WorldWideScience

Sample records for chemically bonded anchors

  1. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot

    2014-01-01

    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  2. Chemical biology of Glycosylphosphatidylinositol (GPI) anchors

    Indian Academy of Sciences (India)

    Admin

    CSIR-IIIM. Chemical biology of. Glycosylphosphatidylinositol (GPI) anchors. Ram Vishwakarma. CSIR-Indian Institute of Integrative Medicine, Jammu. N ti l I tit t f I l. N. D lhi. National Institute of Immunology, New Delhi. Piramal Life Sciences Ltd, Mumbai ...

  3. The chemical bond in inorganic chemistry the bond valence model

    CERN Document Server

    Brown, I David

    2016-01-01

    The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.

  4. "Vibrational bonding": a new type of chemical bond is discovered.

    Science.gov (United States)

    Rhodes, Christopher J; Macrae, Roderick M

    2015-01-01

    A long-sought but elusive new type of chemical bond, occurring on a minimum-free, purely repulsive potential energy surface, has recently been convincingly shown to be possible on the basis of high-level quantum-chemical calculations. This type of bond, termed a vibrational bond, forms because the total energy, including the dynamical energy of the nuclei, is lower than the total energy of the dissociated products, including their vibrational zero-point energy. For this to be the case, the ZPE of the product molecule must be very high, which is ensured by replacing a conventional hydrogen atom with its light isotope muonium (Mu, mass = 1/9 u) in the system Br-H-Br, a natural transition state in the reaction between Br and HBr. A paramagnetic species observed in the reaction Mu +Br2 has been proposed as a first experimental sighting of this species, but definitive identification remains challenging.

  5. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application.

    Science.gov (United States)

    Vabbilisetty, Pratima; Boron, Mallorie; Nie, Huan; Ozhegov, Evgeny; Sun, Xue-Long

    2018-02-28

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell's functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine-poly(ethylene glycol)-dibenzocyclooctyne (DSPE-PEG 2000 -DBCO) and cholesterol-PEG-dibenzocyclooctyne (CHOL-PEG 2000 -DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids.

  6. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application

    Science.gov (United States)

    2018-01-01

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell’s functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine–poly(ethylene glycol)–dibenzocyclooctyne (DSPE–PEG2000–DBCO) and cholesterol–PEG–dibenzocyclooctyne (CHOL–PEG2000–DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids. PMID:29503972

  7. Quantum mechanical facets of chemical bonds

    International Nuclear Information System (INIS)

    Daudel, R.

    1976-01-01

    To define the concept of bond is both a central problem of quantum chemistry and a difficult one. The concept of bond appeared little by little in the mind of chemists from empirical observations. From the wave-mechanical viewpoint it is not an observable. Therefore there is no precise operator associated with that concept. As a consequence there is not a unique approach to the idea of chemical bond. This is why it is preferred to present various quantum mechanical facets, e.g. the energetic facet, the density facet, the partitioning facet and the functional facet, of that important concept. (Auth.)

  8. Thai students' mental model of chemical bonding

    Science.gov (United States)

    Sarawan, Supawadee; Yuenyong, Chokchai

    2018-01-01

    This Research was finding the viewing about concept of chemical bonding is fundamental to subsequent learning of various other topics related to this concept in chemistry. Any conceptions about atomic structures that students have will be shown their further learning. The purpose of this study is to interviews conceptions held by high school chemistry students about metallic bonding and to reveal mental model of atomic structures show according to the educational level. With this aim, the questionnaire prepared making use of the literature and administered for analysis about mental model of chemical bonding. It was determined from the analysis of answers of questionnaire the 10th grade, 11th grade and 12th grade students. Finally, each was shown prompts in the form of focus cards derived from curriculum material that showed ways in which the bonding in specific metallic substances had been depicted. Students' responses revealed that learners across all three levels prefer simple, realistic mental models for metallic bonding and reveal to chemical bonding.

  9. X-ray diffraction and chemical bonding

    International Nuclear Information System (INIS)

    Bats, J.W.

    1976-01-01

    Chemical bonds are investigated in sulfamic acid (H 3 N-SO 3 ), sodium sulfonlate dihydrate (H 2 NC 6 H 4 SO 3 Na.2H 2 O), 2,5-dimercaptothiadiazole (HS-C 2 N 2 S-SH), sodium cyanide dihydrate (NaCN.2H 2 O), sodium thiocyanate (NaSCN) and ammonium thiocyanate (NH 4 SCN) by X-ray diffraction, and if necessary completed with neutron diffraction. Crystal structures and electron densities are determined together with bond length and angles. Also the effects of thermal motion are discussed

  10. Graphene composites containing chemically bonded metal oxides

    Indian Academy of Sciences (India)

    the oxide layers are chemically bonded to graphene (Zhang ... sists of three glass chambers, one to contain the metal halide. (TiCl4, SiCl4 ... In this step, the metal halide reacts with the oxygen function- ... 1·0 g of FeCl3 were vigorously stirred in 30 ml of ethylene ... Reaction with water vapour results in hydrolysis of the un-.

  11. Rhombic Coulomb diamonds in a single-electron transistor based on an Au nanoparticle chemically anchored at both ends.

    Science.gov (United States)

    Azuma, Yasuo; Onuma, Yuto; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2016-02-28

    Rhombic Coulomb diamonds are clearly observed in a chemically anchored Au nanoparticle single-electron transistor. The stability diagrams show stable Coulomb blockade phenomena and agree with the theoretical curve calculated using the orthodox model. The resistances and capacitances of the double-barrier tunneling junctions between the source electrode and the Au core (R1 and C1, respectively), and those between the Au core and the drain electrode (R2 and C2, respectively), are evaluated as 4.5 MΩ, 1.4 aF, 4.8 MΩ, and 1.3 aF, respectively. This is determined by fitting the theoretical curve against the experimental Coulomb staircases. Two-methylene-group short octanedithiols (C8S2) in a C8S2/hexanethiol (C6S) mixed self-assembled monolayer is concluded to chemically anchor the core of the Au nanoparticle at both ends between the electroless-Au-plated nanogap electrodes even when the Au nanoparticle is protected by decanethiol (C10S). This is because the R1 value is identical to that of R2 and corresponds to the tunneling resistances of the octanedithiol chemically bonded with the Au core and the Au electrodes. The dependence of the Coulomb diamond shapes on the tunneling resistance ratio (R1/R2) is also discussed, especially in the case of the rhombic Coulomb diamonds. Rhombic Coulomb diamonds result from chemical anchoring of the core of the Au nanoparticle at both ends between the electroless-Au-plated nanogap electrodes.

  12. The Influence of No-Primer Adhesives and Anchor Pylons Bracket Bases on Shear Bond Strength of Orthodontic Brackets

    Directory of Open Access Journals (Sweden)

    Andrea Scribante

    2013-01-01

    Full Text Available Objective. The aim of this study was to compare the shear bond strength (SBS and adhesive remnant index (ARI scores of no-primer adhesives tested with two different bracket bases. Materials and Methods. 120 bovine permanent mandibular incisors were divided into 6 groups of 20 specimens. Two brackets (ODP with different bracket bases (anchor pylons and 80-gauge mesh were bonded to the teeth using a conventional adhesive (Transbond XT and two different no-primer adhesive (Ortho Cem; Heliosit systems. Groups were tested using an instron universal testing machine. SBS values were recorded. ARI scores were measured. SEM microphotographs were taken to evaluate the pattern of bracket bases. Statistical analysis was performed. ANOVA and Tukey tests were carried out for SBS values, whereas a chi-squared test was applied for ARI scores. Results. Highest bond strength values were reported with Transbond XT (with both pad designs, Ortho Cem bonded on anchor pylons and Heliosit on 80-gauge mesh. A higher frequency of ARI score of “3” was reported for Transbond XT groups. Other groups showed a higher frequency of ARI score “2” and “1.” Conclusion. Transbond XT showed the highest shear bond strength values with both pad designs.

  13. Bonding pathways of high-pressure chemical transformations

    International Nuclear Information System (INIS)

    Hu Anguang; Zhang Fan

    2013-01-01

    A three-stage bonding pathway towards high-pressure chemical transformations from molecular precursors or intermediate states has been identified by first-principles simulations. With the evolution of principal stress tensor components in the response of chemical bonding to compressive loading, the three stages can be defined as the van der Waals bonding destruction, a bond breaking and forming reaction, and equilibrium of new bonds. The three-stage bonding pathway leads to the establishment of a fundamental principle of chemical bonding under compression. It reveals that during high-pressure chemical transformation, electrons moving away from functional groups follow anti-addition, collision-free paths to form new bonds in counteracting the local stress confinement. In applying this principle, a large number of molecular precursors were identified for high-pressure chemical transformations, resulting in new materials. (fast track communication)

  14. Bonding, Bridging, and Linking Social Capital and Self-Rated Health among Chinese Adults: Use of the Anchoring Vignettes Technique.

    Directory of Open Access Journals (Sweden)

    He Chen

    Full Text Available Three main opposing camps exist over how social capital relates to population health, namely the social support perspective, the inequality thesis, and the political economy approach. The distinction among bonding, bridging, and linking social capital probably helps close the debates between these three camps, which is rarely investigated in existing literatures. Moreover, although self-rated health is a frequently used health indicator in studies on the relationship between social capital and health, the interpersonal incomparability of this measure has been largely neglected. This study has two main objectives. Firstly, we aim to investigate the relationship between bonding, bridging, and linking social capital and self-rated health among Chinese adults. Secondly, we aim to improve the interpersonal comparability in self-rated health measurement. We use data from a nationally representative survey in China. Self-rated health was adjusted using the anchoring vignettes technique to improve comparability. Two-level ordinal logistic regression was performed to model the association between social capital and self-rated health at both individual and community levels. The interaction between residence and social capital was included to examine urban/rural disparities in the relationship. We found that most social capital indicators had a significant relationship with adjusted self-rated health of Chinese adults, but the relationships were mixed. Individual-level bonding, linking social capital, and community-level bridging social capital were positively related with health. Significant urban/rural disparities appeared in the association between community-level bonding, linking social capital, and adjusted self-rated health. For example, people living in communities with higher bonding social capital tended to report poorer adjusted self-rated health in urban areas, but the opposite tendency held for rural areas. Furthermore, the comparison between

  15. Bonding, Bridging, and Linking Social Capital and Self-Rated Health among Chinese Adults: Use of the Anchoring Vignettes Technique.

    Science.gov (United States)

    Chen, He; Meng, Tianguang

    2015-01-01

    Three main opposing camps exist over how social capital relates to population health, namely the social support perspective, the inequality thesis, and the political economy approach. The distinction among bonding, bridging, and linking social capital probably helps close the debates between these three camps, which is rarely investigated in existing literatures. Moreover, although self-rated health is a frequently used health indicator in studies on the relationship between social capital and health, the interpersonal incomparability of this measure has been largely neglected. This study has two main objectives. Firstly, we aim to investigate the relationship between bonding, bridging, and linking social capital and self-rated health among Chinese adults. Secondly, we aim to improve the interpersonal comparability in self-rated health measurement. We use data from a nationally representative survey in China. Self-rated health was adjusted using the anchoring vignettes technique to improve comparability. Two-level ordinal logistic regression was performed to model the association between social capital and self-rated health at both individual and community levels. The interaction between residence and social capital was included to examine urban/rural disparities in the relationship. We found that most social capital indicators had a significant relationship with adjusted self-rated health of Chinese adults, but the relationships were mixed. Individual-level bonding, linking social capital, and community-level bridging social capital were positively related with health. Significant urban/rural disparities appeared in the association between community-level bonding, linking social capital, and adjusted self-rated health. For example, people living in communities with higher bonding social capital tended to report poorer adjusted self-rated health in urban areas, but the opposite tendency held for rural areas. Furthermore, the comparison between multivariate analyses

  16. Persistent local chemical bonds in intermetallic phase formation

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yanwen [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian, Xiufang, E-mail: xfbian@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Qin, Xubo [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang, Shuo; Huang, Yuying [Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2014-05-01

    We found a direct evidence for the existence of the local chemical Bi–In bonds in the BiIn{sub 2} melt. These bonds are strong and prevail, dominating the structure evolution of the intermetallic clusters. From the local structure of the melt-quenched BiIn{sub 2} ribbon, the chemical Bi–In bonds strengthen compared with those in the equilibrium solidified alloy. The chemical bonds in BiIn{sub 2} melt retain to solid during a rapid quenching process. The results suggest that the intermetallic clusters in the melt evolve into the as-quenched intermetallic phase, and the intermetallic phase originates from the chemical bonds between unlike atoms in the melt. The chemical bonds preserve the chemical ordered clusters and dominate the clusters evolution.

  17. Teaching and Learning the Concept of Chemical Bonding

    Science.gov (United States)

    Levy Nahum, Tami; Mamlok-Naaman, Rachel; Hofstein, Avi; Taber, Keith S.

    2010-01-01

    Chemical bonding is one of the key and basic concepts in chemistry. The learning of many of the concepts taught in chemistry, in both secondary schools as well as in the colleges, is dependent upon understanding fundamental ideas related to chemical bonding. Nevertheless, the concept is perceived by teachers, as well as by learners, as difficult,…

  18. Mercury stabilization in chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A. S.; Singh, D.; Jeong, S. Y.

    2000-01-01

    Mercury stabilization and solidification is a significant challenge for conventional stabilization technologies. This is because of the stringent regulatory limits on leaching of its stabilized products. In a conventional cement stabilization process, Hg is converted at high pH to its hydroxide, which is not a very insoluble compound; hence the preferred route for Hg sulfidation to convert it into insoluble cinnabar (HgS). Unfortunately, efficient formation of this compound is pH-dependent. At a high pH, one obtains a more soluble Hg sulfate, in a very low pH range, insufficient immobilization occurs because of the escape of hydrogen sulfide, while efficient formation of HgS occurs only in a moderately acidic region. Thus, the pH range of 4 to 8 is where stabilization with Chemically Bonded Phosphate Ceramics (CBPC) is carried out. This paper discusses the authors experience on bench-scale stabilization of various US Department of Energy (DOE) waste streams containing Hg in the CBPC process. This process was developed to treat DOE's mixed waste streams. It is a room-temperature-setting process based on an acid-base reaction between magnesium oxide and monopotassium phosphate solution that forms a dense ceramic within hours. For Hg stabilization, addition of a small amount ( 2 S or K 2 S is sufficient in the binder composition. Here the Toxicity Characteristic Leaching Procedure (TCLP) results on CBPC waste forms of surrogate waste streams representing secondary Hg containing wastes such as combustion residues and Delphi DETOXtrademark residues are presented. The results show that although the current limit on leaching of Hg is 0.2 mg/L, the results from the CBPC waste forms are at least one order lower than this stringent limit. Encouraged by these results on surrogate wastes, they treated actual low-level Hg-containing mixed waste from their facility at Idaho. TCLP results on this waste are presented here. The efficient stabilization in all these cases is

  19. The chemical bond as an emergent phenomenon.

    Science.gov (United States)

    Golden, Jon C; Ho, Vinh; Lubchenko, Vassiliy

    2017-05-07

    We first argue that the covalent bond and the various closed-shell interactions can be thought of as symmetry broken versions of one and the same interaction, viz., the multi-center bond. We use specially chosen molecular units to show that the symmetry breaking is controlled by density and electronegativity variation. We show that the bond order changes with bond deformation but in a step-like fashion, regions of near constancy separated by electronic localization transitions. These will often cause displacive transitions as well so that the bond strength, order, and length are established self-consistently. We further argue on the inherent relation of the covalent, closed-shell, and multi-center interactions with ionic and metallic bonding. All of these interactions can be viewed as distinct sectors on a phase diagram with density and electronegativity variation as control variables; the ionic and covalent/secondary sectors are associated with on-site and bond-order charge density wave, respectively, the metallic sector with an electronic fluid. While displaying a contiguity at low densities, the metallic and ionic interactions represent distinct phases separated by discontinuous transitions at sufficiently high densities. Multi-center interactions emerge as a hybrid of the metallic and ionic bond that results from spatial coexistence of delocalized and localized electrons. In the present description, the issue of the stability of a compound is that of the mutual miscibility of electronic fluids with distinct degrees of electron localization, supra-atomic ordering in complex inorganic compounds coming about naturally. The notions of electronic localization advanced hereby suggest a high throughput, automated procedure for screening candidate compounds and structures with regard to stability, without the need for computationally costly geometric optimization.

  20. Closing in on chemical bonds by opening up relativity theory.

    Science.gov (United States)

    Whitney, Cynthia K

    2008-03-01

    This paper develops a connection between the phenomenology of chemical bonding and the theory of relativity. Empirical correlations between electron numbers in atoms and chemical bond stabilities in molecules are first reviewed and extended. Quantitative chemical bond strengths are then related to ionization potentials in elements. Striking patterns in ionization potentials are revealed when the data are viewed in an element-independent way, where element-specific details are removed via an appropriate scaling law. The scale factor involved is not explained by quantum mechanics; it is revealed only when one goes back further, to the development of Einstein's special relativity theory.

  1. One hundred years of Lewis Chemical Bond!

    Indian Academy of Sciences (India)

    2016-09-20

    Sep 20, 2016 ... Chemists knew how many electrons are there in each element and were also aware of stable electronic configurations. For example, 'inert gases' having. 8 electrons in the valence shell (now known as s and p orbitals) were very stable. Bonding in polar molecules, called electrovalent those days, such as ...

  2. Unicorns in the world of chemical bonding models.

    Science.gov (United States)

    Frenking, Gernot; Krapp, Andreas

    2007-01-15

    The appearance and the significance of heuristically developed bonding models are compared with the phenomenon of unicorns in mythical saga. It is argued that classical bonding models played an essential role for the development of the chemical science providing the language which is spoken in the territory of chemistry. The advent and the further development of quantum chemistry demands some restrictions and boundary conditions for classical chemical bonding models, which will continue to be integral parts of chemistry. Copyright (c) 2006 Wiley Periodicals, Inc.

  3. Structure of adsorbed monolayers. The surface chemical bond

    International Nuclear Information System (INIS)

    Somorjai, G.A.; Bent, B.E.

    1984-06-01

    This paper attempts to provide a summary of what has been learned about the structure of adsorbed monolayers and about the surface chemical bond from molecular surface science. While the surface chemical bond is less well understood than bonding of molecules in the gas phase or in the solid state, our knowledge of its properties is rapidly accumulating. The information obtained also has great impact on many surface science based technologies, including heterogeneous catalysis and electronic devices. It is hoped that much of the information obtained from studies at solid-gas interfaces can be correlated with molecular behavior at solid-liquid interfaces. 31 references, 42 figures, 1 table

  4. Structure and chemical bond characteristics of LaB6

    International Nuclear Information System (INIS)

    Bai Lina; Ma Ning; Liu Fengli

    2009-01-01

    The structure and chemical bond characteristics of LaB 6 have been achieved by means of the density functional theory using the state-of-the-art full-potential linearized augmented plane wave (FPLAPW) method, which are implemented within the EXCITING code. The results show our optimized lattice constant a (4.158 A), parameter z (0.1981) and bulk modulus B (170.4 GPa) are in good agreement with the corresponding experimental data. Electron localization function (ELF) shows the La-La bond mainly is ionic bond, La-B bond is between ionic and covalent bond while the covalent bond between the nearest neighbor B atoms (B2 and B3) is a little stronger than that between the nearer neighbor B atoms (B1 and B4).

  5. DETERMINING PULL – OUT DEFORMATIONS OF BONDED METAL ANCHORS EMBEDDED IN CONCRETE BY MEANS OF PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    E. O. Avsar

    2012-07-01

    Full Text Available Chemical anchorages are applied in many engineering implementations, particularly strengthening of reinforced concrete structures. During strengthening procedure; chemical anchorages should be tested, since they supply to transfer the load between existing construction elements and newly added elements. Therefore; the study of the quality of chemical anchorages is an important issue in construction materials science. In this context; the most important experiment is to determine the pull-out loads of embedded anchorage reinforcement by applying axial loads. In this study; it is aimed to determine the displacements of steel reinforcements, embedded into concrete by using chemical anchorages, while applying axial pulling loads. In order to determine the displacements and load – deformation graphs; starting conditions and every 10 bar pressure applied conditions of the steel reinforcements were captured by the cameras. The obtained images were evaluated by using photogrammetric software. Based on the photogrammetric post-processing results, the load – deformation graphs were plotted and the loads at loss of adhesion were determined.

  6. Bonding effectiveness to different chemically pre-treated dental zirconia.

    Science.gov (United States)

    Inokoshi, Masanao; Poitevin, André; De Munck, Jan; Minakuchi, Shunsuke; Van Meerbeek, Bart

    2014-09-01

    The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia. Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed. Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability. Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia. As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.

  7. Benchmarking Density Functionals for Chemical Bonds of Gold

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    Gold plays a major role in nanochemistry, catalysis, and electrochemistry. Accordingly, hundreds of studies apply density functionals to study chemical bonding with gold, yet there is no systematic attempt to assess the accuracy of these methods applied to gold. This paper reports a benchmark aga...

  8. Chemically bonded ceramic matrix composites: Densification and conversion to diffusion bonding

    International Nuclear Information System (INIS)

    Johnson, B.R.; Guelguen, M.A.; Kriven, W.M.

    1995-01-01

    Chemically bonded ceramics appear to be a promising alternative route for near-net shape fabrication of multi-phase ceramic matrix composites (CMC's). The hydraulic (and refractory) properties of fine mono-calcium aluminate (CaAl 2 O 4 ) powders were used as the chemically bonding matrix phase, while calcia stabilized zirconia powders were the second phase material. Samples containing up to 70 wt% (55 vol%) zirconia have been successfully compacted and sintered. Various processing techniques were evaluated. Processing was optimized based on material properties, dilatometry and simultaneous thermal analysis (DTA/TGA). The physical characteristics of this novel CMC were characterized by hardness, density, and fracture toughness testing. Microstructures were evaluated by SEM and phase identification was verified using XRD

  9. Discovery of S···C≡N Intramolecular Bonding in a Thiophenylcyanoacrylate-Based Dye: Realizing Charge Transfer Pathways and Dye···TiO 2 Anchoring Characteristics for Dye-Sensitized Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jacqueline M. [Cavendish; ISIS; Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States; Department; Blood-Forsythe, Martin A. [Cavendish; Lin, Tze-Chia [Cavendish; Pattison, Philip [Swiss; Gong, Yun [Cavendish; Vázquez-Mayagoitia, Álvaro [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States; Waddell, Paul G. [Cavendish; Australian Centre for Neutron Scattering, Australian Nuclear Science; Zhang, Lei [Cavendish; Koumura, Nagatoshi [National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Mori, Shogo [Division

    2017-07-25

    Donor-pi-acceptor dyes containing thiophenyl pi-conjugated units and cyanoacrylate acceptor groups are among the best-performing organic chromophores used in dye-sensitized solar cell (DSC) applications. Yet, the molecular origins of their high photovoltaic output have remained unclear until now. This synchrotron-based X-ray diffraction study elucidates these origins for the high-performance thiophenylcyanoacrylate-based dye MK-2 (7.7% DSC device efficiency) and its molecular building block, MK-44. The crystal structures of MK-2 and MK-44 are both determined, while a high-resolution charge-density mapping of the smaller molecule was also possible, enabling the nature of its bonding to be detailed. A strong S center dot center dot center dot C equivalent to N intramolecular interaction is discovered, which bears a bond critical point, thus proving that this interaction should be formally classified as a chemical bond. A topological analysis of the pi-conjugated portion of MK-44 shows that this S center dot center dot center dot C equivalent to N bonding underpins the highly efficient intramolecular charge transfer(ICT) in thiophenylcyanoacrylate dyes. This manifests as two bipartite ICT pathways bearing carboxylate and nitrile end points. In turn, these pathways dictate a preferred COO/CN anchoring mode for the dye as it adsorbs onto TiO2 surfaces, to form the dye TiO2 interface that constitutes the DSC working electrode. These results corroborate a recent proposal that all cyanoacrylate groups anchor onto TiO2 in this COO/CN binding configuration. Conformational analysis of the MK-44 and MK-2 crystal structures reveals that this S center dot center dot center dot C equivalent to N bonding will persist in MK-2. Accordingly, this newly discovered bond affords a rational explanation for the attractive photovoltaic properties of,MK-2. More generally, this study provides the first unequivocal evidence for an S center dot center dot center dot C equivalent to N

  10. Using chemical imaging to study bonding of dissimilar alloys

    International Nuclear Information System (INIS)

    Wuhrer, R.; Phillips, M.R.; Huggett, P.

    2002-01-01

    Full text: New welding techniques are currently being developed to bond very dissimilar materials such as cast irons or wear resistant steels welded to mild steel. X-ray mapping and chemical phase imaging provides useful information on the mass transport across the interface as well as phase segregation within the weld joint. Cast iron / steel and wear resistant steel / mild steel weld joints were mounted in a bakelite mount, cross-sectioned with a diamond wafering blade and polished to an optical finish using diamond abrasives. X-ray maps were collected at over a range of accelerating voltages using a Moran Scientific energy dispersive x-ray analysis and mapping system. These elemental x-ray maps were used to generate scatter plots, where pixel frequency versus element concentration profiles are plotted against each other in two or three dimensions for selected elements within the sample. The clusters observed in these plots correspond to different phases within the weld seam. The contributing pixels to each cluster can be used to reconstruct the spatial distribution of its associated phase in a chemical image of the specimen. Of particular interest to this study were the branches and links between clusters in each scatter plot and how these features correlate the chemical distribution of elements both in and around the bond region. Preliminary analysis indicated that these links and branches in the scatter plot correspond to solid solutions between chemical phases and diffusion gradients. Proper interpretation of these scatter plots will provide a better understanding of the chemical processes involved in welding dissimilar materials. Copyright (2002) Australian Society for Electron Microscopy Inc

  11. Vitrified chemically bonded phosphate ceramics for immobilization of radioisotopes

    Science.gov (United States)

    Wagh, Arun S.

    2016-04-05

    A method of immobilizing a radioisotope and vitrified chemically bonded phosphate ceramic (CBPC) articles formed by the method are described. The method comprises combining a radioisotope-containing material, MgO, a source of phosphate, and optionally, a reducing agent, in water at a temperature of less than 100.degree. C. to form a slurry; curing the slurry to form a solid intermediate CBPC article comprising the radioisotope therefrom; comminuting the intermediate CBPC article, mixing the comminuted material with glass frits, and heating the mixture at a temperature in the range of about 900 to about 1500.degree. C. to form a vitrified CBPC article comprising the radioisotope immobilized therein.

  12. Melting and related precursor cooperative phenomena in chemically bonded assemblies

    International Nuclear Information System (INIS)

    March, N.H.

    2004-09-01

    A number of experimental studies of condensed matter assemblies with different types of chemical bonding will provide the focus of this work. Condensed compounds X(CH 3 ) 4 , with X = C,Si or Ge, are the first of such assemblies; two phase boundaries in the pressure temperature plane being studied: melting and a solid phase boundary heralding orientational disordering of molecules still however on a lattice. Secondly, directionally bonded d-electron transition metals such as Ni, Pd and Nb will be treated. Here, melting is the main focus, but the precursor transition is now the separation of a high-temperature ductile solid from a lower temperature mechanically brittle phase. A dislocation-mediated model of these transitions is discussed, leading into the third area of covalently bonded solids graphite and silicon. Here topological defect models again provide the focus; both dislocations and rotation-dislocations now being invoked. Some qualitative suggestions are made to interpret the melting curve of graphite subjected to high pressure. (author)

  13. Formation and properties of surface-anchored polymer assemblies with tunable physico-chemical characteristics

    Science.gov (United States)

    Wu, Tao

    We describe two new methodologies leading to the formation of novel surface-anchored polymer assemblies on solid substrates. While the main goal is to understand the fundamentals pertaining to the preparation and properties of the surface-bound polymer assemblies (including neutral and chargeable polymers), several examples also are mentioned throughout the Thesis that point out to practical applications of such structures. The first method is based on generating assemblies comprising anchored polymers with a gradual variation of grafting densities on solid substrates. These structures are prepared by first covering the substrate with a molecular gradient of the polymerization initiator, followed by polymerization from these substrate-bound initiator centers ("grafting from"). We apply this technique to prepare grafting density gradients of poly(acryl amide) (PAAm) and poly(acrylic acid) (PAA) on silica-covered substrates. We show that using the grafting density gradient geometry, the characteristics of surface-anchored polymers in both the low grafting density ("mushroom") regime as well as the high grafting density ("brush") regime can be accessed conveniently on a single sample. We use a battery of experimental methods, including Fourier transform infrared spectroscopy (FTIR), Near-edge absorption fine structure spectroscopy (NEXAFS), contact angle, ellipsometry, to study the characteristics of the surface-bound polymer layers. We also probe the scaling laws of neutral polymer as a function of grafting density, and for weak polyelectrolyte, in addition to the grafting density, we study the affect of solution ionic strength and pH values. In the second novel method, which we coined as "mechanically assisted polymer assembly" (MAPA), we form surface anchored polymers by "grafting from" polymerization initiators deposited on elastic surfaces that have been previously extended uniaxially by a certain length increment, Deltax. Upon releasing the strain in the

  14. Hydrogen concentration profiles and chemical bonding in silicon nitride

    International Nuclear Information System (INIS)

    Peercy, P.S.; Stein, H.J.; Doyle, B.L.; Picraux, S.T.

    1978-01-01

    The complementary technique of nuclear reaction analysis and infrared absorption were used to study the concentration profile and chemical bonding of hydrogen in silicon nitride for different preparation and annealing conditions. Silicon nitride prepared by chemical vapor deposition from ammonia-silane mixtures is shown to have hydrogen concentrations of 8.1 and 6.5 at.% for deposition temperatures of 750 and 900 0 C, respectively. Plasma deposition at 300 0 C from these gases results in hydrogen concentrations of approximately 22 at.%. Comparison of nuclear reaction analysis and infrared absorption measurements after isothermal annealing shows that all of the hydrogen retained in the films remains bonded to either silicon or nitrogen and that hydrogen release from the material on annealing is governed by various trap energies involving at least two N-H and one Si-H trap. Reasonable estimates of the hydrogen release rates can be made from the effective diffusion coefficient obtained from measurements of hydrogen migration in hydrogen implanted and annealed films

  15. Nature of chemical bond through positron angular correlation

    International Nuclear Information System (INIS)

    Ramasamy, S.; Nagarajan, T.

    1979-01-01

    Two photon angular distribution of positron annihilation is measured for compounds (1) m- and (2) p-nitroanilines, (3) m- and (4) p-methylsulphonyl-N, N-dimethylanilines and (5) p-phenylthio- and (6) p-phenoxyanilines in order to investigate the phenomenon of resonance and the involvement of d-orbitals of sulphur in chemical bonding. The FWHM is the same (10.8 mrad) for compounds (1) and (2) indicating that the resonance in the p-isomer does not change the annihilation characteristic much. The measured FWHM (9.4 mrad) for compound (4) is much broader than that of compound (3) (FWHM = 7.7 mrad). In the case of p-isomer, there is the involvement of d-orbitals of sulphur in bond formation. FWHM for compounds (5) and (6) are almost same (8.4 mrad). In this pair the only difference is that the sulphur in one case is replaced by oxygen in the other. Since there is not enough scope for excess electrons to be accomodated at oxygen or sulphur, there is no preferential annihilation of positron at these centres. (auth.)

  16. Electronic structure and chemical bond in technetium dimer

    International Nuclear Information System (INIS)

    Klyagina, A.P.; Fursova, V.D.; Levin, A.A.; Gutsev, G.L.

    1987-01-01

    DV-X α method is used to study electron structure and peculiarities of chemical bond in Tc 2 and Tc 2 2+ dimers. Electron state characteristics are calculated in the basis of numerical Hartree-Fock functions for d 6 s 1 - and d 5 s 2 -configurations of Tc atom and for Tc 2 2+ ion d 5 s 1 -configuration. Disposition order for valence MO in Tc and Tc 2 2+ calculated for the given configurations is presented. It is shown that quinary bond with π u 4 dσ g 2 σ g 4 sσ g 2 δ u 2 configuration corresponds to the ground state of Tc 2 molecule. In Tc 2 some weakening of binding for π- and δ-orbitals and strengthening of total σ-binding in comparison with Mo 2 takes place. In Tc + and Tc 2+ MO composition is slightly changed, but a shift of 2σ-MO relatively MO consisting of d-AO is occured

  17. Chemical bond activation observed with an x-ray laser

    International Nuclear Information System (INIS)

    Beye, Martin; Öberg, Henrik; Xin, Hongliang

    2016-01-01

    The concept of bonding and anti-bonding orbitals is fundamental in chemistry. The population of those orbitals and the energetic difference between the two reflect the strength of the bonding interaction. Weakening the bond is expected to reduce this energetic splitting, but the transient character of bond-activation has so far prohibited direct experimental access. Lastly, we apply time-resolved soft X-ray spectroscopy at a free-electron laser to directly observe the decreased bonding–anti-bonding splitting following bond-activation using an ultra short optical laser pulse.

  18. The Effect of Bracket Base Pylon Orientation on the Shear Bond Strength of the ODP ANCHOR-LOCK Bracket Pad

    Science.gov (United States)

    2013-06-06

    in the dark) ( Bourke et al., 1992; McClean et al., 1994). Resin-modified glass ionomer cements that possess photochemical settling reactions also...primer/adhesive on the shear bond strength of orthodontic brackets. Am J Orthod Dentofacial Orthop 2001; 119(6):621-624. 61 Bourke AM, Walls AW

  19. Understanding the triple nature of the chemical bond on submicroscopic level

    OpenAIRE

    Klun, Tina

    2017-01-01

    The master’s thesis addresses three definitions of chemical bond with particular emphasis on the sub-microscopic level in a comprehensive manner. Slovenian pupils are taught about chemical bond for the first time in the eighth grade of primary school as part of learning about the connection between particles. Due to the abstract nature of the notion chemical bond, it is essential that pupils are encouraged to learn about the topic on the macroscopic, sub microscopic and symbolic level as this...

  20. Chemical Bond Parameters in Sr3MRhO6 (M=Rare earth)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chemical bond parameters, that is, bond covalency, bond valence, macroscopic linear susceptibility, and oxidation states of elements in Sr3MRhO6 (M=Sm, Eu, Tb, Dy, Ho, Er, Yb) have been calculated. The results indicate that the bond covalency of M-O decreases sharply with the decrease of ionic radius of M3+ from Sm to Yb, while no obvious trend has been found for Rh-O and Sr-O bonds. The global instability index indicates that the crystal structures of Sr3MrhO6 (M = Sm, Eu, Tb, Dy, Ho) have strained bonds.

  1. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D.

    2010-06-29

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  2. Representations of Chemical Bonding Models in School Textbooks--Help or Hindrance for Understanding?

    Science.gov (United States)

    Bergqvist, Anna; Drechsler, Michal; De Jong, Onno; Rundgren, Shu-Nu Chang

    2013-01-01

    Models play an important and central role in science as well as in science education. Chemical bonding is one of the most important topics in upper secondary school chemistry, and this topic is dominated by the use of models. In the past decade, research has shown that chemical bonding is a topic that students find difficult, and therefore, a wide…

  3. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  4. Electronic structure imperfections and chemical bonding at graphene interfaces

    Science.gov (United States)

    Schultz, Brian Joseph

    ) fabricate graphene/metal interfaces and metal/graphene/metal sandwich structures evidencing classical anisotropic umpolung chemistry from carbon pz-orbrital charge pinning, and (Chapter 5) engineer graphene/dielectric interfaces showing electron depletion from carbon atoms at the HfO2/graphene interface. The fabrication of graphene interfaces remains a critical gap for successful commercialization of graphene-based devices, yet we demonstrate that interfacial hybridization, anisotropic charge redistribution, local chemical bonding, and discrete electronic hybridization regimes play a critical role in the electronic structure at graphene interfaces.

  5. Representational Classroom Practices that Contribute to Students' Conceptual and Representational Understanding of Chemical Bonding

    Science.gov (United States)

    Hilton, Annette; Nichols, Kim

    2011-01-01

    Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their…

  6. Chemical bonding of hydrogen molecules to transition metal complexes

    International Nuclear Information System (INIS)

    Kubas, G.J.

    1990-01-01

    The complex W(CO) 3 (PR 3 ) 2 (H 2 ) (CO = carbonyl; PR 3 = organophosphine) was prepared and was found to be a stable crystalline solid under ambient conditions from which the hydrogen can be reversibly removed in vacuum or under an inert atmosphere. The weakly bonded H 2 exchanges easily with D 2 . This complex represents the first stable compound containing intermolecular interaction of a sigma-bond (H-H) with a metal. The primary interaction is reported to be donation of electron density from the H 2 bonding electron pair to a vacant metal d-orbital. A series of complexes of molybdenum of the type Mo(CO)(H 2 )(R 2 PCH 2 CH 2 PR 2 ) 2 were prepared by varying the organophosphine substitutent to demonstrate that it is possible to bond either dihydrogen or dihydride by adjusting the electron-donating properties of the co-ligands. Results of infrared and NMR spectroscopic studies are reported. 20 refs., 5 fig

  7. Initiated chemical vapor deposited nanoadhesive for bonding National Ignition Facility's targets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tom [Univ. of California, Berkeley, CA (United States)

    2016-05-19

    Currently, the target fabrication scientists in National Ignition Facility Directorate at Lawrence Livermore National Laboratory (LLNL) is studying the propagation force resulted from laser impulses impacting a target. To best study this, they would like the adhesive used to glue the target substrates to be as thin as possible. The main objective of this research project is to create adhesive glue bonds for NIF’s targets that are ≤ 1 μm thick. Polyglycidylmethacrylate (PGMA) thin films were coated on various substrates using initiated chemical vapor deposition (iCVD). Film quality studies using white light interferometry reveal that the iCVD PGMA films were smooth. The coated substrates were bonded at 150 °C under vacuum, with low inflow of Nitrogen. Success in bonding most of NIF’s mock targets at thicknesses ≤ 1 μm indicates that our process is feasible in bonding the real targets. Key parameters that are required for successful bonding were concluded from the bonding results. They include inert bonding atmosphere, sufficient contact between the PGMA films, and smooth substrates. Average bond strength of 0.60 MPa was obtained from mechanical shearing tests. The bonding failure mode of the sheared interfaces was observed to be cohesive. Future work on this project will include reattempt to bond silica aerogel to iCVD PGMA coated substrates, stabilize carbon nanotube forests with iCVD PGMA coating, and kinetics study of PGMA thermal crosslinking.

  8. Coulombic Interaction in Finnish Middle School Chemistry: A Systemic Perspective on Students' Conceptual Structure of Chemical Bonding

    Science.gov (United States)

    Joki, Jarkko; Lavonen, Jari; Juuti, Kalle; Aksela, Maija

    2015-01-01

    The aim of this study was to design a novel and holistic way to teach chemical bonding at the middle school level according to research on the teaching and learning of bonding. A further aim was to investigate high achieving middle school students' conceptual structures concerning chemical bonding by using a systemic perspective. Students in one…

  9. Microstructure and chemical bonding of DLC films deposited on ACM rubber by PACVD

    NARCIS (Netherlands)

    Martinez-Martinez, D.; Schenkel, M.; Pei, Y.T.; Sánchez-López, J.C.; Hosson, J.Th.M. De

    2011-01-01

    The microstructure and chemical bonding of DLC films prepared by plasma assisted chemical vapor deposition on acrylic rubber (ACM) are studied in this paper. The temperature variation produced by the ion impingement during plasma cleaning and subsequent film deposition was used to modify the film

  10. Representational Classroom Practices that Contribute to Students' Conceptual and Representational Understanding of Chemical Bonding

    Science.gov (United States)

    Hilton, Annette; Nichols, Kim

    2011-11-01

    Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their content-specific forms and functions, this might be avoided. The development of an understanding of and ability to use multiple representations is crucial to students' understanding of chemical bonding. This paper draws on data from a larger study involving two Year 11 chemistry classes (n = 27, n = 22). It explores the contribution of explicit instruction about multiple representations to students' understanding and representation of chemical bonding. The instructional strategies were documented using audio-recordings and the teacher-researcher's reflection journal. Pre-test-post-test comparisons showed an improvement in conceptual understanding and representational competence. Analysis of the students' texts provided further evidence of the students' ability to use multiple representations to explain macroscopic phenomena on the molecular level. The findings suggest that explicit instruction about representational form and function contributes to the enhancement of representational competence and conceptual understanding of bonding in chemistry. However, the scaffolding strategies employed by the teacher play an important role in the learning process. This research has implications for professional development enhancing teachers' approaches to these aspects of instruction around chemical bonding.

  11. Relaxation of the chemical bond skin chemisorption size matter ZTP mechanics H2O myths

    CERN Document Server

    Sun, Chang Q

    2014-01-01

    The aim of this book is to explore the detectable properties of a material to the parameters of bond and non-bond involved and to clarify the interdependence of various properties. This book is composed of four parts; Part I deals with the formation and relaxation dynamics of bond and non-bond during chemisorptions with uncovering of the correlation among the chemical bond, energy band, and surface potential barrier (3B) during reactions; Part II is focused on the relaxation of bonds between atoms with fewer neighbors than the ideal in bulk with unraveling of the bond order-length-strength (BOLS) correlation mechanism, which clarifies the nature difference between nanostructures and bulk of the same substance; Part III deals with the relaxation dynamics of bond under heating and compressing with revealing of rules on the temperature-resolved elastic and plastic properties of low-dimensional materials; Part IV is focused on the asymmetric relaxation dynamics of the hydrogen bond (O:H-O) and the anomalous behav...

  12. Atomic Charges and Chemical Bonding in Y-Ga Compounds

    Directory of Open Access Journals (Sweden)

    Yuri Grin

    2018-02-01

    Full Text Available A negative deviation from Vegard rule for the average atomic volume versus yttrium content was found from experimental crystallographic information about the binary compounds of yttrium with gallium. Analysis of the electron density (DFT calculations employing the quantum theory of atoms in molecules revealed an increase in the atomic volumes of both Y and Ga with the increase in yttrium content. The non-linear increase is caused by the strengthening of covalent Y-Ga interactions with stronger participation of genuine penultimate shell electrons (4d electrons of yttrium in the valence region. Summing the calculated individual atomic volumes for a unit cell allows understanding of the experimental trend. With increasing yttrium content, the polarity of the Y-Ga bonding and, thus its ionicity, rises. The covalency of the atomic interactions in Y-Ga compounds is consistent with their delocalization from two-center to multi-center ones.

  13. Interaction between benzenedithiolate and gold: Classical force field for chemical bonding

    Science.gov (United States)

    Leng, Yongsheng; Krstić, Predrag S.; Wells, Jack C.; Cummings, Peter T.; Dean, David J.

    2005-06-01

    We have constructed a group of classical potentials based on ab initio density-functional theory (DFT) calculations to describe the chemical bonding between benzenedithiolate (BDT) molecule and gold atoms, including bond stretching, bond angle bending, and dihedral angle torsion involved at the interface between the molecule and gold clusters. Three DFT functionals, local-density approximation (LDA), PBE0, and X3LYP, have been implemented to calculate single point energies (SPE) for a large number of molecular configurations of BDT-1, 2 Au complexes. The three DFT methods yield similar bonding curves. The variations of atomic charges from Mulliken population analysis within the molecule/metal complex versus different molecular configurations have been investigated in detail. We found that, except for bonded atoms in BDT-1, 2 Au complexes, the Mulliken partial charges of other atoms in BDT are quite stable, which significantly reduces the uncertainty in partial charge selections in classical molecular simulations. Molecular-dynamics (MD) simulations are performed to investigate the structure of BDT self-assembled monolayer (SAM) and the adsorption geometry of S adatoms on Au (111) surface. We found that the bond-stretching potential is the most dominant part in chemical bonding. Whereas the local bonding geometry of BDT molecular configuration may depend on the DFT functional used, the global packing structure of BDT SAM is quite independent of DFT functional, even though the uncertainty of some force-field parameters for chemical bonding can be as large as ˜100%. This indicates that the intermolecular interactions play a dominant role in determining the BDT SAMs global packing structure.

  14. New conception in the theory of chemical bonding; the role of core and valence atomic orbitals in formation of chemical bonds

    International Nuclear Information System (INIS)

    Kostikova, G.P.; Kostikov, Yu.P.; Korol'kov, D.V.

    1986-01-01

    An analysis of x-ray photoelectron spectra leads to a simple and consistent conception in the theory of chemical bonding, which satisfies (unlike the simple MO-LCAO theory) the virial theorem and defines the roles of the core and valence atomic orbitals in the formation of chemical bonds. Its essence is clear from the foregoing: the exothermic effects of the formation of complexes are caused by the lowering of the energies of the core levels of the central atoms with simultaneous small changes in the energies of the core levels of the ligands despite the significant destabilization of the delocalized valence MO's in comparison to the orbital energies of the corresponding free atoms. In order to confirm these ideas, they recorded the x-ray photoelectron spectra of the valence region and the inner levels of single-crystal silicon carbide, silicon, and graphite

  15. Electronic parameters of Sr2Nb2O7 and chemical bonding

    DEFF Research Database (Denmark)

    Atuchin, V.V.; Grivel, Jean-Claude; Korotkov, A.S.

    2008-01-01

    /2)) and Delta(O-Sr) = BE(O 1s)-BE(Sr 3d(5/2)), were used to characterize the valence electron transfer on the formation of the Nb-O and Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and earlier published structural and XPS data for other Sr- or Nb...

  16. X-ray electron density investigation of chemical bonding in van der Waals materials

    Science.gov (United States)

    Kasai, Hidetaka; Tolborg, Kasper; Sist, Mattia; Zhang, Jiawei; Hathwar, Venkatesha R.; Filsø, Mette Ø.; Cenedese, Simone; Sugimoto, Kunihisa; Overgaard, Jacob; Nishibori, Eiji; Iversen, Bo B.

    2018-03-01

    Van der Waals (vdW) solids have attracted great attention ever since the discovery of graphene, with the essential feature being the weak chemical bonding across the vdW gap. The nature of these weak interactions is decisive for many extraordinary properties, but it is a strong challenge for current theory to accurately model long-range electron correlations. Here we use synchrotron X-ray diffraction data to precisely determine the electron density in the archetypal vdW solid, TiS2, and compare the results with density functional theory calculations. Quantitative agreement is observed for the chemical bonding description in the covalent TiS2 slabs, but significant differences are identified for the interactions across the gap, with experiment revealing more electron deformation than theory. The present data provide an experimental benchmark for testing theoretical models of weak chemical bonding.

  17. Fast and accurate covalent bond predictions using perturbation theory in chemical space

    Science.gov (United States)

    Chang, Kuang-Yu; von Lilienfeld, Anatole

    I will discuss the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among systems of different chemical composition. We have investigated single, double, and triple bonds occurring in small sets of iso-valence-electronic molecular species with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order estimates of covalent bonding potentials can achieve chemical accuracy (within 1 kcal/mol) if the alchemical interpolation is vertical (fixed geometry) among chemical elements from third and fourth row of the periodic table. When applied to nonbonded systems of molecular dimers or solids such as III-V semiconductors, alanates, alkali halides, and transition metals, similar observations hold, enabling rapid predictions of van der Waals energies, defect energies, band-structures, crystal structures, and lattice constants.

  18. Exact solutions for chemical bond orientations from residual dipolar couplings

    International Nuclear Information System (INIS)

    Wedemeyer, William J.; Rohl, Carol A.; Scheraga, Harold A.

    2002-01-01

    New methods for determining chemical structures from residual dipolar couplings are presented. The fundamental dipolar coupling equation is converted to an elliptical equation in the principal alignment frame. This elliptical equation is then combined with other angular or dipolar coupling constraints to form simple polynomial equations that define discrete solutions for the unit vector(s). The methods are illustrated with residual dipolar coupling data on ubiquitin taken in a single anisotropic medium. The protein backbone is divided into its rigid groups (namely, its peptide planes and C α frames), which may be solved for independently. A simple procedure for recombining these independent solutions results in backbone dihedral angles φ and ψ that resemble those of the known native structure. Subsequent refinement of these φ-ψ angles by the ROSETTA program produces a structure of ubiquitin that agrees with the known native structure to 1.1 A C α rmsd

  19. Anchoring group effects in molecular devices: An ab initio study on the electronic transport of a carbon-dimer

    International Nuclear Information System (INIS)

    Wang, R.N.; Zheng, X.H.; Dai, Z.X.; Hao, H.; Song, L.L.; Zeng, Z.

    2011-01-01

    The conductance of a molecular device is sensitive to the contact geometry between the molecules and the probing electrodes. Taking a carbon-dimer C 2 as an example and connecting it to the electrodes by different linking atoms H, Cu and S, we investigate the anchoring group effect in molecular devices by the first-principles approaches. The results exhibit that, depending on the anchoring groups and the subsequent different metal-molecule chemical bonds, the current varies over more than two orders of magnitude under the same bias. This emphasizes the great importance of the anchoring groups in molecular devices.

  20. Chemical bonding in view of electron charge density and kinetic energy density descriptors.

    Science.gov (United States)

    Jacobsen, Heiko

    2009-05-01

    Stalke's dilemma, stating that different chemical interpretations are obtained when one and the same density is interpreted either by means of natural bond orbital (NBO) and subsequent natural resonance theory (NRT) application or by the quantum theory of atoms in molecules (QTAIM), is reinvestigated. It is shown that within the framework of QTAIM, the question as to whether for a given molecule two atoms are bonded or not is only meaningful in the context of a well-defined reference geometry. The localized-orbital-locator (LOL) is applied to map out patterns in covalent bonding interaction, and produces results that are consistent for a variety of reference geometries. Furthermore, LOL interpretations are in accord with NBO/NRT, and assist in an interpretation in terms of covalent bonding. 2008 Wiley Periodicals, Inc.

  1. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table.

    Science.gov (United States)

    Kaupp, Martin

    2007-01-15

    The role of radial nodes, or of their absence, in valence orbitals for chemical bonding and periodic trends is discussed from a unified viewpoint. In particular, we emphasize the special role of the absence of a radial node whenever a shell with angular quantum number l is occupied for the first time (lack of "primogenic repulsion"), as with the 1s, 2p, 3d, and 4f shells. Although the consequences of the very compact 2p shell (e.g. good isovalent hybridization, multiple bonding, high electronegativity, lone-pair repulsion, octet rule) are relatively well known, it seems that some of the aspects of the very compact 3d shell in transition-metal chemistry are less well appreciated, e.g., the often weakened and stretched bonds at equilibrium structure, the frequently colored complexes, and the importance of nondynamical electron-correlation effects in bonding. Copyright (c) 2006 Wiley Periodicals, Inc.

  2. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    International Nuclear Information System (INIS)

    Lichtenberger, D.L.

    1991-10-01

    The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies has been developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. This relationship has been used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. We have been able to obtain a direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal. The ionization energies have also been used to correlate the rates of carbonyl substitution reactions of (η 5 -C 5 H 4 X)Rh(CO) 2 complexes, and to reveal the electronic factors that control the stability of the transition state. The extent that the electronic features of these bonding interactions transfer to other chemical systems is being investigated in terms of the principle of additivity of ligand electronic effects. Specific examples under study include metal- phosphines, metal-halides, and metallocenes. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C 60 molecule, buckminsterfullerene, and its interaction with a metal surface. The high-resolution valence ionizations in the gas phase reveal the high symmetry of the molecule, and studies of thin films of C 60 reveal weak intermolecular interactions. Scanning tunneling and atomic force microscopy reveal the arrangement of spherical molecules on gold substrates, with significant delocalization of charge from the metal surface. 21 refs

  3. The Collaboration of Cooperative Learning and Conceptual Change: Enhancing the Students' Understanding of Chemical Bonding Concepts

    Science.gov (United States)

    Eymur, Gülüzar; Geban, Ömer

    2017-01-01

    The main purpose of this study was to investigate the effects of cooperative learning based on conceptual change approach instruction on ninth-grade students' understanding in chemical bonding concepts compared to traditional instruction. Seventy-two ninth-grade students from two intact chemistry classes taught by the same teacher in a public high…

  4. Spunlaced and chemically bonded nonwovens for filtration applications: Performance evaluation and comparison

    CSIR Research Space (South Africa)

    Boguslavsky, L

    2008-11-01

    Full Text Available . The physical, mechanical and performance properties were measured and compared. It was concluded that chemical bonding had a higher effect on the fabric structural changes, such as pore size and its distribution. The results showed an improvement in dust...

  5. Low-temperature wafer direct bonding of silicon and quartz glass by a two-step wet chemical surface cleaning

    Science.gov (United States)

    Wang, Chenxi; Xu, Jikai; Zeng, Xiaorun; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo

    2018-02-01

    We demonstrate a facile bonding process for combining silicon and quartz glass wafers by a two-step wet chemical surface cleaning. After a post-annealing at 200 °C, strong bonding interfaces with no defects or microcracks were obtained. On the basis of the detailed surface and bonding interface characterizations, the bonding mechanism was explored and discussed. The amino groups terminated on the cleaned surfaces might contribute to the bonding strength enhancement during the annealing. This cost-effective bonding process has great potentials for silicon- and glass-based heterogeneous integrations without requiring a vacuum system.

  6. Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.go [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Laboratory of Chemical Physics (United States)

    2010-03-15

    We present a program, named Promega, to predict the Xaa-Pro peptide bond conformation on the basis of backbone chemical shifts and the amino acid sequence. Using a chemical shift database of proteins of known structure together with the PDB-extracted amino acid preference of cis Xaa-Pro peptide bonds, a cis/trans probability score is calculated from the backbone and {sup 13}C{sup {beta}} chemical shifts of the proline and its neighboring residues. For an arbitrary number of input chemical shifts, which may include Pro-{sup 13}C{sup {gamma}}, Promega calculates the statistical probability that a Xaa-Pro peptide bond is cis. Besides its potential as a validation tool, Promega is particularly useful for studies of larger proteins where Pro-{sup 13}C{sup {gamma}} assignments can be challenging, and for on-going efforts to determine protein structures exclusively on the basis of backbone and {sup 13}C{sup {beta}} chemical shifts.

