemical bonding in van der Waals materials

    Science.gov (United States)

    Kasai, Hidetaka; Tolborg, Kasper; Sist, Mattia; Zhang, Jiawei; Hathwar, Venkatesha R.; Filsø, Mette Ø.; Cenedese, Simone; Sugimoto, Kunihisa; Overgaard, Jacob; Nishibori, Eiji; Iversen, Bo B.

    2018-03-01

    Van der Waals (vdW) solids have attracted great attention ever since the discovery of graphene, with the essential feature being the weak chemical bonding across the vdW gap. The nature of these weak interactions is decisive for many extraordinary properties, but it is a strong challenge for current theory to accurately model long-range electron correlations. Here we use synchrotron X-ray diffraction data to precisely determine the electron density in the archetypal vdW solid, TiS2, and compare the results with density functional theory calculations. Quantitative agreement is observed for the chemical bonding description in the covalent TiS2 slabs, but significant differences are identified for the interactions across the gap, with experiment revealing more electron deformation than theory. The present data provide an experimental benchmark for testing theoretical models of weak chemical bonding.

  3. Fast and accurate covalent bond predictions using perturbation theory in chemical space

    Science.gov (United States)

    Chang, Kuang-Yu; von Lilienfeld, Anatole

    I will discuss the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among systems of different chemical composition. We have investigated single, double, and triple bonds occurring in small sets of iso-valence-electronic molecular species with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order estimates of covalent bonding potentials can achieve chemical accuracy (within 1 kcal/mol) if the alchemical interpolation is vertical (fixed geometry) among chemical elements from third and fourth row of the periodic table. When applied to nonbonded systems of molecular dimers or solids such as III-V semiconductors, alanates, alkali halides, and transition metals, similar observations hold, enabling rapid predictions of van der Waals energies, defect energies, band-structures, crystal structures, and lattice constants.

  4. Liquid phase solvent bonding of plastic microfluidic devices assisted by retention grooves.

    Science.gov (United States)

    Wan, Alwin M D; Sadri, Amir; Young, Edmond W K

    2015-01-01

    We report a novel method for achieving consistent liquid phase solvent bonding of plastic microfluidic devices via the use of retention grooves at the bonding interface. The grooves are patterned during the regular microfabrication process, and can be placed at the periphery of a device, or surrounding microfluidic features with open ports, where they effectively mitigate solvent evaporation, and thus substantially reduce poor bond coverage. This method is broadly applicable to a variety of plastics and solvents, and produces devices with high bond quality (i.e., coverage, strength, and microfeature fidelity) that are suitable for studies in physics, chemistry, and cell biology at the microscale.

  5. Annihilation of positrons with the electrons of chemical bonds of the superconducting CuO-polyhedrons in the HTSC materials

    International Nuclear Information System (INIS)

    Arutyunov, N.Yu.; Trashchakov, V.Yu.

    1989-01-01

    Angular distribution parameters of annihilation photon pairs emitted from R-Ba 2 Cu 3 O 7-x (x≤0.2; R=Y, Nd, Lu) specimens after injection and subsequent annihilation of positrons in them. It is shown that annihilation of thermalized positrons proceeds advantageously with electrons of chemical bonds of O(4)-Cu(I)-O(I) polyhedrons in R-Ba-Cu-O oxides. In an orthorhombic phase positrons are mostly delocalized in rows of ordered stoichiometric vacancies. The result obtained provides to recommend the methods of positron diagnostics for studying parameters of electron state density in superconducting structural groups of high-temperature superconductors. 2 refs.; 1 fig

  6. First-principles investigation of the structure and synergistic chemical bonding of Ag and Mg at the Al | Ω interface in a Al-Cu-Mg-Ag alloy

    International Nuclear Information System (INIS)

    Sun Lipeng; Irving, Douglas L.; Zikry, Mohammed A.; Brenner, D.W.

    2009-01-01

    Density functional theory was used to characterize the atomic structure and bonding of the Al | Ω interface in a Al-Cu-Mg-Ag alloy. The most stable interfacial structure was found to be connected by Al-Al bonds with a hexagonal Al lattice on the surface of the Ω phase sitting on the vacant hollow sites of the Al {1 1 1} matrix plane. The calculations predict that when substituted separately for Al at this interface, Ag and Mg do not enhance the interface stability through chemical bonding. Combining Ag and Mg, however, was found to chemically stabilize this interface, with the lowest-energy structure examined being a bi-layer with Ag atoms adjacent to the Al matrix and Mg adjacent to the Ω phase. This study provides an atomic arrangement for the interfacial bi-layer observed experimentally in this alloy.

  7. Exact solutions for chemical bond orientations from residual dipolar couplings

    International Nuclear Information System (INIS)

    Wedemeyer, William J.; Rohl, Carol A.; Scheraga, Harold A.

    2002-01-01

    New methods for determining chemical structures from residual dipolar couplings are presented. The fundamental dipolar coupling equation is converted to an elliptical equation in the principal alignment frame. This elliptical equation is then combined with other angular or dipolar coupling constraints to form simple polynomial equations that define discrete solutions for the unit vector(s). The methods are illustrated with residual dipolar coupling data on ubiquitin taken in a single anisotropic medium. The protein backbone is divided into its rigid groups (namely, its peptide planes and C α frames), which may be solved for independently. A simple procedure for recombining these independent solutions results in backbone dihedral angles φ and ψ that resemble those of the known native structure. Subsequent refinement of these φ-ψ angles by the ROSETTA program produces a structure of ubiquitin that agrees with the known native structure to 1.1 A C α rmsd

  8. Iron-phosphate-based chemically bonded phosphate ceramics for mixed waste stabilization

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    In an effort to develop chemically bonded phosphate ceramics for mixed waste stabilization, a collaborative project to develop iron-phosphate based ceramics has been initiated between Argonne National Laboratory and the V. G. Khlopin Radium Institute in St. Petersburg, Russia. The starter powders are oxides of iron that are generated as inexpensive byproduct materials in the iron and steel industry. They contain iron oxides as a mixture of magnetite (Fe 3 O 4 ) and haematite (Fe 2 O 3 ). In this initial phase of this project, both of these compounds were investigated independently. Each was reacted with phosphoric acid solution to form iron phosphate ceramics. In the case of magnetite, the reaction was rapid. Adding ash as the waste component containing hazardous contaminants resulted in a dense and hard ceramic rich in glassy phase. On the other hand, the reaction of phosphoric acid solution with a mixture of haematite and ash waste contaminated with cesium and americium was too slow. Samples had to be molded under pressure. They were cured for 2-3 weeks and then hardened by heating at 350 degrees C for 3 h. The resulting ceramics in both cases were subjected to physical tests for measurement of density, open porosity, compression strength, phase analyses using X-ray diffraction and differential thermal analysis, and leaching tests using toxicity characteristic leaching procedure (TCLP) and ANS 16.1 with 7 days of leaching. Using the preliminary information obtained from these tests, we evaluated these materials for stabilization of Department of Energy's mixed waste streams

  9. Chemical bonding in view of electron charge density and kinetic energy density descriptors.

    Science.gov (United States)

    Jacobsen, Heiko

    2009-05-01

    Stalke's dilemma, stating that different chemical interpretations are obtained when one and the same density is interpreted either by means of natural bond orbital (NBO) and subsequent natural resonance theory (NRT) application or by the quantum theory of atoms in molecules (QTAIM), is reinvestigated. It is shown that within the framework of QTAIM, the question as to whether for a given molecule two atoms are bonded or not is only meaningful in the context of a well-defined reference geometry. The localized-orbital-locator (LOL) is applied to map out patterns in covalent bonding interaction, and produces results that are consistent for a variety of reference geometries. Furthermore, LOL interpretations are in accord with NBO/NRT, and assist in an interpretation in terms of covalent bonding. 2008 Wiley Periodicals, Inc.

  10. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table.

    Science.gov (United States)

    Kaupp, Martin

    2007-01-15

    The role of radial nodes, or of their absence, in valence orbitals for chemical bonding and periodic trends is discussed from a unified viewpoint. In particular, we emphasize the special role of the absence of a radial node whenever a shell with angular quantum number l is occupied for the first time (lack of "primogenic repulsion"), as with the 1s, 2p, 3d, and 4f shells. Although the consequences of the very compact 2p shell (e.g. good isovalent hybridization, multiple bonding, high electronegativity, lone-pair repulsion, octet rule) are relatively well known, it seems that some of the aspects of the very compact 3d shell in transition-metal chemistry are less well appreciated, e.g., the often weakened and stretched bonds at equilibrium structure, the frequently colored complexes, and the importance of nondynamical electron-correlation effects in bonding. Copyright (c) 2006 Wiley Periodicals, Inc.

  11. The Collaboration of Cooperative Learning and Conceptual Change: Enhancing the Students' Understanding of Chemical Bonding Concepts

    Science.gov (United States)

    Eymur, Gülüzar; Geban, Ömer

    2017-01-01

    The main purpose of this study was to investigate the effects of cooperative learning based on conceptual change approach instruction on ninth-grade students' understanding in chemical bonding concepts compared to traditional instruction. Seventy-two ninth-grade students from two intact chemistry classes taught by the same teacher in a public high…

  12. Spunlaced and chemically bonded nonwovens for filtration applications: Performance evaluation and comparison

    CSIR Research Space (South Africa)

    Boguslavsky, L

    2008-11-01

    Full Text Available . The physical, mechanical and performance properties were measured and compared. It was concluded that chemical bonding had a higher effect on the fabric structural changes, such as pore size and its distribution. The results showed an improvement in dust...

  13. Low-temperature wafer direct bonding of silicon and quartz glass by a two-step wet chemical surface cleaning

    Science.gov (United States)

    Wang, Chenxi; Xu, Jikai; Zeng, Xiaorun; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo

    2018-02-01

    We demonstrate a facile bonding process for combining silicon and quartz glass wafers by a two-step wet chemical surface cleaning. After a post-annealing at 200 °C, strong bonding interfaces with no defects or microcracks were obtained. On the basis of the detailed surface and bonding interface characterizations, the bonding mechanism was explored and discussed. The amino groups terminated on the cleaned surfaces might contribute to the bonding strength enhancement during the annealing. This cost-effective bonding process has great potentials for silicon- and glass-based heterogeneous integrations without requiring a vacuum system.

  14. Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Adireddy, Shiva; Ramana, C.V.

    2015-01-01

    Graphical abstract: Room temperature Raman spectra of CoFe 2−x Gd x O 4 (CFGO, x = 0.0–0.3) compounds as a function of wavenumber (cm −1 ). - Highlights: • Gd substituted ferrites were synthesized under controlled concentration. • Gd ion induced lattice dynamical changes are significant. • Enhanced magnetization is observed upon Gd-incorporation in cobalt ferrite. • A correlation between lattice dynamics and magnetic properties is established. - Abstract: Polycrystalline gadolinium (Gd) substituted cobalt ferrites (CoFe 2−x Gd x O 4 ; x = 0–0.3, referred to CFGO) ceramics have been synthesized by solid state reaction method. Chemical bonding, crystal structure and magnetic properties of CFGO compounds have been evaluated as a function of Gd-content. X-ray diffraction (XRD) and Raman spectroscopic analyses confirmed the formation of inverse spinel cubic structure. However, a secondary ortho-ferrite phase (GdFeO 3 ) nucleates for higher values of Gd-content. A considerable increase in the saturation magnetization has been observed upon the initial substitution of Gd (x = 0.1). The saturation magnetization drastically decreases at higher Gd content (x ⩾ 0.3). No contribution from ortho-ferrite GdFeO 3 phase is noted to the magnetic properties. The increase in the magnetic saturation magnetization is attributed to the higher magnetic moment of Gd 3+ (4f 7 ) residing in octahedral sites is higher when compared to that of Fe 3+ (3d 5 ) and as well due to the migration of Co 2+ (3d 7 ) ions from the octahedral to the tetrahedral sites with a magnetic moment aligned anti-parallel to those of rare earth (RE 3+ ) ions in the spinel lattice. Increase in coercivity with increase in Gd 3+ is content is attributed to magnetic anisotropy in the ceramics

  15. Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.go [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Laboratory of Chemical Physics (United States)

    2010-03-15

    We present a program, named Promega, to predict the Xaa-Pro peptide bond conformation on the basis of backbone chemical shifts and the amino acid sequence. Using a chemical shift database of proteins of known structure together with the PDB-extracted amino acid preference of cis Xaa-Pro peptide bonds, a cis/trans probability score is calculated from the backbone and {sup 13}C{sup {beta}} chemical shifts of the proline and its neighboring residues. For an arbitrary number of input chemical shifts, which may include Pro-{sup 13}C{sup {gamma}}, Promega calculates the statistical probability that a Xaa-Pro peptide bond is cis. Besides its potential as a validation tool, Promega is particularly useful for studies of larger proteins where Pro-{sup 13}C{sup {gamma}} assignments can be challenging, and for on-going efforts to determine protein structures exclusively on the basis of backbone and {sup 13}C{sup {beta}} chemical shifts.

  16. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    International Nuclear Information System (INIS)

    Lichienberger, D.L.

    1990-10-01

    This quarter has witnessed further progress both in our experimental methods of photoelectron spectroscopy and in our understanding the fundamental relationships between ionization energies and the chemistry of transition metal species. Progress continues on the new gas phase photoelectron spectrometer that combine improved capabilities for HeI/HeII UPS, XPS, and Auger investigations of organometallic molecules. Several measurements have been accomplished this year that were not possible previously. We have published the formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies, and applied the relationships to homonuclear and heteronuclear diatomic molecules, multiple bonds, and metal-ligand bonds. Studies of C-H bond activation have continued with examination of different degrees of Si-H bond addition to metals. the electronic effects of intermolecular interactions have been observed by comparing the ionizations of metal complexes in the gas phase with the ionizations of monolayer solid organometallic films prepared in ultra-high vacuum. The orientations of the molecules have been determined by scanning tunneling microscopy. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C 60 molecule, buckminsterfullerene. Studies of the following complexes are described : Fe, Os, Nb, Mo, Rh, Re, Al, and Mn. 19 refs

  17. Bonding Characteristics and Chemical Inertness of Zr–Si–N Coatings with a High Si Content in Glass Molding

    Directory of Open Access Journals (Sweden)

    Li-Chun Chang

    2018-05-01

    Full Text Available High-Si-content transition metal nitride coatings, which exhibited an X-ray amorphous phase, were proposed as protective coatings on glass molding dies. In a previous study, the Zr–Si–N coatings with Si contents of 24–30 at.% exhibited the hardness of Si3N4, which was higher than those of the middle-Si-content (19 at.% coatings. In this study, the bonding characteristics of the constituent elements of Zr–Si–N coatings were evaluated through X-ray photoelectron spectroscopy. Results indicated that the Zr 3d5/2 levels were 179.14–180.22 and 180.75–181.61 eV for the Zr–N bonds in ZrN and Zr3N4 compounds, respectively. Moreover, the percentage of Zr–N bond in the Zr3N4 compound increased with increasing Si content in the Zr–Si–N coatings. The Zr–N bond of Zr3N4 dominated when the Si content was >24 at.%. Therefore, high Si content can stabilize the Zr–N compound in the M3N4 bonding structure. Furthermore, the thermal stability and chemical inertness of Zr–Si–N coatings were evaluated by conducting thermal cycle annealing at 270 °C and 600 °C in a 15-ppm O2–N2 atmosphere. The results indicated that a Zr22Si29N49/Ti/WC assembly was suitable as a protective coating against SiO2–B2O3–BaO-based glass for 450 thermal cycles.

  18. Penn gap rule in phase-change memory materials: No clear evidence for resonance bonds

    Directory of Open Access Journals (Sweden)

    K. Shimakawa

    2015-04-01

    Full Text Available Although a proposal of resonance bonds in crystalline phase-change materials based on the GeSbTe system has been provided, we do not find any clear evidence in favor of the proposal. The ellipsometric study demonstrates that a change in the high frequency dielectric constant ε∞ between the amorphous and crystalline phases is only scaled by the average bandgap (the Penn gap rule. Even for a pure antimony film, regarded as a prototype resonance bonding material, ε∞ was found to follow the Penn gap rule. Experimentally, we did not find any evidence of a significant change in the optical transition matrix element during the phase change, which is necessary to support the idea of resonance bonds.

  19. Theoretical study of relativistic effects in the electronic structure and chemical bonding of UF6

    International Nuclear Information System (INIS)

    Onoe, Jun; Takeuchi, Kazuo; Sekine, Rika; Nakamatsu, Hirohide; Mukoyama, Takeshi; Adachi, Hirohiko.

    1992-01-01

    We have performed the relativistic molecular orbital calculation for the ground state of UF 6 , using the discrete-variational Dirac-Slater method (DV-DS), in order to elucidate the relativistic effects in the electronic structure and chemical bonding. Compared with the electronic structure calculated by the non-relativistic Hartree-Fock-Slater (DV-X α )MO method, not only the direct relativistic effects (spin-orbit splitting etc), but also the indirect effect due to the change in screening core potential charge are shown to be important in the MO level structure. From the U-F bond overlap population analysis, we found that the U-F bond formation can be explained only by the DV-DS, not by the DV-X α . The calculated electronic structure in valence energy region (-20-OeV) and excitation energies in UV region are in agreement with experiments. (author)

  20. Studying Chemical Reactions, One Bond at a Time, with Single Molecule AFM Techniques

    Science.gov (United States)

    Fernandez, Julio M.

    2008-03-01

    The mechanisms by which mechanical forces regulate the kinetics of a chemical reaction are unknown. In my lecture I will demonstrate how we use single molecule force-clamp spectroscopy and protein engineering to study the effect of force on the kinetics of thiol/disulfide exchange. Reduction of disulfide bond via the thiol/disulfide exchange chemical reaction is crucial in regulating protein function and is of common occurrence in mechanically stressed proteins. While reduction is thought to proceed through a substitution nucleophilic bimolecular (SN2) reaction, the role of a mechanical force in modulating this chemical reaction is unknown. We apply a constant stretching force to single engineered disulfide bonds and measure their rate of reduction by dithiothreitol (DTT). We find that while the reduction rate is linearly dependent on the concentration of DTT, it is exponentially dependent on the applied force, increasing 10-fold over a 300 pN range. This result predicts that the disulfide bond lengthens by 0.34 å at the transition state of the thiol/disulfide exchange reaction. In addition to DTT, we also study the reduction of the engineered disulfide bond by the E. coli enzyme thioredoxin (Trx). Thioredoxins are enzymes that catalyze disulfide bond reduction in all organisms. As before, we apply a mechanical force in the range of 25-450 pN to the engineered disulfide bond substrate and monitor the reduction of these bonds by individual enzymes. In sharp contrast with the data obtained with DTT, we now observe two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulfide bond, causing a shortening of the substrate polypeptide by 0.76±0.07 å, and the second elongating the substrate disulfide bond by 0.21±0.01 å. These results support the view that the Trx active site regulates the geometry of the participating sulfur atoms, with sub-ångström precision, in order to achieve efficient catalysis. Single molecule

  1. Surface Characterization of Some Novel Bonded Phase Packing Materials for HPLC Columns Using MAS-NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jude Abia

    2015-03-01

    Full Text Available Information on the surface properties of three novel chemically bonded phase packing materials for High performance liquid chromatography (HPLC were obtained using spectra obtained by solid state cross-polarization (CP magic-angle spinning (MAS nuclear magnetic resonance (NMR spectroscopic experiments for the 29Si, and 13C nuclei. These packing materials were: Cogent bidentate C18 bonded to type-C silica, hybrid packing materials XTerra MS C18, and XBridge Prep. C18. The spectra obtained using cross-polarization magic angle spinning (CP-MAS on the Cogent bidentate C18 bonded to type-C silica show the surface to be densely populated with hydride groups (Si-H, with a relative surface coverage exceeding 80%. The hybrid packing materials XTerra and XBridge gave spectra that reveal the silicon atoms to be bonded to organic moieties embedded in the molecular structure of these materials with over 90% of the alkyl silicon atoms found within the completely condensed silicon environments. The hydrolytic stability of these materials were investigated in acidic aqueous solutions at pHs of 7.0 and 3.0, and it was found that while the samples of XTerra and XBridge were not affected by hydrolysis at this pH range, the sample of Cogent lost a significant proportion of its Si-H groups after five days of treatment in acidic aqueous solution.

  2. Investigation of Chemical Bond Properties and Mssbauer Spectroscopy in YBa2Cu3O7

    Institute of Scientific and Technical Information of China (English)

    高发明; 李东春; 张思远

    2003-01-01

    Chemical bond properties of YBa2Cu3O7 were studied by using the average band-gap model. The calculated results show that the covalency of Cu(1)-O bond is 0.406, and one of Cu(2)-O is 0.276. Mssbauer isomer shifts of 57Fe in Y-123 were calculated by the chemical surrounding factor hv defined by covalency and electronic polarizability. The charge-state and site of Fe were determined. The relation between the coupling constant of electron-phonon interaction and covalency is employed to explain that the Cu(2)-O plane is more important than the Cu(1)-O chain on the superconductivity in the Y-123 compounds.

  3. Evolution of the chemical bonding nature and electrode activity of indium selenide upon the composite formation with graphene nanosheets

    International Nuclear Information System (INIS)

    Oh, Seung Mi; Lee, Eunsil; Adpakpang, Kanyaporn; Patil, Sharad B.; Park, Mi Jin; Lim, Young Soo; Lee, Kyu Hyoung; Kim, Jong-Young; Hwang, Seong-Ju

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • In 4 Se 2.85 @graphene nanocomposite is easily prepared by high energy mechanical milling process. • The bond covalency of In 4 Se 2.85 is notably changed upon the composite formation with graphene. • In 4 Se 2.85 @graphene nanocomposite shows promising anode performance for lithium ion battery. -- Abstract: Evolution of the chemical bonding nature and electrochemical activity of indium selenide upon the composite formation with carbon species is systematically investigated. Nanocomposites of In 4 Se 2.85 @graphene and In 4 Se 2.85 @carbon-black are synthesized via a solid state reaction between In and Se elements, and the following high energy mechanical milling of In 4 Se 2.85 with graphene and carbon-black, respectively. The high energy mechanical milling (HEMM) of In 4 Se 2.85 with carbon species gives rise to a decrease of particle size with a significant depression of the crystallinity of In 4 Se 2.85 phase. In contrast to the composite formation with carbon-black, that with graphene induces a notable decrease of (In−Se) bond covalency, underscoring significant chemical interaction between graphene and In 4 Se 2.85 . Both the nanocomposites of In 4 Se 2.85 @graphene and In 4 Se 2.85 @carbon-black show much better anode performance for lithium ion batteries with larger discharge capacity and better cyclability than does the pristine In 4 Se 2.85 material, indicating the beneficial effect of composite formation on the electrochemical activity of indium selenide. Between the present nanocomposites, the electrode performance of the In 4 Se 2.85 @graphene nanocomposite is superior to that of the In 4 Se 2.85 @carbon-black nanocomposite, which is attributable to the weakening of (In−Se) bonds upon the composite formation with graphene as well as to the better mixing between In 4 Se 2.85 and graphene. The present study clearly demonstrates that the composite formation with graphene has strong influence

  4. Hydrides of Alkaline Earth–Tetrel (AeTt) Zintl Phases: Covalent Tt–H Bonds from Silicon to Tin

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Henry; Guehne, Robin; Bertmer, Marko; Weber, Sebastian; Wenderoth, Patrick; Hansen, Thomas Christian; Haase, Jürgen; Kohlmann, Holger (Leipzig); (Saarland-MED); (ILL)

    2017-01-18

    Zintl phases form hydrides either by incorporating hydride anions (interstitial hydrides) or by covalent bonding of H to the polyanion (polyanionic hydrides), which yields a variety of different compositions and bonding situations. Hydrides (deuterides) of SrGe, BaSi, and BaSn were prepared by hydrogenation (deuteration) of the CrB-type Zintl phases AeTt and characterized by laboratory X-ray, synchrotron, and neutron diffraction, NMR spectroscopy, and quantum-chemical calculations. SrGeD4/3–x and BaSnD4/3–x show condensed boatlike six-membered rings of Tt atoms, formed by joining three of the zigzag chains contained in the Zintl phase. These new polyanionic motifs are terminated by covalently bound H atoms with d(Ge–D) = 1.521(9) Å and d(Sn–D) = 1.858(8) Å. Additional hydride anions are located in Ae4 tetrahedra; thus, the features of both interstitial hydrides and polyanionic hydrides are represented. BaSiD2–x retains the zigzag Si chain as in the parent Zintl phase, but in the hydride (deuteride), it is terminated by H (D) atoms, thus forming a linear (SiD) chain with d(Si–D) = 1.641(5) Å.

  5. Bond quality control of aluminium stabilised superconductors with ultrasonic phased-array technology

    International Nuclear Information System (INIS)

    Neuenschwander, J.; Luethi, T.; Horvath, I.L.

    2001-01-01

    Novel aluminium stabilised superconductors are currently being produced for the Large Hadron Collider detectors ATLAS and CMS. For a satisfying service of the conductor an intact bonding between the different constituents must be guaranteed. We have shown previously that ultrasonics is a powerful tool for checking the bond quality. However, up to now the full width of the bond could be inspected only on short samples with a mechanical scanner. The essence of this presentation is the introduction of the phased-array technique which allows a continuous analysis of the complete bond over km-long conductor units during their manufacture. For now, more than 50 km of conductor have been tested during co-extrusion. Disbondings are detected as regions with enhanced echo-amplitudes. We are about to set-up a second system for the control of an electron beam welding process which is used for the reinforcement of the CMS conductor. (orig.)

  6. Diffusion bonding of 9Cr ODS ferritic/martensitic steel with a phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: shnoh@kaeri.re.kr [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Kim, Tae Kyu [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of)

    2014-10-15

    Highlights: • Diffusion bonding was employed to join 9Cr oxide dispersion strengthened ferritic/martensitic steel under uniaxial hydrostatic pressure, and the microstructure and tensile properties of the joints were investigated. • ODS steel was successfully diffusion bonded at an austenization temperature to migrate a residual diffusion bonding interface. • The tensile properties of the joint region were comparable with that of the base metal with a ductile fracture occurred far from the bonding interface. • It is considered that diffusion bonding with a phase transformation can be a very useful joining method for fabricating components in next-generation nuclear systems using 9Cr ODS ferritic/martensitic steel. - Abstract: Diffusion bonding was employed to join oxide-dispersion-strengthened ferritic/martensitic steel under uniaxial hydrostatic pressure using a high vacuum hot press, and the microstructure and tensile properties of the joints were investigated. 9Cr oxide dispersion strengthened (ODS) steel was successfully diffusion bonded at 1150 °C for 1 h to migrate a residual bonding interface. Following heat treatment, including normalising at 1050 °C and tempering at 800 °C for 1 h, comparable results without inclusions or micro-voids at the bonding interface, or degradation in the base metal were achieved. Transmission electron microscopy (TEM) observation revealed that the nano-oxide particles in the bonding region were uniformly distributed in the matrix. At room temperature, the joint had nearly the same tensile properties with that of the base metal. The tensile strength of the joint region at elevated temperatures was comparable with that of the base metal. The total elongation of the joint region decreased slightly, but reached 80% of the base metal at 700 °C, and a ductile fracture occurred far from the bonding interface. Therefore, it is considered that diffusion bonding with a phase transformation can be a very useful joining method for

  7. Transport of chemically bonded nuclear energy in a closed cycle with special consideration to energy disconnection

    International Nuclear Information System (INIS)

    Ossami, S.

    1976-01-01

    The article describes the utilisation of nuclear energy in the form of 'nuclear long-distance energy'. Heat produced by nuclear fission is bonded to a reversible chemical reaction (cracking gas) which release the heat again at the place of comsumption by catalytic transformation. The article deals in particular with the process of methane cracking/methanisation, the disconnection of the energy (heat) by the methanisation process and the decisive role of the methanisation catalyzers. (orig.) [de

  8. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    Science.gov (United States)

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  9. Chemically-bonded brick production based on burned clay by means of semidry pressing

    Energy Technology Data Exchange (ETDEWEB)

    Voroshilov, Ivan, E-mail: Nixon.06@mail.ru; Endzhievskaya, Irina, E-mail: icaend@mail.ru; Vasilovskaya, Nina, E-mail: icaend@mail.ru [FSAEI HVE Siberian Federal University, 82 Svobodny Prospekt, Krasnoyarsk, 660130 (Russian Federation)

    2016-01-15

    We presented a study on the possibility of using the burnt rocks of the Krasnoyarsk Territory for production of chemically-bonded materials in the form of bricks which are so widely used in multistory housing and private house construction. The radiographic analysis of the composition of burnt rock was conducted and a modifier to adjust the composition uniformity was identified. The mixing moisture content was identified and optimal amount at 13-15% was determined. The method of semidry pressing has been chosen. The process of obtaining moldings has been theoretically proved; the advantages of chemically-bonded wall materials compared to ceramic brick were shown. The production of efficient artificial stone based on material burnt rocks, which is comparable with conventionally effective ceramic materials or effective with cell tile was proved, the density of the burned clay-based cell tile makes up to 1630-1785 kg \\ m{sup 3}, with compressive strength of 13.6-20.0 MPa depending on the compression ratio and cement consumption, frost resistance index is F50, and the thermal conductivity in the masonry is λ = 0,459-0,546 W \\ m {sup *} °C. The clear geometric dimensions of pressed products allow the use of the chemically-bonded brick based on burnt clay as a facing brick.

  10. Electronic structure and chemical bonding in LaIrSi-type intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Matar, Samir F. [Bordeaux Univ., Pessac (France). CNRS; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Nakhl, Michel [Univ. Libanaise, Fanar (Lebanon). Ecole Doctorale Sciences et Technologies

    2017-05-01

    The cubic LaIrSi type has 23 representatives in aluminides, gallides, silicides, germanides, phosphides, and arsenides, all with a valence electron count of 16 or 17. The striking structural motif is a three-dimensional network of the transition metal (T) and p element (X) atoms with TX{sub 3/3} respectively XT{sub 3/3} coordination. Alkaline earth or rare earth atoms fill cavities within the polyanionic [TX]{sup δ-} networks. The present work presents a detailed theoretical study of chemical bonding in LaIrSi-type representatives, exemplarily for CaPtSi, BaIrP, BaAuGa, LaIrSi, CeRhSi, and CeIrSi. DFT-GGA-based electronic structure calculations show weakly metallic compounds with itinerant small magnitude DOSs at E{sub F} except for CeRhSi whose large Ce DOS at E{sub F} leads to a finite magnetization on Ce (0.73 μ{sub B}) and induced small moments of opposite sign on Rh and Si in a ferromagnetic ground state. The chemical bonding analyses show dominant bonding within the [TX]{sup δ-} polyanionic networks. Charge transfer magnitudes were found in accordance with the course of the electronegativites of the chemical constituents.

  11. Stabilization of low-level mixed waste in chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A.S.; Singh, D.; Sarkar, A.V.

    1994-06-01

    Mixed waste streams, which contain both chemical and radioactive wastes, are one of the important categories of DOE waste streams needing stabilization for final disposal. Recent studies have shown that chemically bonded phosphate ceramics may have the potential for stabilizing these waste streams, particularly those containing volatiles and pyrophorics. Such waste streams cannot be stabilized by conventional thermal treatment methods such as vitrification. Phosphate ceramics may be fabricated at room temperature into durable, hard and dense materials. For this reason room-temperature-setting phosphate ceramic waste forms are being developed to stabilize these to ''problem waste streams.''

  12. Contributions to reversed-phase column selectivity: III. Column hydrogen-bond basicity.

    Science.gov (United States)

    Carr, P W; Dolan, J W; Dorsey, J G; Snyder, L R; Kirkland, J J

    2015-05-22

    Column selectivity in reversed-phase chromatography (RPC) can be described in terms of the hydrophobic-subtraction model, which recognizes five solute-column interactions that together determine solute retention and column selectivity: hydrophobic, steric, hydrogen bonding of an acceptor solute (i.e., a hydrogen-bond base) by a stationary-phase donor group (i.e., a silanol), hydrogen bonding of a donor solute (e.g., a carboxylic acid) by a stationary-phase acceptor group, and ionic. Of these five interactions, hydrogen bonding between donor solutes (acids) and stationary-phase acceptor groups is the least well understood; the present study aims at resolving this uncertainty, so far as possible. Previous work suggests that there are three distinct stationary-phase sites for hydrogen-bond interaction with carboxylic acids, which we will refer to as column basicity I, II, and III. All RPC columns exhibit a selective retention of carboxylic acids (column basicity I) in varying degree. This now appears to involve an interaction of the solute with a pair of vicinal silanols in the stationary phase. For some type-A columns, an additional basic site (column basicity II) is similar to that for column basicity I in primarily affecting the retention of carboxylic acids. The latter site appears to be associated with metal contamination of the silica. Finally, for embedded-polar-group (EPG) columns, the polar group can serve as a proton acceptor (column basicity III) for acids, phenols, and other donor solutes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. High pressure stability analysis and chemical bonding of Ti{sub 1-x}Zr{sub x}N alloy: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Mamta; Gupta, Dinesh C., E-mail: sosfizix@gmail.com, E-mail: mamta-physics@yahoo.co.in [Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior – 474 011 (India)

    2016-05-23

    First-principles pseudo-potential calculations have been performed to analyze the stability of Ti{sub 1-x}Zr{sub x}N alloy under high pressures. The first order phase transition from B1 to B2 phase has been observed in this alloy at high pressure. The variation of lattice parameter with the change in concentration of Zr atom in Ti{sub 1-x}Zr{sub x}N is also reported in both the phases. The calculations for density of states have been performed to understand the alloying effects on chemical bonding of Ti-Zr-N alloy.

  14. Ab initio investigations of the electronic structure and chemical bonding of Li2ZrN2

    International Nuclear Information System (INIS)

    Matar, S.F.; Pöttgen, R.; Al Alam, A.F.; Ouaini, N.

    2012-01-01

    The electronic structure of the ternary nitride Li 2 ZrN 2 is examined from ab initio with DFT computations for an assessment of the properties of chemical bonding. The compound is found insulating with 1.8 eV band gap; it becomes metallic and less ionic upon removal of one equivalent of Li. The chemical interaction is found mainly between Zr and N on one hand and Li and N on the other hand. While all pair interactions are bonding, antibonding N–N interactions are found dominant at the top of the valence band of Li 2 ZrN 2 and they become less intense upon removal of Li. From energy differences the partial delithiation leading to Li 2−x ZrN 2 (x=∼1) is favored. - Graphical abstract: Trigonal structure of Li 2 ZrN 2 showing the Zr–N–Li layers along the c-axis. Highlights: ► Li 2 ZrN 2 calculated insulating with a 1.8 eV gap in agreement with its light green color. ► Lithium de-intercalation is energetically favored for one out of two Li equivalents. ► Li plays little role in the change of the structure, ensured by Zr and N binding. ► Similar changes in the electronic structure as for various intercalated phases of ZrN.

  15. The role of a chemical bond in thermal expansion of TlIn1-xYbxSe2 solid solutions

    International Nuclear Information System (INIS)

    Zarbaliev, M.M.; Sardarova, N.S.; Mamedov, E.G.; Nagiyev, A.B.

    2008-01-01

    Report focuses on the study of the role of the chemical bond in the thermal expansion of solid solutions TLIn 1 -x Yb x Se 2 (0phases of studies is identical. This behavior α (T) is explained that, all investigated phases are crystallized, as parent compound TLInSe 2 , in the tetragonal system and type of chemical bonds between atoms in a crystal lattice one and the same. It leads to the same temperature changes of enharmonic part of the thermal variations of atoms in the crystal lattice. But the level of anharmonism depends on the character interatomic interaction and temperature, which defined the value of α

  16. Halogen bonding: A new retention mechanism for the solid phase extraction of perfluorinated iodoalkanes

    International Nuclear Information System (INIS)

    Yan Xiaoqing; Shen Qianjin; Zhao Xiaoran; Gao Haiyue; Pang Xue; Jin Weijun

    2012-01-01

    Highlights: ► Halogen bonding (XB) is firstly utilised in solid phase extraction. ► The perfluorinated iodine alkanes can be extracted by C-I⋯Cl − halogen bonding. ► The C-I⋯Cl − halogen bond is well characterised by spectroscopy methods. ► The analytes with strong halogen-bonding abilities can be selectively extracted. - Abstract: For the first time, halogen-bonding interaction is utilised in the solid phase extraction of perfluorinated iodoalkane (PFI). Nine PFIs, as model analytes, were tested, and analyses by UV, 19 F NMR and Raman spectroscopies demonstrate that the PFIs are extracted by a strong anion exchange (SAX) sorbent from n-hexane due to the C-I⋯Cl − halogen-bonding interactions. The results also show that the adsorptivities of SAX for the diiodoperfluoro-alkanes (diiodo-PFIs) were much stronger than those for the perfluoroalkyl iodides (monoiodo-PFIs). Specifically, the recoveries for 1,6-diiodoperfluorohexane and 1,8-diiodoperfluorooctane were higher than 80% when 100 mL of sample spiked with a 5 ng mL −1 analyte mixture was extracted. Interestingly, SAX had no adsorption for hexafluorobenzene at all, which is known to be unable to form a halogen bond with Cl − . The analytical performance of the halogen bond-based SPE-GC–MS method for the diiodo-PFIs was also examined in soil samples. The sorbent SAX enabled the selective extraction of four diiodo-PFIs successfully from soil samples. The recoveries of the diiodo-PFIs extracted from 5 g soil sample at the 100 ng g −1 spike level were in the range of 73.2–93.8% except 26.8% for 1,2-diiodoperfluoroethane. The limit of detection varied from 0.02 to 0.04 ng g −1 in soil samples. Overall, this work reveals the great application potential of halogen bonding in the field of solid phase extraction to selectively extract compounds with strong halogen-bonding abilities.

  17. Evidence for resonant bonding in phase-change materials studied by IR spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Shportko

    2017-04-01

    Full Text Available Phase-change materials (PCM attract attention due to their unique properties. This remarkable portfolio also makes them promising for applications in novel data storage devices. In this study, we discuss differences in the optical properties of PCM and non-PCM in the IR caused by presence or absence of resonant bonding.

  18. Strength and reliability of low temperature transient liquid phase bonded Cu-Sn-Cu interconnects

    DEFF Research Database (Denmark)

    Brincker, Mads; Söhl, Stefan; Eisele, Ronald

    2017-01-01

    As power electronic devices have tendencies to operate at higher temperatures and current densities, the demand for reliable and efficient packaging technologies are ever increasing. This paper reports the studies on application of transient liquid phase (TLP) bonding of CuSnCu systems...

  19. Optical modulation in nematic phase of halogen substituted hydrogen bonded liquid crystals

    Science.gov (United States)

    Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2012-01-01

    A series of halogen-substituted hydrogen-bonded liquid crystalline complexes have been designed and synthesised. A successful attempt has been made to form complementary hydrogen bonding between the dodecyloxy benzoic acid (12BAO) and halogen-substituted benzoic acids and the physical properties exhibited by the individual complexes are studied. The complexes obtained are analysed by polarising optical microscope (POM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and dielectric studies. The formation of complementary hydrogen bond is confirmed through FTIR spectra. An interesting feature of this series is the observation of a field-induced transition (FiT) in nematic phase. Another interesting phenomenon is the observation of a new smectic X phase (worm-like texture) in all the synthesised complexes. Dielectric relaxation studies in the smectic C phase of these hydrogen bonded complexes along with the Arrhenius and the Cole-Cole plots are discussed. Optical tilt angle in smectic C phase and the corresponding fitted data analysis concur with the Mean field theory prediction.

  20. Four chemical methods of porcelain conditioning and their influence over bond strength and surface integrity

    Science.gov (United States)

    Stella, João Paulo Fragomeni; Oliveira, Andrea Becker; Nojima, Lincoln Issamu; Marquezan, Mariana

    2015-01-01

    OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding. METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%). RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased. CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface. PMID:26352845

  1. Structure and Chemical Bond of Thermoelectric Ce-Co-Sb Skutterudites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The correlations among composition,structure,chemical bond and thermoelectric property of skutterudites CoSb3 and CeCo5Fe3Sb12 have been studied by using density function and discrete variation (DFT-DVM) method.Three models for this study were proposed and calculated by which the "rattling" pattern was described.Model 1 is with Ce in the center,model 2 is with Ce away the center and near to Sb,and model 3 is also with Ce away the center but near to Fe.The calculated results show that in model 3,the ionic bond is the strongest,but the covalent bond is the weakest.Due to the different changes between ionic and covalent bond,there is less difference in the stability among the models 1,2 and 3.Therefore,these different models can exist at the same time,or can translate from one to another more easily.In other words,the "rattling" pattern has taken place.Unfilled model of CoSb3,without Ce and Fe,is called model 4.The covalent bond of Co-Sb or Fe-Sb in models 1,2 and 3 is weaker than that of Co-Sb in model 4,as some electrical cloud of Sb takes part in the covalent bond of Ce-Sb in the filled models.The result is consistent with the experimental result that the thermal conductivity of CeCo5Fe3Sb12 is lower than that of CoSb3,and the thermoelectric property of CeCo5Fe3Sb12 is superior to that of CoSb3.

  2. Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Venkata Sreenivas, E-mail: vspuli@utep.edu [Department of Mechanical Engineering, University of Texas, El Paso, TX 79968 (United States); Adireddy, Shiva [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Ramana, C.V. [Department of Mechanical Engineering, University of Texas, El Paso, TX 79968 (United States)

    2015-09-25

    Graphical abstract: Room temperature Raman spectra of CoFe{sub 2−x}Gd{sub x}O{sub 4} (CFGO, x = 0.0–0.3) compounds as a function of wavenumber (cm{sup −1}). - Highlights: • Gd substituted ferrites were synthesized under controlled concentration. • Gd ion induced lattice dynamical changes are significant. • Enhanced magnetization is observed upon Gd-incorporation in cobalt ferrite. • A correlation between lattice dynamics and magnetic properties is established. - Abstract: Polycrystalline gadolinium (Gd) substituted cobalt ferrites (CoFe{sub 2−x}Gd{sub x}O{sub 4}; x = 0–0.3, referred to CFGO) ceramics have been synthesized by solid state reaction method. Chemical bonding, crystal structure and magnetic properties of CFGO compounds have been evaluated as a function of Gd-content. X-ray diffraction (XRD) and Raman spectroscopic analyses confirmed the formation of inverse spinel cubic structure. However, a secondary ortho-ferrite phase (GdFeO{sub 3}) nucleates for higher values of Gd-content. A considerable increase in the saturation magnetization has been observed upon the initial substitution of Gd (x = 0.1). The saturation magnetization drastically decreases at higher Gd content (x ⩾ 0.3). No contribution from ortho-ferrite GdFeO{sub 3} phase is noted to the magnetic properties. The increase in the magnetic saturation magnetization is attributed to the higher magnetic moment of Gd{sup 3+} (4f{sup 7}) residing in octahedral sites is higher when compared to that of Fe{sup 3+} (3d{sup 5}) and as well due to the migration of Co{sup 2+} (3d{sup 7}) ions from the octahedral to the tetrahedral sites with a magnetic moment aligned anti-parallel to those of rare earth (RE{sup 3+}) ions in the spinel lattice. Increase in coercivity with increase in Gd{sup 3+} is content is attributed to magnetic anisotropy in the ceramics.

  3. The active site of hen egg-white lysozyme: flexibility and chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Held, Jeanette, E-mail: jeanette.netzel@uni-bayreuth.de; Smaalen, Sander van [University of Bayreuth, D-95440 Bayreuth (Germany)

    2014-04-01

    Chemical bonding at the active site of lysozyme is analyzed on the basis of a multipole model employing transferable multipole parameters from a database. Large B factors at low temperatures reflect frozen-in disorder, but therefore prevent a meaningful free refinement of multipole parameters. Chemical bonding at the active site of hen egg-white lysozyme (HEWL) is analyzed on the basis of Bader’s quantum theory of atoms in molecules [QTAIM; Bader (1994 ▶), Atoms in Molecules: A Quantum Theory. Oxford University Press] applied to electron-density maps derived from a multipole model. The observation is made that the atomic displacement parameters (ADPs) of HEWL at a temperature of 100 K are larger than ADPs in crystals of small biological molecules at 298 K. This feature shows that the ADPs in the cold crystals of HEWL reflect frozen-in disorder rather than thermal vibrations of the atoms. Directly generalizing the results of multipole studies on small-molecule crystals, the important consequence for electron-density analysis of protein crystals is that multipole parameters cannot be independently varied in a meaningful way in structure refinements. Instead, a multipole model for HEWL has been developed by refinement of atomic coordinates and ADPs against the X-ray diffraction data of Wang and coworkers [Wang et al. (2007), Acta Cryst. D63, 1254–1268], while multipole parameters were fixed to the values for transferable multipole parameters from the ELMAM2 database [Domagala et al. (2012), Acta Cryst. A68, 337–351] . Static and dynamic electron densities based on this multipole model are presented. Analysis of their topological properties according to the QTAIM shows that the covalent bonds possess similar properties to the covalent bonds of small molecules. Hydrogen bonds of intermediate strength are identified for the Glu35 and Asp52 residues, which are considered to be essential parts of the active site of HEWL. Furthermore, a series of weak C

  4. The active site of hen egg-white lysozyme: flexibility and chemical bonding

    International Nuclear Information System (INIS)

    Held, Jeanette; Smaalen, Sander van

    2014-01-01

    Chemical bonding at the active site of lysozyme is analyzed on the basis of a multipole model employing transferable multipole parameters from a database. Large B factors at low temperatures reflect frozen-in disorder, but therefore prevent a meaningful free refinement of multipole parameters. Chemical bonding at the active site of hen egg-white lysozyme (HEWL) is analyzed on the basis of Bader’s quantum theory of atoms in molecules [QTAIM; Bader (1994 ▶), Atoms in Molecules: A Quantum Theory. Oxford University Press] applied to electron-density maps derived from a multipole model. The observation is made that the atomic displacement parameters (ADPs) of HEWL at a temperature of 100 K are larger than ADPs in crystals of small biological molecules at 298 K. This feature shows that the ADPs in the cold crystals of HEWL reflect frozen-in disorder rather than thermal vibrations of the atoms. Directly generalizing the results of multipole studies on small-molecule crystals, the important consequence for electron-density analysis of protein crystals is that multipole parameters cannot be independently varied in a meaningful way in structure refinements. Instead, a multipole model for HEWL has been developed by refinement of atomic coordinates and ADPs against the X-ray diffraction data of Wang and coworkers [Wang et al. (2007), Acta Cryst. D63, 1254–1268], while multipole parameters were fixed to the values for transferable multipole parameters from the ELMAM2 database [Domagala et al. (2012), Acta Cryst. A68, 337–351] . Static and dynamic electron densities based on this multipole model are presented. Analysis of their topological properties according to the QTAIM shows that the covalent bonds possess similar properties to the covalent bonds of small molecules. Hydrogen bonds of intermediate strength are identified for the Glu35 and Asp52 residues, which are considered to be essential parts of the active site of HEWL. Furthermore, a series of weak C

  5. Three methods to measure RH bond energies

    International Nuclear Information System (INIS)

    Berkowitz, J.; Ellison, G.B.; Gutman, D.

    1993-01-01

    In this paper the authors compare and contrast three powerful methods for experimentally measuring bond energies in polyatomic molecules. The methods are: radical kinetics; gas phase acidity cycles; and photoionization mass spectroscopy. The knowledge of the values of bond energies are a basic piece of information to a chemist. Chemical reactions involve the making and breaking of chemical bonds. It has been shown that comparable bonds in polyatomic molecules, compared to the same bonds in radicals, can be significantly different. These bond energies can be measured in terms of bond dissociation energies

  6. Characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe2 and related compounds

    International Nuclear Information System (INIS)

    Maeda, Tsuyoshi; Wada, Takahiro

    2009-01-01

    We studied characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe 2 (CIS) by first principles calculations. The chalcopyrite-type CIS has two kinds of chemical bonds, Cu-Se and In-Se. The Cu-Se bond is a weak covalent bonding because electrons occupy both bonding and antibonding orbitals of Cu 3d and Se 4p and occupy only the bonding orbital (a 1 ) of Cu 4s and Se 4p and do not occupy the antibonding orbital (a 1 * ) of Cu 4s and Se 4p. On the other hand, the In-Se bond has a partially covalent and partially ionic character because the In 5s orbital covalently interacts with Se 4p; the In 5p orbital is higher than Se 4p and so the electron in the In 5p orbital moves to the Se 4p orbital. The average bond order of the Cu-Se and In-Se bonds can be calculated to be 1/4 and 1, respectively. The bond order of Cu-Se is smaller than that of In-Se. The characteristics of these two chemical bonds are related to the formation of Cu and In vacancies in CIS. The formation energy of the Cu vacancy is smaller than that of the In vacancy under both Cu-poor and In-poor conditions. The displacement (Δl) of the surrounding Se atoms after the formation of the Cu vacancy is smaller than the Δl after the formation of the In vacancy. The interesting and unique characteristics of CIS are discussed on the basis of the characteristics of the chemical bond. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. On analogy between surface fracture energy and activaiton energy of bonding in solid phase

    International Nuclear Information System (INIS)

    Shatinsky, V.F.; Kopylov, V.I.

    1976-01-01

    This article makes an attempt on the basis of experimental data to compare the processes of failure and formation of a bond by comparing the energy consumptions going in one case or another into initial plastic deformation of a certain volume and the further interatomic interaction at the boundary (separation, formation of the bond). Two values characterizing the different processes - the unit failure energy γ and the activation energy for the formation of a bond Q - are compared. It has been established that the energy consumed for plastic deformation and adhesion interaction of atoms on the surface of microprojections and providing the formation of a bond in the solid-phase condition is close to the specific failure energy. The equality of energies consumed for the formation of a bond and failure allows to make use of any of those characteristics to calculate parameters of processes of the formation of a bond and failure. It seems to be convenient in the analysis of the failure process at a temperature when the ductility is high and methodically, the crack propagation is hard to investigate, in particular to estimate the volume of the preliminary failure zone. Having determined γ from the contact interaction data, the strength characteristics can be evaluated. (author)

  8. Electronic Structure and Chemical Bond of Ti3SiC2 and Adding Al Element

    Institute of Scientific and Technical Information of China (English)

    MIN Xinmin; LU Ning; MEI Bingchu

    2006-01-01

    The relation among electronic structure, chemical bond and property of Ti3SiC2 and Al-doped was studied by density function and discrete variation (DFT-DVM) method. When Al element is added into Ti3SiC2, there is a less difference of ionic bond, which does not play a leading role to influent the properties. After adding Al, the covalent bond of Al and the near Ti becomes somewhat weaker, but the covalent bond of Al and the Si in the same layer is obviously stronger than that of Si and Si before adding. Therefore, in preparation of Ti3SiC2, adding a proper quantity of Al can promote the formation of Ti3SiC2. The density of state shows that there is a mixed conductor character in both of Ti3SiC2 and adding Al element. Ti3SiC2 is with more tendencies to form a semiconductor. The total density of state near Fermi lever after adding Al is larger than that before adding, so the electric conductivity may increase after adding Al.

  9. Change of chemical bond and wettability of polylacticacid implanted with high-flux carbon ion

    International Nuclear Information System (INIS)

    Zhang Jizhong; Kang Jiachen; Zhang Xiaoji; Zhou Hongyu

    2008-01-01

    Polylacticacid (PLA) was submitted to high-flux carbon ion implantation with energy of 40 keV. It was investigated to the effect of ion fluence (1 x 10 12 -1 x 10 15 ions/cm 2 ) on the properties of the polymer. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), wettability, and roughness were employed to study change of structure and properties of the as-implanted PLA samples. Six carbon bonds, that is, C, C-H, C-O-C, C-O, O-C-O, and >C=O, were observed on surfaces of the as-implanted PLA samples. The intensities of various chemical bonds changed with increasing ion fluence. AFM images displayed that there was irradiation damage and that it was related closely with ion fluence. At fluence as high as 1 x 10 15 ions/cm 2 surface-restructuring phenomenum took place on the surface of the PLA. Wettability was also affected by the variation on the fluence. With increasing ion fluence, the water contact angle of the as-implanted PLA samples changed gradually reaching a maximum of 76.5 deg. with 1 x 10 13 ions/cm 2 . The experimental results revealed that carbon ion fluence strongly affected surface chemical bond, morphology, wettability, and roughness of the PLA samples

  10. Chemical bonding characteristics of Ge2Sb2Te5 for thin films

    International Nuclear Information System (INIS)

    Shin, Min-Jung; Choi, Doo-Jin; Kang, Myung-Jin; Choi, Se-Young; Jang, In-Woo; Lee, Kye-Nam; Park, Young-Jin

    2004-01-01

    The chalcogenide-based phase change memory has been suggested as an alternative non-volatile memory device at the 180 nm technology node. These materials appear to have a reversible phase change between amorphous and crystalline phases. A sputtered Ge 2 Sb 2 Te 5 film is deposited on a (100) Si substrate. In order to investigate the crystallization tendency at a certain temperature, we use X-ray diffraction and X-ray photoelectron spectroscopy. The film morphology is observed by using atomic forces microscopy. Grain growth and a phase transition from cubic to hexagonal occurs when the films are heated from 170 .deg. C and 380 .deg. C, and Ge-Te and Te-Sb bonds increased with annealing.

  11. Core level photoemission spectroscopy and chemical bonding in Sr2Ta2O7

    DEFF Research Database (Denmark)

    Atuchin, V. V.; Grivel, Jean-Claude; Zhang, Z. M.

    2009-01-01

    Electronic parameters of constituent element core levels of strontium pyrotantalate (Sr2Ta2O7) were measured with X-ray photoelectron spectroscopy (XPS). The Sr2Ta2O7 powder sample was synthesized using standard solid state method. The valence electron transfer on the formation of the Sr-O and Ta......-O bonds was characterized by the binding energy differences between the O 1s and cation core levels, Delta(O-Sr) = BE(O 1s) - BE(Sr 3d(5/2)) and Delta(O-Ta) = BE(O 1s) - BE(Ta 4f(7/2)). The chemical bonding effects were considered on the basis of our XPS results for Sr2Ta2O7 and earlier published...

  12. Biasing hydrogen bond donating host systems towards chemical warfare agent recognition.

    Science.gov (United States)

    Hiscock, Jennifer R; Wells, Neil J; Ede, Jayne A; Gale, Philip A; Sambrook, Mark R

    2016-10-12

    A series of neutral ditopic and negatively charged, monotopic host molecules have been evaluated for their ability to bind chloride and dihydrogen phosphate anions, and neutral organophosphorus species dimethyl methylphosphonate (DMMP), pinacolyl methylphosphonate (PMP) and the chemical warfare agent (CWA) pinacolyl methylphosphonofluoridate (GD, soman) in organic solvent via hydrogen bonding. Urea, thiourea and boronic acid groups are shown to bind anions and neutral guests through the formation of hydrogen bonds, with the urea and thiourea groups typically exhibiting higher affinity interactions. The introduction of a negative charge on the host structure is shown to decrease anion affinity, whilst still allowing for high stability host-GD complex formation. Importantly, the affinity of the host for the neutral CWA GD is greater than for anionic guests, thus demonstrating the potential for selectivity reversal based on charge repulsion.