  7. Effect of raw material ratios on the compressive strength of magnesium potassium phosphate chemically bonded ceramics

    International Nuclear Information System (INIS)

    Wang, Ai-juan; Yuan, Zhi-long; Zhang, Jiao; Liu, Lin-tao; Li, Jun-ming; Liu, Zheng

    2013-01-01

    The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH 2 PO 4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH 2 PO 4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH 2 PO 4 ratio might be explained by the existence of the weak phase KH 2 PO 4 . However, the low value of compressive strength with the higher MgO-to-KH 2 PO 4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH 2 PO 4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH 2 PO 4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics. - Highlights: • High packing density and amorphous hydrated phase improved the compressive strength. • Residual KH 2 PO 4 and poor bonding phase lower the compressive strength. • MPCBC fabricated with optimized parameters had the highest compressive strength

  8. Theoretical study of relativistic effects in the electronic structure and chemical bonding of UF6

    International Nuclear Information System (INIS)

    Onoe, Jun; Takeuchi, Kazuo; Sekine, Rika; Nakamatsu, Hirohide; Mukoyama, Takeshi; Adachi, Hirohiko.

    1992-01-01

    We have performed the relativistic molecular orbital calculation for the ground state of UF 6 , using the discrete-variational Dirac-Slater method (DV-DS), in order to elucidate the relativistic effects in the electronic structure and chemical bonding. Compared with the electronic structure calculated by the non-relativistic Hartree-Fock-Slater (DV-X α )MO method, not only the direct relativistic effects (spin-orbit splitting etc), but also the indirect effect due to the change in screening core potential charge are shown to be important in the MO level structure. From the U-F bond overlap population analysis, we found that the U-F bond formation can be explained only by the DV-DS, not by the DV-X α . The calculated electronic structure in valence energy region (-20-OeV) and excitation energies in UV region are in agreement with experiments. (author)

  9. Studying Chemical Reactions, One Bond at a Time, with Single Molecule AFM Techniques

    Science.gov (United States)

    Fernandez, Julio M.

    2008-03-01

    The mechanisms by which mechanical forces regulate the kinetics of a chemical reaction are unknown. In my lecture I will demonstrate how we use single molecule force-clamp spectroscopy and protein engineering to study the effect of force on the kinetics of thiol/disulfide exchange. Reduction of disulfide bond via the thiol/disulfide exchange chemical reaction is crucial in regulating protein function and is of common occurrence in mechanically stressed proteins. While reduction is thought to proceed through a substitution nucleophilic bimolecular (SN2) reaction, the role of a mechanical force in modulating this chemical reaction is unknown. We apply a constant stretching force to single engineered disulfide bonds and measure their rate of reduction by dithiothreitol (DTT). We find that while the reduction rate is linearly dependent on the concentration of DTT, it is exponentially dependent on the applied force, increasing 10-fold over a 300 pN range. This result predicts that the disulfide bond lengthens by 0.34 å at the transition state of the thiol/disulfide exchange reaction. In addition to DTT, we also study the reduction of the engineered disulfide bond by the E. coli enzyme thioredoxin (Trx). Thioredoxins are enzymes that catalyze disulfide bond reduction in all organisms. As before, we apply a mechanical force in the range of 25-450 pN to the engineered disulfide bond substrate and monitor the reduction of these bonds by individual enzymes. In sharp contrast with the data obtained with DTT, we now observe two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulfide bond, causing a shortening of the substrate polypeptide by 0.76±0.07 å, and the second elongating the substrate disulfide bond by 0.21±0.01 å. These results support the view that the Trx active site regulates the geometry of the participating sulfur atoms, with sub-ångström precision, in order to achieve efficient catalysis. Single molecule

  10. Investigation of Chemical Bond Properties and Mssbauer Spectroscopy in YBa2Cu3O7

    Institute of Scientific and Technical Information of China (English)

    高发明; 李东春; 张思远

    2003-01-01

    Chemical bond properties of YBa2Cu3O7 were studied by using the average band-gap model. The calculated results show that the covalency of Cu(1)-O bond is 0.406, and one of Cu(2)-O is 0.276. Mssbauer isomer shifts of 57Fe in Y-123 were calculated by the chemical surrounding factor hv defined by covalency and electronic polarizability. The charge-state and site of Fe were determined. The relation between the coupling constant of electron-phonon interaction and covalency is employed to explain that the Cu(2)-O plane is more important than the Cu(1)-O chain on the superconductivity in the Y-123 compounds.

  11. Transport of chemically bonded nuclear energy in a closed cycle with special consideration to energy disconnection

    International Nuclear Information System (INIS)

    Ossami, S.

    1976-01-01

    The article describes the utilisation of nuclear energy in the form of 'nuclear long-distance energy'. Heat produced by nuclear fission is bonded to a reversible chemical reaction (cracking gas) which release the heat again at the place of comsumption by catalytic transformation. The article deals in particular with the process of methane cracking/methanisation, the disconnection of the energy (heat) by the methanisation process and the decisive role of the methanisation catalyzers. (orig.) [de

  12. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    Science.gov (United States)

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  13. Chemically-bonded brick production based on burned clay by means of semidry pressing

    Energy Technology Data Exchange (ETDEWEB)

    Voroshilov, Ivan, E-mail: Nixon.06@mail.ru; Endzhievskaya, Irina, E-mail: icaend@mail.ru; Vasilovskaya, Nina, E-mail: icaend@mail.ru [FSAEI HVE Siberian Federal University, 82 Svobodny Prospekt, Krasnoyarsk, 660130 (Russian Federation)

    2016-01-15

    We presented a study on the possibility of using the burnt rocks of the Krasnoyarsk Territory for production of chemically-bonded materials in the form of bricks which are so widely used in multistory housing and private house construction. The radiographic analysis of the composition of burnt rock was conducted and a modifier to adjust the composition uniformity was identified. The mixing moisture content was identified and optimal amount at 13-15% was determined. The method of semidry pressing has been chosen. The process of obtaining moldings has been theoretically proved; the advantages of chemically-bonded wall materials compared to ceramic brick were shown. The production of efficient artificial stone based on material burnt rocks, which is comparable with conventionally effective ceramic materials or effective with cell tile was proved, the density of the burned clay-based cell tile makes up to 1630-1785 kg \\ m{sup 3}, with compressive strength of 13.6-20.0 MPa depending on the compression ratio and cement consumption, frost resistance index is F50, and the thermal conductivity in the masonry is λ = 0,459-0,546 W \\ m {sup *} °C. The clear geometric dimensions of pressed products allow the use of the chemically-bonded brick based on burnt clay as a facing brick.

  14. Electronic structure and chemical bonding in LaIrSi-type intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Matar, Samir F. [Bordeaux Univ., Pessac (France). CNRS; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Nakhl, Michel [Univ. Libanaise, Fanar (Lebanon). Ecole Doctorale Sciences et Technologies

    2017-05-01

    The cubic LaIrSi type has 23 representatives in aluminides, gallides, silicides, germanides, phosphides, and arsenides, all with a valence electron count of 16 or 17. The striking structural motif is a three-dimensional network of the transition metal (T) and p element (X) atoms with TX{sub 3/3} respectively XT{sub 3/3} coordination. Alkaline earth or rare earth atoms fill cavities within the polyanionic [TX]{sup δ-} networks. The present work presents a detailed theoretical study of chemical bonding in LaIrSi-type representatives, exemplarily for CaPtSi, BaIrP, BaAuGa, LaIrSi, CeRhSi, and CeIrSi. DFT-GGA-based electronic structure calculations show weakly metallic compounds with itinerant small magnitude DOSs at E{sub F} except for CeRhSi whose large Ce DOS at E{sub F} leads to a finite magnetization on Ce (0.73 μ{sub B}) and induced small moments of opposite sign on Rh and Si in a ferromagnetic ground state. The chemical bonding analyses show dominant bonding within the [TX]{sup δ-} polyanionic networks. Charge transfer magnitudes were found in accordance with the course of the electronegativites of the chemical constituents.

  15. Stabilization of low-level mixed waste in chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A.S.; Singh, D.; Sarkar, A.V.

    1994-06-01

    Mixed waste streams, which contain both chemical and radioactive wastes, are one of the important categories of DOE waste streams needing stabilization for final disposal. Recent studies have shown that chemically bonded phosphate ceramics may have the potential for stabilizing these waste streams, particularly those containing volatiles and pyrophorics. Such waste streams cannot be stabilized by conventional thermal treatment methods such as vitrification. Phosphate ceramics may be fabricated at room temperature into durable, hard and dense materials. For this reason room-temperature-setting phosphate ceramic waste forms are being developed to stabilize these to ''problem waste streams.''

  16. Four chemical methods of porcelain conditioning and their influence over bond strength and surface integrity

    Science.gov (United States)

    Stella, João Paulo Fragomeni; Oliveira, Andrea Becker; Nojima, Lincoln Issamu; Marquezan, Mariana

    2015-01-01

    OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding. METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%). RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased. CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface. PMID:26352845

  17. Structure and Chemical Bond of Thermoelectric Ce-Co-Sb Skutterudites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The correlations among composition,structure,chemical bond and thermoelectric property of skutterudites CoSb3 and CeCo5Fe3Sb12 have been studied by using density function and discrete variation (DFT-DVM) method.Three models for this study were proposed and calculated by which the "rattling" pattern was described.Model 1 is with Ce in the center,model 2 is with Ce away the center and near to Sb,and model 3 is also with Ce away the center but near to Fe.The calculated results show that in model 3,the ionic bond is the strongest,but the covalent bond is the weakest.Due to the different changes between ionic and covalent bond,there is less difference in the stability among the models 1,2 and 3.Therefore,these different models can exist at the same time,or can translate from one to another more easily.In other words,the "rattling" pattern has taken place.Unfilled model of CoSb3,without Ce and Fe,is called model 4.The covalent bond of Co-Sb or Fe-Sb in models 1,2 and 3 is weaker than that of Co-Sb in model 4,as some electrical cloud of Sb takes part in the covalent bond of Ce-Sb in the filled models.The result is consistent with the experimental result that the thermal conductivity of CeCo5Fe3Sb12 is lower than that of CoSb3,and the thermoelectric property of CeCo5Fe3Sb12 is superior to that of CoSb3.

  18. The active site of hen egg-white lysozyme: flexibility and chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Held, Jeanette, E-mail: jeanette.netzel@uni-bayreuth.de; Smaalen, Sander van [University of Bayreuth, D-95440 Bayreuth (Germany)

    2014-04-01

    Chemical bonding at the active site of lysozyme is analyzed on the basis of a multipole model employing transferable multipole parameters from a database. Large B factors at low temperatures reflect frozen-in disorder, but therefore prevent a meaningful free refinement of multipole parameters. Chemical bonding at the active site of hen egg-white lysozyme (HEWL) is analyzed on the basis of Bader’s quantum theory of atoms in molecules [QTAIM; Bader (1994 ▶), Atoms in Molecules: A Quantum Theory. Oxford University Press] applied to electron-density maps derived from a multipole model. The observation is made that the atomic displacement parameters (ADPs) of HEWL at a temperature of 100 K are larger than ADPs in crystals of small biological molecules at 298 K. This feature shows that the ADPs in the cold crystals of HEWL reflect frozen-in disorder rather than thermal vibrations of the atoms. Directly generalizing the results of multipole studies on small-molecule crystals, the important consequence for electron-density analysis of protein crystals is that multipole parameters cannot be independently varied in a meaningful way in structure refinements. Instead, a multipole model for HEWL has been developed by refinement of atomic coordinates and ADPs against the X-ray diffraction data of Wang and coworkers [Wang et al. (2007), Acta Cryst. D63, 1254–1268], while multipole parameters were fixed to the values for transferable multipole parameters from the ELMAM2 database [Domagala et al. (2012), Acta Cryst. A68, 337–351] . Static and dynamic electron densities based on this multipole model are presented. Analysis of their topological properties according to the QTAIM shows that the covalent bonds possess similar properties to the covalent bonds of small molecules. Hydrogen bonds of intermediate strength are identified for the Glu35 and Asp52 residues, which are considered to be essential parts of the active site of HEWL. Furthermore, a series of weak C

  19. The active site of hen egg-white lysozyme: flexibility and chemical bonding

    International Nuclear Information System (INIS)

    Held, Jeanette; Smaalen, Sander van

    2014-01-01

    Chemical bonding at the active site of lysozyme is analyzed on the basis of a multipole model employing transferable multipole parameters from a database. Large B factors at low temperatures reflect frozen-in disorder, but therefore prevent a meaningful free refinement of multipole parameters. Chemical bonding at the active site of hen egg-white lysozyme (HEWL) is analyzed on the basis of Bader’s quantum theory of atoms in molecules [QTAIM; Bader (1994 ▶), Atoms in Molecules: A Quantum Theory. Oxford University Press] applied to electron-density maps derived from a multipole model. The observation is made that the atomic displacement parameters (ADPs) of HEWL at a temperature of 100 K are larger than ADPs in crystals of small biological molecules at 298 K. This feature shows that the ADPs in the cold crystals of HEWL reflect frozen-in disorder rather than thermal vibrations of the atoms. Directly generalizing the results of multipole studies on small-molecule crystals, the important consequence for electron-density analysis of protein crystals is that multipole parameters cannot be independently varied in a meaningful way in structure refinements. Instead, a multipole model for HEWL has been developed by refinement of atomic coordinates and ADPs against the X-ray diffraction data of Wang and coworkers [Wang et al. (2007), Acta Cryst. D63, 1254–1268], while multipole parameters were fixed to the values for transferable multipole parameters from the ELMAM2 database [Domagala et al. (2012), Acta Cryst. A68, 337–351] . Static and dynamic electron densities based on this multipole model are presented. Analysis of their topological properties according to the QTAIM shows that the covalent bonds possess similar properties to the covalent bonds of small molecules. Hydrogen bonds of intermediate strength are identified for the Glu35 and Asp52 residues, which are considered to be essential parts of the active site of HEWL. Furthermore, a series of weak C

  20. Characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe2 and related compounds

    International Nuclear Information System (INIS)

    Maeda, Tsuyoshi; Wada, Takahiro

    2009-01-01

    We studied characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe 2 (CIS) by first principles calculations. The chalcopyrite-type CIS has two kinds of chemical bonds, Cu-Se and In-Se. The Cu-Se bond is a weak covalent bonding because electrons occupy both bonding and antibonding orbitals of Cu 3d and Se 4p and occupy only the bonding orbital (a 1 ) of Cu 4s and Se 4p and do not occupy the antibonding orbital (a 1 * ) of Cu 4s and Se 4p. On the other hand, the In-Se bond has a partially covalent and partially ionic character because the In 5s orbital covalently interacts with Se 4p; the In 5p orbital is higher than Se 4p and so the electron in the In 5p orbital moves to the Se 4p orbital. The average bond order of the Cu-Se and In-Se bonds can be calculated to be 1/4 and 1, respectively. The bond order of Cu-Se is smaller than that of In-Se. The characteristics of these two chemical bonds are related to the formation of Cu and In vacancies in CIS. The formation energy of the Cu vacancy is smaller than that of the In vacancy under both Cu-poor and In-poor conditions. The displacement (Δl) of the surrounding Se atoms after the formation of the Cu vacancy is smaller than the Δl after the formation of the In vacancy. The interesting and unique characteristics of CIS are discussed on the basis of the characteristics of the chemical bond. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Electronic Structure and Chemical Bond of Ti3SiC2 and Adding Al Element

    Institute of Scientific and Technical Information of China (English)

    MIN Xinmin; LU Ning; MEI Bingchu

    2006-01-01

    The relation among electronic structure, chemical bond and property of Ti3SiC2 and Al-doped was studied by density function and discrete variation (DFT-DVM) method. When Al element is added into Ti3SiC2, there is a less difference of ionic bond, which does not play a leading role to influent the properties. After adding Al, the covalent bond of Al and the near Ti becomes somewhat weaker, but the covalent bond of Al and the Si in the same layer is obviously stronger than that of Si and Si before adding. Therefore, in preparation of Ti3SiC2, adding a proper quantity of Al can promote the formation of Ti3SiC2. The density of state shows that there is a mixed conductor character in both of Ti3SiC2 and adding Al element. Ti3SiC2 is with more tendencies to form a semiconductor. The total density of state near Fermi lever after adding Al is larger than that before adding, so the electric conductivity may increase after adding Al.

  2. Change of chemical bond and wettability of polylacticacid implanted with high-flux carbon ion

    International Nuclear Information System (INIS)

    Zhang Jizhong; Kang Jiachen; Zhang Xiaoji; Zhou Hongyu

    2008-01-01

    Polylacticacid (PLA) was submitted to high-flux carbon ion implantation with energy of 40 keV. It was investigated to the effect of ion fluence (1 x 10 12 -1 x 10 15 ions/cm 2 ) on the properties of the polymer. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), wettability, and roughness were employed to study change of structure and properties of the as-implanted PLA samples. Six carbon bonds, that is, C, C-H, C-O-C, C-O, O-C-O, and >C=O, were observed on surfaces of the as-implanted PLA samples. The intensities of various chemical bonds changed with increasing ion fluence. AFM images displayed that there was irradiation damage and that it was related closely with ion fluence. At fluence as high as 1 x 10 15 ions/cm 2 surface-restructuring phenomenum took place on the surface of the PLA. Wettability was also affected by the variation on the fluence. With increasing ion fluence, the water contact angle of the as-implanted PLA samples changed gradually reaching a maximum of 76.5 deg. with 1 x 10 13 ions/cm 2 . The experimental results revealed that carbon ion fluence strongly affected surface chemical bond, morphology, wettability, and roughness of the PLA samples

  3. Anchor Bolt Position in Base Plate In Terms Of T and J Anchor Bolt

    Directory of Open Access Journals (Sweden)

    b Osman Mohamad Hairi

    2017-01-01

    Full Text Available Generally, L anchor bolt system has been used for a long period of time in construction industry as one of the distributing load structures. However, there are some weaknesses in L anchor bolt which may straighten and pullup when charged with tensile load. Current practices prefer to use other types of anchor bolt systems, such as headed studs anchor bolt system to replace the L anchor bolt design. There has been lack of studies to prove that it is more effective in terms of performance. A new T anchor bolt which was basically modified from headed studs anchor bolt was proposed in this study to compare its performance of tensile loading in concrete failure to typical L design. This study aims to determine whether the T anchor bolt system gives better performance as compared to an L anchor bolt system. The performance was rated based on tensile loading on concrete failure pattern. A pullout test was conducted on two different anchor bolt systems, namely L and T. The anchor bolt embedded depth, h in concrete were varied according to their hook or bend radius. Each sample was repeated twice. There were totally eight samples. The hook or bend radius used were 50 mm and 57.5 mm for sample L1 and L2, respectively. 90-degree bend were used on sample T1 and T2. Based on test results, it can be seen that the performance of concrete failure pattern under tensile load on both L and T anchor bolt design samples with 200 mm embedment depth was better than deeper embedment depth of 230 mm. But the L anchor bolt design gives the best results as compared to T design. Although T anchor bolt design shows higher resistance before first bond failure to the concrete sample. T anchor bolt was analysed and needed deeper embedment depth to allow formation of cone pull-out shape to acquire better performance.

  4. YNi and its hydrides: Phase stabilities, electronic structures and chemical bonding properties from first principles

    International Nuclear Information System (INIS)

    Matar, S.F.; Nakhl, M.; Al Alam, A.F.; Ouaini, N.; Chevalier, B.

    2010-01-01

    Graphical abstract: Base centered orthorhombic YNiH X structure. For x = 3, only H1 and H2 are present. Highest hydrogen content YNiH 4 is obtained when H3 are added. - Abstract: Within density functional theory, establishing the equations of states of YNi in two different controversial structures in the literature, leads to determine the orthorhombic FeB-type as the ground state one with small energy difference. For YNiH 3 and YNiH 4 hydrides crystallizing in the orthorhombic CrB-type structure the geometry optimization and the ab initio determination of the H atomic positions show that the stability of hydrogen decreases from the tri- to the tetra- hydride. New states brought by hydrogen within the valence band lead to its broadening and to enhanced localization of metal density of states. The chemical bonding analysis shows a preferential Ni-H bonding versus Y-H.

  5. YNi and its hydrides: Phase stabilities, electronic structures and chemical bonding properties from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Matar, S.F., E-mail: matar@icmcb-bordeaux.cnrs.fr [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France); Nakhl, M. [Universite Libanaise, Laboratoire de Chimie-Physique des Materiaux LCPM, Fanar (Lebanon); Al Alam, A.F.; Ouaini, N. [Universite Saint-Esprit de Kaslik, Faculte des Sciences et de Genie Informatique, Jounieh (Lebanon); Chevalier, B. [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France)

    2010-11-25

    Graphical abstract: Base centered orthorhombic YNiH{sub X} structure. For x = 3, only H1 and H2 are present. Highest hydrogen content YNiH{sub 4} is obtained when H3 are added. - Abstract: Within density functional theory, establishing the equations of states of YNi in two different controversial structures in the literature, leads to determine the orthorhombic FeB-type as the ground state one with small energy difference. For YNiH{sub 3} and YNiH{sub 4} hydrides crystallizing in the orthorhombic CrB-type structure the geometry optimization and the ab initio determination of the H atomic positions show that the stability of hydrogen decreases from the tri- to the tetra- hydride. New states brought by hydrogen within the valence band lead to its broadening and to enhanced localization of metal density of states. The chemical bonding analysis shows a preferential Ni-H bonding versus Y-H.

  6. Core level photoemission spectroscopy and chemical bonding in Sr2Ta2O7

    DEFF Research Database (Denmark)

    Atuchin, V. V.; Grivel, Jean-Claude; Zhang, Z. M.

    2009-01-01

    Electronic parameters of constituent element core levels of strontium pyrotantalate (Sr2Ta2O7) were measured with X-ray photoelectron spectroscopy (XPS). The Sr2Ta2O7 powder sample was synthesized using standard solid state method. The valence electron transfer on the formation of the Sr-O and Ta......-O bonds was characterized by the binding energy differences between the O 1s and cation core levels, Delta(O-Sr) = BE(O 1s) - BE(Sr 3d(5/2)) and Delta(O-Ta) = BE(O 1s) - BE(Ta 4f(7/2)). The chemical bonding effects were considered on the basis of our XPS results for Sr2Ta2O7 and earlier published...

  7. Biasing hydrogen bond donating host systems towards chemical warfare agent recognition.

    Science.gov (United States)

    Hiscock, Jennifer R; Wells, Neil J; Ede, Jayne A; Gale, Philip A; Sambrook, Mark R

    2016-10-12

    A series of neutral ditopic and negatively charged, monotopic host molecules have been evaluated for their ability to bind chloride and dihydrogen phosphate anions, and neutral organophosphorus species dimethyl methylphosphonate (DMMP), pinacolyl methylphosphonate (PMP) and the chemical warfare agent (CWA) pinacolyl methylphosphonofluoridate (GD, soman) in organic solvent via hydrogen bonding. Urea, thiourea and boronic acid groups are shown to bind anions and neutral guests through the formation of hydrogen bonds, with the urea and thiourea groups typically exhibiting higher affinity interactions. The introduction of a negative charge on the host structure is shown to decrease anion affinity, whilst still allowing for high stability host-GD complex formation. Importantly, the affinity of the host for the neutral CWA GD is greater than for anionic guests, thus demonstrating the potential for selectivity reversal based on charge repulsion.

  8. Chemical Bonding in Solids. On the Generalization of the Concept of Bond Order and Valence for Infinite Periodical Structures

    Czech Academy of Sciences Publication Activity Database

    Ponec, Robert

    2005-01-01

    Roč. 114, 1-3 (2005), s. 208-212 ISSN 1432-881X R&D Projects: GA AV ČR(CZ) IAA4072403 Institutional research plan: CEZ:AV0Z4072921 Keywords : bonding in solids * bond order * valence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.179, year: 2005

  9. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  10. Heteromolecular metal–organic interfaces: Electronic and structural fingerprints of chemical bonding

    International Nuclear Information System (INIS)

    Stadtmüller, Benjamin; Schröder, Sonja; Kumpf, Christian

    2015-01-01

    Highlights: • We present a study of molecular donor–acceptor blends adsorbed on Ag(1 1 1). • Geometric and electronic structure of blends and pristine phases are compared. • The surface bonding of the acceptor is strengthened, that of the donor weakened. • But counter intuitively, the acceptor (donor) bond length becomes larger (smaller). • This contradiction is resolved by a model based on charge transfer via the surface. - Abstract: Beside the fact that they attract highest interest in the field of organic electronics, heteromolecular structures adsorbed on metal surfaces, in particular donor–acceptor blends, became a popular field in fundamental science, possibly since some surprising and unexpected behaviors were found for such systems. One is the apparent breaking of a rather fundamental rule in chemistry, namely that stronger chemical bonds go along with shorter bond lengths, as it is, e.g., well-known for the sequence from single to triple bonds. In this review we summarize the results of heteromolecular monolayer structures adsorbed on Ag(1 1 1), which – regarding this rule – behave in a counterintuitive way. The charge acceptor moves away from the substrate while its electronic structure indicates a stronger chemical interaction, indicated by a shift of the formerly lowest unoccupied molecular orbital toward higher binding energies. The donor behaves in the opposite way, it gives away charge, hence, electronically the bonding to the surface becomes weaker, but at the same time it also approaches the surface. It looks as if the concordant link between electronic and geometric structure was broken. But both effects can be explained by a substrate-mediated charge transfer from the donor to the acceptor. The charge reorganization going along with this transfer is responsible for both, the lifting-up of the acceptor molecule and the filling of its LUMO, and also for the reversed effects at the donor molecules. In the end, both molecules

  11. Isomer shifts and chemical bonding in crystalline Sn(II) and Sn(IV) compounds

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1991-01-01

    First-principles self-consistent Local Density calculations of the electronic structure of clusters representing Sn(II) (SnO, SnF 2 , SnS, SnSe) and Sn(IV) (SnO 2 , SnF 4 ) crystalline compounds were performed. Values of the electron density at the Sn nucleus were obtained and related to measured values of the Moessbauer Isomer Shifts reported in the literature. The nuclear parameter of 119 Sn derived was ΔR/R=(1.58±0.14)x10 -4 . The chemical bonding in the solids was analysed and related to the electron densities obtained. (author)

  12. Extended model of bond charges and its application in calculation of optical properties of crystals with different types of chemical bonds

    International Nuclear Information System (INIS)

    Tsirelson, V.G.; Korolkova, O.V.; Rez, I.S.; Ozerov, R.P.

    1984-01-01

    A method for calculating the optical characteristics of crystals with different types of chemical bonds within the framework of the dielectric theory of chemical bond put forward by Philips and Van Vechten is suggested. The calculating scheme which does not contain adjustable parameters is based on the bond charge model designed by Levine, which is generalized for the case of multiple bonds and modified involving the density functional method data on the spatial distribution of electrons in atoms. The structural elements of the method are: the screened Coulomb potentials and radii of the atomic core, bond lengths and charges, and the distances from the nuclei to the centers of gravity of the latter. The calculated characteristics of the crystals (dielectric permittivity, quadratic and cubic non-linear susceptibilities, electrooptical constants) are in good accordance with experimental findings. An attempt is made to predict the non-linear optical characteristics according to precision X-ray diffraction data on the electron structure of its only representative, lithium formate deuterate LiHCO 2 xD 2 O, whereby a fairly good fit with the experimental data is achieved. (author)

  13. Trigermanides AEGe{sub 3} (AE = Ca, Sr, Ba). Chemical bonding and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Rodrigo; Schnelle, Walter; Baranov, Alexey I.; Burkhardt, Ulrich; Bobnar, Matej; Cardoso-Gil, Raul; Schwarz, Ulrich; Grin, Yuri [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany)

    2016-08-01

    The crystal structures of the trigermanides AEGe{sub 3}(tI32) (AE = Ca, Sr, Ba; space group I4/mmm, for SrGe{sub 3}: a = 7.7873(1), c = 12.0622(3) Aa) comprise Ge{sub 2} dumbbells forming layered Ge substructures which enclose embedded AE atoms. The chemical bonding analysis by application of the electron localizability approach reveals a substantial charge transfer from the AE atoms to the germanium substructure. The bonding within the dumbbells is of the covalent two-center type. A detailed analysis of SrGe{sub 3} reveals that the interaction on the bond-opposite side of the Ge{sub 2} groups is not lone pair-like - as it would be expected from the Zintl-like interpretation of the crystal structure with anionic Ge layers separated by alkaline-earth cations - but multi-center strongly polar between the Ge{sub 2} dumbbells and the adjacent metal atoms. Similar atomic interactions are present in CaGe{sub 3} and BaGe{sub 3}. The variation of the alkaline-earth metal has a merely insignificant influence on the superconducting transition temperatures in the s,p-electron compounds AEGe{sub 3}.

  14. Chemical bonding in Tl cuprates studied by x-ray photoemission

    International Nuclear Information System (INIS)

    Vasquez, R.P.; Siegal, M.P.; Overmyer, D.L.; Ren, Z.F.; Lao, J.Y.; Wang, J.H.

    1999-01-01

    Epitaxial thin films of the Tl cuprate superconductors Tl 2 Ba 2 CaCu 2 O 8 , Tl 2 Ba 2 Ca 2 Cu 3 O 10 , and Tl 0.78 Bi 0.22 Ba 0.4 Sr 1.6 Ca 2 Cu 3 O 9-δ are studied with x-ray photoemission spectroscopy. These data, together with previous measurements in this lab of Tl 2 Ba 2 CuO 6+δ and TlBa 2 CaCu 2 O 7-δ , comprise a comprehensive data set for a comparative study of Tl cuprates with a range of chemical and electronic properties. In the Cu 2p spectra, a larger energy separation between the satellite and main peaks (E s -E m ) and a lower intensity ratio (I s /I m ) are found to correlate with higher values of T c . Analysis of these spectra within a simple configuration interaction model suggests that higher values of T c are related to low values of the O 2p→Cu 3d charge transfer energy. In the O 1s region, a smaller bond length between Ba and Cu-O planar oxygen is found to correlate with a lower binding energy for the signal associated with Cu-O bonding, most likely resulting from the increased polarization screening by Ba 2+ ions. For samples near optimum doping, maximum T c is observed to occur when the Tl 4f 7/2 binding energy is near 117.9 eV, which is near the middle of the range of values observed for Tl cuprates. Higher Tl 4f 7/2 binding energies, corresponding to formal oxidation states nearer Tl 1+ , are also found to correlate with longer bond lengths between Ba and Tl-O planar oxygen, and with higher binding energies of the O 1s signal associated with Tl-O bonding. copyright 1999 The American Physical Society

  15. Atomic resolution chemical bond analysis of oxygen in La2CuO4

    Science.gov (United States)

    Haruta, M.; Nagai, T.; Lugg, N. R.; Neish, M. J.; Nagao, M.; Kurashima, K.; Allen, L. J.; Mizoguchi, T.; Kimoto, K.

    2013-08-01

    The distorted CuO6 octahedron in La2CuO4 was studied using aberration-corrected scanning transmission electron microscopy at atomic resolution. The near-edge structure in the oxygen K-edge electron energy-loss spectrum was recorded as a function of the position of the electron probe. After background subtraction, the measured spectrum image was processed using a recently developed inversion process to remove the mixing of signals on the atomic columns due to elastic and thermal scattering. The spectra were then compared with first-principles band structure calculations based on the local-density approximation plus on-site Coulomb repulsion (LDA + U) approach. In this article, we describe in detail not only anisotropic chemical bonding of the oxygen 2p state with the Cu 3d state but also with the Cu 4p and La 5d/4f states. Furthermore, it was found that buckling of the CuO2 plane was also detectable at the atomic resolution oxygen K-edge. Lastly, it was found that the effects of core-hole in the O K-edge were strongly dependent on the nature of the local chemical bonding, in particular, whether it is ionic or covalent.

  16. Chemical bonding and the equilibrium composition of Grignard reagents in ethereal solutions.

    Science.gov (United States)

    Henriques, André M; Barbosa, André G H

    2011-11-10

    A thorough analysis of the electronic structure and thermodynamic aspects of Grignard reagents and its associated equilibrium composition in ethereal solutions is performed. Considering methylmagnesium halides containing fluorine, chlorine, and bromine, we studied the neutral, charged, and radical species associated with their chemical equilibrium in solution. The ethereal solvents considered, tetrahydrofuran (THF) and ethyl ether (Et(2)O), were modeled using the polarizable continuum model (PCM) and also by explicit coordination to the Mg atoms in a cluster. The chemical bonding of the species that constitute the Grignard reagent is analyzed in detail with generalized valence bond (GVB) wave functions. Equilibrium constants were calculated with the DFT/M06 functional and GVB wave functions, yielding similar results. According to our calculations and existing kinetic and electrochemical evidence, the species R(•), R(-), (•)MgX, and RMgX(2)(-) must be present in low concentration in the equilibrium. We conclude that depending on the halogen, a different route must be followed to produce the relevant equilibrium species in each case. Chloride and bromide must preferably follow a "radical-based" pathway, and fluoride must follow a "carbanionic-based" pathway. These different mechanisms are contrasted against the available experimental results and are proven to be consistent with the existing thermodynamic data on the Grignard reagent equilibria.

  17. Effect of ultraviolet light irradiation and sandblasting treatment on bond strengths between polyamide and chemical-cured resin.

    Science.gov (United States)

    Asakawa, Yuya; Takahashi, Hidekazu; Iwasaki, Naohiko; Kobayashi, Masahiro

    2014-01-01

    The aim of this study was to evaluate the effects of ultraviolet light (UV) irradiation and sandblasting treatment on the shear bond strength between polyamide and chemical-cured resin. Three types of commercial polyamides were treated using UV irradiation, sandblasting treatment, and a combining sandblasting and UV irradiation. The shear bond strength was measured and analyzed using the Kruskal-Wallis test (α=0.05). Comparing shear bond strengths without surface treatment, from 4.1 to 5.7 MPa, the UV irradiation significantly increased the shear bond strengths except for Valplast, whose shear bond strengths ranged from 5.2 to 9.3 MPa. The sandblasting treatment also significantly increased the shear bond strengths (8.0 to 11.4 MPa). The combining sandblasting and UV irradiation significantly increased the shear bond strengths (15.2 to 18.3 MPa) comparing without surface treatment. This combined treatment was considered the most effective at improving the shear bond strength between polyamide and chemical-cured resin.

  18. Application of chemical structure and bonding of actinide oxide materials for forensic science

    International Nuclear Information System (INIS)

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO 2 (An: U, Pu) to form non-stoichiometric species described as AnO 2+x . Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxide materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, or process history of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science to characterize actinide oxide molecular structures for forensic science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  19. Application of chemical structure and bonding of actinide oxide materials for forensic science

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, Marianne Perry [Los Alamos National Laboratory

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxide materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, or process history of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science to characterize actinide oxide molecular structures for forensic science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  20. Mechanical properties of chemically bonded sand core materials dipped in sol-gel coating impregnated with filter

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat

    2012-01-01

    A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force-...... of the chemically bonded sand core materials, a combination of flexural and compression tests is suggested for improving the casting quality. © 2012 W. S. Maney & Son Ltd.......A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force...... the strengths were increased under compression. The mode of fracture of the chemically bonded sand core materials was observed to be intergranular through the binder. The stiffness of the chemically bonded sand core materials was determined. For better understanding of the mechanical properties...

  1. Investigation of thermal expansion and compressibility of rare-earth orthovanadates using a dielectric chemical bond method.

    Science.gov (United States)

    Zhang, Siyuan; Zhou, Shihong; Li, Huaiyong; Li, Ling

    2008-09-01

    The chemical bond properties, lattice energies, linear expansion coefficients, and mechanical properties of ReVO 4 (Re = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y) are investigated systematically by the dielectric chemical bond theory. The calculated results show that the covalencies of Re-O bonds are increasing slightly from La to Lu and that the covalencies of V-O bonds in crystals are decreasing slightly from La to Lu. The linear expansion coefficients decrease progressively from LaVO 4 to LuVO 4; on the contrary, the bulk moduli increase progressively. Our calculated results are in good agreement with some experimental values for linear expansion coefficients and bulk moduli.

  2. Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors.

    Science.gov (United States)

    Jung, Naeyoung; Kwon, Soongeun; Lee, Dongwook; Yoon, Dong-Myung; Park, Young Min; Benayad, Anass; Choi, Jae-Young; Park, Jong Se

    2013-12-17

    Chemically bonded graphene/carbon nanotube composites as flexible supercapacitor electrode materials are synthesized by amide bonding. Carbon nanotubes attached along the edges and onto the surface of graphene act as spacers to increase the electrolyte-accessible surface area. Our lamellar structure electrodes demonstrate the largest volumetric capacitance (165 F cm(-3) ) ever shown by carbon-based electrodes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A crystal chemical approach to superconductivity. I. A bond-valence sum analysis of inorganic compounds

    International Nuclear Information System (INIS)

    Liebau, Friedrich; Klein, Hans-Joachim; Wang, Xiqu

    2011-01-01

    A crystal-chemical approach to superconductivity is described that is intended to complement the corresponding physical approach. The former approach takes into account the distinction between the stoichiometric valence ( stoich V) and the structural valence ( struct V) which is represented by the bond-valence sums (BVS). Through calculations of BVS values from crystal-structure data determined at ambient temperature and pressure it has been found that in chalcogenides und pnictides of the transition metals Fe, Co, Ni, Mn, Hf, and Zr the atoms of the potential superconducting units yield values of vertical stroke BVS vertical stroke = vertical stroke struct V vertical stroke ≥ 1.11 x vertical stroke stoich V vertical stroke, whereas the atoms of the charge reservoirs have in general values of vertical stroke struct V vertical stroke stoich V vertical stroke. In corresponding compounds which contain the same elements but are not becoming superconducting, nearly all atoms are found to have vertical stroke struct V vertical stroke stoich V vertical stroke. For atoms of oxocuprates that are not becoming superconducting and for atoms of the charge reservoirs of oxocuprates that become superconducting, the relation vertical stroke struct V vertical stroke stoich V vertical stroke seems also to be fulfilled, with the exception of Ba. However, in several oxocuprates the relation vertical stroke struct V vertical stroke = 1.11 x vertical stroke stoich V vertical stroke for the atoms that become superconducting units is violated. These violations seem to indicate that in oxocuprates it is the local bond-valence distribution rather than the bond-valence sums that is essential for superconductivity. The present analysis can possibly be used to predict, by a simple consideration of ambient-T, P structures, whether a compound can become an unconventional superconductor at low T, under high P and/or by doping, or not. (orig.)

  4. Carol Anne Bond v the United States of America: how a woman scorned threatened the Chemical Weapons Convention.

    Science.gov (United States)

    Muldoon, Anna; Kornblet, Sarah; Katz, Rebecca

    2011-09-01

    The case of Carol Anne Bond v the United States of America stemmed from a domestic dispute when Ms. Bond attempted to retaliate against her best friend by attacking her with chemical agents. What has emerged is a much greater issue--a test of standing on whether a private citizen can challenge the Tenth Amendment. Instead of being prosecuted in state court for assault, Ms. Bond was charged and tried in district court under a federal criminal statute passed as part of implementation of the Chemical Weapons Convention (CWC). Ms. Bond's argument rests on the claim that the statute exceeded the federal government's enumerated powers in criminalizing her behavior and violated the Constitution, while the government contends legislation implementing treaty obligations is well within its purview. This question remains unanswered because there is dispute among the lower courts as to whether Ms. Bond, as a citizen, even has the right to challenge an amendment guaranteeing states rights when a state is not a party to the action. The Supreme Court heard the case on February 22, 2011, and, if it decides to grant Ms. Bond standing to challenge her conviction, the case will be returned to the lower courts. Should the court decide Ms. Bond has the standing to challenge her conviction and further questions the constitutionality of the law, it would be a significant blow to implementation of the CWC in the U.S. and the effort of the federal government to ensure we are meeting our international obligations.

  5. Intra- und intermolecular hydrogen bonds. Spectroscopic, quantum chemical and molecular dynamics studies

    International Nuclear Information System (INIS)

    Simperler, A.

    1999-03-01

    Intra- and intermolecular H-bonds have been investigated with spectroscopic, quantum chemical, and molecular dynamics methods. The work is divided into the following three parts: 1. Intramolecular interactions in ortho-substituted phenols. Theoretical and experimental data that characterizes the intramolecular hydrogen bonds in 48 different o-substituted phenols are discussed. The study covers various kinds of O-H ... Y -type interactions (Y= N, O, S, F, Cl, Br, I, C=C, C=-C, and C-=N). The bond strength sequences for several series of systematically related compounds as obtained from IR spectroscopy data (i.e., v(OH) stretching frequencies) are discussed and reproduced with several theoretical methods (B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B3LYP/6-31++G(d,p), B3LYP/DZVP, MP2/6-31G(d,p), and MP2/6-31++G(d,p) levels of theory). The experimentally determined sequences are interpreted in terms of the intrinsic properties of the molecules: hydrogen bond distances, Mulliken partial charges, van der Waals radii, and electron densities of the Y-proton acceptors. 2. Competitive hydrogen bonds and conformational equilibria in 2,6-disubstituted phenols containing two different carbonyl substituents. The rotational isomers of ten unsymmetrical 2,6-disubstituted phenols as obtained by combinations of five different carbonyl substituents (COOH, COOCH 3 , CHO, COCH 3 , and CONH 2 ) have been theoretically investigated at the B3LYP/6-31G(d,p) level of theory. The relative stability of four to five conformers of each compound were determined by full geometry optimization for free molecules as well as for molecules in reaction fields with dielectric constants up to ε=37.5. A comparison with IR spectroscopic data of available compounds revealed excellent agreement with the theoretically predicted stability sequences and conformational equilibria. The stability of a conformer could be interpreted to be governed by the following two contributions: (i) an attractive hydrogen bond

  6. The Ogden Anchor.

    Science.gov (United States)

    Knudson, W E; Cerniglia, M W; Carro, A

    1998-06-01

    Many procedures performed by podiatric surgeons today require the use of a soft-tissue anchoring device. In recent years, many new anchoring devices have become available for use in the foot and ankle. The authors introduce a new soft-tissue anchoring device that has yet to be described in the podiatric literature and present two cases in which the new anchor was used.

  7. Synthesis, Crystal Structure, and Chemical-Bonding Analysis of BaZn(NCN2

    Directory of Open Access Journals (Sweden)

    Alex J. Corkett

    2017-12-01

    Full Text Available The ternary carbodiimide BaZn(NCN2 was prepared by a solid-state metathesis reaction between BaF2, ZnF2, and Li2NCN in a 1:1:2 molar ratio, and its crystal structure was determined from Rietveld refinement of X-ray data. BaZn(NCN2 represents the aristotype of the LiBa2Al(NCN4 structure which is unique to carbodiimide/cyanamide chemistry and is well regarded as being constructed from ZnN4 tetrahedra, sharing edges and vertices through NCN2− units to form corrugated layers with Ba2+ in the interlayer voids. Structural anomalies in the shape of the cyanamide units are addressed via IR spectrometry and DFT calculations, which suggest the presence of slightly bent N=C=N2− carbodiimide units with C2v symmetry. Moreover, chemical-bonding analysis within the framework of crystal orbital Hamilton population (COHP reveals striking similarities between the bonding interactions in BaZn(NCN2 and SrZn(NCN2 despite their contrasting crystal structures. BaZn(NCN2 is only the second example of a ternary post-transition metal carbodiimide, and its realization paves the way for the preparation of analogues featuring divalent transition metals at the tetrahedral Zn2+ site.

  8. Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination

    International Nuclear Information System (INIS)

    Avilov, A.; Kuligin, K.; Nicolopoulos, S.; Nickolskiy, M.; Boulahya, K.; Portillo, J.; Lepeshov, G.; Sobolev, B.; Collette, J.P.; Martin, N.; Robins, A.C.; Fischione, P.

    2007-01-01

    We have developed a new fast electron diffractometer working with high dynamic range and linearity for crystal structure determinations. Electron diffraction (ED) patterns can be scanned serially in front of a Faraday cage detector; the total measurement time for several hundred ED reflections can be tens of seconds having high statistical accuracy for all measured intensities (1-2%). This new tool can be installed to any type of TEM without any column modification and is linked to a specially developed electron beam precession 'Spinning Star' system. Precession of the electron beam (Vincent-Midgley technique) reduces dynamical effects allowing also use of accurate intensities for crystal structure analysis. We describe the technical characteristics of this new tool together with the first experimental results. Accurate measurement of electron diffraction intensities by electron diffractometer opens new possibilities not only for revealing unknown structures, but also for electrostatic potential determination and chemical bonding investigation. As an example, we present detailed atomic bonding information of CaF 2 as revealed for the first time by precise electron diffractometry

  9. Nb 3d and O 1s core levels and chemical bonding in niobates

    International Nuclear Information System (INIS)

    Atuchin, V.V.; Kalabin, I.E.; Kesler, V.G.; Pervukhina, N.V.

    2005-01-01

    A set of available experimental data on binding energies of Nb 3d 5/2 and O 1s core levels in niobates has been observed with using energy difference (O 1s-Nb 3d 5/2 ) as a robust parameter for compound characterization. An empirical relationship between (O 1s-Nb 3d 5/2 ) values measured with XPS for Nb 5+ -niobates and mean chemical bond length L(Nb-O) has been discussed. A range of (O 1s-Nb 3d 5/2 ) values possible in Nb 5+ -niobates has been defined. An energy gap ∼1.4-1.8 eV is found between (O 1s-Nb 3d 5/2 ) values reasonable for Nb 5+ and Nb 4+ states in niobates

  10. Nb 3d and O 1s core levels and chemical bonding in niobates

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation)]. E-mail: atuchin@thermo.isp.nsc.ru; Kalabin, I.E. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Kesler, V.G. [Technical Center, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Pervukhina, N.V. [Laboratory of Crystal Chemistry, Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation)

    2005-02-01

    A set of available experimental data on binding energies of Nb 3d{sub 5/2} and O 1s core levels in niobates has been observed with using energy difference (O 1s-Nb 3d{sub 5/2}) as a robust parameter for compound characterization. An empirical relationship between (O 1s-Nb 3d{sub 5/2}) values measured with XPS for Nb{sup 5+}-niobates and mean chemical bond length L(Nb-O) has been discussed. A range of (O 1s-Nb 3d{sub 5/2}) values possible in Nb{sup 5+}-niobates has been defined. An energy gap {approx}1.4-1.8 eV is found between (O 1s-Nb 3d{sub 5/2}) values reasonable for Nb{sup 5+} and Nb{sup 4+} states in niobates.

  11. Development of a method to accurately calculate the Dpb and quickly predict the strength of a chemical bond

    International Nuclear Information System (INIS)

    Du, Xia; Zhao, Dong-Xia; Yang, Zhong-Zhi

    2013-01-01

    Highlights: ► A method from new respect to characterize and measure the bond strength is proposed. ► We calculate the D pb of a series of various bonds to justify our approach. ► A quite good linear relationship of the D pb with the bond lengths for series of various bonds is shown. ► Take the prediction of strengths of C–H and N–H bonds for base pairs in DNA as a practical application of our method. - Abstract: A new approach to characterize and measure bond strength has been developed. First, we propose a method to accurately calculate the potential acting on an electron in a molecule (PAEM) at the saddle point along a chemical bond in situ, denoted by D pb . Then, a direct method to quickly evaluate bond strength is established. We choose some familiar molecules as models for benchmarking this method. As a practical application, the D pb of base pairs in DNA along C–H and N–H bonds are obtained for the first time. All results show that C 7 –H of A–T and C 8 –H of G–C are the relatively weak bonds that are the injured positions in DNA damage. The significance of this work is twofold: (i) A method is developed to calculate D pb of various sizable molecules in situ quickly and accurately; (ii) This work demonstrates the feasibility to quickly predict the bond strength in macromolecules

  12. X-ray photoelectron spectra structure and chemical bonding in AmO2

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2015-01-01

    Full Text Available Quantitative analysis was done of the X-ray photoelectron spectra structure in the binding energy range of 0 eV to ~35 eV for americium dioxide (AmO2 valence electrons. The binding energies and structure of the core electronic shells (~35 eV-1250 eV, as well as the relativistic discrete variation calculation results for the Am63O216 and AmO8 (D4h cluster reflecting Am close environment in AmO2 were taken into account. The experimental data show that the many-body effects and the multiplet splitting contribute to the spectral structure much less than the effects of formation of the outer (0-~15 eV binding energy and the inner (~15 eV-~35 eV binding energy valence molecular orbitals. The filled Am 5f electronic states were shown to form in the AmO2 valence band. The Am 6p electrons participate in formation of both the inner and the outer valence molecular orbitals (bands. The filled Am 6p3/2 and the O 2s electronic shells were found to make the largest contributions to the formation of the inner valence molecular orbitals. Contributions of electrons from different molecular orbitals to the chemical bond in the AmO8 cluster were evaluated. Composition and sequence order of molecular orbitals in the binding energy range 0-~35 eV in AmO2 were established. The experimental and theoretical data allowed a quantitative scheme of molecular orbitals for AmO2, which is fundamental for both understanding the chemical bond nature in americium dioxide and the interpretation of other X-ray spectra of AmO2.

  13. Layer-by-layer fabrication of chemical-bonded graphene coating for solid-phase microextraction.

    Science.gov (United States)

    Zhang, Suling; Du, Zhuo; Li, Gongke

    2011-10-01

    A new fabrication strategy of the graphene-coated solid-phase microextraction (SPME) fiber is developed. Graphite oxide was first used as starting coating material that covalently bonded to the fused-silica substrate using 3-aminopropyltriethoxysilane (APTES) as cross-linking agent and subsequently deoxidized by hydrazine to give the graphene coating in situ. The chemical bonding between graphene and the silica fiber improve its chemical stability, and the obtained fiber was stable enough for more than 150 replicate extraction cycles. The graphene coating was wrinkled and folded, like the morphology of the rough tree bark. Its performance is tested by headspace (HS) SPME of polycyclic aromatic hydrocarbons (PAHs) followed by GC/MS analysis. The results showed that the graphene-coated fiber exhibited higher enrichment factors (EFs) from 2-fold for naphthalene to 17-fold for B(b)FL as compared to the commercial polydimethylsioxane (PDMS) fiber, and the EFs increased with the number of condensed rings of PAHs. The strong adsorption affinity was believed to be mostly due to the dominant role of π-π stacking interaction and hydrophobic effect, according to the results of selectivity study for a variety of organic compounds including PAHs, the aromatic compounds with different substituent groups, and some aliphatic hydrocarbons. For PAHs analysis, the graphene-coated fiber showed good precision (<11%), low detection limits (1.52-2.72 ng/L), and wide linearity (5-500 ng/L) under the optimized conditions. The repeatability of fiber-to-fiber was 4.0-10.8%. The method was applied to simultaneous analysis of eight PAHs with satisfactory recoveries, which were 84-102% for water samples and 72-95% for soil samples, respectively.

  14. Chemical Bonding in Tl Cuprates Studied by X-Ray Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Lao, J.Y.; Overmyer, D.L.; Ren, Z.F.; Siegal, M.P.; Vasquez, R.P.; Wang, J.H.

    1999-04-05

    Epitaxial thin films of the Tl cuprate superconductors Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8}, Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}, and TL{sub 0.78}Bi{sub 0.22}Ba{sub 0.4}Sr{sub 1.6}Ca{sub 2}Cu{sub 3}O{sub 9{minus}{delta}} are studied with x-ray photoemission spectroscopy. These data, together with previous measurements in this lab of Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} and TlBa{sub 2}CaCu{sub 2}O{sub 7{minus}{delta}}, comprise a comprehensive data set for a comparative study of Tl cuprates with a range of chemical and electronic properties. In the Cu 2p spectra, a larger energy separation between the satellite and main peaks (E{sub s}-E{sub m}) and a lower intensity ratio (I{sub s}/I{sub m}) are found to correlate with higher values of T{sub c}. Analysis of these spectra within a simple configuration interaction model suggests that higher values of T{sub c} are related to low values of the O 2p {r_arrow} Cu 3d charge transfer energy. In the O 1s region, a smaller bond length between Ba and Cu-O planar oxygen is found to correlate with a lower binding energy for the signal associated with Cu-O bonding, most likely resulting from the increased polarization screening by Ba{sup 2+} ions. For samples near optimum doping, maximum T{sub c} is observed to occur when the Tl 4f{sub 7/2} binding energy is near 117.9 eV, which is near the middle of the range of values observed for Tl cuprates. Higher Tl 4f{sub 7/2} binding energies, corresponding to formal oxidation states nearer Tl{sup 1+}, are also found to correlate with longer bond lengths between Ba and Tl-O planar oxygen, and with higher binding energies of the O 1s signal associated with Tl-O bonding.

  15. Chemical bonding in Tl cuprates studied by x-ray photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, R.P. [Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099 (United States); Siegal, M.P.; Overmyer, D.L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Ren, Z.F.; Lao, J.Y.; Wang, J.H. [Materials Synthesis Laboratory, Department of Chemistry, State University of New York, Buffalo, New York 14260-3000 (United States)

    1999-08-01

    Epitaxial thin films of the Tl cuprate superconductors Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8}, Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}, and Tl{sub 0.78}Bi{sub 0.22}Ba{sub 0.4}Sr{sub 1.6}Ca{sub 2}Cu{sub 3}O{sub 9{minus}{delta}} are studied with x-ray photoemission spectroscopy. These data, together with previous measurements in this lab of Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} and TlBa{sub 2}CaCu{sub 2}O{sub 7{minus}{delta}}, comprise a comprehensive data set for a comparative study of Tl cuprates with a range of chemical and electronic properties. In the Cu 2p spectra, a larger energy separation between the satellite and main peaks (E{sub s}{minus}E{sub m}) and a lower intensity ratio (I{sub s}/I{sub m}) are found to correlate with higher values of T{sub c}. Analysis of these spectra within a simple configuration interaction model suggests that higher values of T{sub c} are related to low values of the O&hthinsp;2p{r_arrow}Cu&hthinsp;3d charge transfer energy. In the O&hthinsp;1s region, a smaller bond length between Ba and Cu-O planar oxygen is found to correlate with a lower binding energy for the signal associated with Cu-O bonding, most likely resulting from the increased polarization screening by Ba{sup 2+} ions. For samples near optimum doping, maximum T{sub c} is observed to occur when the Tl 4f{sub 7/2} binding energy is near 117.9 eV, which is near the middle of the range of values observed for Tl cuprates. Higher Tl&hthinsp;4f{sub 7/2} binding energies, corresponding to formal oxidation states nearer Tl{sup 1+}, are also found to correlate with longer bond lengths between Ba and Tl-O planar oxygen, and with higher binding energies of the O&hthinsp;1s signal associated with Tl-O bonding. {copyright} {ital 1999} {ital The American Physical Society}

  16. Testing and modeling of cyclically loaded rock anchors

    Directory of Open Access Journals (Sweden)

    Joar Tistel

    2017-12-01

    Full Text Available The Norwegian Public Roads Administration (NPRA is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths at the crossings combined with challenging subsea topography and environmental loads call for an extension of existing practice. A variety of bridge concepts are evaluated in the feasibility study. The structures will experience significant loads from deadweight, traffic and environment. Anchoring of these forces is thus one of the challenges met in the project. Large-size subsea rock anchors are considered a viable alternative. These can be used for anchoring of floating structures but also with the purpose of increasing capacity of fixed structures. This paper presents first a thorough study of factors affecting rock anchor bond capacity. Laboratory testing of rock anchors subjected to cyclic loading is thereafter presented. Finally, the paper presents a model predicting the capacity of a rock anchor segment, in terms of a ribbed bar, subjected to a cyclic load history. The research assumes a failure mode occurring in the interface between the rock anchor and the surrounding grout. The constitutive behavior of the bonding interface is investigated for anchors subjected to cyclic one-way tensile loads. The model utilizes the static bond capacity curve as a basis, defining the ultimate bond τbu and the slip s1 at τbu. A limited number of input parameters are required to apply the model. The model defines the bond-slip behavior with the belonging rock anchor capacity depending on the cyclic load level (τmax cy/τbu, the cyclic load ratio (R = τmin cy/τmax cy, and the number of load cycles (N. The constitutive model is intended to model short anchor lengths representing an incremental length of a complete rock anchor.