  13. Chemical Bonding in Solids. On the Generalization of the Concept of Bond Order and Valence for Infinite Periodical Structures

    Czech Academy of Sciences Publication Activity Database

    Ponec, Robert

    2005-01-01

    Roč. 114, 1-3 (2005), s. 208-212 ISSN 1432-881X R&D Projects: GA AV ČR(CZ) IAA4072403 Institutional research plan: CEZ:AV0Z4072921 Keywords : bonding in solids * bond order * valence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.179, year: 2005

  14. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  15. Quantum computational capability of a 2D valence bond solid phase

    International Nuclear Information System (INIS)

    Miyake, Akimasa

    2011-01-01

    Highlights: → Our model is the 2D valence bond solid phase of a quantum antiferromagnet. → Universal quantum computation is processed by measurements of quantum correlations. → An intrinsic complexity of strongly-correlated quantum systems could be a resource. - Abstract: Quantum phases of naturally-occurring systems exhibit distinctive collective phenomena as manifestation of their many-body correlations, in contrast to our persistent technological challenge to engineer at will such strong correlations artificially. Here we show theoretically that quantum correlations exhibited in the 2D valence bond solid phase of a quantum antiferromagnet, modeled by Affleck, Kennedy, Lieb, and Tasaki (AKLT) as a precursor of spin liquids and topological orders, are sufficiently complex yet structured enough to simulate universal quantum computation when every single spin can be measured individually. This unveils that an intrinsic complexity of naturally-occurring 2D quantum systems-which has been a long-standing challenge for traditional computers-could be tamed as a computationally valuable resource, even if we are limited not to create newly entanglement during computation. Our constructive protocol leverages a novel way to herald the correlations suitable for deterministic quantum computation through a random sampling, and may be extensible to other ground states of various 2D valence bond phases beyond the AKLT state.

  16. Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging

    Science.gov (United States)

    Feng, Hongliang; Huang, Jihua; Peng, Xianwen; Lv, Zhiwei; Wang, Yue; Yang, Jian; Chen, Shuhai; Zhao, Xingke

    2018-05-01

    For high-temperature-resistant packaging of new generation power chip, a chip packaging simulation structure of Ni/Ni-Sn/Ni was bonded by a transient liquid-phase sintering process. High-temperature aging experiments were carried out to investigate joint heat stability. The microstructural evolution and mechanism during aging, and mechanical properties after aging were analyzed. The results show that the 30Ni-70Sn bonding layer as-bonded at 340°C for 240 min is mainly composed of Ni3Sn4 and residual Ni particles. When aged at 350°C, because of the difficulty of nucleation for Ni3Sn and quite slow growth of Ni3Sn2, the bonding layer is stable and the strength of that doesn't change obviously with aging time. When aging temperature increased to 500°C, however, the residual Ni particles were gradually dissolved and the bonding layer formed a stable structure with dominated Ni3Sn2 after 36 h. Meanwhile, due to the volume shrinkage (4.43%) from Ni3Sn2 formation, a number of voids were formed. The shear strength shows an increase, resulting from Ni3Sn2 formation, but then it decreases slightly caused by voids. After aging at 500°C for 100 h, shear strength is still maintained at 29.6 MPa. In addition, the mechanism of void formation was analyzed and microstructural evolution model was also established.

  17. Isomer shifts and chemical bonding in crystalline Sn(II) and Sn(IV) compounds

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1991-01-01

    First-principles self-consistent Local Density calculations of the electronic structure of clusters representing Sn(II) (SnO, SnF 2 , SnS, SnSe) and Sn(IV) (SnO 2 , SnF 4 ) crystalline compounds were performed. Values of the electron density at the Sn nucleus were obtained and related to measured values of the Moessbauer Isomer Shifts reported in the literature. The nuclear parameter of 119 Sn derived was ΔR/R=(1.58±0.14)x10 -4 . The chemical bonding in the solids was analysed and related to the electron densities obtained. (author)

  18. Microfabricated Gas Phase Chemical Analysis Systems

    International Nuclear Information System (INIS)

    FRYE-MASON, GREGORY CHARLES; HELLER, EDWIN J.; HIETALA, VINCENT M.; KOTTENSTETTE, RICHARD; LEWIS, PATRICK R.; MANGINELL, RONALD P.; MATZKE, CAROLYN M.; WONG, CHUNGNIN C.

    1999-01-01

    A portable, autonomous, hand-held chemical laboratory ((micro)ChemLab(trademark)) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described

  19. Extended model of bond charges and its application in calculation of optical properties of crystals with different types of chemical bonds

    International Nuclear Information System (INIS)

    Tsirelson, V.G.; Korolkova, O.V.; Rez, I.S.; Ozerov, R.P.

    1984-01-01

    A method for calculating the optical characteristics of crystals with different types of chemical bonds within the framework of the dielectric theory of chemical bond put forward by Philips and Van Vechten is suggested. The calculating scheme which does not contain adjustable parameters is based on the bond charge model designed by Levine, which is generalized for the case of multiple bonds and modified involving the density functional method data on the spatial distribution of electrons in atoms. The structural elements of the method are: the screened Coulomb potentials and radii of the atomic core, bond lengths and charges, and the distances from the nuclei to the centers of gravity of the latter. The calculated characteristics of the crystals (dielectric permittivity, quadratic and cubic non-linear susceptibilities, electrooptical constants) are in good accordance with experimental findings. An attempt is made to predict the non-linear optical characteristics according to precision X-ray diffraction data on the electron structure of its only representative, lithium formate deuterate LiHCO 2 xD 2 O, whereby a fairly good fit with the experimental data is achieved. (author)

  20. Trigermanides AEGe{sub 3} (AE = Ca, Sr, Ba). Chemical bonding and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Rodrigo; Schnelle, Walter; Baranov, Alexey I.; Burkhardt, Ulrich; Bobnar, Matej; Cardoso-Gil, Raul; Schwarz, Ulrich; Grin, Yuri [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany)

    2016-08-01

    The crystal structures of the trigermanides AEGe{sub 3}(tI32) (AE = Ca, Sr, Ba; space group I4/mmm, for SrGe{sub 3}: a = 7.7873(1), c = 12.0622(3) Aa) comprise Ge{sub 2} dumbbells forming layered Ge substructures which enclose embedded AE atoms. The chemical bonding analysis by application of the electron localizability approach reveals a substantial charge transfer from the AE atoms to the germanium substructure. The bonding within the dumbbells is of the covalent two-center type. A detailed analysis of SrGe{sub 3} reveals that the interaction on the bond-opposite side of the Ge{sub 2} groups is not lone pair-like - as it would be expected from the Zintl-like interpretation of the crystal structure with anionic Ge layers separated by alkaline-earth cations - but multi-center strongly polar between the Ge{sub 2} dumbbells and the adjacent metal atoms. Similar atomic interactions are present in CaGe{sub 3} and BaGe{sub 3}. The variation of the alkaline-earth metal has a merely insignificant influence on the superconducting transition temperatures in the s,p-electron compounds AEGe{sub 3}.

  1. Separation of the lanthanides on high-efficiency bonded phases and conventional ion-exchange resins

    International Nuclear Information System (INIS)

    Elchuk, S.; Cassidy, R.M.

    1979-01-01

    High-performance liquid chromatographic separations (< 20 min) of the lanthanides are illustrated for both 5- and 10-μm bonded-phase strong-acid ion exchangers. The performance of these bonded phase packings is compared with that obtained with a 13-μm styrene-divinylbenzene resin. The eluted metal ions are detected with a variable-wavelength detector after a post-column complexation reaction. The requirements and characteristics of post-column reaction for sensitive metal ion detection after separation on high-performance columns are discussed and the linearity, reproducibility, and sensitivity of the system used in the work are illustrated. The potential of on-column preconcentration for the ultratrace (pg/mL) determination of metal ions is also discussed and illustrated. 7 figures, 2 tables

  2. Synthesis of chiral polyaniline films via chemical vapor phase polymerization

    DEFF Research Database (Denmark)

    Chen, J.; Winther-Jensen, B.; Pornputtkul, Y.

    2006-01-01

    Electrically and optically active polyaniline films doped with (1)-(-)-10- camphorsulfonic acid were successfully deposited on nonconductive substrates via chemical vapor phase polymerization. The above polyaniline/ R- camphorsulfonate films were characterized by electrochemical and physical...

  3. Chemical bonding in Tl cuprates studied by x-ray photoemission

    International Nuclear Information System (INIS)

    Vasquez, R.P.; Siegal, M.P.; Overmyer, D.L.; Ren, Z.F.; Lao, J.Y.; Wang, J.H.

    1999-01-01

    Epitaxial thin films of the Tl cuprate superconductors Tl 2 Ba 2 CaCu 2 O 8 , Tl 2 Ba 2 Ca 2 Cu 3 O 10 , and Tl 0.78 Bi 0.22 Ba 0.4 Sr 1.6 Ca 2 Cu 3 O 9-δ are studied with x-ray photoemission spectroscopy. These data, together with previous measurements in this lab of Tl 2 Ba 2 CuO 6+δ and TlBa 2 CaCu 2 O 7-δ , comprise a comprehensive data set for a comparative study of Tl cuprates with a range of chemical and electronic properties. In the Cu 2p spectra, a larger energy separation between the satellite and main peaks (E s -E m ) and a lower intensity ratio (I s /I m ) are found to correlate with higher values of T c . Analysis of these spectra within a simple configuration interaction model suggests that higher values of T c are related to low values of the O 2p→Cu 3d charge transfer energy. In the O 1s region, a smaller bond length between Ba and Cu-O planar oxygen is found to correlate with a lower binding energy for the signal associated with Cu-O bonding, most likely resulting from the increased polarization screening by Ba 2+ ions. For samples near optimum doping, maximum T c is observed to occur when the Tl 4f 7/2 binding energy is near 117.9 eV, which is near the middle of the range of values observed for Tl cuprates. Higher Tl 4f 7/2 binding energies, corresponding to formal oxidation states nearer Tl 1+ , are also found to correlate with longer bond lengths between Ba and Tl-O planar oxygen, and with higher binding energies of the O 1s signal associated with Tl-O bonding. copyright 1999 The American Physical Society

  4. Atomic resolution chemical bond analysis of oxygen in La2CuO4

    Science.gov (United States)

    Haruta, M.; Nagai, T.; Lugg, N. R.; Neish, M. J.; Nagao, M.; Kurashima, K.; Allen, L. J.; Mizoguchi, T.; Kimoto, K.

    2013-08-01

    The distorted CuO6 octahedron in La2CuO4 was studied using aberration-corrected scanning transmission electron microscopy at atomic resolution. The near-edge structure in the oxygen K-edge electron energy-loss spectrum was recorded as a function of the position of the electron probe. After background subtraction, the measured spectrum image was processed using a recently developed inversion process to remove the mixing of signals on the atomic columns due to elastic and thermal scattering. The spectra were then compared with first-principles band structure calculations based on the local-density approximation plus on-site Coulomb repulsion (LDA + U) approach. In this article, we describe in detail not only anisotropic chemical bonding of the oxygen 2p state with the Cu 3d state but also with the Cu 4p and La 5d/4f states. Furthermore, it was found that buckling of the CuO2 plane was also detectable at the atomic resolution oxygen K-edge. Lastly, it was found that the effects of core-hole in the O K-edge were strongly dependent on the nature of the local chemical bonding, in particular, whether it is ionic or covalent.

  5. Chemical bonding and the equilibrium composition of Grignard reagents in ethereal solutions.

    Science.gov (United States)

    Henriques, André M; Barbosa, André G H

    2011-11-10

    A thorough analysis of the electronic structure and thermodynamic aspects of Grignard reagents and its associated equilibrium composition in ethereal solutions is performed. Considering methylmagnesium halides containing fluorine, chlorine, and bromine, we studied the neutral, charged, and radical species associated with their chemical equilibrium in solution. The ethereal solvents considered, tetrahydrofuran (THF) and ethyl ether (Et(2)O), were modeled using the polarizable continuum model (PCM) and also by explicit coordination to the Mg atoms in a cluster. The chemical bonding of the species that constitute the Grignard reagent is analyzed in detail with generalized valence bond (GVB) wave functions. Equilibrium constants were calculated with the DFT/M06 functional and GVB wave functions, yielding similar results. According to our calculations and existing kinetic and electrochemical evidence, the species R(•), R(-), (•)MgX, and RMgX(2)(-) must be present in low concentration in the equilibrium. We conclude that depending on the halogen, a different route must be followed to produce the relevant equilibrium species in each case. Chloride and bromide must preferably follow a "radical-based" pathway, and fluoride must follow a "carbanionic-based" pathway. These different mechanisms are contrasted against the available experimental results and are proven to be consistent with the existing thermodynamic data on the Grignard reagent equilibria.

  6. Effect of ultraviolet light irradiation and sandblasting treatment on bond strengths between polyamide and chemical-cured resin.

    Science.gov (United States)

    Asakawa, Yuya; Takahashi, Hidekazu; Iwasaki, Naohiko; Kobayashi, Masahiro

    2014-01-01

    The aim of this study was to evaluate the effects of ultraviolet light (UV) irradiation and sandblasting treatment on the shear bond strength between polyamide and chemical-cured resin. Three types of commercial polyamides were treated using UV irradiation, sandblasting treatment, and a combining sandblasting and UV irradiation. The shear bond strength was measured and analyzed using the Kruskal-Wallis test (α=0.05). Comparing shear bond strengths without surface treatment, from 4.1 to 5.7 MPa, the UV irradiation significantly increased the shear bond strengths except for Valplast, whose shear bond strengths ranged from 5.2 to 9.3 MPa. The sandblasting treatment also significantly increased the shear bond strengths (8.0 to 11.4 MPa). The combining sandblasting and UV irradiation significantly increased the shear bond strengths (15.2 to 18.3 MPa) comparing without surface treatment. This combined treatment was considered the most effective at improving the shear bond strength between polyamide and chemical-cured resin.

  7. Ab initio investigations of the electronic structure and chemical bonding of Li{sub 2}ZrN{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Matar, S.F., E-mail: matar@icmcb-bordeaux.cnrs.fr [CNRS, Universite de Bordeaux, ICMCB, 87 Avenue du Docteur Albert Schweitzer, 33600 Pessac (France); Poettgen, R., E-mail: pottgen@uni-muenster.de [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, Corrensstrasse 30, D-48149 Muenster (Germany); Al Alam, A.F., E-mail: adelalalam@usek.edu.lb [Universite Saint Esprit de Kaslik (USEK), Faculte des Sciences, URA GREVE (CNRS/USEK/UL), Jounieh (Lebanon); Ouaini, N., E-mail: naimouaini@usek.edu.lb [Universite Saint Esprit de Kaslik (USEK), Faculte des Sciences, URA GREVE (CNRS/USEK/UL), Jounieh (Lebanon)

    2012-06-15

    The electronic structure of the ternary nitride Li{sub 2}ZrN{sub 2} is examined from ab initio with DFT computations for an assessment of the properties of chemical bonding. The compound is found insulating with 1.8 eV band gap; it becomes metallic and less ionic upon removal of one equivalent of Li. The chemical interaction is found mainly between Zr and N on one hand and Li and N on the other hand. While all pair interactions are bonding, antibonding N-N interactions are found dominant at the top of the valence band of Li{sub 2}ZrN{sub 2} and they become less intense upon removal of Li. From energy differences the partial delithiation leading to Li{sub 2-x}ZrN{sub 2} (x={approx}1) is favored. - Graphical abstract: Trigonal structure of Li{sub 2}ZrN{sub 2} showing the Zr-N-Li layers along the c-axis. Highlights: Black-Right-Pointing-Pointer Li{sub 2}ZrN{sub 2} calculated insulating with a 1.8 eV gap in agreement with its light green color. Black-Right-Pointing-Pointer Lithium de-intercalation is energetically favored for one out of two Li equivalents. Black-Right-Pointing-Pointer Li plays little role in the change of the structure, ensured by Zr and N binding. Black-Right-Pointing-Pointer Similar changes in the electronic structure as for various intercalated phases of ZrN.

  8. Application of chemical structure and bonding of actinide oxide materials for forensic science

    International Nuclear Information System (INIS)

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO 2 (An: U, Pu) to form non-stoichiometric species described as AnO 2+x . Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxide materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, or process history of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science to characterize actinide oxide molecular structures for forensic science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  9. Application of chemical structure and bonding of actinide oxide materials for forensic science

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, Marianne Perry [Los Alamos National Laboratory

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxide materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, or process history of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science to characterize actinide oxide molecular structures for forensic science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  10. Effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding.

    Directory of Open Access Journals (Sweden)

    Lin Hu

    Full Text Available This study was designed to evaluate the effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding.Bonded dentin specimens were prepared using three different types of adhesive systems. Micro-tensile bond strength and degradation of collagen were tested before, and after 1 month or 4 months of aging in artificial saliva. The relationship between micro-tensile bond strength and collagen degradation was analyzed by calculating their Pearson's correlation coefficient.Aging induced time-dependent reduction in micro-tensile bond strengths for all the tested adhesive systems, although such reduction for the single-step self-etching adhesive G-Bond (GB was not statistically significant. The bond strength of the two-step self-etching primer adhesive system Clearfil SE Bond (SEB was similar to that of the two-step etch-and-rinse self-priming adhesive system Single Bond 2 (SB, and they were both significantly reduced after one or four months of aging. A negative correlation was found between the degree of collagen degradation and magnitude of micro-tensile bond strength (r = -0.65, p = 0.003. The Pearson's correlation coefficient was 0.426, indicating that 42.6% of the aging-induced reduction in bond strength can be explained by the degradation of collagen.In the early phase of dentin bonding, there was a negative correlation between the degree of collagen degradation and the magnitude of micro-tensile bond strength. The reduction of bond strength was accompanied by the degradation of collagen. These results provide evidence for the causative relationship between the degradation of collagen and the deterioration of dentin-adhesive interface.

  11. Coherent control of bond making: the performance of rationally phase-shaped femtosecond laser pulses

    International Nuclear Information System (INIS)

    Levin, Liat; Amitay, Zohar; Skomorowski, Wojciech; Koch, Christiane P; Kosloff, Ronnie

    2015-01-01

    The first step in the coherent control of a photoinduced binary reaction is bond making or photoassociation. We have recently demonstrated coherent control of bond making in multi-photon femtosecond photoassociation of hot magnesium atoms, using linearly chirped pulses (Levin et al 2015 Phys. Rev. Lett. 114 233003). The detected yield of photoassociated magnesium dimers was enhanced by positively chirped pulses which is explained theoretically by a combination of purification and chirp-dependent Raman transitions. The yield could be further enhanced by pulse optimization resulting in pulses with an effective linear chirp and a sub-pulse structure, where the latter allows for exploiting vibrational coherences. Here, we systematically explore the efficiency of phase-shaped pulses for the coherent control of bond making, employing a parametrization of the spectral phases in the form of cosine functions. We find up to an order of magnitude enhancement of the yield compared to the unshaped transform-limited pulse. The highly performing pulses all display an overall temporally increasing instantaneous frequency and are composed of several overlapping sub-pulses. The time delay between the first two sub-pulses fits very well the vibrational frequency of the generated intermediate wavepacket. These findings are in agreement with chirp-dependent Raman transitions and exploitation of vibrational dynamics as underlying control mechanisms. (paper)

  12. Mechanical properties of chemically bonded sand core materials dipped in sol-gel coating impregnated with filter

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat

    2012-01-01

    A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force-...... of the chemically bonded sand core materials, a combination of flexural and compression tests is suggested for improving the casting quality. © 2012 W. S. Maney & Son Ltd.......A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force...... the strengths were increased under compression. The mode of fracture of the chemically bonded sand core materials was observed to be intergranular through the binder. The stiffness of the chemically bonded sand core materials was determined. For better understanding of the mechanical properties...

  13. Understanding Phase-Change Memory Alloys from a Chemical Perspective

    Science.gov (United States)

    Kolobov, A. V.; Fons, P.; Tominaga, J.

    2015-09-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.

  14. Investigation of thermal expansion and compressibility of rare-earth orthovanadates using a dielectric chemical bond method.

    Science.gov (United States)

    Zhang, Siyuan; Zhou, Shihong; Li, Huaiyong; Li, Ling

    2008-09-01

    The chemical bond properties, lattice energies, linear expansion coefficients, and mechanical properties of ReVO 4 (Re = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y) are investigated systematically by the dielectric chemical bond theory. The calculated results show that the covalencies of Re-O bonds are increasing slightly from La to Lu and that the covalencies of V-O bonds in crystals are decreasing slightly from La to Lu. The linear expansion coefficients decrease progressively from LaVO 4 to LuVO 4; on the contrary, the bulk moduli increase progressively. Our calculated results are in good agreement with some experimental values for linear expansion coefficients and bulk moduli.

  15. Efficiency in supercritical fluid chromatography with different superficially porous and fully porous particles ODS bonded phases.

    Science.gov (United States)

    Lesellier, E

    2012-03-09

    The chromatographic efficiency, in terms of plate number per second, was dramatically improved by the introduction of sub-two microns particles with ultra-high pressure liquid chromatography (UHPLC). On the other hand, the recent development of superficially porous particles, called core-shell or fused-core particles, appears to allow the achievement of the same efficiency performances at higher speed without high pressure drops. CO₂-based mobile phases exhibiting much lower viscosities than aqueous based mobile phases allow better theoretical efficiencies, even with 3-5 μm particles, but with relative low pressure drops. They also allow much higher flow rates or much longer columns while using conventional instruments capable to operate below 400 bar. Moreover, the use of superficially porous particles in SFC could enhance the chromatographic performances even more. The kinetic behavior of ODS phases bonded on these particles was studied, with varied flow rates, outlet (and obviously inlet) pressures, temperatures, by using a homologous series (alkylbenzenes) with 10% modifier (methanol or acetonitrile) in the carbon dioxide mobile phase. Results were also compared with classical fully porous particles, having different sizes, from 2.5 to 5 μm. Superior efficiency (N) and reduced h were obtained with these new ODS-bonded particles in regards to classical ones, showing their great interest for use in SFC. However, surprising behavior were noticed, i.e. the increase of the theoretical plate number vs. the increase of the chain length of the compounds. This behavior, opposite to the one classically reported vs. the retention factor, was not depending on the outlet pressure, but on the flow rate and the temperature changes. The lower radial trans-column diffusion on this particle types could explain these results. This diffusion reduction with these ODS-bonded superficially porous particles seems to decrease with the increase of the residence time of compounds

  16. Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors.

    Science.gov (United States)

    Jung, Naeyoung; Kwon, Soongeun; Lee, Dongwook; Yoon, Dong-Myung; Park, Young Min; Benayad, Anass; Choi, Jae-Young; Park, Jong Se

    2013-12-17

    Chemically bonded graphene/carbon nanotube composites as flexible supercapacitor electrode materials are synthesized by amide bonding. Carbon nanotubes attached along the edges and onto the surface of graphene act as spacers to increase the electrolyte-accessible surface area. Our lamellar structure electrodes demonstrate the largest volumetric capacitance (165 F cm(-3) ) ever shown by carbon-based electrodes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A crystal chemical approach to superconductivity. I. A bond-valence sum analysis of inorganic compounds

    International Nuclear Information System (INIS)

    Liebau, Friedrich; Klein, Hans-Joachim; Wang, Xiqu

    2011-01-01

    A crystal-chemical approach to superconductivity is described that is intended to complement the corresponding physical approach. The former approach takes into account the distinction between the stoichiometric valence ( stoich V) and the structural valence ( struct V) which is represented by the bond-valence sums (BVS). Through calculations of BVS values from crystal-structure data determined at ambient temperature and pressure it has been found that in chalcogenides und pnictides of the transition metals Fe, Co, Ni, Mn, Hf, and Zr the atoms of the potential superconducting units yield values of vertical stroke BVS vertical stroke = vertical stroke struct V vertical stroke ≥ 1.11 x vertical stroke stoich V vertical stroke, whereas the atoms of the charge reservoirs have in general values of vertical stroke struct V vertical stroke stoich V vertical stroke. In corresponding compounds which contain the same elements but are not becoming superconducting, nearly all atoms are found to have vertical stroke struct V vertical stroke stoich V vertical stroke. For atoms of oxocuprates that are not becoming superconducting and for atoms of the charge reservoirs of oxocuprates that become superconducting, the relation vertical stroke struct V vertical stroke stoich V vertical stroke seems also to be fulfilled, with the exception of Ba. However, in several oxocuprates the relation vertical stroke struct V vertical stroke = 1.11 x vertical stroke stoich V vertical stroke for the atoms that become superconducting units is violated. These violations seem to indicate that in oxocuprates it is the local bond-valence distribution rather than the bond-valence sums that is essential for superconductivity. The present analysis can possibly be used to predict, by a simple consideration of ambient-T, P structures, whether a compound can become an unconventional superconductor at low T, under high P and/or by doping, or not. (orig.)

  18. Carol Anne Bond v the United States of America: how a woman scorned threatened the Chemical Weapons Convention.

    Science.gov (United States)

    Muldoon, Anna; Kornblet, Sarah; Katz, Rebecca

    2011-09-01

    The case of Carol Anne Bond v the United States of America stemmed from a domestic dispute when Ms. Bond attempted to retaliate against her best friend by attacking her with chemical agents. What has emerged is a much greater issue--a test of standing on whether a private citizen can challenge the Tenth Amendment. Instead of being prosecuted in state court for assault, Ms. Bond was charged and tried in district court under a federal criminal statute passed as part of implementation of the Chemical Weapons Convention (CWC). Ms. Bond's argument rests on the claim that the statute exceeded the federal government's enumerated powers in criminalizing her behavior and violated the Constitution, while the government contends legislation implementing treaty obligations is well within its purview. This question remains unanswered because there is dispute among the lower courts as to whether Ms. Bond, as a citizen, even has the right to challenge an amendment guaranteeing states rights when a state is not a party to the action. The Supreme Court heard the case on February 22, 2011, and, if it decides to grant Ms. Bond standing to challenge her conviction, the case will be returned to the lower courts. Should the court decide Ms. Bond has the standing to challenge her conviction and further questions the constitutionality of the law, it would be a significant blow to implementation of the CWC in the U.S. and the effort of the federal government to ensure we are meeting our international obligations.

  19. Intra- und intermolecular hydrogen bonds. Spectroscopic, quantum chemical and molecular dynamics studies

    International Nuclear Information System (INIS)

    Simperler, A.

    1999-03-01

    Intra- and intermolecular H-bonds have been investigated with spectroscopic, quantum chemical, and molecular dynamics methods. The work is divided into the following three parts: 1. Intramolecular interactions in ortho-substituted phenols. Theoretical and experimental data that characterizes the intramolecular hydrogen bonds in 48 different o-substituted phenols are discussed. The study covers various kinds of O-H ... Y -type interactions (Y= N, O, S, F, Cl, Br, I, C=C, C=-C, and C-=N). The bond strength sequences for several series of systematically related compounds as obtained from IR spectroscopy data (i.e., v(OH) stretching frequencies) are discussed and reproduced with several theoretical methods (B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B3LYP/6-31++G(d,p), B3LYP/DZVP, MP2/6-31G(d,p), and MP2/6-31++G(d,p) levels of theory). The experimentally determined sequences are interpreted in terms of the intrinsic properties of the molecules: hydrogen bond distances, Mulliken partial charges, van der Waals radii, and electron densities of the Y-proton acceptors. 2. Competitive hydrogen bonds and conformational equilibria in 2,6-disubstituted phenols containing two different carbonyl substituents. The rotational isomers of ten unsymmetrical 2,6-disubstituted phenols as obtained by combinations of five different carbonyl substituents (COOH, COOCH 3 , CHO, COCH 3 , and CONH 2 ) have been theoretically investigated at the B3LYP/6-31G(d,p) level of theory. The relative stability of four to five conformers of each compound were determined by full geometry optimization for free molecules as well as for molecules in reaction fields with dielectric constants up to ε=37.5. A comparison with IR spectroscopic data of available compounds revealed excellent agreement with the theoretically predicted stability sequences and conformational equilibria. The stability of a conformer could be interpreted to be governed by the following two contributions: (i) an attractive hydrogen bond

  20. Synthesis, Crystal Structure, and Chemical-Bonding Analysis of BaZn(NCN2

    Directory of Open Access Journals (Sweden)

    Alex J. Corkett

    2017-12-01

    Full Text Available The ternary carbodiimide BaZn(NCN2 was prepared by a solid-state metathesis reaction between BaF2, ZnF2, and Li2NCN in a 1:1:2 molar ratio, and its crystal structure was determined from Rietveld refinement of X-ray data. BaZn(NCN2 represents the aristotype of the LiBa2Al(NCN4 structure which is unique to carbodiimide/cyanamide chemistry and is well regarded as being constructed from ZnN4 tetrahedra, sharing edges and vertices through NCN2− units to form corrugated layers with Ba2+ in the interlayer voids. Structural anomalies in the shape of the cyanamide units are addressed via IR spectrometry and DFT calculations, which suggest the presence of slightly bent N=C=N2− carbodiimide units with C2v symmetry. Moreover, chemical-bonding analysis within the framework of crystal orbital Hamilton population (COHP reveals striking similarities between the bonding interactions in BaZn(NCN2 and SrZn(NCN2 despite their contrasting crystal structures. BaZn(NCN2 is only the second example of a ternary post-transition metal carbodiimide, and its realization paves the way for the preparation of analogues featuring divalent transition metals at the tetrahedral Zn2+ site.

  1. Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination

    International Nuclear Information System (INIS)

    Avilov, A.; Kuligin, K.; Nicolopoulos, S.; Nickolskiy, M.; Boulahya, K.; Portillo, J.; Lepeshov, G.; Sobolev, B.; Collette, J.P.; Martin, N.; Robins, A.C.; Fischione, P.

    2007-01-01

    We have developed a new fast electron diffractometer working with high dynamic range and linearity for crystal structure determinations. Electron diffraction (ED) patterns can be scanned serially in front of a Faraday cage detector; the total measurement time for several hundred ED reflections can be tens of seconds having high statistical accuracy for all measured intensities (1-2%). This new tool can be installed to any type of TEM without any column modification and is linked to a specially developed electron beam precession 'Spinning Star' system. Precession of the electron beam (Vincent-Midgley technique) reduces dynamical effects allowing also use of accurate intensities for crystal structure analysis. We describe the technical characteristics of this new tool together with the first experimental results. Accurate measurement of electron diffraction intensities by electron diffractometer opens new possibilities not only for revealing unknown structures, but also for electrostatic potential determination and chemical bonding investigation. As an example, we present detailed atomic bonding information of CaF 2 as revealed for the first time by precise electron diffractometry

  2. Nb 3d and O 1s core levels and chemical bonding in niobates

    International Nuclear Information System (INIS)

    Atuchin, V.V.; Kalabin, I.E.; Kesler, V.G.; Pervukhina, N.V.

    2005-01-01

    A set of available experimental data on binding energies of Nb 3d 5/2 and O 1s core levels in niobates has been observed with using energy difference (O 1s-Nb 3d 5/2 ) as a robust parameter for compound characterization. An empirical relationship between (O 1s-Nb 3d 5/2 ) values measured with XPS for Nb 5+ -niobates and mean chemical bond length L(Nb-O) has been discussed. A range of (O 1s-Nb 3d 5/2 ) values possible in Nb 5+ -niobates has been defined. An energy gap ∼1.4-1.8 eV is found between (O 1s-Nb 3d 5/2 ) values reasonable for Nb 5+ and Nb 4+ states in niobates

  3. Nb 3d and O 1s core levels and chemical bonding in niobates

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation)]. E-mail: atuchin@thermo.isp.nsc.ru; Kalabin, I.E. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Kesler, V.G. [Technical Center, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Pervukhina, N.V. [Laboratory of Crystal Chemistry, Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation)

    2005-02-01

    A set of available experimental data on binding energies of Nb 3d{sub 5/2} and O 1s core levels in niobates has been observed with using energy difference (O 1s-Nb 3d{sub 5/2}) as a robust parameter for compound characterization. An empirical relationship between (O 1s-Nb 3d{sub 5/2}) values measured with XPS for Nb{sup 5+}-niobates and mean chemical bond length L(Nb-O) has been discussed. A range of (O 1s-Nb 3d{sub 5/2}) values possible in Nb{sup 5+}-niobates has been defined. An energy gap {approx}1.4-1.8 eV is found between (O 1s-Nb 3d{sub 5/2}) values reasonable for Nb{sup 5+} and Nb{sup 4+} states in niobates.

  4. The Synthesis, Structures and Chemical Properties of Macrocyclic Ligands Covalently Bonded into Layered Arrays

    International Nuclear Information System (INIS)

    Clearfield, Abraham

    2003-01-01

    OAK-B135 The immobilization of crown ethers tends to limit the leveling effect of solvents making the macrocycles more selective. In addition immobilization has the added advantage of relative ease of recovery of the otherwise soluble crown. We have affixed CH2PO3H2 groups to azacrown ethers. The resultant phosphorylated macrocycles may spontaneously aggregate into crystalline supramolecular linear arrays or contacted with cations produce layered or linear polymers. In the linear polymers the metal and phosphonic acids covalently bond into a central stem with the macrocyclic rings protruding from the stem as leaves on a twig. Two types of layered compounds were obtained with group 4 metals. Monoaza-crown ethers form a bilayer where the M4+ plus phosphonic acid groups build the layer and the rings fill the interlayer space. 1, 10-diazadiphosphonic acids cross-link the metal phosphonate layers forming a three-dimensional array of crown ethers. In order to improve diffusion into these 3-D arrays they are spaced by inclusion of phosphate or phosphate groups. Two series of azamacrocylic crown ethers were prepared containing rings with 20 to 32 atoms. These larger rings can complex two cations per ring. Methylene phosphonic acid groups have been bonded to the aza ring atoms to increase the complexing ability of these ligands. Our approach is to carry out acid-base titrations in the absence and presence of cations to determine the pKa values of the protons, both those bonded to aza groups and those associated with the phosphonic acid groups. From the differences in the titration curves obtained with and without the cations present we obtain the stoichiometry of complex formation and the complex stability constants. Some of the applications we are targeting include phase transfer catalysis, separation of cations and the separation of radioisotopes for diagnostic and cancer therapeutic purposes

  5. Development of a method to accurately calculate the Dpb and quickly predict the strength of a chemical bond

    International Nuclear Information System (INIS)

    Du, Xia; Zhao, Dong-Xia; Yang, Zhong-Zhi

    2013-01-01

    Highlights: ► A method from new respect to characterize and measure the bond strength is proposed. ► We calculate the D pb of a series of various bonds to justify our approach. ► A quite good linear relationship of the D pb with the bond lengths for series of various bonds is shown. ► Take the prediction of strengths of C–H and N–H bonds for base pairs in DNA as a practical application of our method. - Abstract: A new approach to characterize and measure bond strength has been developed. First, we propose a method to accurately calculate the potential acting on an electron in a molecule (PAEM) at the saddle point along a chemical bond in situ, denoted by D pb . Then, a direct method to quickly evaluate bond strength is established. We choose some familiar molecules as models for benchmarking this method. As a practical application, the D pb of base pairs in DNA along C–H and N–H bonds are obtained for the first time. All results show that C 7 –H of A–T and C 8 –H of G–C are the relatively weak bonds that are the injured positions in DNA damage. The significance of this work is twofold: (i) A method is developed to calculate D pb of various sizable molecules in situ quickly and accurately; (ii) This work demonstrates the feasibility to quickly predict the bond strength in macromolecules

  6. X-ray photoelectron spectra structure and chemical bonding in AmO2

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2015-01-01

    Full Text Available Quantitative analysis was done of the X-ray photoelectron spectra structure in the binding energy range of 0 eV to ~35 eV for americium dioxide (AmO2 valence electrons. The binding energies and structure of the core electronic shells (~35 eV-1250 eV, as well as the relativistic discrete variation calculation results for the Am63O216 and AmO8 (D4h cluster reflecting Am close environment in AmO2 were taken into account. The experimental data show that the many-body effects and the multiplet splitting contribute to the spectral structure much less than the effects of formation of the outer (0-~15 eV binding energy and the inner (~15 eV-~35 eV binding energy valence molecular orbitals. The filled Am 5f electronic states were shown to form in the AmO2 valence band. The Am 6p electrons participate in formation of both the inner and the outer valence molecular orbitals (bands. The filled Am 6p3/2 and the O 2s electronic shells were found to make the largest contributions to the formation of the inner valence molecular orbitals. Contributions of electrons from different molecular orbitals to the chemical bond in the AmO8 cluster were evaluated. Composition and sequence order of molecular orbitals in the binding energy range 0-~35 eV in AmO2 were established. The experimental and theoretical data allowed a quantitative scheme of molecular orbitals for AmO2, which is fundamental for both understanding the chemical bond nature in americium dioxide and the interpretation of other X-ray spectra of AmO2.

  7. Chemical Bonding in Tl Cuprates Studied by X-Ray Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Lao, J.Y.; Overmyer, D.L.; Ren, Z.F.; Siegal, M.P.; Vasquez, R.P.; Wang, J.H.

    1999-04-05

    Epitaxial thin films of the Tl cuprate superconductors Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8}, Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}, and TL{sub 0.78}Bi{sub 0.22}Ba{sub 0.4}Sr{sub 1.6}Ca{sub 2}Cu{sub 3}O{sub 9{minus}{delta}} are studied with x-ray photoemission spectroscopy. These data, together with previous measurements in this lab of Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} and TlBa{sub 2}CaCu{sub 2}O{sub 7{minus}{delta}}, comprise a comprehensive data set for a comparative study of Tl cuprates with a range of chemical and electronic properties. In the Cu 2p spectra, a larger energy separation between the satellite and main peaks (E{sub s}-E{sub m}) and a lower intensity ratio (I{sub s}/I{sub m}) are found to correlate with higher values of T{sub c}. Analysis of these spectra within a simple configuration interaction model suggests that higher values of T{sub c} are related to low values of the O 2p {r_arrow} Cu 3d charge transfer energy. In the O 1s region, a smaller bond length between Ba and Cu-O planar oxygen is found to correlate with a lower binding energy for the signal associated with Cu-O bonding, most likely resulting from the increased polarization screening by Ba{sup 2+} ions. For samples near optimum doping, maximum T{sub c} is observed to occur when the Tl 4f{sub 7/2} binding energy is near 117.9 eV, which is near the middle of the range of values observed for Tl cuprates. Higher Tl 4f{sub 7/2} binding energies, corresponding to formal oxidation states nearer Tl{sup 1+}, are also found to correlate with longer bond lengths between Ba and Tl-O planar oxygen, and with higher binding energies of the O 1s signal associated with Tl-O bonding.

  8. Chemical bonding in Tl cuprates studied by x-ray photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, R.P. [Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099 (United States); Siegal, M.P.; Overmyer, D.L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Ren, Z.F.; Lao, J.Y.; Wang, J.H. [Materials Synthesis Laboratory, Department of Chemistry, State University of New York, Buffalo, New York 14260-3000 (United States)

    1999-08-01

    Epitaxial thin films of the Tl cuprate superconductors Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8}, Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}, and Tl{sub 0.78}Bi{sub 0.22}Ba{sub 0.4}Sr{sub 1.6}Ca{sub 2}Cu{sub 3}O{sub 9{minus}{delta}} are studied with x-ray photoemission spectroscopy. These data, together with previous measurements in this lab of Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} and TlBa{sub 2}CaCu{sub 2}O{sub 7{minus}{delta}}, comprise a comprehensive data set for a comparative study of Tl cuprates with a range of chemical and electronic properties. In the Cu 2p spectra, a larger energy separation between the satellite and main peaks (E{sub s}{minus}E{sub m}) and a lower intensity ratio (I{sub s}/I{sub m}) are found to correlate with higher values of T{sub c}. Analysis of these spectra within a simple configuration interaction model suggests that higher values of T{sub c} are related to low values of the O&hthinsp;2p{r_arrow}Cu&hthinsp;3d charge transfer energy. In the O&hthinsp;1s region, a smaller bond length between Ba and Cu-O planar oxygen is found to correlate with a lower binding energy for the signal associated with Cu-O bonding, most likely resulting from the increased polarization screening by Ba{sup 2+} ions. For samples near optimum doping, maximum T{sub c} is observed to occur when the Tl 4f{sub 7/2} binding energy is near 117.9 eV, which is near the middle of the range of values observed for Tl cuprates. Higher Tl&hthinsp;4f{sub 7/2} binding energies, corresponding to formal oxidation states nearer Tl{sup 1+}, are also found to correlate with longer bond lengths between Ba and Tl-O planar oxygen, and with higher binding energies of the O&hthinsp;1s signal associated with Tl-O bonding. {copyright} {ital 1999} {ital The American Physical Society}

  9. Crystal structure and chemical bonding analysis of BaPtCd{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gulo, Fakhili [Department of Chemical Education, Sriwijaya University, Inderalaya 30662, South Sumatra (Indonesia); Koehler, Juergen [Max Planck Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    2015-03-15

    The new ternary intermetallic phase, BaPtCd{sub 2}, was synthesized by solid-state reaction from direct combination of the elements in a stoichiometric mixture. The reaction was done at 850 C for 15 h, followed by an equilibration at 600 C for 4 d. The crystal structure was determined by X-ray diffraction method on a single crystal. BaPtCd{sub 2} is isotypic to MgCuAl{sub 2} and crystallizes in the orthorhombic space group Cmcm [a = 4.467(2), b = 11.143(4), c = 8.240(3) Aa, V = 410.2(3) Aa{sup 3}, and Z = 4]. Barium atoms are linked together forming zigzag chains. Cadmium atoms are bonded to each other forming six-membered rings of platinum centered boat and anti-boat conformations. BaPtCd{sub 2} contains 16 electrons per formula unit and belongs to the electron poorest compounds with MgCuAl{sub 2} type structure. Calculations based on the linear muffin-tin orbitals method in the atomic spheres approximation show that significant bonding states in BaPtCd{sub 2} are unoccupied. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Transient Liquid Phase Behavior of Sn-Coated Cu Particles and Chip Bonding using Paste Containing the Particles

    Directory of Open Access Journals (Sweden)

    Hwang Jun Ho

    2017-06-01

    Full Text Available Sn-coated Cu particles were prepared as a filler material for transient liquid phase (TLP bonding. The thickness of Sn coating was controlled by controlling the number of plating cycles. The Sn-coated Cu particles best suited for TLP bonding were fabricated by Sn plating thrice, and the particles showed a pronounced endothermic peak at 232°C. The heating of the particles for just 10 s at 250°C destroyed the initial core-shell structure and encouraged the formation of Cu-Sn intermetallic compounds. Further, die bonding was also successfully performed at 250°C under a slight bonding pressure of around 0.1 MPa using a paste containing the particles. The bonding time of 30 s facilitated the bonding of Sn-coated Cu particles to the Au surface and also increased the probability of network formation between particles.

  11. QCD phase transition at real chemical potential with canonical approach

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Atsushi [RCNP, Osaka University,Osaka, 567-0047 (Japan); Nishina Center, RIKEN,Wako, Saitama 351-0198 (Japan); School of Biomedicine, Far Eastern Federal University,Vladivostok, 690950 (Russian Federation); Oka, Shotaro [Institute of Theoretical Physics, Department of Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Taniguchi, Yusuke [Graduate School of Pure and Applied Sciences, University of Tsukuba,Tsukuba, Ibaraki 305-8571 (Japan)

    2016-02-08

    We study the finite density phase transition in the lattice QCD at real chemical potential. We adopt a canonical approach and the canonical partition function is constructed for N{sub f}=2 QCD. After derivation of the canonical partition function we calculate observables like the pressure, the quark number density, its second cumulant and the chiral condensate as a function of the real chemical potential. We covered a wide range of temperature region starting from the confining low to the deconfining high temperature; 0.65T{sub c}≤T≤3.62T{sub c}. We observe a possible signal of the deconfinement and the chiral restoration phase transition at real chemical potential below T{sub c} starting from the confining phase. We give also the convergence range of the fugacity expansion.

  12. Characterization of electron-deficient chemical bonding of diborane with attosecond electron wavepacket dynamics and laser response

    International Nuclear Information System (INIS)

    Yonehara, Takehiro; Takatsuka, Kazuo

    2009-01-01

    We report a theoretical study of non-adiabatic electrons-nuclei coupled dynamics of diborane H 2 BH 2 BH 2 under several types of short pulse lasers. This molecule is known to have particularly interesting geometrical and electronic structures, which originate from the electron-deficient chemical bondings. We revisit the chemical bonding of diborane from the view point of electron wavepacket dynamics coupled with nuclear motions, and attempt to probe the characteristics of it by examining its response to intense laser fields. We study in the following three aspects, (i) bond formation of diborane by collision between two monoboranes, (ii) attosecond electron wavepacket dynamics in the ground state and first excited state by circularly polarized laser pulse, and (iii) induced fragmentation back to monoborane molecules by linearly polarized laser. The wave lengths of two types of laser field employed are 200 nm (in UV range) and 800 nm (in IR range), and we track the dynamics from hundreds of attoseconds up to few tens of femtoseconds. To this end, we apply the ab initio semiclassical Ehrenfest theory, into which the classical vector potential of a laser field is introduced. Basic features of the non-adiabatic response of electrons to the laser fields is elucidated in this scheme. To analyze the electronic wavepackets thus obtained, we figure out bond order density that is a spatial distribution of the bond order and bond order flux density arising only from the bonding regions, and so on. Main findings in this work are: (i) dimerization of monoboranes to diborane is so efficient that even intense laser is hard to prevent it; (ii) collective motions of electron flux emerge in the central BHHB bonding area in response to the circularly polarized laser fields; (iii) laser polarization with the direction of central two BH bonding vector is efficient for the cleavage of BH 3 -BH 3 ; and (iv) nuclear derivative coupling plays a critical role in the field induced

  13. The adsorption of acrolein on a Pt (1 1 1): A study of chemical bonding and electronic structure

    International Nuclear Information System (INIS)

    Pirillo, S.; López-Corral, I.; Germán, E.; Juan, A.

    2012-01-01

    Highlights: ► Study of acrolein/Pt (1 1 1) adsorption using ab-initio and semiempirical methods. ► Geometry optimization and DOS curves were carried out using VASP code. ► Study of chemical bonding evolution using COOP and OP analysis. ► After adsorption Pt-Pt, C=O and C=C bonds are weakened. ► η 3 -cis and η 4 -trans most stable adsorption modes, η 1 -trans less favored one. - Abstract: The adsorption of acrolein on a Pt (1 1 1) surface was studied using ab-initio and semiempirical calculations. Geometry optimization and densities of states (DOS) curves were carried out using the Vienna Ab-initio Simulation Package (VASP) code. We started our study with the preferential geometries corresponding to the different acrolein/Pt (1 1 1) adsorption modes previously reported. Then, we examined the evolution of the chemical bonding in these geometries, using the crystal orbital overlap population (COOP) and overlap population (OP) analysis of selected pairs of atoms. We analyzed the acrolein intramolecular bonds, Pt (1 1 1) superficial bonds and new molecule-surface formed bonds after adsorption. We found that Pt-Pt bonds interacting with the molecule and acrolein C=O and C=C bonds are weakened after adsorption; this last bond is significantly linked to the surface. The obtained C-Pt and O-Pt OP values suggest that the most stable adsorption modes are η 3 -cis and η 4 -trans, while the η 1 -trans is the less favored configuration. We also found that C p z orbital and Pt p z and d z 2 orbitals participate strongly in the adsorption process.

  14. PWR steam generator chemical cleaning. Phase II. Final report

    International Nuclear Information System (INIS)

    1980-01-01

    Two techniques believed capable of chemically dissolving the corrosion products in the annuli between tubes and support plates were developed in laboratory work in Phase I of this project and were pilot tested in Indian Point Unit No. 1 steam generators. In Phase II, one of the techniques was shown to be inadequate on an actual sample taken from an Indian Point Unit No. 2 steam generator. The other technique was modified slightly, and it was demonstrated that the tube/support plate annulus could be chemically cleaned effectively

  15. Anisotropic chemical etching of semipolar {101-bar 1-bar}/{101-bar +1} ZnO crystallographic planes: polarity versus dangling bonds

    International Nuclear Information System (INIS)

    Palacios-Lidon, E; Perez-GarcIa, B; Colchero, J; Vennegues, P; Zuniga-Perez, J; Munoz-Sanjose, V

    2009-01-01

    ZnO thin films grown by metal-organic vapor phase epitaxy along the nonpolar [112-bar] direction and exhibiting semipolar {101-bar 1-bar}/{101-bar +1} facets have been chemically etched with HCl. In order to get an insight into the influence of the ZnO wurtzite structure in the chemical reactivity of the material, Kelvin probe microscopy and convergent beam electron diffraction have been employed to unambiguously determine the absolute polarity of the facets, showing that {101-bar +1} facets are unstable upon etching in an HCl solution and transform into (000+1)/{101-bar 1-bar} planes. In contrast, {101-bar 1-bar} undergo homogeneous chemical etching perpendicular to the initial crystallographic plane. The observed etching behavior has been explained in terms of surface oxygen dangling bond density, suggesting that the macroscopic polarity plays a secondary role in the etching process.

  16. Phase transition and intramolecular hydrogen bonding in nitro derivatives of ortho-hydroxy acetophenones

    Science.gov (United States)

    Filarowski, A.; Kochel, A.; Koll, A.; Bator, G.; Mukherjee, S.

    2006-03-01

    The crystal structures of two ortho-hydroxy aryl ketones (5-chloro-3-nitro-2-hydroxyacetophenone, 5-methyl-3-nitro-2-hydroxyacetophenone and the complex 5-chloro-3-nitro-2-hydroxyacetophenone with 2-aminobenzoic acid (anthranilic acid)) were determined by X-ray diffraction. The existence of an intramolecular hydrogen bond of enol character between the hydroxyl and acetyl groups was found by the X-ray method. The enol character was also confirmed by DFT (B3LYP/6-31+G(d,p)) calculations. A phase transition was found at 138 K in 5-chloro-3-nitro-2-hydroxyacetophenone. This phase transition was investigated by differential scanning calorimetry (DSC), dilatometry, and the dielectric method. A study of the nitro-group dynamics in the ortho-hydroxy acetophenones was carried out with DFT (B3LYP/6-31+G(d,p)) calculations.

  17. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    International Nuclear Information System (INIS)

    Meng, X F; Yoshida, K; Gu, N

    2010-01-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R a and R y values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane coupler

  18. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    Energy Technology Data Exchange (ETDEWEB)

    Meng, X F [Department of Prosthodontics, The Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing 210008 (China); Yoshida, K [Division of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588 (Japan); Gu, N, E-mail: mengsoar@nju.edu.c [Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China)

    2010-08-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R{sub a} and R{sub y} values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane

  19. The adsorption of acrolein on a Pt (1 1 1): A study of chemical bonding and electronic structure

    Science.gov (United States)

    Pirillo, S.; López-Corral, I.; Germán, E.; Juan, A.

    2012-12-01

    The adsorption of acrolein on a Pt (1 1 1) surface was studied using ab-initio and semiempirical calculations. Geometry optimization and densities of states (DOS) curves were carried out using the Vienna Ab-initio Simulation Package (VASP) code. We started our study with the preferential geometries corresponding to the different acrolein/Pt (1 1 1) adsorption modes previously reported. Then, we examined the evolution of the chemical bonding in these geometries, using the crystal orbital overlap population (COOP) and overlap population (OP) analysis of selected pairs of atoms. We analyzed the acrolein intramolecular bonds, Pt (1 1 1) superficial bonds and new moleculesbnd surface formed bonds after adsorption. We found that Ptsbnd Pt bonds interacting with the molecule and acrolein Cdbnd O and Cdbnd C bonds are weakened after adsorption; this last bond is significantly linked to the surface. The obtained Csbnd Pt and Osbnd Pt OP values suggest that the most stable adsorption modes are η3-cis and η4-trans, while the η1-trans is the less favored configuration. We also found that C pz orbital and Pt pz and d orbitals participate strongly in the adsorption process.

  20. Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality

    Energy Technology Data Exchange (ETDEWEB)

    Sergeeva, Alina P.; Popov, Ivan A.; Piazza, Zachary A.; Li, Wei-Li; Romanescu, Constantin; Wang, Lai S.; Boldyrev, Alexander I.

    2014-04-15

    Conspectus Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center–two-electron (2c–2e) σ bonds on the periphery and delocalized multicenter–two-electron (nc–2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron’s electron deficiency and leads to fluxional behavior, which has been observed in B13+ and B19–. A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiation has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B–, formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B

  1. Energetics and chemical bonding of the 1,3,5-tridehydrobenzene triradical and its protonated form

    International Nuclear Information System (INIS)

    Hue Minh Thi Nguyen; Hoeltzl, Tibor; Gopakumar, G.; Veszpremi, Tamas; Peeters, Jozef; Minh Tho Nguyen

    2005-01-01

    Quantum chemical calculations were applied to investigate the electronic structure of the parent 1,3,5-tridehydrobenzene triradical (C 6 H 3 , TDB) and its anion (C 6 H 3 - ), cation (C 6 H 3 + ) and protonated form (C 6 H 4 + ). Our results obtained using the state-averaged complete active space self-consistent-field (CASSCF) followed by second-order multi-state multi-configuration perturbation theory, MS-CASPT2, and MRMP2 in conjunction with the large ANO-L and 6-311++G(3df,2p) basis set, confirm and reveal the followings: (i) TDB has a doublet 2 A 1 ground state with a 4 B 2 - 2 A 1 energy gap of 29kcal/mol, (ii) the ground state of the C 6 H 3 - anion in the triplet 3 B 2 being 4kcal/mol below the 1 A 1 state. (iii) the electron affinity (EA), ionization energy (IE) and proton affinity (PA) are computed to be: EA=1.6eV, IE=7.2eV, PA=227kcal/mol using UB3LYP/6-311++G(3df,2p)+ZPE; standard heat of formation ΔH f(298K,1atm) (TDB)=179+/-2kcal/mol was calculated with CBS-QB3 method. An atoms-in-molecules (AIM) analysis of the structure reveals that the topology of the electron density is similar in all compounds: hydrogens connect to a six-membered ring, except for the case of the 2 A 2 state of C 6 H 4 + (MBZ + ) which is bicyclic with fused five- and three-membered rings. Properties of the chemical bonds were characterized with Electron Localization Function (ELF) analysis, as well as Wiberg indices, Laplacian and spin density maps. We found that the radicals form separate monosynaptic basins on the ELF space, however its pair character remains high. In the 2 A 1 state of TDB, the radical center is mainly localized on the C1 atom, while in the 2 B 2 state it is equally distributed between the C3 and C5 atoms and, due to the symmetry, in the 4 B 2 state the C1, C2 and C3 atoms have the same radical character. There is no C3-C5 bond in the 2 A 1 state of TDB, but the interaction between these atoms is strong. The ground state of cation C 6 H 3 + (DHP), 1 A 1 , is

  2. Energetics and chemical bonding of the 1,3,5-tridehydrobenzene triradical and its protonated form

    Energy Technology Data Exchange (ETDEWEB)

    Hue Minh Thi Nguyen [Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Leuven (Belgium); Faculty of Chemistry, University of Education, Hanoi (Viet Nam); Hoeltzl, Tibor [Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Leuven (Belgium); Department of Inorganic Chemistry, University of Technology and Economics Gellert ter 4, H-1521-Budapest (Hungary); Gopakumar, G. [Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Leuven (Belgium); Veszpremi, Tamas [Department of Inorganic Chemistry, University of Technology and Economics Gellert ter 4, H-1521-Budapest (Hungary); Peeters, Jozef [Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Leuven (Belgium); Minh Tho Nguyen [Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Leuven (Belgium)], E-mail: minh.nguyen@chem.kuleuven.be

    2005-09-19

    Quantum chemical calculations were applied to investigate the electronic structure of the parent 1,3,5-tridehydrobenzene triradical (C{sub 6}H{sub 3}, TDB) and its anion (C{sub 6}H{sub 3}{sup -}), cation (C{sub 6}H{sub 3}{sup +}) and protonated form (C{sub 6}H{sub 4}{sup +}). Our results obtained using the state-averaged complete active space self-consistent-field (CASSCF) followed by second-order multi-state multi-configuration perturbation theory, MS-CASPT2, and MRMP2 in conjunction with the large ANO-L and 6-311++G(3df,2p) basis set, confirm and reveal the followings: (i) TDB has a doublet {sup 2}A{sub 1} ground state with a {sup 4}B{sub 2}-{sup 2}A{sub 1} energy gap of 29kcal/mol, (ii) the ground state of the C{sub 6}H{sub 3}{sup -} anion in the triplet {sup 3}B{sub 2} being 4kcal/mol below the {sup 1}A{sub 1} state. (iii) the electron affinity (EA), ionization energy (IE) and proton affinity (PA) are computed to be: EA=1.6eV, IE=7.2eV, PA=227kcal/mol using UB3LYP/6-311++G(3df,2p)+ZPE; standard heat of formation {delta}H{sub f(298K,1atm)}(TDB)=179+/-2kcal/mol was calculated with CBS-QB3 method. An atoms-in-molecules (AIM) analysis of the structure reveals that the topology of the electron density is similar in all compounds: hydrogens connect to a six-membered ring, except for the case of the {sup 2}A{sub 2} state of C{sub 6}H{sub 4}{sup +} (MBZ{sup +}) which is bicyclic with fused five- and three-membered rings. Properties of the chemical bonds were characterized with Electron Localization Function (ELF) analysis, as well as Wiberg indices, Laplacian and spin density maps. We found that the radicals form separate monosynaptic basins on the ELF space, however its pair character remains high. In the {sup 2}A{sub 1} state of TDB, the radical center is mainly localized on the C1 atom, while in the {sup 2}B{sub 2} state it is equally distributed between the C3 and C5 atoms and, due to the symmetry, in the {sup 4}B{sub 2} state the C1, C2 and C3 atoms have the same

  3. Perovskite BaBiO3 Transformed Layered BaBiO2.5 Crystals Featuring Unusual Chemical Bonding and Luminescence.

    Science.gov (United States)

    Li, Hong; Zhao, Qing; Liu, Bo-Mei; Zhang, Jun-Ying; Li, Zhi-Yong; Guo, Shao-Qiang; Ma, Ju-Ping; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Zheng, Li-Rong; Sun, Hong-Tao

    2018-04-14

    Engineering oxygen coordination environments of cations in oxides has received intense interest thanks to the opportunities for the discovery of novel oxides with unusual properties. Here we present the successful synthesis of stoichiometric layered BaBiO2.5 enabled by a non-topotactic phase transformation of perovskite BaBiO3. By analysing the synchrotron X-ray diffraction data using the maximum entropy method/Rietveld technique, we find that Bi forms unusual chemical bondings with four oxygen atoms, featuring one ionic bonding and three covalent bondings that results in an asymmetric coordination geometry. A broad range of photophysical characterizations reveal that this peculiar structure shows near-infrared luminescence differing from conventional Bi-bearing systems. Experimental and theoretical results lead us to propose the excitonic nature of luminescence. Our work highlights that synthesizing materials with uncommon Bi-O bonding and Bi coordination geometry provides a pathway to the discovery of systems with new functionalities. We envisage that this work could inspire interest for the exploration of a range of materials containing heavier p-block elements, offering prospects for the finding of systems with unusual properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Diversity of Chemical Bonding and Oxidation States in MS4 Molecules of Group 8 Elements.

    Science.gov (United States)

    Huang, Wei; Jiang, Ning; Schwarz, W H Eugen; Yang, Ping; Li, Jun

    2017-08-04

    The geometric and electronic ground-state structures of 30 isomers of six MS 4 molecules (M=Group 8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density functional theory and correlated wavefunction approaches. The MS 4 species were compared to analogous MO 4 species recently investigated (W. Huang, W.-H. Xu, W. H. E. Schwarz, J. Li, Inorg. Chem. 2016, 55, 4616). A metal oxidation state (MOS) with a high value of eight appeared in the low-spin singlet T d geometric species (Os,Hs)S 4 and (Ru,Os,Hs)O 4 , whereas a low MOS of two appeared in the high-spin septet D 2d species Fe(S 2 ) 2 and (slightly excited) metastable Fe(O 2 ) 2 . The ground states of all other molecules had intermediate MOS values, with S 2- , S 2 2- , S 2 1- (and O 2- , O 1- , O 2 2- , O 2 1- ) ligands bonded by ionic, covalent, and correlative contributions. The known tendencies toward lower MOS on going from oxides to sulfides, from Hs to Os to Ru, and from Pu to Sm, and the specific behavior of Fe, were found to arise from the different atomic orbital energies and radii of the (n-1)p core and (n-1)d and (n-2)f valence shells of the metal atoms in row n of the periodic table. The comparative results of the electronic and geometric structures of the MO 4 and MS 4 species provides insight into the periodicity of oxidation states and bonding. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Application of infrared spectroscopy for study of chemical bonds in complexes of rare earth nitrates with alkylammonium nitrates

    International Nuclear Information System (INIS)

    Klimov, V.D.; Chudinov, Eh.G.

    1974-01-01

    The IR absorption spectra for the tri-n-octylamine, methyl-di-n-octylamine, their nitrates and complexes with the rare element nitrates are obtained. The IR spectra analysis of the complexes has suggested that the degree of covalent character bond of a nitrate with a metal grows with the atomic number of the element. Based on the comparison of the obtained data with those available in literature for various rare-earth complexes a conclusion is made that the bond character of a metal with nitrate groups is influenced by all ligands constituting the inner coordinating sphere. As the donor capacity of a ligand grows the covalent character of the metal-nitrate bond is enhanced. The replacement of the outer-sphere cations (trioctylammonium or methyldioctylammonium) only slightly affects the bond character of a metal with the nitrate group. The distribution coefficients in the rare-earth series are shown to decrease as the electrostatic part in the metal-nitrate declines. The phenomenon is attributed to the competition between nitrate and water for the metal bond as concurrently with the intensification of metal-nitrate covalent bond in the organic phase the strength of metal hydrates in aqueous phase grows much faster. (author)

  6. Trends in Strong Chemical Bonding in C2, CN, CN-, CO, N2, NO, NO+, and O2

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    The strong chemical bonds between C, N, and O play a central role in chemistry, and their formation and cleavage are critical steps in very many catalytic processes. The close-lying molecular orbital energies and large correlation effects pose a challenge to electronic structure calculations and ...

  7. Phase transitions at finite chemical potential in grand unified theories

    International Nuclear Information System (INIS)

    Bailin, D.; Love, A.

    1984-01-01

    We discuss the circumstances in which non-zero chemical potentials might prevent symmetry restoration in phase transitions in the early universe at grand unification or partial unification scales. The general arguments are illustrated by consideration of SO(10) and SU(5) grand unified theories. (orig.)

  8. Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephan E.

    2004-10-01

    Pacific Northwest National Laboratory (PNNL) hosted its first annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2004. During this period, fourteen PNNL scientists hosted sixteen young scientists from eleven different universities. Of the sixteen participants, fourteen were graduate students; one was transitioning to graduate school; and one was a university faculty member.

  9. Artificial neural network modelling of retention of pesticides in various octadecylsiloxane-bonded reversed-phase columns and water-acetonitrile mobile phase

    International Nuclear Information System (INIS)

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Mazzeo, Pietro; Ruggieri, Fabrizio

    2009-01-01

    Previously, retention of 26 pesticides in the reversed-phase column Gemini (Phenomenex) and water-acetonitrile mobile phase was modelled using a feed-forward artificial neural network (ANN) learned by error back-propagation, accounting for both the effect of solute structure and mobile phase composition. To this end, log K ow of solutes and four quantum chemical molecular descriptors (the dipole moment, the mean polarizability, the anisotropy of the polarizability and an hydrogen-bonding descriptor based on the atomic charges located on the acid and basic functional groups) and acetonitrile % (v/v) in the eluent (%ACN) were used as ANN inputs. The above ANN-based approach is here tested on further five similar octadecylsiloxane-bonded columns in water-acetonitrile mobile phase within the %ACN range 30-70%. A quite good predictive performance evaluated on three external solutes in the whole %ACN range is observed, prediction errors being lower than ±0.1 log k units or slightly higher although still within ±0.15 log k units. On the other hand, multilinear regression used in place of ANN provides a more diffuse and non-uniform residual distribution for all the investigated columns. ANN multiple-column retention prediction is attempted by adding to the above variables a column descriptor defined as the average retention of calibration solutes extrapolated to 100% water. This more general model is built using 16 solutes and five 5-μm columns in calibration, while its predictive performance is tested on the remaining 10 compounds. Under these conditions, prediction errors are generally within ±0.2 log k units regardless of the kind of column. The possibility of cross-column prediction is evaluated by column leave-one-out cross-validation within the five 5-μm stationary phases and on a 4-μm external column. This analysis reveals that accuracy of retention prediction for unknown solutes in unknown columns is acceptable provided that the external column is not very

  10. Artificial neural network modelling of retention of pesticides in various octadecylsiloxane-bonded reversed-phase columns and water-acetonitrile mobile phase

    Energy Technology Data Exchange (ETDEWEB)

    D' Archivio, Angelo Antonio, E-mail: angeloantonio.darchivio@univaq.it [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Maggi, Maria Anna; Mazzeo, Pietro; Ruggieri, Fabrizio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)

    2009-07-30

    Previously, retention of 26 pesticides in the reversed-phase column Gemini (Phenomenex) and water-acetonitrile mobile phase was modelled using a feed-forward artificial neural network (ANN) learned by error back-propagation, accounting for both the effect of solute structure and mobile phase composition. To this end, log K{sub ow} of solutes and four quantum chemical molecular descriptors (the dipole moment, the mean polarizability, the anisotropy of the polarizability and an hydrogen-bonding descriptor based on the atomic charges located on the acid and basic functional groups) and acetonitrile % (v/v) in the eluent (%ACN) were used as ANN inputs. The above ANN-based approach is here tested on further five similar octadecylsiloxane-bonded columns in water-acetonitrile mobile phase within the %ACN range 30-70%. A quite good predictive performance evaluated on three external solutes in the whole %ACN range is observed, prediction errors being lower than {+-}0.1 log k units or slightly higher although still within {+-}0.15 log k units. On the other hand, multilinear regression used in place of ANN provides a more diffuse and non-uniform residual distribution for all the investigated columns. ANN multiple-column retention prediction is attempted by adding to the above variables a column descriptor defined as the average retention of calibration solutes extrapolated to 100% water. This more general model is built using 16 solutes and five 5-{mu}m columns in calibration, while its predictive performance is tested on the remaining 10 compounds. Under these conditions, prediction errors are generally within {+-}0.2 log k units regardless of the kind of column. The possibility of cross-column prediction is evaluated by column leave-one-out cross-validation within the five 5-{mu}m stationary phases and on a 4-{mu}m external column. This analysis reveals that accuracy of retention prediction for unknown solutes in unknown columns is acceptable provided that the external

  11. Multiple Multidentate Halogen Bonding in Solution, in the Solid State, and in the (Calculated) Gas Phase.

    Science.gov (United States)

    Jungbauer, Stefan H; Schindler, Severin; Herdtweck, Eberhardt; Keller, Sandro; Huber, Stefan M

    2015-09-21

    The binding properties of neutral halogen-bond donors (XB donors) bearing two multidentate Lewis acidic motifs toward halides were investigated. Employing polyfluorinated and polyiodinated terphenyl and quaterphenyl derivatives as anion receptors, we obtained X-ray crystallographic data of the adducts of three structurally related XB donors with tetraalkylammonium chloride, bromide, and iodide. The stability of these XB complexes in solution was determined by isothermal titration calorimetry (ITC), and the results were compared to X-ray analyses as well as to calculated binding patterns in the gas phase. Density functional theory (DFT) calculations on the gas-phase complexes indicated that the experimentally observed distortion of the XB donors during multiple multidentate binding can be reproduced in 1:1 complexes with halides, whereas adducts with two halides show a symmetric binding pattern in the gas phase that is markedly different from the solid state structures. Overall, this study demonstrates the limitations in the transferability of binding data between solid state, solution, and gas phase in the study of complex multidentate XB donors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Microstructural development in NiAl/Ni-Si-B/Ni transient liquid phase bonds

    International Nuclear Information System (INIS)

    Gale, W.F.; Orel, S.V.

    1996-01-01

    A transmission electron microscopy (TEM) based investigation of microstructural development during transient liquid phase bonding of near-stoichiometric NiAl to commercial purity nickel is presented in this article. The work described employed Ni-4.5 wt pct Si-3.2 wt pct B (BNi-3) melt-spun interlayers. The precipitation of both Ni-Al based phases and borides within the joint and adjacent substrate regions is discussed. The article considers martensite formation (within the NiAl substrate) and the precipitation of L1 2 type phases (both within the joint and at the interface with the NiAl substrate). The relative roles of the two substrate materials (NiAl and Ni) in the isothermal resolidification process are identified. The preferential formation of Ni 3 B boride phases in the Ni substrate near the original location of the Ni substrate-joint interface is discussed and contrasted with the absence of similar events in the NiAl substrate

  13. Chemically Induced Phase Transformation in Austenite by Focused Ion Beam

    Science.gov (United States)

    Basa, Adina; Thaulow, Christian; Barnoush, Afrooz

    2014-03-01

    A highly stable austenite phase in a super duplex stainless steel was subjected to a combination of different gallium ion doses at different acceleration voltages. It was shown that contrary to what is expected, an austenite to ferrite phase transformation occurred within the focused ion beam (FIB) milled regions. Chemical analysis of the FIB milled region proved that the gallium implantation preceded the FIB milling. High resolution electron backscatter diffraction analysis also showed that the phase transformation was not followed by the typical shear and plastic deformation expected from the martensitic transformation. On the basis of these observations, it was concluded that the change in the chemical composition of the austenite and the local increase in gallium, which is a ferrite stabilizer, results in the local selective transformation of austenite to ferrite.

  14. Chemical bonding analysis for solid-state systems using intrinsic oriented quasiatomic minimal-basis-set orbitals

    International Nuclear Information System (INIS)

    Yao, Y.X.; Wang, C.Z.; Ho, K.M.

    2010-01-01

    A chemical bonding scheme is presented for the analysis of solid-state systems. The scheme is based on the intrinsic oriented quasiatomic minimal-basis-set orbitals (IO-QUAMBOs) previously developed by Ivanic and Ruedenberg for molecular systems. In the solid-state scheme, IO-QUAMBOs are generated by a unitary transformation of the quasiatomic orbitals located at each site of the system with the criteria of maximizing the sum of the fourth power of interatomic orbital bond order. Possible bonding and antibonding characters are indicated by the single particle matrix elements, and can be further examined by the projected density of states. We demonstrate the method by applications to graphene and (6,0) zigzag carbon nanotube. The oriented-orbital scheme automatically describes the system in terms of sp 2 hybridization. The effect of curvature on the electronic structure of the zigzag carbon nanotube is also manifested in the deformation of the intrinsic oriented orbitals as well as a breaking of symmetry leading to nonzero single particle density matrix elements. In an additional study, the analysis is performed on the Al 3 V compound. The main covalent bonding characters are identified in a straightforward way without resorting to the symmetry analysis. Our method provides a general way for chemical bonding analysis of ab initio electronic structure calculations with any type of basis sets.

  15. A remarkable enhancement of selectivity towards versatile analytes by a strategically integrated H-bonding site containing phase.

    Science.gov (United States)

    Mallik, Abul K; Qiu, Hongdeng; Kuwahara, Yutaka; Takafuji, Makoto; Ihara, Hirotaka

    2015-09-28

    A double β-alanylated L-glutamide-derived organic phase has been newly designed and synthesized in such a way that integrated H-bonding (interaction) sites make it very suitable for the separation of versatile analytes, including shape-constrained isomers, and nonpolar, polar and basic compounds. The β-alanine residues introduced into two long-chain alkyl group moieties provide ordered polar groups through H-bonding among the amide groups.

  16. Calculation of liquid-liquid equilibrium of aqueous two-phase systems using a chemical-theory-based excess Gibbs energy model

    Directory of Open Access Journals (Sweden)

    Pessôa Filho P. A.

    2004-01-01

    Full Text Available Mixtures containing compounds that undergo hydrogen bonding show large deviations from ideal behavior. These deviations can be accounted for through chemical theory, according to which the formation of a hydrogen bond can be treated as a chemical reaction. This chemical equilibrium needs to be taken into account when applying stability criteria and carrying out phase equilibrium calculations. In this work, we illustrate the application of the stability criteria to establish the conditions under which a liquid-phase split may occur and the subsequent calculation of liquid-liquid equilibrium using a chemical-theory-modified Flory-Huggins equation to describe the non ideality of aqueous two-phase systems composed of poly(ethylene glycol and dextran. The model was found to be able to correlate ternary liquid-liquid diagrams reasonably well by simple adjustment of the polymer-polymer binary interaction parameter.

  17. Chemical Bonding of Transition-Metal Co13 Clusters with Graphene.

    Science.gov (United States)

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    2015-12-01

    We carried out density functional calculations to study the adsorption of Co13 clusters on graphene. Several free isomers were deposited at different positions with respect to the hexagonal lattice nodes, allowing us to study even the hcp 2d isomer, which was recently obtained as the most stable one. Surprisingly, the Co13 clusters attached to graphene prefer icosahedron-like structures in which the low-lying isomer is much distorted; in such structures, they are linked with more bonds than those reported in previous works. For any isomer, the most stable position binds to graphene by the Co atoms that can lose electrons. We find that the charge transfer between graphene and the clusters is small enough to conclude that the Co-graphene binding is not ionic-like but chemical. Besides, the same order of stability among the different isomers on doped graphene is kept. These findings could also be of interest for magnetic clusters on graphenic nanostructures such as ribbons and nanotubes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chemical Bonding States of TiC Films before and after Hydrogen Ion Irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    TiC films deposited by rf magnetron sputtering followed by Ar+ ion bombardment were irradiated with a hydrogen ion beam. X-ray photoelectron spectroscopy (XPS) was used for characterization of the chemical bonding states of C and Ti elements of the TiC films before and after hydrogen ion irradiation, in order to understand the effect of hydrogen ion irradiation on the films and to study the mechanism of hydrogen resistance of TiC films. Conclusions can be drawn that ion bombardment at moderate energy can cause preferential physical sputtering of carbon atoms from the surface of low atomic number (Z) material. This means that ion beam bombardment leads to the formation of a non-stoichiometric composition of TiC on the surface.TiC films prepared by ion beam mixing have the more excellent characteristic of hydrogen resistance. One important cause, in addition to TiC itself, is that there are many vacant sites in TiC created by ion beam mixing.These defects can easily trap hydrogen and effectively enhance the effect of hydrogen resistance.

  19. An Investigation of Fiber Reinforced Chemically Bonded Phosphate Ceramic Composites at Room Temperature.

    Science.gov (United States)

    Ding, Zhu; Li, Yu-Yu; Lu, Can; Liu, Jian

    2018-05-21

    In this study, chemically bonded phosphate ceramic (CBPC) fiber reinforced composites were made at indoor temperatures. The mechanical properties and microstructure of the CBPC composites were studied. The CBPC matrix of aluminum phosphate binder, metakaolin, and magnesia with different Si/P ratios was prepared. The results show that when the Si/P ratio was 1.2, and magnesia content in the CBPC was 15%, CBPC reached its maximum flexural strength. The fiber reinforced CBPC composites were prepared by mixing short polyvinyl alcohol (PVA) fibers or unidirectional continuous carbon fiber sheets. Flexural strength and dynamic mechanical properties of the composites were determined, and the microstructures of specimens were analyzed by scanning electron micrography, X-ray diffraction, and micro X-ray computed tomography. The flexural performance of continuous carbon fiber reinforced CBPC composites was better than that of PVA fiber composites. The elastic modulus, loss modulus, and loss factor of the fiber composites were measured through dynamic mechanical analysis. The results showed that fiber reinforced CBPC composites are an inorganic polymer viscoelastic material with excellent damping properties. The reaction of magnesia and phosphate in the matrix of CBPC formed a different mineral, newberyite, which was beneficial to the development of the CBPC.

  20. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Wang, Chunhui [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China); Zhang, Qing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China)

    2015-06-15

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp{sup 3}/sp{sup 2} after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp{sup 3}/sp{sup 2} after laser treatment.

  1. Wire Bonding on 2S Modules of the Phase-2 CMS Detector

    CERN Document Server

    AUTHOR|(CDS)2226525; Pooth, Oliver

    The LHC will be upgraded to the HL-LHC in the Long Shutdown 3 starting 2024. This upgrade will increase the collision rate and the overall number of colliding particles requiring high precision particle detectors which are able to cope with much higher radiation doses and numbers of particle interactions per bunch crossing. To fulfill these technical requirements the CMS detector will be upgraded in the so-called Phase-2 Upgrade. Among others the silicon tracking system will be completely replaced by a new system providing a higher acceptance, an improved granularity and the feature to include its tracking information into the level-1 trigger. The new outer-tracker will consist of so called 2S modules consisting of two strip sensors and PS modules with a macro-pixel sensor and a strip sensor. The electrical connection between the strip sensors and the front-end electronics is realized by thin aluminum wire bonds. In this thesis the process of wire bonding is introduced and its implementation in the 2S module ...

  2. Effect of chemical composition of Ni-Cr dental casting alloys on the bonding characterization between porcelain and metal.

    Science.gov (United States)

    Huang, H-H; Lin, M-C; Lee, T-H; Yang, H-W; Chen, F-L; Wu, S-C; Hsu, C-C

    2005-03-01

    The purpose of this study was to investigate the influence of chemical composition of Ni-Cr dental casting alloys on the bonding behaviour between porcelain and metal. A three-point bending test was used to measure the fracture load of alloy after porcelain firing. A scanning electron microscope, accompanied by an energy dispersion spectrometer, was used to analyse the morphology and chemical composition of the fracture surface. An X-ray photoelectron spectrometer and glow discharge spectrometer were used to identify the structure and cross-sectional chemical composition, respectively, of oxide layers on Ni-Cr alloys after heat treatment at 990 degrees C for 5 min. Results showed that the oxide layers formed on all Ni-Cr alloys contained mainly Cr2O3, NiO, and trace MoO3. The Ni-Cr alloy with a higher Cr content had a thicker oxide layer, as well as a weaker bonding behaviour of porcelain/metal interface. The presence of Al (as Al2O3) and Be (as BeO) on the oxide layer suppressed the growth of the oxide layer, leading to a better porcelain/metal bonding behaviour. However, the presence of a small amount of Ti (as TiO2) on the oxide layer did not have any influence on the bonding behaviour. The fracture propagated along the interface between the opaque porcelain and metal, and exhibited an adhesive type of fracture morphology.

  3. Role of the chemical bonding for the time-dependent electron transport through an interacting quantum dot

    KAUST Repository

    Goker, Ali

    2011-06-01

    A combination of ab initio and many-body calculations is utilized to determine the effects of the bonding in Au electrodes on the time dependent current through a quantum dot suddenly shifted into the Kondo regime by a gate voltage. For an asymmetrically coupled system the instantaneous conductance exhibits fluctuations. The frequencies of the fluctuations turn out to be proportional to the energetic separation between the dominating peaks in the density of states and the Fermi level. The chemical bonding in the electrodes, thus, drastically alters the transient current, which can be accessed by ultrafast pump-probe techniques. © 2011 Elsevier B.V. All rights reserved.

  4. Role of the chemical bonding for the time-dependent electron transport through an interacting quantum dot

    KAUST Repository

    Goker, Ali; Zhu, Zhiyong; Manchon, Aurelien; Schwingenschlö gl, Udo

    2011-01-01

    A combination of ab initio and many-body calculations is utilized to determine the effects of the bonding in Au electrodes on the time dependent current through a quantum dot suddenly shifted into the Kondo regime by a gate voltage. For an asymmetrically coupled system the instantaneous conductance exhibits fluctuations. The frequencies of the fluctuations turn out to be proportional to the energetic separation between the dominating peaks in the density of states and the Fermi level. The chemical bonding in the electrodes, thus, drastically alters the transient current, which can be accessed by ultrafast pump-probe techniques. © 2011 Elsevier B.V. All rights reserved.

  5. Phase diagram of the Dirac spectrum at nonzero chemical potential

    International Nuclear Information System (INIS)

    Osborn, J. C.; Splittorff, K.; Verbaarschot, J. J. M.

    2008-01-01

    The Dirac spectrum of QCD with dynamical fermions at nonzero chemical potential is characterized by three regions: a region with a constant eigenvalue density, a region where the eigenvalue density shows oscillations that grow exponentially with the volume and the remainder of the complex plane where the eigenvalue density is zero. In this paper we derive the phase diagram of the Dirac spectrum from a chiral Lagrangian. We show that the constant eigenvalue density corresponds to a pion condensed phase while the strongly oscillating region is given by a kaon condensed phase. The normal phase with nonzero chiral condensate but vanishing Bose condensates coincides with the region of the complex plane where there are no eigenvalues.

  6. Chemical origin of blue- and redshifted hydrogen bonds: intramolecular hyperconjugation and its coupling with intermolecular hyperconjugation.

    Science.gov (United States)

    Li, An Yong

    2007-04-21

    Upon formation of a H bond Y...H-XZ, intramolecular hyperconjugation n(Z)-->sigma*(X-H) of the proton donor plays a key role in red- and blueshift characters of H bonds and must be introduced in the concepts of hyperconjugation and rehybridization. Intermolecular hyperconjugation transfers electron density from Y to sigma*(X-H) and causes elongation and stretch frequency redshift of the X-H bond; intramolecular hyperconjugation couples with intermolecular hyperconjugation and can adjust electron density in sigma*(X-H); rehybridization causes contraction and stretch frequency blueshift of the X-H bond on complexation. The three factors--intra- and intermolecular hyperconjugations and rehybridization--determine commonly red- or blueshift of the formed H bond. A proton donor that has strong intramolecular hyperconjugation often forms blueshifted H bonds.

  7. Improved Procedure for Preparation of Covalently Bonded Cellulose Tris-phenylcarbamate Chiral Stationary Phases

    Institute of Scientific and Technical Information of China (English)

    秦峰; 陈小明; 刘月启; 邹汉法; 王俊德

    2005-01-01

    The classical method for preparation of covalently boned cellulose derivative chiral stationary phases (CSP) with diisocyanate as spacer was improved. Diisocyanate was firstly allowed to react with 3-aminopropyltriethoxysilane, and the resulting product was then applied as the spacer reagent to immobilize cellulose derivatives onto silica gel. Influences of the amount and the length of the spacer on the optical resolution ability of the CSP were investigated. Comparing improved procedure to classical diisocyanate method, the cross-linking between the glucose units of the cellulose derivatives was avoided to the most extent. With the improved procedure, regio-nonselective ways could be adooted to prepare covalently bonded CSP, which showed an advantage for the rapid preparation.

  8. Sensitive and fast mutation detection by solid phase chemical cleavage

    DEFF Research Database (Denmark)

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A

    1996-01-01

    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...... reduced compared to the conventional chemical cleavage method (CCM), and even by using a uniformly labelled probe, the exact position and nature of the mutation can be revealed. The SpCCM is suitable for automatization using a workstation to carry out the reactions and a fluorescent detection-based DNA...

  9. Control of chemical bonding of the ZnO surface grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ogata, K.; Komuro, T.; Hama, K.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M.

    2004-01-01

    Toward the fabrication of enzyme modified field effect transistors (EnFETs) as one of organic/inorganic hybridized structures, surface bonding of the ZnO grown by molecular beam epitaxy was controlled by ex situ treatments. Angle resolved X-ray photoelectron spectroscopy (XPS) measurement revealed that O-H bonds exist at the surface of ZnO. It was found that the number of O-H bond could be changed with reversibility using plasma and thermal treatments

  10. A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence

    Science.gov (United States)

    Grayson, Scott M.

    2012-01-01

    A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…

  11. Chemical Bond Energies of 3d Transition Metals Studied by Density Functional Theory

    DEFF Research Database (Denmark)

    Moltved, Klaus A.d; Kepp, Kasper P.

    2018-01-01

    Despite their vast importance to inorganic chemistry, materials science and catalysis, the accuracy of modelling the formation or cleavage of metal-ligand (M-L) bonds depends greatly on the chosen functional and the type of bond in a way that is not systematically understood. In order to approach...

  12. Investigation of microstructural evolution and electrical properties for Ni-Sn transient liquid-phase sintering bonding

    Science.gov (United States)

    Feng, Hong-Liang; Huang, Ji-Hua; Yang, Jian; Zhou, Shao-Kun; Zhang, Rong; Wang, Yue; Chen, Shu-Hai

    2017-11-01

    Ni/Ni-Sn/Ni sandwiched simulated package structures were successfully bonded under low temperature and low pressure by Ni-Sn transient liquid-phase sintering bonding. The results show that, after isothermally holding for 240 min at 300 °C and 180 min at 340 °C, Sn was completely transformed into Ni3Sn4 intermetallic compounds. When the Ni3Sn4 phases around Ni particles were pressed together, the porosity of the bonding layer increased, which obviously differed from the normal sintering densification process. With further analysis of this phenomenon, it was found that large volume shrinkage (14.94% at 340 °C) occurred when Ni reacted with Sn to form Ni3Sn4, which caused void formation. A mechanistic model of the microstructural evolution in the bonding layer was proposed. Meanwhile, the resistivity of the bonding layer was measured and analyzed by using the four-probe method; the microstructural evolution was well reflected by the resistivity of the bonding layer. The relationship between the resistivity and microstructure was also discussed in detail.[Figure not available: see fulltext.

  13. Estimation of strength in different extra Watson-Crick hydrogen bonds in DNA double helices through quantum chemical studies.

    Science.gov (United States)

    Bandyopadhyay, D; Bhattacharyya, D

    2006-10-15

    It was shown earlier, from database analysis, model building studies, and molecular dynamics simulations that formation of cross-strand bifurcated or Extra Watson-Crick hydrogen (EWC) bonds between successive base pairs may lead to extra rigidity to DNA double helices of certain sequences. The strengths of these hydrogen bonds are debatable, however, as they do not have standard linear geometry criterion. We have therefore carried out detailed ab initio quantum chemical studies using RHF/6-31G(2d,2p) and B3LYP/6-31G(2p,2d) basis sets to determine strengths of several bent hydrogen bonds with different donor and acceptors. Interaction energy calculations, corrected for the basis set superposition errors, suggest that N-H...O type bent EWC hydrogen bonds are possible along same strands or across the strands between successive base pairs, leading to significant stability (ca. 4-9 kcal/mol). The N-H...N and C-H...O type interactions, however, are not so stabilizing. Hence, consideration of EWC N-H...O H-bonds can lead to a better understanding of DNA sequence directed structural features. Copyright (c) 2006 Wiley Periodicals, Inc.

  14. The development of learning materials based on core model to improve students’ learning outcomes in topic of Chemical Bonding

    Science.gov (United States)

    Avianti, R.; Suyatno; Sugiarto, B.

    2018-04-01

    This study aims to create an appropriate learning material based on CORE (Connecting, Organizing, Reflecting, Extending) model to improve students’ learning achievement in Chemical Bonding Topic. This study used 4-D models as research design and one group pretest-posttest as design of the material treatment. The subject of the study was teaching materials based on CORE model, conducted on 30 students of Science class grade 10. The collecting data process involved some techniques such as validation, observation, test, and questionnaire. The findings were that: (1) all the contents were valid, (2) the practicality and the effectiveness of all the contents were good. The conclusion of this research was that the CORE model is appropriate to improve students’ learning outcomes for studying Chemical Bonding.

  15. Phase stability, physical properties of rhenium diboride under high pressure and the effect of metallic bonding on its hardness

    International Nuclear Information System (INIS)

    Zhong, Ming-Min; Kuang, Xiao-Yu; Wang, Zhen-Hua; Shao, Peng; Ding, Li-Ping; Huang, Xiao-Fen

    2013-01-01

    Highlights: •The transition pressure P t between the ReB 2 –ReB 2 and MoB 2 –ReB 2 phases is firstly determinate. •The single-bonded B–B feather remains in ReB 2 compounds. •A semiempirical method to evaluate the hardness of crystals with partial metallic bond is presented. •The large hardness (39.1 GPa) of ReB 2 –ReB 2 indicate that it is a superhard material. •The zigzag interconnected B–Re and B–B covalent bonds underlie the ultraincompressibilities. -- Abstract: Using first-principles calculations, the elastic constants, thermodynamic property and structural phase transition of rhenium diboride under pressure are investigated by means of the pseudopotential plane-waves method, as well as the effect of metallic bond on its hardness. Eight candidate structures of known transition-metal compounds are chosen to probe for rhenium diboride ReB 2 . The calculated lattice parameters are consistent with the experimental and theoretical values. Based on the third order Birch–Murnaghan equation of states, the transition pressure P t between the ReB 2 –ReB 2 and MoB 2 –ReB 2 phases is firstly determinate. Elastic constants, shear modulus, Young’s modulus, Poisson’s ratio and Debye temperature are derived. The single-bonded B–B feather remains in ReB 2 compounds. Furthermore, according to Mulliken overlap population analysis, a semiempirical method to evaluate the hardness of multicomponent crystals with partial metallic bond is presented. Both strong covalency and a zigzag topology of interconnected bonds underlie the ultraincompressibilities. In addition, the superior performance and large hardness (39.1 GPa) of ReB 2 –ReB 2 indicate that it is a superhard material

  16. The Load and Time Dependence of Chemical Bonding-Induced Frictional Ageing of Silica at the Nanoscale

    Science.gov (United States)

    Tian, K.; Gosvami, N. N.; Goldsby, D. L.; Carpick, R. W.

    2015-12-01

    Rate and state friction (RSF) laws are empirical relationships that describe the frictional behavior of rocks and other materials in experiments, and reproduce a variety of observed natural behavior when employed in earthquake models. A pervasive observation from rock friction experiments is the linear increase of static friction with the log of contact time, or 'ageing'. Ageing is usually attributed to an increase in real area of contact associated with asperity creep. However, recent atomic force microscopy (AFM) experiments demonstrate that ageing of nanoscale silica-silica contacts is due to progressive formation of interfacial chemical bonds in the absence of plastic deformation, in a manner consistent with the multi-contact ageing behavior of rocks [Li et al., 2011]. To further investigate chemical bonding-induced ageing, we explored the influence of normal load (and thus contact normal stress) and contact time on ageing. Experiments that mimic slide-hold-slide rock friction experiments were conducted in the AFM for contact loads and hold times ranging from 23 to 393 nN and 0.1 to 100 s, respectively, all in humid air (~50% RH) at room temperature. Experiments were conducted by sequentially sliding the AFM tip on the sample at a velocity V of 0.5 μm/s, setting V to zero and holding the tip stationary for a given time, and finally resuming sliding at 0.5 μm/s to yield a peak value of friction followed by a drop to the sliding friction value. Chemical bonding-induced ageing, as measured by the peak friction minus the sliding friction, increases approximately linearly with the product of normal load and the log of the hold time. Theoretical studies of the roles of reaction energy barriers in nanoscale ageing indicate that frictional ageing depends on the total number of reaction sites and the hold time [Liu & Szlufarska, 2012]. We combine chemical kinetics analyses with contact mechanics models to explain our results, and develop a new approach for curve

  17. Linking photochemistry in the gas and solution phase: S-H bond fission in p-methylthiophenol following UV photoexcitation.

    Science.gov (United States)

    Oliver, Thomas A A; Zhang, Yuyuan; Ashfold, Michael N R; Bradforth, Stephen E

    2011-01-01

    Gas-phase H (Rydberg) atom photofragment translational spectroscopy and solution-phase femtosecond-pump dispersed-probe transient absorption techniques are applied to explore the excited state dynamics of p-methylthiophenol connecting the short time reactive dynamics in the two phases. The molecule is excited at a range of UV wavelengths from 286 to 193 nm. The experiments clearly demonstrate that photoexcitation results in S-H bond fission--both in the gas phase and in ethanol solution-and that the resulting p-methythiophenoxyl radical fragments are formed with significant vibrational excitation. In the gas phase, the recoil anisotropy of the H atom and the vibrational energy disposal in the p-MePhS radical products formed at the longer excitation wavelengths reveal the operation of two excited state dissociation mechanisms. The prompt excited state dissociation motif appears to map into the condensed phase also. In both phases, radicals are produced in both their ground and first excited electronic states; characteristic signatures for both sets of radical products are already apparent in the condensed phase studies after 50 fs. No evidence is seen for either solute ionisation or proton coupled electron transfer--two alternate mechanisms that have been proposed for similar heteroaromatics in solution. Therefore, at least for prompt S-H bond fissions, the direct observation of the dissociation process in solution confirms that the gas phase photofragmentation studies indeed provide important insights into the early time dynamics that transfer to the condensed phase.

  18. Observation of paramorphic phenomenon and non-tilted orthogonal smectic phases in hydrogen bonded ferroelectric liquid crystals for photonic applications

    Science.gov (United States)

    Subhasri, P.; Venugopal, D.; Jayaprakasam, R.; Chitravel, T.; Vijayakumar, V. N.

    2018-06-01

    A new class of hydrogen bonded ferroelectric liquid crystals (HBFLC) have been designed and synthesized by intermolecular hydrogen bonds between mesogenic 4-decyloxybenzoic acid (10OBA) and non-mesogenic (R)-(+)-Methylsuccinic acid (MSA) which have been confirmed through experimental and theoretical studies. Further, Mulliken population analysis clearly reveals that the existence of hydrogen bonds, strength and dynamic properties. Textural observation and its corresponding enthalpy values are analyzed by polarizing optical microscope (POM) and differential scanning calorimetry (DSC) respectively. Paramorphic changes in Sm C* phase due to the change of refractive index, which clearly reveal that the complex could be used for filtering action in photonic devices. The transition from lone pair to π* with large stabilization energy evidently exposes the chiral phases in the present HBFLC complex. Intermolecular interaction is analyzed by using natural bond orbital (NBO) studies. The highest energy in the HOMO-LUMO shows the stable phase in the HBFLC complex. Molecular structure of the HBFLC complex possesses the monoclinic which has been evinced through x-ray analysis. The randomly oriented bunch of homogeneous molecules in Sm A* phase of the HBFLC complex is reported.

  19. Multi-mode application of graphene quantum dots bonded silica stationary phase for high performance liquid chromatography.

    Science.gov (United States)

    Wu, Qi; Sun, Yaming; Zhang, Xiaoli; Zhang, Xia; Dong, Shuqing; Qiu, Hongdeng; Wang, Litao; Zhao, Liang

    2017-04-07

    Graphene quantum dots (GQDs), which possess hydrophobic, hydrophilic, π-π stacking and hydrogen bonding properties, have great prospect in HPLC. In this study, a novel GQDs bonded silica stationary phase was prepared and applied in multiple separation modes including normal phase, reversed phase and hydrophilic chromatography mode. Alkaloids, nucleosides and nucleobases were chosen as test compounds to evaluate the separation performance of this column in hydrophilic chromatographic mode. The tested polar compounds achieved baseline separation and the resolutions reached 2.32, 4.62, 7.79, 1.68 for thymidine, uridine, adenosine, cytidine and guanosine. This new column showed satisfactory chromatographic performance for anilines, phenols and polycyclic aromatic hydrocarbons in normal and reversed phase mode. Five anilines were completely separated within 10min under the condition of mobile phase containing only 10% methanol. The effect of water content, buffer concentration and pH on chromatographic separation was further investigated, founding that this new stationary phase showed a complex retention mechanism of partitioning, adsorption and electrostatic interaction in hydrophilic chromatography mode, and the multiple retention interactions such as π-π stacking and π-π electron-donor-acceptor interaction played an important role during the separation process. This GQDs bonded column, which allows us to adjust appropriate chromatography mode according to the properties of analytes, has possibility in actual application after further research. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Stabilization of contaminated soil and wastewater with chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    At Argonne National Laboratory, we have developed chemically Bonded phosphate ceramic (CBPC) technology to stabilize the U.S. Department of Energy's problem mixed waste streams, for which no other stabilization technology is suitable. In this technology, solid waste is mixed with MgO and reacted with aqueous solutions of phosphoric acid or acid phosphates at room temperature to form a slurry that sets in ∼2 h into a hard and dense ceramic waste form. Initial studies involved stabilizing the surrogate waste streams and then testing the waste forms for leaching of contaminants. After achieving satisfactory performance of the waste forms, we next incorporated actual waste streams at bench scale and produced waste forms that were then tested with the Toxicity Characteristic Leaching Procedure (TCLP). This presentation deals with stabilization of soil contaminated with Cd, Cr, Pb, Ag, Ba, and Hg, and of low-level radioactive wastewater. To enhance the contaminant levels in the soil, we further spiked the soil with additional amounts of Cd, Cr, Pb, and Hg. Both the soil and the wastewater were incorporated in the same waste form by stabilizing them with the CBPC process. The waste forms had a total waste loading of ∼77 wt.% and were dense with an open porosity of 2.7 vol.% and a density of 2.17 g/cm 3 . Compression strength was 4910 psi. The TCLP results showed excellent immobilization of all the RCRA metals, and radioactive contaminant levels were below the detection limit of 0.2 pCi/mL. Long-term leaching studies using the ANS 16.1 procedure showed that the retention of contaminants is excellent and comparable to or better than most of other stabilization processes. These results demonstrate that the CBPC process is a very superior process for treatment of low level mixed wastes; we therefore conclude that the CBPC process is well suited to the treatment of low-level mixed waste streams with high waste loading

  1. PWR steam generator chemical cleaning, Phase I. Final report

    International Nuclear Information System (INIS)

    Rothstein, S.

    1978-07-01

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the search sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI

  2. Change in local atomic and chemical bonding structures of Ge2Sb2Te5 alloys by isothermal heat treatment

    International Nuclear Information System (INIS)

    Lim, Woo-Sik; Cho, Sung-June; Lee, Hyun-Yong

    2008-01-01

    In this work, we report evaluation of the atomic-scale phase transformation characteristics in one of the most comprehensively utilized phase change materials today, Ge 2 Sb 2 Te 5 thin film. The phase transformation of Ge 2 Sb 2 Te 5 thin film from amorphous to hexagonal structure via fcc structure was confirmed by XRD measurements. The approximate values of optical energy gap are 0.72 and 0.50 eV, with slopes (B 1/2 ) in the extended absorption region of 5.3 x 10 5 and 10 x 10 5 cm -1 ·eV -1 for the amorphous and fcc-crystalline structures, respectively. In addition, X-ray photoelectron spectroscopy analysis revealed strengthening of the Te-Te bond as well as weakening of the Ge-Te bond during the amorphous-to-crystalline transition. This trend was also observed in extended X-ray absorption fine structure analysis where the Ge metallic bond lengths in the amorphous, fcc, and hexagonal structures were 0.262, 0.280, and 0.290 nm

  3. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    International Nuclear Information System (INIS)

    Bharti, Amardeep; Goyal, Navdeep; Singh, Suman; Singla, M. L.

    2015-01-01

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  4. Ultrasound-Assisted Transient Liquid Phase Bonding of Magnesium Alloy Using Brass Interlayer in Air

    Institute of Scientific and Technical Information of China (English)

    Zhiwei Lai; Ruishan Xie; Chuan Pan; Xiaoguang Chen; Lei Liu; Wenxian Wang; Guisheng Zou

    2017-01-01

    The microstructure evolution and oxide film behavior in ultrasound-assisted transient liquid phase (U-TLP) bonding of Mg alloy were investigated by applying different ultrasonic time at 460℃ withbrass interlayer in air.The results indicated that with increasing ultrasonic time,brass interlayer disappeared gradually and the Mg-Cu-Zn eutectic compounds were formed.The eutectic compounds in the joint decreased as the ultrasonic time increased further.The oxide removal process was divided into four steps.Continuous oxide film at the interface was partially fractured by ultrasonic vibration,and then suspended into liquid by undermining eutectic reaction.After that,the suspended oxide film was broken into small oxide fragments by ultrasonic cavitation effect,which was finally squeezed out of the joint by ultrasonic squeeze action.In addition,the mechanical properties of the joints were investigated.The maximum shear strength of the joint reached 105 MPa,which was 100% of base metal.

  5. Gas phase detection of the NH-P hydrogen bond and importance of secondary interactions

    DEFF Research Database (Denmark)

    Møller, Kristian Holten; Hansen, Anne Schou; Kjærgaard, Henrik Grum

    2015-01-01

    bond compared to secondary interactions. We find that B3LYP favors the hydrogen bond and M06-2X favors the secondary interactions leading to under- and overestimation, respectively, of the hydrogen bond angle relative to a DF-LCCSD(T)-F12a calculated angle. The remaining functionals tested, B3LYP-D3, B......3LYP-D3BJ, CAM-B3LYP, and ωB97X-D, as well as MP2, show comparable contributions from the hydrogen bond and the secondary interactions and are close to DF-LCCSD(T)-F12a results....

  6. Advanced Thermal Protection Systems (ATPS), Aerospace Grade Carbon Bonded Carbon Fiber Material, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon bonded carbon fiber (CBCF) insulating material is the basis for several highly successful NASA developed thermal protection systems (TPS). Included among...

  7. Pre-sintered Y-TZP sandblasting: effect on surface roughness, phase transformation, and Y-TZP/veneer bond strength

    Directory of Open Access Journals (Sweden)

    Carla Müller Ramos-Tonello

    Full Text Available Abstract Sandblasting is a common method to try to improve the Y-TZP/veneer bond strength of dental prostheses, however, it may put stress on zirconia surfaces and could accelerate the t→m phase transformation. Y-TZP sandblasting before sintering could be an alternative to improve surface roughness and bonding strength of veneering ceramic. Objectives. The aim of this study was to analyze the effect of Y-TZP pre-sintering sandblasting on surface roughness, phase transformation, and the Y-TZP/veneer shear bond strength. Material and Methods. The Y-TZP specimen surface underwent sandblasting with aluminum oxide (50 μm pre-sintering (Z-PRE and post-sintering (Z-POS. Z-CTR was not subjected to surface treatment. After ceramic veneer application, the specimens were subjected to shear bond testing. Surface roughness was analyzed by confocal microscopy. Y-TZP monoclinic and tetragonal phases were evaluated by micro-Raman spectroscopy. Shear bond strength and surface roughness data were analyzed by One-way ANOVA and Tukey tests (α=0.05. Differences in the wave numbers and the broadening bands of the Raman spectra were compared among groups. Results. Z-POS (9.73±5.36 MPa and Z-PRE (7.94±2.52 MPa showed the highest bond strength, significantly higher than that of Z-CTR (5.54±2.14 MPa. The Ra of Z-PRE (1.59±0.23 µm was much greater and significantly different from that of Z-CTR (0.29±0.05 µm and Z-POS (0.77±0.13 µm. All groups showed bands typical of the tetragonal (T and monoclinic (M phases. Y-TZP sandblasting before sintering resulted in rougher surfaces but did not increase the shear bond strength compared to post-sintering and increased surface defects. Conclusions. Surface treatment with Al3O2, regardless of the moment and application, improves the results of Y-TZP/veneer bonding and is not a specific cause of t→m transformation.

  8. The electrical properties of low pressure chemical vapor deposition Ga doped ZnO thin films depending on chemical bonding configuration

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hanearl [School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Doyoung [School of Electrical and Electronic Engineering, Ulsan College, 57 Daehak-ro, Nam-gu, Ulsan 680-749 (Korea, Republic of); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2014-04-01

    Highlights: • Undoped and Ga doped ZnO thin films were deposited using DEZ and TMGa. • Effects of Ga doping using TMGa in Ga doped ZnO were investigated. • Degraded properties from excessive doping were analyzed using chemical bondings. - Abstract: The electrical and chemical properties of low pressure chemical vapor deposition (LP-CVD) Ga doped ZnO (ZnO:Ga) films were systematically investigated using Hall measurement and X-ray photoemission spectroscopy (XPS). Diethylzinc (DEZ) and O{sub 2} gas were used as precursor and reactant gas, respectively, and trimethyl gallium (TMGa) was used as a Ga doping source. Initially, the electrical properties of undoped LP-CVD ZnO films depending on the partial pressure of DEZ and O{sub 2} ratio were investigated using X-ray diffraction (XRD) by changing partial pressure of DEZ from 40 to 140 mTorr and that of O{sub 2} from 40 to 80 mTorr. The resistivity was reduced by Ga doping from 7.24 × 10{sup −3} Ω cm for undoped ZnO to 2.05 × 10{sup −3} Ω cm for Ga doped ZnO at the TMG pressure of 8 mTorr. The change of electric properties of Ga doped ZnO with varying the amount of Ga dopants was systematically discussed based on the structural crystallinity and chemical bonding configuration, analyzed by XRD and XPS, respectively.

  9. Mechanical, electronic, chemical bonding and optical properties of cubic BaHfO3: First-principles calculations

    International Nuclear Information System (INIS)

    Liu Qijun; Liu Zhengtang; Feng Liping; Tian Hao

    2010-01-01

    We have performed ab-initio total energy calculations using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT) to study structural parameters, mechanical, electronic, chemical bonding and optical properties of cubic BaHfO 3 . The calculated lattice parameter and independent elastic constants are in good agreement with previous theoretical and experimental work. The bulk, shear and Young's modulus, Poisson coefficient, compressibility and Lame constants are obtained using Voigt-Reuss-Hill method and the Debye temperature is estimated using Debye-Grueneisen model, which are consistent with previous results. Electronic and chemical bonding properties have been studied from the calculations of band structure, density of states and charge densities. Furthermore, in order to clarify the mechanism of optical transitions of cubic BaHfO 3 , the complex dielectric function, refractive index, extinction coefficient, reflectivity, absorption efficient, loss function and complex conductivity function are calculated. Then, we have explained the origins of spectral peaks on the basis of the theory of crystal-field and molecular-orbital bonding.

  10. Effect of the Gouy phase on the coherent phase control of chemical reactions.

    Science.gov (United States)

    Gordon, Robert J; Barge, Vishal J

    2007-11-28

    We show how the spatial phase of a focused laser beam may be used as a tool for controlling the branching ratio of a chemical reaction. Guoy discovered [Acad. Sci., Paris, C. R. 110, 1250 (1890)] that when an electromagnetic wave passes through a focus its phase increases by pi. In a coherent control scheme involving the absorption of n photons of frequency omega(m) and m photons of frequency omega(n), the overall phase shift produced by the Gouy phase is (n-m)pi. At any given point in space, this phase shift is identical for all reaction products. Nevertheless, if the yields for different reaction channels have different intensity dependencies, the Gouy phase produces a net phase lag between the products that varies with the axial coordinate of the laser focus. We obtain here analytical and numerical values of this phase as the laser focus is scanned across the diameter of the molecular beam, taking into account the Rayleigh range and astigmatism of the laser beam and saturation of the transition. We also show that the modulation depth of the interference pattern may be increased by optimizing the relative intensities of the two fields.

  11. Methods of chemical and phase composition analysis of gallstones

    Science.gov (United States)

    Suvorova, E. I.; Pantushev, V. V.; Voloshin, A. E.

    2017-11-01

    This review presents the instrumental methods used for chemical and phase composition investigation of gallstones. A great body of data has been collected in the literature on the presence of elements and their concentrations, obtained by fluorescence microscopy, X-ray fluorescence spectroscopy, neutron activation analysis, proton (particle) induced X-ray emission, atomic absorption spectroscopy, high-resolution gamma-ray spectrometry, electron paramagnetic resonance. Structural methods—powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy—provide information about organic and inorganic phases in gallstones. Stone morphology was studied at the macrolevel with optical microscopy. Results obtained by analytical scanning and transmission electron microscopy with X-ray energy dispersive spectrometry are discussed. The chemical composition and structure of gallstones determine the strategy of removing stone from the body and treatment of patients: surgery or dissolution in the body. Therefore one chapter of the review describes the potential of dissolution methods. Early diagnosis and appropriate treatment of the disease depend on the development of clinical methods for in vivo investigation, which gave grounds to present the main characteristics and potential of ultrasonography (ultrasound scanning), magnetic resonance imaging, and X-ray computed tomography.

  12. Electronic parameters of Sr2M2O7 (M = V, Nb, Ta) and Sr-O chemical bonding

    DEFF Research Database (Denmark)

    Atuchin, Victor V.; Grivel, Jean-Claude; Zhang, Zhaoming

    2010-01-01

    XPS measurements were carried out on Sr2Nb2O7 and Sr2Ta2O7 powder samples, which were synthesized using standard solid state method. The binding energy differences between the O 1s and cation core level, Δ(O-Sr) = BE(O 1s) - BE(Sr 3d5/2), was used to characterize the valence electron transfer...... on the formation of the Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and Sr2Ta2O7 and the previously published structural and XPS data for other Sr-oxide compounds. A new empirical relationship between Δ(O-Sr) and L(Sr-O) was obtained. Possible applications...

  13. Interfacial chemical bonding state and band alignment of CaF2/hydrogen-terminated diamond heterojunction

    International Nuclear Information System (INIS)

    Liu, J. W.; Liao, M. Y.; Cheng, S. H.; Imura, M.; Koide, Y.

    2013-01-01

    CaF 2 films are deposited on hydrogen-terminated diamond (H-diamond) by a radio-frequency sputter-deposition technique at room temperature. Interfacial chemical bonding state and band alignment of CaF 2 /H-diamond heterojunction are investigated by X-ray photoelectron spectroscopy. It is confirmed that there are only C-Ca bonds at the CaF 2 /H-diamond heterointerface. Valence and conductance band offsets of the CaF 2 /H-diamond heterojunciton are determined to be 3.7 ± 0.2 and 0.3 ± 0.2 eV, respectively. It shows a type I straddling band configuration. The large valence band offset suggests advantage of the CaF 2 /H-diamond heterojunciton for the development of high power and high frequency field effect transistors.