  17. Characterization of electron-deficient chemical bonding of diborane with attosecond electron wavepacket dynamics and laser response

    International Nuclear Information System (INIS)

    Yonehara, Takehiro; Takatsuka, Kazuo

    2009-01-01

    We report a theoretical study of non-adiabatic electrons-nuclei coupled dynamics of diborane H 2 BH 2 BH 2 under several types of short pulse lasers. This molecule is known to have particularly interesting geometrical and electronic structures, which originate from the electron-deficient chemical bondings. We revisit the chemical bonding of diborane from the view point of electron wavepacket dynamics coupled with nuclear motions, and attempt to probe the characteristics of it by examining its response to intense laser fields. We study in the following three aspects, (i) bond formation of diborane by collision between two monoboranes, (ii) attosecond electron wavepacket dynamics in the ground state and first excited state by circularly polarized laser pulse, and (iii) induced fragmentation back to monoborane molecules by linearly polarized laser. The wave lengths of two types of laser field employed are 200 nm (in UV range) and 800 nm (in IR range), and we track the dynamics from hundreds of attoseconds up to few tens of femtoseconds. To this end, we apply the ab initio semiclassical Ehrenfest theory, into which the classical vector potential of a laser field is introduced. Basic features of the non-adiabatic response of electrons to the laser fields is elucidated in this scheme. To analyze the electronic wavepackets thus obtained, we figure out bond order density that is a spatial distribution of the bond order and bond order flux density arising only from the bonding regions, and so on. Main findings in this work are: (i) dimerization of monoboranes to diborane is so efficient that even intense laser is hard to prevent it; (ii) collective motions of electron flux emerge in the central BHHB bonding area in response to the circularly polarized laser fields; (iii) laser polarization with the direction of central two BH bonding vector is efficient for the cleavage of BH 3 -BH 3 ; and (iv) nuclear derivative coupling plays a critical role in the field induced

  18. The adsorption of acrolein on a Pt (1 1 1): A study of chemical bonding and electronic structure

    International Nuclear Information System (INIS)

    Pirillo, S.; López-Corral, I.; Germán, E.; Juan, A.

    2012-01-01

    Highlights: ► Study of acrolein/Pt (1 1 1) adsorption using ab-initio and semiempirical methods. ► Geometry optimization and DOS curves were carried out using VASP code. ► Study of chemical bonding evolution using COOP and OP analysis. ► After adsorption Pt-Pt, C=O and C=C bonds are weakened. ► η 3 -cis and η 4 -trans most stable adsorption modes, η 1 -trans less favored one. - Abstract: The adsorption of acrolein on a Pt (1 1 1) surface was studied using ab-initio and semiempirical calculations. Geometry optimization and densities of states (DOS) curves were carried out using the Vienna Ab-initio Simulation Package (VASP) code. We started our study with the preferential geometries corresponding to the different acrolein/Pt (1 1 1) adsorption modes previously reported. Then, we examined the evolution of the chemical bonding in these geometries, using the crystal orbital overlap population (COOP) and overlap population (OP) analysis of selected pairs of atoms. We analyzed the acrolein intramolecular bonds, Pt (1 1 1) superficial bonds and new molecule-surface formed bonds after adsorption. We found that Pt-Pt bonds interacting with the molecule and acrolein C=O and C=C bonds are weakened after adsorption; this last bond is significantly linked to the surface. The obtained C-Pt and O-Pt OP values suggest that the most stable adsorption modes are η 3 -cis and η 4 -trans, while the η 1 -trans is the less favored configuration. We also found that C p z orbital and Pt p z and d z 2 orbitals participate strongly in the adsorption process.

  19. DFT modeling of the electronic and magnetic structures and chemical bonding properties of intermetallic hydrides

    International Nuclear Information System (INIS)

    Al Alam, A.F.

    2009-06-01

    This thesis presents an ab initio study of several classes of intermetallics and their hydrides. These compounds are interesting from both a fundamental and an applied points of view. To achieve this aim two complementary methods, constructed within the DFT, were chosen: (i) pseudo potential based VASP for geometry optimization, structural investigations and electron localization mapping (ELF), and (ii) all-electrons ASW method for a detailed description of the electronic structure, chemical bonding properties following different schemes as well as quantities depending on core electrons such as the hyperfine field. A special interest is given with respect to the interplay between magneto-volume and chemical interactions (metal-H) effects within the following hydrided systems: binary Laves (e.g. ScFe 2 ) and Haucke (e.g. LaNi 5 ) phases on one hand, and ternary cerium based (e.g. CeRhSn) and uranium based (e.g. U 2 Ni 2 Sn) alloys on the other hand. (author)

  20. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    International Nuclear Information System (INIS)

    Meng, X F; Yoshida, K; Gu, N

    2010-01-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R a and R y values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane coupler

  1. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    Energy Technology Data Exchange (ETDEWEB)

    Meng, X F [Department of Prosthodontics, The Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing 210008 (China); Yoshida, K [Division of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588 (Japan); Gu, N, E-mail: mengsoar@nju.edu.c [Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China)

    2010-08-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R{sub a} and R{sub y} values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane

  2. The adsorption of acrolein on a Pt (1 1 1): A study of chemical bonding and electronic structure

    Science.gov (United States)

    Pirillo, S.; López-Corral, I.; Germán, E.; Juan, A.

    2012-12-01

    The adsorption of acrolein on a Pt (1 1 1) surface was studied using ab-initio and semiempirical calculations. Geometry optimization and densities of states (DOS) curves were carried out using the Vienna Ab-initio Simulation Package (VASP) code. We started our study with the preferential geometries corresponding to the different acrolein/Pt (1 1 1) adsorption modes previously reported. Then, we examined the evolution of the chemical bonding in these geometries, using the crystal orbital overlap population (COOP) and overlap population (OP) analysis of selected pairs of atoms. We analyzed the acrolein intramolecular bonds, Pt (1 1 1) superficial bonds and new moleculesbnd surface formed bonds after adsorption. We found that Ptsbnd Pt bonds interacting with the molecule and acrolein Cdbnd O and Cdbnd C bonds are weakened after adsorption; this last bond is significantly linked to the surface. The obtained Csbnd Pt and Osbnd Pt OP values suggest that the most stable adsorption modes are η3-cis and η4-trans, while the η1-trans is the less favored configuration. We also found that C pz orbital and Pt pz and d orbitals participate strongly in the adsorption process.

  3. Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality

    Energy Technology Data Exchange (ETDEWEB)

    Sergeeva, Alina P.; Popov, Ivan A.; Piazza, Zachary A.; Li, Wei-Li; Romanescu, Constantin; Wang, Lai S.; Boldyrev, Alexander I.

    2014-04-15

    Conspectus Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center–two-electron (2c–2e) σ bonds on the periphery and delocalized multicenter–two-electron (nc–2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron’s electron deficiency and leads to fluxional behavior, which has been observed in B13+ and B19–. A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiation has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B–, formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B

  4. Energetics and chemical bonding of the 1,3,5-tridehydrobenzene triradical and its protonated form

    International Nuclear Information System (INIS)

    Hue Minh Thi Nguyen; Hoeltzl, Tibor; Gopakumar, G.; Veszpremi, Tamas; Peeters, Jozef; Minh Tho Nguyen

    2005-01-01

    Quantum chemical calculations were applied to investigate the electronic structure of the parent 1,3,5-tridehydrobenzene triradical (C 6 H 3 , TDB) and its anion (C 6 H 3 - ), cation (C 6 H 3 + ) and protonated form (C 6 H 4 + ). Our results obtained using the state-averaged complete active space self-consistent-field (CASSCF) followed by second-order multi-state multi-configuration perturbation theory, MS-CASPT2, and MRMP2 in conjunction with the large ANO-L and 6-311++G(3df,2p) basis set, confirm and reveal the followings: (i) TDB has a doublet 2 A 1 ground state with a 4 B 2 - 2 A 1 energy gap of 29kcal/mol, (ii) the ground state of the C 6 H 3 - anion in the triplet 3 B 2 being 4kcal/mol below the 1 A 1 state. (iii) the electron affinity (EA), ionization energy (IE) and proton affinity (PA) are computed to be: EA=1.6eV, IE=7.2eV, PA=227kcal/mol using UB3LYP/6-311++G(3df,2p)+ZPE; standard heat of formation ΔH f(298K,1atm) (TDB)=179+/-2kcal/mol was calculated with CBS-QB3 method. An atoms-in-molecules (AIM) analysis of the structure reveals that the topology of the electron density is similar in all compounds: hydrogens connect to a six-membered ring, except for the case of the 2 A 2 state of C 6 H 4 + (MBZ + ) which is bicyclic with fused five- and three-membered rings. Properties of the chemical bonds were characterized with Electron Localization Function (ELF) analysis, as well as Wiberg indices, Laplacian and spin density maps. We found that the radicals form separate monosynaptic basins on the ELF space, however its pair character remains high. In the 2 A 1 state of TDB, the radical center is mainly localized on the C1 atom, while in the 2 B 2 state it is equally distributed between the C3 and C5 atoms and, due to the symmetry, in the 4 B 2 state the C1, C2 and C3 atoms have the same radical character. There is no C3-C5 bond in the 2 A 1 state of TDB, but the interaction between these atoms is strong. The ground state of cation C 6 H 3 + (DHP), 1 A 1 , is

  5. Energetics and chemical bonding of the 1,3,5-tridehydrobenzene triradical and its protonated form

    Energy Technology Data Exchange (ETDEWEB)

    Hue Minh Thi Nguyen [Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Leuven (Belgium); Faculty of Chemistry, University of Education, Hanoi (Viet Nam); Hoeltzl, Tibor [Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Leuven (Belgium); Department of Inorganic Chemistry, University of Technology and Economics Gellert ter 4, H-1521-Budapest (Hungary); Gopakumar, G. [Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Leuven (Belgium); Veszpremi, Tamas [Department of Inorganic Chemistry, University of Technology and Economics Gellert ter 4, H-1521-Budapest (Hungary); Peeters, Jozef [Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Leuven (Belgium); Minh Tho Nguyen [Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Leuven (Belgium)], E-mail: minh.nguyen@chem.kuleuven.be

    2005-09-19

    Quantum chemical calculations were applied to investigate the electronic structure of the parent 1,3,5-tridehydrobenzene triradical (C{sub 6}H{sub 3}, TDB) and its anion (C{sub 6}H{sub 3}{sup -}), cation (C{sub 6}H{sub 3}{sup +}) and protonated form (C{sub 6}H{sub 4}{sup +}). Our results obtained using the state-averaged complete active space self-consistent-field (CASSCF) followed by second-order multi-state multi-configuration perturbation theory, MS-CASPT2, and MRMP2 in conjunction with the large ANO-L and 6-311++G(3df,2p) basis set, confirm and reveal the followings: (i) TDB has a doublet {sup 2}A{sub 1} ground state with a {sup 4}B{sub 2}-{sup 2}A{sub 1} energy gap of 29kcal/mol, (ii) the ground state of the C{sub 6}H{sub 3}{sup -} anion in the triplet {sup 3}B{sub 2} being 4kcal/mol below the {sup 1}A{sub 1} state. (iii) the electron affinity (EA), ionization energy (IE) and proton affinity (PA) are computed to be: EA=1.6eV, IE=7.2eV, PA=227kcal/mol using UB3LYP/6-311++G(3df,2p)+ZPE; standard heat of formation {delta}H{sub f(298K,1atm)}(TDB)=179+/-2kcal/mol was calculated with CBS-QB3 method. An atoms-in-molecules (AIM) analysis of the structure reveals that the topology of the electron density is similar in all compounds: hydrogens connect to a six-membered ring, except for the case of the {sup 2}A{sub 2} state of C{sub 6}H{sub 4}{sup +} (MBZ{sup +}) which is bicyclic with fused five- and three-membered rings. Properties of the chemical bonds were characterized with Electron Localization Function (ELF) analysis, as well as Wiberg indices, Laplacian and spin density maps. We found that the radicals form separate monosynaptic basins on the ELF space, however its pair character remains high. In the {sup 2}A{sub 1} state of TDB, the radical center is mainly localized on the C1 atom, while in the {sup 2}B{sub 2} state it is equally distributed between the C3 and C5 atoms and, due to the symmetry, in the {sup 4}B{sub 2} state the C1, C2 and C3 atoms have the same

  6. Diversity of Chemical Bonding and Oxidation States in MS4 Molecules of Group 8 Elements.

    Science.gov (United States)

    Huang, Wei; Jiang, Ning; Schwarz, W H Eugen; Yang, Ping; Li, Jun

    2017-08-04

    The geometric and electronic ground-state structures of 30 isomers of six MS 4 molecules (M=Group 8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density functional theory and correlated wavefunction approaches. The MS 4 species were compared to analogous MO 4 species recently investigated (W. Huang, W.-H. Xu, W. H. E. Schwarz, J. Li, Inorg. Chem. 2016, 55, 4616). A metal oxidation state (MOS) with a high value of eight appeared in the low-spin singlet T d geometric species (Os,Hs)S 4 and (Ru,Os,Hs)O 4 , whereas a low MOS of two appeared in the high-spin septet D 2d species Fe(S 2 ) 2 and (slightly excited) metastable Fe(O 2 ) 2 . The ground states of all other molecules had intermediate MOS values, with S 2- , S 2 2- , S 2 1- (and O 2- , O 1- , O 2 2- , O 2 1- ) ligands bonded by ionic, covalent, and correlative contributions. The known tendencies toward lower MOS on going from oxides to sulfides, from Hs to Os to Ru, and from Pu to Sm, and the specific behavior of Fe, were found to arise from the different atomic orbital energies and radii of the (n-1)p core and (n-1)d and (n-2)f valence shells of the metal atoms in row n of the periodic table. The comparative results of the electronic and geometric structures of the MO 4 and MS 4 species provides insight into the periodicity of oxidation states and bonding. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Study of the structure and chemical bonding of crystalline Ge_4Sb_2Te_7 using first principle calculations

    International Nuclear Information System (INIS)

    Singh, Janpreet; Singh, Satvinder; Tripathi, S. K.; Singh, Gurinder; Kaura, Aman

    2016-01-01

    The atomic arrangements and chemical bonding of stable Ge_4Sb_2Te_7 (GeTe rich), a phase-change material, have been investigated by means of ab initio total energy calculations. To study the atomic arrangement, GeTe block is considered into -TeSbTeSbTe- block and -Te-Te- layer in the stacking I and II respectively. The stacking I is energetically more stable than the stacking II. The reason for more stability of the stacking I has been explained. The chemical bonding has been studied with the electronic charge density distribution around the atomic bonds. The quantity of electronic charge loosed or gained by atoms has been calculated using the Bader charge analysis. The metallic character has been studied using band structures calculations. The band gap for the stacking I and II is 0.463 and 0.219 eV respectively.

  8. Amide group anchored glucose oxidase based anodic catalysts for high performance enzymatic biofuel cell

    Science.gov (United States)

    Chung, Yongjin; Ahn, Yeonjoo; Kim, Do-Heyoung; Kwon, Yongchai

    2017-01-01

    A new enzyme catalyst is formed by fabricating gold nano particle (GNP)-glucose oxidase (GOx) clusters that are then attached to polyethyleneimine (PEI) and carbon nanotube (CNT) with cross-linkable terephthalaldehyde (TPA) (TPA/[CNT/PEI/GOx-GNP]). Especially, amide bonds belonging to TPA play an anchor role for incorporating rigid bonding among GNP, GOx and CNT/PEI, while middle size GNP is well bonded with thiol group of GOx to form strong GNP-GOx cluster. Those bonds are identified by chemical and electrochemical characterizations like XPS and cyclic voltammogram. The anchording effect of amide bonds induces fast electron transfer and strong chemical bonding, resulting in enhancements in (i) catalytic activity, (ii) amount of immobilized GOx and (ii) performance of enzymatic biofuel cell (EBC) including the catalyst. Regarding the catalytic activity, the TPA/[CNT/PEI/GOx-GNP] produces high electron transfer rate constant (6 s-1), high glucose sensitivity (68 μA mM-1 cm-2), high maximum current density (113 μA cm-2), low charge transfer resistance (17.0 Ω cm2) and long-lasting durability while its chemical structure is characterized by XPS confirming large portion of amide bond. In EBC measurement, it has high maximum power density (0.94 mW cm-2) compatible with catalytic acitivity measurements.

  9. Trends in Strong Chemical Bonding in C2, CN, CN-, CO, N2, NO, NO+, and O2

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    The strong chemical bonds between C, N, and O play a central role in chemistry, and their formation and cleavage are critical steps in very many catalytic processes. The close-lying molecular orbital energies and large correlation effects pose a challenge to electronic structure calculations and ...

  10. Anchoring of alkyl chain molecules on oxide surface using silicon alkoxide

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Ayumi, E-mail: narita.ayumi@jaea.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, Bunnkyo, Mito-shi, Ibaraki-ken 310-8512 (Japan); Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Hirao, Norie [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Yaita, Tsuyoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, Bunnkyo, Mito-shi, Ibaraki-ken 310-8512 (Japan)

    2012-01-01

    Chemical states of the interfaces between octadecyl-triethoxy-silane (ODTS) molecules and sapphire surface were measured by X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS) using synchrotron soft X-rays. The nearly self-assembled monolayer of ODTS was formed on the sapphire surface. For XPS and NEXAFS measurements, it was elucidated that the chemical bond between silicon alkoxide in ODTS and the surface was formed, and the alkane chain of ODTS locates upper side on the surface. As a result, it was elucidated that the silicon alkoxide is a good anchor for the immobilization of organic molecules on oxides.

  11. Chemical bonding analysis for solid-state systems using intrinsic oriented quasiatomic minimal-basis-set orbitals

    International Nuclear Information System (INIS)

    Yao, Y.X.; Wang, C.Z.; Ho, K.M.

    2010-01-01

    A chemical bonding scheme is presented for the analysis of solid-state systems. The scheme is based on the intrinsic oriented quasiatomic minimal-basis-set orbitals (IO-QUAMBOs) previously developed by Ivanic and Ruedenberg for molecular systems. In the solid-state scheme, IO-QUAMBOs are generated by a unitary transformation of the quasiatomic orbitals located at each site of the system with the criteria of maximizing the sum of the fourth power of interatomic orbital bond order. Possible bonding and antibonding characters are indicated by the single particle matrix elements, and can be further examined by the projected density of states. We demonstrate the method by applications to graphene and (6,0) zigzag carbon nanotube. The oriented-orbital scheme automatically describes the system in terms of sp 2 hybridization. The effect of curvature on the electronic structure of the zigzag carbon nanotube is also manifested in the deformation of the intrinsic oriented orbitals as well as a breaking of symmetry leading to nonzero single particle density matrix elements. In an additional study, the analysis is performed on the Al 3 V compound. The main covalent bonding characters are identified in a straightforward way without resorting to the symmetry analysis. Our method provides a general way for chemical bonding analysis of ab initio electronic structure calculations with any type of basis sets.

  12. Influence of chemical bonding of chlorides with aluminates in cement hidratation process on corrosion steel bars in concrete

    Directory of Open Access Journals (Sweden)

    Bikić Farzet H.

    2010-01-01

    Full Text Available The presence of chlorides in concrete is a permanent subject of research because they cause corrosion of steel bars. Chlorides added to the concrete during preparation, as accelerators of the bonding of cement minerals process, enter into reaction with aluminates, creating a phase known as chloroaluminate hydrates. In everyday conditions the product of chemical bonding between chlorides and aluminates is usually monochloridealuminate C3A·CaCl2·Hx, better known as Friedel's salt. In this paper, the influence of chemical bonding of chlorides with aluminates during the process of cement hydration on corrosion of steel bars in concrete was investigated. The process of chlorides bonding with aluminates yielding monochloride aluminate is monitored by XRD analyses. It was found that the amount of chlorides bonding with aluminates increases with an increase of temperature, and as a result, reduces the amount of 'free' chlorides in concrete. Potentiodynamic measurements have shown that increase in temperature of the heat treatment of working electrodes by chlorides leads to a reduction of steel bars corrosion as a result of either the increase of the monochloride-aluminate content or the decrease of free chlorides amount. Chlorides bound in chloroaluminate hydrates do not cause activation of steel bars corrosion in concrete. It was also proven that the increase of free chlorides concentration in the concrete leads to intensification of steel bars corrosion. This additionally approves that free chlorides are only the activators of process of steel bars corrosion in the concrete.

  13. Chemical Bonding of Transition-Metal Co13 Clusters with Graphene.

    Science.gov (United States)

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    2015-12-01

    We carried out density functional calculations to study the adsorption of Co13 clusters on graphene. Several free isomers were deposited at different positions with respect to the hexagonal lattice nodes, allowing us to study even the hcp 2d isomer, which was recently obtained as the most stable one. Surprisingly, the Co13 clusters attached to graphene prefer icosahedron-like structures in which the low-lying isomer is much distorted; in such structures, they are linked with more bonds than those reported in previous works. For any isomer, the most stable position binds to graphene by the Co atoms that can lose electrons. We find that the charge transfer between graphene and the clusters is small enough to conclude that the Co-graphene binding is not ionic-like but chemical. Besides, the same order of stability among the different isomers on doped graphene is kept. These findings could also be of interest for magnetic clusters on graphenic nanostructures such as ribbons and nanotubes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chemical Bonding States of TiC Films before and after Hydrogen Ion Irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    TiC films deposited by rf magnetron sputtering followed by Ar+ ion bombardment were irradiated with a hydrogen ion beam. X-ray photoelectron spectroscopy (XPS) was used for characterization of the chemical bonding states of C and Ti elements of the TiC films before and after hydrogen ion irradiation, in order to understand the effect of hydrogen ion irradiation on the films and to study the mechanism of hydrogen resistance of TiC films. Conclusions can be drawn that ion bombardment at moderate energy can cause preferential physical sputtering of carbon atoms from the surface of low atomic number (Z) material. This means that ion beam bombardment leads to the formation of a non-stoichiometric composition of TiC on the surface.TiC films prepared by ion beam mixing have the more excellent characteristic of hydrogen resistance. One important cause, in addition to TiC itself, is that there are many vacant sites in TiC created by ion beam mixing.These defects can easily trap hydrogen and effectively enhance the effect of hydrogen resistance.

  15. Preparation and photocatalytic activity of chemically-bonded phosphate ceramics containing TiO2

    Science.gov (United States)

    Martins, Monize Aparecida; de Lima, Bruna de Oliveira; Ferreira, Leticia Patrício; Colonetti, Emerson; Feltrin, Jucilene; De Noni, Agenor

    2017-05-01

    Titanium dioxide was incorporated into chemically-bonded phosphate ceramic for use as photocatalytic inorganic coating. The coatings obtained were applied to unglazed ceramic tiles and cured at 350 °C. The surfaces were characterized by photocatalytic activity, determined in aqueous medium, based on the degradation of methylene blue dye. The effects of the percentage of TiO2 and the thickness of the layer on the photocatalytic efficiency were evaluated. The influence of the incorporation of TiO2 on the consolidation of the phosphate matrix coating was investigated using the wear resistance test. The crystalline phases of the coatings obtained were determined by XRD. The microstructure of the surfaces was analyzed by SEM. The thermal curing treatment did not cause a phase transition from anatase to rutile. An increase in the photocatalytic activity of the coating was observed with an increase in the TiO2 content. The dye degradation indices ranged from 14.9 to 44.0%. The photocatalytic efficiency was not correlated with the thickness of the coating layer deposited. The resistance to wear decreased with an increase in the TiO2 content. Comparison with a commercial photocatalytic ceramic coating indicated that there is a range of values for the TiO2 contents which offer potential for photocatalytic applications.

  16. An Investigation of Fiber Reinforced Chemically Bonded Phosphate Ceramic Composites at Room Temperature.

    Science.gov (United States)

    Ding, Zhu; Li, Yu-Yu; Lu, Can; Liu, Jian

    2018-05-21

    In this study, chemically bonded phosphate ceramic (CBPC) fiber reinforced composites were made at indoor temperatures. The mechanical properties and microstructure of the CBPC composites were studied. The CBPC matrix of aluminum phosphate binder, metakaolin, and magnesia with different Si/P ratios was prepared. The results show that when the Si/P ratio was 1.2, and magnesia content in the CBPC was 15%, CBPC reached its maximum flexural strength. The fiber reinforced CBPC composites were prepared by mixing short polyvinyl alcohol (PVA) fibers or unidirectional continuous carbon fiber sheets. Flexural strength and dynamic mechanical properties of the composites were determined, and the microstructures of specimens were analyzed by scanning electron micrography, X-ray diffraction, and micro X-ray computed tomography. The flexural performance of continuous carbon fiber reinforced CBPC composites was better than that of PVA fiber composites. The elastic modulus, loss modulus, and loss factor of the fiber composites were measured through dynamic mechanical analysis. The results showed that fiber reinforced CBPC composites are an inorganic polymer viscoelastic material with excellent damping properties. The reaction of magnesia and phosphate in the matrix of CBPC formed a different mineral, newberyite, which was beneficial to the development of the CBPC.

  17. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Wang, Chunhui [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China); Zhang, Qing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China)

    2015-06-15

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp{sup 3}/sp{sup 2} after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp{sup 3}/sp{sup 2} after laser treatment.

  18. Effect of chemical composition of Ni-Cr dental casting alloys on the bonding characterization between porcelain and metal.

    Science.gov (United States)

    Huang, H-H; Lin, M-C; Lee, T-H; Yang, H-W; Chen, F-L; Wu, S-C; Hsu, C-C

    2005-03-01

    The purpose of this study was to investigate the influence of chemical composition of Ni-Cr dental casting alloys on the bonding behaviour between porcelain and metal. A three-point bending test was used to measure the fracture load of alloy after porcelain firing. A scanning electron microscope, accompanied by an energy dispersion spectrometer, was used to analyse the morphology and chemical composition of the fracture surface. An X-ray photoelectron spectrometer and glow discharge spectrometer were used to identify the structure and cross-sectional chemical composition, respectively, of oxide layers on Ni-Cr alloys after heat treatment at 990 degrees C for 5 min. Results showed that the oxide layers formed on all Ni-Cr alloys contained mainly Cr2O3, NiO, and trace MoO3. The Ni-Cr alloy with a higher Cr content had a thicker oxide layer, as well as a weaker bonding behaviour of porcelain/metal interface. The presence of Al (as Al2O3) and Be (as BeO) on the oxide layer suppressed the growth of the oxide layer, leading to a better porcelain/metal bonding behaviour. However, the presence of a small amount of Ti (as TiO2) on the oxide layer did not have any influence on the bonding behaviour. The fracture propagated along the interface between the opaque porcelain and metal, and exhibited an adhesive type of fracture morphology.

  19. Role of the chemical bonding for the time-dependent electron transport through an interacting quantum dot

    KAUST Repository

    Goker, Ali

    2011-06-01

    A combination of ab initio and many-body calculations is utilized to determine the effects of the bonding in Au electrodes on the time dependent current through a quantum dot suddenly shifted into the Kondo regime by a gate voltage. For an asymmetrically coupled system the instantaneous conductance exhibits fluctuations. The frequencies of the fluctuations turn out to be proportional to the energetic separation between the dominating peaks in the density of states and the Fermi level. The chemical bonding in the electrodes, thus, drastically alters the transient current, which can be accessed by ultrafast pump-probe techniques. © 2011 Elsevier B.V. All rights reserved.

  20. Role of the chemical bonding for the time-dependent electron transport through an interacting quantum dot

    KAUST Repository

    Goker, Ali; Zhu, Zhiyong; Manchon, Aurelien; Schwingenschlö gl, Udo

    2011-01-01

    A combination of ab initio and many-body calculations is utilized to determine the effects of the bonding in Au electrodes on the time dependent current through a quantum dot suddenly shifted into the Kondo regime by a gate voltage. For an asymmetrically coupled system the instantaneous conductance exhibits fluctuations. The frequencies of the fluctuations turn out to be proportional to the energetic separation between the dominating peaks in the density of states and the Fermi level. The chemical bonding in the electrodes, thus, drastically alters the transient current, which can be accessed by ultrafast pump-probe techniques. © 2011 Elsevier B.V. All rights reserved.

  1. Chemical origin of blue- and redshifted hydrogen bonds: intramolecular hyperconjugation and its coupling with intermolecular hyperconjugation.

    Science.gov (United States)

    Li, An Yong

    2007-04-21

    Upon formation of a H bond Y...H-XZ, intramolecular hyperconjugation n(Z)-->sigma*(X-H) of the proton donor plays a key role in red- and blueshift characters of H bonds and must be introduced in the concepts of hyperconjugation and rehybridization. Intermolecular hyperconjugation transfers electron density from Y to sigma*(X-H) and causes elongation and stretch frequency redshift of the X-H bond; intramolecular hyperconjugation couples with intermolecular hyperconjugation and can adjust electron density in sigma*(X-H); rehybridization causes contraction and stretch frequency blueshift of the X-H bond on complexation. The three factors--intra- and intermolecular hyperconjugations and rehybridization--determine commonly red- or blueshift of the formed H bond. A proton donor that has strong intramolecular hyperconjugation often forms blueshifted H bonds.

  2. Control of chemical bonding of the ZnO surface grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ogata, K.; Komuro, T.; Hama, K.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M.

    2004-01-01

    Toward the fabrication of enzyme modified field effect transistors (EnFETs) as one of organic/inorganic hybridized structures, surface bonding of the ZnO grown by molecular beam epitaxy was controlled by ex situ treatments. Angle resolved X-ray photoelectron spectroscopy (XPS) measurement revealed that O-H bonds exist at the surface of ZnO. It was found that the number of O-H bond could be changed with reversibility using plasma and thermal treatments

  3. A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence

    Science.gov (United States)

    Grayson, Scott M.

    2012-01-01

    A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…

  4. Chemical Bond Energies of 3d Transition Metals Studied by Density Functional Theory

    DEFF Research Database (Denmark)

    Moltved, Klaus A.d; Kepp, Kasper P.

    2018-01-01

    Despite their vast importance to inorganic chemistry, materials science and catalysis, the accuracy of modelling the formation or cleavage of metal-ligand (M-L) bonds depends greatly on the chosen functional and the type of bond in a way that is not systematically understood. In order to approach...

  5. Susceptibility to anchoring effects

    Directory of Open Access Journals (Sweden)

    Todd McElroy

    2007-02-01

    Full Text Available Previous research on anchoring has shown this heuristic to be a very robust psychological phenomenon ubiquitous across many domains of human judgment and decision-making. Despite the prevalence of anchoring effects, researchers have only recently begun to investigate the underlying factors responsible for how and in what ways a person is susceptible to them. This paper examines how one such factor, the Big-Five personality trait of openness-to-experience, influences the effect of previously presented anchors on participants' judgments. Our findings indicate that participants high in openness-to-experience were significantly more influenced by anchoring cues relative to participants low in this trait. These findings were consistent across two different types of anchoring tasks providing convergent evidence for our hypothesis.

  6. Iron-phosphate-based chemically bonded phosphate ceramics for mixed waste stabilization

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    In an effort to develop chemically bonded phosphate ceramics for mixed waste stabilization, a collaborative project to develop iron-phosphate based ceramics has been initiated between Argonne National Laboratory and the V. G. Khlopin Radium Institute in St. Petersburg, Russia. The starter powders are oxides of iron that are generated as inexpensive byproduct materials in the iron and steel industry. They contain iron oxides as a mixture of magnetite (Fe 3 O 4 ) and haematite (Fe 2 O 3 ). In this initial phase of this project, both of these compounds were investigated independently. Each was reacted with phosphoric acid solution to form iron phosphate ceramics. In the case of magnetite, the reaction was rapid. Adding ash as the waste component containing hazardous contaminants resulted in a dense and hard ceramic rich in glassy phase. On the other hand, the reaction of phosphoric acid solution with a mixture of haematite and ash waste contaminated with cesium and americium was too slow. Samples had to be molded under pressure. They were cured for 2-3 weeks and then hardened by heating at 350 degrees C for 3 h. The resulting ceramics in both cases were subjected to physical tests for measurement of density, open porosity, compression strength, phase analyses using X-ray diffraction and differential thermal analysis, and leaching tests using toxicity characteristic leaching procedure (TCLP) and ANS 16.1 with 7 days of leaching. Using the preliminary information obtained from these tests, we evaluated these materials for stabilization of Department of Energy's mixed waste streams

  7. Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Adireddy, Shiva; Ramana, C.V.

    2015-01-01

    Graphical abstract: Room temperature Raman spectra of CoFe 2−x Gd x O 4 (CFGO, x = 0.0–0.3) compounds as a function of wavenumber (cm −1 ). - Highlights: • Gd substituted ferrites were synthesized under controlled concentration. • Gd ion induced lattice dynamical changes are significant. • Enhanced magnetization is observed upon Gd-incorporation in cobalt ferrite. • A correlation between lattice dynamics and magnetic properties is established. - Abstract: Polycrystalline gadolinium (Gd) substituted cobalt ferrites (CoFe 2−x Gd x O 4 ; x = 0–0.3, referred to CFGO) ceramics have been synthesized by solid state reaction method. Chemical bonding, crystal structure and magnetic properties of CFGO compounds have been evaluated as a function of Gd-content. X-ray diffraction (XRD) and Raman spectroscopic analyses confirmed the formation of inverse spinel cubic structure. However, a secondary ortho-ferrite phase (GdFeO 3 ) nucleates for higher values of Gd-content. A considerable increase in the saturation magnetization has been observed upon the initial substitution of Gd (x = 0.1). The saturation magnetization drastically decreases at higher Gd content (x ⩾ 0.3). No contribution from ortho-ferrite GdFeO 3 phase is noted to the magnetic properties. The increase in the magnetic saturation magnetization is attributed to the higher magnetic moment of Gd 3+ (4f 7 ) residing in octahedral sites is higher when compared to that of Fe 3+ (3d 5 ) and as well due to the migration of Co 2+ (3d 7 ) ions from the octahedral to the tetrahedral sites with a magnetic moment aligned anti-parallel to those of rare earth (RE 3+ ) ions in the spinel lattice. Increase in coercivity with increase in Gd 3+ is content is attributed to magnetic anisotropy in the ceramics

  8. Estimation of strength in different extra Watson-Crick hydrogen bonds in DNA double helices through quantum chemical studies.

    Science.gov (United States)

    Bandyopadhyay, D; Bhattacharyya, D

    2006-10-15

    It was shown earlier, from database analysis, model building studies, and molecular dynamics simulations that formation of cross-strand bifurcated or Extra Watson-Crick hydrogen (EWC) bonds between successive base pairs may lead to extra rigidity to DNA double helices of certain sequences. The strengths of these hydrogen bonds are debatable, however, as they do not have standard linear geometry criterion. We have therefore carried out detailed ab initio quantum chemical studies using RHF/6-31G(2d,2p) and B3LYP/6-31G(2p,2d) basis sets to determine strengths of several bent hydrogen bonds with different donor and acceptors. Interaction energy calculations, corrected for the basis set superposition errors, suggest that N-H...O type bent EWC hydrogen bonds are possible along same strands or across the strands between successive base pairs, leading to significant stability (ca. 4-9 kcal/mol). The N-H...N and C-H...O type interactions, however, are not so stabilizing. Hence, consideration of EWC N-H...O H-bonds can lead to a better understanding of DNA sequence directed structural features. Copyright (c) 2006 Wiley Periodicals, Inc.

  9. The development of learning materials based on core model to improve students’ learning outcomes in topic of Chemical Bonding

    Science.gov (United States)

    Avianti, R.; Suyatno; Sugiarto, B.

    2018-04-01

    This study aims to create an appropriate learning material based on CORE (Connecting, Organizing, Reflecting, Extending) model to improve students’ learning achievement in Chemical Bonding Topic. This study used 4-D models as research design and one group pretest-posttest as design of the material treatment. The subject of the study was teaching materials based on CORE model, conducted on 30 students of Science class grade 10. The collecting data process involved some techniques such as validation, observation, test, and questionnaire. The findings were that: (1) all the contents were valid, (2) the practicality and the effectiveness of all the contents were good. The conclusion of this research was that the CORE model is appropriate to improve students’ learning outcomes for studying Chemical Bonding.

  10. The Load and Time Dependence of Chemical Bonding-Induced Frictional Ageing of Silica at the Nanoscale

    Science.gov (United States)

    Tian, K.; Gosvami, N. N.; Goldsby, D. L.; Carpick, R. W.

    2015-12-01

    Rate and state friction (RSF) laws are empirical relationships that describe the frictional behavior of rocks and other materials in experiments, and reproduce a variety of observed natural behavior when employed in earthquake models. A pervasive observation from rock friction experiments is the linear increase of static friction with the log of contact time, or 'ageing'. Ageing is usually attributed to an increase in real area of contact associated with asperity creep. However, recent atomic force microscopy (AFM) experiments demonstrate that ageing of nanoscale silica-silica contacts is due to progressive formation of interfacial chemical bonds in the absence of plastic deformation, in a manner consistent with the multi-contact ageing behavior of rocks [Li et al., 2011]. To further investigate chemical bonding-induced ageing, we explored the influence of normal load (and thus contact normal stress) and contact time on ageing. Experiments that mimic slide-hold-slide rock friction experiments were conducted in the AFM for contact loads and hold times ranging from 23 to 393 nN and 0.1 to 100 s, respectively, all in humid air (~50% RH) at room temperature. Experiments were conducted by sequentially sliding the AFM tip on the sample at a velocity V of 0.5 μm/s, setting V to zero and holding the tip stationary for a given time, and finally resuming sliding at 0.5 μm/s to yield a peak value of friction followed by a drop to the sliding friction value. Chemical bonding-induced ageing, as measured by the peak friction minus the sliding friction, increases approximately linearly with the product of normal load and the log of the hold time. Theoretical studies of the roles of reaction energy barriers in nanoscale ageing indicate that frictional ageing depends on the total number of reaction sites and the hold time [Liu & Szlufarska, 2012]. We combine chemical kinetics analyses with contact mechanics models to explain our results, and develop a new approach for curve

  11. Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Venkata Sreenivas, E-mail: vspuli@utep.edu [Department of Mechanical Engineering, University of Texas, El Paso, TX 79968 (United States); Adireddy, Shiva [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Ramana, C.V. [Department of Mechanical Engineering, University of Texas, El Paso, TX 79968 (United States)

    2015-09-25

    Graphical abstract: Room temperature Raman spectra of CoFe{sub 2−x}Gd{sub x}O{sub 4} (CFGO, x = 0.0–0.3) compounds as a function of wavenumber (cm{sup −1}). - Highlights: • Gd substituted ferrites were synthesized under controlled concentration. • Gd ion induced lattice dynamical changes are significant. • Enhanced magnetization is observed upon Gd-incorporation in cobalt ferrite. • A correlation between lattice dynamics and magnetic properties is established. - Abstract: Polycrystalline gadolinium (Gd) substituted cobalt ferrites (CoFe{sub 2−x}Gd{sub x}O{sub 4}; x = 0–0.3, referred to CFGO) ceramics have been synthesized by solid state reaction method. Chemical bonding, crystal structure and magnetic properties of CFGO compounds have been evaluated as a function of Gd-content. X-ray diffraction (XRD) and Raman spectroscopic analyses confirmed the formation of inverse spinel cubic structure. However, a secondary ortho-ferrite phase (GdFeO{sub 3}) nucleates for higher values of Gd-content. A considerable increase in the saturation magnetization has been observed upon the initial substitution of Gd (x = 0.1). The saturation magnetization drastically decreases at higher Gd content (x ⩾ 0.3). No contribution from ortho-ferrite GdFeO{sub 3} phase is noted to the magnetic properties. The increase in the magnetic saturation magnetization is attributed to the higher magnetic moment of Gd{sup 3+} (4f{sup 7}) residing in octahedral sites is higher when compared to that of Fe{sup 3+} (3d{sup 5}) and as well due to the migration of Co{sup 2+} (3d{sup 7}) ions from the octahedral to the tetrahedral sites with a magnetic moment aligned anti-parallel to those of rare earth (RE{sup 3+}) ions in the spinel lattice. Increase in coercivity with increase in Gd{sup 3+} is content is attributed to magnetic anisotropy in the ceramics.

  12. Stabilization of contaminated soil and wastewater with chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    At Argonne National Laboratory, we have developed chemically Bonded phosphate ceramic (CBPC) technology to stabilize the U.S. Department of Energy's problem mixed waste streams, for which no other stabilization technology is suitable. In this technology, solid waste is mixed with MgO and reacted with aqueous solutions of phosphoric acid or acid phosphates at room temperature to form a slurry that sets in ∼2 h into a hard and dense ceramic waste form. Initial studies involved stabilizing the surrogate waste streams and then testing the waste forms for leaching of contaminants. After achieving satisfactory performance of the waste forms, we next incorporated actual waste streams at bench scale and produced waste forms that were then tested with the Toxicity Characteristic Leaching Procedure (TCLP). This presentation deals with stabilization of soil contaminated with Cd, Cr, Pb, Ag, Ba, and Hg, and of low-level radioactive wastewater. To enhance the contaminant levels in the soil, we further spiked the soil with additional amounts of Cd, Cr, Pb, and Hg. Both the soil and the wastewater were incorporated in the same waste form by stabilizing them with the CBPC process. The waste forms had a total waste loading of ∼77 wt.% and were dense with an open porosity of 2.7 vol.% and a density of 2.17 g/cm 3 . Compression strength was 4910 psi. The TCLP results showed excellent immobilization of all the RCRA metals, and radioactive contaminant levels were below the detection limit of 0.2 pCi/mL. Long-term leaching studies using the ANS 16.1 procedure showed that the retention of contaminants is excellent and comparable to or better than most of other stabilization processes. These results demonstrate that the CBPC process is a very superior process for treatment of low level mixed wastes; we therefore conclude that the CBPC process is well suited to the treatment of low-level mixed waste streams with high waste loading

  13. Co3O4 nanocrystals with exposed low-surface-energy planes anchored on chemically integrated graphitic carbon nitride-modified nitrogen-doped graphene: A high-performance anode material for lithium-ion batteries

    Science.gov (United States)

    Zhang, Wenyao; Fu, Yongsheng; Wang, Xin

    2018-05-01

    A facile strategy to synthesize a composite composed of cubic Co3O4 nanocrystals anchored on chemically integrated g-C3N4-modified N-graphene (CN-NG) as an advanced anode material for high-performance lithium-ion batteries is reported. It is found that the morphology of the Co3O4 nanocrystals contains blunt-edge nanocubes with well-demarcated boundaries and numerous exposed low-index (1 1 1) crystallographic facets. These planes can be directly involved in the electrochemical reactions, providing rapid Li-ion transport channels for charging and discharging and thus enhancing the round-trip diffusion efficiency. On the other hand, the CN-NG support displays unusual textural features, such as superior structural stability, accessible active sites, and good electrical conductivity. The experimental results reveal that the chemical and electronic coupling of graphitic carbon nitride and nitrogen-doped graphene synergistically facilitate the anchoring of Co3O4 nanocrystals and prevents their migration. The resulting Co3O4/CN-NG composite exhibits a high specific reversible capacity of up to 1096 mAh g-1 with excellent cycling stability and rate capability. We believe that such a hybrid carbon support could open a new path for applications in electrocatalysis, sensors, supercapacitors, etc., in the near future.

  14. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    International Nuclear Information System (INIS)

    Lichienberger, D.L.

    1990-10-01

    This quarter has witnessed further progress both in our experimental methods of photoelectron spectroscopy and in our understanding the fundamental relationships between ionization energies and the chemistry of transition metal species. Progress continues on the new gas phase photoelectron spectrometer that combine improved capabilities for HeI/HeII UPS, XPS, and Auger investigations of organometallic molecules. Several measurements have been accomplished this year that were not possible previously. We have published the formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies, and applied the relationships to homonuclear and heteronuclear diatomic molecules, multiple bonds, and metal-ligand bonds. Studies of C-H bond activation have continued with examination of different degrees of Si-H bond addition to metals. the electronic effects of intermolecular interactions have been observed by comparing the ionizations of metal complexes in the gas phase with the ionizations of monolayer solid organometallic films prepared in ultra-high vacuum. The orientations of the molecules have been determined by scanning tunneling microscopy. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C 60 molecule, buckminsterfullerene. Studies of the following complexes are described : Fe, Os, Nb, Mo, Rh, Re, Al, and Mn. 19 refs

  15. The electrical properties of low pressure chemical vapor deposition Ga doped ZnO thin films depending on chemical bonding configuration

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hanearl [School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Doyoung [School of Electrical and Electronic Engineering, Ulsan College, 57 Daehak-ro, Nam-gu, Ulsan 680-749 (Korea, Republic of); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2014-04-01

    Highlights: • Undoped and Ga doped ZnO thin films were deposited using DEZ and TMGa. • Effects of Ga doping using TMGa in Ga doped ZnO were investigated. • Degraded properties from excessive doping were analyzed using chemical bondings. - Abstract: The electrical and chemical properties of low pressure chemical vapor deposition (LP-CVD) Ga doped ZnO (ZnO:Ga) films were systematically investigated using Hall measurement and X-ray photoemission spectroscopy (XPS). Diethylzinc (DEZ) and O{sub 2} gas were used as precursor and reactant gas, respectively, and trimethyl gallium (TMGa) was used as a Ga doping source. Initially, the electrical properties of undoped LP-CVD ZnO films depending on the partial pressure of DEZ and O{sub 2} ratio were investigated using X-ray diffraction (XRD) by changing partial pressure of DEZ from 40 to 140 mTorr and that of O{sub 2} from 40 to 80 mTorr. The resistivity was reduced by Ga doping from 7.24 × 10{sup −3} Ω cm for undoped ZnO to 2.05 × 10{sup −3} Ω cm for Ga doped ZnO at the TMG pressure of 8 mTorr. The change of electric properties of Ga doped ZnO with varying the amount of Ga dopants was systematically discussed based on the structural crystallinity and chemical bonding configuration, analyzed by XRD and XPS, respectively.

  16. Mechanical, electronic, chemical bonding and optical properties of cubic BaHfO3: First-principles calculations

    International Nuclear Information System (INIS)

    Liu Qijun; Liu Zhengtang; Feng Liping; Tian Hao

    2010-01-01

    We have performed ab-initio total energy calculations using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT) to study structural parameters, mechanical, electronic, chemical bonding and optical properties of cubic BaHfO 3 . The calculated lattice parameter and independent elastic constants are in good agreement with previous theoretical and experimental work. The bulk, shear and Young's modulus, Poisson coefficient, compressibility and Lame constants are obtained using Voigt-Reuss-Hill method and the Debye temperature is estimated using Debye-Grueneisen model, which are consistent with previous results. Electronic and chemical bonding properties have been studied from the calculations of band structure, density of states and charge densities. Furthermore, in order to clarify the mechanism of optical transitions of cubic BaHfO 3 , the complex dielectric function, refractive index, extinction coefficient, reflectivity, absorption efficient, loss function and complex conductivity function are calculated. Then, we have explained the origins of spectral peaks on the basis of the theory of crystal-field and molecular-orbital bonding.

  17. Anisotropic electrical conduction and reduction in dangling-bond density for polycrystalline Si films prepared by catalytic chemical vapor deposition

    Science.gov (United States)

    Niikura, Chisato; Masuda, Atsushi; Matsumura, Hideki

    1999-07-01

    Polycrystalline Si (poly-Si) films with high crystalline fraction and low dangling-bond density were prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD. Directional anisotropy in electrical conduction, probably due to structural anisotropy, was observed for Cat-CVD poly-Si films. A novel method to separately characterize both crystalline and amorphous phases in poly-Si films using anisotropic electrical conduction was proposed. On the basis of results obtained by the proposed method and electron spin resonance measurements, reduction in dangling-bond density for Cat-CVD poly-Si films was achieved using the condition to make the quality of the included amorphous phase high. The properties of Cat-CVD poly-Si films are found to be promising in solar-cell applications.

  18. Electronic parameters of Sr2M2O7 (M = V, Nb, Ta) and Sr-O chemical bonding

    DEFF Research Database (Denmark)

    Atuchin, Victor V.; Grivel, Jean-Claude; Zhang, Zhaoming

    2010-01-01

    XPS measurements were carried out on Sr2Nb2O7 and Sr2Ta2O7 powder samples, which were synthesized using standard solid state method. The binding energy differences between the O 1s and cation core level, Δ(O-Sr) = BE(O 1s) - BE(Sr 3d5/2), was used to characterize the valence electron transfer...... on the formation of the Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and Sr2Ta2O7 and the previously published structural and XPS data for other Sr-oxide compounds. A new empirical relationship between Δ(O-Sr) and L(Sr-O) was obtained. Possible applications...

  19. Interfacial chemical bonding state and band alignment of CaF2/hydrogen-terminated diamond heterojunction

    International Nuclear Information System (INIS)

    Liu, J. W.; Liao, M. Y.; Cheng, S. H.; Imura, M.; Koide, Y.

    2013-01-01

    CaF 2 films are deposited on hydrogen-terminated diamond (H-diamond) by a radio-frequency sputter-deposition technique at room temperature. Interfacial chemical bonding state and band alignment of CaF 2 /H-diamond heterojunction are investigated by X-ray photoelectron spectroscopy. It is confirmed that there are only C-Ca bonds at the CaF 2 /H-diamond heterointerface. Valence and conductance band offsets of the CaF 2 /H-diamond heterojunciton are determined to be 3.7 ± 0.2 and 0.3 ± 0.2 eV, respectively. It shows a type I straddling band configuration. The large valence band offset suggests advantage of the CaF 2 /H-diamond heterojunciton for the development of high power and high frequency field effect transistors.

  20. Dispersibility and chemical bonds between multi-walled carbon nanotubes and poly(ether ether ketone) in nanocomposite fibers

    International Nuclear Information System (INIS)

    Yanmei, Jin; Haihui, Liu; Ning, Wang; Lichen, Hou; Xing-Xiang, Zhang

    2012-01-01

    A series of multi-walled carbon nanotubes (MWNTs)/poly(ether ether ketone)(PEEK) nanocomposite fibers were fabricated by mixing, melt extruding PEEK with different loadings and species of MWNTs, and melt-spun the blended chips. Nanocomposite fibers were heat-stretched and heat-treated. The morphology and dispersibility of MWNTs in nanocomposite fibers were observed using a field emission environmental scanning electron microscope (FESEM) and a transmission electron microscope (TEM). The thermal and crystallization behavior of nanocomposite fibers were characterized using differential scanning calorimetry (DSC) and an X-ray diffractometer (XRD). Mechanical properties were tested using a tensile strength tester. MWNTs tend to aggregate when the loading exceeds 0.8 wt%. Functional groups on MWNTs improve the hydrophobicity and the dispersibility of MWNTs in PEEK matrix. The enhancement of mechanical properties depends on the loading and species of functional groups. The most effectively reinforced effect is in the sequence, carboxylic MWNTs (MWNT–COOH) > hydroxyl MWNTs (MWNT–OH) > MWNTs, which can be explained by the strong hydrogen bonding and the affinity between MWNT–COOH and PEEK, MWNT–OH and PEEK, and possible formation of a chemical bond between MWNT–COOH and PEEK. A nanocomposite fiber with excellent mechanical property was fabricated using 0.8 wt% MWNT–COOH as filler. The Young's modulus is 1.7 GPa; and the stress is 648 MPa. -- Highlights: ► Functional groups on MWNTs improve their hydrophobility and dispersability. ► Mechanical properties depend on the content and species of the functional groups. ► The reinforced effect is in the sequence, carboxylic MWNTs > hydroxyl MWNTs > MWNTs. ► The strength behavior was result of hydrogen bond, affinity and chemical bond. ► Dispersability of MWNTs in matrix was analyzed by calculating solubility parameter.

  1. Bonding Characteristics and Chemical Inertness of Zr–Si–N Coatings with a High Si Content in Glass Molding

    Directory of Open Access Journals (Sweden)

    Li-Chun Chang

    2018-05-01

    Full Text Available High-Si-content transition metal nitride coatings, which exhibited an X-ray amorphous phase, were proposed as protective coatings on glass molding dies. In a previous study, the Zr–Si–N coatings with Si contents of 24–30 at.% exhibited the hardness of Si3N4, which was higher than those of the middle-Si-content (19 at.% coatings. In this study, the bonding characteristics of the constituent elements of Zr–Si–N coatings were evaluated through X-ray photoelectron spectroscopy. Results indicated that the Zr 3d5/2 levels were 179.14–180.22 and 180.75–181.61 eV for the Zr–N bonds in ZrN and Zr3N4 compounds, respectively. Moreover, the percentage of Zr–N bond in the Zr3N4 compound increased with increasing Si content in the Zr–Si–N coatings. The Zr–N bond of Zr3N4 dominated when the Si content was >24 at.%. Therefore, high Si content can stabilize the Zr–N compound in the M3N4 bonding structure. Furthermore, the thermal stability and chemical inertness of Zr–Si–N coatings were evaluated by conducting thermal cycle annealing at 270 °C and 600 °C in a 15-ppm O2–N2 atmosphere. The results indicated that a Zr22Si29N49/Ti/WC assembly was suitable as a protective coating against SiO2–B2O3–BaO-based glass for 450 thermal cycles.