  14. The Role of Inflation-Indexed Bond in Optimal Management of Defined Contribution Pension Plan During the Decumulation Phase

    Directory of Open Access Journals (Sweden)

    Xiaoyi Zhang

    2018-03-01

    Full Text Available This paper investigates the optimal investment strategy for a defined contribution (DC pension plan during the decumulation phase which is risk-averse and pays close attention to inflation risk. The plan aims to maximize the expected constant relative risk aversion (CRRA utility from the terminal real wealth by investing the fund in a financial market consisting of an inflation-indexed bond, an ordinary zero coupon bond and a risk-free asset. We derive the optimal investment strategy in closed-form using the dynamic programming approach by solving the related Hamilton-Jacobi-Bellman (HJB equation. The results reveal that, with any level of the parameters, an inflation-indexed bond has significant advantage to hedge inflation risk.

  15. Dispersibility and chemical bonds between multi-walled carbon nanotubes and poly(ether ether ketone) in nanocomposite fibers

    International Nuclear Information System (INIS)

    Yanmei, Jin; Haihui, Liu; Ning, Wang; Lichen, Hou; Xing-Xiang, Zhang

    2012-01-01

    A series of multi-walled carbon nanotubes (MWNTs)/poly(ether ether ketone)(PEEK) nanocomposite fibers were fabricated by mixing, melt extruding PEEK with different loadings and species of MWNTs, and melt-spun the blended chips. Nanocomposite fibers were heat-stretched and heat-treated. The morphology and dispersibility of MWNTs in nanocomposite fibers were observed using a field emission environmental scanning electron microscope (FESEM) and a transmission electron microscope (TEM). The thermal and crystallization behavior of nanocomposite fibers were characterized using differential scanning calorimetry (DSC) and an X-ray diffractometer (XRD). Mechanical properties were tested using a tensile strength tester. MWNTs tend to aggregate when the loading exceeds 0.8 wt%. Functional groups on MWNTs improve the hydrophobicity and the dispersibility of MWNTs in PEEK matrix. The enhancement of mechanical properties depends on the loading and species of functional groups. The most effectively reinforced effect is in the sequence, carboxylic MWNTs (MWNT–COOH) > hydroxyl MWNTs (MWNT–OH) > MWNTs, which can be explained by the strong hydrogen bonding and the affinity between MWNT–COOH and PEEK, MWNT–OH and PEEK, and possible formation of a chemical bond between MWNT–COOH and PEEK. A nanocomposite fiber with excellent mechanical property was fabricated using 0.8 wt% MWNT–COOH as filler. The Young's modulus is 1.7 GPa; and the stress is 648 MPa. -- Highlights: ► Functional groups on MWNTs improve their hydrophobility and dispersability. ► Mechanical properties depend on the content and species of the functional groups. ► The reinforced effect is in the sequence, carboxylic MWNTs > hydroxyl MWNTs > MWNTs. ► The strength behavior was result of hydrogen bond, affinity and chemical bond. ► Dispersability of MWNTs in matrix was analyzed by calculating solubility parameter.

  16. Chemical bond as a test of density-gradient expansions for kinetic and exchange energies

    International Nuclear Information System (INIS)

    Perdew, J.P.; Levy, M.; Painter, G.S.; Wei, S.; Lagowski, J.B.

    1988-01-01

    Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N 2 and F 2 , which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules

  17. Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides

    International Nuclear Information System (INIS)

    Atuchin, Victor V.; Kesler, Valery G.; Pervukhina, Natalia V.; Zhang, Zhaoming

    2006-01-01

    A set of available experimental data on the binding energies of Ti 2p 3/2 and O 1s core levels in titanium-bearing oxides has been presented by using the binding energy difference (O 1s-Ti 2p 3/2 ) as a robust parameter to characterize these compounds. An empirical relationship between the (O 1s-Ti 2p 3/2 ) values measured with XPS and the mean chemical bond length L(Ti-O) in these crystals has been discussed for Ti 4+ -compounds

  18. Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, Victor V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation)]. E-mail: atuchin@thermo.isp.nsc.ru; Kesler, Valery G. [Technical Centre, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Pervukhina, Natalia V. [Laboratory of Crystal Chemistry, Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Zhang, Zhaoming [Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia)

    2006-06-15

    A set of available experimental data on the binding energies of Ti 2p{sub 3/2} and O 1s core levels in titanium-bearing oxides has been presented by using the binding energy difference (O 1s-Ti 2p{sub 3/2}) as a robust parameter to characterize these compounds. An empirical relationship between the (O 1s-Ti 2p{sub 3/2}) values measured with XPS and the mean chemical bond length L(Ti-O) in these crystals has been discussed for Ti{sup 4+}-compounds.

  19. Ab initio study of electron-ion structure factors in binary liquids with different types of chemical bonding

    International Nuclear Information System (INIS)

    Klevets, Ivan; Bryk, Taras

    2014-01-01

    Electron-ion structure factors, calculated in ab initio molecular dynamics simulations, are reported for several binary liquids with different kinds of chemical bonding: metallic liquid alloy Bi–Pb, molten salt RbF, and liquid water. We derive analytical expressions for the long-wavelength asymptotes of the partial electron-ion structure factors of binary systems and show that the analytical results are in good agreement with the ab initio simulation data. The long-wavelength behaviour of the total charge structure factors for the three binary liquids is discussed

  20. Selectivity of calixarene-bonded silica phases in HPLC: Description of special characteristics with a multiple term linear equation at different methanol concentrations.

    Science.gov (United States)

    Schneider, Christian; Jira, Thomas

    2010-10-01

    Retention and selectivity characteristics of different calixarene-, resorcinarene- and alkyl-bonded stationary phases are examined by analyzing a set of test solutes covering the main interactions (hydrophobic, steric, ionic, polar) that apply in HPLC. Therefore Dolan and Snyder's multiple term linear equation has been adapted to fit the properties of calixarene-bonded columns. The obtained parameters are used to describe retention and selectivity of the novel Caltrex(®) phases and to elucidate underlying mechanisms of retention. Here, differences of stationary phase characteristics at different methanol concentrations in the mobile phases are examined. Both selectivity and retention were found to depend on the methanol content. Differences of these dependencies were found for different stationary phases and interactions. The differences between common alkyl-bonded and novel calixarene-bonded phases increase with increasing methanol content.

  1. Investigation of chemical bond characteristics, thermal expansion coefficients and bulk moduli of alpha-R2MoO6 and R2Mo2O7 (R = rare earths) by using a dielectric chemical bond method.

    Science.gov (United States)

    Li, Huaiyong; Zhang, Siyuan; Zhou, Shihong; Cao, Xueqiang

    2009-09-01

    Theoretical researches are performed on the alpha-R2MoO6 (R = Y, Gd, Tb Dy, Ho, Er, Tm and Yb) and pyrochlore-type R2Mo2O7 (R = Y, Nd, Sm, Gd, Tb and Dy) rare earth molybdates by using chemical bond theory of dielectric description. The chemical bonding characteristics and their relationship with thermal expansion property and compressibility are explored. The calculated values of linear thermal expansion coefficient (LTEC) and bulk modulus agree well with the available experimental values. The calculations reveal that the LTECs and the bulk moduli do have linear relationship with the ionic radii of the lanthanides: the LTEC decreases from 6.80 to 6.62 10(-6)/K and the bulk modulus increases from 141 to 154 GPa when R goes in the order Gd, Tb Dy, Ho, Er, Tm, and Yb in the alpha-R2MoO6 series; while in the R2Mo2O7 series, the LTEC ranges from 6.80 to 6.61 10(-6)/K and the bulk modulus ranges from 147 to 163 GPa when R varies in the order Nd, Sm, Gd, Tb and Dy. Copyright 2008 Wiley Periodicals, Inc.

  2. Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds

    International Nuclear Information System (INIS)

    Tang Aiwei; Wang Yu; Ye Haihang; Zhou Chao; Yang Chunhe; Li Xu; Peng Hongshang; Zhang Fujun; Hou Yanbing; Teng Feng

    2013-01-01

    A one-step colloidal process has been adopted to prepare silver (Ag) and silver sulfide (Ag 2 S) nanocrystals, thus avoiding presynthesis of an organometallic precursor and the injection of a toxic phosphine agent. During the reaction, a layered intermediate compound is first formed, which then acts as a precursor, decomposing into the nanocrystals. The composition of the as-obtained products can be controlled by selective cleavage of S–C bonds or Ag–S bonds. Pure Ag 2 S nanocrystals can be obtained by directly heating silver acetate (Ag(OAc)) and n-dodecanethiol (DDT) at 200 ° C without any surfactant, and pure Ag nanocrystals can be synthesized successfully if the reaction temperature is reduced to 190 ° C and the amount of DDT is decreased to 1 ml in the presence of a non-coordinating organic solvent (1-octadecene, ODE). Otherwise, the mixture of Ag and Ag 2 S is obtained by directly heating Ag(OAc) in DDT by increasing the reaction temperature or in a mixture of DDT and ODE at 200 ° C. The formation mechanism has been discussed in detail in terms of selective S–C and Ag–S bond dissociation due to the nucleophilic attack of DDT and the lower bonding energy of Ag–S. Interestingly, some products can easily self-assemble into two- or three-dimensional (2D or 3D) highly ordered superlattice structures on a copper grid without any additional steps. The excess DDT plays a key role in the superlattice structure due to the bundling and interdigitation of the thiolate molecules adsorbed on the as-obtained nanocrystals. (paper)

  3. Diffusion Bonded CVC SiC for Large UVOIR Telescope Mirrors and Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex proposes to demonstrate a novel ceramic joining technology (solid state bonding) for CVC SiC® that allows "seamless" joining of smaller, easily manufactured,...

  4. Drastic Improvements in Bonding of Fiber Reinforced Multifunctional Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Achievement of a dramatic increase in the bond strength in the composite/adhesive interfaces of existing fiber reinforced polymer (FRP) composite material joints and...

  5. Intramolecular hydrogen bonding in N-salicylideneaniline: FT-IR spectrum and quantum chemical calculations

    Science.gov (United States)

    Moosavi-Tekyeh, Zainab; Dastani, Najmeh

    2015-12-01

    FT-IR and FT-Raman spectra of N-salicylideneaniline (SAn) and its deuterated analogue (D-SAn) are recorded, and the theoretical calculations are performed on their molecular structures and vibrational frequencies. The same calculations are performed for SAn in different solutions using the polarizable conductor continuum model (CPCM) method. Comparisons between the spectra obtained and the corresponding theoretical calculations are used to assign the vibrational frequencies for these compounds. The spectral behavior of SAn upon deuteration is also used to distinguish the positions of OH vibrational frequencies. The hydrogen bond strength of SAn is investigated by applying the atoms-in-molecules (AIM) theory, natural bond orbital (NBO) analysis, and geometry calculations. The harmonic vibrational frequencies of SAn are calculated at B3LYP and X3LYP levels of theory using 6-31G*, 6-311G**, and 6-311++G** basis sets. The AIM results support a medium hydrogen bonding in SAn. The observed νOH/νOD and γOH/γOD for SAn appear at 2940/2122 and 830/589 cm-1, respectively.

  6. HR-EELS study of hydrogen bonding configuration, chemical and thermal stability of detonation nanodiamond films

    Energy Technology Data Exchange (ETDEWEB)

    Michaelson, Sh.; Akhvlediani, R. [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Petit, T.; Girard, H.A.; Arnault, J.C. [CEA, LIST, Diamond Sensors Laboratory, F-91191 Gif sur Yvette (France); Hoffman, A., E-mail: choffman@tx.technion.ac.il [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2014-06-01

    Nano-diamond films composed of 3–10 nm grains prepared by the detonation method and deposited onto silicon substrates by drop-casting were examined by high resolution electron energy loss spectroscopy (HR-EELS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS). The impact of (i) ex-situ ambient annealing at 400 °C and (ii) ex-situ hydrogenation on hydrogen bonding and its thermal stability were examined. In order to clarify the changes in hydrogen bonding configuration detected on the different surfaces as a function of thermal annealing, in-situ hydrogenation by thermally activated atomic hydrogen was performed and examined. This study provides direct evidence that the exposure to ambient conditions and medium temperature ambient annealing have a pronounced effect on the hydrogen-carbon bonding configuration onto the nano-diamond surfaces. In-situ 1000 °C annealing results in irreversible changes of the film surface and partial nano-diamond silicidation.

  7. Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, G.; Saad, S.; Giannelli, F.; Green, P.M. [Guy`s & St. Thomas`s Hospitals, London (United Kingdom)

    1995-12-10

    The chemical cleavage of mismatches in heteroduplexes formed by probe and test DNA detects and locates any sequence change in long DNA segments ({approximately}1.8 kb), and its efficiency has been well tested in the analysis of both average (e.g., coagulation factor IX) and large, complex genes (e.g., coagulation factor VIII and dystrophin). In the latter application RT/PCR products allow the examination of all essential sequences of the gene in a minimum number of reactions. We use two specific chemical reactants (hydroxylamine and osmium tetroxide) and piperidine cleavage of the above procedure to develop a very fast mutation screening method. This is based on: (1) 5{prime} or internal fluorescent labeling to allow concurrent screening of three to four DNA fragments and (2) solid-phase chemistry to use a microliter format and reduce the time required for the procedure, from amplification of sequence to gel loading inclusive, to one person-working-day. We test the two variations of the method, one entailing 5{prime} labeling of probe DNA and the other uniform labeling of both probe and target DNA, by detecting 114 known hemophilia B (coagulation factor IX) mutations and by analyzing 129 new patients. Uniform labeling of both probe and target DNA prior to formation of the heteroduplexes leads to almost twofold redundancy in the ability to detect mutations. Alternatively, the latter procedure may offer very efficient though less than 100% screening for sequence changes with only hydroxylamine. The full method with two chemical reactions (hydroxylamine and osmium tetroxide) should allow one person to screen with virtually 100% accuracy more than 300 kb of sequence in three ABI 373 gels in 1 day. 26 refs., 7 figs., 1 tab.

  8. Electronic Structure Properties and a Bonding Model of Thermoelectric Half-Heusler and Boride Phases

    Science.gov (United States)

    Simonson, Jack William

    be n-type semiconductors with band gaps ranging from 0.15 eV to 0.25 eV. These alloys exhibited thermoelectric power factors comparable with those of other potential boride thermoelectric materials reported in the literature. Furthermore, as a result of the procedure developed for precision synthesis of boron-rich intermetallics and the improved understanding of bonding trends, layered borides of several previously overlooked structure-types were synthesized and screened for superconductivity. Consequently, alloys of the MoB4 phase were discovered to be superconducting when doped with Nb or Ti. Electrical resistivity measurements of superconducting transitions between 6 and 8 K in these materials were confirmed via magnetic susceptibility measurements and x-ray diffraction. Structural measurements indicated opposite trends in lattice modification than those reported for the superconducting transition metal diborides.

  9. Thermal stability and chemical bonding states of AlOxNy/Si gate stacks revealed by synchrotron radiation photoemission spectroscopy

    International Nuclear Information System (INIS)

    He, G.; Toyoda, S.; Shimogaki, Y.; Oshima, M.

    2010-01-01

    Annealing-temperature dependence of the thermal stability and chemical bonding states of AlO x N y /SiO 2 /Si gate stacks grown by metalorganic chemical vapor deposition (MOCVD) using new chemistry was investigated by synchrotron radiation photoemission spectroscopy (SRPES). Results have confirmed the formation of the AlN and AlNO compounds in the as-deposited samples. Annealing the AlO x N y samples in N 2 ambient in 600-800 deg. C promotes the formation of SiO 2 component. Meanwhile, there is no formation of Al-O-Si and Al-Si binding states, suggesting no interdiffusion of Al with the Si substrate. A thermally induced reaction between Si and AlO x N y to form volatile SiO and Al 2 O is suggested to be responsible for the full disappearance of the Al component that accompanies annealing at annealing temperature of 1000 deg. C. The released N due to the breakage of the Al-N bonding will react with the SiO 2 interfacial layer and lead to the formation of the Si 3 -N-O/Si 2 -N-O components at the top of Si substrate. These results indicate high temperature processing induced evolution of the interfacial chemistry and application range of AlO x N y /Si gate stacks in future CMOS devices.

  10. Spectral analysis and quantum chemical studies of chair and twist-boat conformers of cycloheximide in gas and solution phases

    Science.gov (United States)

    Tokatli, A.; Ucun, F.; Sütçü, K.; Osmanoğlu, Y. E.; Osmanoğlu, Ş.

    2018-02-01

    In this study the conformational behavior of cycloheximide in the gas and solution (CHCl3) phases has theoretically been investigated by spectroscopic and quantum chemical properties using density functional theory (wB97X-D) method with 6-31++G(d,p) basis set, for the first time. The calculated IR results reveal that in the ground state the molecule exits as a mixture of the chair and twist-boat conformers in the gas phase, while the calculated NMR results reveal that it only exits as the chair conformer in the solution phase. In order to obtain the contributions coming from intramolecular interactions to the stability of the conformers in the gas and solution phases, the quantum theory of atoms in molecules (QTAIM), noncovalent interactions (NCI) method, and natural bond orbital analysis (NBO) have been employed. The QTAIM and NCI methods indicated that by intramolecular interactions with bond critical point (BCP) the twist-boat conformer is more stabilized than the chair conformer, while by steric interactions it is more destabilized. Considering that these interactions balance each other, the stabilities of the conformers are understood to be dictated by the van der Waals interactions. The NBO analyses show that the hyperconjugative and steric effects play an important role in the stabilization in the gas and solution phases. Furthermore, to get a better understanding of the chemical behavior of this important antibiotic drug we have evaluated and, commented the global and local reactivity descriptors of the both conformers. Finally, the EPR analysis of γ-irradiated cycloheximide has been done. The comparison of the experimental and calculated data have showed the inducement of a radical structure of (CH2)2ĊCH2 in the molecule. The experimental EPR spectrum has also confirmed that the molecule simultaneously exists in the chair and twist-boat conformers in the solid phase.

  11. Electric dipole moments and chemical bonding of diatomic alkali-alkaline earth molecules.

    Science.gov (United States)

    Pototschnig, Johann V; Hauser, Andreas W; Ernst, Wolfgang E

    2016-02-17

    We investigate the properties of alkali-alkaline earth diatomic molecules in the lowest Σ(+) states of the doublet and quartet multiplicity by ab initio calculations. In all sixteen cases studied, the permanent electric dipole moment points in opposite directions for the two spin states. This peculiarity can be explained by molecular orbital theory. We further discuss dissociation energies and bond distances. We analyze trends and provide an empirically motivated model for the prediction of the permanent electric dipole moment for combinations of alkali and alkaline earth atoms not studied in this work.

  12. Mechanical properties and chemical bonding of the Os–B system: A first-principles study

    International Nuclear Information System (INIS)

    Ji Zongwei; Hu Chaohao; Wang Dianhui; Zhong Yan; Yang Jiong; Zhang Wenqing; Zhou Huaiying

    2012-01-01

    The mechanical properties of Os–B compounds containing different boron contents have been investigated systemically by first-principles calculations. Two previously unreported crystal structures of Os 2 B 5 and OsB 3 , crystallizing in space groups R3m and P-6m2 respectively, are determined using the ab initio evolutionary structure prediction. The calculated elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, and hardness for Os–B compounds are in good agreement with the available experimental values. Our results show that the hardness of osmium borides increases with increasing boron content. Os 2 B 5 and OsB 3 , with hardnesses of 34.4 and 36.9 GPa respectively, can almost be considered as potential superhard materials. Further analyses on density of states, crystal orbital Hamilton population, and electron localization function demonstrate that the electronic structure of Os–B compounds is directly responsible for their particular mechanical properties. High hardness in Os 2 B 5 and OsB 3 is mainly attributed to the occurrence of strong B–B covalent bonds and the disappearance of some ductile Os–Os metallic bonds.

  13. Chemical bonding and electronic localization in a Ga(I) amide.

    Science.gov (United States)

    Thomsen, Maja K; Dange, Deepak; Jones, Cameron; Overgaard, Jacob

    2015-10-05

    The electron density in a one-coordinate [Ga(I) N(SiMe3 )R] complex has been determined from ab initio calculations and multipole modeling of 90 K X-ray data. The topologies of the Laplacian distribution and the ELI-D match a situation having an sp(3) -hybridized nitrogen with a tetrahedral arrangement of two single σ-bonds (to carbon and silicon) and two lone pairs pointing towards gallium in a scissor-grasping fashion. The analysis of the Laplacian distribution furthermore reveals a ligand-induced charge concentration (LICC) in the outer core of gallium oriented directly towards the nitrogen atom, and thus in between the two lone pairs. These observations might suggest that the trigonal planar nitrogen geometry result from a dative GaN bond, in which the roles of the metal and the ligand have been reversed with respect to a "standard" metal-ligand interaction, that is, the metal is here electron-donating. The ELI-D reveals a diffuse and directional lone pair on gallium, suggesting that this complex could serve as a σ-donor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Interstellar hydrogen bonding

    Science.gov (United States)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2018-06-01

    This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.

  15. Interfacial microstructure of partial transient liquid phase bonded Si3N4-to-Inconel 718 joints

    International Nuclear Information System (INIS)

    Kim, Jae Joong; Park, Jin-Woo; Eagar, Thomas W.

    2003-01-01

    This work presents transmission electron microscopy (TEM) analysis of the interfacial microstructure in Si 3 N 4 -to-Inconel 718 joints with Ni interlayers produced by partial transient liquid phase bonding (PTLPB). Ti and Cu microfoils have been inserted between Si 3 N 4 and the Ni interlayer and joining has been performed at lower temperatures than previous PTLPBs of Si 3 N 4 with the same insert metals. The TEM work is focused on phase identification of the reaction layers between the Si 3 N 4 and the Ni interlayer. According to the TEM analysis, most of the Cu precipitates without reacting with Ti and Ni. Si diffused in the filler metal and thin reaction layer formed at the interface between Si 3 N 4 and the filler metal producing good bond-formation and hence, high interfacial strength. No interfacial fractures occurred after cooling from the bonding temperature of 900 deg. C, which supports the results observed in the TEM analysis. This work confirms that this joining process can produce a more heat resistant Si 3 N 4 -to-Inconel 718 joint than active brazing using Ag-Cu-Ti alloys

  16. Bonding and orientation of 1,4-benzenedimethanethiol on Au(111) prepared from solution and from gas phase

    International Nuclear Information System (INIS)

    Pasquali, L; Terzi, F; Zanardi, C; Seeber, R; Paolicelli, G; Mahne, N; Nannarone, S

    2007-01-01

    The orientation and bonding of 1,4-benzenedimethanethiol molecules on Au(111) is studied by means of x-ray and ultraviolet (UV) photoemission, x-ray absorption and metastable deexcitation spectroscopy. The organic films are prepared both from solution and by exposing the clean substrate to the vapours of the substance in an evacuated environment. This leads to two different growth modes: when self-assembled monolayers (SAMs) are prepared from solution, the molecules tend to form a bilayer film with the molecules standing upright and with the molecular axis forming an angle of about 30 0 with respect to the substrate normal; when growth is carried out from the gas phase, the molecules tend to assume at the earliest stages of exposure a flat-lying configuration, with both sulfur end-groups bonding to Au; at increasing exposure the surface coverage presents a saturation and the chemisorbed molecules tend to assume an upright arrangement

  17. Effects of Jigsaw Cooperative Learning and Animation Techniques on Students' Understanding of Chemical Bonding and Their Conceptions of the Particulate Nature of Matter

    Science.gov (United States)

    Karacop, Ataman; Doymus, Kemal

    2013-04-01

    The aim of this study was to determine the effect of jigsaw cooperative learning and computer animation techniques on academic achievements of first year university students attending classes in which the unit of chemical bonding is taught within the general chemistry course and these students' learning of the particulate nature of matter of this unit. The sample of this study consisted of 115 first-year science education students who attended the classes in which the unit of chemical bonding was taught in a university faculty of education during the 2009-2010 academic year. The data collection instruments used were the Test of Scientific Reasoning, the Purdue Spatial Visualization Test: Rotations, the Chemical Bonding Academic Achievement Test, and the Particulate Nature of Matter Test in Chemical Bonding (CbPNMT). The study was carried out in three different groups. One of the groups was randomly assigned to the jigsaw group, the second was assigned to the animation group (AG), and the third was assigned to the control group, in which the traditional teaching method was applied. The data obtained with the instruments were evaluated using descriptive statistics, one-way ANOVA, and MANCOVA. The results indicate that the teaching of chemical bonding via the animation and jigsaw techniques was more effective than the traditional teaching method in increasing academic achievement. In addition, according to findings from the CbPNMT, the students from the AG were more successful in terms of correct understanding of the particulate nature of matter.

  18. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E. [Stanford University, Stanford, California 94309 (United States)

    1997-08-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H{endash}Si bond on the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C{endash}Si bond length of 1.85{plus_minus}0.05{Angstrom}. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. {copyright} {ital 1997 American Institute of Physics.}

  19. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    International Nuclear Information System (INIS)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E.

    1997-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H endash Si bond on the H endash Si(111) surface, and (ii) replacement of Cl on the Cl endash Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C endash Si bond length of 1.85±0.05 Angstrom. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. copyright 1997 American Institute of Physics

  20. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.

    Science.gov (United States)

    Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M

    2011-01-07

    Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully

  1. Chemically modified cellulose paper as a thin film microextraction phase.

    Science.gov (United States)

    Saraji, Mohammad; Farajmand, Bahman

    2013-11-01

    In this paper, chemically modified cellulose paper was introduced as a novel extracting phase for thin film microextraction (TFME). Different reagents (Octadecyltrichlorosilane, diphenyldichlorosilane, cyclohexyl isocyanate and phenyl isocyanate) were used to modify the cellulose papers. The modified papers were evaluated as a sorbent for the extraction of some synthetic and natural estrogenic hormones (17α-ethynylestradiol, estriol and estradiol) from aqueous samples. Liquid chromatography-fluorescence detection was used for the quantification of the extracted compounds. The cellulose paper modified with phenyl isocyanate showed the best affinity to the target compounds. TEME parameters such as desorption condition, shaking rate, sample ionic strength and extraction time were investigated and optimized. Limit of detections were between 0.05 and 0.23μgL(-1) and relative standard deviations were less than 11.1% under the optimized condition. The calibration curves were obtained in the range of 0.2-100μgL(-1) with a good linearity (r(2)>0.9935). Wastewater, human urine, pool and river water samples were studied as real samples for the evaluation of the method. Relative recoveries were found to be between 75% and 101%. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Finite Size Effects in Chemical Bonding: From Small Clusters to Solids

    DEFF Research Database (Denmark)

    Kleis, Jesper; Greeley, Jeffrey Philip; Romero, N. A.

    2011-01-01

    We address the fundamental question of which size a metallic nano-particle needs to have before its surface chemical properties can be considered to be those of a solid, rather than those of a large molecule. Calculations of adsorption energies for carbon monoxide and oxygen on a series of gold...

  3. Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix

    NARCIS (Netherlands)

    Liu, Qing; de Wijn, J.R.; van Blitterswijk, Clemens

    1998-01-01

    In an effort to make composites from hydroxyapatite and a PEG/PBT copolymer (PolyactiveTM 70/30), chemical linkages were introduced between the filler particles and polymer matrix using hexamethylene diisocyanate as a coupling agent. Infrared spectra (IR) and thermal gravimetric analysis (TGA)

  4. Haldane to Dimer Phase Transition in the Spin-1 Haldane System with Bond-Alternating Nearest-Neighbor and Uniform Next-Nearest-Neighbor Exchange Interactions

    OpenAIRE

    Takashi, Tonegawa; Makoto, Kaburagi; Takeshi, Nakao; Department of Physics, Faculty of Science, Kobe University; Faculty of Cross-Cultural Studies, Kobe University; Department of Physics, Faculty of Science, Kobe University

    1995-01-01

    The Haldane to dimer phase transition is studied in the spin-1 Haldane system with bond-alternating nearest-neighbor and uniform next-nearest-neighbor exchange interactions, where both interactions are antiferromagnetic and thus compete with each other. By using a method of exact diagonalization, the ground-state phase diagram on the ratio of the next-nearest-neighbor interaction constant to the nearest-neighbor one versus the bond-alternation parameter of the nearest-neighbor interactions is...

  5. The Effect of Various Types of Mechanical and Chemical Preconditioning on the Shear Bond Strength of Orthodontic Brackets on Zirconia Restorations

    Directory of Open Access Journals (Sweden)

    Jihun Kim

    2017-01-01

    Full Text Available The purpose of this study was to investigate the combined effect of mechanical and chemical treatments on the shear bond strength (SBS of metal orthodontic brackets on zirconia restoration. The zirconia specimens were randomly divided into 12 groups (n=10 according to three factors: AL (Al2O3 and CO (CoJet™ by sandblasting material; SIL (silane, ZPP (Zirconia Prime Plus, and SBU (Single Bond Universal by primer; and N (not thermocycled and T (thermocycled. The specimens were evaluated for shear bond strength, and the fractured surfaces were observed using a stereomicroscope. Scanning electron microscopy images were also obtained. CO-SBU combination had the highest bond strength after thermocycling (26.2 MPa. CO-SIL showed significantly higher SBS than AL-SIL (p0.05. Modified Adhesive Remnant Index (ARI scoring and SEM figures were consistent with the results of the surface treatments. In conclusion, CO-SBU, which combines the effect of increased surface area and chemical bonding with both 10-MDP and silane, showed the highest SBS. Sandblasting with either material improved the mechanical bonding by increasing the surface area, and all primers showed clinically acceptable increase of shear bond strength for orthodontic treatment.

  6. Simulant molecules with trivalent or pentavalent phosphorus atoms: bond dissociation energies and other thermodynamic and structural properties from quantum chemical models.

    Science.gov (United States)

    Hahn, David K; RaghuVeer, Krishans S; Ortiz, J V

    2011-08-04

    The CBS-QB3 and G4 thermochemical models have been used to generate energetic, structural, and spectroscopic data on a set of molecules with trivalent or pentavalent phosphorus atoms that can serve as simulants of chemical warfare agents. Based on structural data, the conformational stabilities of these molecules are explained in terms of the anomeric interaction within the OPOC and OPSC fragments. For those cases where experimental data are available, comparisons have been made between calculated and previously reported vibrational frequencies. All varieties of bond dissociation energies have been examined except those for C-H and P═O bonds. In trivalent phosphorus molecules, the O-C and S-C bonds have the lowest dissociation energies. In the pentavalent phosphorus set, the S-C bonds, followed by P-S bonds, have the lowest dissociation energies. In the fluorinated simulant molecules, the P-F bond is strongest, and the P-C or O-C bonds are weakest. © 2011 American Chemical Society

  7. Thermal-mechanical-chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading.

    Science.gov (United States)

    Wang, XinJie; Wu, YanQing; Huang, FengLei

    2017-01-05

    A mesoscopic framework is developed to quantify the thermal-mechanical-chemical responses of polymer-bonded explosive (PBX) samples under impact loading. A mesoscopic reactive model is developed for the cyclotetramethylenetetranitramine (HMX) crystal, which incorporates nonlinear elasticity, crystal plasticity, and temperature-dependent chemical reaction. The proposed model was implemented in the finite element code ABAQUS by the user subroutine VUMAT. A series of three-dimensional mesoscale models were constructed and calculated under low-strength impact loading scenarios from 100m/s to 600m/s where only the first wave transit is studied. Crystal anisotropy and microstructural heterogeneity are responsible for the nonuniform stress field and fluctuations of the stress wave front. At a critical impact velocity (≥300m/s), a chemical reaction is triggered because the temperature contributed by the volumetric and plastic works is sufficiently high. Physical quantities, including stress, temperature, and extent of reaction, are homogenized from those across the microstructure at the mesoscale to compare with macroscale measurements, which will advance the continuum-level models. The framework presented in this study has important implications in understanding hot spot ignition processes and improving predictive capabilities in energetic materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Evidence for excited-state intramolecular proton transfer in 4-chlorosalicylic acid from combined experimental and computational studies: Quantum chemical treatment of the intramolecular hydrogen bonding interaction

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan Kumar [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India); Guchhait, Nikhil, E-mail: nikhil.guchhait@rediffmail.com [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Experimental and computational studies on the photophysics of 4-chlorosalicylic acid. Black-Right-Pointing-Pointer Spectroscopically established ESIPT reaction substantiated by theoretical calculation. Black-Right-Pointing-Pointer Quantum chemical treatment of IMHB unveils strength, nature and directional nature. Black-Right-Pointing-Pointer Superiority of quantum chemical treatment of H-bond over geometric criteria. Black-Right-Pointing-Pointer Role of H-bond as a modulator of aromaticity. -- Abstract: The photophysical study of a pharmaceutically important chlorine substituted derivative of salicylic acid viz., 4-chlorosalicylic acid (4ClSA) has been carried out by steady-state absorption, emission and time-resolved emission spectroscopy. A large Stokes shifted emission band with negligible solvent polarity dependence marks the spectroscopic signature of excited-state intramolecular proton transfer (ESIPT) reaction in 4ClSA. Theoretical calculation by ab initio and Density Functional Theory methods yields results consistent with experimental findings. Theoretical potential energy surfaces predict the occurrence of proton transfer in S{sub 1}-state. Geometrical and energetic criteria, Atoms-In-Molecule topological parameters, Natural Bond Orbital population analysis have been exploited to evaluate the intramolecular hydrogen bond (IMHB) interaction and to explore its directional nature. The inter-correlation between aromaticity and resonance assisted H-bond is also discussed in this context. Our results unveil that the quantum chemical treatment is a more accurate tool to assess hydrogen bonding interaction in comparison to geometrical criteria.

  9. Mechanical control of the plasmon coupling with Au nanoparticle arrays fixed on the elastomeric film via chemical bond

    Science.gov (United States)

    Bedogni, Elena; Kaneko, Satoshi; Fujii, Shintaro; Kiguchi, Manabu

    2017-03-01

    We have fabricated Au nanoparticle arrays on the flexible poly(dimethylsiloxane) (PDMS) film. The nanoparticles were bound to the film via a covalent bond by a ligand exchange reaction. Thanks to the strong chemical bonding, highly stable and uniformly dispersed Au nanoparticle arrays were fixed on the PDMS film. The Au nanoparticle arrays were characterized by the UV-vis, scanning electron microscope (SEM) and surface enhanced Raman scattering (SERS). The UV-vis and SEM measurements showed the uniformity of the surface-dispersed Au nanoparticles, and SERS measurement confirmed the chemistry of the PDMS film. Reflecting the high stability and the uniformity of the Au nanoparticle arrays, the plasmon wavelength of the Au nanoparticles reversely changed with modulation of the interparticle distance, which was induced by the stretching of the PDMS film. The plasmon wavelength linearly decreased from 664 to 591 nm by stretching of 60%. The plasmon wavelength shift can be explained by the change in the strength of the plasmon coupling which is mechanically controlled by the mechanical strain.

  10. Chemical bonding modifications of tetrahedral amorphous carbon and nitrogenated tetrahedral amorphous carbon films induced by rapid thermal annealing

    International Nuclear Information System (INIS)

    McCann, R.; Roy, S.S.; Papakonstantinou, P.; Bain, M.F.; Gamble, H.S.; McLaughlin, J.A.

    2005-01-01

    Tetrahedral amorphous carbon (ta-C) and nitrogenated tetrahedral amorphous carbon films (ta-CN x ), deposited by double bend off plane Filtered Vacuum Cathodic Arc were annealed up to 1000 deg. C in flowing argon for 2 min. Modifications on the chemical bonding structure of the rapidly annealed films, as a function of temperature, were investigated by NEXAFS, X-ray photoelectron and Raman spectroscopies. The interpretation of these spectra is discussed. The results demonstrate that the structure of undoped ta-C films prepared at floating potential with an arc current of 80 A remains stable up to 900 deg. C, whereas that of ta-CN x containing 12 at.% nitrogen is stable up to 700 deg. C. At higher temperatures, all the spectra indicated the predominant formation of graphitic carbon. Through NEXAFS studies, we clearly observed three π* resonance peaks at the ' N K edge structure. The origin of these three peaks is not well established in the literature. However our temperature-dependant study ascertained that the first peak originates from C=N bonds and the third peak originates from the incorporation of nitrogen into the graphite like domains

  11. Structure, vibrations and quantum chemical investigations of hydrogen bonded complex of bis(1-hydroxy-2-methylpropan-2-aminium)selenate

    Science.gov (United States)

    Thirunarayanan, S.; Arjunan, V.; Marchewka, M. K.; Mohan, S.

    2017-04-01

    The hydrogen bonded molecular complex bis(1-hydroxy-2-methylpropan-2-aminium)selenate (C8H24N2O6Se) has been prepared by the reaction of 2-amino-2-methyl propanol and selenic acid. The X-ray diffraction analysis revealed that the intermolecular proton transfer from selenic acid (SeO4H2) to 2-amino-2-methylpropanol results in the formation of bis(1-hydroxy-2-methylpropan-2-aminium)selenate (HMPAS) salt and the fragments are connected through H-bonding and ion pairing. The N-H⋯O and O-H⋯O interactions between 2-amino-2-methylpropanol and selenic acid determine the supramolecular arrangement in three-dimensional space. The salt crystallises in the space group P121/n1 of monoclinic system. The complete vibrational assignments of HMPAS have been performed by FTIR and FT-Raman spectroscopy. The experimental data are correlated with the structural properties namely the energy, thermodynamic parameters, atomic charges, hybridization concepts and vibrational frequencies determined by quantum chemical studies performed with B3LYP method using 6-311++G*, 6-31+G* and 6-31G** basis sets.

  12. Effects of annealing temperatures on the morphological, mechanical, surface chemical bonding, and solar selectivity properties of sputtered TiAlSiN thin films

    International Nuclear Information System (INIS)

    Rahman, M. Mahbubur; Jiang, Zhong-Tao; Zhou, Zhi-feng; Xie, Zonghan; Yin, Chun Yang; Kabir, Humayun; Haque, Md. Mahbubul; Amri, Amun; Mondinos, Nicholas; Altarawneh, Mohammednoor

    2016-01-01

    Quaternary sputtered TiAlSiN coatings were investigated for their high temperature structural stability, surface morphology, mechanical behaviors, surface chemical bonding states, solar absorptance and thermal emittance for possible solar selective surface applications. The TiAlSiN films were synthesized, via unbalanced magnetron sputtered technology, on AISI M2 steel substrate and annealed at 500 °C - 800 °C temperature range. SEM micrographs show nanocomposite-like structure with amorphous grain boundaries. Nanoindentation analyses indicate a decrease of hardness, plastic deformation and constant yield strength for the coatings. XPS analysis show mixed Ti, Al and Si nitride and oxide as main coating components but at 800 °C the top layer of the coatings is clearly composed of only Ti and Al oxides. Synchrotron radiation XRD (SR-XRD) results indicate various Ti, Al and Si nitride and oxide phases, for the above annealing temperature range with a phase change occurring with the Fe component of the substrate. UV–Vis spectroscopy, FTIR spectroscopy studies determined a high solar selectivity, s of 24.6 for the sample annealed at 600 °C. Overall results show good structural and morphological stability of these coatings at temperatures up to 800 °C with a very good solar selectivity for real world applications. - Highlights: • TiAlSiN sputtered coatings were characterized for solar selective applications. • In situ synchrotron radiation XRD were studies show the occurrence of multiple stable phases. • A high selectivity of 24.63 has been achieved for the coatings annealed at 700 °C. • Existence of XRD phases were also confirmed by XPS measurements. • At high temperature annealing the mechanical properties of films were governed by the utmost surfaces of the films.

  13. An investigation on microstructure evolution and mechanical properties during transient liquid phase bonding of stainless steel 316L to Ti–6Al–4V

    Energy Technology Data Exchange (ETDEWEB)

    Zakipour, Shahrokh [Department of Materials Engineering, Tehran Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Halvaee, Ayoub; Amadeh, Ahmad Ali [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Samavatian, Majid, E-mail: m.samavatian@srbiau.ac.ir [Department of Materials Engineering, Tehran Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khodabandeh, Alireza [Department of Materials Engineering, Tehran Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-03-25

    Highlights: • Transient liquid phase bonding of SS316L to Ti–6Al–4V was studied. • A vacuum furnace was used to prevent oxidation during the bonding process. • Diffusion of Fe, Cu and Ti at the interface led to formation of eutectic phases. • The maximum shear strength reached to 220 MPa for the bond with 50 μm thick interlayer at 900 °C. - Abstract: Transient liquid phase bonding mechanism of two dissimilar alloys stainless steel 316L and Ti–6Al–4V using pure Cu interlayer with different thicknesses was studied. In order to characterize the microstructure and compositional changes in the joint zone, scanning electron microscopy equipped with energy dispersive spectroscopy and X-ray diffraction have been applied. Microhardness and shear strength tests have been performed to investigate mechanical properties of the joints. The results showed that there are various intermetallic compounds at the interface caused by interdiffusion of Ti, Fe and Cu across the joint zone. Furthermore, increasing the interlayer thickness led to incompletion of bonding process in 60 min. The maximum shear strength of 220 MPa has been attained for the bond made at 900 °C. With the rise in bonding temperature to 960 °C, a reduction in bond strength occurs attributed to increase in width of joint zone and formation of more brittle intermetallic compounds at the interface.

  14. An investigation on microstructure evolution and mechanical properties during transient liquid phase bonding of stainless steel 316L to Ti–6Al–4V

    International Nuclear Information System (INIS)

    Zakipour, Shahrokh; Halvaee, Ayoub; Amadeh, Ahmad Ali; Samavatian, Majid; Khodabandeh, Alireza

    2015-01-01

    Highlights: • Transient liquid phase bonding of SS316L to Ti–6Al–4V was studied. • A vacuum furnace was used to prevent oxidation during the bonding process. • Diffusion of Fe, Cu and Ti at the interface led to formation of eutectic phases. • The maximum shear strength reached to 220 MPa for the bond with 50 μm thick interlayer at 900 °C. - Abstract: Transient liquid phase bonding mechanism of two dissimilar alloys stainless steel 316L and Ti–6Al–4V using pure Cu interlayer with different thicknesses was studied. In order to characterize the microstructure and compositional changes in the joint zone, scanning electron microscopy equipped with energy dispersive spectroscopy and X-ray diffraction have been applied. Microhardness and shear strength tests have been performed to investigate mechanical properties of the joints. The results showed that there are various intermetallic compounds at the interface caused by interdiffusion of Ti, Fe and Cu across the joint zone. Furthermore, increasing the interlayer thickness led to incompletion of bonding process in 60 min. The maximum shear strength of 220 MPa has been attained for the bond made at 900 °C. With the rise in bonding temperature to 960 °C, a reduction in bond strength occurs attributed to increase in width of joint zone and formation of more brittle intermetallic compounds at the interface

  15. Investigation of electronic structure and chemical bonding of intermetallic Pd2HfIn: An ab-initio study

    Science.gov (United States)

    Bano, Amreen; Gaur, N. K.

    2018-05-01

    Ab-initio calculations are carried out to study the electronic and chemical bonding properties of Intermetallic full Heusler compound Pd2HfIn which crystallizes in F-43m structure. All calculations are performed by using density functional theory (DFT) based code Quantum Espresso. Generalized gradient approximations (GGA) of Perdew- Burke- Ernzerhof (PBE) have been adopted for exchange-correlation potential. Calculated electronic band structure reveals the metallic character of the compound. From partial density of states (PDoS), we found the presence of relatively high intensity electronic states of 4d-Pd atom at Fermi level. We have found a pseudo-gap just abouve the Fermi level and N(E) at Fermi level is observed to be 0.8 states/eV, these finding indicates the existence of superconducting character in Pd2HfIn.

  16. Sandwiched Thin-Film Anode of Chemically Bonded Black Phosphorus/Graphene Hybrid for Lithium-Ion Battery.

    Science.gov (United States)

    Liu, Hanwen; Zou, Yuqin; Tao, Li; Ma, Zhaoling; Liu, Dongdong; Zhou, Peng; Liu, Hongbo; Wang, Shuangyin

    2017-09-01

    A facile vacuum filtration method is applied for the first time to construct sandwich-structure anode. Two layers of graphene stacks sandwich a composite of black phosphorus (BP), which not only protect BP from quickly degenerating but also serve as current collector instead of copper foil. The BP composite, reduced graphene oxide coated on BP via chemical bonding, is simply synthesized by solvothermal reaction at 140 °C. The sandwiched film anode used for lithium-ion battery exhibits reversible capacities of 1401 mAh g -1 during the 200th cycle at current density of 100 mA g -1 indicating superior cycle performance. Besides, this facile vacuum filtration method may also be available for other anode material with well dispersion in N-methyl pyrrolidone (NMP). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Robust C–C bonded porous networks with chemically designed functionalities for improved CO2 capture from flue gas

    Directory of Open Access Journals (Sweden)

    Damien Thirion

    2016-10-01

    Full Text Available Effective carbon dioxide (CO2 capture requires solid, porous sorbents with chemically and thermally stable frameworks. Herein, we report two new carbon–carbon bonded porous networks that were synthesized through metal-free Knoevenagel nitrile–aldol condensation, namely the covalent organic polymer, COP-156 and 157. COP-156, due to high specific surface area (650 m2/g and easily interchangeable nitrile groups, was modified post-synthetically into free amine- or amidoxime-containing networks. The modified COP-156-amine showed fast and increased CO2 uptake under simulated moist flue gas conditions compared to the starting network and usual industrial CO2 solvents, reaching up to 7.8 wt % uptake at 40 °C.

  18. Evidence for porphyrins bound, via ester bonds, to the Messel oil shale kerogen by selective chemical degradation experiments

    Science.gov (United States)

    Huseby, B.; Ocampo, R.

    1997-09-01

    High amounts of nickel mono- and di-acid porphyrins were released from Messel oil shale kerogen (Eocene, Germany) by selective chemical degradation (acid and base hydrolysis). The released porphyrin fractions were quantified (UV-vis) and their constituents isolated and characterized at the molecular level (UV-vis, MS, NMR). The mono-acid porphyrin fraction released contained four compounds of similar abundance which arise from an obvious chlorophyll or bacteriochlorophyll precursor. The di-acid porphyrin fraction was, however, dominated by far by one compound, mesoporphyrin IX, which must have originated from heme-like precursors (heme, cytochromes, etc.). These results show unambigously that the released mono- and di-acid porphyrins were linked to the macromolecular kerogen network via ester bonds and suggest that precursor heme-like pigments could be selectively and/or more readily incorporated into the macromolecular kerogen network than precursor chlorophylls and bacteriochlorophylls.

  19. Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy

    Science.gov (United States)

    Ebeling, Daniel; Zhong, Qigang; Ahles, Sebastian; Chi, Lifeng; Wegner, Hermann A.; Schirmeisen, André

    2017-05-01

    We demonstrate the ability of resolving the chemical structure of single organic molecules using non-contact atomic force microscopy with higher normal eigenmodes of quartz tuning fork sensors. In order to achieve submolecular resolution, CO-functionalized tips at low temperatures are used. The tuning fork sensors are operated in ultrahigh vacuum in the frequency modulation mode by exciting either their first or second eigenmode. Despite the high effective spring constant of the second eigenmode (on the order of several tens of kN/m), the force sensitivity is sufficiently high to achieve atomic resolution above the organic molecules. This is observed for two different tuning fork sensors with different tip geometries (small tip vs. large tip). These results represent an important step towards resolving the chemical structure of single molecules with multifrequency atomic force microscopy techniques where two or more eigenmodes are driven simultaneously.

  20. Open chain or chemically bonded structure of H2O4: The hydroperoxyl radical dimer

    International Nuclear Information System (INIS)

    Fitzgerald, G.; Lee, T.J.; Schaefer, H.F. III; Bartlett, R.J.

    1985-01-01

    The straight chain isomer H--O--O--O--O--H of H 2 O 4 is of considerable current interest in combustion and atmospheric chemistry. Ab initio quantum mechanical methods have been used to study the geometrical structure, energetics, and vibrational frequencies of this species. Double zeta (DZ) and double zeta plus polarization (DZ+P) basis sets have been used in this theoretical study, the latter designated O(9s5p1d/4s2p1d), H(4s1p/2s1p). These basis sets have been employed in conjunction with self--consistent field (SCF)= and configuration interaction (CI) methods, including variationally up to 470 935 configurations. For the straight chain isomer, stationary points of symmetry C/sub 2h/, C/sub i/, and C 1 have been identified, and correspond to Hessian indices 3,1, and 0, respectively. The equilibrium geometry, having no elements of symmetry at all, is relatively unique. The highest level of theory (unlinked cluster corrected DZ+P CI) predicts the straight chain structure of H 2 O 4 to lie slightly lower in total energy than the cyclic two-hydrogen bond isomer

  1. Carboxymethyl chitosan based nanocomposites containing chemically bonded quantum dots and magnetic nanoparticles

    Science.gov (United States)

    Ding, Yongling; Yin, Hong; Chen, Rui; Bai, Ru; Chen, Chunying; Hao, Xiaojuan; Shen, Shirley; Sun, Kangning; Liu, Futian

    2018-03-01

    A biocompatible nanocomposite consisting of fluorescent quantum dots (QDs) and magnetic nanoparticles (MNPs) has been constructed via carboxymethyl chitosan (CMCS), resulting in magnetic-fluorescent nanoparticles (MFNPs). In these MFNPs, QDs and MNPs are successfully conjugated via covalent bonds onto the surface of CMCS. The composite retains favorable magnetic and fluorescent properties and shows a good colloidal stability in physiological environments. Folate (FA) as a specific targeting ligand was further incorporated into the nanocomposites to form a delivery vehicle with a targeting function. The therapeutic activity was achieved by loading chemotherapeutic drug doxorubicin (DOX) through electrostatic and hydrophobic interactions. The cumulative DOX release profile shows pH-sensitive. Both flow cytometry analysis and confocal laser scanning microscopic observation suggested that these nanocomposites were uptaken by cancer cells via FA receptor-mediated endocytosis pathway. In summary, the CMCS based nanocomposites developed in this work have a great potential for effective cancer-targeting and drug delivery, as well as in situ cellular imaging.

  2. Carbon monoxide protonation in condensed phases and bonding to surface superacidic Brønsted centers.

    Science.gov (United States)

    Stoyanov, Evgenii S; Malykhin, Sergei E

    2016-02-14

    Using infrared (IR) spectroscopy and density functional theory (DFT) calculations, interaction of CO with the strongest known pure Brønsted carborane superacids, H(CHB11Hal11) (Hal = F, Cl), was studied. CO readily interacted at room temperature with H(CHB11F11) acid, forming a mixture of bulk salts of formyl and isoformyl cations, which were in equilibrium An(-)H(+)CO COH(+)An(-). The bonding of CO to the surface Brønsted centers of the weaker acid, H(CHB11Cl11), resulted in breaking of the bridged H-bonds of the acid polymers without proton transfer (PT) to CO. The binding occurred via the C atom (blue shift ΔνCO up to +155-167 cm(-1), without PT) or via O atom (red shift ΔνCO up to -110 cm(-1), without PT) always simultaneously, regardless of whether H(+) is transferred to CO. IR spectra of all species were interpreted by B3LYP/cc-pVQZ calculations of the simple models, which adequately mimic the ability of carborane acids to form LH(+)CO, LH(+)CO, COH(+)L, and COH(+)L compounds (L = bases). The CO bond in all compounds was triple. Acidic strength of the Brønsted centers of commonly used acid catalysts, even so-called superacidic catalysts, is not sufficient for the formation of the compounds studied.

  3. Research Update: Mechanical properties of metal-organic frameworks – Influence of structure and chemical bonding

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-12-01

    Full Text Available Metal-organic frameworks (MOFs, a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  4. Synthesis, vibrational and quantum chemical investigations of hydrogen bonded complex betaine dihydrogen selenite

    Science.gov (United States)

    Arjunan, V.; Marchewka, Mariusz K.; Kalaivani, M.

    2012-10-01

    The molecular complex of betaine with selenious acid namely, betaine dihydrogen selenite (C5H13NO5Se, BDHSe) was synthesised by the reaction of betaine and SeO2 in a 1:1:1 solution of isopropanol, methanol and water. Crystals were grown from this solution by cooling to 253 K for few days. The complex was formed without accompanying proton transfer from selenious acid molecule to betaine. The complete vibrational assignments and analysis of BDHSe have been performed by FTIR, FT-Raman and far-infrared spectral studies. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP) method using 6-311++G∗∗, 6-31G∗∗, cc-pVDZ and 3-21G basis sets. The structural parameters, energies, thermodynamic parameters and the NBO charges of BDHSe were determined by the DFT method. The 1H and 13C isotropic chemical shifts (δ ppm) of BDHSe with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. SHG experiment was carried out using Kurtz-Perry powder technique. The efficiency of second harmonic generation for BDHSe was estimated relatively to KDP: deff = 0.97 deff (KDP).

  5. The Cosmic-Chemical Bond: Chemistry from the Big Bang to Planet Formation

    Science.gov (United States)

    Williams, D. A.; Hartquist, T. W.

    2013-01-01

    Introducing astrochemistry to a wide audience, this book describes how molecules formed in chemical reactions occur in a range of environments in interstellar and circumstellar space, from shortly after the Big Bang up to the present epoch. Stressing that chemistry in these environments needs to be "driven", it helps identify these drivers and the various chemical networks that operate giving rise to signature molecules that enable the physics of the region to be better understood. The book emphasises, in a non-mathematical way, the chemistry of the Milky Way Galaxy and its planet-forming regions, describes how other galaxies may have rather different chemistries and shows how chemistry was important even in the Early Universe when most of the elements had yet to be formed. This book will appeal to anyone with a general interest in chemistry, from students to professional scientists working in interdisciplinary areas and non-scientists fascinated by the evolving and exciting story of chemistry in the cosmos.

  6. Research Update: Mechanical properties of metal-organic frameworks - Influence of structure and chemical bonding

    Science.gov (United States)

    Li, Wei; Henke, Sebastian; Cheetham, Anthony K.

    2014-12-01

    Metal-organic frameworks (MOFs), a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  7. Activation of methane by zinc: gas-phase synthesis, structure, and bonding of HZnCH3.

    Science.gov (United States)

    Flory, Michael A; Apponi, Aldo J; Zack, Lindsay N; Ziurys, Lucy M

    2010-12-08

    The methylzinc hydride molecule, HZnCH3, has been observed in the gas phase for the first time in the monomeric form using high-resolution spectroscopic techniques. The molecule was synthesized by two methods: the reaction of dimethylzinc with hydrogen gas and methane in an AC discharge and the reaction of zinc vapor produced in a Broida-type oven with methane in a DC discharge. HZnCH3 was identified on the basis of its pure rotational spectrum, which was recorded using millimeter/submillimeter direct-absorption and Fourier transform microwave techniques over the frequency ranges 332-516 GHz and 18-41 GHz, respectively. Multiple rotational transitions were measured for this molecule in seven isotopic variants. K-ladder structure was clearly present in all of the spectra, indicating a molecule with C3v symmetry and a (1)A1 ground electronic state. Extensive quadrupole hyperfine structure arising from the (67)Zn nucleus was observed for the H(67)ZnCH3 species, suggesting covalent bonding to the zinc atom. From the multiple isotopic substitutions, a precise structure for HZnCH3 has been determined. The influence of the axial hydrogen atom slightly distorts the methyl group but stabilizes the Zn-C bond. This study suggests that HZnCH3 can be formed through the oxidative addition of zinc to methane in the gas phase under certain conditions. HZnCH3 is the first metal-methane insertion complex to be structurally characterized.

  8. Ultrafast Ge-Te bond dynamics in a phase-change superlattice

    NARCIS (Netherlands)

    Malvestuto, Marco; Caretta, Antonio; Casarin, Barbara; Cilento, Federico; Dell'Angela, Martina; Fausti, Daniele; Calarco, Raffaella; Kooi, Bart J.; Varesi, Enrico; Robertson, John; Parmigiani, Fulvio

    2016-01-01

    A long-standing question for avant-garde data storage technology concerns the nature of the ultrafast photoinduced phase transformations in the wide class of chalcogenide phase-change materials (PCMs). Overall, a comprehensive understanding of the microstructural evolution and the relevant kinetics

  9. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James Anthony

    2002-07-01

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH{sub 3} radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch{sub 4}/H{sub 2} and C{sub 2}H{sub 2}/H{sub 2} gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C{sub 2}{yields}C{sub 1} species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH{sub 3}/CH{sub 4}/H{sub 2} and N{sub 2}/CH{sub 4}/H{sub 2} gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH{sub 3}, influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H{sub 2}/CH{sub 4}/N{sub 2} gas mixture. Spatially resolved species emission intensity maps were obtained for C{sub 2}(d{yields}a), CN(B{yields}X) and H{sub {beta}} from Abel-inverted datasets. The C{sub 2}(d{yields}a) and CN(B{yields}X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N{sub 2} additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C{sub 2}(a) in a DC-arcjet reactor operating on an Ar/H{sub 2}/CH{sub 4} gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C{sub 2}(v=0) transition revealed a rotational temperature of {approx

  10. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    International Nuclear Information System (INIS)

    Smith, James Anthony

    2002-01-01

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH 3 radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch 4 /H 2 and C 2 H 2 /H 2 gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C 2 →C 1 species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH 3 /CH 4 /H 2 and N 2 /CH 4 /H 2 gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH 3 , influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H 2 /CH 4 /N 2 gas mixture. Spatially resolved species emission intensity maps were obtained for C 2 (d→a), CN(B→X) and H β from Abel-inverted datasets. The C 2 (d→a) and CN(B→X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N 2 additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C 2 (a) in a DC-arcjet reactor operating on an Ar/H 2 /CH 4 gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C 2 (v=0) transition revealed a rotational temperature of ∼3300 K. This gas temperature is similar to that deduced from optical emission spectroscopy studies of the C 2 (d→a) transition. (author)

  11. MP CBM-Z V1.0: design for a new CBM-Z gas-phase chemical mechanism architecture for next generation processors

    OpenAIRE

    Wang, Hui; Lin, Junmin; Wu, Qizhong; Chen, Huansheng; Tang, Xiao; Wang, Zifa; Chen, Xueshun; Cheng, Huaqiong; Wang, Lanning

    2018-01-01

    Precise and rapid air quality simulation and forecasting are limited by the computation performance of the air quality model, and the gas-phase chemistry module is the most time-consuming function in the air quality model. In this study, we designed a new framework for the widely used Carbon Bond Mechanism Z (CBM-Z) gas-phase chemical kinetics kernel to adapt the Single Instruction Multiple Data (SIMD) technology in the next-generation processors for improving its calculation performance. The...

  12. Ultrafast Ge-Te bond dynamics in a phase-change superlattice

    Science.gov (United States)

    Malvestuto, Marco; Caretta, Antonio; Casarin, Barbara; Cilento, Federico; Dell'Angela, Martina; Fausti, Daniele; Calarco, Raffaella; Kooi, Bart J.; Varesi, Enrico; Robertson, John; Parmigiani, Fulvio

    2016-09-01

    A long-standing question for avant-garde data storage technology concerns the nature of the ultrafast photoinduced phase transformations in the wide class of chalcogenide phase-change materials (PCMs). Overall, a comprehensive understanding of the microstructural evolution and the relevant kinetics mechanisms accompanying the out-of-equilibrium phases is still missing. Here, after overheating a phase-change chalcogenide superlattice by an ultrafast laser pulse, we indirectly track the lattice relaxation by time resolved x-ray absorption spectroscopy (tr-XAS) with a sub-ns time resolution. The approach to the tr-XAS experimental results reported in this work provides an atomistic insight of the mechanism that takes place during the cooling process; meanwhile a first-principles model mimicking the microscopic distortions accounts for a straightforward representation of the observed dynamics. Finally, we envisage that our approach can be applied in future studies addressing the role of dynamical structural strain in PCMs.

  13. Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C’ scalar couplings (3hbJNC’)

    NARCIS (Netherlands)

    Bonvin, A.M.J.J.; Houben, K.; Guenneugues, M.N.L.; Kaptein, R.; Boelens, R.

    2001-01-01

    The possibility of generating protein folds at the stage of backbone assignment using structural restraints derived from experimentally measured cross-hydrogen bond scalar couplings and secondary chemical shift information is investigated using as a test case the small alpha/beta protein

  14. Survival of bonded lingual retainers with chemical or photo polymerization over a 2-year period: a single-center, randomized controlled clinical trial

    NARCIS (Netherlands)

    Pandis, N.; Fleming, P.S.; Kloukos, D.; Polychronopoulou, A.; Katsaros, C.; Eliades, T.

    2013-01-01

    INTRODUCTION: The objective of this trial was to compare the survival rates of mandibular lingual retainers bonded with either chemically cured or light-cured adhesive after orthodontic treatment. METHODS: Patients having undergone orthodontic treatment at a private orthodontic office were randomly

  15. Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.

    Science.gov (United States)

    Pino, Verónica; Afonso, Ana M

    2012-02-10

    Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography.

    Science.gov (United States)

    Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2015-05-29

    Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A study of vibrational spectra and investigations of charge transfer and chemical bonding features of 2-chloro benzimidazole based on DFT computations

    Science.gov (United States)

    Muthunatesan, S.; Ragavendran, V.

    2015-01-01

    Benzimidazoles are bicyclic heteroatomic molecules. Polycyclic heteroatomic molecules have extensive coupling of different modes leading to strong coupling of force constants associated with the various chemical bonds of the molecules. To carry out a detailed vibrational spectroscopic analysis of such a bicyclic heteroatomic molecule, FT-IR and FT-Raman spectra of 2-chloro benzimidazole (CBZ) have been recorded in the condensed phase. Density Functional Theory calculations in the B3LYP/6-31G* level have been carried out to determine the optimized geometry and vibrational frequencies. In order to obtain a close agreement between theoretical and observed frequencies and hence to perform a reliable assignment, the theoretical DFT force field was transformed from Cartesian to local symmetry co-ordinates and then scaled empirically using SQM methodology. The SQM treatment resulted in a RMS deviation of 9.4 cm-1. For visual comparison, the observed and calculated spectra are presented on a common wavenumber scale. From the NBO analysis, the electron density (ED) charge transfers in the σ* and π* antibonding orbitals and second order delocalization energies E(2) confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. The calculated Homo and Lumo energies show that charge transfer occurs within the molecule. The results obtained from the vibrational, NBO and HOMO-LUMO analyses have been properly tabulated.

  18. [Separation of purines, pyrimidines, pterins and flavonoids on magnolol-bonded silica gel stationary phase by high performance liquid chromatography].

    Science.gov (United States)

    Chen, Hong; Li, Laishen; Zhang, Yang; Zhou, Rendan

    2012-10-01

    A new magnolol-bonded silica gel stationary phase (MSP) was used to separate the basic drugs including four purines, eight pyrimidines, four pterins and five flavonoids as polar representative samples by high performance liquid chromatography (HPLC). To clarify the separation mechanism, a commercial ODS column was also tested under the same chromatographic conditions. The high selectivities and fast baseline separations of the above drugs were achieved by using simple mobile phases on MSP. Although there is no end-caped treatment, the peak shapes of basic drugs containing nitrogen such as purines, pyrimidines and pterins were rather symmetrical on MSP, which indicated the the magnolol as ligand with multi-sites could shield the side effect of residual silanol groups on the surface of silica gel. Although somewhat different in the separation resolution, it was found that the elution orders of some drugs were generally similar on both MSP and ODS. The hydrophobic interaction should play a significant role in the separations of the above basic drugs, which was attributed to their reversed-phase property in the nature. However, MSP could provide the additional sites for many polar solutes, which was a rational explanation for the high selectivity of MSP. For example, in the separation of purines, pyrimidines and pterins on MSP, hydrogen-bonding and dipole-dipole interactions played leading roles besides hydrophobic interaction. Some solute molecules (such as mercaptopurine, vitexicarpin) and MSP can form the strong pi-pi stacking in the separation process. All enhanced the retention and improved the separation selectivity of MSP, which facilitated the separation of the basic drugs.

  19. Fumigant Management Plan Templates - Phase 2 Files Listed by Chemical

    Science.gov (United States)

    FMP templates are in PDF and Word formats for each type of soil fumigant pesticide, with samples of filled out plans. Types are by active ingredient chemical: Chloropicrin, dazomet, dimethyl disulfide, metam sodium/potassium, and methyl bromide.

  20. Operational High Resolution Chemical Kinetics Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerical simulations of chemical kinetics are critical to addressing urgent issues in both the developed and developing world. Ongoing demand for higher resolution...

  1. Applications of New Chemical Heat Sources Phase 1

    National Research Council Canada - National Science Library

    Bell, William

    2001-01-01

    Report developed under Small Business Innovative Research (SBIR) contract. This project has examined the application of new chemical heat sources, with emphasis on portable heaters for military field rations...

  2. Design of multi-phase dynamic chemical networks

    Science.gov (United States)

    Chen, Chenrui; Tan, Junjun; Hsieh, Ming-Chien; Pan, Ting; Goodwin, Jay T.; Mehta, Anil K.; Grover, Martha A.; Lynn, David G.

    2017-08-01

    Template-directed polymerization reactions enable the accurate storage and processing of nature's biopolymer information. This mutualistic relationship of nucleic acids and proteins, a network known as life's central dogma, is now marvellously complex, and the progressive steps necessary for creating the initial sequence and chain-length-specific polymer templates are lost to time. Here we design and construct dynamic polymerization networks that exploit metastable prion cross-β phases. Mixed-phase environments have been used for constructing synthetic polymers, but these dynamic phases emerge naturally from the growing peptide oligomers and create environments suitable both to nucleate assembly and select for ordered templates. The resulting templates direct the amplification of a phase containing only chain-length-specific peptide-like oligomers. Such multi-phase biopolymer dynamics reveal pathways for the emergence, self-selection and amplification of chain-length- and possibly sequence-specific biopolymers.

  3. Nb2OsB2, with a new twofold superstructure of the U3Si2 type: Synthesis, crystal chemistry and chemical bonding

    International Nuclear Information System (INIS)

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P.T.

    2013-01-01

    The new ternary metal-rich boride, Nb 2 OsB 2 , was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U 3 Si 2 -structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B 2 dumbbells with B–B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB–LMTO–ASA), the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic Os–B, Nb–B and Nb–Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride. - Graphical abstract: Nb 2 OsB 2 is, to the best of our knowledge, the first fully characterized phase in the ternary Nb–Os–B system. It crystallizes (space group P4/mnc, 128) with a new twofold superstructure of the U 3 Si 2 structure type (space group P4/mbm, 127), and is therefore the first boride in this structure family crystallizing with a superstructure of the U 3 Si 2 structure type. We show that the distortions leading to this superstructure occurs mainly in the Nb-layer, which tries to accommodate the large osmium atoms. The consequence of this puckering is the building osmium dumbbells instead of chains along [001]. - Highlights: • First compound in the Nb–Os–B system. • New twofold superstructure of U 3 Si 2 structure type. • Puckering of Nb-layer responsible for superstructure occurrence. • Chemical bonding studied by density functional theory

  4. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Háková, Eva; Vrkoslav, Vladimír; Míková, Radka; Schwarzová-Pecková, K.; Bosáková, Z.; Cvačka, Josef

    2015-01-01

    Roč. 407, č. 17 (2015), s. 5175-5188 ISSN 1618-2642 R&D Projects: GA ČR GAP206/12/0750 Institutional support: RVO:61388963 Keywords : double bond * gas-phase chemistry * lipidomics * olive oil * vernix caseosa Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.125, year: 2015

  5. Advanced chemical analysis service for elements, radionuclides and phases

    International Nuclear Information System (INIS)

    Sansoni, B.

    1986-01-01

    A review is given on the structure, organisation and performance of the chemical analysis service of the Central Department for Chemical Analysis at the Kernforschungsanlage Juelich GmbH. The research and development programs together with the infrastructure of the Centre afford to analyse almost all stable elements of the periodical table in almost any material. The corresponding chemical analysis service has been organized according to a new modular system of analytical steps. According to this, the most complicated and, therefore, most general case of an analytical scheme for element and radionuclide analysis in any type of material can be differentiated into about 14 different steps, the modules. They are more or less independent of the special problem. The laboratory is designed and organized according to these steps. (orig./PW) [de

  6. Effects of lithium doping on microstructure, electrical properties, and chemical bonds of sol-gel derived NKN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Cheng [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Mathematic and Physical Sciences, R.O.C. Air Force Academy, Kaohsiung 820, Taiwan (China); Chen, Chan-Ching; Weng, Chung-Ming [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Chu, Sheng-Yuan, E-mail: chusy@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hong, Cheng-Shong [Department of Electronic Engineering, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Tsai, Cheng-Che [Department of Digital Game and Animation Design, Tung-Fang Design University, Kaohsiung 829, Taiwan (China)

    2015-02-28

    Highly (100/110) oriented lead-free Li{sub x}(Na{sub 0.5}K{sub 0.5}){sub 1−x}NbO{sub 3} (LNKN, x = 0, 0.02, 0.04, and 0.06) thin films are fabricated on Pt/Ti/SiO{sub 2}/Si substrates via a sol-gel processing method. The lithium (Li) dopants modify the microstructure and chemical bonds of the LNKN films, and therefore improve their electrical properties. The optimal values of the remnant polarization (P{sub r} = 14.3 μC/cm{sup 2}), piezoelectric coefficient (d{sub 33} = 48.1 pm/V), and leakage current (<10{sup −5} A/cm{sup 2}) are obtained for a lithium addition of x = 0.04 (i.e., 4 at. %). The observation results suggest that the superior electrical properties are the result of an improved crystallization, a larger grain size, and a smoother surface morphology. It is shown that the ion transport mechanism is dominated by an Ohmic behavior under low electric fields and the Poole-Frenkel emission effect under high electric fields.

  7. Effects of lithium doping on microstructure, electrical properties, and chemical bonds of sol-gel derived NKN thin films

    International Nuclear Information System (INIS)

    Lin, Chun-Cheng; Chen, Chan-Ching; Weng, Chung-Ming; Chu, Sheng-Yuan; Hong, Cheng-Shong; Tsai, Cheng-Che

    2015-01-01

    Highly (100/110) oriented lead-free Li x (Na 0.5 K 0.5 ) 1−x NbO 3 (LNKN, x = 0, 0.02, 0.04, and 0.06) thin films are fabricated on Pt/Ti/SiO 2 /Si substrates via a sol-gel processing method. The lithium (Li) dopants modify the microstructure and chemical bonds of the LNKN films, and therefore improve their electrical properties. The optimal values of the remnant polarization (P r  = 14.3 μC/cm 2 ), piezoelectric coefficient (d 33  = 48.1 pm/V), and leakage current (<10 −5 A/cm 2 ) are obtained for a lithium addition of x = 0.04 (i.e., 4 at. %). The observation results suggest that the superior electrical properties are the result of an improved crystallization, a larger grain size, and a smoother surface morphology. It is shown that the ion transport mechanism is dominated by an Ohmic behavior under low electric fields and the Poole-Frenkel emission effect under high electric fields

  8. Diversity of Chemical Bonding and Oxidation States in MS 4 Molecules of Group 8 Elements

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wei [Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084 P.R. China; Jiang, Ning [Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084 P.R. China; Schwarz, W. H. Eugen [Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084 P.R. China; Physical and Theoretical Chemistry, University of Siegen, Siegen 57068 Germany; Yang, Ping [Theoretical Division, Los Alamos National Laboratory, Los Alamos New Mexico 87545 USA; Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland Washington 953002 USA; Li, Jun [Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084 P.R. China; Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland Washington 953002 USA

    2017-07-11

    The geometric and electronic ground-state structures of six MS4 molecules (M = group-8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density-functional and correlated wave-function approaches. The MS4 species are compared to analogous MO4 species recently investi-gated (Inorg. Chem. 2016, 55: 4616). Metal oxidation state (MOS) of high value VIII appears in low- spin singlet Td geometric species (Os,Hs)S4 and (Ru,Os,Hs)O4, whereas low MOS=II appears in high- spin septet D2d species Fe(S2)2 and (slightly excited) metastable Fe(O2)2. The ground states of all other molecules have intermediate MOS values, containing S2-, S22-, S21- (and resp. O2--, O1-, O22-, O21-) ligands, bonded by ionic, covalent and correlative contributions.

  9. Coteaching with senior students – a way to refine teachers' PCK for teaching chemical bonding in upper secondary school

    Science.gov (United States)

    Schultze, Felix; Nilsson, Pernilla

    2018-04-01

    During the last decade there has been on-going discussions about students' declining interest and low achievement in science. One of the reasons suggested for this decline is that teachers and students have different frames of reference, whereby teachers sometimes communicate science in the classroom in a way that is not accessible to the students. There is a lack of research investigating the effects of coteaching with senior students in science in upper secondary schools. To improve teaching and to narrow the gap between teachers' and students' different frames of references, this study investigates how an experienced chemistry teacher gains and refines her pedagogical content knowledge (PCK) by cooperating with two grade 12 students (age 18) as coteachers. The teacher and the two coteachers coplanned, cotaught and coevaluated lessons in chemical bonding in a grade 10 upper secondary class. Findings indicate that the coteachers contributed with their own learning experiences to help the teacher understand how students perceive difficult concepts. In such way, the coteachers were mediating between the teacher and the students, thus bridging the gap between the teacher and the students' frames of references. The teachers' PCK was refined which in turn lead to improved teaching strategies.

  10. Microstructural evolution during transient liquid phase bonding of Inconel 617 using Ni-Si-B filler metal

    International Nuclear Information System (INIS)

    Jalilian, F.; Jahazi, M.; Drew, R.A.L.

    2006-01-01

    The influence of process parameters on microstructural characteristics of transient liquid phase (TLP) bonded Inconel 617 alloy was investigated. Experiments were carried out at 1065 deg. C using nickel based filler metal (Ni-4.5% Si-3% B) with B as the melting point depressant (MPD) element. Two different thickness of interlayer and various holding times were employed. The influence of these processing parameters on the characteristics of the joint area particularly size, morphology and composition of precipitates was investigated. The presence of MoB, Mo 2 B, M 23 C 6 , TiC, M 23 (B, C) 6 and Ni 3 B precipitates in the diffusion layer and Ni 3 B, Ni 3 Si and Ni 5 Si 2 precipitates in the interlayer at the interface between the base metal and interlayer were demonstrated using electron back scattered diffraction (EBSD), energy dispersive spectrometry (EDS) and TEM

  11. Chemical state and phase structure of (TaNbTiW)N films prepared by combined magnetron sputtering and PBII

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xingguo [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze [National Key Laboratory of Materials Behavior and Evaluation in Space Environment, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [National Key Laboratory of Science and Technology on Precision Hot Processing of Metals Harbin Institute of Technology, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin, E-mail: maxin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 (China)

    2013-09-01

    (TaNbTiW)N films with thickness of ∼1000 nm are prepared on titanium alloy substrate by combined magnetron sputtering deposition and nitrogen plasma based ion implantation (N-PBII). Chemical state of the elements and phase structure of the films are investigated using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The bonds of Ta-N, Nb-N, Ti-N-O and Ta-O are detected in the (TaNbTiW)N films, however both W-N and W-O are not found. The initial alloy film has a BCC structure, while the films with N-PBII treatment are composed of BCC and FCC structures. The hardness and elastic modulus of the films can be improved by increasing nitrogen implantation dose and reach maximum values of 9.0 GPa and 154.1 GPa, respectively.

  12. Mechanical properties investigation on single-wall ZrO2 nanotubes: A finite element method with equivalent Poisson's ratio for chemical bonds

    Science.gov (United States)

    Yang, Xiao; Li, Huijian; Hu, Minzheng; Liu, Zeliang; Wärnå, John; Cao, Yuying; Ahuja, Rajeev; Luo, Wei

    2018-04-01

    A method to obtain the equivalent Poisson's ratio in chemical bonds as classical beams with finite element method was proposed from experimental data. The UFF (Universal Force Field) method was employed to calculate the elastic force constants of Zrsbnd O bonds. By applying the equivalent Poisson's ratio, the mechanical properties of single-wall ZrNTs (ZrO2 nanotubes) were investigated by finite element analysis. The nanotubes' Young's modulus (Y), Poisson's ratio (ν) of ZrNTs as function of diameters, length and chirality have been discussed, respectively. We found that the Young's modulus of single-wall ZrNTs is calculated to be between 350 and 420 GPa.

  13. Quantum double-well chain: Ground-state phases and applications to hydrogen-bonded materials

    International Nuclear Information System (INIS)

    Wang, X.; Campbell, D.K.; Gubernatis, J.E.

    1994-01-01

    Extrapolating the results of hybrid quantum Monte Carlo simulations to the zero temperature and infinite-chain-length limits, we calculate the ground-state phase diagram of a system of quantum particles on a chain of harmonically coupled, symmetric, quartic double-well potentials. We show that the ground state of this quantum chain depends on two parameters, formed from the ratios of the three natural energy scales in the problem. As a function of these two parameters, the quantum ground state can exhibit either broken symmetry, in which the expectation values of the particle's coordinate are all nonzero (as would be the case for a classical chain), or restored symmetry, in which the expectation values of the particle's coordinate are all zero (as would be the case for a single quantum particle). In addition to the phase diagram as a function of these two parameters, we calculate the ground-state energy, an order parameter related to the average position of the particle, and the susceptibility associated with this order parameter. Further, we present an approximate analytic estimate of the phase diagram and discuss possible physical applications of our results, emphasizing the behavior of hydrogen halides under pressure

  14. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {in-phase and out-of phase} MR imaging

    International Nuclear Information System (INIS)

    Ragab, Yasser; Emad, Yasser; Gheita, Tamer; Mansour, Maged; Abou-Zeid, A.; Ferrari, Serge; Rasker, Johannes J.

    2009-01-01

    Objective: The objective of this study was to establish the cut-off value of the signal intensity drop on chemical shift magnetic resonance imaging (MRI) with appropriate sensitivity and specificity to differentiate osteoporotic from neoplastic wedging of the spine. Patients and methods: All patients with wedging of vertebral bodies were included consecutively between February 2006 and January 2007. A chemical shift MRI was performed and signal intensity after (in-phase and out-phase) images were obtained. A DXA was performed in all. Results: A total of 40 patients were included, 20 with osteoporotic wedging (group 1) and 20 neoplastic (group 2). They were 21 males and 19 females. Acute vertebral collapse was observed in 15 patients in group 1 and subacute collapse in another 5 patients, while in group 2, 11 patients showed acute collapse and 9 patients (45%) showed subacute vertebral collapse. On the chemical shift MRI a substantial reduction in signal intensity was found in all lesions in both groups. The proportional changes observed in signal intensity of bone marrow lesions on in-phase compared with out-of-phase images showed significant differences in both groups (P < 0.05). At a cut-off value of 35%, the observed sensitivity of out-of-phase images was 95%, specificity was 100%, positive predictive value was 100% and negative predictive value was 95.2%. Conclusion: A chemical shift MRI is useful in order to differentiate patients with vertebral collapse due to underlying osteoporosis or neoplastic process.

  15. Deiodinase 1 Screening of ToxCast Phase 1 Chemical Library

    Data.gov (United States)

    U.S. Environmental Protection Agency — This excel spreadsheet contains the resultant data for over from inhibition assays with human Deiodinase 1 screened against the ToxCast Phase 1 chemical library and...

  16. Chemically and Thermally Stable High Energy Density Silicone Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal energy storage systems with 300 -- 1000 kJ/kg energy density through either phase changes or chemical heat absorption are sought by NASA. This proposed...

  17. Bond-order wave phase of the extended Hubbard model: Electronic solitons, paramagnetism, and coupling to Peierls and Holstein phonons

    Science.gov (United States)

    Kumar, Manoranjan; Soos, Zoltán G.

    2010-10-01

    The bond-order wave (BOW) phase of the extended Hubbard model (EHM) in one dimension (1D) is characterized at intermediate correlation U=4t by exact treatment of N -site systems. Linear coupling to lattice (Peierls) phonons and molecular (Holstein) vibrations are treated in the adiabatic approximation. The molar magnetic susceptibility χM(T) is obtained directly up to N=10 . The goal is to find the consequences of a doubly degenerate ground state (gs) and finite magnetic gap Em in a regular array. Degenerate gs with broken inversion symmetry are constructed for finite N for a range of V near the charge-density-wave boundary at V≈2.18t where Em≈0.5t is large. The electronic amplitude B(V) of the BOW in the regular array is shown to mimic a tight-binding band with small effective dimerization δeff . Electronic spin and charge solitons are elementary excitations of the BOW phase and also resemble topological solitons with small δeff . Strong infrared intensity of coupled molecular vibrations in dimerized 1D systems is shown to extend to the regular BOW phase while its temperature dependence is related to spin solitons. The Peierls instability to dimerization has novel aspects for degenerate gs and substantial Em that suppresses thermal excitations. Finite Em implies exponentially small χM(T) at low temperature followed by an almost linear increase with T . The EHM with U=4t is representative of intermediate correlations in quasi-1D systems such as conjugated polymers or organic ion-radical and charge-transfer salts. The vibronic and thermal properties of correlated models with BOW phases are needed to identify possible physical realizations.

  18. Determination of selected azaarenes in water by bonded-phase extraction and liquid chromatography

    Science.gov (United States)

    Steinheimer, T.R.; Ondrus, M.G.

    1986-01-01

    A method for the rapid and simple quantitative determination of quinoline, isoquinoline, and five selected three-ring azaarenes in water has been developed. The azaarene fraction is separated from its carbon analogues on n-octadecyl packing material by edition with acidified water/acetonitrile. Concentration as great as 1000-fold is achieved readily. Instrumental analysis involves high-speed liquid chromatography on flexible-walled, wide-bore columns with fluorescence and ultraviolet detection at several wavelengths employing filter photometers in series. Method-validation data is provided as azaarene recovery efficiency from fortified samples. Distilled water, river water, contaminated ground water, and secondary-treatment effluent have been tested. Recoveries at part-per-billion levels are nearly quantitative for the three-ring compounds, but they decrease for quinoline and isoquinoline. ?? 1986 American Chemical Society.

  19. Graphene oxide bonded fused-silica fiber for solid-phase microextraction-gas chromatography of polycyclic aromatic hydrocarbons in water.

    Science.gov (United States)

    Xu, Lili; Feng, Juanjuan; Li, Jubai; Liu, Xia; Jiang, Shengxiang

    2012-01-01

    A novel chemically bonded graphene oxide/fused-silica fiber was prepared and applied in solid-phase microextraction of six polycyclic aromatic hydrocarbons from water samples coupled with gas chromatography. It exhibited high extraction efficiency and excellent stability. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized in our work. Detection limits to the six polycyclic aromatic hydrocarbons were less than 0.08 μg/L, and their calibration curves were all linear (R(2)≥0.9954) in the range from 0.05 to 200 μg/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.13 and 15.87%, respectively. This novel fiber was then utilized to analyze two real water samples from the Yellow River and local waterworks, and the recoveries of samples spiked at 1 and 10 μg/L ranged from 84.48 to 118.24%. Compared with other coating materials, this graphene oxide-coated fiber showed many advantages: wide linear range, low detection limit, and good stability in acid, alkali, organic solutions and at high temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Iron oxide functionalized graphene nano-composite for dispersive solid phase extraction of chemical warfare agents from aqueous samples.

    Science.gov (United States)

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Goud, D Raghavender; Dubey, D K; Pardasani, Deepak

    2015-05-15

    Present study deals with the preparation and evaluation of graphene based magnetic nano-composite for dispersive solid phase extraction of Chemical Weapons Convention (CWC) relevant chemicals from aqueous samples. Nano-composite, Fe3O4@SiO2-G was synthesized by covalently bonding silica coated Fe3O4 onto the graphene sheets. Nerve agents (NA), Sulfur mustard (SM) and their non-toxic environmental markers were the target analytes. Extraction parameters like amount of sorbent, extraction time and desorption conditions were optimized. Dispersion of 20 milligram of sorbent in 200mL of water sample for 20min. followed by methanol/chloroform extraction produced average to good recoveries (27-94%) of targeted analytes. Recoveries of real agents exhibited great dependency upon sample pH and ionic strength. Sarin produced maximum recovery under mild acidic conditions (56% at pH 5) while VX demanded alkaline media (83% at pH 9). Salts presence in the aqueous samples was found to be advantageous, raising the recoveries to as high as 94% for SM. Excellent limits of detection (LOD) for sulphur mustard and VX (0.11ngmL(-1) and 0.19ngmL(-1) respectively) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Phase Characterization of Cucumber Growth: A Chemical Gel Model

    Directory of Open Access Journals (Sweden)

    Bo Li

    2016-01-01

    Full Text Available Cucumber grows with complex phenomena by changing its volume and shape, which is not fully investigated and challenges agriculture and food safety industry. In order to understand the mechanism and to characterize the growth process, the cucumber is modeled as a hydrogel in swelling and its development is studied in both preharvest and postharvest stages. Based on thermodynamics, constitutive equations, incorporating biological quantities, are established. The growth behavior of cucumber follows the classic theory of continuous or discontinuous phase transition. The mechanism of bulged tail in cucumber is interpreted by phase coexistence and characterized by critical conditions. Conclusions are given for advances in food engineering and novel fabrication techniques in mechanical biology.

  2. Unlocking the Electrocatalytic Activity of Chemically Inert Amorphous Carbon-Nitrogen for Oxygen Reduction: Discerning and Refactoring Chaotic Bonds

    DEFF Research Database (Denmark)

    Zhang, Caihong; Zhang, Wei; Wang, Dong

    2017-01-01

    Mild annealing enables inactive nitrogen (N)-doped amorphous carbon (a-C) films abundant with chaotic bonds prepared by magnetron sputtering to become effective for the oxygen reduction reaction (ORR) by virtue of generating pyridinic N. The rhythmic variation of ORR activity elaborates well...... on the subtle evolution of the amorphous C−N bonds conferred by spectroscopic analysis....

  3. Orbital Exponent Optimization in Elementary VB Calculations of the Chemical Bond in the Ground State of Simple Molecular Systems

    Science.gov (United States)

    Magnasco, Valerio

    2008-01-01

    Orbital exponent optimization in the elementary ab-initio VB calculation of the ground states of H[subscript 2][superscript +], H[subscript 2], He[subscript 2][superscript +], He[subscript 2] gives a fair description of the exchange-overlap component of the interatomic interaction that is important in the bond region. Correct bond lengths and…

  4. Bonding Gossip as an Identity Negotiation Life Phase: A Study of Multimodal Texting via Smartphone Among Taiwanese College Freshmen

    Directory of Open Access Journals (Sweden)

    Hong-Chi Shiau

    2016-11-01

    Full Text Available Drawn on ethnographic interviews with 17 informants as well as seven focus group interviews, this study examines how college freshmen text on social media via smartphones to formulate collegiate bonding. Gossip is common between two individuals to avoid collapsed context, so both parties can ascertain the meaning derived from such situated interaction; it is less frequently among multiple small group users. Three linguistic genres of gossip identified include (1 sarcastic gossip—negative but not malicious—on fellows, (2 gossip against authorities, and (3 celebrity gossip. However, gossiping among freshmen is a life-phase phenomenon, usually lasting 2 or 3 months until a solid social network with stronger ties in an offline context has been secured. Over time, the freshmen have gradually reduced their amount of time investing in such communicative capital. As a result of multimodal communicative tools, social media has afforded wider and more multimodal dissemination of information which the freshmen might otherwise have not been able to access. Gossiping is popular for it provides sources of conversational comfort and sartorial security, creating a safer net so that the freshmen could playfully navigate through the precarious life phase.

  5. The molecular structure of 4-methylpyridine-N-oxide: Gas-phase electron diffraction and quantum chemical calculations

    Science.gov (United States)

    Belova, Natalya V.; Girichev, Georgiy V.; Kotova, Vitaliya E.; Korolkova, Kseniya A.; Trang, Nguyen Hoang

    2018-03-01

    The molecular structure of 4-methylpiridine-N-oxide, 4-MePyO, has been studied by gas-phase electron diffraction monitored by mass spectrometry (GED/MS) and quantum chemical (DFT) calculations. Both, quantum chemistry and GED analyses resulted in CS molecular symmetry with the planar pyridine ring. Obtained molecular parameters confirm the hyperconjugation in the pyridine ring and the sp2 hybridization concept of the nitrogen and carbon atoms in the ring. The experimental geometric parameters are in a good agreement with the parameters for non-substituted N-oxide and reproduced very closely by DFT calculations. The presence of the electron-donating CH3 substituent in 4-MePyO leads to a decrease of the ipso-angle and to an increase of r(N→O) in comparison with the non-substituted PyO. Electron density distribution analysis has been performed in terms of natural bond orbitals (NBO) scheme. The nature of the semipolar N→O bond is discussed.

  6. BiOBr@SiO2 flower-like nanospheres chemically-bonded on cement-based materials for photocatalysis

    Science.gov (United States)

    Wang, Dan; Hou, Pengkun; Yang, Ping; Cheng, Xin

    2018-02-01

    Endowment of photocatalytic property on the surface of concrete structure can contribute to the self-cleaning of the structure and purification of the polluted environment. We developed a nano-structured BiOBr@SiO2 photocatalyst and innovatively used for surface-treatment of cement-based materials with the hope of attaining the photocatalytic property in visible-light region and surface modification/densification performances. The SiO2 layer on the flower-like BiOBr@SiO2 helps to maintain a stable distribution of the photocatalyst, as well as achieving a chemical bonding between the coating and the cement matrix. Results showed that the color fading rate of during the degradation of Rhodamine B dye of the BiOBr-cem sample is 2 times higher compared with the commonly studied C, N-TiO2-cem sample. The photo-degradation rates of samples BiOBr-cem and BiOBr@SiO2-cem are 93 and 81% within 150 min, respectively, while sample BiOBr@SiO2-cem reveals a denser and smoother surface after curing for 28 days and pore-filling effect at size within 0.01-0.2 μm when compared with untreated samples. Moreover, additional C-S-H gel can be formed due to the pozzolanic reaction between BiOBr@SiO2 and the hardened cement matrix. Both advantages of the BiOBr@SiO2 favor its application for surface-treatment of hardened cement-based material to acquire an improved surface quality, as well as durable photocatalytic functionality.

  7. Tailoring the surface chemical bond states of the NbN films by doping Ag: Achieving hard hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ping; Zhang, Kan; Du, Suxuan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Meng, Qingnan [College of Construction Engineering, Jilin University, Changchun, 130026 (China); He, Xin [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Wang, Shuo [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Wen, Mao, E-mail: wenmao225@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Zheng, Weitao, E-mail: WTZheng@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China)

    2017-06-15

    Highlights: • Intrinsically hydrophilic NbN films can transfer to hydrophobic Nb-Ag-N films by doping Ag atoms into NbN sublattice. • Solute Ag can promote that the hydrophobic Ag{sub 2}O groups formed on the Nb-Ag-N film surface through self-oxidation. • The present work may provide a straightforward approach for the production of robust hydrophobic ceramic surfaces. - Abstract: Robust hydrophobic surfaces based on ceramics capable of withstanding harsh conditions such as abrasion, erosion and high temperature, are required in a broad range of applications. The metal cations with coordinative saturation or low electronegativity are commonly chosen to achieve the intrinsically hydrophobic ceramic by reducing Lewis acidity, and thus the ceramic systems are limited. In this work, we present a different picture that robust hydrophobic surface with high hardness (≥20 GPa) can be fabricated through doping Ag atoms into intrinsically hydrophilic ceramic film NbN by reactive co-sputtering. The transition of wettability from hydrophilic to hydrophobic of Nb-Ag-N films induced by Ag doping results from the appearance of Ag{sub 2}O groups on the films surfaces through self-oxidation, because Ag cations (Ag{sup +}) in Ag{sub 2}O are the filled-shell (4d{sup 10}5S{sup 0}) electronic structure with coordinative saturation that have no tendency to interact with water. The results show that surface Ag{sub 2}O benefited for hydrophobicity comes from the solute Ag atoms rather than precipitate metal Ag, in which the more Ag atoms incorporated into Nb-sublattice are able to further improve the hydrophobicity, whereas the precipitation of Ag nanoclusters would worsen it. The present work opens a window for fabricating robust hydrophobic surface through tailoring surface chemical bond states by doping Ag into transition metal nitrides.

  8. Report of the specialists' workshop on phase transition studies on hydrogen-bonded crystals by neutron and X-ray diffractometries

    International Nuclear Information System (INIS)

    Tokunaga, M.; Shibuya, I.

    1989-01-01

    The report carries a total of 15 studies on hydrogen-bonded crystals made by means of neutron/X-ray diffraction which were presented at a technical study meeting held on December 12 and 13, 1988, at the Research Reactor Institute of Kyoto University. The report covers 'introduction', 'linear relation between transition temperature and hydrogen-bond length in KDP type crystals', 'X-ray study of crystal structure under high pressure in DKDP', 'crystal structure of ADP in the paraelectric phase', 'crystal structure of Rochelle salt in the paraelectric phase', 'distortion of AsO 4 in KDA', 'study of phase transition in KDP family by dielectric dispersion', 'dielectric relaxation and phase transition in ice Ih', 'Raman scattering study of KDP', 'mechanism of phase transition in KDP by Raman scattering study under high pressure-reinvestigation of the Peercy's conclusion', 'localized modes of proton in KDP', 'hyper-Raman scattering study of hydrogen-bonded crystals', 'phase transition of CDP', 'the 180deg law in phase diagram', and 'comments'. (N.K.)

  9. Deuterium isotope effects on 13C and 15N chemical shifts of intramolecularly hydrogen-bonded enaminocarbonyl derivatives of Meldrum’s and Tetronic acid

    Science.gov (United States)

    Ullah, Saif; Zhang, Wei; Hansen, Poul Erik

    2010-07-01

    Secondary deuterium isotope effects on 13C and 15N nuclear shieldings in a series of cyclic enamino-diesters and enamino-esters and acyclic enaminones and enamino-esters have been examined and analysed using NMR and DFT (B3LYP/6-31G(d,p)) methods. One-dimensional and two-dimensional NMR spectra of enaminocarbonyl and their deuterated analogues were recorded in CDCl 3 and CD 2Cl 2 at variable temperatures and assigned. 1JNH coupling constants for the derivatives of Meldrum's and tetronic acids reveal that they exist at the NH-form. It was demonstrated that deuterium isotope effects, for the hydrogen bonded compounds, due to the deuterium substitution at the nitrogen nucleus lead to large one-bond isotope effects at nitrogen, 1Δ 15N(D), and two-bond isotope effects on carbon nuclei, 2ΔC(ND), respectively. A linear correlations exist between 2ΔC(ND) and 1Δ 15N(D) whereas the correlation with δNH is divided into two. A good agreement between the experimentally observed 2ΔC(ND) and calculated dσ 13C/dR NH was obtained. A very good correlation between calculated NH bond lengths and observed NH chemical shifts is found. The observed isotope effects are shown to depend strongly on Resonance Assisted Hydrogen bonding.

  10. Sedimentation stacking diagram of binary colloidal mixtures and bulk phases in the plane of chemical potentials

    International Nuclear Information System (INIS)

    Heras, Daniel de las; Schmidt, Matthias

    2015-01-01

    We give a full account of a recently proposed theory that explicitly relates the bulk phase diagram of a binary colloidal mixture to its phase stacking phenomenology under gravity (de las Heras and Schmidt 2013 Soft Matter 9 8636). As we demonstrate, the full set of possible phase stacking sequences in sedimentation-diffusion equilibrium originates from straight lines (sedimentation paths) in the chemical potential representation of the bulk phase diagram. From the analysis of various standard topologies of bulk phase diagrams, we conclude that the corresponding sedimentation stacking diagrams can be very rich, even more so when finite sample height is taken into account. We apply the theory to obtain the stacking diagram of a mixture of nonadsorbing polymers and colloids. We also present a catalog of generic phase diagrams in the plane of chemical potentials in order to facilitate the practical application of our concept, which also generalizes to multi-component mixtures. (paper)

  11. Selectivity of calixarene-bonded silica-phases in HPLC: description of special characteristics with a multiple term linear equation at two different pH-values.

    Science.gov (United States)

    Schneider, Christian; Meyer, Rüdiger; Jira, Thomas

    2008-09-01

    Six different calixarene-bonded phases were characterized by analyzing 36 and 26 solutes at pH 3 and 7, respectively. Dolan and Snyder's multiple term linear equation was used to correlate retention factors k' to parameters of the solutes and columns. The column parameters have been related to molecular properties of the stationary phases and new suggestions were made for the interpretation of steric selectivity. Ionic and polar interactions have been found dependent on pH value, while steric interactions are less dependent and hydrophobic interactions remain unchanged. Distinct differences of the supported interactions were confirmed between the calixarene-bonded and the common alkyl-bonded silicas. By use of the parameters, values of k' can be estimated with an average deviation of 2.50 and 7.92% at low and neutral pH-value, respectively.

  12. Chemical bond properties and Mossbauer spectroscopy in (La1-xMx)2CuO4 (M=Ba, Sr)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By using the average band-gap model, the chemical bond properties of (La1-x Mx)2CuO4(M=Ba, Sr) were calculated . The calculated covalencies for Cu(O and La(O bond in the compounds are 0.3 and 0.03 respectively. M?ssbauer isomer shifts of 57Fe doped in La2CuO4 and 119Sn doped in La2CuO4 were calculated by using the chemical surrounding factor defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified in 57Fe and 119Sn doped La2CuO4.

  13. A quantitative infrared spectral library of vapor phase chemicals: applications to environmental monitoring and homeland defense

    Science.gov (United States)

    Sharpe, Steven W.; Johnson, Timothy J.; Sams, Robert L.

    2004-12-01

    The utility of infrared spectroscopy for monitoring and early warning of accidental or deliberate chemical releases to the atmosphere is well documented. Regardless of the monitoring technique (open-path or extractive) or weather the spectrometer is passive or active (Fourier transform or lidar) a high quality, quantitative reference library is essential for meaningful interpretation of the data. Pacific Northwest National Laboratory through the support of the Department of Energy has been building a library of pure, vapor phase chemical species for the last 4 years. This infrared spectral library currently contains over 300 chemicals and is expected to grow to over 400 chemicals before completion. The library spectra are based on a statistical fit to many spectra at different concentrations, allowing for rigorous error analysis. The contents of the library are focused on atmospheric pollutants, naturally occurring chemicals, toxic industrial chemicals and chemicals specifically designed to do damage. Applications, limitations and technical details of the spectral library will be discussed.

  14. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.

    Science.gov (United States)

    McLachlan, Michael S; Czub, Gertje; Wania, Frank

    2002-11-15

    Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental

  15. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gray, S.K. [Argonne National Laboratory, IL (United States)

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  16. Black hole phase transitions and the chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Maity, Reevu, E-mail: reevum@iitk.ac.in; Roy, Pratim, E-mail: proy@iitk.ac.in; Sarkar, Tapobrata, E-mail: tapo@iitk.ac.in

    2017-02-10

    In the context of black hole thermodynamics and the AdS–CFT correspondence, we consider the chemical potential (μ) dual to the number of colours (N) of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining μ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking–Page transition for AdS–Schwarzschild and RN–AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr–AdS black holes in four and five dimensions, our analysis points to the fact that μ can change sign in the stable black hole region, i.e. above the Hawking–Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss–Bonnet gravity, and find similar features for μ as in the Kerr–AdS case.

  17. The Eco Logic gas-phase chemical reduction process

    International Nuclear Information System (INIS)

    Hallett, D.J.; Campbell, K.R.

    1994-01-01

    Since 1986, Eco Logic has conducted research with the aim of developing a new technology for destroying aqueous organic wastes, such as contaminated harbor sediments, landfill soil and leachates, and lagoon sludges. The goal was a commercially-viable chemical process that could deal with these watery wastes and also process stored wastes. The process described in this paper was developed with a view to avoiding the expense and technical drawbacks of incinerators, while still providing high destruction efficiencies and waste volume capabilities. A lab-scale process unit was constructed in 1988 and tested extensively. Based on the results of these tests, it was decided to construct a mobile pilot-scale unit that could be used for further testing and ultimately for small commercial waste processing operations. It was taken through a preliminary round of tests at Hamilton Harbour, Ontario, where the waste processed was coal-tar-contaminated harbor sediment. In 1992, the same unit was taken through a second round of tests in Bay City, Michigan. In this test program, the pilot-scale unit processed PCBs in aqueous, organic and soil matrices. This paper describes the process reactions and the pilot-scale process unit, and presents the results of pilot-scale testing thus far

  18. Black hole phase transitions and the chemical potential

    Directory of Open Access Journals (Sweden)

    Reevu Maity

    2017-02-01

    Full Text Available In the context of black hole thermodynamics and the AdS–CFT correspondence, we consider the chemical potential (μ dual to the number of colours (N of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining μ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking–Page transition for AdS–Schwarzschild and RN–AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr–AdS black holes in four and five dimensions, our analysis points to the fact that μ can change sign in the stable black hole region, i.e. above the Hawking–Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss–Bonnet gravity, and find similar features for μ as in the Kerr–AdS case.

  19. Interphase thermodynamic bond in heterogeneous alloys: effects on alloy properties

    International Nuclear Information System (INIS)

    Savchenko, A.M.; Konovalov, Yu.V.; Yuferov, O.I.

    2005-01-01

    Inconsistency between a conventional thermodynamic description of alloys as a mechanical mixture of phases and a real alloys state as a common thermodynamic system in which there is a complicated physical-chemical phases interaction has been considered. It is supposed that in heterogeneous alloys (eutectic ones, for instance), so called interphase thermodynamic bond can become apparent due to a partial electron levels splitting under phase interaction. Thermodynamic description of phase equilibrium in alloys is proposed taking into account a thermodynamic bond for the system with phase diagram of eutectic type, and methods of the value of this bond estimation are presented. Experimental evidence (Al-Cu-Si, Al-Si-Mg-Cu, U-Mo + Al) of the effect of interphase thermodynamic bond on temperature and enthalpy of melting of alloys are produced as well as possibility of its effects on alloys electrical conduction, strength, heat and corrosion resistance is substantiated theoretically [ru

  20. The nature of chemical bonding in actinide and lanthanide ferrocyanides determined by X-ray absorption spectroscopy and density functional theory.

    Science.gov (United States)

    Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; Scheinost, Andreas; Moisy, Philippe; Petit, Sébastien; Shuh, David K; Tyliszczak, Tolek; Den Auwer, Christophe

    2016-01-28

    The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide better resolution than actinide L3-edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L2,3-edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K4Fe(II)(CN)6, thorium hexacyanoferrate Th(IV)Fe(II)(CN)6, and neodymium hexacyanoferrate KNd(III)Fe(II)(CN)6. The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe(II)(CN)6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K4Fe(II)(CN)6), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.

  1. Efficient soluble expression of disulfide bonded proteins in the cytoplasm of Escherichia coli in fed-batch fermentations on chemically defined minimal media.

    Science.gov (United States)

    Gąciarz, Anna; Khatri, Narendar Kumar; Velez-Suberbie, M Lourdes; Saaranen, Mirva J; Uchida, Yuko; Keshavarz-Moore, Eli; Ruddock, Lloyd W

    2017-06-15

    The production of recombinant proteins containing disulfide bonds in Escherichia coli is challenging. In most cases the protein of interest needs to be either targeted to the oxidizing periplasm or expressed in the cytoplasm in the form of inclusion bodies, then solubilized and re-folded in vitro. Both of these approaches have limitations. Previously we showed that soluble expression of disulfide bonded proteins in the cytoplasm of E. coli is possible at shake flask scale with a system, known as CyDisCo, which is based on co-expression of a protein of interest along with a sulfhydryl oxidase and a disulfide bond isomerase. With CyDisCo it is possible to produce disulfide bonded proteins in the presence of intact reducing pathways in the cytoplasm. Here we scaled up production of four disulfide bonded proteins to stirred tank bioreactors and achieved high cell densities and protein yields in glucose fed-batch fermentations, using an E. coli strain (BW25113) with the cytoplasmic reducing pathways intact. Even without process optimization production of purified human single chain IgA 1 antibody fragment reached 139 mg/L and hen avidin 71 mg/L, while purified yields of human growth hormone 1 and interleukin 6 were around 1 g/L. Preliminary results show that human growth hormone 1 was also efficiently produced in fermentations of W3110 strain and when glucose was replaced with glycerol as the carbon source. Our results show for the first time that efficient production of high yields of soluble disulfide bonded proteins in the cytoplasm of E. coli with the reducing pathways intact is feasible to scale-up to bioreactor cultivations on chemically defined minimal media.

  2. Solid phase extraction of uranium and thorium on octadecyl bonded silica modified with Cyanex 302 from aqueous solutions

    International Nuclear Information System (INIS)

    Nilchi, A.; Shariati Dehaghan, T.; Rasouli Garmarodi, S.

    2013-01-01

    A simple and reliable method for rapid extraction and determination of uranium and thorium using octadecyl-bonded silica modified with Cyanex 302 is presented. Extraction efficiency and the influence of various parameters such as aqueous phase pH, flow rate of sample solution and amount of extractant has been investigated. The study showed that the extraction of uranium and thorium increase with increasing pH value and was found to be quantitative at pH 6; and the retention of ions was not affected significantly by the flow rate of sample solution. The extraction percent were found to be 89.55 and 86.27 % for uranium and thorium, respectively. The maximal capacity of the cartridges modified by 30 mg of Cyanex 302 was found to be 20 mg of uranium and thorium. The method was successfully applied to the extraction and determination of uranium and thorium in aqueous solutions. The percentage recovery of uranium and thorium in a number of natural as well as seawater samples of Iran were also investigated and found to be in the range of 85-95%. (author)

  3. Microstructural evolution during transient liquid phase bonding of Inconel 617 using Ni-Si-B filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Jalilian, F. [McGill University, Department of Mining, Metals and Materials Engineering, 3610 University St., M.H. Wong Building, Montreal Que., H3A 2B2 (Canada); Jahazi, M. [Aerospace Manufacturing Technology Center, National Research Council of Canada (Canada); Drew, R.A.L. [McGill University, Department of Mining, Metals and Materials Engineering, 3610 University St., M.H. Wong Building, Montreal Que., H3A 2B2 (Canada)]. E-mail: robin.drew@mcgill.ca

    2006-05-15

    The influence of process parameters on microstructural characteristics of transient liquid phase (TLP) bonded Inconel 617 alloy was investigated. Experiments were carried out at 1065 deg. C using nickel based filler metal (Ni-4.5% Si-3% B) with B as the melting point depressant (MPD) element. Two different thickness of interlayer and various holding times were employed. The influence of these processing parameters on the characteristics of the joint area particularly size, morphology and composition of precipitates was investigated. The presence of MoB, Mo{sub 2}B, M{sub 23}C{sub 6}, TiC, M{sub 23}(B, C){sub 6} and Ni{sub 3}B precipitates in the diffusion layer and Ni{sub 3}B, Ni{sub 3}Si and Ni{sub 5}Si{sub 2} precipitates in the interlayer at the interface between the base metal and interlayer were demonstrated using electron back scattered diffraction (EBSD), energy dispersive spectrometry (EDS) and TEM.

  4. Relating mechanical properties and chemical bonding in an inorganic-organic framework material: a single-crystal nanoindentation study.

    Science.gov (United States)

    Tan, Jin Chong; Furman, Joshua D; Cheetham, Anthony K

    2009-10-14

    We report the application of nanoindentation and atomic force microscopy to establish the fundamental relationships between mechanical properties and chemical bonding in a dense inorganic-organic framework material: Ce(C(2)O(4))(HCO(2)), 1. Compound 1 is a mixed-ligand 3-D hybrid which crystallizes in an orthorhombic space group, in which its three basic building blocks, i.e. the inorganic metal-oxygen-metal (M-O-M) chains and the two organic bridging ligands, (oxalate and formate) are all oriented perpendicular to one another. This unique architecture enabled us to decouple the elastic and plastic mechanical responses along the three primary axes of a single crystal to understand the contribution associated with stiff vs compliant basic building blocks. The (001)-oriented facet that features rigid oxalate ligands down the c-axis exhibits the highest stiffness and hardness (E approximately 78 GPa and H approximately 4.6 GPa). In contrast, the (010)-oriented facet was found to be the most compliant and soft (E approximately 43 GPa and H approximately 3.9 GPa), since the formate ligand, which is the more compliant building block within this framework, constitutes the primary linkages down the b-axis. Notably, intermediate stiffness and hardness (E approximately 52 GPa and H approximately 4.1 GPa) were measured on the (100)-oriented planes. This can be attributed to the Ce-O-Ce chains that zigzag down the a-axis (Ce...Ce metal centers form an angle of approximately 132 degrees) and also the fact that the 9-coordinated CeO(9) polyhedra are expected to be geometrically more compliant. Our results present the first conclusive evidence that the crystal orientation dominated by inorganic chains is not necessarily more robust from the mechanical properties standpoint. Rigid organic bridging ligands (such as oxalate), on the other hand, can be used to produce greater stiffness and hardness properties in a chosen crystallographic orientation. This study demonstrates that

  5. Mechanical and Microstructure Study of Nickel-Based ODS Alloys Processed by Mechano-Chemical Bonding and Ball Milling

    Science.gov (United States)

    Amare, Belachew N.

    Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural

  6. Isotopic studies of trans- and cis-HOCO using rotational spectroscopy: Formation, chemical bonding, and molecular structures

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Michael C., E-mail: mccarthy@cfa.harvard.edu; Martinez, Oscar; Crabtree, Kyle N.; Martin-Drumel, Marie-Aline [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA and School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138 (United States); McGuire, Brett A. [National Radio Astronomy Observatory, Charlottesville, Virginia 22901 (United States); Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA and School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138 (United States); Stanton, John F. [Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712-0165 (United States)

    2016-03-28

    HOCO is an important intermediate in combustion and atmospheric processes because the OH + CO → H + CO{sub 2} reaction represents the final step for the production of CO{sub 2} in hydrocarbon oxidation, and theoretical studies predict that this reaction proceeds via various intermediates, the most important being this radical. Isotopic investigations of trans- and cis-HOCO have been undertaken using Fourier transform microwave spectroscopy and millimeter-wave double resonance techniques in combination with a supersonic molecular beam discharge source to better understand the formation, chemical bonding, and molecular structures of this radical pair. We find that trans-HOCO can be produced almost equally well from either OH + CO or H + CO{sub 2} in our discharge source, but cis-HOCO appears to be roughly two times more abundant when starting from H + CO{sub 2}. Using isotopically labelled precursors, the OH + C{sup 18}O reaction predominately yields HOC{sup 18}O for both isomers, but H{sup 18}OCO is observed as well, typically at the level of 10%-20% that of HOC{sup 18}O; the opposite propensity is found for the {sup 18}OH + CO reaction. DO + C{sup 18}O yields similar ratios between DOC{sup 18}O and D{sup 18}OCO as those found for OH + C{sup 18}O, suggesting that some fraction of HOCO (or DOCO) may be formed from the back-reaction H + CO{sub 2}, which, at the high pressure of our gas expansion, can readily occur. The large {sup 13}C Fermi-contact term (a{sub F}) for trans- and cis-HO{sup 13}CO implicates significant unpaired electronic density in a σ-type orbital at the carbon atom, in good agreement with theoretical predictions. By correcting the experimental rotational constants for zero-point vibration motion calculated theoretically using second-order vibrational perturbation theory, precise geometrical structures have been derived for both isomers.

  7. The rewritable effects of bonded magnet for large starting torque and high efficiency in the small power single-phase written pole motor

    Science.gov (United States)

    Choi, Jae-Hak; Lee, Sung-Ho

    2009-04-01

    This paper presents a single-phase written pole motor using a bonded ring magnet for the small power home application. The motor has an exciter pole structure inside the stator and hybrid characteristics of an induction motor and permanent magnet motor. The design parameters and operating characteristics of the hybrid concept motor are investigated to increase starting torque and efficiency, which is most important for the small power home application. Larger starting torque and higher efficiency than those of the conventional induction motor could be obtained by using the rewritable characteristics of bonded magnet on the starting and running conditions.

  8. Induced Smectic X Phase Through Intermolecular Hydrogen-Bonded Liquid Crystals Formed Between Citric Acid and p- n-(Octyloxy)Benzoic Acid

    Science.gov (United States)

    Sundaram, S.; Subhasri, P.; Rajasekaran, T. R.; Jayaprakasam, R.; Senthil, T. S.; Vijayakumar, V. N.

    2017-08-01

    Hydrogen-bonded liquid crystal (HBLC) is synthesized from citric acid (CA) and 4-(octyloxy)benzoic acid (8OBA) with different mole ratios. Fourier transform infrared spectroscopy (FT-IR) confirms the presence of hydrogen bond between CA and 8OBA. Nuclear magnetic resonance (NMR) spectroscopic studies validate the intermolecular complementary, cyclic type of hydrogen bond, and molecular environment in the designed HBLC complex. Powder X-ray diffraction analysis reveals the monoclinic nature of liquid crystal complex in solid phase. Liquid crystal parameters such as phase transition temperature and enthalpy values for the corresponding mesogenic phases are investigated using a polarizing optical microscope (POM) and differential scanning calorimetry (DSC). It is observed that the change in chain length and steric hindrance while increasing the mole ratio in HBLC complex induces a new smectic X (Sm X) along with higher-order smectic G (Sm G) phases by quenching of smectic C (Sm C). From the experimental observations, induced Sm X phase has been identified as a finger print texture. Also, Sm G is a multi-colored mosaic texture in 1:1, 1:2, and 1:3 mol ratios. The optical tilt angle, thermal stability factor, and enhanced thermal span width of CA + 8OBA complex are discussed.

  9. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    Science.gov (United States)

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  10. On the problem of whether mass or chemical bonding is more important to bombardment-induced compositional changes in alloys and oxides

    International Nuclear Information System (INIS)

    Kelly, R.

    1980-01-01

    The bombardment of alloys, oxides, and halides often leads to marked compositional changes at the surface, and these changes have been attributed to an interplay of mass-dependent effects, chemical bonding, electronic processes, and diffusion. We attempt here to answer the limited question of whether, considering only alloys and oxides, mass or bonding is normally more important. The relevant theory is reviewed and extended, with mass effects being shown to be associated most explicitly with recoil sputtering and bonding effects being shown to be associated with all three of cascade sputtering, thermal sputtering, and surface segregation. As far as experimental examples are concerned, mass correlations are found to be quite unsuccessful, whereas most observations can be understood rather well in terms of bonding. Nevertheless, there is a basic problem in that the cascade component of sputtering, normally judged to be predominant, should give significantly less compositional change than is observed. Thermal sputtering would lead to more significant changes, but there is a new problem that, at least with alloys, the absolute yields are probably rather small. A combination of surface segregation with sputtering would also lead to more significant changes, but it is unclear whether segregation is rapid enough to be important in room-temperature bombardments. (orig.)

  11. Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)

    Science.gov (United States)

    Rose, Clémence; Chaumerliac, Nadine; Deguillaume, Laurent; Perroux, Hélène; Mouchel-Vallon, Camille; Leriche, Maud; Patryl, Luc; Armand, Patrick

    2018-02-01

    The new detailed aqueous-phase mechanism Cloud Explicit Physico-chemical Scheme (CLEPS 1.0), which describes the oxidation of isoprene-derived water-soluble organic compounds, is coupled with a warm microphysical module simulating the activation of aerosol particles into cloud droplets. CLEPS 1.0 was then extended to CLEPS 1.1 to include the chemistry of the newly added dicarboxylic acids dissolved from the particulate phase. The resulting coupled model allows the prediction of the aqueous-phase concentrations of chemical compounds originating from particle scavenging, mass transfer from the gas-phase and in-cloud aqueous chemical reactivity. The aim of the present study was more particularly to investigate the effect of particle scavenging on cloud chemistry. Several simulations were performed to assess the influence of various parameters on model predictions and to interpret long-term measurements conducted at the top of Puy de Dôme (PUY, France) in marine air masses. Specific attention was paid to carboxylic acids, whose predicted concentrations are on average in the lower range of the observations, with the exception of formic acid, which is rather overestimated in the model. The different sensitivity runs highlight the fact that formic and acetic acids mainly originate from the gas phase and have highly variable aqueous-phase reactivity depending on the cloud acidity, whereas C3-C4 carboxylic acids mainly originate from the particulate phase and are supersaturated in the cloud.

  12. Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C' scalar couplings (3hbJNC')

    Energy Technology Data Exchange (ETDEWEB)

    Bonvin, Alexandre M.J.J.; Houben, Klaartje; Guenneugues, Marc; Kaptein, Robert; Boelens, Rolf [Utrecht University, Bijvoet Center for Biomolecular Research, NMR Spectroscopy (Netherlands)

    2001-11-15

    The possibility of generating protein folds at the stage of backbone assignment using structural restraints derived from experimentally measured cross-hydrogen bond scalar couplings and secondary chemical shift information is investigated using as a test case the small {alpha}/{beta} protein chymotrypsin inhibitor 2. Dihedral angle restraints for the {phi} and {psi} angles of 32 out of 64 residues could be obtained from secondary chemical shift analysis with the TALOS program (Corneliscu et al., 1999a). This information was supplemented by 18 hydrogen-bond restraints derived from experimentally measured cross-hydrogen bond {sup 3hb}J{sub NC'} coupling constants. These experimental data were sufficient to generate structures that are as close as 1.0 A backbone rmsd from the crystal structure. The fold is, however, not uniquely defined and several solutions are generated that cannot be distinguished on the basis of violations or energetic considerations. Correct folds could be identified by combining clustering methods with knowledge-based potentials derived from structural databases.

  13. Chemical synthesis, phase transformation and magnetic proprieties of FePt and FePd nanoparticles

    International Nuclear Information System (INIS)

    Delattre, Anastasia

    2010-01-01

    This work aims at understanding the chemical synthesis of FePt and FePd nanoparticles (NPs), and at exploring how to implement the phase transformation from the chemically disordered to the L10 phase, without coalescence. Using hexadecanenitrile instead of oleylamine, we obtain NPs with a more homogenous internal composition, instead of core-shell NPs. Through a systematic study (designed experiment relying on Taguchi tables), we developed the FePd synthesis, while evidencing the role of each ligand and of the reductor. To induce the crystalline phase transformation while avoiding coalescence, we explored two ways. In the first one, atomic vacancies are introduced in the NPs through light ion irradiation, atomic mobility being ensured by annealing at moderate temperature (300 C). As a result, the blocking temperature is multiplied by 4, due to anisotropy enhancement. However, strong chemical ordering in the L10 phase cannot be achieved. The second approach relies on the dispersion of the NPs in a salt (NaCl) matrix, prior to annealing at 700 C: high chemical ordering is achieved, and the blocking temperature is beyond 400 C. We then developed a single-step process to remove the salt by dissolution in water and to re-disperse NPs in stable aqueous or organics solutions. These high magnetic anisotropy NPs are then readily available for further chemical or manipulation steps, with applied perspectives in areas such as data storage, or biology. (author)

  14. Chemical-Reaction-Controlled Phase Separated Drops: Formation, Size Selection, and Coarsening

    Science.gov (United States)

    Wurtz, Jean David; Lee, Chiu Fan

    2018-02-01

    Phase separation under nonequilibrium conditions is exploited by biological cells to organize their cytoplasm but remains poorly understood as a physical phenomenon. Here, we study a ternary fluid model in which phase-separating molecules can be converted into soluble molecules, and vice versa, via chemical reactions. We elucidate using analytical and simulation methods how drop size, formation, and coarsening can be controlled by the chemical reaction rates, and categorize the qualitative behavior of the system into distinct regimes. Ostwald ripening arrest occurs above critical reaction rates, demonstrating that this transition belongs entirely to the nonequilibrium regime. Our model is a minimal representation of the cell cytoplasm.

  15. Gas-Phase Molecular Dynamics: Theoretical Studies In Spectroscopy and Chemical Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu H. G.; Muckerman, J.T.

    2012-05-29

    The main goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods, and extends them to understand some important properties of materials in condensed phases and interstellar medium as well as in combustion environments.

  16. Temperature and baryon-chemical-potential-dependent bag pressure for a deconfining phase transition

    International Nuclear Information System (INIS)

    Patra, B.K.; Singh, C.P.

    1996-01-01

    We explore the consequences of a bag model developed by Leonidov et al. for the deconfining phase transition in which the bag pressure is made to depend on the temperature and baryon chemical potential in order to ensure the entropy and baryon number conservation at the phase boundary together with the Gibbs construction for an equilibrium phase transition. We show that the bag pressure thus obtained yields an anomalous increasing behavior with the increasing baryon chemical potential at a fixed temperature which defies a physical interpretation. We demonstrate that the inclusion of the perturbative interactions in the QGP phase removes this difficulty. Further consequences of the modified bag pressure are discussed. copyright 1996 The American Physical Society

  17. Phase and Texture Evolution in Chemically Derived PZT Thin Films on Pt Substrates

    Science.gov (United States)

    2014-09-01

    function of heating rate. The FWHM of the Ill PZT texture components is sim 2978 Journal of the American Ceramic Society Mhin et al. Vol. 97, No. 9...Z39.18 ABSTRACT Phase and Texture Evolution in Chemically Derived PZT Thin Films on Pt Substrates Report Title The crystallization of lead zirconate...phase influencing texture evolution. The results suggest that PZT nucleates directly on Pt, which explains the observation of a more highly oriented

  18. Understanding the fast phase-change mechanism of tetrahedrally bonded Cu2GeTe3 : Comprehensive analyses of electronic structure and transport phenomena

    Science.gov (United States)

    Kobayashi, Keisuke; Skelton, Jonathan M.; Saito, Yuta; Shindo, Satoshi; Kobata, Masaaki; Fons, Paul; Kolobov, Alexander V.; Elliott, Stephen; Ando, Daisuke; Sutou, Yuji

    2018-05-01

    Cu2GeTe3 (CGT) phase-change material, a promising candidate for advanced fast nonvolatile random-access-memory devices, has a chalcopyritelike structure with s p3 bonding in the crystalline phase; thus, the phase-change (PC) mechanism is considered to be essentially different from that of the standard PC materials (e.g., Ge-Sb-Te) with threefold to sixfold p -like bonding. In order to reveal the PC mechanism of CGT, the electronic structure change due to PC has been investigated by laboratory hard x-ray photoelectron spectroscopy and combined first-principles density-functional theory molecular-dynamics simulations. The valence-band spectra, in both crystalline and amorphous phases, are well simulated by the calculations. An inherent tendency of Te 5 s lone-pair formation and an enhanced participation of Cu 3 d orbitals in the bonding are found to play dominant roles in the PC mechanism. The electrical conductivity of as-deposited films and its change during the PC process is investigated in connection with valence-band spectral changes near the Fermi level. The results are successfully analyzed, based on a model proposed by Davis and Mott for chalcogenide amorphous semiconductors. The results suggest that robustness of the defect-band states against thermal stress is a key to the practical application of this material for memory devices.

  19. Constraining the QCD phase diagram by tricritical lines at imaginary chemical potential

    CERN Document Server

    de Forcrand, Philippe

    2010-01-01

    We present unambiguous evidence from lattice simulations of QCD with three degenerate quark species for two tricritical points in the (T,m) phase diagram at fixed imaginary \\mu/T=i\\pi/3 mod 2\\pi/3, one in the light and one in the heavy mass regime. These represent the boundaries of the chiral and deconfinement critical lines continued to imaginary chemical potential, respectively. It is demonstrated that the shape of the deconfinement critical line for real chemical potentials is dictated by tricritical scaling and implies the weakening of the deconfinement transition with real chemical potential. The generalization to non-degenerate and light quark masses is discussed.

  20. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: Quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors

    International Nuclear Information System (INIS)

    D'Archivio, Angelo Antonio; Ruggieri, Fabrizio; Mazzeo, Pietro; Tettamanti, Enzo

    2007-01-01

    A quantitative structure-retention relationship (QSRR) analysis based on multilinear regression (MLR) and artificial neural networks (ANNs) is carried out to model the combined effect of solute structure and eluent composition on the retention behaviour of pesticides in isocratic reversed-phase high-performance liquid chromatography (RP-HPLC). The octanol-water partition coefficient and four quantum chemical descriptors (the total dipole moment, the mean polarizability, the anisotropy of the polarizability and a descriptor of hydrogen-bonding based on the atomic charges on acidic and basic chemical functionalities) are considered as solute descriptors. In order to identify suitable mobile phase descriptors, encoding composition-dependent properties of both methanol- and acetonitrile-containing mobile phases, the Kamlet-Taft solvatochromic parameters (polarity-dipolarity, hydrogen-bond acidity and hydrogen-bond basicity, π * , α and β, respectively) and the 14 N hyperfine-splitting constant (a N ) of a spin-probe dissolved in the eluent are examined. A satisfactory description of mobile phase properties influencing the solute retention is provided by a N and β or alternatively π * and β. The two seven-parameter models resulting from combination of a N and β, or π * and β, with the solute descriptors were tested on a set of 26 pesticides representative of 10 different chemical classes in a wide range of mobile phase composition (30-60% (v/v) water-methanol and 30-70% (v/v) water-acetonitrile). Within the explored experimental range, the acidity of the eluent, as quantified by α, is almost constant, and this parameter is in fact irrelevant. The results reveal that a N and π * , that can be considered as interchangeable mobile phase descriptors, are the most influent variables in the respective models. The predictive ability of the proposed models, as tested on an external data set, is quite good (Q 2 close to 0.94) when a MLR approach is used, but the

  1. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: Quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors

    Energy Technology Data Exchange (ETDEWEB)

    D' Archivio, Angelo Antonio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)]. E-mail: darchivi@univaq.it; Ruggieri, Fabrizio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Mazzeo, Pietro [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Tettamanti, Enzo [Dipartimento di Scienze Biomediche Comparate, Universita di Teramo, P.zzale A. Moro 45, 64100 Teramo (Italy)

    2007-06-19

    A quantitative structure-retention relationship (QSRR) analysis based on multilinear regression (MLR) and artificial neural networks (ANNs) is carried out to model the combined effect of solute structure and eluent composition on the retention behaviour of pesticides in isocratic reversed-phase high-performance liquid chromatography (RP-HPLC). The octanol-water partition coefficient and four quantum chemical descriptors (the total dipole moment, the mean polarizability, the anisotropy of the polarizability and a descriptor of hydrogen-bonding based on the atomic charges on acidic and basic chemical functionalities) are considered as solute descriptors. In order to identify suitable mobile phase descriptors, encoding composition-dependent properties of both methanol- and acetonitrile-containing mobile phases, the Kamlet-Taft solvatochromic parameters (polarity-dipolarity, hydrogen-bond acidity and hydrogen-bond basicity, {pi} {sup *}, {alpha} and {beta}, respectively) and the {sup 14}N hyperfine-splitting constant (a {sub N}) of a spin-probe dissolved in the eluent are examined. A satisfactory description of mobile phase properties influencing the solute retention is provided by a {sub N} and {beta} or alternatively {pi} {sup *} and {beta}. The two seven-parameter models resulting from combination of a {sub N} and {beta}, or {pi} {sup *} and {beta}, with the solute descriptors were tested on a set of 26 pesticides representative of 10 different chemical classes in a wide range of mobile phase composition (30-60% (v/v) water-methanol and 30-70% (v/v) water-acetonitrile). Within the explored experimental range, the acidity of the eluent, as quantified by {alpha}, is almost constant, and this parameter is in fact irrelevant. The results reveal that a {sub N} and {pi} {sup *}, that can be considered as interchangeable mobile phase descriptors, are the most influent variables in the respective models. The predictive ability of the proposed models, as tested on an

  2. A comparative effect of various surface chemical treatments on the resin composite-composite repair bond strength

    Directory of Open Access Journals (Sweden)

    Shaloo Gupta

    2015-01-01

    Full Text Available Aim: The aim of this in vitro study was an attempt to investigate the effect of different surface treatments on the bond strength between pre-existing composite and repair composite resin. Materials and Methods: Forty acrylic blocks were prepared in a cuboidal mould. In each block, a well of 5 mm diameter and 5 mm depth was prepared to retain the composite resin (Filtek™ Z350, 3M/ESPE. Aging of the composite discs was achieved by storing them in water at 37°C for 1 week, and after that were divided into 5 groups (n = 8 according to surface treatment: Group I- 37% phosphoric acid, Group II-10% hydrofluoric acid, Group III-30% citric acid, Group IV-7% maleic acid and Group V- Adhesive (no etchant. The etched surfaces were rinsed and dried followed by application of bonding agent (Adper™ Single Bond 2. 3M/ESPE. The repair composite was placed on aged composite, light-cured for 40 seconds and stored in water at 37°C for 1 week. Shear bond strength between the aged and the new composite resin was determined with a universal testing machine (crosshead speed of 0.5 mm/min. Statistical Analysis: The compressive shear strengths were compared for differences using ANOVA test followed by Tamhane′s T2 post hoc analysis. Results: The surface treatment with 10% hydrofluoric acid showed the maximum bond strength followed by 30% citric acid, 7% maleic acid and 37% phosphoric acid in decreasing order. Conclusion: The use of 10% hydrofluoric acid can be a good alternative for surface treatment in repair of composite resin restoration as compared to commonly used 37% orthophosphoric acid.

  3. Ge and As x-ray absorption fine structure spectroscopic study of homopolar bonding, chemical order, and topology in Ge-As-S chalcogenide glasses

    International Nuclear Information System (INIS)

    Sen, S.; Ponader, C.W.; Aitken, B.G.

    2001-01-01

    The coordination environments of Ge and As atoms in Ge x As y S 1-x-y glasses with x:y=1:2, 1:1, and 2.5:1 and with wide-ranging S contents have been studied with Ge and As K-edge x-ray absorption fine structure spectroscopy. The coordination numbers of Ge and As atoms are found to be 4 and 3, respectively, in all glasses. The first coordination shells of Ge and As atoms in the stoichiometric and S-excess glasses consist of S atoms only, implying the preservation of chemical order at least over the length scale of the first coordination shell. As-As homopolar bonds are found to appear at low and intermediate levels of S deficiency, whereas Ge-Ge bonds are formed only in strongly S-deficient glasses indicating clustering of metal atoms and violation of chemical order in S-deficient glasses. The composition-dependent variation in chemical order in chalcogenide glasses has been hypothesized to result in topological changes in the intermediate-range structural units. The role of such topological transitions in controlling the structure-property relationships in chalcogenide glasses is discussed

  4. Synthesis and characterization of some reduced ternary and quaternary molybdenum oxide phases with strong metal-metal bonds

    International Nuclear Information System (INIS)

    Lii, K.H.

    1985-10-01

    In the course of our research on reduced ternary and quaternary molybdenum oxides, very interesting compounds with strong metal-metal bonds were discovered. Among these solid-state materials are found discrete cluster arrays and structures with extended metal-metal bonding. Further study in this system has revealed that many new structures exist in this new realm. The synthesis, structures, bonding, and properties of these new oxides, which are briefly summarized in tabular form, are presented in this thesis. 144 refs., 63 figs., 79 tabs

  5. Solution and gas phase evidence of anion binding through the secondary bonding interactions of a bidentate bis-antimony(iii) anion receptor.

    Science.gov (United States)

    Qiu, J; Song, B; Li, X; Cozzolino, A F

    2017-12-20

    The solution and gas phase halide binding to a bis-antimony(iii) anion receptor was studied. This new class of anion receptors utilizes the strong Sb-centered secondary bonding interactions (SBIs) that are formed opposite to the polar Sb-O primary bond. 1 H NMR titration data were fitted statistically to binding models and solution-phase binding energetics were extracted, while the formation of anion-to-receptor complexes was observed using ESI-MS. Density functional theory calculations suggest that their affinity towards binding halide anions is mitigated by the strong explicit solvation effect in DMSO, which gives insights into future designs that circumvent direct solvent binding and are anticipated to yield tighter and perhaps more selectivity in anion binding.

  6. The constitutive distributed parameter model of multicomponent chemical processes in gas, fluid and solid phase

    International Nuclear Information System (INIS)

    Niemiec, W.

    1985-01-01

    In the literature of distributed parameter modelling of real processes is not considered the class of multicomponent chemical processes in gas, fluid and solid phase. The aim of paper is constitutive distributed parameter physicochemical model, constructed on kinetics and phenomenal analysis of multicomponent chemical processes in gas, fluid and solid phase. The mass, energy and momentum aspects of these multicomponent chemical reactions and adequate phenomena are utilized in balance operations, by conditions of: constitutive invariance for continuous media with space and time memories, reciprocity principle for isotropic and anisotropic nonhomogeneous media with space and time memories, application of definitions of following derivative and equation of continuity, to the construction of systems of partial differential constitutive state equations, in the following derivative forms for gas, fluid and solid phase. Couched in this way all physicochemical conditions of multicomponent chemical processes in gas, fluid and solid phase are new form of constitutive distributed parameter model for automatics and its systems of equations are new form of systems of partial differential constitutive state equations in sense of phenomenal distributed parameter control

  7. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    Science.gov (United States)

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  8. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen

    NARCIS (Netherlands)

    Zakzeski, J.|info:eu-repo/dai/nl/326160256; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model

  9. Chemically and geographically distinct solid-phase iron pools in the Southern Ocean

    CSIR Research Space (South Africa)

    Mtshali, TN

    2012-11-01

    Full Text Available Iron is a limiting nutrient in many parts of the oceans, including the unproductive regions of the Southern Ocean. Although the dominant fraction of the marine iron pool occurs in the form of solid-phase particles, its chemical speciation...

  10. Analytical model of chemical phase and formation of DSB in chromosomes by ionizing radiation

    Czech Academy of Sciences Publication Activity Database

    Barilla, J.; Lokajíček, Miloš; Pisaková, Hana; Šimr, P.

    2013-01-01

    Roč. 36, č. 1 (2013), s. 11-17 ISSN 0158-9938 Institutional support: RVO:68378271 Keywords : radiobiological mechanism * chemical phase * DSB formation * oxygen effect Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.848, year: 2013

  11. Phase Equilibrium, Chemical Equilibrium, and a Test of the Third Law: Experiments for Physical Chemistry.

    Science.gov (United States)

    Dannhauser, Walter

    1980-01-01

    Described is an experiment designed to provide an experimental basis for a unifying point of view (utilizing theoretical framework and chemistry laboratory experiments) for physical chemistry students. Three experiments are described: phase equilibrium, chemical equilibrium, and a test of the third law of thermodynamics. (Author/DS)

  12. 2005 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephan E.

    2005-11-15

    The Pacific Northwest National Laboratory (PNNL) hosted its second annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2005. During this period, sixteen PNNL scientists hosted fourteen young scientists from eleven different universities. Of the fourteen participants, twelve were graduate students; one was a postdoctoral fellow; and one was a university faculty member.

  13. SOLGASMIX-PV, Chemical System Equilibrium of Gaseous and Condensed Phase Mixtures

    International Nuclear Information System (INIS)

    Besmann, T.M.

    1986-01-01

    1 - Description of program or function: SOLGASMIX-PV, which is based on the earlier SOLGAS and SOLGASMIX codes, calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressure can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available. 2 - Restrictions on the complexity of the problem: The program is designed to handle a maximum of 20 elements, 99 substances, and 10 mixtures, where the gas phase is considered a mixture. Each substance is either a gas or condensed phase species, or a member of a condensed phase mixture

  14. Process for improving the separation efficiency in the isolation of radioactive isotopes in elementary or chemically bonded form from liquids and gases

    International Nuclear Information System (INIS)

    Schmidberger, R.; Kirch, R.; Kock, W.

    1986-01-01

    In the process for the improvement of the separation efficiency in the isolation of radioactive isotopes in elementary or chemically bonded form from liquids or gases by ion exchange and adsorption, non-radioactive isotopes of the element to be isolated are added to the fluid before the isolation, whereas at the same time a large surplus of the non-radioactive isotopes to the radioactive isotopes is achieved by addition of only small quantities of compounds of the non-radioactive isotopes. (orig./RB) [de

  15. Chemical insight from density functional modeling of molecular adsorption: Tracking the bonding and diffusion of anthracene derivatives on Cu(111) with molecular orbitals

    Science.gov (United States)

    Wyrick, Jonathan; Einstein, T. L.; Bartels, Ludwig

    2015-03-01

    We present a method of analyzing the results of density functional modeling of molecular adsorption in terms of an analogue of molecular orbitals. This approach permits intuitive chemical insight into the adsorption process. Applied to a set of anthracene derivates (anthracene, 9,10-anthraquinone, 9,10-dithioanthracene, and 9,10-diselenonanthracene), we follow the electronic states of the molecules that are involved in the bonding process and correlate them to both the molecular adsorption geometry and the species' diffusive behavior. We additionally provide computational code to easily repeat this analysis on any system.

  16. Non-stationary filtration mode during chemical reactions with the gas phase

    Science.gov (United States)

    Zavialov, Ivan; Konyukhov, Andrey; Negodyaev, Sergey

    2015-04-01

    An experimental and numerical study of filtration accompanied by chemical reactions between displacing fluid and solid skeleton is considered. Glass balls (400-500 μm in diameter) were placed in 1 cm gap between two glass sheets and were used as model porous medium. The baking soda was added to the glass balls. The 70% solution of acetic acid was used as the displacer. The modeling porous medium was saturated with a mineral oil, and then 70% solution of colored acetic acid was pumped through the medium. The glass balls and a mineral oil have a similar refractive index, so the model porous medium was optically transparent. During the filtration, the gas phase was generated by the chemical reactions between the baking soda and acetic acid, and time-dependent displacement of the chemical reaction front was observed. The front of the chemical reaction was associated with the most intensive gas separation. The front moved, stopped, and then moved again to the area where it had been already. We called this process a secondary oxidation wave. To describe this effect, we added to the balance equations a term associated with the formation and disappearance of phases due to chemical reactions. The equations were supplemented by Darcy's law for multiphase filtration. Nonstationarity front propagation of the chemical reaction in the numerical experiment was observed at Damköhler numbers greater than 100. The mathematical modelling was agreed well with the experimental results.

  17. New sol–gel refractory coatings on chemically-bonded sand cores for foundry applications to improve casting surface quality

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Poulsen, T.; Stage, R.K.

    2011-01-01

    Foundry refractory coatings protect bonded sand cores and moulds from producing defective castings during the casting process by providing a barrier between the core and the liquid metal. In this study, new sol–gel refractory coating on phenolic urethane cold box (PUCB) core was examined. The coa......Foundry refractory coatings protect bonded sand cores and moulds from producing defective castings during the casting process by providing a barrier between the core and the liquid metal. In this study, new sol–gel refractory coating on phenolic urethane cold box (PUCB) core was examined......–gel coated cores have better surface quality than those from uncoated cores and comparable surface quality with the commercial coatings. Therefore, the new sol–gel coating has a potential application in the foundry industry for improving the surface finish of castings thereby reducing the cost of fettling...

  18. Effect of gradual ordering of Ge/Sb atoms on chemical bonding: A proposed mechanism for the formation of crystalline Ge2Sb2Te5

    Science.gov (United States)

    Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-04-01

    Using first principle calculations, we study the atomic arrangement and bonding mechanism in the crystalline phase of Ge2Sb2Te5 (GST). It is found that the stability of GST depends on the gradual ordering of Ge/Sb atoms. The configurations with different concentration of Ge/Sb in layers have been analyzed by the partial density of state, electron localization function and Bader charge distribution. The s and p-states of Ge atom alter with different stacking configurations but there is no change in Sb and Te atom states. Our findings show that the bonding between Ge-Te is not only responsible for the stability of GST alloy but can also predict which composition can show generic features of phase change material. As the number of Ge atoms near to vacancy layer decreases, Ge donates more charge. A growth model has been proposed for the formation of crystalline phase which justifies the structure models proposed in the literature.

  19. A quantum-chemical validation about the formation of hydrogen bonds and secondary interactions in intermolecular heterocyclic systems

    Directory of Open Access Journals (Sweden)

    Boaz Galdino Oliveira

    2009-08-01

    Full Text Available We have performed a detailed theoretical study in order to understand the charge density topology of the C2H4O···C2H2 and C2H4S···C2H2 heterocyclic hydrogen-bonded complexes. Through the calculations derived from Quantum Theory of Atoms in Molecules (QTAIM, it was observed the formation of hydrogen bonds and secondary interactions. Such analysis was performed through the determination of optimized geometries at B3LYP/6-31G(d,p level of theory, by which is that QTAIM topological operators were computed, such as the electronic density ρ(r, Laplacian Ñ2ρ(r, and ellipticity ε. The examination of the hydrogen bonds has been performed through the measurement of ρ(r, Ñ2ρ(r and ε between (O···H—C and (S···H—C, whereas the secondary interaction between axial hydrogen atoms Hα and carbon of acetylene. In this insight, it was verified the existence of secondary interaction only in C2H4S···C2H2 complex because its structure is propitious to form multiple interactions.

  20. A Transient Liquid Phase Sintering Bonding Process Using Nickel-Tin Mixed Powder for the New Generation of High-Temperature Power Devices

    Science.gov (United States)

    Feng, Hongliang; Huang, Jihua; Yang, Jian; Zhou, Shaokun; Zhang, Rong; Chen, Shuhai

    2017-07-01

    A transient liquid phase sintering (TLPS) bonding process, Ni-Sn TLPS bonding was developed for the new generation of power semiconductor packaging. A model Ni/Ni-Sn/Ni sandwiched structure was assembled by using 30Ni-70Sn mixed powder as the reactive system. The results show that the bonding layer is composed of Ni3Sn4 and residual fine Ni particles with a small amount of Ni3Sn2 at 340°C for 240 min, which has a heat-resistant temperature higher than 790°C. The microstructural evolution and thermal characteristic of the bonding layer for various times at 300°C and 340°C were also studied, respectively. This reveals that, after isothermally holding for 240 min at 300°C and for 180 min at 340°C, Sn has been completely transformed into Ni-Sn intermetallic compounds (IMCs) and the bonding layer is mainly composed of Ni3Sn4 and residual Ni particles. The analysis result for the mechanical properties of the joint shows that the hardness of the bonding layer at 340°C for 240 min is uniform and that the average value reaches 3.66 GPa, which is close to that of the Ni3Sn4 block material. The shear test shows that, as the holding time increases from 60 min to 180 min at 340°C, because of the existence of Sn, the disparity of shear strength between room temperature and 350°C is large. But when the holding time is 180 min or longer, Sn has been completely transformed into Ni-Sn IMCs. Their performances are very similar whether at room temperature or 350°C.

  1. Impact of post-deposition annealing on interfacial chemical bonding states between AlGaN and ZrO2 grown by atomic layer deposition

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    The effect of post-deposition annealing on chemical bonding states at interface between Al 0.5 Ga 0.5 N and ZrO 2 grown by atomic layer deposition (ALD) is studied by angle-resolved x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that both of Al-O/Al 2p and Ga-O/Ga 3d area ratio decrease at annealing temperatures lower than 500 °C, which could be attributed to “clean up” effect of ALD-ZrO 2 on AlGaN. Compared to Ga spectra, a much larger decrease in Al-O/Al 2p ratio at a smaller take-off angle θ is observed, which indicates higher effectiveness of the passivation of Al-O bond than Ga-O bond through “clean up” effect near the interface. However, degradation of ZrO 2 /AlGaN interface quality due to re-oxidation at higher annealing temperature (>500 °C) is also found. The XPS spectra clearly reveal that Al atoms at ZrO 2 /AlGaN interface are easier to get oxidized as compared with Ga atoms

  2. The Different Sensitive Behaviors of a Hydrogen-Bond Acidic Polymer-Coated SAW Sensor for Chemical Warfare Agents and Their Simulants

    Directory of Open Access Journals (Sweden)

    Yin Long

    2015-07-01

    Full Text Available A linear hydrogen-bond acidic (HBA linear functionalized polymer (PLF, was deposited onto a bare surface acoustic wave (SAW device to fabricate a chemical sensor. Real-time responses of the sensor to a series of compounds including sarin (GB, dimethyl methylphosphonate (DMMP, mustard gas (HD, chloroethyl ethyl sulphide (2-CEES, 1,5-dichloropentane (DCP and some organic solvents were studied. The results show that the sensor is highly sensitive to GB and DMMP, and has low sensitivity to HD and DCP, as expected. However, the sensor possesses an unexpected high sensitivity toward 2-CEES. This good sensing performance can’t be solely or mainly attributed to the dipole-dipole interaction since the sensor is not sensitive to some high polarity solvents. We believe the lone pair electrons around the sulphur atom of 2-CEES provide an electron-rich site, which facilitates the formation of hydrogen bonding between PLF and 2-CEES. On the contrary, the electron cloud on the sulphur atom of the HD molecule is offset or depleted by its two neighbouring strong electron-withdrawing groups, hence, hydrogen bonding can hardly be formed.

  3. In-situ studies of stress- and magnetic-field-induced phase transformation in a polymer-bonded Ni-Co-Mn-In composite

    International Nuclear Information System (INIS)

    Liu, D.M.; Nie, Z.H.; Wang, G.; Wang, Y.D.; Brown, D.E.; Pearson, J.; Liaw, P.K.; Ren, Y.

    2010-01-01

    A polymer-bonded Ni 45 Co 5 Mn 36.6 In 13.4 ferromagnetic shape-memory composite was fabricated, having magnetic-field-driven shape recovery properties. The thermo-magnetization curves of the composite suggested that the magnetic-field-induced reverse martensitic transformation occurs in the composite. The effects of temperature, stress, and magnetic-field on the phase transformation properties were systematically investigated using an in-situ high-energy X-ray diffraction technique. A temperature-induced reversible martensitic phase transformation was confirmed within the composite, showing a broad phase transformation interval. Stress-induced highly textured martensite was observed in the composite during uniaxial compressive loading, with a residual strain after unloading. The origin of the textured martensite can be explained by the grain-orientation-dependent Bain distortion energy. A recovery strain of ∼1.76% along the compression direction was evidenced in the pre-strained composite with an applied magnetic-field of 5 T. This recovery was caused by the magnetic-field-induced reverse martensitic phase transformation. The phase transformation properties of the ferromagnetic shape-memory composite, different from its bulk alloys, can be well explained by the Clausius-Clapeyron relation. The large magnetic-field-induced strain, together with good ductility and low cost, make the polymer-bonded Ni-Co-Mn-In composites potential candidates for magnetic-field-driven actuators.

  4. Mathematical model of phase transformations in thermo-chemical cathodes with zirconium insertion

    International Nuclear Information System (INIS)

    Kavokin, A.A.; Kazmi, I.H.

    2007-01-01

    The mathematical model of thermo-chemical processes in the cathode of plasmatron working in the gas environment is investigated. The model describes electromagnetic, temperature and concentration fields taking into account kinetic of phase transformation and chemical reaction in accordance with a state diagram. The offered approach is simpler than the Stefan's approach of describing an analogical phase transformation. As an example the case of copper cathodes with the zirconium insertion in the environment of oxygen is considered. The influence of separate parts of process on distribution of temperature inside of the insertion is estimated. On the basis of this analysis the opportunity of use of stationary approach for electric and temperature fields is shown and analytical formulas for temperature are received. After that a numerical solution for gas concentration distribution is obtained. The calculations on the specified model show that the size of area of a phase zirconium oxides depends mainly upon coefficient of diffusion of oxygen. The calculations for various types of dependencies of gas diffusion coefficient from temperature are concluded. The results of calculations develop understanding of some features of oxidation process of a zirconium insertion. Typical example of multi phase process model is the mathematical description of a heat and mass transfer occurring in metal which is being heated by an electric arch in the gas medium (1, 2, 4). The macroscopic model of physical and chemical transformations can be described as follows (3). As a metal is heated on the surface of an electrode as a function of rising results in the border dividing solid and liquid phases moves ahead deep into the electrode. At the same time there is a diffusion of gas in electrode and formation of new chemical compounds which can noticeably differ in the physical and chemical properties from each other and metal of the electrode. Moreover we shall name a phase of substance not

  5. Synthesis and investigation of the structure and chemical properties of acyclic compounds of bicoordinated phosphorus with a phosphorus-carbon (p-p)/sub π/ bond

    International Nuclear Information System (INIS)

    Markovskii, L.N.; Romanenko, V.D.

    1987-01-01

    Five types of reactions of phosphoalkenes can be distinguished according to the nature of the change in the coordination number and valence of the phosphorus atom in the course of chemical conversions. There are: reactions of cyclodimerization, cycloaddition, and 1,2-addition at the P-C double bond; formation of compounds of tricoordinated pentavalent phosphorus; formation of tetracoordinated phosphorus compounds; reactions of functionalization occurring without a change in the valence and coordination number of the phosphorus atom; and reactions of 1,2-elimination, leading to compounds of monocoordinated phosphorus. This paper reviews each of these reactions in detail, using double-resonance hydrogen 1 and phosphorus 31 NMR spectra and analyzing the acquired chemical shift and spin-spin coupling constants, and also demonstrates the complexation of phosphorus with several metals

  6. NbF5 and TaF5: Assignment of 19F NMR resonances and chemical bond analysis from GIPAW calculations

    International Nuclear Information System (INIS)

    Biswal, Mamata; Body, Monique; Legein, Christophe; Sadoc, Aymeric; Boucher, Florent

    2013-01-01

    The 19 F isotropic chemical shifts (δ iso ) of two isomorphic compounds, NbF 5 and TaF 5 , which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D 19 F MAS NMR spectra. In parallel, the corresponding 19 F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M 4 F 20 ] units of NbF 5 and TaF 5 being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the 19 F NMR lines of NbF 5 and TaF 5 is obtained, ensured by the linearity between experimental 19 F δ iso values and calculated 19 F isotropic chemical shielding σ iso values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF 5 . The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the 19 F NMR lines of NbF 5 , distorted multiplets, arising from 1 J-coupling and residual dipolar coupling between the 19 F and 93 Nb nuclei, were simulated yielding to values of 93 Nb– 19 F 1 J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the 19 F NMR lines of NbF 5 and TaF 5 allow establishing relationships between the 19 F δ iso values, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the

  7. Iptycene-based stationary phase with three-dimensional aromatic structure for highly selective separation of H-bonding analytes and aromatic isomers.

    Science.gov (United States)

    Yang, Xiaohong; Han, Ying; Qi, Meiling; Chen, Chuanfeng

    2016-05-06

    Unique structures and molecular recognition ability endow iptycene derivatives with great potential as stationary phases in chromatography, which, however, has not been explored yet. Herein, we report the first example of utilizing a pentiptycene quinone (PQ) for gas chromatographic (GC) separations. Remarkably, the statically coated capillary column with the stationary phase achieved extremely high column efficiency of 4800 plates/m. It exhibited preferential retention and high resolving capability for H-bonding and aromatic analytes and positional isomers, showing advantages over the ordinary polysiloxane phase. Moreover, the fabricated iptycene column showed excellent separation repeatability with RSD values of 0.02-0.06% for intra-day, 0.20-0.35% for inter-day and 3.1-5.5% for between-column, respectively. In conclusion, iptycene derivatives as a new class of stationary phases show promising future for their use in GC separations. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Characterization of bonded stationary phase performance as a function of qualitative and quantitative chromatographic factors in chaotropic chromatography with risperidone and its impurities as model substances.

    Science.gov (United States)

    Čolović, Jelena; Rmandić, Milena; Malenović, Anđelija

    2018-05-17

    Numerous stationary phases have been developed with the aim to provide desired performances during chromatographic analysis of the basic solutes in their protonated form. In this work, the procedure for the characterization of bonded stationary phase performance, when both qualitative and quantitative chromatographic factors were varied in chaotropic chromatography, was proposed. Risperidone and its three impurities were selected as model substances, while acetonitrile content in the mobile phase (20-30%), the pH of the aqueous phase (3.00-5.00), the content of chaotropic agents in the aqueous phase (10-100 mM), type of chaotropic agent (NaClO 4 , CF 3 COONa), and stationary phase type (Zorbax Eclipse XDB, Zorbax Extend) were studied as chromatographic factors. The proposed procedure implies the combination of D-optimal experimental design, indirect modeling, and polynomial-modified Gaussian model, while grid point search method was selected for the final choice of the experimental conditions which lead to the best possible stationary phase performance for basic solutes. Good agreement between experimentally obtained chromatogram and simulated chromatogram for chosen experimental conditions (25% acetonitrile, 75 mM of NaClO 4 , pH 4.00 on Zorbax Eclipse XDB column) confirmed the applicability of the proposed procedure. The additional point was selected for the verification of proposed procedure ability to distinguish changes in solutes' elution order. Simulated chromatogram for 21.5% acetonitrile, 85 mM of NaClO 4 , pH 5.00 on Zorbax Eclipse XDB column was in line with experimental data. Furthermore, the values of left and right peak half-widths obtained from indirect modeling were used in order to evaluate performances of differently modified stationary phases applying a half-width plots approach. The results from half-width plot approach as well as from the proposed procedure indicate higher efficiency and better separation performance of the stationary phase

  9. Humidity independent mass spectrometry for gas phase chemical analysis via ambient proton transfer reaction.

    Science.gov (United States)

    Zhu, Hongying; Huang, Guangming

    2015-03-31

    In this work, a humidity independent mass spectrometric method was developed for rapid analysis of gas phase chemicals. This method is based upon ambient proton transfer reaction between gas phase chemicals and charged water droplets, in a reaction chamber with nearly saturate humidity under atmospheric pressure. The humidity independent nature enables direct and rapid analysis of raw gas phase samples, avoiding time- and sample-consuming sample pretreatments in conventional mass spectrometry methods to control sample humidity. Acetone, benzene, toluene, ethylbenzene and meta-xylene were used to evaluate the analytical performance of present method. The limits of detection for benzene, toluene, ethylbenzene and meta-xylene are in the range of ∼0.1 to ∼0.3 ppbV; that of benzene is well below the present European Union permissible exposure limit for benzene vapor (5 μg m(-3), ∼1.44 ppbV), with linear ranges of approximately two orders of magnitude. The majority of the homemade device contains a stainless steel tube as reaction chamber and an ultrasonic humidifier as the source of charged water droplets, which makes this cheap device easy to assemble and facile to operate. In addition, potential application of this method was illustrated by the real time identification of raw gas phase chemicals released from plants at different physiological stages. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Synthesis, characterization, and chemical bonding analysis of the lithium alkaline-earth metal gallide nitrides Li{sub 2}(Ca{sub 3}N){sub 2}[Ga{sub 4}] and Li{sub 2}(Sr{sub 3}N){sub 2}[Ga{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Manisha; Bobnar, Matej; Ormeci, Alim; Hoehn, Peter [Chemische Metallkunde, Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Stoiber, Dominik; Niewa, Rainer [Institut fuer Anorganische Chemie, Universitaet Stuttgart (Germany); Ovchinnikov, Alexander [Chemische Metallkunde, Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Department of Chemistry and Biochemistry, University of Delaware, Newark, DE (United States)

    2017-11-17

    Large single crystals of Li{sub 2}(Ca{sub 3}N){sub 2}[Ga{sub 4}] and Li{sub 2}(Sr{sub 3}N){sub 2}[Ga{sub 4}] up to several mm in size were grown from mixtures of the respective elements and binary alkaline-earth metal nitrides in reactive lithium melts employing a modified high-temperature centrifugation-aided filtration (HTCAF) technique. The main structural features of these isotypic phases are stella quadrangula building units [Ga{sub 4}]Li{sub 4/2} and octahedra (Nae{sub 6/2}), which form two independent interpenetrating networks. The phases crystallize in the η-carbide structure and represent diamagnetic small bandgap semiconductors. Real-space chemical bonding analysis indicates predominantly ionic bonding. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Annealing-induced changes in chemical bonding and surface characteristics of chemical solution deposited Pb{sub 0.95}La{sub 0.05}Zr{sub 0.54}Ti{sub 0.46}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Batra, Vaishali [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Ramana, C.V. [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Kotru, Sushma, E-mail: skotru@eng.ua.edu [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2016-08-30

    Highlights: • Influence of post-deposition annealing temperature (T{sub a} = 550 and 750 °C) on the chemical valence state and crystalline quality of PLZT thin films was investigated. • XPS analyses demonstrated the shift in binding energies of the constituent atoms which indicated change in chemical state with the change in T{sub a}. • Raman spectra revealed shift in optical modes with the change in T{sub a} indicating the change in phase and crystallinity in the films. • Higher T{sub a} (750 °C) resulted in PLZT films with perovskite structure, nanocrystalline morphology, and better chemical homogeneity. - Abstract: We report the effect of post deposition annealing temperature (T{sub a} = 550 and 750 °C) on the surface morphology, chemical bonding and structural development of lanthanum doped lead zirconate titanate (Pb{sub 0.95}La{sub 0.05}Zr{sub 0.54}Ti{sub 0.46}O{sub 3}; referred to PLZT) thin films prepared using chemical solution deposition method. Atomic force microscopy demonstrates formation of nanocrystallites in the film annealed at T{sub a} = 750 °C. X-ray photoelectron spectroscopy (XPS) analyses indicate that the binding energies (BE) of the Pb 4f, Zr 3d, and Ti 2p doublet experience a positive energy shift at T{sub a} = 750 °C, whereas the BE of O 1s and La 3d doublet show a negative shift with respect to the BE of the films annealed at T{sub a} = 750 °C. Thermal induced crystallization and chemical modification is evident from XPS results. The Ar+ sputtering of the films reveals change in oxidation state and chemical bonding between the constituent atoms, with respect to T{sub a}. Raman spectroscopy used to study phonon-light interactions show shift in longitudinal and transverse optical modes with the change in T{sub a}, confirming the change in phase and crystallinity of these films. The results suggest annealing at T{sub a} = 750 °C yield crystalline perovskite PLZT films, which is essential to obtain photovoltaic response from

  12. X-ray study of chemical bonding in actinides(IV) and lanthanides(III) hexa-cyanoferrates

    International Nuclear Information System (INIS)

    Dumas, T.

    2011-01-01

    Bimetallic cyanide molecular solids derived from Prussian blue are well known to foster long-range magnetic ordering and show an intense inter-valence charge transfer band resulting from an exchange interaction through the cyanide-bridge. For those reasons the ferrocyanide and ferricyanide building blocks have been chosen to study electronic delocalization and covalent character in actinide bonding using an experimental and theoretical approach based on X-ray absorption spectroscopy. In 2001, the actinide (IV) and early lanthanides (III) hexacyanoferrate have been found by powder X-ray diffraction to be isostructural (hexagonal, P6 3 /m group). Here, extended X-ray Absorption Fine Structure (EXAFS) at the iron K-edge and actinide L 3 -edge have been undertaken to probe the local environment of both actinides and iron cations. In an effort to describe the cyano bridge, a double edge fitting procedure including both iron and actinide edges and based on multiple scattering approach has been developed. We have also investigated the electronic properties of these molecular solids. Low energy electronic transitions have been used iron L 2,3 edge, nitrogen and carbon K-edge and also actinides N 4,5 edge to directly probe the valence molecular orbitals of the complex. Using a phenomenological approach, a clear distinctive behaviour between actinides and lanthanides has been shown. Then a theoretical approach using quantum chemistry calculation has shown more specifically the effect of covalency in the actinide-ferrocyanide bond. More specifically, π interactions were underlined by both theoretical and experimental methods. Finally, in agreement with the ionic character of the lanthanide bonding no inter-valence charge transfer has been observed in the corresponding optical spectra of these compounds. On the contrary, optical spectra for actinides adducts (except for thorium) show an intense inter-valence charge transfer band like in the transition metal cases which is

  13. The phase-resolved photoacoustic method to indicate chemical assignments of paracetamol

    Science.gov (United States)

    Camilotti, J. G.; Somer, A.; Costa, G. F.; Ribeiro, M. A.; Bonardi, C.; Cruz, G. K.; Gómez, S. L.; Beltrame, F. L.; Medina, A. N.; Sato, F.; Astrath, N. G. C.; Novatski, A.

    2014-03-01

    In this work, the phase-resolved photoacoustic method was applied to provide specific information on the chemical assignments of paracetamol in the near-infrared region. Two broad bands, centered at 1370 and 1130 nm, were well-resolved using this method, making it possible to assign the peaks centered at 1398, 1355 and 1295 nm to a C-H combination from a CH3 structure and the peak at 1305 nm to a C-H combination from the aromatic ring. This information represents a new finding in chemical studies regarding this medicament.

  14. Gas-Phase Molecular Dynamics: Theoretical Studies in Spectroscopy and Chemical Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H.G.; Muckerman, J.T.

    2010-06-01

    The goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods.

  15. Socialization of didactic units for teaching-learning of chemical bond to students of basic course in high school

    Directory of Open Access Journals (Sweden)

    Mercedes Cárdenas-Ojeda

    2016-12-01

    with the complexity this demands. The research is empirical with the constructivist point or view. The test Covalent Bond and its structure was applied as a diagnostic tool to 42 students of Chemistry and Bachelor of Natural Science and Environmental Education of the Universidad Pedagógica y Tecnológica de Colombia, (UPTC the perception of this topic becomes a field that allows to explain the natural phenomena and its accurate explanation allows, on one hand, to avoid the students adapt conceptual mistakes, and on the other, foster meaningful learning in them.

  16. Exploring Conceptual Frameworks of Models of Atomic Structures and Periodic Variations, Chemical Bonding, and Molecular Shape and Polarity: A Comparison of Undergraduate General Chemistry Students with High and Low Levels of Content Knowledge

    Science.gov (United States)

    Wang, Chia-Yu; Barrow, Lloyd H.

    2013-01-01

    The purpose of the study was to explore students' conceptual frameworks of models of atomic structure and periodic variations, chemical bonding, and molecular shape and polarity, and how these conceptual frameworks influence their quality of explanations and ability to shift among chemical representations. This study employed a purposeful sampling…

  17. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research.

    Science.gov (United States)

    Wu, Jianbo; Shan, Hao; Chen, Wenlong; Gu, Xin; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2016-11-01

    Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chemical Speciation and Bond Lengths of Organic Solutes by Core-Level Spectroscopy: pH and Solvent Influence on p-Aminobenzoic Acid.

    Science.gov (United States)

    Stevens, Joanna S; Gainar, Adrian; Suljoti, Edlira; Xiao, Jie; Golnak, Ronny; Aziz, Emad F; Schroeder, Sven L M

    2015-05-04

    Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO-LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute-solvent interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chemical and phase composition of powders obtained by electroerosion dispersion from alloys WC-Co

    International Nuclear Information System (INIS)

    Putintseva, M.N.

    2004-01-01

    A consideration is given to the dependence of chemical and phase compositions of dispersed powders on the conditions, the medium of electroerosion dispersing and the content of cobalt in an initial alloy. It is shown that dissociation of carbon from tungsten carbide proceeds even on dispersing in liquid hydrocarbon-containing media (kerosene and machine oil). The phase composition is determined to a large extent by a medium of dispersing and a cobalt content in the initial alloy. In all powders complex tungsten-cobalt carbides and even Co 7 W 6 intermetallic compounds are found [ru

  20. Chemical and Phase Composition of Powders Obtained by Electroerosion Dispersion from WC - Co Alloys

    Science.gov (United States)

    Putintseva, M. N.

    2004-03-01

    The dependence of the chemical and phase composition of dispersed powders on the mode and medium of electroerosion dispersion and the content of cobalt in the initial alloy is considered. It is shown that the dissociation of carbon from tungsten carbide occurs even in dispersion in liquid hydrocarbon-bearing media (kerosene and industrial oils). The phase composition is primarily determined by the dispersion medium and the content of cobalt in the initial alloy. Compound tungsten-cobalt carbides and even a Co7W6 intermetallic are determined in all the powders.

  1. Effect of transient liquid phase (TLP) bonding on the ductility of a Ni-base single crystal superalloy in a stress rupture test

    International Nuclear Information System (INIS)

    Liu, J.D.; Jin, T.; Zhao, N.R.; Wang, Z.H.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.

    2008-01-01

    A Ni-base single crystal superalloy was transient liquid phase (TLP) bonded using a Ni-Cr-B amorphous foil at 1230 deg. C for 8 h. Stress rupture tests of the TLP joint and a matrix sample were carried out at 982 deg. C/248 MPa and 1010 deg. C/248 MPa. The microstructures and fracture surfaces were studied using scanning electron microscopy (SEM). Transmission electron microscopy (TEM) investigations were performed after creep rupture testing to examine the deformation substructures. The results show that the stress rupture ductility of TLP joints is significantly decreased compared to the matrix sample. This reduction of the ductility of TLP joints can be attributed to solid solution strengthening by boron atoms, subgrain boundaries formed in the bonding zone and the concentration of creep cavities formed during the last stage of the stress rupture test

  2. Assessment of the physico-chemical properties of phases in the Na-U-Pu-O system

    International Nuclear Information System (INIS)

    Kleykamp, H.