  2. Chemical bond as a test of density-gradient expansions for kinetic and exchange energies

    International Nuclear Information System (INIS)

    Perdew, J.P.; Levy, M.; Painter, G.S.; Wei, S.; Lagowski, J.B.

    1988-01-01

    Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N 2 and F 2 , which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules

  3. Evolution of the chemical bonding nature and electrode activity of indium selenide upon the composite formation with graphene nanosheets

    International Nuclear Information System (INIS)

    Oh, Seung Mi; Lee, Eunsil; Adpakpang, Kanyaporn; Patil, Sharad B.; Park, Mi Jin; Lim, Young Soo; Lee, Kyu Hyoung; Kim, Jong-Young; Hwang, Seong-Ju

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • In 4 Se 2.85 @graphene nanocomposite is easily prepared by high energy mechanical milling process. • The bond covalency of In 4 Se 2.85 is notably changed upon the composite formation with graphene. • In 4 Se 2.85 @graphene nanocomposite shows promising anode performance for lithium ion battery. -- Abstract: Evolution of the chemical bonding nature and electrochemical activity of indium selenide upon the composite formation with carbon species is systematically investigated. Nanocomposites of In 4 Se 2.85 @graphene and In 4 Se 2.85 @carbon-black are synthesized via a solid state reaction between In and Se elements, and the following high energy mechanical milling of In 4 Se 2.85 with graphene and carbon-black, respectively. The high energy mechanical milling (HEMM) of In 4 Se 2.85 with carbon species gives rise to a decrease of particle size with a significant depression of the crystallinity of In 4 Se 2.85 phase. In contrast to the composite formation with carbon-black, that with graphene induces a notable decrease of (In−Se) bond covalency, underscoring significant chemical interaction between graphene and In 4 Se 2.85 . Both the nanocomposites of In 4 Se 2.85 @graphene and In 4 Se 2.85 @carbon-black show much better anode performance for lithium ion batteries with larger discharge capacity and better cyclability than does the pristine In 4 Se 2.85 material, indicating the beneficial effect of composite formation on the electrochemical activity of indium selenide. Between the present nanocomposites, the electrode performance of the In 4 Se 2.85 @graphene nanocomposite is superior to that of the In 4 Se 2.85 @carbon-black nanocomposite, which is attributable to the weakening of (In−Se) bonds upon the composite formation with graphene as well as to the better mixing between In 4 Se 2.85 and graphene. The present study clearly demonstrates that the composite formation with graphene has strong influence

  4. High pressure stability analysis and chemical bonding of Ti1-xZrxN alloy: A first principle study

    International Nuclear Information System (INIS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2016-01-01

    First-principles pseudo-potential calculations have been performed to analyze the stability of Ti 1-x Zr x N alloy under high pressures. The first order phase transition from B1 to B2 phase has been observed in this alloy at high pressure. The variation of lattice parameter with the change in concentration of Zr atom in Ti 1-x Zr x N is also reported in both the phases. The calculations for density of states have been performed to understand the alloying effects on chemical bonding of Ti-Zr-N alloy.

  5. Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides

    International Nuclear Information System (INIS)

    Atuchin, Victor V.; Kesler, Valery G.; Pervukhina, Natalia V.; Zhang, Zhaoming

    2006-01-01

    A set of available experimental data on the binding energies of Ti 2p 3/2 and O 1s core levels in titanium-bearing oxides has been presented by using the binding energy difference (O 1s-Ti 2p 3/2 ) as a robust parameter to characterize these compounds. An empirical relationship between the (O 1s-Ti 2p 3/2 ) values measured with XPS and the mean chemical bond length L(Ti-O) in these crystals has been discussed for Ti 4+ -compounds

  6. Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, Victor V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation)]. E-mail: atuchin@thermo.isp.nsc.ru; Kesler, Valery G. [Technical Centre, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Pervukhina, Natalia V. [Laboratory of Crystal Chemistry, Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Zhang, Zhaoming [Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia)

    2006-06-15

    A set of available experimental data on the binding energies of Ti 2p{sub 3/2} and O 1s core levels in titanium-bearing oxides has been presented by using the binding energy difference (O 1s-Ti 2p{sub 3/2}) as a robust parameter to characterize these compounds. An empirical relationship between the (O 1s-Ti 2p{sub 3/2}) values measured with XPS and the mean chemical bond length L(Ti-O) in these crystals has been discussed for Ti{sup 4+}-compounds.

  7. Ab initio study of electron-ion structure factors in binary liquids with different types of chemical bonding

    International Nuclear Information System (INIS)

    Klevets, Ivan; Bryk, Taras

    2014-01-01

    Electron-ion structure factors, calculated in ab initio molecular dynamics simulations, are reported for several binary liquids with different kinds of chemical bonding: metallic liquid alloy Bi–Pb, molten salt RbF, and liquid water. We derive analytical expressions for the long-wavelength asymptotes of the partial electron-ion structure factors of binary systems and show that the analytical results are in good agreement with the ab initio simulation data. The long-wavelength behaviour of the total charge structure factors for the three binary liquids is discussed

  8. Annihilation of positrons with the electrons of chemical bonds of the superconducting CuO-polyhedrons in the HTSC materials

    International Nuclear Information System (INIS)

    Arutyunov, N.Yu.; Trashchakov, V.Yu.

    1989-01-01

    Angular distribution parameters of annihilation photon pairs emitted from R-Ba 2 Cu 3 O 7-x (x≤0.2; R=Y, Nd, Lu) specimens after injection and subsequent annihilation of positrons in them. It is shown that annihilation of thermalized positrons proceeds advantageously with electrons of chemical bonds of O(4)-Cu(I)-O(I) polyhedrons in R-Ba-Cu-O oxides. In an orthorhombic phase positrons are mostly delocalized in rows of ordered stoichiometric vacancies. The result obtained provides to recommend the methods of positron diagnostics for studying parameters of electron state density in superconducting structural groups of high-temperature superconductors. 2 refs.; 1 fig

  9. Investigation of chemical bond characteristics, thermal expansion coefficients and bulk moduli of alpha-R2MoO6 and R2Mo2O7 (R = rare earths) by using a dielectric chemical bond method.

    Science.gov (United States)

    Li, Huaiyong; Zhang, Siyuan; Zhou, Shihong; Cao, Xueqiang

    2009-09-01

    Theoretical researches are performed on the alpha-R2MoO6 (R = Y, Gd, Tb Dy, Ho, Er, Tm and Yb) and pyrochlore-type R2Mo2O7 (R = Y, Nd, Sm, Gd, Tb and Dy) rare earth molybdates by using chemical bond theory of dielectric description. The chemical bonding characteristics and their relationship with thermal expansion property and compressibility are explored. The calculated values of linear thermal expansion coefficient (LTEC) and bulk modulus agree well with the available experimental values. The calculations reveal that the LTECs and the bulk moduli do have linear relationship with the ionic radii of the lanthanides: the LTEC decreases from 6.80 to 6.62 10(-6)/K and the bulk modulus increases from 141 to 154 GPa when R goes in the order Gd, Tb Dy, Ho, Er, Tm, and Yb in the alpha-R2MoO6 series; while in the R2Mo2O7 series, the LTEC ranges from 6.80 to 6.61 10(-6)/K and the bulk modulus ranges from 147 to 163 GPa when R varies in the order Nd, Sm, Gd, Tb and Dy. Copyright 2008 Wiley Periodicals, Inc.

  10. Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds

    International Nuclear Information System (INIS)

    Tang Aiwei; Wang Yu; Ye Haihang; Zhou Chao; Yang Chunhe; Li Xu; Peng Hongshang; Zhang Fujun; Hou Yanbing; Teng Feng

    2013-01-01

    A one-step colloidal process has been adopted to prepare silver (Ag) and silver sulfide (Ag 2 S) nanocrystals, thus avoiding presynthesis of an organometallic precursor and the injection of a toxic phosphine agent. During the reaction, a layered intermediate compound is first formed, which then acts as a precursor, decomposing into the nanocrystals. The composition of the as-obtained products can be controlled by selective cleavage of S–C bonds or Ag–S bonds. Pure Ag 2 S nanocrystals can be obtained by directly heating silver acetate (Ag(OAc)) and n-dodecanethiol (DDT) at 200 ° C without any surfactant, and pure Ag nanocrystals can be synthesized successfully if the reaction temperature is reduced to 190 ° C and the amount of DDT is decreased to 1 ml in the presence of a non-coordinating organic solvent (1-octadecene, ODE). Otherwise, the mixture of Ag and Ag 2 S is obtained by directly heating Ag(OAc) in DDT by increasing the reaction temperature or in a mixture of DDT and ODE at 200 ° C. The formation mechanism has been discussed in detail in terms of selective S–C and Ag–S bond dissociation due to the nucleophilic attack of DDT and the lower bonding energy of Ag–S. Interestingly, some products can easily self-assemble into two- or three-dimensional (2D or 3D) highly ordered superlattice structures on a copper grid without any additional steps. The excess DDT plays a key role in the superlattice structure due to the bundling and interdigitation of the thiolate molecules adsorbed on the as-obtained nanocrystals. (paper)

  11. Intramolecular hydrogen bonding in N-salicylideneaniline: FT-IR spectrum and quantum chemical calculations

    Science.gov (United States)

    Moosavi-Tekyeh, Zainab; Dastani, Najmeh

    2015-12-01

    FT-IR and FT-Raman spectra of N-salicylideneaniline (SAn) and its deuterated analogue (D-SAn) are recorded, and the theoretical calculations are performed on their molecular structures and vibrational frequencies. The same calculations are performed for SAn in different solutions using the polarizable conductor continuum model (CPCM) method. Comparisons between the spectra obtained and the corresponding theoretical calculations are used to assign the vibrational frequencies for these compounds. The spectral behavior of SAn upon deuteration is also used to distinguish the positions of OH vibrational frequencies. The hydrogen bond strength of SAn is investigated by applying the atoms-in-molecules (AIM) theory, natural bond orbital (NBO) analysis, and geometry calculations. The harmonic vibrational frequencies of SAn are calculated at B3LYP and X3LYP levels of theory using 6-31G*, 6-311G**, and 6-311++G** basis sets. The AIM results support a medium hydrogen bonding in SAn. The observed νOH/νOD and γOH/γOD for SAn appear at 2940/2122 and 830/589 cm-1, respectively.

  12. HR-EELS study of hydrogen bonding configuration, chemical and thermal stability of detonation nanodiamond films

    Energy Technology Data Exchange (ETDEWEB)

    Michaelson, Sh.; Akhvlediani, R. [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Petit, T.; Girard, H.A.; Arnault, J.C. [CEA, LIST, Diamond Sensors Laboratory, F-91191 Gif sur Yvette (France); Hoffman, A., E-mail: choffman@tx.technion.ac.il [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2014-06-01

    Nano-diamond films composed of 3–10 nm grains prepared by the detonation method and deposited onto silicon substrates by drop-casting were examined by high resolution electron energy loss spectroscopy (HR-EELS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS). The impact of (i) ex-situ ambient annealing at 400 °C and (ii) ex-situ hydrogenation on hydrogen bonding and its thermal stability were examined. In order to clarify the changes in hydrogen bonding configuration detected on the different surfaces as a function of thermal annealing, in-situ hydrogenation by thermally activated atomic hydrogen was performed and examined. This study provides direct evidence that the exposure to ambient conditions and medium temperature ambient annealing have a pronounced effect on the hydrogen-carbon bonding configuration onto the nano-diamond surfaces. In-situ 1000 °C annealing results in irreversible changes of the film surface and partial nano-diamond silicidation.

  13. Ab initio investigations of the electronic structure and chemical bonding of Li2ZrN2

    International Nuclear Information System (INIS)

    Matar, S.F.; Pöttgen, R.; Al Alam, A.F.; Ouaini, N.

    2012-01-01

    The electronic structure of the ternary nitride Li 2 ZrN 2 is examined from ab initio with DFT computations for an assessment of the properties of chemical bonding. The compound is found insulating with 1.8 eV band gap; it becomes metallic and less ionic upon removal of one equivalent of Li. The chemical interaction is found mainly between Zr and N on one hand and Li and N on the other hand. While all pair interactions are bonding, antibonding N–N interactions are found dominant at the top of the valence band of Li 2 ZrN 2 and they become less intense upon removal of Li. From energy differences the partial delithiation leading to Li 2−x ZrN 2 (x=∼1) is favored. - Graphical abstract: Trigonal structure of Li 2 ZrN 2 showing the Zr–N–Li layers along the c-axis. Highlights: ► Li 2 ZrN 2 calculated insulating with a 1.8 eV gap in agreement with its light green color. ► Lithium de-intercalation is energetically favored for one out of two Li equivalents. ► Li plays little role in the change of the structure, ensured by Zr and N binding. ► Similar changes in the electronic structure as for various intercalated phases of ZrN.

  14. Several new phases in RE-Mg-Ge systems (RE = rare earth metal) - syntheses, structures, and chemical bonding

    International Nuclear Information System (INIS)

    Suen, Nian-Tzu; Bobev, Svilen

    2012-01-01

    Reported are the synthesis and structural characterization of Ce_5Mg_8Ge_8 (its own structure type), CeMg_2_-_xGe_2_+_x (BaAl_4-type structure), RE_4Mg_7Ge_6 (RE = Ce-Nd, Sm; La_4Mg_7Ge_6-type structure), and RE_4Mg_5Ge_6 (RE = Ce, Pr; Tm_4Zn_5Ge_6-type structure). The structures of these compounds have been established by single-crystal and powder X-ray diffraction. These compounds are closely related to each other not only in their chemical compositions but also in their structures. A common structural feature of all are MgGe_4 tetrahedra, which are connected by corner- and/or edge-sharing into complex polyanionic frameworks with the rare-earth metal atoms filling the ''empty'' space. The structures are compared to known types of structures, and we have investigated the chemical bonding in Ce_5Mg_8Ge_8 with electronic structure calculations, which were carried out by the tight-bonding linear muffin-tin orbital (TB-LMTO) method. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Thermal stability and chemical bonding states of AlOxNy/Si gate stacks revealed by synchrotron radiation photoemission spectroscopy

    International Nuclear Information System (INIS)

    He, G.; Toyoda, S.; Shimogaki, Y.; Oshima, M.

    2010-01-01

    Annealing-temperature dependence of the thermal stability and chemical bonding states of AlO x N y /SiO 2 /Si gate stacks grown by metalorganic chemical vapor deposition (MOCVD) using new chemistry was investigated by synchrotron radiation photoemission spectroscopy (SRPES). Results have confirmed the formation of the AlN and AlNO compounds in the as-deposited samples. Annealing the AlO x N y samples in N 2 ambient in 600-800 deg. C promotes the formation of SiO 2 component. Meanwhile, there is no formation of Al-O-Si and Al-Si binding states, suggesting no interdiffusion of Al with the Si substrate. A thermally induced reaction between Si and AlO x N y to form volatile SiO and Al 2 O is suggested to be responsible for the full disappearance of the Al component that accompanies annealing at annealing temperature of 1000 deg. C. The released N due to the breakage of the Al-N bonding will react with the SiO 2 interfacial layer and lead to the formation of the Si 3 -N-O/Si 2 -N-O components at the top of Si substrate. These results indicate high temperature processing induced evolution of the interfacial chemistry and application range of AlO x N y /Si gate stacks in future CMOS devices.

  16. The Synthesis, Structures and Chemical Properties of Macrocyclic Ligands Covalently Bonded into Layered Arrays

    International Nuclear Information System (INIS)

    Clearfield, Abraham

    2003-01-01

    OAK-B135 The immobilization of crown ethers tends to limit the leveling effect of solvents making the macrocycles more selective. In addition immobilization has the added advantage of relative ease of recovery of the otherwise soluble crown. We have affixed CH2PO3H2 groups to azacrown ethers. The resultant phosphorylated macrocycles may spontaneously aggregate into crystalline supramolecular linear arrays or contacted with cations produce layered or linear polymers. In the linear polymers the metal and phosphonic acids covalently bond into a central stem with the macrocyclic rings protruding from the stem as leaves on a twig. Two types of layered compounds were obtained with group 4 metals. Monoaza-crown ethers form a bilayer where the M4+ plus phosphonic acid groups build the layer and the rings fill the interlayer space. 1, 10-diazadiphosphonic acids cross-link the metal phosphonate layers forming a three-dimensional array of crown ethers. In order to improve diffusion into these 3-D arrays they are spaced by inclusion of phosphate or phosphate groups. Two series of azamacrocylic crown ethers were prepared containing rings with 20 to 32 atoms. These larger rings can complex two cations per ring. Methylene phosphonic acid groups have been bonded to the aza ring atoms to increase the complexing ability of these ligands. Our approach is to carry out acid-base titrations in the absence and presence of cations to determine the pKa values of the protons, both those bonded to aza groups and those associated with the phosphonic acid groups. From the differences in the titration curves obtained with and without the cations present we obtain the stoichiometry of complex formation and the complex stability constants. Some of the applications we are targeting include phase transfer catalysis, separation of cations and the separation of radioisotopes for diagnostic and cancer therapeutic purposes

  17. Electric dipole moments and chemical bonding of diatomic alkali-alkaline earth molecules.

    Science.gov (United States)

    Pototschnig, Johann V; Hauser, Andreas W; Ernst, Wolfgang E

    2016-02-17

    We investigate the properties of alkali-alkaline earth diatomic molecules in the lowest Σ(+) states of the doublet and quartet multiplicity by ab initio calculations. In all sixteen cases studied, the permanent electric dipole moment points in opposite directions for the two spin states. This peculiarity can be explained by molecular orbital theory. We further discuss dissociation energies and bond distances. We analyze trends and provide an empirically motivated model for the prediction of the permanent electric dipole moment for combinations of alkali and alkaline earth atoms not studied in this work.

  18. Crystal structure and chemical bonding analysis of BaPtCd{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gulo, Fakhili [Department of Chemical Education, Sriwijaya University, Inderalaya 30662, South Sumatra (Indonesia); Koehler, Juergen [Max Planck Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    2015-03-15

    The new ternary intermetallic phase, BaPtCd{sub 2}, was synthesized by solid-state reaction from direct combination of the elements in a stoichiometric mixture. The reaction was done at 850 C for 15 h, followed by an equilibration at 600 C for 4 d. The crystal structure was determined by X-ray diffraction method on a single crystal. BaPtCd{sub 2} is isotypic to MgCuAl{sub 2} and crystallizes in the orthorhombic space group Cmcm [a = 4.467(2), b = 11.143(4), c = 8.240(3) Aa, V = 410.2(3) Aa{sup 3}, and Z = 4]. Barium atoms are linked together forming zigzag chains. Cadmium atoms are bonded to each other forming six-membered rings of platinum centered boat and anti-boat conformations. BaPtCd{sub 2} contains 16 electrons per formula unit and belongs to the electron poorest compounds with MgCuAl{sub 2} type structure. Calculations based on the linear muffin-tin orbitals method in the atomic spheres approximation show that significant bonding states in BaPtCd{sub 2} are unoccupied. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Mechanical properties and chemical bonding of the Os–B system: A first-principles study

    International Nuclear Information System (INIS)

    Ji Zongwei; Hu Chaohao; Wang Dianhui; Zhong Yan; Yang Jiong; Zhang Wenqing; Zhou Huaiying

    2012-01-01

    The mechanical properties of Os–B compounds containing different boron contents have been investigated systemically by first-principles calculations. Two previously unreported crystal structures of Os 2 B 5 and OsB 3 , crystallizing in space groups R3m and P-6m2 respectively, are determined using the ab initio evolutionary structure prediction. The calculated elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, and hardness for Os–B compounds are in good agreement with the available experimental values. Our results show that the hardness of osmium borides increases with increasing boron content. Os 2 B 5 and OsB 3 , with hardnesses of 34.4 and 36.9 GPa respectively, can almost be considered as potential superhard materials. Further analyses on density of states, crystal orbital Hamilton population, and electron localization function demonstrate that the electronic structure of Os–B compounds is directly responsible for their particular mechanical properties. High hardness in Os 2 B 5 and OsB 3 is mainly attributed to the occurrence of strong B–B covalent bonds and the disappearance of some ductile Os–Os metallic bonds.

  20. Chemical bonding and electronic localization in a Ga(I) amide.

    Science.gov (United States)

    Thomsen, Maja K; Dange, Deepak; Jones, Cameron; Overgaard, Jacob

    2015-10-05

    The electron density in a one-coordinate [Ga(I) N(SiMe3 )R] complex has been determined from ab initio calculations and multipole modeling of 90 K X-ray data. The topologies of the Laplacian distribution and the ELI-D match a situation having an sp(3) -hybridized nitrogen with a tetrahedral arrangement of two single σ-bonds (to carbon and silicon) and two lone pairs pointing towards gallium in a scissor-grasping fashion. The analysis of the Laplacian distribution furthermore reveals a ligand-induced charge concentration (LICC) in the outer core of gallium oriented directly towards the nitrogen atom, and thus in between the two lone pairs. These observations might suggest that the trigonal planar nitrogen geometry result from a dative GaN bond, in which the roles of the metal and the ligand have been reversed with respect to a "standard" metal-ligand interaction, that is, the metal is here electron-donating. The ELI-D reveals a diffuse and directional lone pair on gallium, suggesting that this complex could serve as a σ-donor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effects of Jigsaw Cooperative Learning and Animation Techniques on Students' Understanding of Chemical Bonding and Their Conceptions of the Particulate Nature of Matter

    Science.gov (United States)

    Karacop, Ataman; Doymus, Kemal

    2013-04-01

    The aim of this study was to determine the effect of jigsaw cooperative learning and computer animation techniques on academic achievements of first year university students attending classes in which the unit of chemical bonding is taught within the general chemistry course and these students' learning of the particulate nature of matter of this unit. The sample of this study consisted of 115 first-year science education students who attended the classes in which the unit of chemical bonding was taught in a university faculty of education during the 2009-2010 academic year. The data collection instruments used were the Test of Scientific Reasoning, the Purdue Spatial Visualization Test: Rotations, the Chemical Bonding Academic Achievement Test, and the Particulate Nature of Matter Test in Chemical Bonding (CbPNMT). The study was carried out in three different groups. One of the groups was randomly assigned to the jigsaw group, the second was assigned to the animation group (AG), and the third was assigned to the control group, in which the traditional teaching method was applied. The data obtained with the instruments were evaluated using descriptive statistics, one-way ANOVA, and MANCOVA. The results indicate that the teaching of chemical bonding via the animation and jigsaw techniques was more effective than the traditional teaching method in increasing academic achievement. In addition, according to findings from the CbPNMT, the students from the AG were more successful in terms of correct understanding of the particulate nature of matter.

  2. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E. [Stanford University, Stanford, California 94309 (United States)

    1997-08-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H{endash}Si bond on the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C{endash}Si bond length of 1.85{plus_minus}0.05{Angstrom}. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. {copyright} {ital 1997 American Institute of Physics.}

  3. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    International Nuclear Information System (INIS)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E.

    1997-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H endash Si bond on the H endash Si(111) surface, and (ii) replacement of Cl on the Cl endash Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C endash Si bond length of 1.85±0.05 Angstrom. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. copyright 1997 American Institute of Physics

  4. Chemical bonding characteristics of Ge2Sb2Te5 for thin films

    International Nuclear Information System (INIS)

    Shin, Min-Jung; Choi, Doo-Jin; Kang, Myung-Jin; Choi, Se-Young; Jang, In-Woo; Lee, Kye-Nam; Park, Young-Jin

    2004-01-01

    The chalcogenide-based phase change memory has been suggested as an alternative non-volatile memory device at the 180 nm technology node. These materials appear to have a reversible phase change between amorphous and crystalline phases. A sputtered Ge 2 Sb 2 Te 5 film is deposited on a (100) Si substrate. In order to investigate the crystallization tendency at a certain temperature, we use X-ray diffraction and X-ray photoelectron spectroscopy. The film morphology is observed by using atomic forces microscopy. Grain growth and a phase transition from cubic to hexagonal occurs when the films are heated from 170 .deg. C and 380 .deg. C, and Ge-Te and Te-Sb bonds increased with annealing.

  5. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.

    Science.gov (United States)

    Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M

    2011-01-07

    Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully

  6. Finite Size Effects in Chemical Bonding: From Small Clusters to Solids

    DEFF Research Database (Denmark)

    Kleis, Jesper; Greeley, Jeffrey Philip; Romero, N. A.

    2011-01-01

    We address the fundamental question of which size a metallic nano-particle needs to have before its surface chemical properties can be considered to be those of a solid, rather than those of a large molecule. Calculations of adsorption energies for carbon monoxide and oxygen on a series of gold...

  7. Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix

    NARCIS (Netherlands)

    Liu, Qing; de Wijn, J.R.; van Blitterswijk, Clemens

    1998-01-01

    In an effort to make composites from hydroxyapatite and a PEG/PBT copolymer (PolyactiveTM 70/30), chemical linkages were introduced between the filler particles and polymer matrix using hexamethylene diisocyanate as a coupling agent. Infrared spectra (IR) and thermal gravimetric analysis (TGA)

  8. The Effect of Various Types of Mechanical and Chemical Preconditioning on the Shear Bond Strength of Orthodontic Brackets on Zirconia Restorations

    Directory of Open Access Journals (Sweden)

    Jihun Kim

    2017-01-01

    Full Text Available The purpose of this study was to investigate the combined effect of mechanical and chemical treatments on the shear bond strength (SBS of metal orthodontic brackets on zirconia restoration. The zirconia specimens were randomly divided into 12 groups (n=10 according to three factors: AL (Al2O3 and CO (CoJet™ by sandblasting material; SIL (silane, ZPP (Zirconia Prime Plus, and SBU (Single Bond Universal by primer; and N (not thermocycled and T (thermocycled. The specimens were evaluated for shear bond strength, and the fractured surfaces were observed using a stereomicroscope. Scanning electron microscopy images were also obtained. CO-SBU combination had the highest bond strength after thermocycling (26.2 MPa. CO-SIL showed significantly higher SBS than AL-SIL (p0.05. Modified Adhesive Remnant Index (ARI scoring and SEM figures were consistent with the results of the surface treatments. In conclusion, CO-SBU, which combines the effect of increased surface area and chemical bonding with both 10-MDP and silane, showed the highest SBS. Sandblasting with either material improved the mechanical bonding by increasing the surface area, and all primers showed clinically acceptable increase of shear bond strength for orthodontic treatment.

  9. Simulant molecules with trivalent or pentavalent phosphorus atoms: bond dissociation energies and other thermodynamic and structural properties from quantum chemical models.

    Science.gov (United States)

    Hahn, David K; RaghuVeer, Krishans S; Ortiz, J V

    2011-08-04

    The CBS-QB3 and G4 thermochemical models have been used to generate energetic, structural, and spectroscopic data on a set of molecules with trivalent or pentavalent phosphorus atoms that can serve as simulants of chemical warfare agents. Based on structural data, the conformational stabilities of these molecules are explained in terms of the anomeric interaction within the OPOC and OPSC fragments. For those cases where experimental data are available, comparisons have been made between calculated and previously reported vibrational frequencies. All varieties of bond dissociation energies have been examined except those for C-H and P═O bonds. In trivalent phosphorus molecules, the O-C and S-C bonds have the lowest dissociation energies. In the pentavalent phosphorus set, the S-C bonds, followed by P-S bonds, have the lowest dissociation energies. In the fluorinated simulant molecules, the P-F bond is strongest, and the P-C or O-C bonds are weakest. © 2011 American Chemical Society

  10. Thermal-mechanical-chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading.

    Science.gov (United States)

    Wang, XinJie; Wu, YanQing; Huang, FengLei

    2017-01-05

    A mesoscopic framework is developed to quantify the thermal-mechanical-chemical responses of polymer-bonded explosive (PBX) samples under impact loading. A mesoscopic reactive model is developed for the cyclotetramethylenetetranitramine (HMX) crystal, which incorporates nonlinear elasticity, crystal plasticity, and temperature-dependent chemical reaction. The proposed model was implemented in the finite element code ABAQUS by the user subroutine VUMAT. A series of three-dimensional mesoscale models were constructed and calculated under low-strength impact loading scenarios from 100m/s to 600m/s where only the first wave transit is studied. Crystal anisotropy and microstructural heterogeneity are responsible for the nonuniform stress field and fluctuations of the stress wave front. At a critical impact velocity (≥300m/s), a chemical reaction is triggered because the temperature contributed by the volumetric and plastic works is sufficiently high. Physical quantities, including stress, temperature, and extent of reaction, are homogenized from those across the microstructure at the mesoscale to compare with macroscale measurements, which will advance the continuum-level models. The framework presented in this study has important implications in understanding hot spot ignition processes and improving predictive capabilities in energetic materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Evidence for excited-state intramolecular proton transfer in 4-chlorosalicylic acid from combined experimental and computational studies: Quantum chemical treatment of the intramolecular hydrogen bonding interaction

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan Kumar [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India); Guchhait, Nikhil, E-mail: nikhil.guchhait@rediffmail.com [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Experimental and computational studies on the photophysics of 4-chlorosalicylic acid. Black-Right-Pointing-Pointer Spectroscopically established ESIPT reaction substantiated by theoretical calculation. Black-Right-Pointing-Pointer Quantum chemical treatment of IMHB unveils strength, nature and directional nature. Black-Right-Pointing-Pointer Superiority of quantum chemical treatment of H-bond over geometric criteria. Black-Right-Pointing-Pointer Role of H-bond as a modulator of aromaticity. -- Abstract: The photophysical study of a pharmaceutically important chlorine substituted derivative of salicylic acid viz., 4-chlorosalicylic acid (4ClSA) has been carried out by steady-state absorption, emission and time-resolved emission spectroscopy. A large Stokes shifted emission band with negligible solvent polarity dependence marks the spectroscopic signature of excited-state intramolecular proton transfer (ESIPT) reaction in 4ClSA. Theoretical calculation by ab initio and Density Functional Theory methods yields results consistent with experimental findings. Theoretical potential energy surfaces predict the occurrence of proton transfer in S{sub 1}-state. Geometrical and energetic criteria, Atoms-In-Molecule topological parameters, Natural Bond Orbital population analysis have been exploited to evaluate the intramolecular hydrogen bond (IMHB) interaction and to explore its directional nature. The inter-correlation between aromaticity and resonance assisted H-bond is also discussed in this context. Our results unveil that the quantum chemical treatment is a more accurate tool to assess hydrogen bonding interaction in comparison to geometrical criteria.

  12. Mechanical control of the plasmon coupling with Au nanoparticle arrays fixed on the elastomeric film via chemical bond

    Science.gov (United States)

    Bedogni, Elena; Kaneko, Satoshi; Fujii, Shintaro; Kiguchi, Manabu

    2017-03-01

    We have fabricated Au nanoparticle arrays on the flexible poly(dimethylsiloxane) (PDMS) film. The nanoparticles were bound to the film via a covalent bond by a ligand exchange reaction. Thanks to the strong chemical bonding, highly stable and uniformly dispersed Au nanoparticle arrays were fixed on the PDMS film. The Au nanoparticle arrays were characterized by the UV-vis, scanning electron microscope (SEM) and surface enhanced Raman scattering (SERS). The UV-vis and SEM measurements showed the uniformity of the surface-dispersed Au nanoparticles, and SERS measurement confirmed the chemistry of the PDMS film. Reflecting the high stability and the uniformity of the Au nanoparticle arrays, the plasmon wavelength of the Au nanoparticles reversely changed with modulation of the interparticle distance, which was induced by the stretching of the PDMS film. The plasmon wavelength linearly decreased from 664 to 591 nm by stretching of 60%. The plasmon wavelength shift can be explained by the change in the strength of the plasmon coupling which is mechanically controlled by the mechanical strain.

  13. Chemical bonding modifications of tetrahedral amorphous carbon and nitrogenated tetrahedral amorphous carbon films induced by rapid thermal annealing

    International Nuclear Information System (INIS)

    McCann, R.; Roy, S.S.; Papakonstantinou, P.; Bain, M.F.; Gamble, H.S.; McLaughlin, J.A.

    2005-01-01

    Tetrahedral amorphous carbon (ta-C) and nitrogenated tetrahedral amorphous carbon films (ta-CN x ), deposited by double bend off plane Filtered Vacuum Cathodic Arc were annealed up to 1000 deg. C in flowing argon for 2 min. Modifications on the chemical bonding structure of the rapidly annealed films, as a function of temperature, were investigated by NEXAFS, X-ray photoelectron and Raman spectroscopies. The interpretation of these spectra is discussed. The results demonstrate that the structure of undoped ta-C films prepared at floating potential with an arc current of 80 A remains stable up to 900 deg. C, whereas that of ta-CN x containing 12 at.% nitrogen is stable up to 700 deg. C. At higher temperatures, all the spectra indicated the predominant formation of graphitic carbon. Through NEXAFS studies, we clearly observed three π* resonance peaks at the ' N K edge structure. The origin of these three peaks is not well established in the literature. However our temperature-dependant study ascertained that the first peak originates from C=N bonds and the third peak originates from the incorporation of nitrogen into the graphite like domains

  14. Structure, vibrations and quantum chemical investigations of hydrogen bonded complex of bis(1-hydroxy-2-methylpropan-2-aminium)selenate

    Science.gov (United States)

    Thirunarayanan, S.; Arjunan, V.; Marchewka, M. K.; Mohan, S.

    2017-04-01

    The hydrogen bonded molecular complex bis(1-hydroxy-2-methylpropan-2-aminium)selenate (C8H24N2O6Se) has been prepared by the reaction of 2-amino-2-methyl propanol and selenic acid. The X-ray diffraction analysis revealed that the intermolecular proton transfer from selenic acid (SeO4H2) to 2-amino-2-methylpropanol results in the formation of bis(1-hydroxy-2-methylpropan-2-aminium)selenate (HMPAS) salt and the fragments are connected through H-bonding and ion pairing. The N-H⋯O and O-H⋯O interactions between 2-amino-2-methylpropanol and selenic acid determine the supramolecular arrangement in three-dimensional space. The salt crystallises in the space group P121/n1 of monoclinic system. The complete vibrational assignments of HMPAS have been performed by FTIR and FT-Raman spectroscopy. The experimental data are correlated with the structural properties namely the energy, thermodynamic parameters, atomic charges, hybridization concepts and vibrational frequencies determined by quantum chemical studies performed with B3LYP method using 6-311++G*, 6-31+G* and 6-31G** basis sets.

  15. Investigation of electronic structure and chemical bonding of intermetallic Pd2HfIn: An ab-initio study

    Science.gov (United States)

    Bano, Amreen; Gaur, N. K.

    2018-05-01

    Ab-initio calculations are carried out to study the electronic and chemical bonding properties of Intermetallic full Heusler compound Pd2HfIn which crystallizes in F-43m structure. All calculations are performed by using density functional theory (DFT) based code Quantum Espresso. Generalized gradient approximations (GGA) of Perdew- Burke- Ernzerhof (PBE) have been adopted for exchange-correlation potential. Calculated electronic band structure reveals the metallic character of the compound. From partial density of states (PDoS), we found the presence of relatively high intensity electronic states of 4d-Pd atom at Fermi level. We have found a pseudo-gap just abouve the Fermi level and N(E) at Fermi level is observed to be 0.8 states/eV, these finding indicates the existence of superconducting character in Pd2HfIn.

  16. Sandwiched Thin-Film Anode of Chemically Bonded Black Phosphorus/Graphene Hybrid for Lithium-Ion Battery.

    Science.gov (United States)

    Liu, Hanwen; Zou, Yuqin; Tao, Li; Ma, Zhaoling; Liu, Dongdong; Zhou, Peng; Liu, Hongbo; Wang, Shuangyin

    2017-09-01

    A facile vacuum filtration method is applied for the first time to construct sandwich-structure anode. Two layers of graphene stacks sandwich a composite of black phosphorus (BP), which not only protect BP from quickly degenerating but also serve as current collector instead of copper foil. The BP composite, reduced graphene oxide coated on BP via chemical bonding, is simply synthesized by solvothermal reaction at 140 °C. The sandwiched film anode used for lithium-ion battery exhibits reversible capacities of 1401 mAh g -1 during the 200th cycle at current density of 100 mA g -1 indicating superior cycle performance. Besides, this facile vacuum filtration method may also be available for other anode material with well dispersion in N-methyl pyrrolidone (NMP). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Robust C–C bonded porous networks with chemically designed functionalities for improved CO2 capture from flue gas

    Directory of Open Access Journals (Sweden)

    Damien Thirion

    2016-10-01

    Full Text Available Effective carbon dioxide (CO2 capture requires solid, porous sorbents with chemically and thermally stable frameworks. Herein, we report two new carbon–carbon bonded porous networks that were synthesized through metal-free Knoevenagel nitrile–aldol condensation, namely the covalent organic polymer, COP-156 and 157. COP-156, due to high specific surface area (650 m2/g and easily interchangeable nitrile groups, was modified post-synthetically into free amine- or amidoxime-containing networks. The modified COP-156-amine showed fast and increased CO2 uptake under simulated moist flue gas conditions compared to the starting network and usual industrial CO2 solvents, reaching up to 7.8 wt % uptake at 40 °C.

  18. Evidence for porphyrins bound, via ester bonds, to the Messel oil shale kerogen by selective chemical degradation experiments

    Science.gov (United States)

    Huseby, B.; Ocampo, R.

    1997-09-01

    High amounts of nickel mono- and di-acid porphyrins were released from Messel oil shale kerogen (Eocene, Germany) by selective chemical degradation (acid and base hydrolysis). The released porphyrin fractions were quantified (UV-vis) and their constituents isolated and characterized at the molecular level (UV-vis, MS, NMR). The mono-acid porphyrin fraction released contained four compounds of similar abundance which arise from an obvious chlorophyll or bacteriochlorophyll precursor. The di-acid porphyrin fraction was, however, dominated by far by one compound, mesoporphyrin IX, which must have originated from heme-like precursors (heme, cytochromes, etc.). These results show unambigously that the released mono- and di-acid porphyrins were linked to the macromolecular kerogen network via ester bonds and suggest that precursor heme-like pigments could be selectively and/or more readily incorporated into the macromolecular kerogen network than precursor chlorophylls and bacteriochlorophylls.

  19. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    International Nuclear Information System (INIS)

    Wang, Jimin; Li, Yue; Modis, Yorgo

    2014-01-01

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed

  20. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jimin, E-mail: jimin.wang@yale.edu; Li, Yue; Modis, Yorgo, E-mail: yorgo.modis@yale.edu

    2014-04-15

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed.

  1. Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy

    Science.gov (United States)

    Ebeling, Daniel; Zhong, Qigang; Ahles, Sebastian; Chi, Lifeng; Wegner, Hermann A.; Schirmeisen, André

    2017-05-01

    We demonstrate the ability of resolving the chemical structure of single organic molecules using non-contact atomic force microscopy with higher normal eigenmodes of quartz tuning fork sensors. In order to achieve submolecular resolution, CO-functionalized tips at low temperatures are used. The tuning fork sensors are operated in ultrahigh vacuum in the frequency modulation mode by exciting either their first or second eigenmode. Despite the high effective spring constant of the second eigenmode (on the order of several tens of kN/m), the force sensitivity is sufficiently high to achieve atomic resolution above the organic molecules. This is observed for two different tuning fork sensors with different tip geometries (small tip vs. large tip). These results represent an important step towards resolving the chemical structure of single molecules with multifrequency atomic force microscopy techniques where two or more eigenmodes are driven simultaneously.

  2. Ab initio investigations of the electronic structure and chemical bonding of Li{sub 2}ZrN{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Matar, S.F., E-mail: matar@icmcb-bordeaux.cnrs.fr [CNRS, Universite de Bordeaux, ICMCB, 87 Avenue du Docteur Albert Schweitzer, 33600 Pessac (France); Poettgen, R., E-mail: pottgen@uni-muenster.de [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, Corrensstrasse 30, D-48149 Muenster (Germany); Al Alam, A.F., E-mail: adelalalam@usek.edu.lb [Universite Saint Esprit de Kaslik (USEK), Faculte des Sciences, URA GREVE (CNRS/USEK/UL), Jounieh (Lebanon); Ouaini, N., E-mail: naimouaini@usek.edu.lb [Universite Saint Esprit de Kaslik (USEK), Faculte des Sciences, URA GREVE (CNRS/USEK/UL), Jounieh (Lebanon)

    2012-06-15

    The electronic structure of the ternary nitride Li{sub 2}ZrN{sub 2} is examined from ab initio with DFT computations for an assessment of the properties of chemical bonding. The compound is found insulating with 1.8 eV band gap; it becomes metallic and less ionic upon removal of one equivalent of Li. The chemical interaction is found mainly between Zr and N on one hand and Li and N on the other hand. While all pair interactions are bonding, antibonding N-N interactions are found dominant at the top of the valence band of Li{sub 2}ZrN{sub 2} and they become less intense upon removal of Li. From energy differences the partial delithiation leading to Li{sub 2-x}ZrN{sub 2} (x={approx}1) is favored. - Graphical abstract: Trigonal structure of Li{sub 2}ZrN{sub 2} showing the Zr-N-Li layers along the c-axis. Highlights: Black-Right-Pointing-Pointer Li{sub 2}ZrN{sub 2} calculated insulating with a 1.8 eV gap in agreement with its light green color. Black-Right-Pointing-Pointer Lithium de-intercalation is energetically favored for one out of two Li equivalents. Black-Right-Pointing-Pointer Li plays little role in the change of the structure, ensured by Zr and N binding. Black-Right-Pointing-Pointer Similar changes in the electronic structure as for various intercalated phases of ZrN.

  3. Open chain or chemically bonded structure of H2O4: The hydroperoxyl radical dimer

    International Nuclear Information System (INIS)

    Fitzgerald, G.; Lee, T.J.; Schaefer, H.F. III; Bartlett, R.J.

    1985-01-01

    The straight chain isomer H--O--O--O--O--H of H 2 O 4 is of considerable current interest in combustion and atmospheric chemistry. Ab initio quantum mechanical methods have been used to study the geometrical structure, energetics, and vibrational frequencies of this species. Double zeta (DZ) and double zeta plus polarization (DZ+P) basis sets have been used in this theoretical study, the latter designated O(9s5p1d/4s2p1d), H(4s1p/2s1p). These basis sets have been employed in conjunction with self--consistent field (SCF)= and configuration interaction (CI) methods, including variationally up to 470 935 configurations. For the straight chain isomer, stationary points of symmetry C/sub 2h/, C/sub i/, and C 1 have been identified, and correspond to Hessian indices 3,1, and 0, respectively. The equilibrium geometry, having no elements of symmetry at all, is relatively unique. The highest level of theory (unlinked cluster corrected DZ+P CI) predicts the straight chain structure of H 2 O 4 to lie slightly lower in total energy than the cyclic two-hydrogen bond isomer

  4. Carboxymethyl chitosan based nanocomposites containing chemically bonded quantum dots and magnetic nanoparticles

    Science.gov (United States)

    Ding, Yongling; Yin, Hong; Chen, Rui; Bai, Ru; Chen, Chunying; Hao, Xiaojuan; Shen, Shirley; Sun, Kangning; Liu, Futian

    2018-03-01

    A biocompatible nanocomposite consisting of fluorescent quantum dots (QDs) and magnetic nanoparticles (MNPs) has been constructed via carboxymethyl chitosan (CMCS), resulting in magnetic-fluorescent nanoparticles (MFNPs). In these MFNPs, QDs and MNPs are successfully conjugated via covalent bonds onto the surface of CMCS. The composite retains favorable magnetic and fluorescent properties and shows a good colloidal stability in physiological environments. Folate (FA) as a specific targeting ligand was further incorporated into the nanocomposites to form a delivery vehicle with a targeting function. The therapeutic activity was achieved by loading chemotherapeutic drug doxorubicin (DOX) through electrostatic and hydrophobic interactions. The cumulative DOX release profile shows pH-sensitive. Both flow cytometry analysis and confocal laser scanning microscopic observation suggested that these nanocomposites were uptaken by cancer cells via FA receptor-mediated endocytosis pathway. In summary, the CMCS based nanocomposites developed in this work have a great potential for effective cancer-targeting and drug delivery, as well as in situ cellular imaging.

  5. Research Update: Mechanical properties of metal-organic frameworks – Influence of structure and chemical bonding

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-12-01

    Full Text Available Metal-organic frameworks (MOFs, a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  6. Synthesis, vibrational and quantum chemical investigations of hydrogen bonded complex betaine dihydrogen selenite

    Science.gov (United States)

    Arjunan, V.; Marchewka, Mariusz K.; Kalaivani, M.

    2012-10-01

    The molecular complex of betaine with selenious acid namely, betaine dihydrogen selenite (C5H13NO5Se, BDHSe) was synthesised by the reaction of betaine and SeO2 in a 1:1:1 solution of isopropanol, methanol and water. Crystals were grown from this solution by cooling to 253 K for few days. The complex was formed without accompanying proton transfer from selenious acid molecule to betaine. The complete vibrational assignments and analysis of BDHSe have been performed by FTIR, FT-Raman and far-infrared spectral studies. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP) method using 6-311++G∗∗, 6-31G∗∗, cc-pVDZ and 3-21G basis sets. The structural parameters, energies, thermodynamic parameters and the NBO charges of BDHSe were determined by the DFT method. The 1H and 13C isotropic chemical shifts (δ ppm) of BDHSe with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. SHG experiment was carried out using Kurtz-Perry powder technique. The efficiency of second harmonic generation for BDHSe was estimated relatively to KDP: deff = 0.97 deff (KDP).

  7. The Cosmic-Chemical Bond: Chemistry from the Big Bang to Planet Formation

    Science.gov (United States)

    Williams, D. A.; Hartquist, T. W.

    2013-01-01

    Introducing astrochemistry to a wide audience, this book describes how molecules formed in chemical reactions occur in a range of environments in interstellar and circumstellar space, from shortly after the Big Bang up to the present epoch. Stressing that chemistry in these environments needs to be "driven", it helps identify these drivers and the various chemical networks that operate giving rise to signature molecules that enable the physics of the region to be better understood. The book emphasises, in a non-mathematical way, the chemistry of the Milky Way Galaxy and its planet-forming regions, describes how other galaxies may have rather different chemistries and shows how chemistry was important even in the Early Universe when most of the elements had yet to be formed. This book will appeal to anyone with a general interest in chemistry, from students to professional scientists working in interdisciplinary areas and non-scientists fascinated by the evolving and exciting story of chemistry in the cosmos.

  8. Research Update: Mechanical properties of metal-organic frameworks - Influence of structure and chemical bonding

    Science.gov (United States)

    Li, Wei; Henke, Sebastian; Cheetham, Anthony K.

    2014-12-01

    Metal-organic frameworks (MOFs), a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  9. First-principles investigation of the structure and synergistic chemical bonding of Ag and Mg at the Al | Ω interface in a Al-Cu-Mg-Ag alloy

    International Nuclear Information System (INIS)

    Sun Lipeng; Irving, Douglas L.; Zikry, Mohammed A.; Brenner, D.W.

    2009-01-01

    Density functional theory was used to characterize the atomic structure and bonding of the Al | Ω interface in a Al-Cu-Mg-Ag alloy. The most stable interfacial structure was found to be connected by Al-Al bonds with a hexagonal Al lattice on the surface of the Ω phase sitting on the vacant hollow sites of the Al {1 1 1} matrix plane. The calculations predict that when substituted separately for Al at this interface, Ag and Mg do not enhance the interface stability through chemical bonding. Combining Ag and Mg, however, was found to chemically stabilize this interface, with the lowest-energy structure examined being a bi-layer with Ag atoms adjacent to the Al matrix and Mg adjacent to the Ω phase. This study provides an atomic arrangement for the interfacial bi-layer observed experimentally in this alloy.

  10. Chemically bonded carbon nanotubes on modified gold substrate as novel unbreakable solid phase microextraction fiber

    International Nuclear Information System (INIS)

    Bagheri, H.; Ayazi, Z.; Sistani, H.

    2011-01-01

    A new technique is introduced for preparation of an unbreakable fiber using gold wire as a substrate for solid phase microextraction (SPME). A gold wire is used as a solid support, onto which a first film is deposited that consists of a two-dimensional polymer obtained by hydrolysis of a self-assembled monolayer of 3-(trimethoxysilyl)-1-propanthiol. This first film is covered with a layer of 3-(triethoxysilyl)-propylamine. Next, a stationary phase of oxidized multi-walled carbon nanotubes was chemically bound to the surface. The synthetic strategy was verified by Fourier transform infrared spectroscopy and scanning electron microscopy. Thermal stability of new fiber was examined by thermogravimetric analysis. The applicability of the novel coating was verified by its employment as a SPME fiber for isolation of diazinon and fenthion, as model compounds. Parameters influencing the extraction process were optimized to result in limits of detection as low as 0.2 ng mL -1 for diazinon, and 0.3 ng mL -1 for fenthion using the time-scheduled selected ion monitoring mode. The method was successfully applied to real water, and the recoveries for spiked samples were 104% for diazinon and 97% for fenthion. (author)

  11. Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C’ scalar couplings (3hbJNC’)

    NARCIS (Netherlands)

    Bonvin, A.M.J.J.; Houben, K.; Guenneugues, M.N.L.; Kaptein, R.; Boelens, R.

    2001-01-01

    The possibility of generating protein folds at the stage of backbone assignment using structural restraints derived from experimentally measured cross-hydrogen bond scalar couplings and secondary chemical shift information is investigated using as a test case the small alpha/beta protein

  12. Survival of bonded lingual retainers with chemical or photo polymerization over a 2-year period: a single-center, randomized controlled clinical trial

    NARCIS (Netherlands)

    Pandis, N.; Fleming, P.S.; Kloukos, D.; Polychronopoulou, A.; Katsaros, C.; Eliades, T.

    2013-01-01

    INTRODUCTION: The objective of this trial was to compare the survival rates of mandibular lingual retainers bonded with either chemically cured or light-cured adhesive after orthodontic treatment. METHODS: Patients having undergone orthodontic treatment at a private orthodontic office were randomly

  13. Effects of lithium doping on microstructure, electrical properties, and chemical bonds of sol-gel derived NKN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Cheng [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Mathematic and Physical Sciences, R.O.C. Air Force Academy, Kaohsiung 820, Taiwan (China); Chen, Chan-Ching; Weng, Chung-Ming [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Chu, Sheng-Yuan, E-mail: chusy@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hong, Cheng-Shong [Department of Electronic Engineering, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Tsai, Cheng-Che [Department of Digital Game and Animation Design, Tung-Fang Design University, Kaohsiung 829, Taiwan (China)

    2015-02-28

    Highly (100/110) oriented lead-free Li{sub x}(Na{sub 0.5}K{sub 0.5}){sub 1−x}NbO{sub 3} (LNKN, x = 0, 0.02, 0.04, and 0.06) thin films are fabricated on Pt/Ti/SiO{sub 2}/Si substrates via a sol-gel processing method. The lithium (Li) dopants modify the microstructure and chemical bonds of the LNKN films, and therefore improve their electrical properties. The optimal values of the remnant polarization (P{sub r} = 14.3 μC/cm{sup 2}), piezoelectric coefficient (d{sub 33} = 48.1 pm/V), and leakage current (<10{sup −5} A/cm{sup 2}) are obtained for a lithium addition of x = 0.04 (i.e., 4 at. %). The observation results suggest that the superior electrical properties are the result of an improved crystallization, a larger grain size, and a smoother surface morphology. It is shown that the ion transport mechanism is dominated by an Ohmic behavior under low electric fields and the Poole-Frenkel emission effect under high electric fields.

  14. Effects of lithium doping on microstructure, electrical properties, and chemical bonds of sol-gel derived NKN thin films

    International Nuclear Information System (INIS)

    Lin, Chun-Cheng; Chen, Chan-Ching; Weng, Chung-Ming; Chu, Sheng-Yuan; Hong, Cheng-Shong; Tsai, Cheng-Che

    2015-01-01

    Highly (100/110) oriented lead-free Li x (Na 0.5 K 0.5 ) 1−x NbO 3 (LNKN, x = 0, 0.02, 0.04, and 0.06) thin films are fabricated on Pt/Ti/SiO 2 /Si substrates via a sol-gel processing method. The lithium (Li) dopants modify the microstructure and chemical bonds of the LNKN films, and therefore improve their electrical properties. The optimal values of the remnant polarization (P r  = 14.3 μC/cm 2 ), piezoelectric coefficient (d 33  = 48.1 pm/V), and leakage current (<10 −5 A/cm 2 ) are obtained for a lithium addition of x = 0.04 (i.e., 4 at. %). The observation results suggest that the superior electrical properties are the result of an improved crystallization, a larger grain size, and a smoother surface morphology. It is shown that the ion transport mechanism is dominated by an Ohmic behavior under low electric fields and the Poole-Frenkel emission effect under high electric fields

  15. Diversity of Chemical Bonding and Oxidation States in MS 4 Molecules of Group 8 Elements

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wei [Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084 P.R. China; Jiang, Ning [Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084 P.R. China; Schwarz, W. H. Eugen [Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084 P.R. China; Physical and Theoretical Chemistry, University of Siegen, Siegen 57068 Germany; Yang, Ping [Theoretical Division, Los Alamos National Laboratory, Los Alamos New Mexico 87545 USA; Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland Washington 953002 USA; Li, Jun [Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084 P.R. China; Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland Washington 953002 USA

    2017-07-11

    The geometric and electronic ground-state structures of six MS4 molecules (M = group-8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density-functional and correlated wave-function approaches. The MS4 species are compared to analogous MO4 species recently investi-gated (Inorg. Chem. 2016, 55: 4616). Metal oxidation state (MOS) of high value VIII appears in low- spin singlet Td geometric species (Os,Hs)S4 and (Ru,Os,Hs)O4, whereas low MOS=II appears in high- spin septet D2d species Fe(S2)2 and (slightly excited) metastable Fe(O2)2. The ground states of all other molecules have intermediate MOS values, containing S2-, S22-, S21- (and resp. O2--, O1-, O22-, O21-) ligands, bonded by ionic, covalent and correlative contributions.