    1990-05-01

    A critical review is given on the physico-chemical properties of phases in the Na-O, Na-U-O, Na-Pu-O and Na-U-Pu-O systems. This includes the phase diagrams as well as the crystallographic, mechanical, thermal, thermodynamic, transport, optical and chemical properties. This data is to be used for the modelling of the thermal, mechanical and chemical behaviour of defective LMFBR mixed oxide pins during and after reactor operation. (orig.) [de

  3. Solution Phase Measurement of Both Weak Sigma and C-H---X- Hydrogen Bonding Interactions in Synthetic Anion Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, Mr. Orion B. [University of Oregon; Sather, Mr. Aaron C [University of Oregon; Hay, Benjamin [ORNL; Meisner, Mr. Jeffrey S. [University of Oregon; Johnson, Prof. Darren W. [University of Oregon

    2008-01-01

    A series of tripodal receptors preorganize electron-deficient aromatic rings to bind halides in organic solvents using weak sigma anion-to-arene interactions or C-H---X- hydrogen bonds. 1H NMR spectroscopy proves to be a powerful technique for quantifying binding in solution, and determining the interaction motifs, even in cases of weak binding.

  4. SOLID-PHASE EXTRACTION OF MORPHINE FROM WHOLE-BLOOD BY MEANS OF BOND ELUT CERTIFY COLUMNS

    NARCIS (Netherlands)

    CHEN, XH; HOMMERSON, ALC; ZWEIPFENNING, PGM; FRANKE, JP; HARMENBOVERHOF, CW; ENSING, K; DEZEEUW, RA

    The use of Bond Elut Certify columns for the isolation of morphine from whole blood was evaluated. In order to monitor possible losses and the elution profile of morphine, a small amount of the tritiated analogue was added to the samples. Four sample pretreatment methods, three protein precipitation

  5. 2006 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Avery, Nikki B.; Barlow, Stephan E.

    2006-11-10

    The Pacific Northwest National Laboratory (PNNL) hosted its third annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2006. During this period, twenty PNNL scientists hosted twenty-seven scientists from twenty-five different universities. Of the twenty-seven participants, one was a graduating senior; twenty-one were graduate students; one was a postdoctoral fellow; and four were university faculty members.

  6. Mechanisms of gas phase decomposition of C-nitro compounds from quantum chemical data

    International Nuclear Information System (INIS)

    Khrapkovskii, Grigorii M; Shamov, Alexander G; Nikolaeva, E V; Chachkov, D V

    2009-01-01

    Data on the mechanisms of gas-phase monomolecular decomposition of nitroalkanes, nitroalkenes and nitroarenes obtained using modern quantum chemical methods are described systematically. The attention is focused on the discussion of multistage decomposition of nitro compounds to elementary experimentally observed products. Characteristic features of competition of different mechanisms and the effect of molecular structure on the change in the Arrhenius parameters of the primary reaction step are considered.

  7. On the thermal phase structure of QCD at vanishing chemical potentials

    CERN Document Server

    Kabana, S

    2011-01-01

    The hypothesis is investigated, that the thermal structure of QCD phases at and near zero chemical potentials is determined by long range coherence, inducing the gauge boson pair condensate. The latter reflects the dynamical nature of gauge boson Bogoliubov transformations at the origin of localization of all color fields inside hadrons at low temperature in contrast to loss of such localization above a unique critical temperature.

  8. Mechanisms of gas phase decomposition of C-nitro compounds from quantum chemical data

    Energy Technology Data Exchange (ETDEWEB)

    Khrapkovskii, Grigorii M; Shamov, Alexander G; Nikolaeva, E V; Chachkov, D V [Kazan State Technological University, Kazan (Russian Federation)

    2009-10-31

    Data on the mechanisms of gas-phase monomolecular decomposition of nitroalkanes, nitroalkenes and nitroarenes obtained using modern quantum chemical methods are described systematically. The attention is focused on the discussion of multistage decomposition of nitro compounds to elementary experimentally observed products. Characteristic features of competition of different mechanisms and the effect of molecular structure on the change in the Arrhenius parameters of the primary reaction step are considered.

  9. Phase distribution of ecologically controlled chemical elements in production of extraction phosphoric acid

    International Nuclear Information System (INIS)

    Kazak, V.G.; Agnelov, A.I.; Zajtsev, P.M.

    1995-01-01

    Content of 16 ecologically controlled chemical element (among them Cd, Sr, Th, U, V, Y) in solid and liquid phases of extraction phosphorus acid (EPA) production is determined. These elements are recommended to control by Scientific research institute of human ecology and environment to establish their extraction coefficients to phosphogypsum and EPA and optimal variant of production of ecologically sate phosphorus fertilizers. X-ray fluorescent, atomic-absorption and polarographic methods are used for analysis these elements

  10. 2007 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Kenneth M.

    2007-10-31

    The Pacific Northwest National Laboratory (PNNL) hosted its fourth annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from April through September 2007. During this time, 21 PNNL scientists hosted 23 participants from 20 different universities. Of the 23 participants, 20 were graduate students, 1 was a postdoctoral fellow, and 2 were university faculty members. This report covers the essense of the program and the research the participants performed.

  11. The chiral phase transition for two-flavour QCD at imaginary and zero chemical potential

    CERN Document Server

    Bonati, Claudio; de Forcrand, Philippe; Philipsen, Owe; Sanfillippo, Francesco

    2013-01-01

    The chiral symmetry of QCD with two massless quark flavours gets restored in a non-analytic chiral phase transition at finite temperature and zero density. Whether this is a first-order or a second-order transition has not yet been determined unambiguously, due to the difficulties of simulating light quarks. We investigate the nature of the chiral transition as a function of quark mass and imaginary chemical potential, using staggered fermions on N_t=4 lattices. At sufficiently large imaginary chemical potential, a clear signal for a first-order transition is obtained for small masses, which weakens with decreasing imaginary chemical potential. The second-order critical line m_c(mu_i), which marks the boundary between first-order and crossover behaviour, extrapolates to a finite m_c(mu_i=0) with known critical exponents. This implies a definitely first-order transition in the chiral limit on relatively coarse, N_t=4 lattices.

  12. Depth distribution of chemical phase concentration determined by grazing incidence X-ray diffraction

    International Nuclear Information System (INIS)

    Novak, P.; Ballo, P.; Dobrocka, E.; Vallo, M.; Lalinsky, T.

    2013-01-01

    Grazing incidence geometry is widely used in X-ray diffraction analysis of thin films. Penetration depth of radiation can be easily changed by an appropriate selection of the angle of incidence α that enables obtaining information from different depths of the sample. This depth can be decreased up to a nanometer scale by approaching the critical angle α_c for total external reflection. This method therefore provides an efficient tool for the analysis of depth distribution of various structural properties, such as the crystallite size, the amorphous fraction, stress or the concentration of chemical phase. However, absorption of the radiation can be characterized by an average attenuation coefficient μ a special care has to be paid to the last property. Variation of chemical phase concentration with depth usually results in depth dependence on the attenuation coefficient. In this contribution a method for determination of depth distribution of a chemical phase is outlined. The method correctly takes into account the depth variation of the attenuation coefficient. The method is tested on thin oxidized Ir layers. The aim of this paper is a comparison two simple model cases with the experimental results. (authors)

  13. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    Science.gov (United States)

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  14. Phase Equilibrium of TiO2 Nanocrystals in Flame-Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Liu, Changran; Camacho, Joaquin; Wang, Hai

    2018-01-19

    Nano-scale titanium oxide (TiO 2 ) is a material useful for a wide range of applications. In a previous study, we showed that TiO 2 nanoparticles of both rutile and anatase crystal phases could be synthesized over the size range of 5 to 20 nm in flame-assisted chemical vapor deposition. Rutile was unexpectedly dominant in oxygen-lean synthesis conditions, whereas anatase is the preferred phase in oxygen-rich gases. The observation is in contrast to the 14 nm rutile-anatase crossover size derived from the existing crystal-phase equilibrium model. In the present work, we made additional measurements over a wider range of synthesis conditions; the results confirm the earlier observations. We propose an improved model for the surface energy that considers the role of oxygen desorption at high temperatures. The model successfully explains the observations made in the current and previous work. The current results provide a useful path to designing flame-assisted chemical vapor deposition of TiO 2 nanocrystals with controllable crystal phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  16. Field electron emission characteristics of chemical vapour deposition diamond films with controlled sp2 phase concentration

    International Nuclear Information System (INIS)

    Lu, X.; Yang, Q.; Xiao, C.; Hirose, A.

    2008-01-01

    Diamond films were synthesized in a microwave plasma-enhanced chemical vapour deposition reactor. The microstructure and surface morphology of deposited films were characterized by Raman spectroscope and scanning electron microscope. The sp 2 phase concentration in diamond films was varied and its effect on the field electron emission (FEE) properties was investigated. Diamond films deposited under higher methane concentration exhibit better FEE property including lower turn-on electric field and larger emission current. The predominating factor modifying the FEE property is presumed to be the increase of sp 2 phase concentration. The influence of bias voltage on the FEE property of diamond films is not monotonic. Postgrowth acid treatment reduces the sp 2 phase content in diamond films without changing diamond grain sizes. The corresponding FEE property was degraded

  17. Study of variation in thermal width of nematic and induced smectic ordering phase of citric acid (CA) and 4-heptyloxybenzoic acid (7OBA) hydrogen bonded liquid crystal complexes

    Science.gov (United States)

    Sundaram, S.; Jayaprakasam, R.; Praveena, R.; Rajasekaran, T. R.; Senthil, T. S.; Vijayakumar, V. N.

    2018-01-01

    Hydrogen-bonded liquid crystals (HBLCs) have been derived from nonmesogenic citric acid (CA) and mesogenic 4-heptyloxybenzoic acid (7OBA) yielding a highly ordered smectic C (Sm C) phase along with the new smectic X (Sm X) phase which has been identified as fingerprint-type texture. Optical (polarizing optical microscopy), thermal (differential scanning calorimetry) and structural (Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy) properties are studied. A noteworthy observation is that the intermolecular H-bond (between CA and 7OBA) influences on its melting point and clearing temperature of the HBLCs which exhibits lower value than those of the individual compounds. A typical extended mesophase region has been observed in the present complex while varying the mixture ratio (1:1 to 1:3) than those of individual compounds. The change in the ratio of the mesogenic compound in the mixture alters thermal properties such as enthalpy value and thermal span width in nematic (N) region of HBLC complex. Optical tilt angle measurement of CA+7OBA in Sm C phase has been discussed to identify the molecular position in the mesophase.

  18. {sup 2}H NMR study of phase transition and hydrogen dynamics in hydrogen bonded organic antiferroelectric 55DMBP-H{sub 2}ca

    Energy Technology Data Exchange (ETDEWEB)

    Asaji, Tetsuo, E-mail: asaji@chs.nihon-u.ac.jp; Hara, Masamichi; Fujimori, Hiroki [Nihon University, Department of Chemistry, College of Humanities and Sciences (Japan); Hagiwara, Shoko [Nihon University, Department of Chemistry, Graduate School of Integrated Basic Sciences (Japan)

    2016-12-15

    Hydrogen dynamics in one-dimensional hydrogen bonded organic antiferroelectric, co-crystal of 5,5’-dimethyl-2,2’-bipyridine (55DMBP) and chloranilic acid (H{sub 2}ca), was investigated by use of {sup 2}H high resolution solid-state NMR. The two types of hydrogen bonds O-H …N and N{sup +}-H …O{sup −} in the antiferroelectric phase were clearly observed as the splitting of the side band of the {sup 2}H MAS NMR spectra of the acid-proton deuterated compound 55DMBP-D {sub 2}ca. The temperature dependence of the spin-lattice relaxation time was measured of the N{sup +}-H and O-H deuterons, respectively. It was suggested that the motion of the O-H deuteron is already in the antiferroelectric phase in the fast-motion regime in the NMR time scale, while that of the N{sup +}-H deuteron is a slow motion. In the high-temperature paraelectric phase, the both deuterons become equivalent and the fast motion of the deuterons in the NMR time scale is taking place with the activation energy of 7.9 kJ mol{sup −1}.

  19. Electron densities and chemical bonding in TiC, TiN and TiO derived from energy band calculations

    International Nuclear Information System (INIS)

    Blaha, P.

    1983-10-01

    It was the aim of this paper to describe the chemical bonding of TiC, TiN and TiO by means of energy bands and electron densities. Using the respective potentials we have calculated the bandstructure of a finer k-grid with the linearized APW method to obtain accurate densities of states (DOS). These DOS wer partitioned into local partial contributions and the metal d DOS were further decomposed into tsub(2g) and esub(g) symmetry components in order to additionally characterize bonding. The electron densities corresponding to the occupied valence states are obtained from the LAPW calculations. They provide further insight into characteristic trends in the series from TiC to TiO: around the nonmetal site the density shows increasing localisation; around the metal site the deviation from spherical symmetry changes from esub(g) to tsub(2g). Electron density plots of characteristic band states allow to describe different types of bonding occurring in these systems. For TiC and TiN recent measurements of the electron densities exist for samples of TiCsub(0.94) and TiNsub(0.99), where defects cause static displacements of the Ti atoms. If this effect can be compensated by an atomic model one hopefully can extrapolate to stoichiometric composition. This procedure allows a comparison with structure factors derived from theoretical electron densities. The agreement for TiN is very good. For TiC the extrapolated data agree in terms of the deviations from spherical symmetry near the Ti site with the LAPW data, but the densities around both atoms are more localized than in theory. An explanation could be: a) the defects affect the electronic structure in TiCsub(0.94) with respect to TiCsub(1.0): b) the applied atomic model does not properly extrapolate to stoichiometry, because parameters of this model correlate or become unphysical. (Author)

  20. Chemical effects of low-energy electron impact on hydrocarbons in the gas phase. II. Propene

    International Nuclear Information System (INIS)

    Derai, R.; Danon, J.

    1977-01-01

    The chemical effects of low-energy (3.5 to 15.0 eV) electron impact on propene were investigated. The setup used for the irradiations has previously been described. Appearance curves for stable products were determined, from which correlations between products and precursors were deduced. In the excitation range, the main precursors are the triplet state at 4.4 eV and various singlet states around 7.0 and 9.0 eV. Above the ionization potential, contribution from superexcited molecules and ions was noted. Superexcited molecules are formed with a much higher cross section than excited molecules. A reaction scheme was proposed to account for the chemical effects associated with excited states and the yields of excited molecules in dissociating states were derived from experimental data. Results concerning the fragmentation of propene excited in singlet states conform to photolysis data. The following new results were obtained: the decomposition of propene excited in the triplet state at 4.4 eV involves mainly C--C bond rupture; the decomposition processes of superexcited and excited molecules are similar. A higher degree of fragmentation is observed in the case of superexcited molecules

  1. Effective oxidation of benzylic and alkane C-H bonds catalyzed by sodium o-iodobenzenesulfonate with Oxone as a terminal oxidant under phase-transfer conditions.

    Science.gov (United States)

    Cui, Li-Qian; Liu, Kai; Zhang, Chi

    2011-04-07

    Catalytic oxidation of benzylic C-H bonds could be efficiently realized using IBS as a catalyst which was generated in situ from the oxidation of sodium 2-iodobenzenesulfonate (1b) by Oxone in the presence of a phase-transfer catalyst, tetra-n-butylammonium hydrogen sulfate, in anhydrous acetonitrile at 60 °C. Various alkylbenzenes, including toluenes and ethylbenzenes, several oxygen-containing functionalities substituted alkylbenzenes, and a cyclic benzyl ether could be efficiently oxidized. And, the same reagent system of cat. 1b/Oxone/cat. n-Bu(4)NHSO(4) could be applied to the effective oxidation of alkanes as well.

  2. Shear bond strength evaluation of chemically-cured and light-cured orthodontic adhesives after enamel deproteinization with 5.25% sodium hypochlorite

    Science.gov (United States)

    Salim, J. C.; Krisnawati; Purbiati, M.

    2017-08-01

    This study aimed to assess the effect of enamel deproteinization with 5.25% sodium hypochlorite (NaOCl) before etching on the shear bond strength (SBS) of Unite (UN; 3M Unitek) and Xihu-BIOM adhesive (XB). Fifty-two maxillary first premolars were divided into four groups: (1) UN and (2) XB according to manufacturer’s recommendation and (3) UN and (4) XB deproteinized with 5.25% NaOCl. Brackets were bonded, and a mechanical test was performed using a universal testing machine. The mean SBS value for groups A1, A2, B1, and B2 was 13.51 ± 2.552, 14.36 ± 2.902, 16.43 ± 2.615, and 13.05 ± 2.348 MPa, respectively. A statistically significant difference in SBSs was observed between chemically cured groups and between group B (p 0.05). NaOCl enamel deproteinization before acid etching has a significant effect on the SBS of Unite adhesive, but not on that of the Xihu-BIOM adhesive. Furthermore, a significant difference in the SBS of Unite and Xihu-BIOM adhesives within the enamel deproteinization group was observed in this study.

  3. Effect of the valence electron concentration on the bulk modulus and chemical bonding in Ta2AC and Zr2AC (A=Al, Si, and P)

    International Nuclear Information System (INIS)

    Schneider, Jochen M.; Music, Denis; Sun Zhimei

    2005-01-01

    We have studied the effect of the valence electron concentration, on the bulk modulus and the chemical bonding in Ta 2 AC and Zr 2 AC (A=Al, Si, and P) by means of ab initio calculations. Our equilibrium volume and the hexagonal ratio (c/a) agree well (within 2.7% and 1.2%, respectively) with previously published experimental data for Ta 2 AlC. The bulk moduli of both Ta 2 AC and Zr 2 AC increase as Al is substituted with Si and P by 13.1% and 20.1%, respectively. This can be understood since the substitution is associated with an increased valence electron concentration, resulting in band filling and an extensive increase in cohesion

  4. Phase transition scheme of isolated hydrogen-bonded material h-MeHPLN studied by neutron and X-ray diffraction

    International Nuclear Information System (INIS)

    Kiyanagi, Ryoji; Kimura, Hiroyuki; Watanabe, Masashi; Noda, Yukio; Kojima, Akiko; Mochida, Tomoyuki; Sugawara, Tadashi

    2005-01-01

    The antiferroelectric material with an isolated hydrogen-bond, h-MeHPLN (5-methyl-9-hydroxyphenalenon), was structurally investigated by X-ray and neutron diffraction experiments in the low-temperature phase (T c =42K). The formation of a superlattice of 2 x b was found below T c , and the space group was identified to be P2 1 /c transformed from C2 c . Accordingly, the number of crystallographically independent molecules became two. The electron density distribution and the nuclear density distribution revealed some significant features below T c . One of the independent molecules exhibits an ordering of the hydrogen atom in the hydrogen-bond region, a conformational ordering of the methyl group and a molecular rotation around the a-axis. Moreover, a static electronic dipole moment is found in the hydrogen-bond region in this molecule. In contrast, the other molecule shows a disordered hydrogen atom, disordered conformation of the methyl group, no molecular rotation and a disordered electronic dipole moment. These features can be described simply in terms of a modulation wave of an order parameter. (author)

  5. Ferroelectric phase transition in hydrogen-bonded 2-aminopyridine phosphate (NC sub 4 H sub 4 NH sub 2)centre dot H sub 3 PO sub 4

    CERN Document Server

    Czapla, Z; Waskowska, A

    2003-01-01

    A new crystal of 2-aminopyridine phosphate (NC sub 4 H sub 4 NH sub 2)centre dot H sub 3 PO sub 4 has been grown and its x-ray structure and physical properties were studied. At room temperature the crystals are monoclinic, space group C2/c. The flat 2-aminopyridine cations are hydrogen bonded to the anionic [PO sub 4 ] groups. The interesting feature of the crystal structure is the three-dimensional network of hydrogen bonds including, among others, two strong, symmetrical O centre dot centre dot centre dot H, H centre dot centre dot centre dot O interactions with disordered proton locations. Symmetrically related PO sub 4 anions linked through these protons form infinite (PO sub 4) subinfinity chains along the crystal a-axis. The anomalies in the temperature dependence of the electric permittivity showed that the crystal undergoes ferroelectric phase transition at T sub c = 103.5 K. The spontaneous polarization takes place along the crystal a-axis, being parallel to the chains of the hydrogen-bonded PO sub ...

  6. Complexation reactions in pyridine and 2,6-dimethylpyridine-water system: The quantum-chemical description and the path to liquid phase separation

    Science.gov (United States)

    Chernia, Zelig; Tsori, Yoav

    2018-03-01

    Phase separation in substituted pyridines in water is usually described as an interplay between temperature-driven breakage of hydrogen bonds and the associating interaction of the van der Waals force. In previous quantum-chemical studies, the strength of hydrogen bonding between one water and one pyridine molecules (the 1:1 complex) was assigned a pivotal role. It was accepted that the disassembly of the 1:1 complex at a critical temperature leads to phase separation and formation of the miscibility gap. Yet, for over two decades, notable empirical data and theoretical arguments were presented against that view, thus revealing the need in a revised quantum-mechanical description. In the present study, pyridine-water and 2,6-dimethylpyridine-water systems at different complexation stages are calculated using high level Kohn-Sham theory. The hydrophobic-hydrophilic properties are accounted for by the polarizable continuum solvation model. Inclusion of solvation in free energy of formation calculations reveals that 1:1 complexes are abundant in the organically rich solvents but higher level oligomers (i.e., 2:1 dimers with two pyridines and one water molecule) are the only feasible stable products in the more polar media. At the critical temperature, the dissolution of the external hydrogen bonds between the 2:1 dimer and the surrounding water molecules induces the demixing process. The 1:1 complex acts as a precursor in the formation of the dimers but is not directly involved in the demixing mechanism. The existence of the miscibility gap in one pyridine-water system and the lack of it in another is explained by the ability of the former to maintain stable dimerization. Free energy of formation of several reaction paths producing the 2:1 dimers is calculated and critically analyzed.

  7. Influence of carbon chemical bonding on the tribological behavior of sputtered nanocomposite TiBC/a-C coatings

    International Nuclear Information System (INIS)

    Abad, M.D.; Sanchez-Lopez, J.C.; Brizuela, M.; Garcia-Luis, A.; Shtansky, D.V.

    2010-01-01

    The tribological performance of nanocomposite coatings containing Ti-B-C phases and amorphous carbon (a-C) are studied. The coatings are deposited by a sputtering process from a sintered TiB 2 :TiC target and graphite, using pulsed direct current and radio frequency sources. By varying the sputtering power ratio, the amorphous carbon content of the coatings can be tuned, as observed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The crystalline component consists of very disordered crystals with a mixture of TiB 2 /TiC or TiB x C y phases. A slight increase in crystalline order is detected with the incorporation of carbon in the coatings that is attributed to the formation of a ternary TiB x C y phase. An estimation of the carbon present in the form of carbide (TiB x C y or TiC) and amorphous (a-C) is performed using fitting analysis of the C 1s XPS peak. The film hardness (22 to 31 GPa) correlates with the fraction of the TiB x C y phase that exists in the coatings. The tribological properties were measured by a pin-on-disk tribometer in ambient conditions, using 6 mm tungsten carbide balls at 1 N. The friction coefficients and the wear rates show similar behavior, exhibiting an optimum when the fraction of C atoms in the amorphous phase is near 50%. This composition enables significant improvement of the friction coefficients and wear rates (μ ∼ 0.1; k -6 mm 3 /Nm), while maintaining a good value of hardness (24.6 GPa). Establishing the correlation between the lubricant properties and the fraction of a-C is very useful for purposes of tailoring the protective character of these nanocomposite coatings to engineering applications.

  8. The chemical bonds effect of anthocyanin and chlorophyll dyes on TiO2 for dye-sensitized solar cell (DSSC)

    Science.gov (United States)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2017-11-01

    Anthocyanin and chlorophyll dyes have been blended as the photosensitizer of Dye-Sensitized Solar Cell (DSSC). The results study showed the effect of chemical bond dyes on TiO2 and the efficiency of DSSC. Ratio blend of the anthocyanin and chlorophyll dyes are 1:1. The absorbance of dyes and TiO2 were characterized using UV-Vis Spectrophotometer. The chemical bonds contained in TiO2-dyes were characterized using FT-IR spectrophotometer. The efficiency of DSSC was calculated using I-V meter. The absorption spectra of chlorophyll: anthocyanin blend dye solutions and TiO2 films can increase after the dye adsorption. Absorbance characterization of anthocyanin and chlorophyll dye blend solutions showed three peaks at the wavelength of 412 nm; 535.5 nm; and 656.5 nm. Absorbance characterization of spinach before being blend with anthocyanin dyes solutions showed two peaks at the wavelength of 431 nm and 665.5 nm. The absorption spectra of TiO2 films can increase after the dyes adsorption at the wavelength of 400 nm. FT-IR spectra of TiO2 founded the functional groups C-Br, C=C, and O-H. The functional groups founded in anthocyanin: chlorophyll dye blended on the surface of TiO2 are C-Br, C-O, O-H, C-H, C=C, C=O, and O-H. The result showed that the greatest efficiency of 0.0544% at dye red cabbage-spinach. Adsorption blends of anthocyanin and chlorophyll dyes on the surface of TiO2 can be used as the photosensitizer for DSSC.

  9. Rod like attapulgite/poly(ethylene terephthalate nanocomposites with chemical bonding between the polymer chain and the filler

    Directory of Open Access Journals (Sweden)

    Q. Fu

    2012-08-01

    Full Text Available Poly(ethylene terephthalate (PET nanocomposites containing rod-like silicate attapulgite (AT were prepared via in situ polymerization. It is presented that PET chains identical to the matrix have been successfully grafted onto simple organically pre-modified AT nanorods (MAT surface during the in situ polymerization process. The covalent bonding at the interface was confirmed by Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (TGA. The content of grafted PET polymer on the surface of MAT was about 26 wt%. This high grafting density greatly improved the dispersion of fillers, interfacial adhesion as well as the significant confinement of the segmental motion of PET, as compared to the nanocomposites of PET/pristine AT (PET/AT. Owing to the unique interfacial structure in PET/MAT composites, their thermal and mechanical properties have been greatly improved. Compared with neat PET, the elastic modulus and the yield strength of PET/MAT were significantly improved by about 39.5 and 36.8%, respectively, by incorporating only 2 wt % MAT. Our work provides a novel route to fabricate advanced PET nanocomposites using rod-like attapulgite as fillers, which has great potential for industrial applications.

  10. Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation

    Science.gov (United States)

    Hoven, Corey V.; Wang, Huiping; Elbing, Mark; Garner, Logan; Winkelhaus, Daniel; Bazan, Guillermo C.

    2010-03-01

    Widely used solid-state devices fabricated with inorganic semiconductors, including light-emitting diodes and solar cells, derive much of their function from the p-n junction. Such junctions lead to diode characteristics and are attained when p-doped and n-doped materials come into contact with each other. Achieving bilayer p-n junctions with semiconducting polymers has been hindered by difficulties in the deposition of thin films with independent p-doped and n-doped layers. Here we report on how to achieve permanently fixed organic p-n heterojunctions by using a cationic conjugated polyelectrolyte with fluoride counteranions and an underlayer composed of a neutral conjugated polymer bearing anion-trapping functional groups. Application of a bias leads to charge injection and fluoride migration into the neutral layer, where irreversible covalent bond formation takes place. After the initial charging and doping, one obtains devices with no delay in the turn on of light-emitting electrochemical behaviour and excellent current rectification. Such devices highlight how mobile ions in organic media can open opportunities to realize device structures in ways that do not have analogies in the world of silicon and promise new opportunities for integrating organic materials within technologies now dominated by inorganic semiconductors.

  11. Effect of finite chemical potential on QGP-hadron phase transition in a statistical model of fireball formation

    International Nuclear Information System (INIS)

    Ramanathan, R.; Singh, S.S.; Jha, A.K.; Gupta, K.K.

    2011-01-01

    We study the effect of finite chemical potential for the QGP constituents in the Ramanathan et al. statistical model. While the earlier computations using this model with vanishing chemical potentials indicated a weakly first order phase transition for the system in the vicinity of 170 MeV, the introduction of finite values for the chemical potentials of the constituents makes the transition a smooth roll over of the phases, while allowing fireball formation with radius of a few 'fermi' to take place. This seems to be in conformity with the latest consensus on the nature of the QGP-Hadron phase transition. (author)

  12. The Solid Solution Sr(1-x)Ba(x)Ga2: Substitutional Disorder and Chemical Bonding Visited by NMR Spectroscopy and Quantum Mechanical Calculations.

    Science.gov (United States)

    Pecher, Oliver; Mausolf, Bernhard; Lamberts, Kevin; Oligschläger, Dirk; Niewieszol, Carina; Englert, Ulli; Haarmann, Frank

    2015-09-28

    Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr(1-x)Ba(x)Ga2 is shown by means of X-ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10% cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation-dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity

    Science.gov (United States)

    Fernández-Posada, Carmen M.; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey

    2016-09-01

    There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO3-BiCoO3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO3-BiMnO3-PbTiO3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.

  14. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    CERN Document Server

    Rondo, L.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosolnucleation. Based on quantum chemical calculations it has been suggested that the quantitative detectionof gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased inthe presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was setup at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection ofH2SO4in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time inthe CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF(Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutralsulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presenceof dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS...

  15. Systematic Search for Chemical Reactions in Gas Phase Contributing to Methanol Formation in Interstellar Space.

    Science.gov (United States)

    Gamez-Garcia, Victoria G; Galano, Annia

    2017-10-05

    A massive search for chemical routes leading to methanol formation in gas phase has been conducted using computational chemistry, at the CBS-QB3 level of theory. The calculations were performed at five different temperatures (100, 80, 50, 20, and 10 K) and at three pressures (0.1, 0.01, and 0.001 atm) for each temperature. The search was focused on identifying reactions with the necessary features to be viable in the interstellar medium (ISM). A searching strategy was applied to that purpose, which allowed to reduce an initial set of 678 possible reactions to a subset of 11 chemical routes that are recommended, for the first time, as potential candidates for contributing to methanol formation in the gas phase of the ISM. They are all barrier-less, and thus they are expected to take place at collision rates. Hopefully, including these reactions in the currently available models, for the gas-phase methanol formation in the ISM, would help improving the predicted fractional abundance of this molecule in dark clouds. Further investigations, especially those dealing with grain chemistry and electronic excited states, would be crucial to get a complete picture of the methanol formation in the ISM.

  16. The structure and conformations of piracetam (2-oxo-1-pyrrolidineacetamide): Gas-phase electron diffraction and quantum chemical calculations

    Science.gov (United States)

    Ksenafontov, Denis N.; Moiseeva, Natalia F.; Khristenko, Lyudmila V.; Karasev, Nikolai M.; Shishkov, Igor F.; Vilkov, Lev V.

    2010-12-01

    The geometric structure of piracetam was studied by quantum chemical calculations (DFT and ab initio), gas electron diffraction (GED), and FTIR spectroscopy. Two stable mirror symmetric isomers of piracetam were found. The conformation of pyrrolidine ring is an envelope in which the C4 atom deviates from the ring plane, the angle between the planes (C3 sbnd C4 sbnd C5) and (C2 sbnd C3 sbnd C5) is 154.1°. The direction of the deviation is the same as that of the side acetamide group. The piracetam molecule is stabilized in the gas phase by an intramolecular hydrogen bond between the N9H 2 group and the oxygen O6, bonded to C2. The principal structural parameters ( re, Å and ∠e, degrees; uncertainties are 3 σLS values) were found to be: r(С3 sbnd С4) = 1.533(1), r(C4 sbnd C5) = 1.540(1), r(N1 sbnd C5) = 1.456(1), r(C2 sbnd C3) = 1.520(1), r(N1 sbnd C7) = 1.452(1), r(C7 sbnd C8) = 1.537(1), r(N1 sbnd C2) = 1.365(2), r(C8 sbnd N9) = 1.360(2), r(C2 dbnd O6) = 1.229(1), r(C8 dbnd O10) = 1.221(1), ∠C2 sbnd N1 sbnd C5 = 113.4(6), ∠N1 sbnd C2 sbnd C3 = 106.9(6), ∠N1 sbnd C7 sbnd C8 = 111.9(6), ∠C7 sbnd C8 sbnd N9 = 112.5(6), ∠N1 sbnd C2 sbnd O6 = 123.0(4), ∠C3 sbnd N1 sbnd C7 = 120.4(4), ∠C7 sbnd C8 sbnd O10 = 120.2(4), ∠C5 sbnd N1 sbnd C2 sbnd O6 = 170(6), ∠C3 sbnd C2 sbnd N1 sbnd C7 = 178(6), ∠C2 sbnd N1 sbnd C7 sbnd C8 = 84.2, ∠N1 sbnd C7 sbnd C8 sbnd O10 = 111.9.

  17. NbF{sub 5} and TaF{sub 5}: Assignment of {sup 19}F NMR resonances and chemical bond analysis from GIPAW calculations

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Mamata, E-mail: Mamata.Biswal-Susanta_Kumar_Nayak.Etu@univ-lemans.fr [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France); Body, Monique, E-mail: monique.body@univ-lemans.fr [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France); Legein, Christophe, E-mail: christophe.legein@univ-lemans.fr [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France); Sadoc, Aymeric, E-mail: Aymeric.Sadoc@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Boucher, Florent, E-mail: Florent.Boucher@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2013-11-15

    The {sup 19}F isotropic chemical shifts (δ{sub iso}) of two isomorphic compounds, NbF{sub 5} and TaF{sub 5}, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D {sup 19}F MAS NMR spectra. In parallel, the corresponding {sup 19}F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M{sub 4}F{sub 20}] units of NbF{sub 5} and TaF{sub 5} being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained, ensured by the linearity between experimental {sup 19}F δ{sub iso} values and calculated {sup 19}F isotropic chemical shielding σ{sub iso} values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF{sub 5}. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the {sup 19}F NMR lines of NbF{sub 5}, distorted multiplets, arising from {sup 1}J-coupling and residual dipolar coupling between the {sup 19}F and {sup 93}Nb nuclei, were simulated yielding to values of {sup 93}Nb–{sup 19}F {sup 1}J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} allow establishing relationships between the {sup 19}F δ{sub iso} values, the nature of the fluorine atoms

  18. Ionic Liquid-Bonded Fused Silica as a New Solid-Phase Microextraction Fiber for the Liquid Chromatographic Determination of Bisphenol A as an Endocrine Disruptor.

    Science.gov (United States)

    Mohammadnezhad, Nasim; Matin, Amir Abbas; Samadi, Naser; Shomali, Ashkan; Valizadeh, Hassan

    2017-01-01

    Linear ionic liquid bonded to fused silica and its application as a solid-phase microextraction fiber for the extraction of bisphenol A (BPA) from water samples were studied. After optimization of microextraction conditions (15 mL sample volume, extraction time of 40 min, extraction temperature of 30 ± 1°C, 300 μL acetonitrile as the desorption solvent, and desorption time of 7 min), the fiber was used to extract BPA from packed mineral water, followed by HPLC-UV on an XDB-C18 column (150 × 4.6 mm id, 3.5 μm particle) with a mobile phase of acetonitrile-water (45 + 55%, v/v) and flow rate of 1 mL . min-1). A low LOD (0.20 μg . L-1) and good linearity (0.9977) in the calibration graph indicated that the proposed method was suitable for the determination of BPA.

  19. Theory of terahertz pumping of chemical environments in the condensed phase

    International Nuclear Information System (INIS)

    Mishra, Pankaj Kumar

    2015-12-01

    the permanent dipole of water molecules. Further, we show that temperature and density of the water affect the energy transfer by THz pulse significantly. Another section of this thesis is focused on investigating the response of solutes to such hot and gas-like liquid water environment, created by the THz pump pulse. We show that an isolated phenol molecule, as example solute gains negligibly small energy directly from such pump pulse. However, the phenol in liquid water environment gains significantly large amount of energy due to the strong collisions of the highly mobile water molecules. The THz pump also modifies the solute-solvent dynamics substantially in sub-ps timescale. Thus, THz can potentially activate chemical processes long before the large amount of energy supplied to the system, leads to volume increase and vaporization of the medium. The last part of this thesis presents the state of art of existing THz sources for the possible pump-probe experiments. The response of water is analyzed for pulses of different central frequencies, pulse fluence and pule duration. The peak field amplitude of pulse plays crucial role in H-bond depletion. Once H-bond are broken, the energy transfer to water depends on the fluence of the pulse. A pump pulse of 20 THz frequency is also discussed as an adequate pumping mechanism for T-jump up to 1000 K or beyond.

  20. Fundamental limits on gas-phase chemical reduction of NOx in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsiao, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    In the plasma, the electrons do not react directly with the NOx molecules. The electrons collide mainly with the background gas molecules like N{sub 2}, O{sub 2} and H{sub 2}O. Electron impact on these molecules result partly in dissociation reactions that produce reactive species like N, O and OH. The NOx in the engine exhaust gas initially consist mostly of NO. The ground state nitrogen atom, N, is the only species that could lead to the chemical reduction of NO to N{sub 2}. The O radical oxidizes NO to NO{sub 2} leaving the same amount of NOx. The OH radical converts NO{sub 2} to nitric acid. Acid products in the plasma can easily get adsorbed on surfaces in the plasma reactor and in the pipes. When undetected, the absence of these oxidation products can often be mistaken for chemical reduction of NOx. In this paper the authors will examine the gas-phase chemical reduction of NOx. They will show that under the best conditions, the plasma can chemically reduce 1.6 grams of NOx per brake-horsepower-hour [g(NOx)/bhp-hr] when 5% of the engine output energy is delivered to the plasma.

  1. Crystal structure, hydrogen bonding, and sup 8 sup 1 Br NQR of low-temperature phase of 4-aminopyridinium tetrabromoantimonate (3)

    CERN Document Server

    Hashimoto, M; Fuess, H; Svoboda, I; Ehrenberg, H

    2003-01-01

    The crystal structure of the low-temperature phase (LTP) of the title compound was determined at 220 K (monoclinic, P2 sub 1 sub / sub c). The 4-aminopyridinium cations (4-NH sub 2 C sub 5 H sub 4 NH sup +) were found to be ordered in LTP, while being severely disordered in the room-temperature phase (monoclinic, C2/c). The tetrabromoantimonate anions (SbBr sub 4 sup -) were incorporated into the infinite polyanion chains of irregular SbBr sub 6 octahedra with two-edges sharing. The trans-Br-Sb-Br moiety in the SbBr sub 4 sup - anion was approximately symmetric differing from the asymmetric Br-Sb centre dot centre dot centre dot Br moiety found in LTP of pyridinium tetrabromoantimonate (3). The N-H moieties in both of the pyridine ring and the amino (-NH sub 2) group participate in the formation of N-H centre dot centre dot centre dot Br hydrogen bonds. It was shown that the sup 8 sup 1 Br NQR spectrum of LTP is closely related to the anion structure and the hydrogen bonds. The distinctive anion structures, a...

  2. Diffusion, Thermal Properties and Chemical Compatibilities of Select MAX Phases with Materials For Advanced Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michel [Drexel Univ., Philadelphia, PA (United States); Bentzel, Grady [Drexel Univ., Philadelphia, PA (United States); Tallman, Darin J. [Drexel Univ., Philadelphia, PA (United States); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-04

    The demands of Gen IV nuclear power plants for long service life under neutron irradiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ ºC) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the chemical compatibility of select MAX with potential materials that are important for nuclear energy, as well as to measure the thermal transport properties as a function of neutron irradiation. The chemical counterparts chosen for this work are: pyrolytic carbon, SiC, U, Pd, FLiBe, Pb-Bi and Na, the latter 3 in the molten state. The thermal conductivities and heat capacities of non-irradiated MAX phases will be measured.

  3. A first principles study of phase stability, bonding, electronic and lattice dynamical properties of beryllium chalcogenides at high pressure

    International Nuclear Information System (INIS)

    Dabhi, Shweta; Mankad, Venu; Jha, Prafulla K.

    2014-01-01

    Highlights: • First principles calculations are performed for BeS, BeSe and BeTe in B3, B8 and B1 phases. • They are indirect wide band gap semiconductors stable in B3 phase at ambient condition. • Phonon calculations at ambient and high pressure are reported. • The NiAs phase is dynamically stable at high pressure. - Abstract: The present paper reports a detailed and systematic theoretical study of structural, mechanical, electronic, vibrational and thermodynamical properties of three beryllium chalcogenides BeS, BeSe and BeTe in zinc blende, NiAs and rock salt phases by performing ab initio calculations based on density-functional theory. The calculated value of lattice constants and bulk modulus are compared with the available experimental and other theoretical data and found to agree reasonably well. These compounds are indirect wide band gap semiconductors with a partially ionic contribution in all considered three phases. The zinc blende phase of these chalcogenides is found stable at ambient condition and phase transition from zinc blende to NiAs structure is found to occur. The bulk modulus, its pressure derivative, anisotropic factor, Poission’s ratio, Young’s modulus for these are also calculated and discussed. The phonon dispersion curves of these beryllium chalcogenides in zinc blende phase depict their dynamical stability in this phase at ambient condition. We have also estimated the temperature variation of specific heat at constant volume, entropy and Debye temperature for these compounds in zinc blende phase. The variation of lattice-specific heat with temperature obeys the classical Dulong–Petit’s law at high temperature, while at low-temperature it obeys the Debye’s T 3 law

  4. Effect of vapor-phase oxygen on chemical vapor deposition growth of graphene

    Science.gov (United States)

    Terasawa, Tomo-o.; Saiki, Koichiro

    2015-03-01

    To obtain a large-area single-crystal graphene, chemical vapor deposition (CVD) growth on Cu is considered the most promising. Recently, the surface oxygen on Cu has been found to suppress the nucleation of graphene. However, the effect of oxygen in the vapor phase was not elucidated sufficiently. Here, we investigate the effect of O2 partial pressure (PO2) on the CVD growth of graphene using radiation-mode optical microscopy. The nucleation density of graphene decreases monotonically with PO2, while its growth rate reaches a maximum at a certain pressure. Our results indicate that PO2 is an important parameter to optimize in the CVD growth of graphene.

  5. Physics of a ballistic missile defense - The chemical laser boost-phase defense

    Science.gov (United States)

    Grabbe, Crockett L.

    1988-01-01

    The basic physics involved in proposals to use a chemical laser based on satellites for a boost-phase defense are investigated. After a brief consideration of simple physical conditions for the defense, a calculation of an equation for the number of satellites needed for the defense is made along with some typical values of this for possible future conditions for the defense. Basic energy and power requirements for the defense are determined. A sumary is made of probable minimum conditions that must be achieved for laser power, targeting accuracy, number of satellites, and total sources for power needed.

  6. Gas-phase hydrosilylation of cyclohexene in an experimental radiation-chemical accelerator apparatus

    International Nuclear Information System (INIS)

    Pecherkin, A.S.; Sidorov, V.I.; Chernyshev, E.A.

    1992-01-01

    A process for the synthesis of methylcyclohexyldichlorosilane (a basic monomer for the production of organosilicon photoresists) has been investigated and perfected on an experimental apparatus with an ELV-2 electron accelerator; this synthesis involves gas-phase radiation-induced hydrosilylation of cyclohexene by methyldichlorosilane. Basic characteristics of the yield of the desired product under static conditions were determined. With the help of experiments on the synthesis of methylcyclohexyldichlorosilane in a flow- through mode, the technical features of the process of radiation-chemical hydrosilylation of cyclohexene on an accelerator apparatus were determined and studied, the optimal conditions for the synthesis were determined, and an experimental batch of the desired product was produced

  7. The Effects of Diesel Exhaust and Stress on the Acute Phase Response and Symptoms in the Chemically Intolerant

    National Research Council Canada - National Science Library

    Fiedler, Nancy; Leumbach, Robert; Kipen, Howard; Lioy, Paul; Zhang, Jungfeng; Lehrer, Paul

    2006-01-01

    .... The purpose of the proposed study is to test a model for chemical sensitivity in GWV in which simultaneous acute exposures to DE and psychological stress cause increased symptoms via the acute phase response (APR...

  8. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, Daniel C [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-23

    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  9. Reactive Ion Etching as Cleaning Method Post Chemical Mechanical Polishing for Phase Change Memory Device

    International Nuclear Information System (INIS)

    Min, Zhong; Zhi-Tang, Song; Bo, Liu; Song-Lin, Feng; Bomy, Chen

    2008-01-01

    In order to improve nano-scale phase change memory performance, a super-clean interface should be obtained after chemical mechanical polishing (CMP) of Ge 2 Sb 2 Te 5 phase change films. We use reactive ion etching (RIE) as the cleaning method. The cleaning effect is analysed by scanning electron microscopy and an energy dispersive spectrometer. The results show that particle residue on the surface has been removed. Meanwhile, Ge 2 Sb 2 Te 5 material stoichiometric content ratios are unchanged. After the top electrode is deposited, current-voltage characteristics test demonstrates that the set threshold voltage is reduced from 13 V to 2.7V and the threshold current from 0.1mA to 0.025mA. Furthermore, we analyse the RIE cleaning principle and compare it with the ultrasonic method

  10. Curvature evolution of 200 mm diameter GaN-on-insulator wafer fabricated through metalorganic chemical vapor deposition and bonding

    Science.gov (United States)

    Zhang, Li; Lee, Kwang Hong; Kadir, Abdul; Wang, Yue; Lee, Kenneth E.; Tan, Chuan Seng; Chua, Soo Jin; Fitzgerald, Eugene A.

    2018-05-01

    Crack-free 200 mm diameter N-polar GaN-on-insulator (GaN-OI) wafers are demonstrated by the transfer of metalorganic chemical vapor deposition (MOCVD)-grown Ga-polar GaN layers from Si(111) wafers onto SiO2/Si(100) wafers. The wafer curvature of the GaN-OI wafers after the removal of the original Si(111) substrate is correlated with the wafer curvature of the starting GaN-on-Si wafers and the voids on the GaN-on-Si surface that evolve into cracks on the GaN-OI wafers. In crack-free GaN-OI wafers, the wafer curvature during the removal of the AlN nucleation layer, AlGaN strain-compensation buffer layers and GaN layers is correlated with the residual stress distribution within individual layers in the GaN-OI wafer.

  11. FTIR, FT-Raman, UV-Visible spectra and quantum chemical calculations of allantoin molecule and its hydrogen bonded dimers.

    Science.gov (United States)

    Alam, Mohammad Jane; Ahmad, Shabbir

    2015-02-05

    FTIR, FT-Raman and electronic spectra of allantoin molecule are recorded and investigated using DFT and MP2 methods with 6-311++G(d,p) basis set. The molecular structure, anharmonic vibrational spectra, natural atomic charges, non-linear optical properties, etc. have been computed for the ground state of allantoin. The anharmonic vibrational frequencies are calculated using PT2 algorithm (Barone method) as well as VSCF and CC-VSCF methods. These methods yield results that are in remarkable agreement with the experiment. The coupling strengths between pairs of modes are also calculated using coupling integral based on 2MR-QFF approximation. The simulations on allantoin dimers have been also performed at B3LYP/6-311++G(d,p) level of theory to investigate the effect of the intermolecular interactions on the molecular structure and vibrational frequencies of the monomer. Vibrational assignments are made with the great accuracy using PED calculations and animated modes. The combination and overtone bands have been also identified in the FTIR spectrum with the help of anharmonic computations. The electronic spectra are simulated in gas and solution at TD-B3LYP/6-311++G(d,p) level of theory. The important global quantities such as electro-negativity, electronic chemical potential, electrophilicity index, chemical hardness and softness based on HOMO, LUMO energy eigenvalues are also computed. NBO analysis has been performed for monomer and dimers of allantoin at B3LYP/6-311++G(d,p) level of theory. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    Science.gov (United States)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  13. Nitrilotris(methylenephosphonato)potassium K[μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3}H{sub 4}]: Synthesis, structure, and the nature of the K–O chemical bond

    Energy Technology Data Exchange (ETDEWEB)

    Somov, N. V., E-mail: somov@phys.unn.ru [Lobachevsky State University of Nizhni Novgorod (Russian Federation); Chausov, F. F., E-mail: xps@ftiudm.ru [Russian Academy of Sciences, Physical-Technical Institute, Ural Branch (Russian Federation); Zakirova, R. M., E-mail: ftt@udsu.ru [Udmurt State University (Russian Federation)

    2016-07-15

    The crystal structure of nitrilotris(methylenephosphonato)potassium K[μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3}H{sub 4}]—a three-dimensional coordination polymer—was determined. The potassium atom is coordinated by seven oxygen atoms belonging to the six nearest ligand molecules, resulting in distorted monocapped octahedral coordination geometry. The complex contains the four-membered chelate ring K–O–P–O. The K–O chemical bond is predominantly ionic. Meanwhile, the bonds of the potassium atom with some oxygen atoms have a noticeable covalent component. In addition to coordination bonds, the molecules in the crystal packing are linked by hydrogen bonds.

  14. 2008 Summer Research Institute Interfacial and Condensed Phase Chemical Physics Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C.; Tonkyn, Russell G.; Avery, Nachael B.

    2008-11-01

    For the fifth year, the Pacific Northwest National Laboratory in Richland, Washington, invited graduate students, postdoctoral fellows, university faculty, and students entering graduate students from around the world to participate in the Summer Research Institute in Interfacial and Condensed Phase Chemical Physics. The institute offers participants the opportunity to gain hands-on experience in top-notch research laboratories while working along internationally respected mentors. Of the 38 applicants, 20 were accepted for the 8- to 10-week program. The participants came from universities as close as Seattle and Portland and as far away as Germany and Singapore. At Pacific Northwest National Laboratory, the 20 participants were mentored by 13 scientists. These mentors help tailor the participant’s experience to the needs of that person. Further, the mentors provide guidance on experimental and theoretical techniques, research design and completion, and other aspects of scientific careers in interfacial and condensed phase chemical physics. The research conducted at the institute can result in tangible benefits for the participants. For example, many have co-authored papers that have been published in peer-reviewed journals, including top-rated journals such as Science. Also, they have presented their research at conferences, such as the Gordon Research Conference on Dynamics at Surfaces and the AVS national meeting. Beyond that, many of the participants have started building professional connections with researchers at Pacific Northwest National Laboratory, connections that will serve them well during their careers.

  15. Synthesis of iron oxide nanorods via chemical scavenging and phase transformations of intermediates at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Ruchi; Mehra, Anurag; Thaokar, Rochish, E-mail: rochish@che.iitb.ac.in [Indian Institute of Technology-Bombay, Department of Chemical Engineering (India)

    2017-01-15

    Chemically induced shape transformations of isotropic seeds, comprised of iron oxyhydroxides and iron oxide borate into nanorods, is reported. Transient growth studies show that the nanorods are formed via phase transformation and aggregation of various metastable species. Addition of tetra-methyl-ammonium hydroxide (TMAH) to the in situ synthesized seeds ensures a typical reaction pathway that favors formation of magnetite (Fe {sub 3}O{sub 4}) via the steps of chemical etching, phase transformation of intermediates, and crystal consolidation. Whereas, with addition of sodium hydroxide (NaOH), either magnetite (Fe {sub 3}O{sub 4}) or a mixture of (γ-Fe {sub 2}O{sub 3} + α-FeOOH) is obtained. The shape with both the additives is always that of nanorods. When the seeds treated with TMAH were aged in an ultrasonication bath, rods with almost twice the length and diameter (length = 2800 nm, diameter = 345 nm) are obtained as compared to the sample aged without ultrasonication (length = 1535 nm, diameter = 172 nm). The morphology of nanostructures depending upon other experimental conditions such as, aging the sample at 60 {sup ∘}C, seeds synthesized under ultrasonication/ stirring or externally added are also examined and discussed in detail. All the samples show high coercivity and strong ferromagnetic behavior at room temperature and should be promising candidates as ferro-fluids for various applications.

  16. Diversity oriented high-throughput screening of 1,3,4-oxadiazole modified chlorophenylureas and halogenobenzamides by HPLC with peptidomimetic calixarene-bonded stationary phases.

    Science.gov (United States)

    Bazylak, Grzegorz; Malak, Anna; Ali, Imran; Borowiak, Teresa; Dutkiewicz, Grzegorz

    2008-06-01

    Retention profiles in series of the neutral and highly hydrophobic 1,3,4-oxadiazoles containing chlorophenylurea and halogenobenzamide moiety and indicating analgesic activity were determined in the isocratic standard- and narrow-bore HPLC systems employing, respectively, various octadecylsilica and different calixarene bonded stationary phases. When acetonitrile - 2.65 mM phosphoric acid (55 : 45, %, v/v), pH* 3.25, mobile phase was applied retention of these compounds increased with decline of their overall hydrophobicity according to the general preference of more polar compounds by calixarene cavity in time of its non-specific host-guest supramolecular interactions with halogenated substances. The size of calixarene nanocavity and its upper-rim substitution did not change the observed retention order, resolution and selectivity of separation for oxadiazoles. Compared to the retention on the non-end-capped and the highly-end-capped octadecylsilica HPLC column a most improved separation of some regioisomers of halogenated 1,3,4-oxadiazoles were observed on both used calixarene-type HPLC supports. In addition, preliminary data on the self-assembled supramolecular crystal structure of exemplary 1,3,4-oxadiazolchlorophenylurea with cis-elongated conformation was reported and formation of the monovalent inclusion host-guest complexes between 1,3,4-oxadiazoles and each calixarene-type stationary phase was studied with molecular modelling MM+ and AM1 methods. The structural, isomeric and energetic factors leading to the hydrogen bond stabilized inclusion complexes between these species were considered and used for explanation of observed retention sequence and selectivity of 1,3,4-oxadiazoles separation in applied calixarene-based HPLC systems. All these data would be useful in future development of optimized procedures enabling encapsulation of 1,3,4-oxadiazolurea-type drugs with calixarenes.

  17. Bond Issues.

    Science.gov (United States)

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  18. Survival of bonded lingual retainers with chemical or photo polymerization over a 2-year period: a single-center, randomized controlled clinical trial.

    Science.gov (United States)

    Pandis, Nikolaos; Fleming, Padhraig S; Kloukos, Dimitrios; Polychronopoulou, Argy; Katsaros, Christos; Eliades, Theodore

    2013-08-01

    The objective of this trial was to compare the survival rates of mandibular lingual retainers bonded with either chemically cured or light-cured adhesive after orthodontic treatment. Patients having undergone orthodontic treatment at a private orthodontic office were randomly allocated to fixed retainers placed with chemically cured composite or light-cured composite. Eligibility criteria included no active caries, restorations, or fractures on the mandibular anterior teeth, and adequate oral hygiene. The main outcome was any type of first-time lingual retainer breakage; pattern of failure (adapted adhesive remnant index scores) was a secondary outcome. Randomization was accomplished with random permuted blocks of 20 patients with allocation concealed in sequentially numbered, opaque, sealed envelopes. Blinding was applicable for outcome assessment only. Patients were reviewed at 1, 3, and 6 months and then every 6 months after placement of the retainer until completion of the study. Data were analyzed using survival analysis including Cox regression; sensitivity analysis was carried out after data imputation for subjects lost to follow-up. Two hundred twenty patients (median age, 16 years; interquartile range, 2; range, 12-47 years) were randomized in a 1:1 ratio to either chemical or light curing. Baseline characteristics were similar between groups, the median follow-up period was 2.19 years (range, 0.003-3.64 years), and 16 patients were lost to follow-up. At a minimum follow-up of 2 years, 47 of 110 (42.7%) and 55 of 110 (50.0%) retainers had some type of failure with chemically cured and light-cured adhesive, respectively (log-rank test, P = 0.35). Data were analyzed on an intention-to-treat basis, and the hazard ratio (HR) was 1.15 (95% confidence interval [CI], 0.88-1.70; P = 0.47). There was weak evidence that age is a significant predictor for lingual retainer failures (HR, 0.96; 95% CI, 0.93-1.00; P = 0.08). Adhesive remnant index scoring was

  19. Phase rule calculations and the thermodynamics of reactive systems under chemical equilibrium

    Directory of Open Access Journals (Sweden)

    PLATT G. M.