  16. Coteaching with senior students – a way to refine teachers' PCK for teaching chemical bonding in upper secondary school

    Science.gov (United States)

    Schultze, Felix; Nilsson, Pernilla

    2018-04-01

    During the last decade there has been on-going discussions about students' declining interest and low achievement in science. One of the reasons suggested for this decline is that teachers and students have different frames of reference, whereby teachers sometimes communicate science in the classroom in a way that is not accessible to the students. There is a lack of research investigating the effects of coteaching with senior students in science in upper secondary schools. To improve teaching and to narrow the gap between teachers' and students' different frames of references, this study investigates how an experienced chemistry teacher gains and refines her pedagogical content knowledge (PCK) by cooperating with two grade 12 students (age 18) as coteachers. The teacher and the two coteachers coplanned, cotaught and coevaluated lessons in chemical bonding in a grade 10 upper secondary class. Findings indicate that the coteachers contributed with their own learning experiences to help the teacher understand how students perceive difficult concepts. In such way, the coteachers were mediating between the teacher and the students, thus bridging the gap between the teacher and the students' frames of references. The teachers' PCK was refined which in turn lead to improved teaching strategies.

  17. The Holding Power of Anchors

    Indian Academy of Sciences (India)

    The efficiency of an anchor may be expressed as the ratio (holding force + weight of anchor). In dry sand .... the market at the beginning of the coming season in three sizes, namely 20, 35 and. 60 lb. These are ... Taylor frozen-flow hypothesis.

  18. Mechanical properties investigation on single-wall ZrO2 nanotubes: A finite element method with equivalent Poisson's ratio for chemical bonds

    Science.gov (United States)

    Yang, Xiao; Li, Huijian; Hu, Minzheng; Liu, Zeliang; Wärnå, John; Cao, Yuying; Ahuja, Rajeev; Luo, Wei

    2018-04-01

    A method to obtain the equivalent Poisson's ratio in chemical bonds as classical beams with finite element method was proposed from experimental data. The UFF (Universal Force Field) method was employed to calculate the elastic force constants of Zrsbnd O bonds. By applying the equivalent Poisson's ratio, the mechanical properties of single-wall ZrNTs (ZrO2 nanotubes) were investigated by finite element analysis. The nanotubes' Young's modulus (Y), Poisson's ratio (ν) of ZrNTs as function of diameters, length and chirality have been discussed, respectively. We found that the Young's modulus of single-wall ZrNTs is calculated to be between 350 and 420 GPa.

  19. Not all Anchors Weigh Equally.

    Science.gov (United States)

    Greenstein, Michael; Velazquez, Alexandra

    2017-11-01

    The anchoring bias is a reliable effect wherein a person's judgments are affected by initially presented information, but it is unknown specifically why this effect occurs. Research examining this bias suggests that elements of both numeric and semantic priming may be involved. To examine this, the present research used a phenomenon wherein people treat numeric information presented differently in Arabic numeral or verbal formats. We presented participants with one of many forms of an anchor that represented the same value (e.g., twelve hundred or 1,200). Thus, we could examine how a concept's meaning and its absolute numeric value affect anchoring. Experiments 1 and 2 showed that people respond to Arabic and verbal anchors differently. Experiment 3 showed that these differences occurred largely because people tend to think of numbers in digit format. This suggests that one's conceptual understanding of the anchored information matters more than its strict numeric value.

  20. Analysis of Anchoring Mechanism of Fully Grouted Prestressed Anchor

    Directory of Open Access Journals (Sweden)

    WEN Zhi-jie

    2014-01-01

    Full Text Available Some researchers have been carried out on analysis of the influence of the full grouted prestressed anchor shape of borehole wall on its carrying capacity. Based on the self-affine fractal feature of anchor borehole wall structural plane, the relation equation among structural plane shear strength, liquid injection pressure, tensile load and structural plane fractal dimension D was built, the instability judgment criterion of anchoring bearing strata and rock structural plane was determined, the solving equations of disintegrated rock support density were derived. Based on the experimental results, the theoretical basis of support design under the disintegrated rock condition was offered.

  1. Unlocking the Electrocatalytic Activity of Chemically Inert Amorphous Carbon-Nitrogen for Oxygen Reduction: Discerning and Refactoring Chaotic Bonds

    DEFF Research Database (Denmark)

    Zhang, Caihong; Zhang, Wei; Wang, Dong

    2017-01-01

    Mild annealing enables inactive nitrogen (N)-doped amorphous carbon (a-C) films abundant with chaotic bonds prepared by magnetron sputtering to become effective for the oxygen reduction reaction (ORR) by virtue of generating pyridinic N. The rhythmic variation of ORR activity elaborates well...... on the subtle evolution of the amorphous C−N bonds conferred by spectroscopic analysis....

  2. Orbital Exponent Optimization in Elementary VB Calculations of the Chemical Bond in the Ground State of Simple Molecular Systems

    Science.gov (United States)

    Magnasco, Valerio

    2008-01-01

    Orbital exponent optimization in the elementary ab-initio VB calculation of the ground states of H[subscript 2][superscript +], H[subscript 2], He[subscript 2][superscript +], He[subscript 2] gives a fair description of the exchange-overlap component of the interatomic interaction that is important in the bond region. Correct bond lengths and…

  3. BiOBr@SiO2 flower-like nanospheres chemically-bonded on cement-based materials for photocatalysis

    Science.gov (United States)

    Wang, Dan; Hou, Pengkun; Yang, Ping; Cheng, Xin

    2018-02-01

    Endowment of photocatalytic property on the surface of concrete structure can contribute to the self-cleaning of the structure and purification of the polluted environment. We developed a nano-structured BiOBr@SiO2 photocatalyst and innovatively used for surface-treatment of cement-based materials with the hope of attaining the photocatalytic property in visible-light region and surface modification/densification performances. The SiO2 layer on the flower-like BiOBr@SiO2 helps to maintain a stable distribution of the photocatalyst, as well as achieving a chemical bonding between the coating and the cement matrix. Results showed that the color fading rate of during the degradation of Rhodamine B dye of the BiOBr-cem sample is 2 times higher compared with the commonly studied C, N-TiO2-cem sample. The photo-degradation rates of samples BiOBr-cem and BiOBr@SiO2-cem are 93 and 81% within 150 min, respectively, while sample BiOBr@SiO2-cem reveals a denser and smoother surface after curing for 28 days and pore-filling effect at size within 0.01-0.2 μm when compared with untreated samples. Moreover, additional C-S-H gel can be formed due to the pozzolanic reaction between BiOBr@SiO2 and the hardened cement matrix. Both advantages of the BiOBr@SiO2 favor its application for surface-treatment of hardened cement-based material to acquire an improved surface quality, as well as durable photocatalytic functionality.

  4. Tailoring the surface chemical bond states of the NbN films by doping Ag: Achieving hard hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ping; Zhang, Kan; Du, Suxuan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Meng, Qingnan [College of Construction Engineering, Jilin University, Changchun, 130026 (China); He, Xin [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Wang, Shuo [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Wen, Mao, E-mail: wenmao225@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Zheng, Weitao, E-mail: WTZheng@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China)

    2017-06-15

    Highlights: • Intrinsically hydrophilic NbN films can transfer to hydrophobic Nb-Ag-N films by doping Ag atoms into NbN sublattice. • Solute Ag can promote that the hydrophobic Ag{sub 2}O groups formed on the Nb-Ag-N film surface through self-oxidation. • The present work may provide a straightforward approach for the production of robust hydrophobic ceramic surfaces. - Abstract: Robust hydrophobic surfaces based on ceramics capable of withstanding harsh conditions such as abrasion, erosion and high temperature, are required in a broad range of applications. The metal cations with coordinative saturation or low electronegativity are commonly chosen to achieve the intrinsically hydrophobic ceramic by reducing Lewis acidity, and thus the ceramic systems are limited. In this work, we present a different picture that robust hydrophobic surface with high hardness (≥20 GPa) can be fabricated through doping Ag atoms into intrinsically hydrophilic ceramic film NbN by reactive co-sputtering. The transition of wettability from hydrophilic to hydrophobic of Nb-Ag-N films induced by Ag doping results from the appearance of Ag{sub 2}O groups on the films surfaces through self-oxidation, because Ag cations (Ag{sup +}) in Ag{sub 2}O are the filled-shell (4d{sup 10}5S{sup 0}) electronic structure with coordinative saturation that have no tendency to interact with water. The results show that surface Ag{sub 2}O benefited for hydrophobicity comes from the solute Ag atoms rather than precipitate metal Ag, in which the more Ag atoms incorporated into Nb-sublattice are able to further improve the hydrophobicity, whereas the precipitation of Ag nanoclusters would worsen it. The present work opens a window for fabricating robust hydrophobic surface through tailoring surface chemical bond states by doping Ag into transition metal nitrides.

  5. Solvent-free thermoplastic-poly(dimethylsiloxane) bonding mediated by UV irradiation followed by gas-phase chemical deposition of an adhesion linker

    Science.gov (United States)

    Ahn, S. Y.; Lee, N. Y.

    2015-07-01

    Here, we introduce a solvent-free strategy for bonding various thermoplastic substrates with poly(dimethylsiloxane) (PDMS) using ultraviolet (UV) irradiation followed by the gas-phase chemical deposition of aminosilane on the UV-irradiated thermoplastic substrates. The thermoplastic substrates were first irradiated with UV for surface hydrophilic treatment and were then grafted with vacuum-evaporated aminosilane, where the alkoxysilane side reacted with the oxidized surface of the thermoplastic substrate. Next, the amine-terminated thermoplastic substrates were treated with corona discharge to oxidize the surface and were bonded with PDMS, which was also oxidized via corona discharge. The two substrates were then hermetically sealed and pressed under atmospheric pressure for 30 min at 60 °C. This process enabled the formation of a robust siloxane bond (Si-O-Si) between the thermoplastic substrate and PDMS under relatively mild conditions using an inexpensive and commercially available UV lamp and Tesla coil. Various thermoplastic substrates were examined for bonding with PDMS, including poly(methylmethacrylate) (PMMA), polycarbonate (PC), poly(ethyleneterephthalate) (PET) and polystyrene (PS). Surface characterizations were performed by measuring the contact angle and performing x-ray photoelectron spectroscopy analysis, and the bond strength was analyzed by conducting various mechanical force measurements such as pull, delamination, leak and burst tests. The average bond strengths for the PMMA-PDMS, PC-PDMS, PET-PDMS and PS-PDMS assemblies were measured at 823.6, 379.3, 291.2 and 229.0 kPa, respectively, confirming the highly reliable performance of the introduced bonding strategy.

  6. Deuterium isotope effects on 13C and 15N chemical shifts of intramolecularly hydrogen-bonded enaminocarbonyl derivatives of Meldrum’s and Tetronic acid

    Science.gov (United States)

    Ullah, Saif; Zhang, Wei; Hansen, Poul Erik

    2010-07-01

    Secondary deuterium isotope effects on 13C and 15N nuclear shieldings in a series of cyclic enamino-diesters and enamino-esters and acyclic enaminones and enamino-esters have been examined and analysed using NMR and DFT (B3LYP/6-31G(d,p)) methods. One-dimensional and two-dimensional NMR spectra of enaminocarbonyl and their deuterated analogues were recorded in CDCl 3 and CD 2Cl 2 at variable temperatures and assigned. 1JNH coupling constants for the derivatives of Meldrum's and tetronic acids reveal that they exist at the NH-form. It was demonstrated that deuterium isotope effects, for the hydrogen bonded compounds, due to the deuterium substitution at the nitrogen nucleus lead to large one-bond isotope effects at nitrogen, 1Δ 15N(D), and two-bond isotope effects on carbon nuclei, 2ΔC(ND), respectively. A linear correlations exist between 2ΔC(ND) and 1Δ 15N(D) whereas the correlation with δNH is divided into two. A good agreement between the experimentally observed 2ΔC(ND) and calculated dσ 13C/dR NH was obtained. A very good correlation between calculated NH bond lengths and observed NH chemical shifts is found. The observed isotope effects are shown to depend strongly on Resonance Assisted Hydrogen bonding.

  7. The role of a chemical bond in thermal expansion of TlIn1-xYbxSe2 solid solutions

    International Nuclear Information System (INIS)

    Zarbaliev, M.M.; Sardarova, N.S.; Mamedov, E.G.; Nagiyev, A.B.

    2008-01-01

    Report focuses on the study of the role of the chemical bond in the thermal expansion of solid solutions TLIn 1 -x Yb x Se 2 (0chemical bonds between atoms in a crystal lattice one and the same. It leads to the same temperature changes of enharmonic part of the thermal variations of atoms in the crystal lattice. But the level of anharmonism depends on the character interatomic interaction and temperature, which defined the value of α

  8. Chemical bond properties and Mossbauer spectroscopy in (La1-xMx)2CuO4 (M=Ba, Sr)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By using the average band-gap model, the chemical bond properties of (La1-x Mx)2CuO4(M=Ba, Sr) were calculated . The calculated covalencies for Cu(O and La(O bond in the compounds are 0.3 and 0.03 respectively. M?ssbauer isomer shifts of 57Fe doped in La2CuO4 and 119Sn doped in La2CuO4 were calculated by using the chemical surrounding factor defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified in 57Fe and 119Sn doped La2CuO4.

  9. Substrate-bound tyrosinase electrode using gold nanoparticles anchored to pyrroloquinoline quinone for a pesticide biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.Y.; Kang, M.S.; Shim, J.; Moon, S.H. [Gwangju Inst. of Science and Technology (Korea, Republic of). Dept. of Environmental Science and Engineering

    2008-07-01

    Enzyme electrodes are now being considered for use in the detection of pesticides. However, the electrodes do not have the sensitivity to detect low concentration pesticides, and external substrates are needed to measure changes in enzyme activity. This study discussed a chemical species designed to mimic a substrate in the preparation of a tyrosinase (TYR) electrode for use without substrate standard solutions. Pyrroloquinolone quinone (PQQ) was integrated within the tyrosinase electrode and used as an assimilated substrate for measuring the pesticide. Gold (Au) nanoparticles were also used to detect low concentration pesticides. The TYR was immobilized on the PQQ-anchored Au nanoparticles by a covalent bond. The tethered PQQ was then reduced by obtaining 2-electrons from the electrode. The study showed that the substrate-bound enzyme electrode can be used to detect pesticide without a substrate standard solution through the immobilization of the enzyme and the substrate on the Au nanoparticles.

  10. Electronic structure, chemical bonding, phase stability, and ground-state properties of YNi2-x(Co/Cu)xB2C

    International Nuclear Information System (INIS)

    Ravindran, P.; Johansson, B.; Eriksson, O.

    1998-01-01

    In order to understand the role of Ni site substitution on the electronic structure and chemical bonding in YNi 2 B 2 C, we have made systematic electronic-structure studies on YNi 2 B 2 C as a function of Co and Cu substitution using the supercell approach within the local density approximation. The equilibrium volume, bulk modulus (B 0 ) and its pressure derivative (B 0 ' ), Grueneisen constant (γ G ), Debye temperature (Θ D ), cohesive energy (E c ), and heat of formation (ΔH) are calculated for YNi 2-x (Co/Cu) x B 2 C (x=0,0.5,1.0,1.5,2). From the total energy, electron-energy band structure, site decomposed density of states, and charge-density contour we have analyzed the structural stability and chemical bonding behavior of YNi 2 B 2 C as a function of Co/Cu substitution. We find that the simple rigid band model successfully explains the electronic structure and structural stability of Co/Cu substitution for Ni. In addition to studying the chemical bonding and electronic structure we present a somewhat speculative analysis of the general trends in the behavior of critical temperature for superconductivity as a function of alloying. copyright 1998 The American Physical Society

  11. Application of infrared spectroscopy for study of chemical bonds in complexes of rare earth nitrates with alkylammonium nitrates

    International Nuclear Information System (INIS)

    Klimov, V.D.; Chudinov, Eh.G.

    1974-01-01

    The IR absorption spectra for the tri-n-octylamine, methyl-di-n-octylamine, their nitrates and complexes with the rare element nitrates are obtained. The IR spectra analysis of the complexes has suggested that the degree of covalent character bond of a nitrate with a metal grows with the atomic number of the element. Based on the comparison of the obtained data with those available in literature for various rare-earth complexes a conclusion is made that the bond character of a metal with nitrate groups is influenced by all ligands constituting the inner coordinating sphere. As the donor capacity of a ligand grows the covalent character of the metal-nitrate bond is enhanced. The replacement of the outer-sphere cations (trioctylammonium or methyldioctylammonium) only slightly affects the bond character of a metal with the nitrate group. The distribution coefficients in the rare-earth series are shown to decrease as the electrostatic part in the metal-nitrate declines. The phenomenon is attributed to the competition between nitrate and water for the metal bond as concurrently with the intensification of metal-nitrate covalent bond in the organic phase the strength of metal hydrates in aqueous phase grows much faster. (author)

  12. The nature of chemical bonding in actinide and lanthanide ferrocyanides determined by X-ray absorption spectroscopy and density functional theory.

    Science.gov (United States)

    Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; Scheinost, Andreas; Moisy, Philippe; Petit, Sébastien; Shuh, David K; Tyliszczak, Tolek; Den Auwer, Christophe

    2016-01-28

    The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide better resolution than actinide L3-edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L2,3-edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K4Fe(II)(CN)6, thorium hexacyanoferrate Th(IV)Fe(II)(CN)6, and neodymium hexacyanoferrate KNd(III)Fe(II)(CN)6. The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe(II)(CN)6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K4Fe(II)(CN)6), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.

  13. Efficient soluble expression of disulfide bonded proteins in the cytoplasm of Escherichia coli in fed-batch fermentations on chemically defined minimal media.

    Science.gov (United States)

    Gąciarz, Anna; Khatri, Narendar Kumar; Velez-Suberbie, M Lourdes; Saaranen, Mirva J; Uchida, Yuko; Keshavarz-Moore, Eli; Ruddock, Lloyd W

    2017-06-15

    The production of recombinant proteins containing disulfide bonds in Escherichia coli is challenging. In most cases the protein of interest needs to be either targeted to the oxidizing periplasm or expressed in the cytoplasm in the form of inclusion bodies, then solubilized and re-folded in vitro. Both of these approaches have limitations. Previously we showed that soluble expression of disulfide bonded proteins in the cytoplasm of E. coli is possible at shake flask scale with a system, known as CyDisCo, which is based on co-expression of a protein of interest along with a sulfhydryl oxidase and a disulfide bond isomerase. With CyDisCo it is possible to produce disulfide bonded proteins in the presence of intact reducing pathways in the cytoplasm. Here we scaled up production of four disulfide bonded proteins to stirred tank bioreactors and achieved high cell densities and protein yields in glucose fed-batch fermentations, using an E. coli strain (BW25113) with the cytoplasmic reducing pathways intact. Even without process optimization production of purified human single chain IgA 1 antibody fragment reached 139 mg/L and hen avidin 71 mg/L, while purified yields of human growth hormone 1 and interleukin 6 were around 1 g/L. Preliminary results show that human growth hormone 1 was also efficiently produced in fermentations of W3110 strain and when glucose was replaced with glycerol as the carbon source. Our results show for the first time that efficient production of high yields of soluble disulfide bonded proteins in the cytoplasm of E. coli with the reducing pathways intact is feasible to scale-up to bioreactor cultivations on chemically defined minimal media.

  14. Relating mechanical properties and chemical bonding in an inorganic-organic framework material: a single-crystal nanoindentation study.

    Science.gov (United States)

    Tan, Jin Chong; Furman, Joshua D; Cheetham, Anthony K

    2009-10-14

    We report the application of nanoindentation and atomic force microscopy to establish the fundamental relationships between mechanical properties and chemical bonding in a dense inorganic-organic framework material: Ce(C(2)O(4))(HCO(2)), 1. Compound 1 is a mixed-ligand 3-D hybrid which crystallizes in an orthorhombic space group, in which its three basic building blocks, i.e. the inorganic metal-oxygen-metal (M-O-M) chains and the two organic bridging ligands, (oxalate and formate) are all oriented perpendicular to one another. This unique architecture enabled us to decouple the elastic and plastic mechanical responses along the three primary axes of a single crystal to understand the contribution associated with stiff vs compliant basic building blocks. The (001)-oriented facet that features rigid oxalate ligands down the c-axis exhibits the highest stiffness and hardness (E approximately 78 GPa and H approximately 4.6 GPa). In contrast, the (010)-oriented facet was found to be the most compliant and soft (E approximately 43 GPa and H approximately 3.9 GPa), since the formate ligand, which is the more compliant building block within this framework, constitutes the primary linkages down the b-axis. Notably, intermediate stiffness and hardness (E approximately 52 GPa and H approximately 4.1 GPa) were measured on the (100)-oriented planes. This can be attributed to the Ce-O-Ce chains that zigzag down the a-axis (Ce...Ce metal centers form an angle of approximately 132 degrees) and also the fact that the 9-coordinated CeO(9) polyhedra are expected to be geometrically more compliant. Our results present the first conclusive evidence that the crystal orientation dominated by inorganic chains is not necessarily more robust from the mechanical properties standpoint. Rigid organic bridging ligands (such as oxalate), on the other hand, can be used to produce greater stiffness and hardness properties in a chosen crystallographic orientation. This study demonstrates that

  15. Mechanical and Microstructure Study of Nickel-Based ODS Alloys Processed by Mechano-Chemical Bonding and Ball Milling

    Science.gov (United States)

    Amare, Belachew N.

    Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural

  16. Isotopic studies of trans- and cis-HOCO using rotational spectroscopy: Formation, chemical bonding, and molecular structures

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Michael C., E-mail: mccarthy@cfa.harvard.edu; Martinez, Oscar; Crabtree, Kyle N.; Martin-Drumel, Marie-Aline [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA and School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138 (United States); McGuire, Brett A. [National Radio Astronomy Observatory, Charlottesville, Virginia 22901 (United States); Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA and School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138 (United States); Stanton, John F. [Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712-0165 (United States)

    2016-03-28

    HOCO is an important intermediate in combustion and atmospheric processes because the OH + CO → H + CO{sub 2} reaction represents the final step for the production of CO{sub 2} in hydrocarbon oxidation, and theoretical studies predict that this reaction proceeds via various intermediates, the most important being this radical. Isotopic investigations of trans- and cis-HOCO have been undertaken using Fourier transform microwave spectroscopy and millimeter-wave double resonance techniques in combination with a supersonic molecular beam discharge source to better understand the formation, chemical bonding, and molecular structures of this radical pair. We find that trans-HOCO can be produced almost equally well from either OH + CO or H + CO{sub 2} in our discharge source, but cis-HOCO appears to be roughly two times more abundant when starting from H + CO{sub 2}. Using isotopically labelled precursors, the OH + C{sup 18}O reaction predominately yields HOC{sup 18}O for both isomers, but H{sup 18}OCO is observed as well, typically at the level of 10%-20% that of HOC{sup 18}O; the opposite propensity is found for the {sup 18}OH + CO reaction. DO + C{sup 18}O yields similar ratios between DOC{sup 18}O and D{sup 18}OCO as those found for OH + C{sup 18}O, suggesting that some fraction of HOCO (or DOCO) may be formed from the back-reaction H + CO{sub 2}, which, at the high pressure of our gas expansion, can readily occur. The large {sup 13}C Fermi-contact term (a{sub F}) for trans- and cis-HO{sup 13}CO implicates significant unpaired electronic density in a σ-type orbital at the carbon atom, in good agreement with theoretical predictions. By correcting the experimental rotational constants for zero-point vibration motion calculated theoretically using second-order vibrational perturbation theory, precise geometrical structures have been derived for both isomers.

  17. Perovskite BaBiO3 Transformed Layered BaBiO2.5 Crystals Featuring Unusual Chemical Bonding and Luminescence.

    Science.gov (United States)

    Li, Hong; Zhao, Qing; Liu, Bo-Mei; Zhang, Jun-Ying; Li, Zhi-Yong; Guo, Shao-Qiang; Ma, Ju-Ping; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Zheng, Li-Rong; Sun, Hong-Tao

    2018-04-14

    Engineering oxygen coordination environments of cations in oxides has received intense interest thanks to the opportunities for the discovery of novel oxides with unusual properties. Here we present the successful synthesis of stoichiometric layered BaBiO2.5 enabled by a non-topotactic phase transformation of perovskite BaBiO3. By analysing the synchrotron X-ray diffraction data using the maximum entropy method/Rietveld technique, we find that Bi forms unusual chemical bondings with four oxygen atoms, featuring one ionic bonding and three covalent bondings that results in an asymmetric coordination geometry. A broad range of photophysical characterizations reveal that this peculiar structure shows near-infrared luminescence differing from conventional Bi-bearing systems. Experimental and theoretical results lead us to propose the excitonic nature of luminescence. Our work highlights that synthesizing materials with uncommon Bi-O bonding and Bi coordination geometry provides a pathway to the discovery of systems with new functionalities. We envisage that this work could inspire interest for the exploration of a range of materials containing heavier p-block elements, offering prospects for the finding of systems with unusual properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. On the problem of whether mass or chemical bonding is more important to bombardment-induced compositional changes in alloys and oxides

    International Nuclear Information System (INIS)

    Kelly, R.

    1980-01-01

    The bombardment of alloys, oxides, and halides often leads to marked compositional changes at the surface, and these changes have been attributed to an interplay of mass-dependent effects, chemical bonding, electronic processes, and diffusion. We attempt here to answer the limited question of whether, considering only alloys and oxides, mass or bonding is normally more important. The relevant theory is reviewed and extended, with mass effects being shown to be associated most explicitly with recoil sputtering and bonding effects being shown to be associated with all three of cascade sputtering, thermal sputtering, and surface segregation. As far as experimental examples are concerned, mass correlations are found to be quite unsuccessful, whereas most observations can be understood rather well in terms of bonding. Nevertheless, there is a basic problem in that the cascade component of sputtering, normally judged to be predominant, should give significantly less compositional change than is observed. Thermal sputtering would lead to more significant changes, but there is a new problem that, at least with alloys, the absolute yields are probably rather small. A combination of surface segregation with sputtering would also lead to more significant changes, but it is unclear whether segregation is rapid enough to be important in room-temperature bombardments. (orig.)

  19. Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C' scalar couplings (3hbJNC')

    Energy Technology Data Exchange (ETDEWEB)

    Bonvin, Alexandre M.J.J.; Houben, Klaartje; Guenneugues, Marc; Kaptein, Robert; Boelens, Rolf [Utrecht University, Bijvoet Center for Biomolecular Research, NMR Spectroscopy (Netherlands)

    2001-11-15

    The possibility of generating protein folds at the stage of backbone assignment using structural restraints derived from experimentally measured cross-hydrogen bond scalar couplings and secondary chemical shift information is investigated using as a test case the small {alpha}/{beta} protein chymotrypsin inhibitor 2. Dihedral angle restraints for the {phi} and {psi} angles of 32 out of 64 residues could be obtained from secondary chemical shift analysis with the TALOS program (Corneliscu et al., 1999a). This information was supplemented by 18 hydrogen-bond restraints derived from experimentally measured cross-hydrogen bond {sup 3hb}J{sub NC'} coupling constants. These experimental data were sufficient to generate structures that are as close as 1.0 A backbone rmsd from the crystal structure. The fold is, however, not uniquely defined and several solutions are generated that cannot be distinguished on the basis of violations or energetic considerations. Correct folds could be identified by combining clustering methods with knowledge-based potentials derived from structural databases.

  20. Anisotropic chemical etching of semipolar {101-bar 1-bar}/{101-bar +1} ZnO crystallographic planes: polarity versus dangling bonds

    International Nuclear Information System (INIS)

    Palacios-Lidon, E; Perez-GarcIa, B; Colchero, J; Vennegues, P; Zuniga-Perez, J; Munoz-Sanjose, V

    2009-01-01

    ZnO thin films grown by metal-organic vapor phase epitaxy along the nonpolar [112-bar] direction and exhibiting semipolar {101-bar 1-bar}/{101-bar +1} facets have been chemically etched with HCl. In order to get an insight into the influence of the ZnO wurtzite structure in the chemical reactivity of the material, Kelvin probe microscopy and convergent beam electron diffraction have been employed to unambiguously determine the absolute polarity of the facets, showing that {101-bar +1} facets are unstable upon etching in an HCl solution and transform into (000+1)/{101-bar 1-bar} planes. In contrast, {101-bar 1-bar} undergo homogeneous chemical etching perpendicular to the initial crystallographic plane. The observed etching behavior has been explained in terms of surface oxygen dangling bond density, suggesting that the macroscopic polarity plays a secondary role in the etching process.

  1. Microgravity Drill and Anchor System

    Science.gov (United States)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  2. A comparative effect of various surface chemical treatments on the resin composite-composite repair bond strength

    Directory of Open Access Journals (Sweden)

    Shaloo Gupta

    2015-01-01

    Full Text Available Aim: The aim of this in vitro study was an attempt to investigate the effect of different surface treatments on the bond strength between pre-existing composite and repair composite resin. Materials and Methods: Forty acrylic blocks were prepared in a cuboidal mould. In each block, a well of 5 mm diameter and 5 mm depth was prepared to retain the composite resin (Filtek™ Z350, 3M/ESPE. Aging of the composite discs was achieved by storing them in water at 37°C for 1 week, and after that were divided into 5 groups (n = 8 according to surface treatment: Group I- 37% phosphoric acid, Group II-10% hydrofluoric acid, Group III-30% citric acid, Group IV-7% maleic acid and Group V- Adhesive (no etchant. The etched surfaces were rinsed and dried followed by application of bonding agent (Adper™ Single Bond 2. 3M/ESPE. The repair composite was placed on aged composite, light-cured for 40 seconds and stored in water at 37°C for 1 week. Shear bond strength between the aged and the new composite resin was determined with a universal testing machine (crosshead speed of 0.5 mm/min. Statistical Analysis: The compressive shear strengths were compared for differences using ANOVA test followed by Tamhane′s T2 post hoc analysis. Results: The surface treatment with 10% hydrofluoric acid showed the maximum bond strength followed by 30% citric acid, 7% maleic acid and 37% phosphoric acid in decreasing order. Conclusion: The use of 10% hydrofluoric acid can be a good alternative for surface treatment in repair of composite resin restoration as compared to commonly used 37% orthophosphoric acid.

  3. Ge and As x-ray absorption fine structure spectroscopic study of homopolar bonding, chemical order, and topology in Ge-As-S chalcogenide glasses

    International Nuclear Information System (INIS)

    Sen, S.; Ponader, C.W.; Aitken, B.G.

    2001-01-01

    The coordination environments of Ge and As atoms in Ge x As y S 1-x-y glasses with x:y=1:2, 1:1, and 2.5:1 and with wide-ranging S contents have been studied with Ge and As K-edge x-ray absorption fine structure spectroscopy. The coordination numbers of Ge and As atoms are found to be 4 and 3, respectively, in all glasses. The first coordination shells of Ge and As atoms in the stoichiometric and S-excess glasses consist of S atoms only, implying the preservation of chemical order at least over the length scale of the first coordination shell. As-As homopolar bonds are found to appear at low and intermediate levels of S deficiency, whereas Ge-Ge bonds are formed only in strongly S-deficient glasses indicating clustering of metal atoms and violation of chemical order in S-deficient glasses. The composition-dependent variation in chemical order in chalcogenide glasses has been hypothesized to result in topological changes in the intermediate-range structural units. The role of such topological transitions in controlling the structure-property relationships in chalcogenide glasses is discussed

  4. High pressure stability analysis and chemical bonding of Ti{sub 1-x}Zr{sub x}N alloy: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Mamta; Gupta, Dinesh C., E-mail: sosfizix@gmail.com, E-mail: mamta-physics@yahoo.co.in [Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior – 474 011 (India)

    2016-05-23

    First-principles pseudo-potential calculations have been performed to analyze the stability of Ti{sub 1-x}Zr{sub x}N alloy under high pressures. The first order phase transition from B1 to B2 phase has been observed in this alloy at high pressure. The variation of lattice parameter with the change in concentration of Zr atom in Ti{sub 1-x}Zr{sub x}N is also reported in both the phases. The calculations for density of states have been performed to understand the alloying effects on chemical bonding of Ti-Zr-N alloy.

  5. Process for improving the separation efficiency in the isolation of radioactive isotopes in elementary or chemically bonded form from liquids and gases

    International Nuclear Information System (INIS)

    Schmidberger, R.; Kirch, R.; Kock, W.

    1986-01-01

    In the process for the improvement of the separation efficiency in the isolation of radioactive isotopes in elementary or chemically bonded form from liquids or gases by ion exchange and adsorption, non-radioactive isotopes of the element to be isolated are added to the fluid before the isolation, whereas at the same time a large surplus of the non-radioactive isotopes to the radioactive isotopes is achieved by addition of only small quantities of compounds of the non-radioactive isotopes. (orig./RB) [de

  6. Chemical insight from density functional modeling of molecular adsorption: Tracking the bonding and diffusion of anthracene derivatives on Cu(111) with molecular orbitals

    Science.gov (United States)

    Wyrick, Jonathan; Einstein, T. L.; Bartels, Ludwig

    2015-03-01

    We present a method of analyzing the results of density functional modeling of molecular adsorption in terms of an analogue of molecular orbitals. This approach permits intuitive chemical insight into the adsorption process. Applied to a set of anthracene derivates (anthracene, 9,10-anthraquinone, 9,10-dithioanthracene, and 9,10-diselenonanthracene), we follow the electronic states of the molecules that are involved in the bonding process and correlate them to both the molecular adsorption geometry and the species' diffusive behavior. We additionally provide computational code to easily repeat this analysis on any system.

  7. A Comprehensive Study on the Electronic State of Hydrogen in α-Phase PdH(D)x-Does a Chemical Bond Between Pd and H(D) Exist?

    Science.gov (United States)

    Dekura, Shun; Kobayashi, Hirokazu; Ikeda, Ryuichi; Maesato, Mitsuhiko; Yoshino, Haruka; Ohba, Masaaki; Ishimoto, Takayoshi; Kawaguchi, Shogo; Kubota, Yoshiki; Yoshioka, Satoru; Matsumura, Syo; Sugiyama, Takeharu; Kitagawa, Hiroshi

    2018-06-12

    The palladium(Pd)-hydrogen(H) system is one of the most famous hydrogen storage systems. Although there has been much research on β-phase PdH(D)x, we comprehensively investigated the nature of the interaction between Pd and H(D) in α-phase PdH(D)x (x H(D) chemical bond for the first time, by various in situ experimental techniques and first-principles theoretical calculations. The lattice expansion by H(D) dissolution in the α-phase lattice suggests the existence of interaction between Pd and H(D). The decrease of magnetic susceptibility and the increase of electrical resistivity indicate that the electronic states are changed by the H(D) dissolution in the α phase. In situ solid-state 1H and 2H NMR results and first-principles theoretical calculations revealed that a Pd-H(D) chemical bond exists in the α phase, but the bonding character of the Pd-H(D) chemical bond in the α phase is quite different from that in the β phase; the nature of the Pd-H(D) chemical bond in the α phase is a localized covalent bond whereas that in the β phase is a metallic bond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. New sol–gel refractory coatings on chemically-bonded sand cores for foundry applications to improve casting surface quality

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Poulsen, T.; Stage, R.K.

    2011-01-01

    Foundry refractory coatings protect bonded sand cores and moulds from producing defective castings during the casting process by providing a barrier between the core and the liquid metal. In this study, new sol–gel refractory coating on phenolic urethane cold box (PUCB) core was examined. The coa......Foundry refractory coatings protect bonded sand cores and moulds from producing defective castings during the casting process by providing a barrier between the core and the liquid metal. In this study, new sol–gel refractory coating on phenolic urethane cold box (PUCB) core was examined......–gel coated cores have better surface quality than those from uncoated cores and comparable surface quality with the commercial coatings. Therefore, the new sol–gel coating has a potential application in the foundry industry for improving the surface finish of castings thereby reducing the cost of fettling...

  9. A quantum-chemical validation about the formation of hydrogen bonds and secondary interactions in intermolecular heterocyclic systems

    Directory of Open Access Journals (Sweden)

    Boaz Galdino Oliveira

    2009-08-01

    Full Text Available We have performed a detailed theoretical study in order to understand the charge density topology of the C2H4O···C2H2 and C2H4S···C2H2 heterocyclic hydrogen-bonded complexes. Through the calculations derived from Quantum Theory of Atoms in Molecules (QTAIM, it was observed the formation of hydrogen bonds and secondary interactions. Such analysis was performed through the determination of optimized geometries at B3LYP/6-31G(d,p level of theory, by which is that QTAIM topological operators were computed, such as the electronic density ρ(r, Laplacian Ñ2ρ(r, and ellipticity ε. The examination of the hydrogen bonds has been performed through the measurement of ρ(r, Ñ2ρ(r and ε between (O···H—C and (S···H—C, whereas the secondary interaction between axial hydrogen atoms Hα and carbon of acetylene. In this insight, it was verified the existence of secondary interaction only in C2H4S···C2H2 complex because its structure is propitious to form multiple interactions.

  10. Change in local atomic and chemical bonding structures of Ge2Sb2Te5 alloys by isothermal heat treatment

    International Nuclear Information System (INIS)

    Lim, Woo-Sik; Cho, Sung-June; Lee, Hyun-Yong

    2008-01-01

    In this work, we report evaluation of the atomic-scale phase transformation characteristics in one of the most comprehensively utilized phase change materials today, Ge 2 Sb 2 Te 5 thin film. The phase transformation of Ge 2 Sb 2 Te 5 thin film from amorphous to hexagonal structure via fcc structure was confirmed by XRD measurements. The approximate values of optical energy gap are 0.72 and 0.50 eV, with slopes (B 1/2 ) in the extended absorption region of 5.3 x 10 5 and 10 x 10 5 cm -1 ·eV -1 for the amorphous and fcc-crystalline structures, respectively. In addition, X-ray photoelectron spectroscopy analysis revealed strengthening of the Te-Te bond as well as weakening of the Ge-Te bond during the amorphous-to-crystalline transition. This trend was also observed in extended X-ray absorption fine structure analysis where the Ge metallic bond lengths in the amorphous, fcc, and hexagonal structures were 0.262, 0.280, and 0.290 nm

  11. Impact of post-deposition annealing on interfacial chemical bonding states between AlGaN and ZrO2 grown by atomic layer deposition

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    The effect of post-deposition annealing on chemical bonding states at interface between Al 0.5 Ga 0.5 N and ZrO 2 grown by atomic layer deposition (ALD) is studied by angle-resolved x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that both of Al-O/Al 2p and Ga-O/Ga 3d area ratio decrease at annealing temperatures lower than 500 °C, which could be attributed to “clean up” effect of ALD-ZrO 2 on AlGaN. Compared to Ga spectra, a much larger decrease in Al-O/Al 2p ratio at a smaller take-off angle θ is observed, which indicates higher effectiveness of the passivation of Al-O bond than Ga-O bond through “clean up” effect near the interface. However, degradation of ZrO 2 /AlGaN interface quality due to re-oxidation at higher annealing temperature (>500 °C) is also found. The XPS spectra clearly reveal that Al atoms at ZrO 2 /AlGaN interface are easier to get oxidized as compared with Ga atoms

  12. The Different Sensitive Behaviors of a Hydrogen-Bond Acidic Polymer-Coated SAW Sensor for Chemical Warfare Agents and Their Simulants

    Directory of Open Access Journals (Sweden)

    Yin Long

    2015-07-01

    Full Text Available A linear hydrogen-bond acidic (HBA linear functionalized polymer (PLF, was deposited onto a bare surface acoustic wave (SAW device to fabricate a chemical sensor. Real-time responses of the sensor to a series of compounds including sarin (GB, dimethyl methylphosphonate (DMMP, mustard gas (HD, chloroethyl ethyl sulphide (2-CEES, 1,5-dichloropentane (DCP and some organic solvents were studied. The results show that the sensor is highly sensitive to GB and DMMP, and has low sensitivity to HD and DCP, as expected. However, the sensor possesses an unexpected high sensitivity toward 2-CEES. This good sensing performance can’t be solely or mainly attributed to the dipole-dipole interaction since the sensor is not sensitive to some high polarity solvents. We believe the lone pair electrons around the sulphur atom of 2-CEES provide an electron-rich site, which facilitates the formation of hydrogen bonding between PLF and 2-CEES. On the contrary, the electron cloud on the sulphur atom of the HD molecule is offset or depleted by its two neighbouring strong electron-withdrawing groups, hence, hydrogen bonding can hardly be formed.

  13. The Holding Power of Anchors

    Indian Academy of Sciences (India)

    as the chain begins to drag along the ground; and it also serves, by lying flat on the ground, to keep the palm set at the correct angle as it buries itself. In stockless anchors there are two digging blades set on opposite sides of the shank, and hinged to it by a horizontal hinge which allows them to set themselves at the correct.

  14. Synthesis and investigation of the structure and chemical properties of acyclic compounds of bicoordinated phosphorus with a phosphorus-carbon (p-p)/sub π/ bond

    International Nuclear Information System (INIS)

    Markovskii, L.N.; Romanenko, V.D.

    1987-01-01

    Five types of reactions of phosphoalkenes can be distinguished according to the nature of the change in the coordination number and valence of the phosphorus atom in the course of chemical conversions. There are: reactions of cyclodimerization, cycloaddition, and 1,2-addition at the P-C double bond; formation of compounds of tricoordinated pentavalent phosphorus; formation of tetracoordinated phosphorus compounds; reactions of functionalization occurring without a change in the valence and coordination number of the phosphorus atom; and reactions of 1,2-elimination, leading to compounds of monocoordinated phosphorus. This paper reviews each of these reactions in detail, using double-resonance hydrogen 1 and phosphorus 31 NMR spectra and analyzing the acquired chemical shift and spin-spin coupling constants, and also demonstrates the complexation of phosphorus with several metals

  15. NbF5 and TaF5: Assignment of 19F NMR resonances and chemical bond analysis from GIPAW calculations

    International Nuclear Information System (INIS)

    Biswal, Mamata; Body, Monique; Legein, Christophe; Sadoc, Aymeric; Boucher, Florent

    2013-01-01

    The 19 F isotropic chemical shifts (δ iso ) of two isomorphic compounds, NbF 5 and TaF 5 , which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D 19 F MAS NMR spectra. In parallel, the corresponding 19 F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M 4 F 20 ] units of NbF 5 and TaF 5 being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the 19 F NMR lines of NbF 5 and TaF 5 is obtained, ensured by the linearity between experimental 19 F δ iso values and calculated 19 F isotropic chemical shielding σ iso values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF 5 . The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the 19 F NMR lines of NbF 5 , distorted multiplets, arising from 1 J-coupling and residual dipolar coupling between the 19 F and 93 Nb nuclei, were simulated yielding to values of 93 Nb– 19 F 1 J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the 19 F NMR lines of NbF 5 and TaF 5 allow establishing relationships between the 19 F δ iso values, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the

  16. X-ray study of chemical bonding in actinides(IV) and lanthanides(III) hexa-cyanoferrates

    International Nuclear Information System (INIS)

    Dumas, T.

    2011-01-01

    Bimetallic cyanide molecular solids derived from Prussian blue are well known to foster long-range magnetic ordering and show an intense inter-valence charge transfer band resulting from an exchange interaction through the cyanide-bridge. For those reasons the ferrocyanide and ferricyanide building blocks have been chosen to study electronic delocalization and covalent character in actinide bonding using an experimental and theoretical approach based on X-ray absorption spectroscopy. In 2001, the actinide (IV) and early lanthanides (III) hexacyanoferrate have been found by powder X-ray diffraction to be isostructural (hexagonal, P6 3 /m group). Here, extended X-ray Absorption Fine Structure (EXAFS) at the iron K-edge and actinide L 3 -edge have been undertaken to probe the local environment of both actinides and iron cations. In an effort to describe the cyano bridge, a double edge fitting procedure including both iron and actinide edges and based on multiple scattering approach has been developed. We have also investigated the electronic properties of these molecular solids. Low energy electronic transitions have been used iron L 2,3 edge, nitrogen and carbon K-edge and also actinides N 4,5 edge to directly probe the valence molecular orbitals of the complex. Using a phenomenological approach, a clear distinctive behaviour between actinides and lanthanides has been shown. Then a theoretical approach using quantum chemistry calculation has shown more specifically the effect of covalency in the actinide-ferrocyanide bond. More specifically, π interactions were underlined by both theoretical and experimental methods. Finally, in agreement with the ionic character of the lanthanide bonding no inter-valence charge transfer has been observed in the corresponding optical spectra of these compounds. On the contrary, optical spectra for actinides adducts (except for thorium) show an intense inter-valence charge transfer band like in the transition metal cases which is

  17. Socialization of didactic units for teaching-learning of chemical bond to students of basic course in high school

    Directory of Open Access Journals (Sweden)

    Mercedes Cárdenas-Ojeda

    2016-12-01

    with the complexity this demands. The research is empirical with the constructivist point or view. The test Covalent Bond and its structure was applied as a diagnostic tool to 42 students of Chemistry and Bachelor of Natural Science and Environmental Education of the Universidad Pedagógica y Tecnológica de Colombia, (UPTC the perception of this topic becomes a field that allows to explain the natural phenomena and its accurate explanation allows, on one hand, to avoid the students adapt conceptual mistakes, and on the other, foster meaningful learning in them.

  18. Exploring Conceptual Frameworks of Models of Atomic Structures and Periodic Variations, Chemical Bonding, and Molecular Shape and Polarity: A Comparison of Undergraduate General Chemistry Students with High and Low Levels of Content Knowledge

    Science.gov (United States)

    Wang, Chia-Yu; Barrow, Lloyd H.

    2013-01-01

    The purpose of the study was to explore students' conceptual frameworks of models of atomic structure and periodic variations, chemical bonding, and molecular shape and polarity, and how these conceptual frameworks influence their quality of explanations and ability to shift among chemical representations. This study employed a purposeful sampling…

  19. Chemical Speciation and Bond Lengths of Organic Solutes by Core-Level Spectroscopy: pH and Solvent Influence on p-Aminobenzoic Acid.

    Science.gov (United States)

    Stevens, Joanna S; Gainar, Adrian; Suljoti, Edlira; Xiao, Jie; Golnak, Ronny; Aziz, Emad F; Schroeder, Sven L M

    2015-05-04

    Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO-LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute-solvent interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Functionalized Nanostructures: Redox-Active Porphyrin Anchors for Supramolecular DNA Assemblies

    KAUST Repository

    Börjesson, Karl

    2010-09-28

    We have synthesized and studied a supramolecular system comprising a 39-mer DNA with porphyrin-modified thymidine nucleosides anchored to the surface of large unilamellar vesicles (liposomes). Liposome porphyrin binding characteristics, such as orientation, strength, homogeneity, and binding site size, was determined, suggesting that the porphyrin is well suited as a photophysical and redox-active lipid anchor, in comparison to the inert cholesterol anchor commonly used today. Furthermore, the binding characteristics and hybridization capabilities were studied as a function of anchor size and number of anchoring points, properties that are of importance for our future plans to use the addressability of these redox-active nodes in larger DNA-based nanoconstructs. Electron transfer from photoexcited porphyrin to a lipophilic benzoquinone residing in the lipid membrane was characterized by steady-state and time-resolved fluorescence and verified by femtosecond transient absorption. © 2010 American Chemical Society.

  1. Nominal Anchors in the CIS

    OpenAIRE

    Peter M Keller; Thomas J Richardson

    2003-01-01

    Monetary policy has become increasingly important in the countries of the Commonwealth of Independent States (CIS) as fiscal adjustment and structural reforms have taken root. Inflation has been brought down to relatively low levels in almost all of these countries, raising the question of what should be the appropriate nominal anchor at this stage. Formally, almost all CIS countries have floating exchange rate regimes, yet in practice they manage their exchange rates very heavily, perhaps be...

  2. A quantitative assay of cortisol in human plasma by high performance liquid chromatography using a selective chemically bonded stationary phase

    NARCIS (Netherlands)

    van den Berg, J.H.M.; Mol, C.R.; Deelder, R.S.; Thijssen, J.H.H.

    1977-01-01

    The extraction and subsequent liquid chromatographic analysis of human plasma samples for cortisol is described. Extraction and chromatography are optimized, resulting in a recovery for cortisol of 96% and a detection limit of 1 microgram cortisol in 100 ml plasma. The application of two chemically

  3. Electron densities and chemical bonding in TiC, TiN and TiO derived from energy band calculations

    International Nuclear Information System (INIS)

    Blaha, P.

    1983-10-01

    It was the aim of this paper to describe the chemical bonding of TiC, TiN and TiO by means of energy bands and electron densities. Using the respective potentials we have calculated the bandstructure of a finer k-grid with the linearized APW method to obtain accurate densities of states (DOS). These DOS wer partitioned into local partial contributions and the metal d DOS were further decomposed into tsub(2g) and esub(g) symmetry components in order to additionally characterize bonding. The electron densities corresponding to the occupied valence states are obtained from the LAPW calculations. They provide further insight into characteristic trends in the series from TiC to TiO: around the nonmetal site the density shows increasing localisation; around the metal site the deviation from spherical symmetry changes from esub(g) to tsub(2g). Electron density plots of characteristic band states allow to describe different types of bonding occurring in these systems. For TiC and TiN recent measurements of the electron densities exist for samples of TiCsub(0.94) and TiNsub(0.99), where defects cause static displacements of the Ti atoms. If this effect can be compensated by an atomic model one hopefully can extrapolate to stoichiometric composition. This procedure allows a comparison with structure factors derived from theoretical electron densities. The agreement for TiN is very good. For TiC the extrapolated data agree in terms of the deviations from spherical symmetry near the Ti site with the LAPW data, but the densities around both atoms are more localized than in theory. An explanation could be: a) the defects affect the electronic structure in TiCsub(0.94) with respect to TiCsub(1.0): b) the applied atomic model does not properly extrapolate to stoichiometry, because parameters of this model correlate or become unphysical. (Author)

  4. Shear bond strength evaluation of chemically-cured and light-cured orthodontic adhesives after enamel deproteinization with 5.25% sodium hypochlorite

    Science.gov (United States)

    Salim, J. C.; Krisnawati; Purbiati, M.

    2017-08-01

    This study aimed to assess the effect of enamel deproteinization with 5.25% sodium hypochlorite (NaOCl) before etching on the shear bond strength (SBS) of Unite (UN; 3M Unitek) and Xihu-BIOM adhesive (XB). Fifty-two maxillary first premolars were divided into four groups: (1) UN and (2) XB according to manufacturer’s recommendation and (3) UN and (4) XB deproteinized with 5.25% NaOCl. Brackets were bonded, and a mechanical test was performed using a universal testing machine. The mean SBS value for groups A1, A2, B1, and B2 was 13.51 ± 2.552, 14.36 ± 2.902, 16.43 ± 2.615, and 13.05 ± 2.348 MPa, respectively. A statistically significant difference in SBSs was observed between chemically cured groups and between group B (p 0.05). NaOCl enamel deproteinization before acid etching has a significant effect on the SBS of Unite adhesive, but not on that of the Xihu-BIOM adhesive. Furthermore, a significant difference in the SBS of Unite and Xihu-BIOM adhesives within the enamel deproteinization group was observed in this study.

  5. Effect of the valence electron concentration on the bulk modulus and chemical bonding in Ta2AC and Zr2AC (A=Al, Si, and P)

    International Nuclear Information System (INIS)

    Schneider, Jochen M.; Music, Denis; Sun Zhimei

    2005-01-01

    We have studied the effect of the valence electron concentration, on the bulk modulus and the chemical bonding in Ta 2 AC and Zr 2 AC (A=Al, Si, and P) by means of ab initio calculations. Our equilibrium volume and the hexagonal ratio (c/a) agree well (within 2.7% and 1.2%, respectively) with previously published experimental data for Ta 2 AlC. The bulk moduli of both Ta 2 AC and Zr 2 AC increase as Al is substituted with Si and P by 13.1% and 20.1%, respectively. This can be understood since the substitution is associated with an increased valence electron concentration, resulting in band filling and an extensive increase in cohesion

  6. The chemical bonds effect of anthocyanin and chlorophyll dyes on TiO2 for dye-sensitized solar cell (DSSC)

    Science.gov (United States)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2017-11-01

    Anthocyanin and chlorophyll dyes have been blended as the photosensitizer of Dye-Sensitized Solar Cell (DSSC). The results study showed the effect of chemical bond dyes on TiO2 and the efficiency of DSSC. Ratio blend of the anthocyanin and chlorophyll dyes are 1:1. The absorbance of dyes and TiO2 were characterized using UV-Vis Spectrophotometer. The chemical bonds contained in TiO2-dyes were characterized using FT-IR spectrophotometer. The efficiency of DSSC was calculated using I-V meter. The absorption spectra of chlorophyll: anthocyanin blend dye solutions and TiO2 films can increase after the dye adsorption. Absorbance characterization of anthocyanin and chlorophyll dye blend solutions showed three peaks at the wavelength of 412 nm; 535.5 nm; and 656.5 nm. Absorbance characterization of spinach before being blend with anthocyanin dyes solutions showed two peaks at the wavelength of 431 nm and 665.5 nm. The absorption spectra of TiO2 films can increase after the dyes adsorption at the wavelength of 400 nm. FT-IR spectra of TiO2 founded the functional groups C-Br, C=C, and O-H. The functional groups founded in anthocyanin: chlorophyll dye blended on the surface of TiO2 are C-Br, C-O, O-H, C-H, C=C, C=O, and O-H. The result showed that the greatest efficiency of 0.0544% at dye red cabbage-spinach. Adsorption blends of anthocyanin and chlorophyll dyes on the surface of TiO2 can be used as the photosensitizer for DSSC.

  7. Rod like attapulgite/poly(ethylene terephthalate nanocomposites with chemical bonding between the polymer chain and the filler

    Directory of Open Access Journals (Sweden)

    Q. Fu

    2012-08-01

    Full Text Available Poly(ethylene terephthalate (PET nanocomposites containing rod-like silicate attapulgite (AT were prepared via in situ polymerization. It is presented that PET chains identical to the matrix have been successfully grafted onto simple organically pre-modified AT nanorods (MAT surface during the in situ polymerization process. The covalent bonding at the interface was confirmed by Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (TGA. The content of grafted PET polymer on the surface of MAT was about 26 wt%. This high grafting density greatly improved the dispersion of fillers, interfacial adhesion as well as the significant confinement of the segmental motion of PET, as compared to the nanocomposites of PET/pristine AT (PET/AT. Owing to the unique interfacial structure in PET/MAT composites, their thermal and mechanical properties have been greatly improved. Compared with neat PET, the elastic modulus and the yield strength of PET/MAT were significantly improved by about 39.5 and 36.8%, respectively, by incorporating only 2 wt % MAT. Our work provides a novel route to fabricate advanced PET nanocomposites using rod-like attapulgite as fillers, which has great potential for industrial applications.

  8. Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation

    Science.gov (United States)

    Hoven, Corey V.; Wang, Huiping; Elbing, Mark; Garner, Logan; Winkelhaus, Daniel; Bazan, Guillermo C.

    2010-03-01

    Widely used solid-state devices fabricated with inorganic semiconductors, including light-emitting diodes and solar cells, derive much of their function from the p-n junction. Such junctions lead to diode characteristics and are attained when p-doped and n-doped materials come into contact with each other. Achieving bilayer p-n junctions with semiconducting polymers has been hindered by difficulties in the deposition of thin films with independent p-doped and n-doped layers. Here we report on how to achieve permanently fixed organic p-n heterojunctions by using a cationic conjugated polyelectrolyte with fluoride counteranions and an underlayer composed of a neutral conjugated polymer bearing anion-trapping functional groups. Application of a bias leads to charge injection and fluoride migration into the neutral layer, where irreversible covalent bond formation takes place. After the initial charging and doping, one obtains devices with no delay in the turn on of light-emitting electrochemical behaviour and excellent current rectification. Such devices highlight how mobile ions in organic media can open opportunities to realize device structures in ways that do not have analogies in the world of silicon and promise new opportunities for integrating organic materials within technologies now dominated by inorganic semiconductors.

  9. NbF{sub 5} and TaF{sub 5}: Assignment of {sup 19}F NMR resonances and chemical bond analysis from GIPAW calculations

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Mamata, E-mail: Mamata.Biswal-Susanta_Kumar_Nayak.Etu@univ-lemans.fr [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France); Body, Monique, E-mail: monique.body@univ-lemans.fr [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France); Legein, Christophe, E-mail: christophe.legein@univ-lemans.fr [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France); Sadoc, Aymeric, E-mail: Aymeric.Sadoc@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Boucher, Florent, E-mail: Florent.Boucher@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2013-11-15

    The {sup 19}F isotropic chemical shifts (δ{sub iso}) of two isomorphic compounds, NbF{sub 5} and TaF{sub 5}, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D {sup 19}F MAS NMR spectra. In parallel, the corresponding {sup 19}F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M{sub 4}F{sub 20}] units of NbF{sub 5} and TaF{sub 5} being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained, ensured by the linearity between experimental {sup 19}F δ{sub iso} values and calculated {sup 19}F isotropic chemical shielding σ{sub iso} values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF{sub 5}. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the {sup 19}F NMR lines of NbF{sub 5}, distorted multiplets, arising from {sup 1}J-coupling and residual dipolar coupling between the {sup 19}F and {sup 93}Nb nuclei, were simulated yielding to values of {sup 93}Nb–{sup 19}F {sup 1}J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} allow establishing relationships between the {sup 19}F δ{sub iso} values, the nature of the fluorine atoms

  10. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    Science.gov (United States)

    Wang, Jimin; Li, Yue; Modis, Yorgo

    2014-01-01

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. PMID:24725935

  11. Curvature evolution of 200 mm diameter GaN-on-insulator wafer fabricated through metalorganic chemical vapor deposition and bonding

    Science.gov (United States)

    Zhang, Li; Lee, Kwang Hong; Kadir, Abdul; Wang, Yue; Lee, Kenneth E.; Tan, Chuan Seng; Chua, Soo Jin; Fitzgerald, Eugene A.

    2018-05-01

    Crack-free 200 mm diameter N-polar GaN-on-insulator (GaN-OI) wafers are demonstrated by the transfer of metalorganic chemical vapor deposition (MOCVD)-grown Ga-polar GaN layers from Si(111) wafers onto SiO2/Si(100) wafers. The wafer curvature of the GaN-OI wafers after the removal of the original Si(111) substrate is correlated with the wafer curvature of the starting GaN-on-Si wafers and the voids on the GaN-on-Si surface that evolve into cracks on the GaN-OI wafers. In crack-free GaN-OI wafers, the wafer curvature during the removal of the AlN nucleation layer, AlGaN strain-compensation buffer layers and GaN layers is correlated with the residual stress distribution within individual layers in the GaN-OI wafer.

  12. FTIR, FT-Raman, UV-Visible spectra and quantum chemical calculations of allantoin molecule and its hydrogen bonded dimers.

    Science.gov (United States)

    Alam, Mohammad Jane; Ahmad, Shabbir

    2015-02-05

    FTIR, FT-Raman and electronic spectra of allantoin molecule are recorded and investigated using DFT and MP2 methods with 6-311++G(d,p) basis set. The molecular structure, anharmonic vibrational spectra, natural atomic charges, non-linear optical properties, etc. have been computed for the ground state of allantoin. The anharmonic vibrational frequencies are calculated using PT2 algorithm (Barone method) as well as VSCF and CC-VSCF methods. These methods yield results that are in remarkable agreement with the experiment. The coupling strengths between pairs of modes are also calculated using coupling integral based on 2MR-QFF approximation. The simulations on allantoin dimers have been also performed at B3LYP/6-311++G(d,p) level of theory to investigate the effect of the intermolecular interactions on the molecular structure and vibrational frequencies of the monomer. Vibrational assignments are made with the great accuracy using PED calculations and animated modes. The combination and overtone bands have been also identified in the FTIR spectrum with the help of anharmonic computations. The electronic spectra are simulated in gas and solution at TD-B3LYP/6-311++G(d,p) level of theory. The important global quantities such as electro-negativity, electronic chemical potential, electrophilicity index, chemical hardness and softness based on HOMO, LUMO energy eigenvalues are also computed. NBO analysis has been performed for monomer and dimers of allantoin at B3LYP/6-311++G(d,p) level of theory. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Anchoring platinum on graphene using metallic adatoms: a first principles investigation

    International Nuclear Information System (INIS)

    Sen, F G; Alpas, A T; Qi, Y

    2012-01-01

    First principles calculations based on spin-polarized density functional theory were used to identify metallic adatoms that would strengthen the Pt(111)/graphene interface (with a low work of separation of 0.009 J m -2 ), when the adatom was placed between the Pt(111) and the graphene. It was shown that the strength of the Pt-adatom bond, which had a metallic character, increased with the amount of charge transferred from the adatom to the Pt. The carbon-adatom bond, on the other hand, had a mixed ionic and covalent character and was weaker than the Pt-adatom bond for each of the 25 elements considered. Consequently, the total Pt(111)/graphene interface strength and, hence, the anchoring effect of the adatom were controlled by the carbon-adatom bond strength. Metals with unfilled d orbitals increased the Pt/graphene interface strength to above 0.5 J m -2 . The carbon-adatom bond strength was proportional to the ratio between the charge transferred from the adatom to the graphene (ΔZ C ) and the charge transferred to the Pt surface (ΔZ Pt ); i.e., the ΔZ C /ΔZ Pt ratio defined the ability of an adatom to anchor Pt to graphene. For Ir, Os, Ru, Rh and Re, ΔZ C /ΔZ Pt > 1.0, making these elements the most effective adatoms for anchoring Pt to graphene. (paper)

  14. Experimental testing of anchoring devices for bottom rails in partially anchored timber frame shear walls

    OpenAIRE

    Caprolu, Giuseppe

    2011-01-01

    Källsner and Girhammar have presented a new plastic design method of wood-framed shear walls at ultimate limit state. This method allows the designer to calculate the load-carrying capacity of shear walls partially anchored, where the leading stud is not anchored against the uplift.The anchorage system of shear walls is provided from anchor bolts and hold downs. Anchor bolts provide horizontal shear continuity between the bottom rail and the foundation. Hold downs are directly connected from ...

  15. Characterizing the flow of stirred vessels with anchor type impellers

    Directory of Open Access Journals (Sweden)

    S.M.C. Peixoto

    2000-12-01

    Full Text Available Despite its importance in chemical industries, there are few works which studies anchor type impellers and only a fraction of the works investigate these systems under a computational approach. The great majority refers to turbine impellers, specially Rushton turbines, under turbulent flow. Anchor impellers are used specially for highly viscous flow, typical of polymer reactions. The viscosity is normally in the range 1000-10000 cp. Since this range of viscosity describe highly viscous flows, the reactions for anchor agitated systems are normally carried out under laminar flow. This work presents a detailed computational fluid dynamics (CFD approach to study the behaviour of stirred vessels using anchor impellers. The axial plane of the tank, which is being modelled, is divided into small control volumes, which collectively is referred to as the mesh, or grid. In each of these cells the momentum balance, energy and mass conservation, which describes the model, are rewritten algebraically using the finite volumes method to relate such variables as velocity, pressure and temperature to values in neighbouring cells. The equations are then solved numerically, and the results yield the flow corresponding to the model. Since the geometry of a vessel with anchor impellers strictly calls for a three dimensional method, an approximation is made to account for the effect of the blades (Kuncewics, 1992. The main objective of this work is to give a detailed description of the flow generated by this axial impeller with a view to indicate ways in which the design and operation of these systems can be improved.

  16. Numerical Simulation of Electro-Mechanical Impedance Response in Cable-Anchor Connection Interface

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Kim, Jeong Tae

    2011-01-01

    In this study, a finite element(FE) analysis on electro-mechanical impedance response of cable-anchor connection interface under various anchor force is presented. In order to achieve the objective, the following approaches are implemented. Firstly, an interface washer coupled with piezoelectric(PZT) material is designed for monitoring cable-force loss. The interface washer is a small aluminum plate on which a PZT patch is surface-bonded. Cable-force loss could be monitored by installing the interface washer between the anchor plate and the anchorage of cable-anchor connection and examining the changes of impedance of the interface washer. Secondly, a FE model for cable-anchor connection is established to examine the effect of cable-force on impedance response of interface washer. Also, the effects of geometrical and material properties of the interface washer on impedance responses under various cable-forces are investigated. Finally, validation of the FE analysis is experimentally evaluated by a lab-scale cable-anchor connection

  17. Nitrilotris(methylenephosphonato)potassium K[μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3}H{sub 4}]: Synthesis, structure, and the nature of the K–O chemical bond

    Energy Technology Data Exchange (ETDEWEB)

    Somov, N. V., E-mail: somov@phys.unn.ru [Lobachevsky State University of Nizhni Novgorod (Russian Federation); Chausov, F. F., E-mail: xps@ftiudm.ru [Russian Academy of Sciences, Physical-Technical Institute, Ural Branch (Russian Federation); Zakirova, R. M., E-mail: ftt@udsu.ru [Udmurt State University (Russian Federation)

    2016-07-15

    The crystal structure of nitrilotris(methylenephosphonato)potassium K[μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3}H{sub 4}]—a three-dimensional coordination polymer—was determined. The potassium atom is coordinated by seven oxygen atoms belonging to the six nearest ligand molecules, resulting in distorted monocapped octahedral coordination geometry. The complex contains the four-membered chelate ring K–O–P–O. The K–O chemical bond is predominantly ionic. Meanwhile, the bonds of the potassium atom with some oxygen atoms have a noticeable covalent component. In addition to coordination bonds, the molecules in the crystal packing are linked by hydrogen bonds.

  18. Research on Anchorage Performance of Grouting Anchor Connection of Precast Concrete Structure

    Science.gov (United States)

    Wang, Donghui; Liu, Xudong; Wang, Sheng; Cao, Xixi

    2018-03-01

    The bonding of grouted anchor bars is one of the vertical connection forms of steel bars in fabricated concrete structures. The performance of grouted connection is mainly affected by the anchorage length and lap length of steel bars. The mechanisms of bond and anchorage between steel bar and concrete are analyzed, and the factors that influence the anchorage performance of steel bar are systematically summarized. Results show that the bond and anchorage performance of steel and concrete have been studied widely, but there are still shortcomings, and the connection forms need to be further improved.

  19. Bond Issues.

    Science.gov (United States)

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  20. Survival of bonded lingual retainers with chemical or photo polymerization over a 2-year period: a single-center, randomized controlled clinical trial.

    Science.gov (United States)

    Pandis, Nikolaos; Fleming, Padhraig S; Kloukos, Dimitrios; Polychronopoulou, Argy; Katsaros, Christos; Eliades, Theodore

    2013-08-01

    The objective of this trial was to compare the survival rates of mandibular lingual retainers bonded with either chemically cured or light-cured adhesive after orthodontic treatment. Patients having undergone orthodontic treatment at a private orthodontic office were randomly allocated to fixed retainers placed with chemically cured composite or light-cured composite. Eligibility criteria included no active caries, restorations, or fractures on the mandibular anterior teeth, and adequate oral hygiene. The main outcome was any type of first-time lingual retainer breakage; pattern of failure (adapted adhesive remnant index scores) was a secondary outcome. Randomization was accomplished with random permuted blocks of 20 patients with allocation concealed in sequentially numbered, opaque, sealed envelopes. Blinding was applicable for outcome assessment only. Patients were reviewed at 1, 3, and 6 months and then every 6 months after placement of the retainer until completion of the study. Data were analyzed using survival analysis including Cox regression; sensitivity analysis was carried out after data imputation for subjects lost to follow-up. Two hundred twenty patients (median age, 16 years; interquartile range, 2; range, 12-47 years) were randomized in a 1:1 ratio to either chemical or light curing. Baseline characteristics were similar between groups, the median follow-up period was 2.19 years (range, 0.003-3.64 years), and 16 patients were lost to follow-up. At a minimum follow-up of 2 years, 47 of 110 (42.7%) and 55 of 110 (50.0%) retainers had some type of failure with chemically cured and light-cured adhesive, respectively (log-rank test, P = 0.35). Data were analyzed on an intention-to-treat basis, and the hazard ratio (HR) was 1.15 (95% confidence interval [CI], 0.88-1.70; P = 0.47). There was weak evidence that age is a significant predictor for lingual retainer failures (HR, 0.96; 95% CI, 0.93-1.00; P = 0.08). Adhesive remnant index scoring was

  1. Three methods to measure RH bond energies

    International Nuclear Information System (INIS)

    Berkowitz, J.; Ellison, G.B.; Gutman, D.

    1993-01-01

    In this paper the authors compare and contrast three powerful methods for experimentally measuring bond energies in polyatomic molecules. The methods are: radical kinetics; gas phase acidity cycles; and photoionization mass spectroscopy. The knowledge of the values of bond energies are a basic piece of information to a chemist. Chemical reactions involve the making and breaking of chemical bonds. It has been shown that comparable bonds in polyatomic molecules, compared to the same bonds in radicals, can be significantly different. These bond energies can be measured in terms of bond dissociation energies

  2. Link Anchors in Images: Is there Truth?

    NARCIS (Netherlands)

    Aly, Robin; McGuinness, Kevin; Kleppe, Martijn; Ordelman, Roeland J.F.; O'Connor, Noel; de Jong, Franciska M.G.

    2012-01-01

    While automatic linking in text collections is well understood, little is known about links in images. In this work, we investigate two aspects of anchors, the origin of a link, in images: 1) the requirements of users for such anchors, e.g. the things users would like more information on, and 2)

  3. 76 FR 30301 - Commercial Acquisition; Anchor Tenancy

    Science.gov (United States)

    2011-05-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 48 CFR Part 1812 RIN 2700-AD64 Commercial... consistent with NASA's authority under Section 401 of the Commercial Space Competitiveness Act (CSCA) of 1992. NASA may enter into multi-year anchor tenancy contracts for commercial space goods or services. Anchor...

  4. Ringstone anchors from Gujarat, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S.; Sundaresh; Tripati, S.; Bandodkar, S.N.

    of Dwarka and Somanath have yielded several ringstone anchors along with other stone anchors such as triangular and grapnel types. The raw material used for these ring stones comprises basalt, sandstone and limestone. Earlier, these anchors were identified...

  5. Geometrical criteria versus quantum chemical criteria for assessment of intramolecular hydrogen bond (IMHB) interaction: A computational comparison into the effect of chlorine substitution on IMHB of salicylic acid in its lowest energy ground state conformer

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan Kumar [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India); Guchhait, Nikhil, E-mail: nikhil.guchhait@rediffmail.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India)

    2013-02-01

    Highlights: ► Intramolecular hydrogen bonding (IMHB) in salicylic acid and its chloro derivatives. ► A complex effect of +R and −I effect of chlorine substituents on IMHB energy. ► Interplay between IMHB energy and aromaticity. ► Directional nature of IMHB from quantum chemical assessment. ► Quantum chemical treatment vs. geometrical criteria to assess weak interaction. - Abstract: Density functional theory based computational study has been performed to characterize intramolecular hydrogen bonding (IMHB) interaction in a series of salicylic acid derivatives varying in chlorine substitution on the benzene ring. The molecular systems studied are salicylic acid, 5-chlorosalicylic acid, 3,5-dichlorosalicylic acid and 3,5,6-tricholorosalicylic acid. Major emphasis is rendered on the analysis of IMHB interaction by calculation of electron density ρ(r) and Laplacian ∇{sup 2}ρ(r) at the bond critical point using atoms-in-molecule theory. Topological features, energy densities based on ρ(r) through perturbing the intramolecular H-bond distances suggest that at equilibrium geometry the IMHB interaction develops certain characteristics typical of covalent interaction. The interplay between aromaticity and resonance-assisted hydrogen bonding (RAHB) is discussed using both geometrical and magnetic criteria as the descriptors of aromaticity. The optimized geometry features, molecular electrostatic potential map analysis are also found to produce a consensus view in relation with the formation of RAHB in these systems.

  6. Geometrical criteria versus quantum chemical criteria for assessment of intramolecular hydrogen bond (IMHB) interaction: A computational comparison into the effect of chlorine substitution on IMHB of salicylic acid in its lowest energy ground state conformer

    International Nuclear Information System (INIS)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2013-01-01

    Highlights: ► Intramolecular hydrogen bonding (IMHB) in salicylic acid and its chloro derivatives. ► A complex effect of +R and −I effect of chlorine substituents on IMHB energy. ► Interplay between IMHB energy and aromaticity. ► Directional nature of IMHB from quantum chemical assessment. ► Quantum chemical treatment vs. geometrical criteria to assess weak interaction. - Abstract: Density functional theory based computational study has been performed to characterize intramolecular hydrogen bonding (IMHB) interaction in a series of salicylic acid derivatives varying in chlorine substitution on the benzene ring. The molecular systems studied are salicylic acid, 5-chlorosalicylic acid, 3,5-dichlorosalicylic acid and 3,5,6-tricholorosalicylic acid. Major emphasis is rendered on the analysis of IMHB interaction by calculation of electron density ρ(r) and Laplacian ∇ 2 ρ(r) at the bond critical point using atoms-in-molecule theory. Topological features, energy densities based on ρ(r) through perturbing the intramolecular H-bond distances suggest that at equilibrium geometry the IMHB interaction develops certain characteristics typical of covalent interaction. The interplay between aromaticity and resonance-assisted hydrogen bonding (RAHB) is discussed using both geometrical and magnetic criteria as the descriptors of aromaticity. The optimized geometry features, molecular electrostatic potential map analysis are also found to produce a consensus view in relation with the formation of RAHB in these systems

  7. Rotational Spectrum, Conformational Composition, Intramolecular Hydrogen Bonding, and Quantum Chemical Calculations of Mercaptoacetonitrile (HSCH2C≡N), a Compound of Potential Astrochemical Interest.

    Science.gov (United States)

    Møllendal, Harald; Samdal, Svein; Guillemin, Jean-Claude

    2016-03-31

    The microwave spectra of mercaptoacetonitrile (HSCH2C≡N) and one deuterated species (DSCH2C≡N) were investigated in the 7.5-124 GHz spectral interval. The spectra of two conformers denoted SC and AP were assigned. The H-S-C-C chain of atoms is synclinal in SC and anti-periplanar in AP. The ground state of SC is split into two substates separated by a comparatively small energy difference resulting in closely spaced transitions with equal intensities. Several transitions of the parent species of SC deviate from Watson's Hamiltonian. Only slight improvements were obtained using a Hamiltonian that takes coupling between the two substates into account. Deviations from Watson's Hamiltonian were also observed for the parent species of AP. However, the spectrum of the deuterated species, which was investigated only for the SC conformer, fits satisfactorily to Watson's Hamiltonian. Relative intensity measurements found SC to be lower in energy than AP by 3.8(3) kJ/mol. The strength of the intramolecular hydrogen bond between the thiol and cyano groups was estimated to be ∼2.1 kJ/mol. The microwave work was augmented by quantum chemical calculations at CCSD and MP2 levels using basis sets of minimum triple-ζ quality. Mercaptoacetonitrile has astrochemical interest, and the spectra presented herein should be useful for a potential identification of this compound in the interstellar medium. Three different ways of generating mercaptoacetonitrile from compounds already found in the interstellar medium were explored by quantum chemical calculations.

  8. Analysis of chemical bond states and electrical properties of stacked AlON/HfO{sub 2} gate oxides formed by using a layer-by-layer technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Wonjoon; Lee, Jonghyun; Yang, Jungyup; Kim, Chaeok; Hong, Jinpyo; Nahm, Tschanguh; Byun, Byungsub; Kim, Moseok [Hanyang University, Seoul (Korea, Republic of)

    2006-06-15

    Stacked AlON/HfO{sub 2} thin films for gate oxides in metal-oxide-semiconductor devices are successfully prepared on Si substrates by utilizing a layer-by-layer technique integrated with an off-axis RF remote plasma sputtering process at room temperature. This off-axis structure is designed to improve the uniformity and the quality of gate oxide films. Also, a layer-by-layer technique is used to control the interface layer between the gate oxide and the Si substrate. The electrical properties of our stacked films are characterized by using capacitance versus voltage and leakage current versus voltage measurements. The stacked AlON/HfO{sub 2} gate oxide exhibits a low leakage current of about 10{sup -6} A/cm{sup 2} and a high dielectric constant value of 14.26 by effectively suppressing the interface layer between gate oxide and Si substrate. In addition, the chemical bond states and the optimum thickness of each AlON and HfO{sub 2} thin film are analyzed using X-ray photoemission spectroscopy and transmission electron microscopy measurement.

  9. Effect of surface pretreatment on interfacial chemical bonding states of atomic layer deposited ZrO2 on AlGaN

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    Atomic layer deposition (ALD) of ZrO 2 on native oxide covered (untreated) and buffered oxide etchant (BOE) treated AlGaN surface was analyzed by utilizing x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy. Evidenced by Ga–O and Al–O chemical bonds by XPS, parasitic oxidation during deposition is largely enhanced on BOE treated AlGaN surface. Due to the high reactivity of Al atoms, more prominent oxidation of Al atoms is observed, which leads to thicker interfacial layer formed on BOE treated surface. The results suggest that native oxide on AlGaN surface may serve as a protecting layer to inhibit the surface from further parasitic oxidation during ALD. The findings provide important process guidelines for the use of ALD ZrO 2 and its pre-ALD surface treatments for high-k AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors and other related device applications

  10. A study of vibrational spectra and investigations of charge transfer and chemical bonding features of 2-chloro benzimidazole based on DFT computations

    Science.gov (United States)

    Muthunatesan, S.; Ragavendran, V.

    2015-01-01

    Benzimidazoles are bicyclic heteroatomic molecules. Polycyclic heteroatomic molecules have extensive coupling of different modes leading to strong coupling of force constants associated with the various chemical bonds of the molecules. To carry out a detailed vibrational spectroscopic analysis of such a bicyclic heteroatomic molecule, FT-IR and FT-Raman spectra of 2-chloro benzimidazole (CBZ) have been recorded in the condensed phase. Density Functional Theory calculations in the B3LYP/6-31G* level have been carried out to determine the optimized geometry and vibrational frequencies. In order to obtain a close agreement between theoretical and observed frequencies and hence to perform a reliable assignment, the theoretical DFT force field was transformed from Cartesian to local symmetry co-ordinates and then scaled empirically using SQM methodology. The SQM treatment resulted in a RMS deviation of 9.4 cm-1. For visual comparison, the observed and calculated spectra are presented on a common wavenumber scale. From the NBO analysis, the electron density (ED) charge transfers in the σ* and π* antibonding orbitals and second order delocalization energies E(2) confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. The calculated Homo and Lumo energies show that charge transfer occurs within the molecule. The results obtained from the vibrational, NBO and HOMO-LUMO analyses have been properly tabulated.

  11. Phosphatidylkojibiosyl Diglyceride: metabolism and function as an anchor in bacterial cell membrane.

    Science.gov (United States)

    Pieringer, R A

    1975-07-01

    The recently discovered phosphoglycolipid, phosphatidylkojibiosyl diglyceride (PKD), was first observed as a biosynthetic by-product of glycosyl diglyceride metabolism in Streptococcus faecalis (faecium) ATCC 9790. Its structure is 1, 2-diacyl-3-O-alpha-Dglucopyranosyl-6'-O-phosphoryl- [1'', 2''-diacyl-3''-O-sn-glycerol]-alpha-D-glucopyranosyl)-sn-glycerol. The biosynthesis of phosphatidyl-kojibiosyl diglyceride occurs by a novel transphosphatidylation reaction in which a phosphatidyl glycerol to the primary alcohol function at the 6 position of the internal glucose of kojibiosyl diglyceride. The reaction is catalyzed by a membrane-derived enzyme. Phosphatidyl-kojibiosyl diglyceride is bound covalently through a phosphodiester bond to the polyglycerol phosphate moiety of membrane lipoteichoic acid from S. faecalis. Phosphatidylkojibiosyl diglyceride has four nonpolar long chain fatty acyl groups and appears to have the necessary physico-chemical properties to anchor the long hydrophilic glycerol phosphate polymer of lipoteichoic acid to the hydrophobic enviroment of the membrane of S. faecalis and probably other gram-positive bacteria as well.

  12. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock

    2014-08-01

    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  13. Nb2OsB2, with a new twofold superstructure of the U3Si2 type: Synthesis, crystal chemistry and chemical bonding

    International Nuclear Information System (INIS)

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P.T.

    2013-01-01

    The new ternary metal-rich boride, Nb 2 OsB 2 , was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U 3 Si 2 -structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B 2 dumbbells with B–B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB–LMTO–ASA), the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic Os–B, Nb–B and Nb–Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride. - Graphical abstract: Nb 2 OsB 2 is, to the best of our knowledge, the first fully characterized phase in the ternary Nb–Os–B system. It crystallizes (space group P4/mnc, 128) with a new twofold superstructure of the U 3 Si 2 structure type (space group P4/mbm, 127), and is therefore the first boride in this structure family crystallizing with a superstructure of the U 3 Si 2 structure type. We show that the distortions leading to this superstructure occurs mainly in the Nb-layer, which tries to accommodate the large osmium atoms. The consequence of this puckering is the building osmium dumbbells instead of chains along [001]. - Highlights: • First compound in the Nb–Os–B system. • New twofold superstructure of U 3 Si 2 structure type. • Puckering of Nb-layer responsible for superstructure occurrence. • Chemical bonding studied by density functional theory

  14. High and low oxidation states and special bonding situations. An investigation of f-elements, xenon and fluorine by matrix-isolation spectroscopy and quantum-chemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Vent-Schmidt, Thomas

    2015-11-30

    During this thesis, the matrix-isolation technique in conjuction with quantum-chemical calculations has been employed in order to synthesize and characterize new compounds. The focus of the study were new species of the actinide and lanthanide series, but the photochemistry of XeO{sub 4} and the polyfluorides were also investigated. Based on the experience of laser ablated uranium and thorium atoms with H{sub 2} and F{sub 2} the reaction of these actinide atoms with HF has been investigated. The main products in these experiments are HThF and HUF which contain an actinide metal in the rather scarce +II oxidation state. In addition, the deuterated compounds have also been prepared and the isotopic shifts support the assignment. The higher hydride fluorides of thorium such as HThF{sub 3}, H{sub 2}ThF{sub 2} and H{sub 3}ThF have also been observed, whereas there is only little evidence for higher uranium hydride fluorides. The different behavior of the two metals under similar reaction conditions has been investigated theoretically. Besides the hydride fluorides, the reaction of the actinide atoms with HF gives also rise to the low valent fluorides and hydrides such as AnH and AnF (An = U, Th). These compounds have already been identified in experiments using fluorine or hydrogen as reagent, but a more reliable assignment can be made in these experiments due to the lower concentration of H or F. In addition, ThF{sub 2} has been observed in these experiments and there is evidence for the unknown difluoride of uranium, which will be addressed in a future paper. Experiments with laser ablated uranium and thorium atoms were extended to the reaction of these metals with H{sub 2}Se. Previous experiments using H{sub 2}O and H{sub 2}S instead of H{sub 2}Se yielded H{sub 2}AnX (An = U, Th; X = O, S) compounds which show evidence for an actinide-chalcogenide multiple bond. The new synthesized species H{sub 2}ThSe and H{sub 2}USe are characterized by their symmetric and

  15. Spectral Theory of Chemical Bonding

    National Research Council Canada - National Science Library

    Langhoff, P. W; Boatz, J. A; Hinde, R. J; Sheehy, J. A

    2004-01-01

    .... Wave function antisymmetry in the aggregate atomic spectral-product basis is enforced by unitary transformation performed subsequent to formation of the Hamiltonian matrix, greatly simplifying its construction...

  16. Optimising hydrogen bonding in solid wood

    DEFF Research Database (Denmark)

    Engelund, Emil Tang

    2009-01-01

    The chemical bonds of wood are both covalent bonds within the wood polymers and hydrogen bonds within and between the polymers. Both types of bonds are responsible for the coherence, strength and stiffness of the material. The hydrogen bonds are more easily modified by changes in load, moisture...... and temperature distorting the internal bonding state. A problem arises when studying hydrogen bonding in wood since matched wood specimens of the same species will have very different internal bonding states. Thus, possible changes in the bonding state due to some applied treatment such as conditioning...... maintaining 100 % moisture content of the wood. The hypothesis was that this would enable a fast stress relaxation as a result of reorganization of bonds, since moisture plasticizes the material and temperature promotes faster kinetics. Hereby, all past bond distortions caused by various moisture, temperature...

  17. Direct Detection of a Chemical Equilibrium between a Localized Singlet Diradical and Its σ-Bonded Species by Time-Resolved UV/Vis and IR Spectroscopy.

    Science.gov (United States)

    Yoshidomi, Shohei; Mishima, Megumi; Seyama, Shin; Abe, Manabu; Fujiwara, Yoshihisa; Ishibashi, Taka-Aki

    2017-03-06

    Localized singlet diradicals are key intermediates in bond homolyses. The singlet diradicals are energetically much less stable than the σ-bonded species. In general, only one-way reactions from diradicals to σ-bonded species are observed. In this study, a thermal equilibrium between a singlet 1,2-diazacyclopentane-3,5-diyl diradical and the corresponding σ-bonded species was directly observed. The singlet diradical was more stable than the σ-bonded species. The solvent effect clarified key features, such as the zwitterionic character of the singlet diradical. The effect of the nitrogen atoms is discussed in detail. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effects of annealing temperatures on the morphological, mechanical, surface chemical bonding, and solar selectivity properties of sputtered TiAlSiN thin films

    International Nuclear Information System (INIS)

    Rahman, M. Mahbubur; Jiang, Zhong-Tao; Zhou, Zhi-feng; Xie, Zonghan; Yin, Chun Yang; Kabir, Humayun; Haque, Md. Mahbubul; Amri, Amun; Mondinos, Nicholas; Altarawneh, Mohammednoor

    2016-01-01

    Quaternary sputtered TiAlSiN coatings were investigated for their high temperature structural stability, surface morphology, mechanical behaviors, surface chemical bonding states, solar absorptance and thermal emittance for possible solar selective surface applications. The TiAlSiN films were synthesized, via unbalanced magnetron sputtered technology, on AISI M2 steel substrate and annealed at 500 °C - 800 °C temperature range. SEM micrographs show nanocomposite-like structure with amorphous grain boundaries. Nanoindentation analyses indicate a decrease of hardness, plastic deformation and constant yield strength for the coatings. XPS analysis show mixed Ti, Al and Si nitride and oxide as main coating components but at 800 °C the top layer of the coatings is clearly composed of only Ti and Al oxides. Synchrotron radiation XRD (SR-XRD) results indicate various Ti, Al and Si nitride and oxide phases, for the above annealing temperature range with a phase change occurring with the Fe component of the substrate. UV–Vis spectroscopy, FTIR spectroscopy studies determined a high solar selectivity, s of 24.6 for the sample annealed at 600 °C. Overall results show good structural and morphological stability of these coatings at temperatures up to 800 °C with a very good solar selectivity for real world applications. - Highlights: • TiAlSiN sputtered coatings were characterized for solar selective applications. • In situ synchrotron radiation XRD were studies show the occurrence of multiple stable phases. • A high selectivity of 24.63 has been achieved for the coatings annealed at 700 °C. • Existence of XRD phases were also confirmed by XPS measurements. • At high temperature annealing the mechanical properties of films were governed by the utmost surfaces of the films.

  19. The hyperbolic chemical bond: Fourier analysis of ground and first excited state potential energy curves of HX (X = H-Ne).

    Science.gov (United States)

    Harrison, John A

    2008-09-04

    RHF/aug-cc-pVnZ, UHF/aug-cc-pVnZ, and QCISD/aug-cc-pVnZ, n = 2-5, potential energy curves of H2 X (1) summation g (+) are analyzed by Fourier transform methods after transformation to a new coordinate system via an inverse hyperbolic cosine coordinate mapping. The Fourier frequency domain spectra are interpreted in terms of underlying mathematical behavior giving rise to distinctive features. There is a clear difference between the underlying mathematical nature of the potential energy curves calculated at the HF and full-CI levels. The method is particularly suited to the analysis of potential energy curves obtained at the highest levels of theory because the Fourier spectra are observed to be of a compact nature, with the envelope of the Fourier frequency coefficients decaying in magnitude in an exponential manner. The finite number of Fourier coefficients required to describe the CI curves allows for an optimum sampling strategy to be developed, corresponding to that required for exponential and geometric convergence. The underlying random numerical noise due to the finite convergence criterion is also a clearly identifiable feature in the Fourier spectrum. The methodology is applied to the analysis of MRCI potential energy curves for the ground and first excited states of HX (X = H-Ne). All potential energy curves exhibit structure in the Fourier spectrum consistent with the existence of resonances. The compact nature of the Fourier spectra following the inverse hyperbolic cosine coordinate mapping is highly suggestive that there is some advantage in viewing the chemical bond as having an underlying hyperbolic nature.

  20. Silica chemically bonded N-propyl kriptofix 21 and 22 with immobilized palladium nanoparticles for solid phase extraction and preconcentration of some metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj, 75914-353 (Iran, Islamic Republic of); Niknam, Khodabakhsh, E-mail: niknam@pgu.ac.ir [Chemistry Department, Faculty of Sciences, Persian Gulf University, Bushehr, 75169 (Iran, Islamic Republic of); Zamani, Saeed; Abasi Larki, Habib [Chemistry Department, Islamic Azad University, Omidiyeh Branch, Omidiyeh (Iran, Islamic Republic of); Roosta, Mostafa [Chemistry Department, Yasouj University, Yasouj, 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2013-08-01

    Silica gel chemically bonded N-propyl kriptofix 21 (SBNPK 21) and N-propyl kriptofix 22 (SBNPK 22) and subsequently immobilized with palladium nanoparticles (PNP-SBNPK 21 and PNP-SBNPK 22) to produce two new complexing lipophilic materials. Then these novel sorbents were applied for the enrichment of some metal ions and their subsequent determination by flame atomic absorption spectroscopy (FAAS). The influences of the variables including pH, amount of solid phase, sample flow rate, eluent conditions and sample volume on the metal ion recoveries were investigated. The detection limit of proposed method was in the interval 2.1–2.3 and 1.7–2.8 ng mL{sup −1} for PNP-SBNPK 21 and PNP-SBNPK 22 respectively, while the preconcentration factor was 80 for two sorbents. The relative standard deviations of recoveries were between 1.23–1.31 and 1.28–1.49 for PNP-SBNPK 21 and PNP-SBNPK 22 respectively. The method has high sorption-preconcentration efficiency even in the presence of various interfering ions. Due to the reasonable selectivity of proposed method, the relative standard deviation of recoveries of all understudied metal ions in some complicated matrices was less than 3.0%. Highlights: • Highly selective sorbents for solid phase extraction were synthesized. • The method has been successfully applied for the determination of trace metals ions. • Excellent properties of the sorbent have been illustrated in detail.

  1. Tracing the Fingerprint of Chemical Bonds within the Electron Densities of Hydrocarbons: A Comparative Analysis of the Optimized and the Promolecule Densities.

    Science.gov (United States)

    Keyvani, Zahra Alimohammadi; Shahbazian, Shant; Zahedi, Mansour

    2016-10-18

    The equivalence of the molecular graphs emerging from the comparative analysis of the optimized and the promolecule electron densities in two hundred and twenty five unsubstituted hydrocarbons was recently demonstrated [Keyvani et al. Chem. Eur. J. 2016, 22, 5003]. Thus, the molecular graph of an optimized molecular electron density is not shaped by the formation of the C-H and C-C bonds. In the present study, to trace the fingerprint of the C-H and C-C bonds in the electron densities of the same set of hydrocarbons, the amount of electron density and its Laplacian at the (3, -1) critical points associated with these bonds are derived from both optimized and promolecule densities, and compared in a newly proposed comparative analysis. The analysis not only conforms to the qualitative picture of the electron density build up between two atoms upon formation of a bond in between, but also quantifies the resulting accumulation of the electron density at the (3, -1) critical points. The comparative analysis also reveals a unified mode of density accumulation in the case of 2318 studied C-H bonds, but various modes of density accumulation are observed in the case of 1509 studied C-C bonds and they are classified into four groups. The four emerging groups do not always conform to the traditional classification based on the bond orders. Furthermore, four C-C bonds described as exotic bonds in previous studies, for example the inverted C-C bond in 1,1,1-propellane, are naturally distinguished from the analysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hydrophobic fluorine mediated switching of the hydrogen bonding site as well as orientation of water molecules in the aqueous mixture of monofluoroethanol: IR, molecular dynamics and quantum chemical studies.

    Science.gov (United States)

    Mondal, Saptarsi; Biswas, Biswajit; Nandy, Tonima; Singh, Prashant Chandra

    2017-09-20

    The local structures between water-water, alcohol-water and alcohol-alcohol have been investigated for aqueous mixtures of ethanol (ETH) and monofluoroethanol (MFE) by the deconvolution of IR bands in the OH stretching region, molecular dynamics simulation and quantum chemical calculations. It has been found that the addition of a small amount of ETH into the aqueous medium increases the strength of the hydrogen bonds between water molecules. In an aqueous mixture of MFE, the substitution of a single fluorine induces a change in the orientation as well as the hydrogen bonding site of water molecules from the oxygen to the fluorine terminal of MFE. The switching of the hydrogen bonding site of water in the aqueous mixture of MFE results in comparatively strong hydrogen bonds between MFE and water molecules as well as less clustering of water molecules, unlike the case of the aqueous mixture of ETH. These findings about the modification of a hydrogen bond network by the hydrophobic fluorine group probably make fluorinated molecules useful for pharmaceutical as well as biological applications.

  3. Anchoring effects on early autobiographical memories.

    Science.gov (United States)

    Greenberg, Daniel L; Bishara, Anthony J; Mugayar-Baldocchi, Marino A

    2017-10-01

    Studies of childhood memory typically show that our earliest memories come from between three and four years of age. This finding is not universal, however. The age estimate varies across cultures and is affected by social influences. Research from the judgments and decision-making literature suggests that these estimates might also involve a judgment under uncertainty. Therefore, they might be susceptible to less social influences such as heuristics and biases. To investigate this possibility, we conducted two experiments that used anchoring paradigms to influence participants' estimates of their age during early autobiographical memories. In Experiment 1, participants answered either a high-anchor or a low-anchor question, and were warned that the anchor was uninformative; they went on to estimate their age during their earliest autobiographical memory. In Experiment 2, we replicated Experiment 1 and extended the design to examine additional early autobiographical memories. In both experiments, participants in the low-anchor condition gave earlier age estimates than those in the high-anchor condition. These results provide new insights into the methods used to investigate autobiographical memory. Moreover, they show that reports of early autobiographical memories can be influenced by a relatively light touch - a change to a single digit in a single question.

  4. Improving performance by anchoring movement and "nerves".

    Science.gov (United States)

    Iso-Ahola, Seppo E; Dotson, Charles O; Jagodinsky, Adam E; Clark, Lily C; Smallwood, Lorraine L; Wilburn, Christopher; Weimar, Wendi H; Miller, Matthew W

    2016-10-01

    Golf's governing bodies' recent decision to ban all putting styles "anchoring one end of the club against the body" bridges an important practical problem with psychological theory. We report the first experiment testing whether anchoring provides technical and/or psychological advantage in competitive performance. Many "greats" of professional golf from Arnold Palmer and Jack Nicklaus to Tiger Woods have argued against anchoring, believing that it takes "nerves" out of competitive performance and therefore artificially levels the playing field. To shed more light on the issue, we tested participants' performance with anchored and unanchored putters under low and high pressure when controlling for the putter length. We found no statistically significant evidence for a technical advantage due to anchoring but a clear psychological advantage: participants who anchored their putters significantly outperformed unanchored counterparts under high, but not low, pressure. Results provide tentative evidence for the ban's justification from a competitive standpoint. However, before any definite conclusions can be made, more research is needed when using high-level golfers. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Study on the covalence of Cu and chemical bonding in an inorganic fullerene-like molecule, [CuCl]20[Cp*FeP5]12[Cu-(CH3CN)2+Cl-]5, by a density functional approach

    Institute of Scientific and Technical Information of China (English)

    WANG; Bingwu; XU; Guangxian; CHEN; Zhida

    2004-01-01

    The electronic structure and chemical bonding in a recently synthesized inorganic fullerene-like molecule, {[CuCl]20[Cp*FeP5]12 [Cu(CH3CN)+2Cl-]5}, has been studied by a density functional approach. Geometrical optimization of the three basic structural units of the molecule is performed with Amsterdam Density Functional Program. The results are in agreement with the experiment. Localized MO's obtained by Boys-Foster method give a clear picture of the chemical bonding in this molecule. The reason why CuCl can react with Cp*FeP5 in solvent CH3CN to form the fullerene-like molecule is explained in terms of the soft-hard Lewis acid base theory and a new concept of covalence.

  6. The Use of Comics-Based Cases in Anchored Instruction

    Science.gov (United States)

    Kneller, Matthew F.

    2009-01-01

    The primary purpose of this research was to understand how comics fulfill the role of anchor in an anchored instruction learning environment. Anchored instruction addresses the inert knowledge problem through the use of realistic multimedia stories, or "anchors," that embed a problem and the necessary data to solve it within the narrative. In the…

  7. An earth anchor system: installation and design guide.

    Science.gov (United States)

    R.L. Copstead; D.D. Studier

    1990-01-01

    A system for anchoring the guylines and skylines of cable yarding equipment is presented. A description of three types of tipping plate anchors is given. Descriptions of the installation equipment and methods specific to each type are given. Procedures for determining the correct number of anchors to install are included, as are guidelines for installing the anchors so...

  8. Metallurgical evaluation of failed post-tensioned containment tendon anchors at Joseph M. Farley Unit 2

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1986-01-01

    A metallurgical examination has been performed on three failed post-tensioned containment tendon anchors and one intact anchor from the Farley Unit 2 Nuclear Power Station. The evaluation consisted of chemical/mechanical testing, optical microscopy, scanning electron microscopy, and energy dispersive spectroscopy. The conclusions drawn from the investigation were: 1) the anchors met the chemical and mechanical properties of AISI 4140/4142 steel; 2) there was no evidence of phosphorous segregation to the grain boundary (by ethereal picral etch); 3) the observed cracking was generally a mixed mode of intergranular and quasi-cleavage as well as ductile rupture with the intergranular cracking occurring along prior austenite grain boundaries; 4) the results of the mechanical tests coupled with the discontinuous nature of the intergranular areas and the elimination of other modes of failure give sufficient indication that the failure was a hydrogen induced cracking phenomenon

  9. Anchors as Semantic Primes in Value Construction: An EEG Study of the Anchoring Effect.

    Directory of Open Access Journals (Sweden)

    Qingguo Ma

    Full Text Available Previous research regarding anchoring effects has demonstrated that human judgments are often assimilated to irrelevant information. Studies have demonstrated that anchors influence the economic valuation of various products and experiences; however, the cognitive explanations of this effect remain controversial, and its neural mechanisms have rarely been explored. In the current study, we conducted an electroencephalography (EEG experiment to investigate the anchoring effect on willingness to accept (WTA for an aversive hedonic experience and the role of anchors in this judgment heuristic. The behavioral results demonstrated that random numbers affect participants' WTA for listening to pieces of noise. The participants asked for higher pay after comparing their WTA with higher numbers. The EEG results indicated that anchors also influenced the neural underpinnings of the valuation process. Specifically, when a higher anchor number was drawn, larger P2 and late positive potential amplitudes were elicited, reflecting the anticipation of more intensive pain from the subsequent noise. Moreover, higher anchors induced a stronger theta band power increase compared with lower anchors when subjects listened to the noises, indicating that the participants felt more unpleasant during the actual experience of the noise. The levels of unpleasantness during both anticipation and experience were consistent with the semantic information implied by the anchors. Therefore, these data suggest that a semantic priming process underlies the anchoring effect in WTA. This study provides proof for the robustness of the anchoring effect and neural evidence of the semantic priming model. Our findings indicate that activated contextual information, even seemingly irrelevant, can be embedded in the construction of economic value in the brain.

  10. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  11. Understanding the anchoring effect of Graphene, BN, C2N and C3N4 monolayers for lithium-polysulfides in Li-S batteries

    Science.gov (United States)

    Zheng, Yanping; Li, Huanhuan; Yuan, Haiyan; Fan, Honghong; Li, Wenliang; Zhang, Jingping

    2018-03-01

    Recently, Li-S batteries with a high theoretical specific energy have attracted significant attention. However, their practical application is still seriously hindered by the shuttling effect of lithium polysulfides (LiPSs) in the Li-S batteries system. Introducing anchoring materials into the cathode or separator, which can strongly attract LiPSs because of advisable binding energies, has been demonstrated as an effective strategy to alleviate the shuttling effect for achieving the excellent cycling performance of Li-S batteries. In this work, the complete mechanistic understanding of the interaction between non-metallic monolayer materials (N-MMLMs, including Graphene, BN, C2N and C3N4) and LiPSs is given in detail with the aid of density functional theory. The calculation results show that N-MMLM can combine the chemical interaction and the physical entrapment of sulfur species to suppress the shuttling effect. C3N4 and C2N are predicted to trap LiPSs via stronger interfacial interaction and alleviate the interactions between LiPSs and solvents as well as the consequent dissolution. The strong anchoring effect of C3N4/C2N comes from the bonding of Li-N/C-S and charge transfer. Further charge transfer study reveals that the C3N4/C2N can serve as an electrocatalyst, which effectively accelerates the kinetics of LiPSs redox reactions.

  12. Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis.

    Science.gov (United States)

    Yurenko, Yevgen P; Zhurakivsky, Roman O; Samijlenko, Svitlana P; Hovorun, Dmytro M

    2011-08-01

    The aim of this work is to cast some light on the H-bonds in double-stranded DNA in its AI and BI forms. For this purpose, we have performed the MP2 and DFT quantum chemical calculations of the canonical nucleoside conformers, relative to the AI and BI DNA forms, and their Watson-Crick pairs, which were regarded as the simplest models of the double-stranded DNA. Based on the atoms-in-molecules analysis (AIM), five types of the CH···O hydrogen bonds, involving bases and sugar, were detected numerically from 1 to 3 per a conformer: C2'H···O5', C1'H···O2, C6H···O5', C8H···O5', and C6H···O4'. The energy values of H-bonds occupy the range of 2.3-5.6 kcal/mol, surely exceeding the kT value (0.62 kcal/mol). The nucleoside CH···O hydrogen bonds appeared to "survive" turns of bases against the sugar, sometimes in rather large ranges of the angle values, pertinent to certain conformations, which points out to the source of the DNA lability, necessary for the conformational adaptation in processes of its functioning. The calculation of the interactions in the dA·T nucleoside pair gives evidence, that additionally to the N6H···O4 and N1···N3H canonical H-bonds, between the bases adenine and thymine the third one (C2H···O2) is formed, which, though being rather weak (about 1 kcal/mol), satisfies the AIM criteria of H-bonding and may be classified as a true H-bond. The total energy of all the CH···O nontraditional intramolecular H-bonds in DNA nucleoside pairs appeared to be commensurable with the energy of H-bonds between the bases in Watson-Crick pairs, which implies their possible important role in the DNA shaping.

  13. Seals, Concrete Anchors, and Connections

    Science.gov (United States)

    1989-02-01

    caulking compounds, nonhardening extruded tapes, nonhardening mastics, strippable spray coatings, pressure sensitive tapes, gaskets, adhesives, fabrics...films, etc. Although all of these materials may provide a seal, care must be taken when selecting a sealing material as to its chemical and...gaskets have performed satisfactorily. Another factor to be considered in the selection of gasketing material is its compatibility with both the

  14. Career anchors and learning plan (part one

    Directory of Open Access Journals (Sweden)

    Daniela Brečko

    2006-12-01

    Full Text Available The article is divided into three parts. The first part concentrates on how important career is for an individual, organization and society. The author establishes that understanding of career has changed dramatically and does not only refer to climbing up the career ladder, but also moving off or even down the career ladder. The notion of career, as a lifelong and professional path, encompasses all aspects of human personality and their roles acquired through one's life. On basis of vast and longitudinal research, where the author has studied career anchors of individuals, it is the objective of the author to find out on basis of what grounds do the individuals decide to take certain directions in their careers and how learning contributes to such decisions. As a source the author has used Shein's theory of career anchors. Part one describes in greater detail 8 different career anchors and introduces their main features with the findings of the research, which refer to the analysis of professions (work positions and established career anchors. The author thus verifies the hypothesis that career anchors do exist in our area.

  15. Understanding of chemical bonding towards the enhancement of catalytic of Co(III)-doped ZrO2 catalyst material using x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Nor Aziah Buang; Wan Azelee Wan Abu Bakar; Harrison, P.G.

    2000-01-01

    The x-ray photoelectron spectroscopy (XPS) analysis has demonstrated the formation metal ions in different oxidation states or similar oxidation state with different bonding character in the ZrO 2 based catalyst material. Interaction of cobalt oxide with ZrO 2 matrixes shows the formation of surface species of Zr-O-Co with Co in the +2 oxidation state and Co 3 O 4 -CoO in a mixture of +2 and +3 oxidation states. The formation of Zr-O-Co species in sample calcined at 400 degree C results in the more ionic character of Co-O bond and more covalent character of Zr-0 bond compared to their ordinary oxides. These behaviour cause the shifting of Co(2p) XPS peaks position towards higher binding energy and the Zr(3d) XPS peaks position towards lower binding energy. Meanwhile, the formation Of Co 3 0 4 -CoO in sample calcined at temperature of 600 degree C exhibits Co(2p) XPS peaks in the region correspond to the Co in the +2 and +3 oxidation states, which is more covalent in bonding character. The catalytic activity measurement of the catalyst material calcined at 600 o C showed that the existence of Co-O species with more covalent in bonding character gave the best catalytic performance towards 100 % conversion of carbon monoxide and propane. (Author)

  16. Ultimate load capacities of expansion anchor bolts

    International Nuclear Information System (INIS)

    Czarnecki, R.M.; Manrique, M.A.; Samaddar, S.K.

    1993-01-01

    A summary of available experimental expansion anchor bolt test data is presented. These data were collected as part of programs by the nuclear industry to address generic issues related to verification of seismic adequacy of equipment in nuclear power plants. Some of the data presented are suitable for use in seismic probabilistic risk assessments. For example, mean values of ultimate strength, along with their standard deviation and coefficients of variation, for a range of most typical expansion anchor bolt sizes are presented. Effects of interaction between shear and tension, edge distance, spacing, and cracking of the concrete are presented in a manner that is more suitable for use in deterministic evaluations. Related industry programs to derive anchor bolt capacities are briefly discussed. Recommendations for areas of further investigation are also presented

  17. Anchoring Proteins as Regulators of Signaling Pathways

    Science.gov (United States)

    Perino, Alessia; Ghigo, Alessandra; Scott, John D.; Hirsch, Emilio

    2012-01-01

    Spatial and temporal organization of signal transduction is coordinated through the segregation of signaling enzymes in selected cellular compartments. This highly evolved regulatory mechanism ensures the activation of selected enzymes only in the vicinity of their target proteins. In this context, cAMP-responsive triggering of protein kinase A is modulated by a family of scaffold proteins referred to as A-kinase anchoring proteins. A-kinase anchoring proteins form the core of multiprotein complexes and enable simultaneous but segregated cAMP signaling events to occur in defined cellular compartments. In this review we will focus on the description of A-kinase anchoring protein function in the regulation of cardiac physiopathology. PMID:22859670

  18. Interstellar hydrogen bonding

    Science.gov (United States)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2018-06-01

    This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.

  19. Effect of ethanol-wet-bonding technique on resin–enamel bonds

    Directory of Open Access Journals (Sweden)

    Muhammet Kerim Ayar

    2014-03-01

    Conclusion: The ethanol-wet-bonding technique may increase the bond strength of commercial adhesives to enamel. The chemical composition of the adhesives can affect the bond strength of adhesives when bonding to acid-etched enamel, using the ethanol-wet-bonding technique. Some adhesive systems used in the present study may simultaneously be applied to enamel and dentin using ethanol-wet-bonding. Furthermore, deploying ethanol-wet-bonding for the tested commercial adhesives to enamel can increase the adhesion abilities of these adhesives to enamel.