    1999-01-01

    Full Text Available In this paper, we examine the resolution of some phase rule problems within the context of multiple chemical equilibrium reactions, using cubic equations of state and an activity coefficient model. Bubble and dew reactive surfaces, reactive azeotropic loci and reactive critical loci are generated and presented in graphical form. Also isobaric bubble and dew reactive enthalpy loci, which may be useful in the modeling of reactive distillation operations, are depicted. All the formalism here employed is developed within the coordinate transformation of Ung and Doherty, which is appropriate for equilibrium reactive or multireactive systems. The major contribution of this work is the determination of critical loci for reactive or multireactive equilibrium systems. Since it is known that for some class of chemical reactions the kinetics and product distribution exhibit high sensitivity to pressure near criticality, the present study may be useful as a predicting tool in these cases if the chemical equilibrium condition is not too far from the real phenomenon.

  20. Evaporation of multicomponent chemical spills: When is liquid phase resistance significant?

    International Nuclear Information System (INIS)

    Berger, D.; Mackay, D.

    1993-01-01

    When chemicals are spilled on land or water, it is important to be able to estimate evaporation rates accurately. Conventional models used to predict evaporation rates of multicomponent spills assume that the entire resistance to evaporation lies in the vapor phase. Under certain conditions, an additional liquid phase resistance may be introduced, resulting in retarded evaporation rates. Existing models may thus fail to predict spill behavior accurately. A study is described whose objective is to elucidate the significance of the liquid phase resistance. Evaporation experiments were conducted in which a thin layer of synthetic oil (mineral oil enriched with compounds such as pentane, hexane, toluene, octane, and p-xylene) was exposed to prolonged evaporation in a metal tray at controlled wind speeds. Bulk samples of the spill layer were taken at specific time intervals and their composition was determined by gas chromatographic analysis. The results are compared to those from a theoretical model and to gas stripping experiments. The model is based on the evaporative flux equation incorporating Raoult's law; inputs are the air-oil partition coefficient for each component and the composition of the synthetic oil on a volume and mole fraction basis. The study has enabled the formation of vertical concentration profiles to be examined and liquid phase mass transfer coefficients to be estimated. The results imply that liquid-phase resistance effects are likely to be important for the most volatile components. Contaminated areas may thus continue to be hazardous, even though model predictions indicate otherwise. 7 refs., 3 figs., 2 tabs

  1. Synthesis and characterization of β-phase iron silicide nano-particles by chemical reduction

    International Nuclear Information System (INIS)

    Sen, Sabyasachi; Gogurla, Narendar; Banerji, Pallab; Guha, Prasanta K.; Pramanik, Panchanan

    2015-01-01

    Graphical abstract: - Highlights: • β-FeSi 2 nano-particle was synthesized by reducing with Mg and by diluting with MgO. • XRD profile shows the iron di-silicide phase to be semiconducting β-FeSi 2 . • HRTEM and FESEM images indicate the β-FeSi 2 average particle size to be 60–70 nm. • Absorption, reflectance and PL spectroscopy show band gap to be direct 0.87 eV. • Nano-β-FeSi 2 is p-type with hole density of 4.38 × 10 18 cm −3 and mobility 8.9 cm 2 /V s. - Abstract: Nano-particles of β-FeSi 2 have been synthesized by chemical reduction of a glassy phase of [Fe 2 O 3 , 4SiO 2 ] by Mg-metal where MgO is used as diluent to prevent the agglomeration of nano crystallites into micro-particles and also act as a negative catalyst for the formation of other phases. The sample is characterized by XRD, FESEM, HRTEM, EDX, ultra-violet-visible-infrared and PL spectroscopy and electronic properties have been investigated by Hall measurement. XRD profile shows that the synthesized powder consists of purely β-FeSi 2 semiconducting phase. The average crystallite size of β-FeSi 2 is determined to be around 65.4 nm from XRD peaks as well as from FESEM also. The optical absorption and PL spectroscopy shows that synthesized β-FeSi 2 phase is a direct band gap semiconductor with a value of 0.87 eV. Hall measurements show that β-FeSi 2 nano-particles is p-type with hole concentration of 4.38 × 10 18 cm −3 and average hole mobility of 8.9 cm 2 /V s at 300 K

  2. Collapsed tetragonal phase as a strongly covalent and fully nonmagnetic state: Persistent magnetism with interlayer As-As bond formation in Rh-doped Ca0 .8Sr0 .2Fe2As2

    Science.gov (United States)

    Zhao, K.; Glasbrenner, J. K.; Gretarsson, H.; Schmitz, D.; Bednarcik, J.; Etter, M.; Sun, J. P.; Manna, R. S.; Al-Zein, A.; Lafuerza, S.; Scherer, W.; Cheng, J. G.; Gegenwart, P.

    2018-02-01

    A well-known feature of the CaFe2As2 -based superconductors is the pressure-induced collapsed tetragonal phase that is commonly ascribed to the formation of an interlayer As-As bond. Using detailed x-ray scattering and spectroscopy, we find that Rh-doped Ca0.8Sr0.2Fe2As2 does not undergo a first-order phase transition and that local Fe moments persist despite the formation of interlayer As-As bonds. Our density functional theory calculations reveal that the Fe-As bond geometry is critical for stabilizing magnetism and the pressure-induced drop in the c lattice parameter observed in pure CaFe2As2 is mostly due to a constriction within the FeAs planes. The collapsed tetragonal phase emerges when covalent bonding of strongly hybridized Fe 3 d and As 4 p states completely wins out over their exchange splitting. Thus the collapsed tetragonal phase is properly understood as a strong covalent phase that is fully nonmagnetic with the As-As bond forming as a by-product.

  3. Developmental Effects of the ToxCast™ Phase I and Phase II Chemicals in Caenorhabditis elegans and Corresponding Responses in Zebrafish, Rats, and Rabbits

    Science.gov (United States)

    Boyd, Windy A.; Smith, Marjolein V.; Co, Caroll A.; Pirone, Jason R.; Rice, Julie R.; Shockley, Keith R.; Freedman, Jonathan H.

    2015-01-01

    Background: Modern toxicology is shifting from an observational to a mechanistic science. As part of this shift, high-throughput toxicity assays are being developed using alternative, nonmammalian species to prioritize chemicals and develop prediction models of human toxicity. Methods: The nematode Caenorhabditis elegans (C. elegans) was used to screen the U.S. Environmental Protection Agency’s (EPA’s) ToxCast™ Phase I and Phase II libraries, which contain 292 and 676 chemicals, respectively, for chemicals leading to decreased larval development and growth. Chemical toxicity was evaluated using three parameters: a biologically defined effect size threshold, half-maximal activity concentration (AC50), and lowest effective concentration (LEC). Results: Across both the Phase I and Phase II libraries, 62% of the chemicals were classified as active ≤ 200 μM in the C. elegans assay. Chemical activities and potencies in C. elegans were compared with those from two zebrafish embryonic development toxicity studies and developmental toxicity data for rats and rabbits. Concordance of chemical activity was higher between C. elegans and one zebrafish assay across Phase I chemicals (79%) than with a second zebrafish assay (59%). Using C. elegans or zebrafish to predict rat or rabbit developmental toxicity resulted in balanced accuracies (the average value of the sensitivity and specificity for an assay) ranging from 45% to 53%, slightly lower than the concordance between rat and rabbit (58%). Conclusions: Here, we present an assay that quantitatively and reliably describes the effects of chemical toxicants on C. elegans growth and development. We found significant overlap in the activity of chemicals in the ToxCast™ libraries between C. elegans and zebrafish developmental screens. Incorporating C. elegans toxicological assays as part of a battery of in vitro and in vivo assays provides additional information for the development of models to predict a chemical

  4. Study of clay chemical composition in formation of new phases in crystalline materials ceramic

    International Nuclear Information System (INIS)

    Lima, L.K.S.; Goncalves, W.P.; Silva, V.J.; Dias, G.; Neves, G.A.; Santana, L.N.L.

    2016-01-01

    The knowledge of the characteristics of raw materials and the behavior of these during the heat treatment is crucial before starting any manufacturing process of clay-based products. The objective of this work was to study phase transformations of clay under different heat treatments using conventional oven. To achieve the same were used two clays coming from the municipality of Cubati - PB and kaolin from an industry in the Northeast. The samples were subjected to beneficiation process, crushing, grinding and sieving and further characterized: chemical analysis, particle size, thermal and mineralogical. For heat treatment temperatures employed were 1000, 1100 and 1200 ° C, heating rate 5 ° C / min and residence time of 60min. After this step, the mineralogical characterization was performed by x-ray diffraction technique. Clays with larger particle size fraction below 2um and greater amount of flux oxides showed higher amount of mullite for the temperatures studied. The results also showed nucleation of mullite phase from 1100 °C, a band 2theta in the range of between 20 and 25°, characteristic of amorphous silica and the temperature rise was observed intensification of crystalline phases. (author)

  5. Liquid and vapor phase fluids visualization using an exciplex chemical sensor

    International Nuclear Information System (INIS)

    Kim, Jong Uk; Kim, Guang Hoon; Kim, Chang Bum; Suk, Hyyong

    2001-01-01

    Two dimensional slices of the cross-sectional distributions of fuel images in the combustion chamber were visualized quantitatively using a laser-induced exciplex (excited state complex) fluorescence technique. A new exciplex visualization system consisting of 5%DMA (N, N-dimethylaniline) · 5%1, 4,6-TMN (trimethylnaphthalene) in 90% isooctane (2,2,4-trimethylpentane) fuel was employed. In this method, the vapor phase was tagged by the monomer fluorescence while the liquid phase was tracked by the red-shifted exciplex fluorescence with good spectral and spatial resolution. The direct calibration of the fluorescence intensity as a function of the fluorescing dopant concentrations then permitted the determination of quantitative concentration maps of liquid and vapor phases in the fuel. The 308 nm (XeCl) line of the excimer laser was used to excite the doped molecules in the fuel and the resulting fluorescence images were obtained with an ICCD detector as a function time. In this paper, the spectroscopy of the exciplex chemical sensors as well as the optical diagnostic method of the fluid distribution is discussed in detail.

  6. Structure and chemical durability of barium borosilicate glass–ceramics containing zirconolite and titanite crystalline phases

    International Nuclear Information System (INIS)

    Li, Huidong; Wu, Lang; Xu, Dong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang

    2015-01-01

    In order to increase the solubility of actinides in the glass matrix, the effects of CaO, TiO 2 , and ZrSiO 4 addition (abbreviated as CTZ, in the mole ratio of 2:2:1) on crystalline phases, microstructure, and chemical durability of barium borosilicate glass–ceramics were investigated. The results show that the samples possess both zirconolite-2M and titanite phase when the CTZ content is greater than or equal to 45 wt.%. For the glass–ceramics with 45 wt.% CTZ (CTZ-45), only zirconolite-2M phase is observed after annealing at 680–740 °C for 2 h. The CTZ-45 possess zirconolite-2M and titanite phases after annealing at 700 °C first, and then annealing at 900–1050 °C for 2 h. Furthermore, the zirconolite-2M and titanite grains show a strip and brick shape, respectively. The CTZ-45 annealing at 950 °C shows the lower normalized leaching rates of B, Na and Nd when compared to that of CTZ-0 and CTZ-55. - Highlights: • CaO, TiO 2 , ZrSiO 4 (CTZ) as nucleating agents were added to barium borosilicate glass. • The samples with 45–55 wt% CTZ possess CaZrTi 2 O 7 -2M and CaTiSiO 5 crystalline phases. • CTZ-45 (45wt% CTZ) possesses only CaZrTi 2 O 7 -2M phase after annealing at 680–740 °C. • CTZ-45 possesses CaZrTi 2 O 7 -2M and CaTiSiO 5 phases after annealing at 900–1050 °C. • CTZ-45 annealing at 950 °C shows the lower leaching rates of B, Na and Nd than CTZ-0 and CTZ-55.

  7. Gas-phase reactivity of lanthanide cations with fluorocarbons: C-F versus C-H and C-C bond activation

    International Nuclear Information System (INIS)

    Cornehl, H.H.; Hornung, G.; Schwarz, H.

    1996-01-01

    The gas-phase reactivity of the fluorinated hydrocarbons CF 4 , CHF 3 , CH 3 F, C 2 F 6 , 1,1-C 2 H 4 F 2 , and C 6 F 6 with the lanthanide cations Ce + , Pr + , Sm + , Ho + , Tm + , and Yb + and the reactivity of C 6 H 5 F with all lanthanide cations Ln + (Ln = La-Lu, with the exception of Pm + ) have been examined by Fourier-transform ion cyclotron resonance mass spectrometry. The perfluorinated compounds tetrafluoromethane and hexafluoroethane as well as trifluoromethane do not react with any lanthanide cation. Selective activation of the strong C-F bonds in fluoromethane, 1,1-difluoroethane, hexafluorobenzene, and fluorobenzene appears as a general reaction scheme along the 4f row. Experimental evidence is given for a 'harpoon'-like mechanism for the F atom abstraction process which operates via an initial electron transfer from the lanthanide cation to the fluorinated substrate in the encounter complex Ln + RF. The most reactive lanthanides La + , Ce + , Gd + , and Tb + and also the formal closed-shell species Lu + exhibit additional C-H and C-C bond activation pathways in the reaction with fluorobenzene, namely dehydrohalogenation as well as loss of a neutral acetylene molecule. In the case of Tm + and Yb + the formation of neutral LnF 3 is observed in a multistep process via C-C coupling and charge transfer. 17 refs., 2 figs., 2 tabs

  8. Humic acid-bonded silica as a novel sorbent for solid-phase extraction of benzo[a]pyrene in edible oils

    International Nuclear Information System (INIS)

    Luo Dan; Yu Qiongwei; Yin Hongrui; Feng Yuqi

    2007-01-01

    A novel solid-phase extraction (SPE) sorbent, humic acid-bonded silica (HAS), was prepared. Humic acids (HAs) were grafted onto silica matrices via an amide linkage between humyl chloride and the amido terminus of 3-aminopropyltrimethoxysilane (APTS)-silica gel. The resulting material was characterized by Fourier transform infrared spectrometer, elemental analysis, and nitrogen adsorption analysis. This sorbent exhibits an excellent adsorption capacity for some electron-abundant analytes owing to its peculiar structure. In this paper, we choose benzo[a]pyrene (BaP) in oil as a probe to validate the adsorption capacity of the material. Thus a fast, cheap and simple SPE method with humic acid-bonded silica cartridge for edible oil clean-up, followed by high-performance liquid chromatography (HPLC) with fluorescence detection was established. The effects of experimental variables, such as washing and elution solvents, and the amount of sorbents have been studied. The recoveries of BaP in edible oils spiked at 0.2-100 μg kg -1 were in the range of 78.8-102.7% with relative standard deviations ranging between 1.3 and 9.3%; the limit of detection was -0.06 μg kg -1

  9. Nb{sub 2}OsB{sub 2}, with a new twofold superstructure of the U{sub 3}Si{sub 2} type: Synthesis, crystal chemistry and chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P.T., E-mail: boniface.fokwa@ac.rwth-aachen.de

    2013-07-15

    The new ternary metal-rich boride, Nb{sub 2}OsB{sub 2}, was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U{sub 3}Si{sub 2}-structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B{sub 2} dumbbells with B–B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB–LMTO–ASA), the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic Os–B, Nb–B and Nb–Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride. - Graphical abstract: Nb{sub 2}OsB{sub 2} is, to the best of our knowledge, the first fully characterized phase in the ternary Nb–Os–B system. It crystallizes (space group P4/mnc, 128) with a new twofold superstructure of the U{sub 3}Si{sub 2} structure type (space group P4/mbm, 127), and is therefore the first boride in this structure family crystallizing with a superstructure of the U{sub 3}Si{sub 2} structure type. We show that the distortions leading to this superstructure occurs mainly in the Nb-layer, which tries to accommodate the large osmium atoms. The consequence of this puckering is the building osmium dumbbells instead of chains along [001]. - Highlights: • First compound in the Nb–Os–B system. • New twofold superstructure of U{sub 3}Si{sub 2} structure type. • Puckering of Nb-layer responsible for superstructure occurrence. • Chemical bonding studied

  10. A new general methodology for incorporating physico-chemical transformations into multi-phase wastewater treatment process models.

    Science.gov (United States)

    Lizarralde, I; Fernández-Arévalo, T; Brouckaert, C; Vanrolleghem, P; Ikumi, D S; Ekama, G A; Ayesa, E; Grau, P

    2015-05-01

    This paper introduces a new general methodology for incorporating physico-chemical and chemical transformations into multi-phase wastewater treatment process models in a systematic and rigorous way under a Plant-Wide modelling (PWM) framework. The methodology presented in this paper requires the selection of the relevant biochemical, chemical and physico-chemical transformations taking place and the definition of the mass transport for the co-existing phases. As an example a mathematical model has been constructed to describe a system for biological COD, nitrogen and phosphorus removal, liquid-gas transfer, precipitation processes, and chemical reactions. The capability of the model has been tested by comparing simulated and experimental results for a nutrient removal system with sludge digestion. Finally, a scenario analysis has been undertaken to show the potential of the obtained mathematical model to study phosphorus recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {l_brace}in-phase and out-of phase{r_brace} MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ragab, Yasser [Radiology Department, Faculty of Medicine, Cairo University (Egypt); Radiology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yragab61@hotmail.com; Emad, Yasser [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt); Rheumatology and Rehabilitation Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yasseremad68@yahoo.com; Gheita, Tamer [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt)], E-mail: gheitamer@yahoo.com; Mansour, Maged [Oncology Department, Faculty of Medicine, Cairo University (Egypt); Oncology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: magedmansour@yahoo.com; Abou-Zeid, A. [Public Health Department, Faculty of Medicine, Cairo University, Cairo (Egypt)], E-mail: alaabouzeid@yahoo.com; Ferrari, Serge [Division of Bone Diseases, Department of Rehabilitation and Geriatrics, and WHO, Collaborating Center for Osteoporosis Prevention, Geneva University Hospital (Switzerland)], E-mail: serge.ferrari@medecine.unige.ch; Rasker, Johannes J. [Rheumatologist University of Twente, Enschede (Netherlands)], E-mail: j.j.rasker@utwente.nl

    2009-10-15

    Objective: The objective of this study was to establish the cut-off value of the signal intensity drop on chemical shift magnetic resonance imaging (MRI) with appropriate sensitivity and specificity to differentiate osteoporotic from neoplastic wedging of the spine. Patients and methods: All patients with wedging of vertebral bodies were included consecutively between February 2006 and January 2007. A chemical shift MRI was performed and signal intensity after (in-phase and out-phase) images were obtained. A DXA was performed in all. Results: A total of 40 patients were included, 20 with osteoporotic wedging (group 1) and 20 neoplastic (group 2). They were 21 males and 19 females. Acute vertebral collapse was observed in 15 patients in group 1 and subacute collapse in another 5 patients, while in group 2, 11 patients showed acute collapse and 9 patients (45%) showed subacute vertebral collapse. On the chemical shift MRI a substantial reduction in signal intensity was found in all lesions in both groups. The proportional changes observed in signal intensity of bone marrow lesions on in-phase compared with out-of-phase images showed significant differences in both groups (P < 0.05). At a cut-off value of 35%, the observed sensitivity of out-of-phase images was 95%, specificity was 100%, positive predictive value was 100% and negative predictive value was 95.2%. Conclusion: A chemical shift MRI is useful in order to differentiate patients with vertebral collapse due to underlying osteoporosis or neoplastic process.

  12. Complex cubic metallides AM{sub ∝6} (A=Ca, Sr; M=Zn, Cd, Hg). Synthesis, crystal chemistry and chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Michael; Wendorff, Marco; Roehr, Caroline [Freiburg Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-09-01

    In a systematic synthetic, crystallographic and bond theoretical study, the stability ranges as well as the distribution of the isoelectronic late d-block elements Zn, Cd and Hg (M) in the polyanions of the YCd{sub 6}-type phases (Ca/Sr)Cd{sub 6} have been investigated. Starting from Ca(Cd/Hg){sub 6}, 12-30% of the M atoms can be substituted by Zn, which gradually occupies the center of the empty cubes. In all ternary compounds, smaller/less electronegative Zn/Cd atoms occupy the disordered tetrahedra explaining the lack of the YCd{sub 6}-type for pure mercurides. Along the section SrCd{sub 6}-SrHg{sub 6}, the ordered Eu{sub 4}Cd{sub 25}-type is formed (Sr{sub 4}Cd{sub 16.1}Hg{sub 8.9}: cF1392, Fd anti 3, a=3191.93(5) pm, R1=0.0404). Besides, two new complex cubic Ca phases appear at increased Zn proportion: Ca{sub 2}Zn{sub 5.1}Cd{sub 5.8}, which exhibits a nearly complete site preference of Zn and Cd, crystallizes in the rare cubic Mg{sub 2}Zn{sub 11}-type structure (cP39-δ, Pm anti 3, a=918.1(1) pm, R1=0.0349). In the Ca-Hg system, an increased Zn proportion yielded the new compound CaZn{sub 1.31}Hg{sub 3.69} (cF480, F anti 43m, a=2145.43(9) pm, R1=0.0572), with a complex cubic structure closely related to Ba{sub 20}Hg{sub 103}. All structures, which are commonly described using nested polyhedra around high-symmetric sites, are alternatively described in accordance with the calculated electron densities and charge distribution: building blocks are face-sharing [M{sub 4}] tetrahedra (star polyhedra such as TS, IS, OS), each with a cage-critical point in its center, and [M{sub 8}] cubes (deformed TS), which are either empty, distorted or filled. The M element distribution in the anion is determined by size criteria and the difference in electronegativity, which induces a preferred formation of heteroatomic polar bonds.

  13. Geometrical criteria versus quantum chemical criteria for assessment of intramolecular hydrogen bond (IMHB) interaction: A computational comparison into the effect of chlorine substitution on IMHB of salicylic acid in its lowest energy ground state conformer

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan Kumar [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India); Guchhait, Nikhil, E-mail: nikhil.guchhait@rediffmail.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India)

    2013-02-01

    Highlights: ► Intramolecular hydrogen bonding (IMHB) in salicylic acid and its chloro derivatives. ► A complex effect of +R and −I effect of chlorine substituents on IMHB energy. ► Interplay between IMHB energy and aromaticity. ► Directional nature of IMHB from quantum chemical assessment. ► Quantum chemical treatment vs. geometrical criteria to assess weak interaction. - Abstract: Density functional theory based computational study has been performed to characterize intramolecular hydrogen bonding (IMHB) interaction in a series of salicylic acid derivatives varying in chlorine substitution on the benzene ring. The molecular systems studied are salicylic acid, 5-chlorosalicylic acid, 3,5-dichlorosalicylic acid and 3,5,6-tricholorosalicylic acid. Major emphasis is rendered on the analysis of IMHB interaction by calculation of electron density ρ(r) and Laplacian ∇{sup 2}ρ(r) at the bond critical point using atoms-in-molecule theory. Topological features, energy densities based on ρ(r) through perturbing the intramolecular H-bond distances suggest that at equilibrium geometry the IMHB interaction develops certain characteristics typical of covalent interaction. The interplay between aromaticity and resonance-assisted hydrogen bonding (RAHB) is discussed using both geometrical and magnetic criteria as the descriptors of aromaticity. The optimized geometry features, molecular electrostatic potential map analysis are also found to produce a consensus view in relation with the formation of RAHB in these systems.

  14. Geometrical criteria versus quantum chemical criteria for assessment of intramolecular hydrogen bond (IMHB) interaction: A computational comparison into the effect of chlorine substitution on IMHB of salicylic acid in its lowest energy ground state conformer

    International Nuclear Information System (INIS)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2013-01-01

    Highlights: ► Intramolecular hydrogen bonding (IMHB) in salicylic acid and its chloro derivatives. ► A complex effect of +R and −I effect of chlorine substituents on IMHB energy. ► Interplay between IMHB energy and aromaticity. ► Directional nature of IMHB from quantum chemical assessment. ► Quantum chemical treatment vs. geometrical criteria to assess weak interaction. - Abstract: Density functional theory based computational study has been performed to characterize intramolecular hydrogen bonding (IMHB) interaction in a series of salicylic acid derivatives varying in chlorine substitution on the benzene ring. The molecular systems studied are salicylic acid, 5-chlorosalicylic acid, 3,5-dichlorosalicylic acid and 3,5,6-tricholorosalicylic acid. Major emphasis is rendered on the analysis of IMHB interaction by calculation of electron density ρ(r) and Laplacian ∇ 2 ρ(r) at the bond critical point using atoms-in-molecule theory. Topological features, energy densities based on ρ(r) through perturbing the intramolecular H-bond distances suggest that at equilibrium geometry the IMHB interaction develops certain characteristics typical of covalent interaction. The interplay between aromaticity and resonance-assisted hydrogen bonding (RAHB) is discussed using both geometrical and magnetic criteria as the descriptors of aromaticity. The optimized geometry features, molecular electrostatic potential map analysis are also found to produce a consensus view in relation with the formation of RAHB in these systems

  15. Rotational Spectrum, Conformational Composition, Intramolecular Hydrogen Bonding, and Quantum Chemical Calculations of Mercaptoacetonitrile (HSCH2C≡N), a Compound of Potential Astrochemical Interest.

    Science.gov (United States)

    Møllendal, Harald; Samdal, Svein; Guillemin, Jean-Claude

    2016-03-31

    The microwave spectra of mercaptoacetonitrile (HSCH2C≡N) and one deuterated species (DSCH2C≡N) were investigated in the 7.5-124 GHz spectral interval. The spectra of two conformers denoted SC and AP were assigned. The H-S-C-C chain of atoms is synclinal in SC and anti-periplanar in AP. The ground state of SC is split into two substates separated by a comparatively small energy difference resulting in closely spaced transitions with equal intensities. Several transitions of the parent species of SC deviate from Watson's Hamiltonian. Only slight improvements were obtained using a Hamiltonian that takes coupling between the two substates into account. Deviations from Watson's Hamiltonian were also observed for the parent species of AP. However, the spectrum of the deuterated species, which was investigated only for the SC conformer, fits satisfactorily to Watson's Hamiltonian. Relative intensity measurements found SC to be lower in energy than AP by 3.8(3) kJ/mol. The strength of the intramolecular hydrogen bond between the thiol and cyano groups was estimated to be ∼2.1 kJ/mol. The microwave work was augmented by quantum chemical calculations at CCSD and MP2 levels using basis sets of minimum triple-ζ quality. Mercaptoacetonitrile has astrochemical interest, and the spectra presented herein should be useful for a potential identification of this compound in the interstellar medium. Three different ways of generating mercaptoacetonitrile from compounds already found in the interstellar medium were explored by quantum chemical calculations.

  16. Cheese whey valorisation: Production of valuable gaseous and liquid chemicals from lactose by aqueous phase reforming

    International Nuclear Information System (INIS)

    Remón, J.; Ruiz, J.; Oliva, M.; García, L.; Arauzo, J.

    2016-01-01

    Highlights: • Aqueous phase reforming: a promising strategy for cheese whey valorisation. • In-depth understanding of the effect of the operating conditions on the process. • Process optimisation for the selective production of valuable gas and liquid products. • High P, T, lactose concentration and spatial time favour gas production. • High T, low spatial time and the use of diluted solutions maximise liquids production. - Abstract: Cheese effluent management has become an important issue owing to its high biochemical oxygen demand and chemical oxygen demand values. Given this scenario, this work addresses the valorisation of lactose (the largest organic constituent of this waste) by aqueous phase reforming, analysing the influence of the most important operating variables (temperature, pressure, lactose concentration and mass of catalyst/lactose mass flow rate ratio) as well as optimising the process for the production of either gaseous or liquid value-added chemicals. The carbon converted into gas, liquid and solid products varied as follows: 5–41%, 33–97% and 0–59%, respectively. The gas phase was made up of a mixture of H_2 (8–58 vol.%), CO_2 (33–85 vol.%), CO (0–15 vol.%) and CH_4 (0–14 vol.%). The liquid phase consisted of a mixture of aldehydes: 0–11%, carboxylic acids: 0–22%, monohydric alcohols: 0–23%, polyhydric-alcohols: 0–48%, C3-ketones: 4–100%, C4-ketones: 0–18%, cyclic-ketones: 0–15% and furans: 0–85%. H_2 production is favoured at high pressure, elevated temperature, employing a high amount of catalyst and a concentrated lactose solution. Liquid production is preferential using diluted lactose solutions. At high pressure, the production of C3-ketones is preferential using a high temperature and a low amount of catalyst, while a medium temperature and a high amount of catalyst favours the production of furans. The production of alcohols is preferential using medium temperature and pressure and a low amount of

  17. Analysis of chemical bond states and electrical properties of stacked AlON/HfO{sub 2} gate oxides formed by using a layer-by-layer technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Wonjoon; Lee, Jonghyun; Yang, Jungyup; Kim, Chaeok; Hong, Jinpyo; Nahm, Tschanguh; Byun, Byungsub; Kim, Moseok [Hanyang University, Seoul (Korea, Republic of)

    2006-06-15

    Stacked AlON/HfO{sub 2} thin films for gate oxides in metal-oxide-semiconductor devices are successfully prepared on Si substrates by utilizing a layer-by-layer technique integrated with an off-axis RF remote plasma sputtering process at room temperature. This off-axis structure is designed to improve the uniformity and the quality of gate oxide films. Also, a layer-by-layer technique is used to control the interface layer between the gate oxide and the Si substrate. The electrical properties of our stacked films are characterized by using capacitance versus voltage and leakage current versus voltage measurements. The stacked AlON/HfO{sub 2} gate oxide exhibits a low leakage current of about 10{sup -6} A/cm{sup 2} and a high dielectric constant value of 14.26 by effectively suppressing the interface layer between gate oxide and Si substrate. In addition, the chemical bond states and the optimum thickness of each AlON and HfO{sub 2} thin film are analyzed using X-ray photoemission spectroscopy and transmission electron microscopy measurement.

  18. Effect of surface pretreatment on interfacial chemical bonding states of atomic layer deposited ZrO2 on AlGaN

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    Atomic layer deposition (ALD) of ZrO 2 on native oxide covered (untreated) and buffered oxide etchant (BOE) treated AlGaN surface was analyzed by utilizing x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy. Evidenced by Ga–O and Al–O chemical bonds by XPS, parasitic oxidation during deposition is largely enhanced on BOE treated AlGaN surface. Due to the high reactivity of Al atoms, more prominent oxidation of Al atoms is observed, which leads to thicker interfacial layer formed on BOE treated surface. The results suggest that native oxide on AlGaN surface may serve as a protecting layer to inhibit the surface from further parasitic oxidation during ALD. The findings provide important process guidelines for the use of ALD ZrO 2 and its pre-ALD surface treatments for high-k AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors and other related device applications

  19. High-Throughput Screening and Quantitative Chemical Ranking for Sodium-Iodide Symporter Inhibitors in ToxCast Phase I Chemical Library.

    Science.gov (United States)

    Wang, Jun; Hallinger, Daniel R; Murr, Ashley S; Buckalew, Angela R; Simmons, Steven O; Laws, Susan C; Stoker, Tammy E

    2018-05-01

    Thyroid uptake of iodide via the sodium-iodide symporter (NIS) is the first step in the biosynthesis of thyroid hormones that are critical for health and development in humans and wildlife. Despite having long been a known target of endocrine disrupting chemicals such as perchlorate, information regarding NIS inhibition activity is still unavailable for the vast majority of environmental chemicals. This study applied a previously validated high-throughput approach to screen for NIS inhibitors in the ToxCast phase I library, representing 293 important environmental chemicals. Here 310 blinded samples were screened in a tiered-approach using an initial single-concentration (100 μM) radioactive-iodide uptake (RAIU) assay, followed by 169 samples further evaluated in multi-concentration (0.001 μM-100 μM) testing in parallel RAIU and cell viability assays. A novel chemical ranking system that incorporates multi-concentration RAIU and cytotoxicity responses was also developed as a standardized method for chemical prioritization in current and future screenings. Representative chemical responses and thyroid effects of high-ranking chemicals are further discussed. This study significantly expands current knowledge of NIS inhibition potential in environmental chemicals and provides critical support to U.S. EPA's Endocrine Disruptor Screening Program (EDSP) initiative to expand coverage of thyroid molecular targets, as well as the development of thyroid adverse outcome pathways (AOPs).

  20. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  1. Chimera and phase-cluster states in populations of coupled chemical oscillators

    Science.gov (United States)

    Tinsley, Mark R.; Nkomo, Simbarashe; Showalter, Kenneth

    2012-09-01

    Populations of coupled oscillators may exhibit two coexisting subpopulations, one with synchronized oscillations and the other with unsynchronized oscillations, even though all of the oscillators are coupled to each other in an equivalent manner. This phenomenon, discovered about ten years ago in theoretical studies, was then further characterized and named the chimera state after the Greek mythological creature made up of different animals. The highly counterintuitive coexistence of coherent and incoherent oscillations in populations of identical oscillators, each with an equivalent coupling structure, inspired great interest and a flurry of theoretical activity. Here we report on experimental studies of chimera states and their relation to other synchronization states in populations of coupled chemical oscillators. Our experiments with coupled Belousov-Zhabotinsky oscillators and corresponding simulations reveal chimera behaviour that differs significantly from the behaviour found in theoretical studies of phase-oscillator models.

  2. Chemically and geographically distinct solid-phase iron pools in the Southern Ocean.

    Science.gov (United States)

    von der Heyden, B P; Roychoudhury, A N; Mtshali, T N; Tyliszczak, T; Myneni, S C B

    2012-11-30

    Iron is a limiting nutrient in many parts of the oceans, including the unproductive regions of the Southern Ocean. Although the dominant fraction of the marine iron pool occurs in the form of solid-phase particles, its chemical speciation and mineralogy are challenging to characterize on a regional scale. We describe a diverse array of iron particles, ranging from 20 to 700 nanometers in diameter, in the waters of the Southern Ocean euphotic zone. Distinct variations in the oxidation state and composition of these iron particles exist between the coasts of South Africa and Antarctica, with different iron pools occurring in different frontal zones. These speciation variations can result in solubility differences that may affect the production of bioavailable dissolved iron.

  3. Predicting dermal absorption of gas-phase chemicals: transient model development, evaluation, and application

    DEFF Research Database (Denmark)

    Gong, M.; Zhang, Y.; Weschler, Charles J.

    2014-01-01

    A transient model is developed to predict dermal absorption of gas-phase chemicals via direct air-to-skin-to-blood transport under non-steady-state conditions. It differs from published models in that it considers convective mass-transfer resistance in the boundary layer of air adjacent to the skin....... Results calculated with this transient model are in good agreement with the limited experimental results that are available for comparison. The sensitivity of the modeled estimates to key parameters is examined. The model is then used to estimate air-to-skin-to-blood absorption of six phthalate esters...... and less absorbed into blood than would a steady-state model. In the 7-day scenario, results calculated by the transient and steady-state models converge over a time period that varies between 3 and 4days for all but the largest phthalate (DEHP). Dermal intake is comparable to or larger than inhalation...

  4. The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: Recent updates

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.

    2014-05-22

    With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2) in order to mimic atmospheric conditions. Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

  5. Measurement and Modelling of Phase Equilibrium of Oil - Water - Polar Chemicals

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup

    in the temperature range of 303-323 K at atmospheric pressure. In the second part of this work, the CPA EoS has been used for modeling hydrocarbon systemcontaining polar chemicals, such as water and gas hydrate inhibitor MEG or methanol. All the experimental data measured in this work have been investigated using...... with the measurement of newexperimental data, but through the development of new experimental equipment for the study ofmulti-phase equilibrium. In addition to measurement of well-defined systems, LLE have beenmeasured for North Sea oils with MEG and water. The work can be split up into two parts: Experimental: VLE...... systems presented, confirming the quality of theequipment. The equipment is used for measurement of VLE for several systems of interest; methane+ water, methane + methanol, methane + methanol + water and methane + MEG. Details dealing with the design, assembling and testing of new experimental equipment...

  6. The chiral phase transition in two-flavor QCD from imaginary chemical potential

    CERN Document Server

    Bonati, Claudio; D'Elia, Massimo; Philipsen, Owe; Sanfilippo, Francesco

    2014-01-01

    We investigate the order of the finite temperature chiral symmetry restoration transition for QCD with two massless fermions, by using a novel method, based on simulating imaginary values of the quark chemical potential $\\mu=i\\mu_i,\\mu_i\\in\\mathbb{R}$. Our method exploits the fact that, for low enough quark mass $m$ and large enough chemical potential $\\mu_i$, the chiral transition is decidedly first order, then turning into crossover at a critical mass $m_c(\\mu)$. It is thus possible to determine the critical line in the $m - \\mu^2$ plane, which can be safely extrapolated to the chiral limit by taking advantage of the known tricritical indices governing its shape. We test this method with standard staggered fermions and the result of our simulations is that $m_c(\\mu=0)$ is positive, so that the phase transition at zero density is definitely first order in the chiral limit, on our coarse $N_t=4$ lattices with $a\\simeq 0.3\\,\\mathrm{fm}$.

  7. Modeling reaction histories to study chemical pathways in condensed phase detonation

    International Nuclear Information System (INIS)

    Scott Stewart, D.; Hernández, Alberto; Lee, Kibaek

    2016-01-01

    The estimation of pressure and temperature histories, which are required to understand chemical pathways in condensed phase explosives during detonation, is discussed. We argue that estimates made from continuum models, calibrated by macroscopic experiments, are essential to inform modern, atomistic-based reactive chemistry simulations at detonation pressures and temperatures. We present easy to implement methods for general equation of state and arbitrarily complex chemical reaction schemes that can be used to compute reactive flow histories for the constant volume, the energy process, and the expansion process on the Rayleigh line of a steady Chapman-Jouguet detonation. A brief review of state-of-the-art of two-component reactive flow models is given that highlights the Ignition and Growth model of Lee and Tarver [Phys. Fluids 23, 2362 (1980)] and the Wide-Ranging Equation of State model of Wescott, Stewart, and Davis [J. Appl. Phys. 98, 053514 (2005)]. We discuss evidence from experiments and reactive molecular dynamic simulations that motivate models that have several components, instead of the two that have traditionally been used to describe the results of macroscopic detonation experiments. We present simplified examples of a formulation for a hypothetical explosive that uses simple (ideal) equation of state forms and detailed comparisons. Then, we estimate pathways computed from two-component models of real explosive materials that have been calibrated with macroscopic experiments.

  8. Stand-Off Chemical Detection Using Photoacoustic Sensing Techniques—From Single Element to Phase Array

    Directory of Open Access Journals (Sweden)

    Deepa Gupta

    2018-01-01

    Full Text Available Technologies that can detect harmful chemicals, such as explosive devices, harmful gas leaks, airborne chemicals or/and biological agents, are heavily invested in by the government to prevent any possible catastrophic consequences. Some key features of such technology are, but not limited to, effective signal-to-noise ratio (SNR of the detected signal and extended distance between the detector and target. In this work, we describe the development of photoacoustic sensing techniques from simple to more complex systems. These techniques include passive and active noise filters, parabolic sound reflectors, a lock-in amplifier, and beam-forming with an array of microphones; using these techniques, we increased detection distance from a few cm in an indoor setting to over 41 feet in an outdoor setting. We also establish a theoretical mathematical model that explains the underlying principle of how SNR can be improved with an increasing number of microphone elements in the phase array. We validate this model with computational simulations as well as experimental results.

  9. Metal hydride/chemical heat-pump development project. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Argabright, T.A.

    1982-02-01

    The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 110/sup 0/C (160 to 230/sup 0/F) for the source heat and 140 to 190/sup 0/C (280 to 375/sup 0/F) for the product heat. These ranges are applicable to many processes in industries such as food, textile, paper and pulp, and chemical. The hydride pair well suited for these temperatures is LaNi/sub 5//LaNi/sub 4/ /sub 5/Al/sub 0/ /sub 5/. The EDTU was designed for the upgrade cycle. It is a compact finned tube arrangement enclosed in a pressure vessel. This design incorporates high heat transfer and low thermal mass in a system which maximizes the coefficient of performance (COP). It will be constructed in Phase II. Continuation of this effort is recommended.

  10. Understanding the solid phase chemical fractionation of uranium in soil and effect of ageing

    Energy Technology Data Exchange (ETDEWEB)

    Rout, Sabyasachi, E-mail: srout.barc@gmail.com [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Kumar, Ajay [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Ravi, P.M.; Tripathi, R.M. [Homi Bhabha National Institute Anushaktinagar, Mumbai (India)

    2016-11-05

    Highlights: • Apart of U(VI) converted to U(IV) during adsorption to soil. • Ageing leads to rearrangement of chemical fractionation of U in soil. • Organic matter and carbonate minerals responsible for Surface enrichment of U. • There occurs Occlusion of U-Fe-Oxides (Hydroxide) in to silica. - Abstract: The aim of the present work is to understand the solid phase chemical fractionation of Uranium (U) in soil and the mechanism involved. This study integrated batch experiments of U(VI) adsorption to soil, study of U in different soil fractions, ageing impact on fractionation of U and spectroscopic investigation of adsorbed U(VI) using X-ray Photoelectron Spectroscopy (XPS). For the study three soils, pedogenically different (S1: Igneous, S2: Sedimentary and S3: Metamorphic) were amended with U(VI) and chemical fractionation of U was studied by sequential extraction after an interval of one month and 12 months. It was found that there occurs a significant rearrangement of U in different fractions with ageing and no correlation was observed between the U content in different fractions and the adsorbents of respective fractions such as soil organic matter (SOM), Fe/Mn oxides (hydroxides) carbonates, soil cation exchange capacity (CEC). XPS study revealed that surface enrichment of U mainly governed by the carbonate minerals and SOM, whereas bulk concentration was controlled by the oxides (hydroxides) of Si and Al. Occlusion of U-Fe-oxides (hydroxides) on silica was identified as an important mechanism for bulk enrichment (Increase in residual fraction) and depletion of U concentration in reducible fraction.

  11. Understanding the solid phase chemical fractionation of uranium in soil and effect of ageing

    International Nuclear Information System (INIS)

    Rout, Sabyasachi; Kumar, Ajay; Ravi, P.M.; Tripathi, R.M.

    2016-01-01

    Highlights: • Apart of U(VI) converted to U(IV) during adsorption to soil. • Ageing leads to rearrangement of chemical fractionation of U in soil. • Organic matter and carbonate minerals responsible for Surface enrichment of U. • There occurs Occlusion of U-Fe-Oxides (Hydroxide) in to silica. - Abstract: The aim of the present work is to understand the solid phase chemical fractionation of Uranium (U) in soil and the mechanism involved. This study integrated batch experiments of U(VI) adsorption to soil, study of U in different soil fractions, ageing impact on fractionation of U and spectroscopic investigation of adsorbed U(VI) using X-ray Photoelectron Spectroscopy (XPS). For the study three soils, pedogenically different (S1: Igneous, S2: Sedimentary and S3: Metamorphic) were amended with U(VI) and chemical fractionation of U was studied by sequential extraction after an interval of one month and 12 months. It was found that there occurs a significant rearrangement of U in different fractions with ageing and no correlation was observed between the U content in different fractions and the adsorbents of respective fractions such as soil organic matter (SOM), Fe/Mn oxides (hydroxides) carbonates, soil cation exchange capacity (CEC). XPS study revealed that surface enrichment of U mainly governed by the carbonate minerals and SOM, whereas bulk concentration was controlled by the oxides (hydroxides) of Si and Al. Occlusion of U-Fe-oxides (hydroxides) on silica was identified as an important mechanism for bulk enrichment (Increase in residual fraction) and depletion of U concentration in reducible fraction.

  12. Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering.

    Science.gov (United States)

    Wu, Shu-Wei; Liu, Xifeng; Miller, A Lee; Cheng, Yu-Shiuan; Yeh, Ming-Long; Lu, Lichun

    2018-07-15

    In the present study, we fabricated non-toxic, injectable, and thermo-sensitive NIPAAm-g-chitosan (NC) hydrogels with thiol modification for introduction of disulfide cross-linking strategy. Previously, NIPAAm and chitosan copolymer has been proven to have excellent biocompatibility, biodegradability and rapid phase transition after injection, suitable to serve as cell carriers or implanted scaffolds. However, weak mechanical properties significantly limit their potential for biomedical fields. In order to overcome this issue, we incorporated thiol side chains into chitosan by covalently conjugating N-acetyl-cysteine (NAC) with carbodiimide chemistry to strengthen mechanical properties. After oxidation of thiols into disulfide bonds, modified NC hydrogels did improve the compressive modulus over 9 folds (11.4 kPa). Oscillatory frequency sweep showed a positive correlation between storage modulus and cross-liking density as well. Additionally, there was no cytotoxicity observed to mesenchymal stem cells, fibroblasts and osteoblasts. We suggested that the thiol-modified thermo-sensitive polysaccharide hydrogels are promising to be a cell-laden biomaterial for tissue regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Nb2OsB2, with a new twofold superstructure of the U3Si2 type: Synthesis, crystal chemistry and chemical bonding

    Science.gov (United States)

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P. T.

    2013-07-01

    The new ternary metal-rich boride, Nb2OsB2, was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U3Si2-structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B2 dumbbells with B-B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB-LMTO-ASA), the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic Os-B, Nb-B and Nb-Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride.

  14. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock

    2014-08-01

    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  15. Poly High Internal Phase Emulsion for the Immobilization of Chemical Warfare Agents.

    Science.gov (United States)

    Wright, Alexander J; Main, Marcus J; Cooper, Nicholas J; Blight, Barry A; Holder, Simon J

    2017-09-20

    We report a facile method for the absorption (characterized by the weight/weight swelling degree, Q) of a variety of chemical warfare agents (CWAs); including sulfur mustard (HD) (Q = 40) and V-series (VM, VX, i-Bu-VX, n-Bu-VX) of nerve agents (Q ≥ 45) and a simulant, methyl benzoate (Q = 55), through the use of a poly(styrene-co-vinyl benzyl chloride-co-divinylbenzene) lightly cross-linked poly high internal phase emulsion (polyHIPE). By varying the vinyl benzyl chloride (VBC) content and the volume of the internal phase of the precursor emulsion it is demonstrated that absorption is facilitated both by the swelling of the polymer and the uptake of liquid in the pores. In particular the sample prepared from a 95% internal emulsion water content showed rapid swelling (<5 min to total absorption) and the ability to swell both from a monolithic state and from a compressed state, making these systems ideal practical candidates for the rapid immobilization of CWAs.

  16. High and low oxidation states and special bonding situations. An investigation of f-elements, xenon and fluorine by matrix-isolation spectroscopy and quantum-chemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Vent-Schmidt, Thomas

    2015-11-30

    During this thesis, the matrix-isolation technique in conjuction with quantum-chemical calculations has been employed in order to synthesize and characterize new compounds. The focus of the study were new species of the actinide and lanthanide series, but the photochemistry of XeO{sub 4} and the polyfluorides were also investigated. Based on the experience of laser ablated uranium and thorium atoms with H{sub 2} and F{sub 2} the reaction of these actinide atoms with HF has been investigated. The main products in these experiments are HThF and HUF which contain an actinide metal in the rather scarce +II oxidation state. In addition, the deuterated compounds have also been prepared and the isotopic shifts support the assignment. The higher hydride fluorides of thorium such as HThF{sub 3}, H{sub 2}ThF{sub 2} and H{sub 3}ThF have also been observed, whereas there is only little evidence for higher uranium hydride fluorides. The different behavior of the two metals under similar reaction conditions has been investigated theoretically. Besides the hydride fluorides, the reaction of the actinide atoms with HF gives also rise to the low valent fluorides and hydrides such as AnH and AnF (An = U, Th). These compounds have already been identified in experiments using fluorine or hydrogen as reagent, but a more reliable assignment can be made in these experiments due to the lower concentration of H or F. In addition, ThF{sub 2} has been observed in these experiments and there is evidence for the unknown difluoride of uranium, which will be addressed in a future paper. Experiments with laser ablated uranium and thorium atoms were extended to the reaction of these metals with H{sub 2}Se. Previous experiments using H{sub 2}O and H{sub 2}S instead of H{sub 2}Se yielded H{sub 2}AnX (An = U, Th; X = O, S) compounds which show evidence for an actinide-chalcogenide multiple bond. The new synthesized species H{sub 2}ThSe and H{sub 2}USe are characterized by their symmetric and

  17. Gas and particle phase chemical characterization of photochemical smog in Beijing and Hong Kong

    Science.gov (United States)

    Hallquist, Mattias; Le Breton, Michael; Guo, Song; Zhen Yu, Jian; Hallquist, Åsa. M.; Pathak, Ravi K.; Liu, Qianyun; Wang, Yuchen; Li, Jinjian; Chan, Chak K.; Wang, Yujue; Zheng, Jing; Yang, Yudong; Lu, Keding; Wu, Zhijun; Hu, Min

    2017-04-01

    Secondary chemistry transforming primary pollutants is of high relevance for Chinese photochemical smog. In particular, formation of ozone (O3) and particulate matter (PM), including Secondary Organic Aerosols (SOA), are of major concern regarding impacts on health, climate and ecosystems. The atmospheric oxidation processes leading to SOA formation are complex and involves thousands of different compounds, both of biogenic and anthropogenic origin. Furthermore, for a thorough understanding both the gas and the particle phase need to be considered. As part of an intercollaborative project to assess the photochemical smog in China, two major field campaigns were arranged in 2016; in Changping, Bejing during springtime and at HKUST, Hong Kong during the autumn. Alongside with other advanced instrumentations, a Time of Flight Chemical Ionisation Mass Spectrometer (ToF CIMS) utilising the Filiter Inlet for Gases and AEROsols (FIGAERO) was used to chemically characterize the gas and the particle phase. This specific instrument applies soft ionization limiting the fragmentation and one can usually identify molecular composition of hundreds of different parent molecules. In both Beijing and Hong Kong the iodide ionization scheme was utilised, making it possible to specifically detect oxygenated compounds such as carboxylic acids, organic nitrates and sulphates as well as some inorganic compounds e.g. N2O5, ClNO2, and HONO. For numerous compounds significant levels were detected in both the gas and particle phase enabling evaluation of partitioning and gas-to-particle transformation and its relationship to atmospheric conditions and estimated vapour pressures. Furthermore, the detection of molecular markers such as levoglucosan, C6H5NO3, C10H16NSO7, C5H8SO7, C5H8O4 can support source apportionment and atmospheric process description. In order to further investigate atmospheric ageing/processing a portable laminar flow reactor (Go:PAM) was for selected periods utilized to

  18. Suppression of Boride Formation in Transient Liquid Phase Bonding of Pairings of Parent Superalloy Materials with Different Compositions and Grain Structures and Resulting Mechanical Properties

    Science.gov (United States)

    Steuer, Susanne; Singer, Robert F.

    2014-07-01

    Two Ni-based superalloys, columnar grained Alloy 247 and single-crystal PWA1483, are joined by transient liquid phase bonding using an amorphous brazing foil containing boron as a melting point depressant. At lower brazing temperatures, two different morphologies of borides develop in both base materials: plate-like and globular ones. Their ratio to each other is temperature dependent. With very high brazing temperatures, the deleterious boride formation in Alloy 247 can be totally avoided, probably because the three-phase-field moves to higher alloying element contents. For the superalloy PWA1483, the formation of borides cannot be completely avoided at high brazing temperatures as incipient melting occurs. During subsequent solidification of these areas, Chinese-script-like borides precipitate. The mechanical properties (tensile tests at room and elevated temperatures and short-term creep rupture tests at elevated temperatures) for brazed samples without boride precipitation are very promising. Tensile strengths and creep times to 1 pct strain are comparable, respectively, higher than the ones of the weaker parent material for all tested temperatures and creep conditions (from 90 to 100 pct rsp. 175 to 250 pct).

  19. 1D and 2D NMR Spectroscopy of Bonding Interactions within Stable and Phase-Separating Organic Electrolyte-Cellulose Solutions.

    Science.gov (United States)

    Clough, Matthew T; Farès, Christophe; Rinaldi, Roberto

    2017-09-11

    Organic electrolyte solutions (i.e. mixtures containing an ionic liquid and a polar, molecular co-solvent) are highly versatile solvents for cellulose. However, the underlying solvent-solvent and solvent-solute interactions are not yet fully understood. Herein, mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate, the co-solvent 1,3-dimethyl-2-imidazolidinone, and cellulose are investigated using 1D and 2D NMR spectroscopy. The use of a triply- 13 C-labelled ionic liquid enhances the signal-to-noise ratio for 13 C NMR spectroscopy, enabling changes in bonding interactions to be accurately pinpointed. Current observations reveal an additional degree of complexity regarding the distinct roles of cation, anion, and co-solvent toward maintaining cellulose solubility and phase stability. Unexpectedly, the interactions between the dialkylimidazolium ring C 2 -H substituent and cellulose become more pronounced at high temperatures, counteracted by a net weakening of acetate-cellulose interactions. Moreover, for mixtures that exhibit critical solution behavior, phase separation is accompanied by the apparent recombination of cation-anion pairs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Rapid ultrasound-induced transient-liquid-phase bonding of Al-50Si alloys with Zn interlayer in air for electrical packaging application.

    Science.gov (United States)

    Wang, Qian; Chen, Xiaoguang; Zhu, Lin; Yan, Jiuchun; Lai, Zhiwei; Zhao, Pizhi; Bao, Juncheng; Lv, Guicai; You, Chen; Zhou, Xiaoyu; Zhang, Jian; Li, Yuntao

    2017-01-01

    Al-50Si alloys were joined by rapid ultrasound-induced transient-liquid-phase bonding method using Zn foil as interlayer at 390°C in air, below the melt point of interlayer. The fracture of oxide films along the edge of Si particles led to contact and inter-diffusion between aluminum substrate and Zn interlayer, and liquefied Zn-Al alloys were developed. The width of Zn-Al alloys gradually decreased with increasing the ultrasonic vibration time due to liquid squeezing out and accelerated diffusion. A stage of isothermal solidification existed, and the completion time was significantly shortened. In the liquid metal, the acoustic streaming and ultrasonic cavitations were induced. As the process developed, much more Si particles, which were particulate-reinforced phases of Al-50Si, gradually migrated to the center of soldering seam. The highest average shear strength of joints reached to 94.2MPa, and the fracture mainly occurred at the base metal. Copyright © 2016 Elsevier B.V. All rights reserved.