  20. Theoretical study of the mechanism of formation of a chemical bond between two ions: A+ and B+. Application to CO++. Interpretation of N2O++ photo-dissociation mechanisms

    International Nuclear Information System (INIS)

    Levasseur, Nathalie

    1989-01-01

    This research thesis reports the theoretical study of the mechanism of formation of a chemical bond between two positively charged species, within the frame of the valence-bond theory and in the CO model case. The analysis in terms of orthogonal and non orthogonal orbitals leads to two very different interpretations, and allows potential curves of doubly charged diatomic ions to be simply explained, the generally evoked model to be put into question again, and a predictive model to be developed. The theoretical determination of N 2 O potential energy surfaces and of the first states of N 2 O ++ ( 3 Σ - , 1 Δ, 1 Σ + et 3 Π) allowed experimental results of N 2 O ++ photo-dissociation to be at least qualitatively understood and interpreted. Moreover, the study of electronic configurations involved in dissociation, showed that the model elaborated for a diatomic molecule is also valid for a triatomic system [fr

  1. ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid

    International Nuclear Information System (INIS)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan; Li, Lei

    2016-01-01

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO 3 -layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn 2+ ions of Zn-Al-CO 3 -LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO 3 -LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO 3 -LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO 3 groups in ANTS-anchored on the surface of Zn-Al-CO 3 -LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO 3 -LDH particles can afford a very sensitive system for the sensing FA in aqueous solution. - Highlights: • A novel fluorescent nanosensor has been developed. • The sensor exhibited highly sensitive and selective response to FA. • The fluorescence quenching was fitted to Stern–Volmer equation. • The linear response range was 1–200 μM with a limit of detection of 0.1 μM.

  2. Comparison of Suture-Based Anchors and Traditional Bioabsorbable Anchors in Foot and Ankle Surgery.

    Science.gov (United States)

    Hembree, W Chad; Tsai, Michael A; Parks, Brent G; Miller, Stuart D

    We compared the pullout strength of a suture-based anchor versus a bioabsorbable anchor in the distal fibula and calcaneus and evaluated the relationship between bone mineral density and peak load to failure. Eight paired cadaveric specimens underwent a modified Broström procedure and Achilles tendon reattachment. The fibula and calcaneus in the paired specimens received either a suture-based anchor or a bioabsorbable suture anchor. The fibular and calcaneal specimens were loaded to failure, defined as a substantial decrease in the applied load or pullout from the bone. In the fibula, the peak load to failure was significantly greater with the suture-based versus the bioabsorbable anchors (133.3 ± 41.8 N versus 76.8 ± 35.3 N; p = .002). No significant difference in load with 5 mm of displacement was found between the 2 groups. In the calcaneus, no difference in the peak load to failure was found between the 2 groups, and the peak load to failure with 5 mm of displacement was significantly lower with the suture-based than with the bioabsorbable anchors (52.2 ± 9.8 N versus 75.9 ± 12.4 N; p = .003). Bone mineral density and peak load to failure were significantly correlated in the fibula with the suture-based anchor. An innovative suture-based anchor had a greater peak load to failure compared with a bioabsorbable anchor in the fibula. In the calcaneus, the load at 5 mm of displacement was significantly lower in the suture-based than in the bioabsorbable group. The correlation findings might indicate the need for a cortical bone shelf with the suture-based anchor. Suture-based anchors could be a viable alternative to bioabsorbable anchors for certain foot and ankle procedures. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  3. On the calculation and interpretation of covalency in the intensity parameters of 4f–4f transitions in Eu{sup 3+} complexes based on the chemical bond overlap polarizability

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Renaldo T., E-mail: renaldotmjr@gmail.com; Carneiro Neto, Albano N.; Longo, Ricardo L.; Malta, Oscar L.

    2016-02-15

    The concepts of chemical bond overlap polarizability (α{sub OP}) and of specific ionic valence (υ) were used to characterize the Eu{sup 3+}–ligating atom bonds in complexes. The underlying chemical bond properties, namely, bond distance, overlap integral, force constant, and the energy excitation, were successfully calculated for the Eu{sup 3+}–ligating atom diatomic-like species under the influence of the molecular environment. The quantities α{sub OP} and υ were used to reshape and reinterpret the expressions of the forced electric dipole (FED) and the dynamic coupling (DC) mechanisms responsible for the intensity parameters of 4f–4f transitions. These parameters were calculated with this new approach for a series of Eu{sup 3+} complexes: [EuL{sub 3}L′] with L=AIND, BIND, TTA, BTFA, FOD, ABSe, ABSeCl, DPM and L′=(H{sub 2}O){sub 2}, NO{sub 3}, DPbpy, DBSO, TPPO, Phen, for which the experimental intensity parameters and some E{sub 00} (={sup 5}D{sub 0}→{sup 7}F{sub 0}) energies are available. Comparisons between the theoretical and experimental results suggest that this new methodology is reliable and an important step toward an approach to calculate the 4f–4f intensities free of adjustable parameters, which has been accomplished for complexes without aquo ligand. - Highlights: • New methodology to calculate intensity parameters of f–f transitions. • Inclusion of overlap polarizability (covalency) on dynamic coupling mechanism. • Analytical calculation of the charge factors in the ligand field Hamiltonian. • Step towards a parameter-free computational method for f–f intensities. • Interpretation and quantification of the intensity parameters in terms of covalency.

  4. Bonds Boom.

    Science.gov (United States)

    Reynolds, Cathryn

    1989-01-01

    The combined effect of the "Serrano" decision and Proposition 13 left California school districts with aging, overcrowded facilities. Chico schools won a $18.5 million general obligation bond election for facilities construction. With $11 billion needed for new school construction, California will need to tap local sources. A sidebar…

  5. Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution

    Science.gov (United States)

    Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan

    2016-01-01

    Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root

  6. How overdrying wood reduces its bonding to phenol-formaldehyde adhesives : a critical review of the literature. Part II, Chemical reactions

    Science.gov (United States)

    Alfred W. Christiansen

    1991-01-01

    Literature dealing with the effect of excessive drying (overdrying) on wood surface inactivation to bonding is reviewed in two parts and critically evaluated, primarily for phenolic adhesives. Part 1 of the review, published earlier, covers physical mechanisms that could contribute to surface inactivation. The principal physical mechanism is the migration to the...

  7. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Háková, Eva; Vrkoslav, Vladimír; Míková, Radka; Schwarzová-Pecková, K.; Bosáková, Z.; Cvačka, Josef

    2015-01-01

    Roč. 407, č. 17 (2015), s. 5175-5188 ISSN 1618-2642 R&D Projects: GA ČR GAP206/12/0750 Institutional support: RVO:61388963 Keywords : double bond * gas-phase chemistry * lipidomics * olive oil * vernix caseosa Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.125, year: 2015

  8. The semiempirical quantum chemical PM6 method augmented by dispersion and H-bonding correction terms describes reliably various types of non-covalent complexes

    Czech Academy of Sciences Publication Activity Database

    Řezáč, Jan; Fanfrlík, Jindřich; Salahub, D.; Hobza, Pavel

    2009-01-01

    Roč. 5, č. 7 (2009), s. 1749-1760 ISSN 1549-9618 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : hydrogen bonding * dispersion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.804, year: 2009

  9. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments.

    Science.gov (United States)

    Fukuda, A; Takemoto, M; Saito, T; Fujibayashi, S; Neo, M; Yamaguchi, S; Kizuki, T; Matsushita, T; Niinomi, M; Kokubo, T; Nakamura, T

    2011-03-01

    Ti15Zr4Nb4Ta and Ti29Nb13Ta4.6Zr, which do not contain the potentially cytotoxic elements V and Al, represent a new generation of alloys with improved corrosion resistance, mechanical properties, and cytocompatibility. Recently it has become possible for the apatite forming ability of these alloys to be ascertained by treatment with alkali, CaCl2, heat, and water (ACaHW). In order to confirm the actual in vivo bioactivity of commercially pure titanium (cp-Ti) and these alloys after subjecting them to ACaHW treatment at different temperatures, the bone bonding strength of implants made from these materials was evaluated. The failure load between implant and bone was measured for treated and untreated plates at 4, 8, 16, and 26 weeks after implantation in rabbit tibia. The untreated implants showed almost no bonding, whereas all treated implants showed successful bonding by 4 weeks, and the failure load subsequently increased with time. This suggests that a simple and economical ACaHW treatment could successfully be used to impart bone bonding bioactivity to Ti metal and Ti-Zr-Nb-Ta alloys in vivo. In particular, implants heat treated at 700 °C exhibited significantly greater bone bonding strength, as well as augmented in vitro apatite formation, in comparison with those treated at 600 °C. Thus, with this improved bioactive treatment process these advantageous Ti-Zr-Nb-Ta alloys can serve as useful candidates for orthopedic devices. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Method and apparatus for dismantling mechanical anchors

    Energy Technology Data Exchange (ETDEWEB)

    Dubovskiy, Yu P; Chendev, F S; Gritsayuk, B I; Gubin, N I; Osipov, S P

    1982-01-01

    This apparatus is designed to reduce the amount of labor required to dismantle mechanical anchors while at the same time lowering expenditures for lumber. Longwall beams and timber skips are used to support the cap and any fractured rock faces. The apparatus itself has grooves, vertical guides, and a drive system to position the longwall beams.

  11. Influence of Anchoring on Burial Depth of Submarine Pipelines.

    Directory of Open Access Journals (Sweden)

    Yuan Zhuang

    Full Text Available Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed.

  12. Stone anchors from the Okhamandal region, Gujarat Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Sundaresh; Gaur, A.S.; Gudigar, P.; Tripati, S.; Vora, K.H.; Bandodkar, S.N.

    During marine archaeological explorations since 1983, off Dwarka, a large number of stone anchors were discovered and dated to 1400 BC, comparing with anchors found in Mediterranean waters. In recent archaeological explorations off Dwarka, Bet...

  13. Influence of Anchoring on Burial Depth of Submarine Pipelines.

    Science.gov (United States)

    Zhuang, Yuan; Li, Yang; Su, Wei

    2016-01-01

    Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed.

  14. AnchorDock: Blind and Flexible Anchor-Driven Peptide Docking.

    Science.gov (United States)

    Ben-Shimon, Avraham; Niv, Masha Y

    2015-05-05

    The huge conformational space stemming from the inherent flexibility of peptides is among the main obstacles to successful and efficient computational modeling of protein-peptide interactions. Current peptide docking methods typically overcome this challenge using prior knowledge from the structure of the complex. Here we introduce AnchorDock, a peptide docking approach, which automatically targets the docking search to the most relevant parts of the conformational space. This is done by precomputing the free peptide's structure and by computationally identifying anchoring spots on the protein surface. Next, a free peptide conformation undergoes anchor-driven simulated annealing molecular dynamics simulations around the predicted anchoring spots. In the challenging task of a completely blind docking test, AnchorDock produced exceptionally good results (backbone root-mean-square deviation ≤ 2.2Å, rank ≤15) for 10 of 13 unbound cases tested. The impressive performance of AnchorDock supports a molecular recognition pathway that is driven via pre-existing local structural elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Diffusion bonding

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1976-01-01

    A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions

  16. Career Paths, Images and Anchors: A Study with Brazilian Professionals

    Science.gov (United States)

    Kilimnik, Zelia Miranda; de Oliveira, Luiz Claudio Vieira; Sant'anna, Anderson De Souza; Barros, Delba Teixeira Rodrigues

    2011-01-01

    This article analyses career anchors changes associated to images and professionals trajectories. Its main question: Do anchors careers change through time? We conducted twelve interviews involving professionals from the Administration Area, applying Schein's Career Anchors Inventory (1993). We did the same two years later. In both of them, the…

  17. One-step surface modification for irreversible bonding of various plastics with a poly(dimethylsiloxane) elastomer at room temperature.

    Science.gov (United States)

    Wu, Jing; Lee, Nae Yoon

    2014-05-07

    Here, we introduce a simple and facile method for bonding poly(dimethylsiloxane) (PDMS) to various plastics irreversibly via a one-step chemical treatment at room temperature. This was mediated by poly[dimethylsiloxane-co-(3-aminopropyl)methylsiloxane] (amine-PDMS linker), a chemical composed of a PDMS backbone incorporating an amine side group. Room temperature anchoring of the linker was achieved via a reaction between the amine functionality of the linker and the carbon backbone of the plastics, thereby producing urethane bonds. This resulted in the PDMS functionality being exposed on the plastic surface, mimicking the surface properties of bulk PDMS. Following corona treatment of the PDMS-modified plastic and a sheet of PDMS, the two surfaces were placed in contact with each other and heated at 80 °C for 1 h. This resulted in permanent bonding between PDMS and the plastic. To examine the effectiveness of the amine-PDMS linker coating procedure, the surfaces were characterized by measuring water contact angles and by employing X-ray photoelectron spectroscopy (XPS). Polycarbonate (PC), poly(ethylene terephthalate) (PET), poly(vinylchloride) (PVC), and polyimide (PI) were bonded successfully to PDMS using this method, with bond strengths of PC, PET, and PVC with PDMS measured to be approximately 428.5 ± 17.9, 361.7 ± 31.2, and 430.0 ± 14.9 kPa, respectively. The bond strength of a PC-PC homogeneous assembly, also realized using the proposed method, was measured to be approximately 343.9 ± 7.4 kPa. Delamination tests revealed that the PC-PC assembly was able to withstand intense introduction of a liquid whose per-minute injection volume was approximately 278 times greater than the total internal volume of the microchannel fabricated in PC. This demonstrated the robustness of the seal formed using the proposed technique.

  18. Ab initio investigations of the electronic structures and chemical bonding in LiCo{sub 6}P{sub 4} and Li{sub 2}Co{sub 12}P{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Matar, Samir F. [CNRS, ICMCB, UPR 9048, F‐33600 Pessac (France); Université de Bordeaux, ICMCB, UPR 9048, F‐33600 Pessac (France); Al-Alam, Adel; Ouaini, Naïm [Université Saint-Esprit de Kaslik (USEK), Groupe OCM (Optimization et Caractérisation des Matériaux), CSR-USEK, CNRS-L, Jounieh (Lebanon); Pöttgen, Rainer, E-mail: pottgen@uni-muenster.de [Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, D-48149 Münster (Germany)

    2013-06-15

    The electronic structures of the metal-rich phosphides LiCo{sub 6}P{sub 4} and Li{sub 2}Co{sub 12}P{sub 7} were studied by DFT calculations. Both phosphides consist of three-dimensional [Co{sub 6}P{sub 4}] and [Co{sub 12}P{sub 7}] polyanionic networks which leave hexagonal channels for the lithium atoms. COOP data show strong Co–P and Co–Co bonding within the polyanions. The lithium atoms have trigonal prismatic phosphorus coordination. Total energy calculations indicate stability upon de-lithiation towards the Co{sub 6}P{sub 4} and Co{sub 12}P{sub 7} substructures - Graphical abstract: The cobalt–phosphorus networks in LiCo{sub 6}P{sub 4} and Li{sub 2}Co{sub 12}P{sub 7}. - Highlights: • Chemical bonding resolved in the metal-rich phosphides LiCo{sub 6}P{sub 4} and Li{sub 2}Co{sub 12}P{sub 7}. • Strong covalent Co–P bonding character in the [Co{sub 6}P{sub 4}] and [Co{sub 12}P{sub 7}] substructures. • Total energy calculations indicate stability of the de-lithiated substructures.

  19. Experimental Research on Destruction Mode and Anchoring Performance of Carbon Fiber Phyllostachys pubescens Anchor Rod with Different Forms

    Directory of Open Access Journals (Sweden)

    Wang Yulan

    2018-01-01

    Full Text Available The anchoring technology is extensively applied in reinforcing protection of the earth relics. Now that no specification is available for different new anchor rods in earth relics protection due to diversified destruction modes of earth relics and complexity of engineering technology conditions, it is urgent to guide reinforcing design and construction with a complete detailed anchor rod research document. With the new carbon fiber Phyllostachys pubescens anchor rod as the research object, six lots of in situ tests are designed to, respectively, study the destruction mode and anchoring performance of the carbon fiber Phyllostachys pubescens anchor rod under different anchor length L, anchor rod diameter D, bore diameter H, grouting material S, rib spacing R, and inclination angle A in this paper. By studying load shift curve experiment in drawing of the anchor rod, the destruction mode and ultimate bearing capacity of the carbon fiber Phyllostachys pubescens anchor rod in different experiment lots are obtained, and the concept of permitted application value N in anchor rod design is proposed. By studying strain distribution characteristics of anchor rods in experimental lots along the length direction under action of the permitted application value N and combining the existing destruction mode and ultimate bearing capacity, this paper analyzes influences of L, D, H, S, R, and A on anchoring effect of the carbon fiber Phyllostachys pubescens anchor rod; gives the reasonable value range of L, D, H, and R when the carbon fiber Phyllostachys pubescens anchor rod is used for reinforcing design of the earth relics; and provides favorable experiment basis for reinforcing design of the earth relics based on the carbon fiber Phyllostachys pubescens anchor rod.

  20. Laser-Modified Surface Enhances Osseointegration and Biomechanical Anchorage of Commercially Pure Titanium Implants for Bone-Anchored Hearing Systems

    Science.gov (United States)

    Omar, Omar; Simonsson, Hanna; Palmquist, Anders; Thomsen, Peter

    2016-01-01

    Osseointegrated implants inserted in the temporal bone are a vital component of bone-anchored hearing systems (BAHS). Despite low implant failure levels, early loading protocols and simplified procedures necessitate the application of implants which promote bone formation, bone bonding and biomechanical stability. Here, screw-shaped, commercially pure titanium implants were selectively laser ablated within the thread valley using an Nd:YAG laser to produce a microtopography with a superimposed nanotexture and a thickened surface oxide layer. State-of-the-art machined implants served as controls. After eight weeks’ implantation in rabbit tibiae, resonance frequency analysis (RFA) values increased from insertion to retrieval for both implant types, while removal torque (RTQ) measurements showed 153% higher biomechanical anchorage of the laser-modified implants. Comparably high bone area (BA) and bone-implant contact (BIC) were recorded for both implant types but with distinctly different failure patterns following biomechanical testing. Fracture lines appeared within the bone ~30–50 μm from the laser-modified surface, while separation occurred at the bone-implant interface for the machined surface. Strong correlations were found between RTQ and BIC and between RFA at retrieval and BA. In the endosteal threads, where all the bone had formed de novo, the extracellular matrix composition, the mineralised bone area and osteocyte densities were comparable for the two types of implant. Using resin cast etching, osteocyte canaliculi were observed directly approaching the laser-modified implant surface. Transmission electron microscopy showed canaliculi in close proximity to the laser-modified surface, in addition to a highly ordered arrangement of collagen fibrils aligned parallel to the implant surface contour. It is concluded that the physico-chemical surface properties of laser-modified surfaces (thicker oxide, micro- and nanoscale texture) promote bone bonding

  1. Comparative Study on Different Slot Forms of Prestressed Anchor Blocks

    Science.gov (United States)

    Fan, Rong; Si, Jianhui; Jian, Zheng

    2018-03-01

    In this paper, two models of prestressed pier, rectangular cavity anchor block and arch hollow anchor block are established. The ABAQUS software was used to calculate the stress of the surface of the neck of the pier and the cavity of the anchor block, through comparative analysis. The results show that compared with the rectangular cavity anchor block, the stress of the pier and the cavity can be effectively reduced when the arch hole is used, and the amount of prestressed anchor can be reduced, so as to obtain obvious economic benefits.

  2. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  3. A scale distortion theory of anchoring.

    Science.gov (United States)

    Frederick, Shane W; Mochon, Daniel

    2012-02-01

    We propose that anchoring is often best interpreted as a scaling effect--that the anchor changes how the response scale is used, not how the focal stimulus is perceived. Of importance, we maintain that this holds true even for so-called objective scales (e.g., pounds, calories, meters, etc.). In support of this theory of scale distortion, we show that prior exposure to a numeric standard changes respondents' use of that specific response scale but does not generalize to conceptually affiliated judgments rendered on similar scales. Our findings highlight the necessity of distinguishing response language effects from representational effects in places where the need for that distinction has often been assumed away.

  4. Electrochromic mirror using viologen-anchored nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Na [Electronics and Telecommunications Research Institute, Nature-mimic I/O interface Research Section, 218 Gajeong-roYuseong-gu, Daejeon 305-700 (Korea, Republic of); University of Science and Technology, Advanced Device Technology, 217 Gajeong-roYuseong-gu, Daejeon 305-350 (Korea, Republic of); Cho, Seong M.; Ah, Chil Seong; Song, Juhee; Ryu, Hojun; Kim, Yong Hae [Electronics and Telecommunications Research Institute, Nature-mimic I/O interface Research Section, 218 Gajeong-roYuseong-gu, Daejeon 305-700 (Korea, Republic of); Kim, Tae-Youb, E-mail: youby@etri.re.kr [Electronics and Telecommunications Research Institute, Nature-mimic I/O interface Research Section, 218 Gajeong-roYuseong-gu, Daejeon 305-700 (Korea, Republic of); University of Science and Technology, Advanced Device Technology, 217 Gajeong-roYuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2016-10-15

    Highlights: • Three types of ECM device were fabricated using viologen-anchored ECDs. • The devices were investigated according to their optical structures. • The anti-reflection material affects the reflectance and the coloration efficiency. • The device design of ECMs is a crucial factor for clear reflected images. - Abstract: Electrochromic mirrors (ECMs) that are used in automobile mirrors need to have high reflectance, a high contrast ratio, and a clear image. In particular, it is critical that distortions of clear images are minimized for safety. Therefore, an ECM is fabricated using viologen-anchored nanoparticles and a magnesium fluoride (MgF{sub 2}) layer with an anti-reflection function. The ECM has approximately 30.42% in the reflectance dynamic range and 125 cm{sup 2}/C high coloration efficiency.

  5. Anchoring in a novel bimanual coordination pattern.

    Science.gov (United States)

    Maslovat, Dana; Lam, Melanie Y; Brunke, Kirstin M; Chua, Romeo; Franks, Ian M

    2009-02-01

    Anchoring in cyclical movements has been defined as regions of reduced spatial or temporal variability [Beek, P. J. (1989). Juggling dynamics. PhD thesis. Amsterdam: Free University Press] that are typically found at movement reversal points. For in-phase and anti-phase movements, synchronizing reversal points with a metronome pulse has resulted in decreased anchor point variability and increased pattern stability [Byblow, W. D., Carson, R. G., & Goodman, D. (1994). Expressions of asymmetries and anchoring in bimanual coordination. Human Movement Science, 13, 3-28; Fink, P. W., Foo, P., Jirsa, V. K., & Kelso, J. A. S. (2000). Local and global stabilization of coordination by sensory information. Experimental Brain Research, 134, 9-20]. The present experiment examined anchoring during acquisition, retention, and transfer of a 90 degrees phase-offset continuous bimanual coordination pattern (whereby the right limb lags the left limb by one quarter cycle), involving horizontal flexion about the elbow. Three metronome synchronization strategies were imposed: participants either synchronized maximal flexion of the right arm (i.e., single metronome), both flexion and extension of the right arm (i.e., double metronome within-limb), or flexion of each arm (i.e., double metronome between-limb) to an auditory metronome. In contrast to simpler in-phase and anti-phase movements, synchronization of additional reversal points to the metronome did not reduce reversal point variability or increase pattern stability. Furthermore, practicing under different metronome synchronization strategies did not appear to have a significant effect on the rate of acquisition of the pattern.

  6. Consistency Anchor Formalization and Correctness Proofs

    OpenAIRE

    Miguel, Correia; Bessani, Alysson

    2014-01-01

    This is report contains the formal proofs for the techniques for increasing the consistency of cloud storage as presented in "Bessani et al. SCFS: A Cloud-backed File System. Proc. of the 2014 USENIX Annual Technical Conference. June 2014." The consistency anchor technique allows one to increase the consistency provided by eventually consistent cloud storage services like Amazon S3. This technique has been used in the SCFS (Shared Cloud File System) cloud-backed file system for solving rea...

  7. Dynamic breaking of a single gold bond

    DEFF Research Database (Denmark)

    Pobelov, Ilya V.; Lauritzen, Kasper Primdal; Yoshida, Koji

    2017-01-01

    While one might assume that the force to break a chemical bond gives a measure of the bond strength, this intuition is misleading. If the force is loaded slowly, thermal fluctuations may break the bond before it is maximally stretched, and the breaking force will be less than the bond can sustain...... of a single Au-Au bond and show that the breaking force is dependent on the loading rate. We probe the temperature and structural dependencies of breaking and suggest that the paradox can be explained by fast breaking of atomic wires and slow breaking of point contacts giving very similar breaking forces....

  8. Hexacoordinate bonding and aromaticity in silicon phthalocyanine.

    Science.gov (United States)

    Yang, Yang

    2010-12-23

    Si-E bondings in hexacoordinate silicon phthalocyanine were analyzed using bond order (BO), energy partition, atoms in molecules (AIM), electron localization function (ELF), and localized orbital locator (LOL). Bond models were proposed to explain differences between hexacoordinate and tetracoordinate Si-E bondings. Aromaticity of silicon phthalocyanine was investigated using nucleus-independent chemical shift (NICS), harmonic oscillator model of aromaticity (HOMA), conceptual density functional theory (DFT), ring critical point (RCP) descriptors, and delocalization index (DI). Structure, energy, bonding, and aromaticity of tetracoordinate silicon phthalocyanine were studied and compared with hexacoordinate one.

  9. Synthesis in situ of gold nanoparticles by a dialkynyl Fischer carbene complex anchored to glass surfaces

    International Nuclear Information System (INIS)

    Bertolino, María Candelaria; Granados, Alejandro Manuel

    2016-01-01

    Highlights: • Fischer carbene 1-W reacts via cycloaddition without Cu(I) with azide terminal surface. • This reaction on the surface is regioselective to internal triple bond of 1-W. • 1-W bound to glass surface produce AuNps in situ fixed to the surface. • This ability is independent of how 1-W is bonded to the surface. • This hybrid surface can be valuable as SERS substrate or in heterogeneous catalysis. - Abstract: In this work we present a detailed study of classic reactions such as “click reaction” and nucleophilic substitution reaction but on glass solid surface (slides). We used different reactive center of a dialkynylalcoxy Fischer carbene complex of tungsten(0) to be anchored to modified glass surface with amine, to obtain aminocarbene, and azide terminal groups. These cycloaddition reaction showed regioselectivity to internal triple bond of dialkynyl Fischer carbene complex without Cu(I) as catalyst. Anyway the carbene anchored was able to act as a reducing agent to produce in situ very stable gold nanoparticles fixed on surface. We showed the characterization of modified glasses by contact angle measurements and XPS. Synthesized nanoparticles were characterized by SEM, XPS, EDS and UV–vis. The modified glasses showed an important enhancement Raman-SERS. This simple, fast and robust method to create a polifunctional and hybrid surfaces can be valuable in a wide range of applications such as Raman-SERS substrates and other optical fields.

  10. Synthesis in situ of gold nanoparticles by a dialkynyl Fischer carbene complex anchored to glass surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bertolino, María Candelaria, E-mail: cbertolino@fcq.unc.edu.ar; Granados, Alejandro Manuel, E-mail: ale@fcq.unc.edu.ar

    2016-10-15

    Highlights: • Fischer carbene 1-W reacts via cycloaddition without Cu(I) with azide terminal surface. • This reaction on the surface is regioselective to internal triple bond of 1-W. • 1-W bound to glass surface produce AuNps in situ fixed to the surface. • This ability is independent of how 1-W is bonded to the surface. • This hybrid surface can be valuable as SERS substrate or in heterogeneous catalysis. - Abstract: In this work we present a detailed study of classic reactions such as “click reaction” and nucleophilic substitution reaction but on glass solid surface (slides). We used different reactive center of a dialkynylalcoxy Fischer carbene complex of tungsten(0) to be anchored to modified glass surface with amine, to obtain aminocarbene, and azide terminal groups. These cycloaddition reaction showed regioselectivity to internal triple bond of dialkynyl Fischer carbene complex without Cu(I) as catalyst. Anyway the carbene anchored was able to act as a reducing agent to produce in situ very stable gold nanoparticles fixed on surface. We showed the characterization of modified glasses by contact angle measurements and XPS. Synthesized nanoparticles were characterized by SEM, XPS, EDS and UV–vis. The modified glasses showed an important enhancement Raman-SERS. This simple, fast and robust method to create a polifunctional and hybrid surfaces can be valuable in a wide range of applications such as Raman-SERS substrates and other optical fields.

  11. Career anchors and career resilience: Supplementary constructs?

    Directory of Open Access Journals (Sweden)

    L. J. Van Vuuren

    2000-06-01

    Full Text Available Previously the authors reported on a study in which an attempt was made at defining and measuring the construct career resilience (Fourie & Van Vuuren, 1998. The present article continues this investigation by reporting on the relationship between career resilience and career anchors, as defined in Scheins (1975; 1978; 1990; 1992 career anchor model. The aim of the study was to determine whether career anchor patterning could potentially inhibit or facilitate individuals' levels of career resilience. The "Career Resilience Questionnaire" (CRQ (Fourie & Van Vuuren, 1998 together with Scheins (1990 "Career Orientations Inventory" (COI were administered to 352 skilled employees. The findings regarding the statistical relationship between the two constructs are discussed. Opsomming Loopbaanankers en loopbaangehardheid: supplementere konstrukte? In n vorige publikasie van Fourie en Van Vuuren (1998 is die bevindinge aangaande die afbakening en meting van die konstruk, loopbaangehardheid, gerapporteer. In die huidige artikel word die ondersoek voortgesit met 'n beskrywing van die verwantskap tussen loopbaangehardheid en loopbaanankers, soos gedefinieer in die loopbaanankermodel van Schein (1975; 1978; 1990; 1992. Die doel met die studie was om te bepaal of die mate van loopbaanankerontplooiing individuele vlakke van loopbaangehardheid potensieel fasiliteer ofinhibeer. Die "Career Resilience Questionnaire" (CRQ (Fourie & Van Vuuren, 1998 is tesame met die "Career Orientation Inventory" (COI (Schein, 1990 op 352 geskoolde werknemers geadministreer. Die bevindinge betreffende die statistiese verwantskap tussen die twee konstrukte word bespreek.

  12. The Analysis Stability of Anchor Retaining Wall

    International Nuclear Information System (INIS)

    Benamara, F. Z.; Belabed, L

    2011-01-01

    The construction of anchored retaining walls reach every day in the field of Civil Engineering especially in public works. Their dimensioning and stability are the axes of research for geotechnical. The rule is to reduce the active forces of the slide and increase the effective normal stress on the rupture surface. So that, we anchored tied-back (constituted by steel cables) in the stable ground located under the failure surface and we apply at the top a traction force. This effort can be distributed over the ground surface by means of small plates or massive reinforced concrete. The study of the stability of anchored retaining wall was also performed by using software GEO4. Many cases can be solved using analytical solutions available in the group GEO4 program, but for our standard model solution studied analytically proved unsatisfactory so we used a numerical analysis based on the method of finite element in this program. The results obtained by numerical study were interpreted to identify the precision numerical predictions. Moreover these methods were useful and economics in the realization of reinforced slopes by tied-buck. (author)

  13. The Solid Solution Sr(1-x)Ba(x)Ga2: Substitutional Disorder and Chemical Bonding Visited by NMR Spectroscopy and Quantum Mechanical Calculations.

    Science.gov (United States)

    Pecher, Oliver; Mausolf, Bernhard; Lamberts, Kevin; Oligschläger, Dirk; Niewieszol, Carina; Englert, Ulli; Haarmann, Frank

    2015-09-28

    Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr(1-x)Ba(x)Ga2 is shown by means of X-ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10% cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation-dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Direct, simple derivatization of disulfide bonds in proteins with organic mercury in alkaline medium without any chemical pre-reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Campanella, Beatrice; Onor, Massimo [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM- UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ferrari, Carlo [National Research Council of Italy, C.N.R., Istituto Nazionale di Ottica, INO-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); D’Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM- UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM- UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2014-09-16

    Highlights: • A simple procedure for the derivatization of proteins disulfide bonds. • Cysteine groups in several proteins derivatised with pHMB in alkaline media. • 75–100% labelling of cysteines in proteins with pHMB. - Abstract: In this work we have studied the derivatization of protein disulfide bonds with p-Hydroxymercurybenzoate (pHMB) in strong alkaline medium without any preliminary reduction. The reaction has been followed by the determination of the protein–pHMB complex using size exclusion chromatography coupled to a microwave/UV mercury oxidation system for the on-line oxidation of free and protein-complexed pHMB and atomic fluorescence spectrometry (SEC–CVG–AFS) detection. The reaction has been optimized by an experimental design using lysozyme as a model protein and applied to several thiolic proteins. The proposed method reports, for the first time, that it is possible to label 75–100% cysteines of proteins and, thus, to determine thiolic proteins without the need of any reducing step to obtain reduced -SH groups before mercury labelling. We obtained a detection limit of 100 nmol L{sup −1} based on a signal-to-noise ratio of 3 for unbound and complexed pHMB, corresponding to a detection limit of proteins ranged between 3 and 360 nmol L{sup −1}, depending on the number of cysteines in the protein sequence.

  15. Effect of gradual ordering of Ge/Sb atoms on chemical bonding: A proposed mechanism for the formation of crystalline Ge2Sb2Te5

    Science.gov (United States)

    Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-04-01

    Using first principle calculations, we study the atomic arrangement and bonding mechanism in the crystalline phase of Ge2Sb2Te5 (GST). It is found that the stability of GST depends on the gradual ordering of Ge/Sb atoms. The configurations with different concentration of Ge/Sb in layers have been analyzed by the partial density of state, electron localization function and Bader charge distribution. The s and p-states of Ge atom alter with different stacking configurations but there is no change in Sb and Te atom states. Our findings show that the bonding between Ge-Te is not only responsible for the stability of GST alloy but can also predict which composition can show generic features of phase change material. As the number of Ge atoms near to vacancy layer decreases, Ge donates more charge. A growth model has been proposed for the formation of crystalline phase which justifies the structure models proposed in the literature.

  16. Direct, simple derivatization of disulfide bonds in proteins with organic mercury in alkaline medium without any chemical pre-reducing agents

    International Nuclear Information System (INIS)

    Campanella, Beatrice; Onor, Massimo; Ferrari, Carlo; D’Ulivo, Alessandro; Bramanti, Emilia

    2014-01-01

    Highlights: • A simple procedure for the derivatization of proteins disulfide bonds. • Cysteine groups in several proteins derivatised with pHMB in alkaline media. • 75–100% labelling of cysteines in proteins with pHMB. - Abstract: In this work we have studied the derivatization of protein disulfide bonds with p-Hydroxymercurybenzoate (pHMB) in strong alkaline medium without any preliminary reduction. The reaction has been followed by the determination of the protein–pHMB complex using size exclusion chromatography coupled to a microwave/UV mercury oxidation system for the on-line oxidation of free and protein-complexed pHMB and atomic fluorescence spectrometry (SEC–CVG–AFS) detection. The reaction has been optimized by an experimental design using lysozyme as a model protein and applied to several thiolic proteins. The proposed method reports, for the first time, that it is possible to label 75–100% cysteines of proteins and, thus, to determine thiolic proteins without the need of any reducing step to obtain reduced -SH groups before mercury labelling. We obtained a detection limit of 100 nmol L −1 based on a signal-to-noise ratio of 3 for unbound and complexed pHMB, corresponding to a detection limit of proteins ranged between 3 and 360 nmol L −1 , depending on the number of cysteines in the protein sequence

  17. Robotic Ankle for Omnidirectional Rock Anchors

    Science.gov (United States)

    Parness, Aaron; Frost, Matthew; Thatte, Nitish

    2013-01-01

    Future robotic exploration of near-Earth asteroids and the vertical and inverted rock walls of lava caves and cliff faces on Mars and other planetary bodies would require a method of gripping their rocky surfaces to allow mobility without gravitational assistance. In order to successfully navigate this terrain and drill for samples, the grippers must be able to produce anchoring forces in excess of 100 N. Additionally, the grippers must be able to support the inertial forces of a moving robot, as well gravitational forces for demonstrations on Earth. One possible solution would be to use microspine arrays to anchor to rock surfaces and provide the necessary load-bearing abilities for robotic exploration of asteroids. Microspine arrays comprise dozens of small steel hooks supported on individual suspensions. When these arrays are dragged along a rock surface, the steel hooks engage with asperities and holes on the surface. The suspensions allow for individual hooks to engage with asperities while the remaining hooks continue to drag along the surface. This ensures that the maximum possible number of hooks engage with the surface, thereby increasing the load-bearing abilities of the gripper. Using the microspine array grippers described above as the end-effectors of a robot would allow it to traverse terrain previously unreachable by traditional wheeled robots. Furthermore, microspine-gripping robots that can perch on cliffs or rocky walls could enable a new class of persistent surveillance devices for military applications. In order to interface these microspine grippers with a legged robot, an ankle is needed that can robotically actuate the gripper, as well as allow it to conform to the large-scale irregularities in the rock. The anchor serves three main purposes: deploy and release the anchor, conform to roughness or misalignment with the surface, and cancel out any moments about the anchor that could cause unintentional detachment. The ankle design contains a

  18. Structural flexibility in magnetocaloric RE5T4 (RE=rare-earth; T=Si,Ge,Ga) materials: Effect of chemical substitution on structure, bonding and properties

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Sumohan [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    The binary, ternary and multicomponent intermetallic compounds of rare-earth metals (RE) with group 14 elements (Tt) at the RE5Tt4 stoichiometry have been known for over 30 years, but only in the past decade have these materials become a gold mine for solid-state chemistry, materials science and condensed matter physics. It all started with the discovery of a giant magnetocaloric effect in Gd5Si2Ge2, along with other extraordinary magnetic properties, such as a colossal magnetostriction and giant magnetoresistance. The distinctiveness of this series is in the remarkable flexibility of the chemical bonding between well-defined, subnanometer-thick slabs and the resultant magnetic, transport, and thermodynamic properties of these materials. This can be controlled by varying either or both RE and Tt elements, including mixed rare-earth elements on the RE sites and different group 14 (or T = group 13 or 15) elements occupying the Tt sites. In addition to chemical means, the interslab interactions are also tunable by temperature, pressure, and magnetic field. Thus, this system provides a splendid 'playground' to investigate the interrelationships among composition, structure, physical properties, and chemical bonding. The work presented in this dissertation involving RE5T4 materials has resulted in the successful synthesis, characterization, property measurements, and theoretical analyses of various new intermetallic compounds. The results provide significant insight into the fundamental magnetic and structural behavior of these materials and help us better understand the complex link between a compound's composition, its observed structure, and its properties.

  19. Revisiting isoreticular MOFs of alkaline earth metals: a comprehensive study on phase stability, electronic structure, chemical bonding, and optical properties of A-IRMOF-1 (A = Be, Mg, Ca, Sr, Ba).

    Science.gov (United States)

    Yang, Li-Ming; Vajeeston, Ponniah; Ravindran, Ponniah; Fjellvåg, Helmer; Tilset, Mats

    2011-06-07

    Formation energies, chemical bonding, electronic structure, and optical properties of metal-organic frameworks of alkaline earth metals, A-IRMOF-1 (where A = Be, Mg, Ca, Sr, or Ba), have been systemically investigated with DFT methods. The unit cell volumes and atomic positions were fully optimized with the Perdew-Burke-Ernzerhof functional. By fitting the E-V data into the Murnaghan, Birch and Universal equation of states (UEOS), the bulk modulus and its pressure derivative were estimated and provided almost identical results. The data indicate that the A-IRMOF-1 series are soft materials. The estimated bandgap values are all ca. 3.5 eV, indicating a nonmetallic behavior which is essentially metal independent within this A-IRMOF-1 series. The calculated formation energies for the A-IRMOF-1 series are -61.69 (Be), -62.53 (Mg), -66.56 (Ca), -65.34 (Sr), and -64.12 (Ba) kJ mol(-1) and are substantially more negative than that of Zn-based IRMOF-1 (MOF-5) at -46.02 kJ mol(-1). From the thermodynamic point of view, the A-IRMOF-1 compounds are therefore even more stable than the well-known MOF-5. The linear optical properties of the A-IRMOF-1 series were systematically investigated. The detailed analysis of chemical bonding in the A-IRMOF-1 series reveals the nature of the A-O, O-C, H-C, and C-C bonds, i.e., A-O is a mainly ionic interaction with a metal dependent degree of covalency. The O-C, H-C, and C-C bonding interactions are as anticipated mainly covalent in character. Furthermore it is found that the geometry and electronic structures of the presently considered MOFs are not very sensitive to the k-point mesh involved in the calculations. Importantly, this suggests that sampling with Γ-point only will give reliable structural properties for MOFs. Thus, computational simulations should be readily extended to even more complicated MOF systems.

  20. INAA, AAS, and lead isotope analysis of ancient lead anchors from the black SEA

    International Nuclear Information System (INIS)

    Kuleff, I.; Djingova, R.; Alexandrova, A.

    1995-01-01

    Lead stock of wooden-lead anchors found along the Bulgarian Black Sea coast and typo logically dated VI c. B.C. - III c. A.D. have been analyzed for chemical composition and lead isotope ratios by INAA, AAS and mass spectrometry. Using multivariate methods for analysis as well as simple bi variate plots the lead for production of the stocks was localized as originating from Laurion, Thassos, Troas, Chalkidike and the Rhodopes. In general, the chemical composition is not recommended to be used for provenance study of lead artefacts. Combining the results from this study with the existing typo logical classification certain conclusion about the production and distribution of lead anchors in the Aegean region are made. (author). 22 refs., 3 figs., 4 tabs

  1. Dynamic performance of concrete undercut anchors for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mahrenholtz, Christoph, E-mail: christoph@mahrenholtz.net; Eligehausen, Rolf

    2013-12-15

    Graphical abstract: - Highlights: • Behavior of undercut anchors under dynamic actions simulating earthquakes. • First high frequency load and crack cycling tests on installed concrete anchors ever. • Comprehensive review of anchor qualification for Nuclear Power Plants. - Abstract: Post-installed anchors are widely used for structural and nonstructural connections to concrete. In many countries, concrete anchors used for Nuclear Power Plants have to be qualified to ensure reliable behavior even under extreme conditions. The tests required for qualification of concrete anchors are carried out at quasi-static loading rates well below the rates to be expected for dynamic actions deriving from earthquakes, airplane impacts or explosions. To investigate potentially beneficial effects of high loading rates and cycling frequencies, performance tests on installed undercut anchors were conducted. After introductory notes on anchor technology and a comprehensive literature review, this paper discusses the qualification of anchors for Nuclear Power Plants and the testing carried out to quantify experimentally the effects of dynamic actions on the load–displacement behavior of undercut anchors.

  2. Gas-phase acylation of aminopropyl-silica gel in the synthesis of some chemically bonded silica materials for analytical applications

    International Nuclear Information System (INIS)

    Basiuk, Vladimir; Khil'chevskaya, E.G.

    1991-01-01

    Gas-phase acylation of aminopropyl-silica gel with aliphatic dicarboxylic (succinic, adipic and sebacic) and 4-aminobenzoic acids is proposed as a rapid and efficient one-step method for the synthesis of carboxyalkyl- and 4-aminophenylamidopropyl-silica gels, usually used as zwitterion exchangers for liquid chromatography and matrices for multi-step syntheses of silica-bound aromatic azo reagents for the sorption and chromatographic separation of metal ions. Acylation degrees of 59-90% are achieved after 0.5 h. IR spectra of the acylation products and near-UV-visible spectra for bonded aromatic azo compounds, based on 4-aminobenzamidopropyl-silica gel, are presented. Some positive and negative aspects of the gas-phase acylation are discussed. (author). 34 refs.; 2 figs.; 2 tabs

  3. Hydrogen bonding in tight environments

    DEFF Research Database (Denmark)

    Pirrotta, Alessandro; Solomon, Gemma C.; Franco, Ignacio

    2016-01-01

    The single-molecule force spectroscopy of a prototypical class of hydrogen-bonded complexes is computationally investigated. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The force-extension (F-L) isotherms...... of the host-guest complexes are simulated using classical molecular dynamics and the MM3 force field, for which a refined set of hydrogen bond parameters was developed from MP2 ab initio computations. The F-L curves exhibit peaks that signal conformational changes during elongation, the most prominent...... of which is in the 60-180 pN range and corresponds to the force required to break the hydrogen bonds. These peaks in the F-L curves are shown to be sensitive to relatively small changes in the chemical structure of the host molecule. Thermodynamic insights into the supramolecular assembly were obtained...

  4. The anchoring mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.

    2014-09-01

    The objective of this work is to investigate the mechanism of the laminar premixed flame anchoring near a heat-conducting bluff-body. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. No artificial flame anchoring boundary conditions were imposed. Simulations show a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. A steel bluff-body resulted in a slightly larger recirculation zone than a ceramic bluff-body; the size of which grew as the equivalence ratio was decreased. A significant departure from the conventional two-zone flame-structure is shown in the anchoring region. In this region, the reaction zone is associated with a large negative energy convection (directed from products to reactants) resulting in a negative flame-displacement speed. It is shown that the premixed flame anchors at an immediate downstream location near the bluff-body where favorable ignition conditions are established; a region associated with (1) a sufficiently high temperature impacted by the conjugate heat exchange between the heat-conducting bluff-body and the hot reacting flow and (2) a locally maximum stoichiometry characterized by the preferential diffusion effects. © 2014 The Combustion Institute.

  5. Spontaneous correction of anterior crossbite by RPE anchored on deciduous teeth in the early mixed dentition.

    Science.gov (United States)

    Rosa, M; Lucchi, P; Mariani, L; Caprioglio, A

    2012-09-01

    The purpose of this study was to evaluate the effectiveness of Haas RPE anchored on deciduous teeth in the early mixed dentition, for inducing the spontaneous correction of permanent incisor's crossbite, without compliance, without post bite-plane and no involvement of the permanent teeth. The sample group comprised 50 consecutive patients (mean age 8y 5m, SD 2y 1m), 31 males, 19 females. They showed a cross-bite affecting one or more permanent incisors, for a total of 70 teeth. The patients were treated with Haas RPE appliance anchored on second deciduous molars and bonded on deciduous canines. No direct forces were applied on the permanent teeth. Anterior crossbite self-corrected 'spontaneously' in 84% of the cases. Lateral incisors had a higher rate of self-correction than central incisors. All hyper-divergent subjects showed a spontaneous crossbite self-correction. The early maxillary expansion by Haas RPE anchored on deciduous teeth is an efficient and effective procedure to induce the anterior crossbite self-correction in the early mixed dentition without the need of a bite-plane, no involvement of the permanent teeth and without compliance.

  6. Starting point anchoring effects in choice experiments

    DEFF Research Database (Denmark)

    Ladenburg, Jacob; Olsen, Søren Bøye

    of preferences in Choice Experiments resembles the Dichotomous Choice format, there is reason to suspect that Choice Experiments are equally vulnerable to anchoring bias. Employing different sets of price levels in a so-called Instruction Choice Set presented prior to the actual choice sets, the present study...... subjectivity in the present study is gender dependent, pointing towards, that female respondents are prone to be affected by the price levels employed. Male respondents, on the other hand, are not sensitive towards these prices levels. Overall, this implicates that female respondents, when employing a low......-priced Instruction Choice Set, tend to express lower willingness-to-pay than when higher prices are employed....

  7. The bone-anchored hearing aid

    DEFF Research Database (Denmark)

    Foghsgaard, Søren

    2014-01-01

    The bone-anchored hearing aid (Baha) was introduced in 1977 by Tjellström and colleagues and has now been used clinically for over 30 years. Generally, the outcomes are good, and several studies have shown improved audiological- and quality of life outcomes. The principle of the Baha is, that sou...... vibrations are led directly to the inner ear via the mastoid bone, bypassing the middle ear. This is achieved via an osseointegrated implant and a skin-penetrating abutment. Studies report high success rates and a majority of complications as typically minor in nature....

  8. Stone anchors from Minicoy Island, Lakshadweep, India

    Digital Repository Service at National Institute of Oceanography (India)

    Tripati, S.

    and Ali Rajas of Kerala. It appears that the mainland had contact with these islands during the early centuries of the Christian era, if not earlier (Sila Tripati, 1999). Though Islam came to Lakshadweep after the 11th and 12th centuries AD..., stitches, ropes and even sails (Hourani, 1995). With the passage of time the maritime contacts between the people of Lakshadweep and Arabs became closer, as demonstrated by the discovery of an Indo- 3 Arabian stone anchor in the Jama Mosque on Minicoy...

  9. ANCHORING IN THE POLITICAL AND ECONOMIC MARKETING

    Directory of Open Access Journals (Sweden)

    Tatyana L. Shklyar

    2015-01-01

    Full Text Available The main purpose of marketing, both ineconomy and in politics is to attract themaximum number of customers or voters, maximizing customer satisfaction and ,ideally, improve the quality of life.The author, in various aspects, thetechnology of anchoring used in NLP, to attract customers and voters, both in the economy and in politics.In different examples demonstrate theoverall impact on the psychology of the consumer. Separating policy and the economy, marketers are missing something. The author proposes to look at how psychologicalanchors affect these two, at fi rst glance, different vector.

  10. Adsorption phenomena and anchoring energy in nematic liquid crystals

    CERN Document Server

    Barbero, Giovanni

    2005-01-01

    Despite the large quantity of phenomenological information concerning the bulk properties of nematic phase liquid crystals, little is understood about the origin of the surface energy, particularly the surface, interfacial, and anchoring properties of liquid crystals that affect the performance of liquid crystal devices. Self-contained and unique, Adsorption Phenomena and Anchoring Energy in Nematic Liquid Crystals provides an account of new and established results spanning three decades of research into the problems of anchoring energy and adsorption phenomena in liquid crystals.The book contains a detailed discussion of the origin and possible sources of anchoring energy in nematic liquid crystals, emphasizing the dielectric contribution to the anchoring energy in particular. Beginning with fundamental surface and anchoring properties of liquid crystals and the definition of the nematic phase, the authors explain how selective ion adsorption, dielectric energy density, thickness dependence, and bias voltage...

  11. Complex cubic metallides AM{sub ∝6} (A=Ca, Sr; M=Zn, Cd, Hg). Synthesis, crystal chemistry and chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Michael; Wendorff, Marco; Roehr, Caroline [Freiburg Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-09-01

    In a systematic synthetic, crystallographic and bond theoretical study, the stability ranges as well as the distribution of the isoelectronic late d-block elements Zn, Cd and Hg (M) in the polyanions of the YCd{sub 6}-type phases (Ca/Sr)Cd{sub 6} have been investigated. Starting from Ca(Cd/Hg){sub 6}, 12-30% of the M atoms can be substituted by Zn, which gradually occupies the center of the empty cubes. In all ternary compounds, smaller/less electronegative Zn/Cd atoms occupy the disordered tetrahedra explaining the lack of the YCd{sub 6}-type for pure mercurides. Along the section SrCd{sub 6}-SrHg{sub 6}, the ordered Eu{sub 4}Cd{sub 25}-type is formed (Sr{sub 4}Cd{sub 16.1}Hg{sub 8.9}: cF1392, Fd anti 3, a=3191.93(5) pm, R1=0.0404). Besides, two new complex cubic Ca phases appear at increased Zn proportion: Ca{sub 2}Zn{sub 5.1}Cd{sub 5.8}, which exhibits a nearly complete site preference of Zn and Cd, crystallizes in the rare cubic Mg{sub 2}Zn{sub 11}-type structure (cP39-δ, Pm anti 3, a=918.1(1) pm, R1=0.0349). In the Ca-Hg system, an increased Zn proportion yielded the new compound CaZn{sub 1.31}Hg{sub 3.69} (cF480, F anti 43m, a=2145.43(9) pm, R1=0.0572), with a complex cubic structure closely related to Ba{sub 20}Hg{sub 103}. All structures, which are commonly described using nested polyhedra around high-symmetric sites, are alternatively described in accordance with the calculated electron densities and charge distribution: building blocks are face-sharing [M{sub 4}] tetrahedra (star polyhedra such as TS, IS, OS), each with a cage-critical point in its center, and [M{sub 8}] cubes (deformed TS), which are either empty, distorted or filled. The M element distribution in the anion is determined by size criteria and the difference in electronegativity, which induces a preferred formation of heteroatomic polar bonds.

  12. Investigation of suction anchor pullout capacity under undrained conditions

    OpenAIRE

    Jarand, Pollestad

    2015-01-01

    Master's thesis in Offshore technology Floating units are dependent on reliable mooring systems to ensure safety during marine operations. Suction anchors have proved to be a technologically viable and cost-effective concept. They are capable of precision installation, re-use, and provide large resistive capacity. This thesis investigates load capacity and failure modes of suction anchors subjected to vertical, horizontal (lateral), and incline loading. Suction anchor design co...

  13. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...

  14. Energy dissipation and high-strain rate dynamic response of E-glass fiber composites with anchored carbon nanotubes

    Science.gov (United States)

    This study explores the mechanical properties of an E-glass fabric composite reinforced with anchored multi-walled carbon nanotubes (CNTs). The CNTs were grown on the E-glass fabric using a floating catalyst chemical vapor deposition procedure. The E-glass fabric with attached CNTs was then incorpor...

  15. Bond strength of masonry

    NARCIS (Netherlands)

    Pluijm, van der R.; Vermeltfoort, A.Th.

    1992-01-01

    Bond strength is not a well defined property of masonry. Normally three types of bond strength can be distinguished: - tensile bond strength, - shear (and torsional) bond strength, - flexural bond strength. In this contribution the behaviour and strength of masonry in deformation controlled uniaxial

  16. Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering.

    Science.gov (United States)

    Wu, Shu-Wei; Liu, Xifeng; Miller, A Lee; Cheng, Yu-Shiuan; Yeh, Ming-Long; Lu, Lichun

    2018-07-15

    In the present study, we fabricated non-toxic, injectable, and thermo-sensitive NIPAAm-g-chitosan (NC) hydrogels with thiol modification for introduction of disulfide cross-linking strategy. Previously, NIPAAm and chitosan copolymer has been proven to have excellent biocompatibility, biodegradability and rapid phase transition after injection, suitable to serve as cell carriers or implanted scaffolds. However, weak mechanical properties significantly limit their potential for biomedical fields. In order to overcome this issue, we incorporated thiol side chains into chitosan by covalently conjugating N-acetyl-cysteine (NAC) with carbodiimide chemistry to strengthen mechanical properties. After oxidation of thiols into disulfide bonds, modified NC hydrogels did improve the compressive modulus over 9 folds (11.4 kPa). Oscillatory frequency sweep showed a positive correlation between storage modulus and cross-liking density as well. Additionally, there was no cytotoxicity observed to mesenchymal stem cells, fibroblasts and osteoblasts. We suggested that the thiol-modified thermo-sensitive polysaccharide hydrogels are promising to be a cell-laden biomaterial for tissue regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Nb2OsB2, with a new twofold superstructure of the U3Si2 type: Synthesis, crystal chemistry and chemical bonding

    Science.gov (United States)

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P. T.

    2013-07-01

    The new ternary metal-rich boride, Nb2OsB2, was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U3Si2-structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B2 dumbbells with B-B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB-LMTO-ASA), the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic Os-B, Nb-B and Nb-Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride.

  18. Testing methods of steel wi re ropes at the anchor

    Directory of Open Access Journals (Sweden)

    Stanislav Kropuch

    2012-12-01

    Full Text Available The present paper introduces an application of the acoustic andthermographic method in the defectoscopic testing of immobilesteel wire ropes at the most critical point, the anchor. Firstmeasurements and their results by these new defectoscopic methodsare shown. In defectoscopic tests at the anchor, the widelyused magnetic method gives unreliable results, and therefore presentsa problem for steel wire defectoscopy. Application of the two new methods in the steel wire defectoscopy at the anchor point will enableincreased safety measures at the anchor of steel wire ropes in bridge, roof, tower and aerial cable lift constructions.

  19. A novel bonding method for fabrication of PET planar nanofluidic chip with low dimension loss and high bonding strength

    International Nuclear Information System (INIS)

    Yin, Zhifu; Zou, Helin; Sun, Lei; Xu, Shenbo; Qi, Liping

    2015-01-01

    Plastic planar nanofluidic chips are becoming increasingly important for biological and chemical applications. However, the majority of the present bonding methods for planar nanofluidic chips suffer from high dimension loss and low bonding strength. In this work, a novel thermal bonding technique based on O 2 plasma and ethanol treatment was proposed. With the assistance of O 2 plasma and ethanol, the PET (polyethylene terephthalate) planar nanofluidic chip can be bonded at a low bonding temperature of 50 °C. To increase the bonding rate and bonding strength, the O 2 plasma parameters and thermal bonding parameters were optimized during the bonding process. The tensile test indicates that the bonding strength of the PET planar nanofluidic chip can reach 0.954 MPa, while the auto-fluorescence test demonstrates that there is no leakage or blockage in any of the bonded micro- or nanochannels. (paper)

  20. End-anchored polymers in good solvents from the single chain limit to high anchoring densities.

    Science.gov (United States)

    Whitmore, Mark D; Grest, Gary S; Douglas, Jack F; Kent, Michael S; Suo, Tongchuan

    2016-11-07

    An increasing number of applications utilize grafted polymer layers to alter the interfacial properties of solid substrates, motivating refinement in our theoretical understanding of such layers. To assess existing theoretical models of them, we have investigated end-anchored polymer layers over a wide range of grafting densities, σ, ranging from a single chain to high anchoring density limits, chain lengths ranging over two orders of magnitude, for very good and marginally good solvent conditions. We compare Monte Carlo and molecular dynamics simulations, numerical self-consistent field calculations, and experimental measurements of the average layer thickness, h, with renormalization group theory, the Alexander-de Gennes mushroom theory, and the classical brush theory. Our simulations clearly indicate that appreciable inter-chain interactions exist at all simulated areal anchoring densities so that there is no mushroom regime in which the layer thickness is independent of σ. Moreover, we find that there is no high coverage regime in which h follows the predicted scaling, h ∼ Nσ 1/3 , for classical polymer brushes either. Given that no completely adequate analytic theory seems to exist that spans wide ranges of N and σ, we applied scaling arguments for h as a function of a suitably defined reduced anchoring density, defined in terms of the solution radius of gyration of the polymer chains and N. We find that such a scaling approach enables a smooth, unified description of h in very good solvents over the full range of anchoring density and chain lengths, although this type of data reduction does not apply to marginal solvent quality conditions.

  1. Understanding Bonds - Denmark

    DEFF Research Database (Denmark)

    Rimmer, Nina Røhr

    2016-01-01

    Undervisningsmateriale. A bond is a debt security, similar to an ”I Owe You document” (IOU). When you purchase a bond, you are lending money to a government, municipality, corporation, federal agency or other entity known as the issuer. In return for the loan, the issuer promises to pay you...... a specified rate of interest during the life of the bond and to repay the face value of the bond (the principal) when it “matures,” or comes due. Among the types of bonds you can choose from are: Government securities, municipal bonds, corporate bonds, mortgage and asset-backed securities, federal agency...... securities and foreign government bonds....

  2. Hydrogen Bonds and Life in the Universe

    Directory of Open Access Journals (Sweden)

    Giovanni Vladilo

    2018-01-01

    Full Text Available The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry.

  3. Hydrogen Bonds and Life in the Universe

    Science.gov (United States)

    2018-01-01

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry. PMID:29301382

  4. Hydrogen Bonds and Life in the Universe.

    Science.gov (United States)

    Vladilo, Giovanni; Hassanali, Ali

    2018-01-03

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a "covalent-bond stage" to a "hydrogen-bond stage" in prebiotic chemistry.

  5. Career anchors and values from different career management perspectives

    Directory of Open Access Journals (Sweden)

    Rodrigo Cunha da Silva

    2016-06-01

    Full Text Available Purpose – To analyze the relationships between career anchors and young Generation Y professionals’ values, from the career concept perspective. Design/methodology/approach – Research concerning the proposed objective was carried out through quantitative research involving 189 Business Administration majors from a Catholic university in São Paulo, Brazil. We used two instruments to identify the career anchors and values of respondents: Schein (1990 and Schwartz (1994, respectively. We used statistical techniques to explore the relationships between career anchors and values. Findings – Among the results, mention should be made to the statistical relationships found between analyzed career anchors and values. It is also important to stress that, although the Lifestyle career anchor was predominantly present in the conglomerate division, this anchor was the predominant characteristic in the differentiation of the smaller group of respondents, the new career group. The General Management Career Anchor, which presents a lower incidence, is the predominant characteristic of the larger group, referring to organizational careers. As well as the Lifestyle career anchor, the Hedonism value was predominant among respondents. Originality/value – The need to consider the following was found: Generation Y presents generational characteristics that drive people management to propose work structures that offer activities to generate learning, pleasure, self-fulfillment and conciliation between work and personal life.

  6. Software Note: Using BILOG for Fixed-Anchor Item Calibration

    Science.gov (United States)

    DeMars, Christine E.; Jurich, Daniel P.

    2012-01-01

    The nonequivalent groups anchor test (NEAT) design is often used to scale item parameters from two different test forms. A subset of items, called the anchor items or common items, are administered as part of both test forms. These items are used to adjust the item calibrations for any differences in the ability distributions of the groups taking…

  7. Stone anchors of India: Findings, classification and significance.

    Digital Repository Service at National Institute of Oceanography (India)

    Tripati, S.

    Various types of stone anchors have been observed during inshore and offshore explorations along the east and west coasts of India. The earliest stone anchors of India have been recorded from the Harappan sites (3rd millennium BC), but their shape...

  8. Anchor stabilization of trapped particle modes in mirror machines

    International Nuclear Information System (INIS)

    Berk, H.L.; Roslyakov, G.V.

    1986-07-01

    It is shown that for trapped particle modes in tandem mirrors, the pressure of the passing particles in the anchor region introduces a stabilizing term proportional to the sum of the anchor's field line curvature and total diamagnetic pressure. The theory is applied to the proposed gas dynamic trap experiment

  9. Career Anchors: Results of an Organisational Study in the UK.

    Science.gov (United States)

    Yarnall, Jane

    1998-01-01

    Career anchors of 374 British employees were identified using Schein's questionnaire. Age, gender, and length of service had no significant effect on distribution of anchors. Job level had some relationship. The information could be used to determine appropriate career-development strategies. (SK)

  10. Anchor stabilization of trapped particle modes in mirror machines

    International Nuclear Information System (INIS)

    Berk, H.L.; Roslyakov, G.V.

    1986-04-01

    It is shown that for trapped particle modes in tandem mirrors, the pressure of the passing particles in the anchor region introduces a stabilizing term proportional to the sum of the anchor's field line curvature and total diamagnetic pressure. The theory is applied to the proposed gas dynamic trap experiment

  11. Understanding Rasch Measurement: Partial Credit Model and Pivot Anchoring.

    Science.gov (United States)

    Bode, Rita K.

    2001-01-01

    Describes the Rasch measurement partial credit model, what it is, how it differs from other Rasch models, and when and how to use it. Also describes the calibration of instruments with increasingly complex items. Explains pivot anchoring and illustrates its use and describes the effect of pivot anchoring on step calibrations, item hierarchy, and…

  12. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  13. Test Score Equating Using Discrete Anchor Items versus Passage-Based Anchor Items: A Case Study Using "SAT"® Data. Research Report. ETS RR-14-14

    Science.gov (United States)

    Liu, Jinghua; Zu, Jiyun; Curley, Edward; Carey, Jill

    2014-01-01

    The purpose of this study is to investigate the impact of discrete anchor items versus passage-based anchor items on observed score equating using empirical data.This study compares an "SAT"® critical reading anchor that contains more discrete items proportionally, compared to the total tests to be equated, to another anchor that…

  14. Pipe supports and anchors - LMFBR applications

    International Nuclear Information System (INIS)

    Anderson, M.J.

    1983-06-01

    Pipe design and support design can not be treated as separate disciplines. A coordinated design approach is required if LMFBR pipe system adequacy is to be achieved at a reasonable cost. It is particularly important that system designers understand and consider those factors which influence support train flexibility and thus the pipe system dynamic stress levels. The system approach must not stop with the design phase but should continue thru the erection and acceptance test procedures. The factors that should be considered in the design of LMFBR pipe supports and anchors are described. The various pipe support train elements are described together with guidance on analysis, design and application aspects. Post erection acceptance and verification test procedures are then discussed

  15. Anchoring submersible ultrasonic receivers in river channels with stable substrate

    Science.gov (United States)

    Bettoli, Phillip William; Scholten, G.D.; Hubbs, D.

    2010-01-01

    We developed an anchoring system for submersible ultrasonic receivers (SURs) that we placed on the bottom of the riverine reaches of three main-stem reservoirs in the upper Tennessee River. Each anchor consisted of a steel tube (8.9 x 35.6 cm) welded vertically to a round plate of steel (5.1 x 40.6 cm). All seven SURs and their 57-kg anchors were successfully deployed and retrieved three times over 547 d by a dive team employing surface air-breathing equipment and a davit-equipped boat. All of the anchors and their SURs remained stationary over two consecutive winters on the hard-bottom, thalweg sites where they were deployed. The SUR and its anchor at the most downriver site experienced flows that exceeded 2,100 m(3)/s and mean water column velocities of about 0.9 m/s.

  16. Biased calculations: Numeric anchors influence answers to math equations

    Directory of Open Access Journals (Sweden)

    Andrew R. Smith

    2011-02-01

    Full Text Available People must often perform calculations in order to produce a numeric estimate (e.g., a grocery-store shopper estimating the total price of his or her shopping cart contents. The current studies were designed to test whether estimates based on calculations are influenced by comparisons with irrelevant anchors. Previous research has demonstrated that estimates across a wide range of contexts assimilate toward anchors, but none has examined estimates based on calculations. In two studies, we had participants compare the answers to math problems with anchors. In both studies, participants' estimates assimilated toward the anchor values. This effect was moderated by time limit such that the anchoring effects were larger when the participants' ability to engage in calculations was limited by a restrictive time limit.

  17. ANTS-anchored Zn-Al-CO{sub 3}-LDH particles as fluorescent probe for sensing of folic acid

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Lei, E-mail: lilei@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China)

    2016-09-15

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO{sub 3}-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn{sup 2+} ions of Zn-Al-CO{sub 3}-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO{sub 3}-LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO{sub 3} groups in ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO{sub 3}-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution. - Highlights: • A novel fluorescent nanosensor has been developed. • The sensor exhibited highly sensitive and selective response to FA. • The fluorescence quenching was fitted to Stern–Volmer equation. • The linear response range was 1–200 μM with a limit of detection of 0.1 μM.

  18. Grapnel stone anchors from Saurashtra: Remnants of Indo-Arab trade on the Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S.; Sundaresh; Tripati, S.

    Stone anchors have been used as a primary source of information on ancient navigation by marine archaeologists since long. These anchors used by ancient mariners are often noticed underwater at various places across the world. Stone anchors are also...

  19. Effects of accuracy motivation and anchoring on metacomprehension judgment and accuracy.

    Science.gov (United States)

    Zhao, Qin

    2012-01-01

    The current research investigates how accuracy motivation impacts anchoring and adjustment in metacomprehension judgment and how accuracy motivation and anchoring affect metacomprehension accuracy. Participants were randomly assigned to one of six conditions produced by the between-subjects factorial design involving accuracy motivation (incentive or no) and peer performance anchor (95%, 55%, or no). Two studies showed that accuracy motivation did not impact anchoring bias, but the adjustment-from-anchor process occurred. Accuracy incentive increased anchor-judgment gap for the 95% anchor but not for the 55% anchor, which induced less certainty about the direction of adjustment. The findings offer support to the integrative theory of anchoring. Additionally, the two studies revealed a "power struggle" between accuracy motivation and anchoring in influencing metacomprehension accuracy. Accuracy motivation could improve metacomprehension accuracy in spite of anchoring effect, but if anchoring effect is too strong, it could overpower the motivation effect. The implications of the findings were discussed.

  20. Containment liner plate anchors and steel embedments test results

    International Nuclear Information System (INIS)

    Chang-Lo, P.L.; Johnson, T.E.; Pfeifer, B.W.

    1977-01-01

    This paper summarizes test data on shear load and deformation capabilities for liner plate line anchors and structural steel embedments in reinforced and prestressed concrete nuclear containments. Reinforced and prestressed nuclear containments designed and constructed in the United States are lined with a minimum of 0.64 cm steel plate. The liner plates are anchored by the use of either studs or structural members (line anchors) which usually run in the vertical direction. This paper will only address line anchors. Static load versus displacement test data is necessary to assure that the design is adequate for the maximum loads. The test program for the liner anchors had the following major objectives: determine load versus displacement data for a variety of anchors considering structural tees and small beams with different weld configurations, from the preceding tests, determine which anchors would lead to an economical and extremely safe design and test these anchors for cyclic loads resulting from thermal fluctuations. Various concrete embeds in the containment and other structures are subjected to loads such as pipe rupture which results in shear. Since many of the loads are transient by nature, it is necessary to know the load-displacement relationship so that the energy absorption can be determined. The test program for the embeds had the following objectives: determine load-displacement relationship for various size anchors from 6.5 cm 2 to 26 cm 2 with maximum capacities of approximately 650 kN; determine the effect of various anchor width-to-thickness ratios for the same shear area

  1. New insights into the interactions between cork chemical components and pesticides. The contribution of π-π interactions, hydrogen bonding and hydrophobic effect.

    Science.gov (United States)

    Olivella, M À; Bazzicalupi, C; Bianchi, A; Fiol, N; Villaescusa, I

    2015-01-01

    The role of chemical components of cork in the sorption of several pesticides has been investigated. For this purpose raw cork and three cork extracted fractions (i.e. cork free of aliphatic extractives, cork free of all extractives and cork free of all extractives and suberin) were used as sorbent of three ionic pesticides (propazine, 2,4-dichlorophenoxy acetic acid (2,4-D) and alachlor) and five non-ionic pesticides (chlorpyrifos, isoproturon, metamitron, methomyl and oxamyl) with a logKow within the range -0.47 to 4.92. The effect of cations on the ionic pesticides, propazine and 2,4-D sorption was also analyzed. Results indicated that the highest yields were obtained for chlorpyrifos and alachlor sorption onto raw cork (>55%). After removal of aliphatic extractives sorption of all pesticides increased that ranged from 3% for propazine to 31% for alachlor. In contrast, removal of phenolic extractives caused a sorption decrease. Low sorption yields were obtained for hydrophobic pesticides such as metamitron, oxamyl and methomyl (cork fractions and extremely low when using raw cork (cork toward aromatic pesticides. Results presented in this paper gain insights into the cork affinities for pesticides and the interactions involved in the sorption process and also enables to envisage sorption affinity of cork for other organic pollutants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Primary retention following nuclear recoil in β-decay: Proposed synthesis of a metastable rare gas oxide ((38)ArO4) from ((38)ClO4(-)) and the evolution of chemical bonding over the nuclear transmutation reaction path.

    Science.gov (United States)

    Timm, Matthew J; Matta, Chérif F

    2014-12-01

    Argon tetroxide (ArO4) is the last member of the N=50 e(-) isoelectronic and isosteric series of ions: SiO4(4-), PO4(3-), SO4(2-), and ClO4(-). A high level computational study demonstrated that while ArO4 is kinetically stable it has a considerable positive enthalpy of formation (of ~298kcal/mol) (Lindh et al., 1999. J. Phys. Chem. A 103, pp. 8295-8302) confirming earlier predictions by Pyykkö (1990. Phys. Scr. 33, pp. 52-53). ArO4 can be expected to be difficult to synthesize by traditional chemistry due to its metastability and has not yet been synthesized at the time of writing. A computational investigation of the changes in the chemical bonding of chlorate (ClO4(-)) when the central chlorine atom undergoes a nuclear transmutation from the unstable artificial chlorine isotope (38)Cl to the stable rare argon isotope (38)Ar through β-decay, hence potentially leading to the formation of ArO4, is reported. A mathematical model is presented that allows for the prediction of yields following the recoil of a nucleus upon ejecting a β-electron. It is demonstrated that below a critical angle between the ejected β-electron and that of the accompanying antineutrino their respective linear momentums can cancel to such an extent as imparting a recoil to the daughter atom insufficient for breaking the Ar-O bond. As a result, a primary retention yield of ~1% of ArO4 is predicted following the nuclear disintegration. The study is conducted at the quadratic configuration interaction with single and double excitations [QCISD/6-311+G(3df)] level of theory followed by an analysis of the electron density by the quantum theory of atoms in molecules (QTAIM). Crossed potential energy surfaces (PES) were used to construct a PES from the metastable ArO4 ground singlet state to the Ar-O bond dissociation product ArO3+O((3)P) from which the predicted barrier to dissociation is ca. 22kcal/mol and the exothermic reaction energy is ca. 28kcal/mol [(U)MP2/6-311+G(d)]. Copyright © 2014

  3. LAMMPS Framework for Dynamic Bonding and an Application Modeling DNA

    DEFF Research Database (Denmark)

    Svaneborg, Carsten

    2012-01-01

    and bond types. When breaking bonds, all angular and dihedral interactions involving broken bonds are removed. The framework allows chemical reactions to be modeled, and use it to simulate a simplistic, coarse-grained DNA model. The resulting DNA dynamics illustrates the power of the present framework....

  4. Phase transitions in liquids with directed intermolecular bonding

    OpenAIRE

    Son, L.; Ryltcev, R.

    2005-01-01

    Liquids with quasi - chemical bonding between molecules are described in terms of vertex model. It is shown that this bonding results in liquid - liquid phase transition, which occurs between phases with different mean density of intermolecular bonds. The transition may be suggested to be a universal phenomena for those liquids.

  5. Annealing-induced changes in chemical bonding and surface characteristics of chemical solution deposited Pb{sub 0.95}La{sub 0.05}Zr{sub 0.54}Ti{sub 0.46}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Batra, Vaishali [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Ramana, C.V. [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Kotru, Sushma, E-mail: skotru@eng.ua.edu [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2016-08-30

    Highlights: • Influence of post-deposition annealing temperature (T{sub a} = 550 and 750 °C) on the chemical valence state and crystalline quality of PLZT thin films was investigated. • XPS analyses demonstrated the shift in binding energies of the constituent atoms which indicated change in chemical state with the change in T{sub a}. • Raman spectra revealed shift in optical modes with the change in T{sub a} indicating the change in phase and crystallinity in the films. • Higher T{sub a} (750 °C) resulted in PLZT films with perovskite structure, nanocrystalline morphology, and better chemical homogeneity. - Abstract: We report the effect of post deposition annealing temperature (T{sub a} = 550 and 750 °C) on the surface morphology, chemical bonding and structural development of lanthanum doped lead zirconate titanate (Pb{sub 0.95}La{sub 0.05}Zr{sub 0.54}Ti{sub 0.46}O{sub 3}; referred to PLZT) thin films prepared using chemical solution deposition method. Atomic force microscopy demonstrates formation of nanocrystallites in the film annealed at T{sub a} = 750 °C. X-ray photoelectron spectroscopy (XPS) analyses indicate that the binding energies (BE) of the Pb 4f, Zr 3d, and Ti 2p doublet experience a positive energy shift at T{sub a} = 750 °C, whereas the BE of O 1s and La 3d doublet show a negative shift with respect to the BE of the films annealed at T{sub a} = 750 °C. Thermal induced crystallization and chemical modification is evident from XPS results. The Ar+ sputtering of the films reveals change in oxidation state and chemical bonding between the constituent atoms, with respect to T{sub a}. Raman spectroscopy used to study phonon-light interactions show shift in longitudinal and transverse optical modes with the change in T{sub a}, confirming the change in phase and crystallinity of these films. The results suggest annealing at T{sub a} = 750 °C yield crystalline perovskite PLZT films, which is essential to obtain photovoltaic response from

  6. Biomechanical comparison of traditional anchors to all-suture anchors in a double-row rotator cuff repair cadaver model.

    Science.gov (United States)

    Goschka, Andrew M; Hafer, Jason S; Reynolds, Kirk A; Aberle, Nicholas S; Baldini, Todd H; Hawkins, Monica J; McCarty, Eric C

    2015-10-01

    To further reduce the invasiveness of arthroscopic rotator cuff repair surgery the all-suture anchor has been developed. The all-suture anchor requires less bone removal and reduces the potential of loose body complications. The all-suture anchor must also have adequate biomechanical strength for the repair to heal. The hypothesis is there is no significant difference in the biomechanical performance of supraspinatus repairs using an all-suture anchor when compared to traditional solid-body suture anchors. Using nine shoulders per group, the supraspinatus tendon was dissected from the greater tuberosity. The four different double row repairs tested were (medial row/lateral row): A: ICONIX2/ICONIX2; B: ICONIX2/Stryker ReelX 3.9mm; C: ICONIX2/Stryker ReelX 4.5mm; D: Arthrex BioComposite CorkScrew FT 4.5mm/Arthrex BioComposite SwiveLock 4.75mm. The ICONIX2 was the only all-suture anchor tested. Tendons underwent cyclic loading from 10 to 100N for 500 cycles, followed by load-to-failure. Data was collected at cycles 5, 100, 200, 300, 400, and 500. One-way ANOVA analysis was used to assess significance (P≤0.05). The anchor combinations tested did not differ significantly in anterior (P>0.4) or posterior (P>0.3) gap formation, construct stiffness (P>0.7), ultimate load (P=0.06), or load to 5mm gap formation (P=0.84). The all-suture anchor demonstrated comparable biomechanical performance in multiple double-row anchor combinations to a combination of traditional solid-body anchors. Thus it may be an attractive option to further reduce the invasiveness of rotator cuff repairs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Bond behavior between CFRP sheet and concrete. Part 2. Improvement of bond strength by out-of plane confinement; CFRP sheet to concrete no fuchaku kyodo (2). Mengai kosoku ni yoru fuchaku tairyoku no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y.; Kimura, K.; Kobatake, Y. [Obayashigumi Research Inst., Tokyo (Japan)

    1998-07-30

    Behavior of phase at the bond interface between CFRP sheet and concrete is modeled basing on the result of anchoring experiment, and specimens are subjected to finite element analysis to investigate necessary confining stress and anchoring length. Improvement of bonding strength is confirmed by providing lateral sheet for anchoring on the sheet bonded on concrete. The out-of-plane stress acted on the sheet and the out-of-plane displacement during confinement in the experiment are estimated as average 0.5MPa and 0.16mm, respectively. Providing appropriate angle to a two-node joint and setting proper stress/deformation relation of springs crossing each other, the behavior of the phase at the bond interface subjected to out-of-plane confinement is modeled. The maximum bond stress is improved from 4.56MPa to 5.10MPa, and the area where the bond stress becomes larger than 4.56MPa increases from 25mm to 30mm. To anchor the sheet employed in this experiment, larger than 30mm out-of-plane confining stress of 0.5MPa must be provided in the direction of fiber. 16 refs., 17 figs., (plus 1 appended fig.), 3 tabs.

  8. High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes

    KAUST Repository

    Baby, Rakhi Raghavan

    2011-01-01

    Metal oxide nanoparticles were chemically anchored onto graphene nanosheets (GNs) and the resultant composites - SnO2/GNs, MnO2/GNs and RuO2/GNs (58% of GNs loading) - coated over conductive carbon fabric substrates were successfully used as supercapacitor electrodes. The results showed that the incorporation of metal oxide nanoparticles improved the capacitive performance of GNs due to a combination of the effect of spacers and redox reactions. The specific capacitance values (with respect to the composite mass) obtained for SnO2/GNs (195 F g-1) and RuO 2/GNs (365 F g-1) composites at a scan rate of 20 mV s-1 in the present study are the best ones reported to date for a two electrode configuration. The resultant supercapacitors also exhibited high values for maximum energy (27.6, 33.1 and 50.6 W h kg-1) and power densities (15.9, 20.4 and 31.2 kW kg-1) for SnO2/GNs, MnO2/GNs and RuO2/GNs respectively. These findings demonstrate the importance and great potential of metal oxide/GNs based composite coated carbon fabric in the development of high-performance energy-storage systems. © 2011 The Royal Society of Chemistry.

  9. Spin selection at organic spinterface by anchoring group

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhao; Qiu, Shuai; Miao, Yuan-yuan; Ren, Jun-feng; Wang, Chuan-kui [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Hu, Gui-chao, E-mail: hgc@sdnu.edu.cn [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Institute of Theoretical Physics, Technische Universität Dresden, 01062 Dresden (Germany)

    2017-07-01

    Highlights: • The sign of interfacial spin polarization can be selected by using different anchoring groups. • A sp{sup 3}-d or sp-d hybridization may occur and induce spin polarization when the anchoring group changes. • Interfacial spin polarization depends on both the type of the outer orbital of the anchoring atom as well as its energy. - Abstract: Control of organic interfacial spin polarization is crucial in organic spintronics. Based on ab initio theory, here we proposed a spin selection at organic interface via anchoring group by adsorbing an organic molecule onto Ni(111) surface. The results demonstrate that either a positive or negative interfacial spin polarization may be obtained by choosing different anchoring groups. The orbital analysis via the projected density of states shows that the interfacial spin polarization is sensitive to the hybridization of the outer orbital of the anchoring atom as well as its energy relative to the d orbital of the ferromagnetic atom. The work indicates a feasible way to realize spin selection at the organic spinterface by anchoring group.

  10. Anchorage Behaviors of Frictional Tieback Anchors in Silty Sand

    Science.gov (United States)

    Hsu, Shih-Tsung; Hsiao, Wen-Ta; Chen, Ke-Ting; Hu, Wen-Chi; Wu, Ssu-Yi

    2017-06-01

    Soil anchors are extensively used in geotechnical applications, most commonly serve as tieback walls in deep excavations. To investigate the anchorage mechanisms of this tieback anchor, a constitutive model that considers both strain hardening and softening and volume dilatancy entitled SHASOVOD model, and FLAC3D software are used to perform 3-D numerical analyses. The results from field anchor tests are compared with those calculated by numerical analyses to enhance the applicability of the numerical method. After the calibration, this research carried out the parameter studies by numerical analyses. The numerical results reveal that whether the yield of soil around an anchor develops to ground surface and/or touches the diaphragm wall depending on the overburden depth H and the embedded depth Z of an anchor, this study suggests the minimum overburden and embedded depths to avoid the yield of soils develop to ground surface and/or touch the diaphragm wall. When the embedded depth, overburden depth or fixed length of an anchor increases, the anchorage capacity also increases. Increasing fixed length should be the optimum method to increase the anchorage capacity for fixed length less than 20m. However, when the fixed length of an anchor exceeds 30 m, the increasing rate of anchorage capacity per fixed length decreases, and progressive yield occurs obviously between the fixed length and surrounding soil.

  11. The challenge of bonding treated wood

    Science.gov (United States)

    Charles R. Frihart

    2004-01-01

    Wood products are quite durable if exposure to moisture is minimized; however, most uses of wood involve considerable exposure to moisture. To preserve the wood, chemicals are used to minimize moisture pickup, to prevent insect attack, and/or to resist microbial growth. The chemicals used as preservatives can interfere with adhesive bonds to wood. Given the many...

  12. Modified Kidner procedure utilizing a Mitek bone anchor.

    Science.gov (United States)

    Dawson, D M; Julsrud, M E; Erdmann, B B; Jacobs, P M; Ringstrom, J B

    1998-01-01

    The recent development of small bone suture anchors has created several potential applications in reconstructive surgery of the foot. Mitek bone anchors are simple to insert, require less aggressive dissection and surgical time than reefing of the redundant posterior tibial tendon, and are a reliable method of tendon-to-bone fixation. Mitek bone anchors are an excellent technique for the treatment of redundant tibialis posterior tendon following a modified Kidner procedure. In modified Kidner procedures involving an excessively large os tibiale externum, Mitek anchoring of the redundant tibialis posterior tendon to the navicular bone is an excellent means for secure plication of the posterior tibial tendon in cases involving intraoperative tendon laxity. A description of the Mitek Anchor System and technique of application in a modified Kinder procedure is presented. The purpose of this study was to describe patient satisfaction and long-term clinical outcomes of the modified Kinder procedure with and without the Mitek bone anchoring system. A retrospective study of the modified Kinder procedure was performed with 13 patients being evaluated, seven with Mitek anchoring and six without. The University of Maryland 100-point Painful Foot Center Scoring System was modified to be more specific to the modified Kinder procedure for assessment of subjective long-term results. Patient overall satisfaction was rated good to excellent by 85.6% of patients in the Mitek group and by 100% of patients in the non-Mitek group. Use of the Mitek anchor allowed for quicker postoperative recovery to resumption of ambulation without assistive devices (average of 3 weeks vs. 4.42 weeks) and a quicker return to pain-free ambulation in normal shoegear (average of 4 weeks vs. 6 weeks). Mitek anchoring of the tibialis posterior tendon, theoretically, increases medial arch support as evidenced by 14% of the Mitek group and 67% of the non-Mitek group requiring postoperative orthotics.

  13. Quantifying Heuristic Bias: Anchoring, Availability, and Representativeness.

    Science.gov (United States)

    Richie, Megan; Josephson, S Andrew

    2018-01-01

    Construct: Authors examined whether a new vignette-based instrument could isolate and quantify heuristic bias. Heuristics are cognitive shortcuts that may introduce bias and contribute to error. There is no standardized instrument available to quantify heuristic bias in clinical decision making, limiting future study of educational interventions designed to improve calibration of medical decisions. This study presents validity data to support a vignette-based instrument quantifying bias due to the anchoring, availability, and representativeness heuristics. Participants completed questionnaires requiring assignment of probabilities to potential outcomes of medical and nonmedical scenarios. The instrument randomly presented scenarios in one of two versions: Version A, encouraging heuristic bias, and Version B, worded neutrally. The primary outcome was the difference in probability judgments for Version A versus Version B scenario options. Of 167 participants recruited, 139 enrolled. Participants assigned significantly higher mean probability values to Version A scenario options (M = 9.56, SD = 3.75) than Version B (M = 8.98, SD = 3.76), t(1801) = 3.27, p = .001. This result remained significant analyzing medical scenarios alone (Version A, M = 9.41, SD = 3.92; Version B, M = 8.86, SD = 4.09), t(1204) = 2.36, p = .02. Analyzing medical scenarios by heuristic revealed a significant difference between Version A and B for availability (Version A, M = 6.52, SD = 3.32; Version B, M = 5.52, SD = 3.05), t(404) = 3.04, p = .003, and representativeness (Version A, M = 11.45, SD = 3.12; Version B, M = 10.67, SD = 3.71), t(396) = 2.28, p = .02, but not anchoring. Stratifying by training level, students maintained a significant difference between Version A and B medical scenarios (Version A, M = 9.83, SD = 3.75; Version B, M = 9.00, SD = 3.98), t(465) = 2.29, p = .02, but not residents or attendings. Stratifying by heuristic and training level, availability maintained

  14. Considerations on the design of through-wall anchors

    International Nuclear Information System (INIS)

    Ricklefs, Ulf

    2012-01-01

    Connections to existing buildings are often the most difficult planning challenge for the realization of construction measures in case of piping system replacements in nuclear power plants. This is due to restricted space or limited load reserves of the building structure. Usually the realization of support connections to the existing buildings is achieved by anchor bolts. But in critical cases the preferred alternative solution uses through-wall anchors. Up to now uniform assessment thresholds are not available, no technical guidelines or regulations for construction variants exist. Through-wall anchors allow significantly higher load capacities for tensile and shear loads but require enhanced planning and realization efforts.

  15. Facilitation of Nanoscale Thermal Transport by Hydrogen Bonds

    OpenAIRE

    Zhang, Lin

    2017-01-01

    Thermal transport performance at the nanoscale and/or of biomaterials is essential to the success of many new technologies including nanoelectronics, biomedical devices, and various nanocomposites. Due to complicated microstructures and chemical bonding, thermal transport process in these materials has not been well understood yet. In terms of chemical bonding, it is well known that the strength of atomic bonding can significantly affect thermal transport across materials or across interfaces...

  16. Configuration of an inelastic flexible anchored cable

    Directory of Open Access Journals (Sweden)

    T. P. Dreyer

    1992-07-01

    Full Text Available Consider an inelastic, perfectly flexible cable with given external forces acting on the total length of the cable. The one end-point is fixed in the origin and the other end-point is anchored at a given point (a;b;c in space. The resulting configuration of the cable in space can be modelled by a system of non-linear differential equations. In this article it is shown that this continuous model of the cable can always be solved in terms of an integral. In the special case of a constant (i.e. independent of the position on the cable external force per unit length the solution is given explicitly in terms of three constants that describe the tension at the origin. These three constants are determined by the boundary values a, b and c at the other end-point, and must be calculated in general by a numerical procedure from the three resulting simultaneous non-linear equations. A few applications of this method are shown.

  17. The anchoring bias reflects rational use of cognitive resources.

    Science.gov (United States)

    Lieder, Falk; Griffiths, Thomas L; M Huys, Quentin J; Goodman, Noah D

    2018-02-01

    Cognitive biases, such as the anchoring bias, pose a serious challenge to rational accounts of human cognition. We investigate whether rational theories can meet this challenge by taking into account the mind's bounded cognitive resources. We asked what reasoning under uncertainty would look like if people made rational use of their finite time and limited cognitive resources. To answer this question, we applied a mathematical theory of bounded rationality to the problem of numerical estimation. Our analysis led to a rational process model that can be interpreted in terms of anchoring-and-adjustment. This model provided a unifying explanation for ten anchoring phenomena including the differential effect of accuracy motivation on the bias towards provided versus self-generated anchors. Our results illustrate the potential of resource-rational analysis to provide formal theories that can unify a wide range of empirical results and reconcile the impressive capacities of the human mind with its apparently irrational cognitive biases.

  18. Correlation of Persistence, Initiative and Career Anchors Categories of Students

    Directory of Open Access Journals (Sweden)

    I A Novikova

    2008-03-01

    Full Text Available The article is devoted to the analysis of the results of comparative empirical study of persistence, initiative and Career Anchors categories of the students on the basis of the systemic-functional approach.

  19. Anchored but not internalized: shape dependent endocytosis of nanodiamond

    Science.gov (United States)

    Zhang, Bokai; Feng, Xi; Yin, Hang; Ge, Zhenpeng; Wang, Yanhuan; Chu, Zhiqin; Raabova, Helena; Vavra, Jan; Cigler, Petr; Liu, Renbao; Wang, Yi; Li, Quan

    2017-04-01

    Nanoparticle-cell interactions begin with the cellular uptake of the nanoparticles, a process that eventually determines their cellular fate. In the present work, we show that the morphological features of nanodiamonds (NDs) affect both the anchoring and internalization stages of their endocytosis. While a prickly ND (with sharp edges/corners) has no trouble of anchoring onto the plasma membrane, it suffers from difficult internalization afterwards. In comparison, the internalization of a round ND (obtained by selective etching of the prickly ND) is not limited by its lower anchoring amount and presents a much higher endocytosis amount. Molecular dynamics simulation and continuum modelling results suggest that the observed difference in the anchoring of round and prickly NDs likely results from the reduced contact surface area with the cell membrane of the former, while the energy penalty associated with membrane curvature generation, which is lower for a round ND, may explain its higher probability of the subsequent internalization.

  20. Nb{sub 2}OsB{sub 2}, with a new twofold superstructure of the U{sub 3}Si{sub 2} type: Synthesis, crystal chemistry and chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P.T., E-mail: boniface.fokwa@ac.rwth-aachen.de

    2013-07-15

    The new ternary metal-rich boride, Nb{sub 2}OsB{sub 2}, was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U{sub 3}Si{sub 2}-structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B{sub 2} dumbbells with B–B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB–LMTO–ASA), the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic Os–B, Nb–B and Nb–Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride. - Graphical abstract: Nb{sub 2}OsB{sub 2} is, to the best of our knowledge, the first fully characterized phase in the ternary Nb–Os–B system. It crystallizes (space group P4/mnc, 128) with a new twofold superstructure of the U{sub 3}Si{sub 2} structure type (space group P4/mbm, 127), and is therefore the first boride in this structure family crystallizing with a superstructure of the U{sub 3}Si{sub 2} structure type. We show that the distortions leading to this superstructure occurs mainly in the Nb-layer, which tries to accommodate the large osmium atoms. The consequence of this puckering is the building osmium dumbbells instead of chains along [001]. - Highlights: • First compound in the Nb–Os–B system. • New twofold superstructure of U{sub 3}Si{sub 2} structure type. • Puckering of Nb-layer responsible for superstructure occurrence. • Chemical bonding studied

  1. Development of a Behaviorally Anchored Rating Scale for Leadership

    Science.gov (United States)

    2018-01-01

    Research Product 2018-06 Development of a Behaviorally Anchored Rating Scale for Leadership Tatiana H. Toumbeva Krista L...anchored Rating Scale for Leadership 5a. CONTRACT NUMBER W5J9CQ-11-D-0004 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62278 6...observer- based behavioral measure to help instructors more reliably and accurately evaluate the development of leadership attributes and competencies

  2. Talar anchor placement for modified Brostrom lateral ankle stabilization procedure.

    Science.gov (United States)

    Angirasa, Arush K; Barrett, Michael J

    2008-01-01

    The modified Brostrom procedure has been a proven procedure with excellent utility in the treatment of lateral ankle instability within limitation. Multiple variations of the original technique have been described in the literature to date. Included in these variations are differences in anchor placement, suture technique, or both. In this research study, we propose placing a bone screw anchor into the lateral shoulder of the talus rather than the typical placement at the lateral malleolus for anatomic reconstruction of the lateral ankle ligaments.

  3. Reduction of lateral loads in abutments using ground anchors

    OpenAIRE

    Laefer, Debra F.; Truong-Hong, Linh; Le, Khanh Ba

    2013-01-01

    In bridge design, economically addressing large, lateral earth pressures on bridge abutments is a major challenge. Traditional approaches employ enlargement of the abutment components to resist these pressures. This approach results in higher construction costs. As an alternative, a formal approach using ground anchors to resist lateral soil pressure on bridge abutments is proposed herein. The ground anchors are designed to minimise lateral forces at the pile cap base. Design examples for hig...

  4. Bonding with Your Baby

    Science.gov (United States)

    ... the future bonding of the child and parent. Adoptive parents may be concerned about bonding with their ... general emotional support. And it's OK to ask family members and friends for help in the days — ...

  5. A comparison of lateral ankle ligament suture anchor strength.

    Science.gov (United States)

    Barber, F Alan; Herbert, Morley A; Crates, John M

    2013-06-01

    Lateral ankle ligament repairs increasingly use suture anchors instead of bone tunnels. Our purpose was to compare the biomechanical properties of a knotted and knotless suture anchor appropriate for a lateral ankle ligament reconstruction. In porcine distal fibulae, 10 samples of 2 different PEEK anchors were inserted. The attached sutures were cyclically loaded between 10N and 60N for 200 cycles. A destructive pull was performed and failure loads, cyclic displacement, stiffness, and failure mode recorded. PushLock 2.5 anchors failed before 200 cycles. PushLock 100 cycle displacement was less than Morphix 2.5 displacement (panchors completing 200 cycles was 86.5N (PushLock) and 252.1N (Morphix) (panchor breaking and suture breakage. The knotted Morphix demonstrated more displacement and greater failure strength than the knotless PushLock. The PushLock failed consistently with suture breaking. The Morphix anchor failed both by anchor breaking and by suture breaking. Copyright © 2012 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  6. Peptide-Mediated Liposome Fusion: The Effect of Anchor Positioning

    Directory of Open Access Journals (Sweden)

    Niek S. A. Crone

    2018-01-01

    Full Text Available A minimal model system for membrane fusion, comprising two complementary peptides dubbed “E” and “K” joined to a cholesterol anchor via a polyethyleneglycol spacer, has previously been developed in our group. This system promotes the fusion of large unilamellar vesicles and facilitates liposome-cell fusion both in vitro and in vivo. Whilst several aspects of the system have previously been investigated to provide an insight as to how fusion is facilitated, anchor positioning has not yet been considered. In this study, the effects of placing the anchor at either the N-terminus or in the center of the peptide are investigated using a combination of circular dichroism spectroscopy, dynamic light scattering, and fluorescence assays. It was discovered that anchoring the “K” peptide in the center of the sequence had no effect on its structure, its ability to interact with membranes, or its ability to promote fusion, whereas anchoring the ‘E’ peptide in the middle of the sequence dramatically decreases fusion efficiency. We postulate that anchoring the ‘E’ peptide in the middle of the sequence disrupts its ability to form homodimers with peptides on the same membrane, leading to aggregation and content leakage.

  7. Australia's Bond Home Bias

    OpenAIRE

    Anil V. Mishra; Umaru B. Conteh

    2014-01-01

    This paper constructs the float adjusted measure of home bias and explores the determinants of bond home bias by employing the International Monetary Fund's high quality dataset (2001 to 2009) on cross-border bond investment. The paper finds that Australian investors' prefer investing in countries with higher economic development and more developed bond markets. Exchange rate volatility appears to be an impediment for cross-border bond investment. Investors prefer investing in countries with ...

  8. On the Robustness of Anchoring Effects in WTP and WTA Experiments

    OpenAIRE

    Drew Fudenberg; David K Levine; Zacharias Maniadis

    2010-01-01

    We reexamine the effects of the anchoring manipulation of Ariely, Loewenstein, and Prelec (2003) on the evaluation of common market goods and find very weak anchoring effects. We perform the same manipulation on the evaluation of binary lotteries, and find no anchoring effects at all. This suggests limits on the robustness of anchoring effects. (JEL C91, D12, D44)

  9. The Effect of Mini and Midi Anchor Tests on Test Equating

    Science.gov (United States)

    Arikan, Çigdem Akin

    2018-01-01

    The main purpose of this study is to compare the test forms to the midi anchor test and the mini anchor test performance based on item response theory. The research was conducted with using simulated data which were generated based on Rasch model. In order to equate two test forms the anchor item nonequivalent groups (internal anchor test) was…

  10. Pyramidal anchor stone from Baga waters of Goa, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Tripati, S.

    . Pyramidal anchor stones have an apex hole which goes up to the round hole, however Goa anchor stone has no such perforation, but, instead has a rectangular cutting on the apex. The anchor stone is compared with Greek pyramidal anchor stones, and probably...

  11. One hundred years of Lewis Chemical Bond!

    Indian Academy of Sciences (India)

    2016-09-20

    Sep 20, 2016 ... was a conceptual quantum jump, coming more than a decade ahead of ... did use a 'cubic model of atoms' with eight electrons in their corners, he realized that ... started referring to these advances as Lewis-Langmuir theory.

  12. The correlation theory of the chemical bond

    Czech Academy of Sciences Publication Activity Database

    Szalay, S.; Barcza, G.; Szilvási, T.; Veis, Libor; Legeza, Ö.

    2017-01-01

    Roč. 7, MAY 2017 (2017), č. článku 2237. ISSN 2045-2322 R&D Projects: GA ČR GA16-12052S Institutional support: RVO:61388955 Keywords : density matrix * quantum chemistry * theoretical model Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.259, year: 2016

  13. Phenylacetylene and H bond

    Indian Academy of Sciences (India)

    ... all resembling H bonds. Non-linear H bonds due to secondary interactions. C-H stretching frequency shows blue shift. Heavy atom distances are longer than the sum of van der Waals radii. Formed a task group through IUPAC to come up with a modern definition of H bond. 15 international experts including Desiraju.

  14. Failure Capacity Evaluation for Anchor System of NPP Facilities by using a Shaking Table Test

    International Nuclear Information System (INIS)

    Kwon, Hyung O; Jung, Min Ki; Park, Jin Wan; Lim, Ji Hoon

    2010-02-01

    This study investigate the destructive influence of crack locations on the anchor performance to evaluate the seismic performance of NPP equipment anchored on damaged concrete. For this purpose, small-scale specimens were fabricated according to the following three cases: 1) with a non-damaged anchor; 2) with cracks running through the anchor; and 3) with cracks along the expected corn-shape fracture away from the anchor. The result verified with the finite element method is as follows: In the first and second cases that is, with a non-damaged anchor and with cracks running through the anchor destruction occurred at the anchor steel. In the third case that is, with cracks around the anchor, a 30% decline in the seismic performance was identified. This result indicates that evaluation of seismic performance and relevant reinforcement are required when cracks occur away from the anchor along the expected destructive surface

  15. Use of the ROC anchor in foot and ankle surgery. A retrospective study.

    Science.gov (United States)

    Kuwada, G T

    1999-05-01

    A retrospective study was conducted on the use of the ROC (Radial Osteo Compression) soft-tissue anchor in foot and ankle surgery. This article describes how the anchor is deployed, problematic aspects of using the anchor, and complications and success rates associated with the anchor in ankle stabilizations, posterior tibial tendon reconstruction, peroneus brevis tendon reconstruction after fracture of the base of the fifth metatarsal, and detachment and reattachment of the Achilles tendon. The ROC anchor consists of the anchor with nonabsorbable suture attached to the shaft, the deployment handle, and drill bits. The anchor and shaft are snapped into the deployment handle and inserted into the drill hole. Compression of the trigger deploys the anchor into the hole. The ROC anchor was found to be reliable, useful, and relatively easy to deploy, with outcomes similar to those of other soft-tissue anchors.

  16. Room temperature Cu-Cu direct bonding using surface activated bonding method

    International Nuclear Information System (INIS)

    Kim, T.H.; Howlader, M.M.R.; Itoh, T.; Suga, T.

    2003-01-01

    Thin copper (Cu) films of 80 nm thickness deposited on a diffusion barrier layered 8 in. silicon wafers were directly bonded at room temperature using the surface activated bonding method. A low energy Ar ion beam of 40-100 eV was used to activate the Cu surface prior to bonding. Contacting two surface-activated wafers enables successful Cu-Cu direct bonding. The bonding process was carried out under an ultrahigh vacuum condition. No thermal annealing was required to increase the bonding strength since the bonded interface was strong enough at room temperature. The chemical constitution of the Cu surface was examined by Auger electron spectroscope. It was observed that carbon-based contaminations and native oxides on copper surface were effectively removed by Ar ion beam irradiation for 60 s without any wet cleaning processes. An atomic force microscope study shows that the Ar ion beam process causes no surface roughness degradation. Tensile test results show that high bonding strength equivalent to bulk material is achieved at room temperature. The cross-sectional transmission electron microscope observations reveal the presence of void-free bonding interface without intermediate layer at the bonded Cu surfaces

  17. Composite Laser Ceramics by Advanced Bonding Technology.

    Science.gov (United States)

    Ikesue, Akio; Aung, Yan Lin; Kamimura, Tomosumi; Honda, Sawao; Iwamoto, Yuji

    2018-02-09

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm². On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm². 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm²). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties.

  18. Hydrogen bond dynamics in bulk alcohols

    International Nuclear Information System (INIS)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-01-01

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics–quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid—alcohols—has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups

  19. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.

    2005-01-01

    Low temperature bonding of silicon wafers was achieved using sol-gel technology. The initial sol-gel chemistry of the coating solution was found to influence the mechanical properties of the resulting bonds. More precisely, the influence of parameters such as the alkoxide concentration, water-to-alkoxide molar ratio, pH, and solution aging on the final bond morphologies and interfacial fracture energy was studied. The thickness and density of the sol-gel coating were characterised using ellipsometry. The corresponding bonded specimens were investigated using attenuated total reflectance Fourier transformed infrared spectroscopy to monitor their chemical composition, infrared imaging to control bond integrity, and cross-sectional transmission electron microscopy to study their microstructure. Their interfacial fracture energy was measured using microindentation. An optimum water-to-alkoxide molar ratio of 10 and hydrolysis water at pH = 2 were found. Such conditions led to relatively dense films (> 90%), resulting in bonds with a fracture energy of 3.5 J/m 2 , significantly higher than those obtained using classical hydrophilic bonding (typically 1.5-2.5 J/m 2 ). Ageing of the coating solution was found to decrease the bond strength

  20. Hydrogen bond dynamics in bulk alcohols.

    Science.gov (United States)

    Shinokita, Keisuke; Cunha, Ana V; Jansen, Thomas L C; Pshenichnikov, Maxim S

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid--alcohols--has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  1. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Short, K.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.

    2005-01-01

    Sol-gel bonds have been produced between smooth, clean silicon substrates by spin-coating solutions containing partially hydrolysed silicon alkoxides. The two coated substrates were assembled and the resulting sandwich fired at temperatures ranging from 60 to 600 deg. C. The sol-gel coatings were characterised using attenuated total reflectance Fourier transform infrared spectroscopy, ellipsometry, and atomic force microscopy, while the corresponding bonded specimens were investigated using scanning electron microscopy and cross-sectional transmission electron microscopy. Mechanical properties were characterised using both microindentation and tensile testing. Bonding of silicon wafers has been successfully achieved at temperatures as low as 60 deg. C. At 300 deg. C, the interfacial fracture energy was 1.55 J/m 2 . At 600 deg. C, sol-gel bonding provided superior interfacial fracture energy over classical hydrophilic bonding (3.4 J/m 2 vs. 1.5 J/m 2 ). The increase in the interfacial fracture energy is related to the increase in film density due to the sintering of the sol-gel interface with increasing temperature. The superior interfacial fracture energy obtained by sol-gel bonding at low temperature is due to the formation of an interfacial layer, which chemically bonds the two sol-gel coatings on each wafer. Application of a tensile stress on the resulting bond leads to fracture of the samples at the silicon/sol-gel interface

  2. Structure and bonding in clusters

    International Nuclear Information System (INIS)

    Kumar, V.

    1991-10-01

    We review here the recent progress made in the understanding of the electronic and atomic structure of small clusters of s-p bonded materials using the density functional molecular dynamics technique within the local density approximation. Starting with a brief description of the method, results are presented for alkali metal clusters, clusters of divalent metals such as Mg and Be which show a transition from van der Waals or weak chemical bonding to metallic behaviour as the cluster size grows and clusters of Al, Sn and Sb. In the case of semiconductors, we discuss results for Si, Ge and GaAs clusters. Clusters of other materials such as P, C, S, and Se are also briefly discussed. From these and other available results we suggest the possibility of unique structures for the magic clusters. (author). 69 refs, 7 figs, 1 tab

  3. Assessing tether anchor labeling and usability in pickup trucks.

    Science.gov (United States)

    Klinich, Kathleen D; Manary, Miriam A; Malik, Laura A; Flannagan, Carol A; Jermakian, Jessica S

    2018-04-03

    The objective of this study was to investigate vehicle factors associated with child restraint tether use and misuse in pickup trucks and evaluate 4 labeling interventions designed to educate consumers on proper tether use. Volunteer testing was performed with 24 subjects and 4 different pickup trucks. Each subject performed 8 child restraint installations among the 4 pickups using 2 forward-facing restraints: a Britax Marathon G4.1 and an Evenflo Triumph. Vehicles were selected to represent 4 different implementations of tether anchors among pickups: plastic loop routers (Chevrolet Silverado), webbing routers (Ram), back wall anchors (Nissan Frontier), and webbing routers plus metal anchors (Toyota Tundra). Interventions included a diagram label, Quick Response (QR) Code linked to video instruction, coordinating text label, and contrasting text tag. Subjects used the child restraint tether in 93% of trials. However, tether use was completely correct in only 9% of trials. An installation was considered functional if the subject attached the tether to a tether anchor and had a tight installation (ignoring routing and head restraint position); 28% of subjects achieved a functional installation. The most common installation error was attaching the tether hook to the anchor/router directly behind the child restraint (near the top of the seatback) rather than placing the tether through the router and attaching it to the anchor in the adjacent seating position. The Nissan Frontier, with the anchor located on the back wall of the cab, had the highest rate of correct installations but also had the highest rate of attaching the tether to components other than the tether anchor (seat adjustor, child restraint storage hook, around head restraint). None of the labeling interventions had a significant effect on correct installation; not a single subject scanned the QR Code to access the video instruction. Subjects with the most successful installations spent extensive time

  4. Simplified design of flexible expansion anchored plates for nuclear structures

    International Nuclear Information System (INIS)

    Mehta, N.K.; Hingorani, N.V.; Longlais, T.G.; Sargent and Lundy, Chicago, IL)

    1984-01-01

    In nuclear power plant construction, expansion anchored plates are used to support pipe, cable tray and HVAC duct hangers, and various structural elements. The expansion anchored plates provide flexibility in the installation of field-routed lines where cast-in-place embedments are not available. General design requirements for expansion anchored plate assemblies are given in ACI 349, Appendix B (1). The manufacturers recommend installation procedures for their products. Recent field testing in response to NRC Bulletin 79-02 (2) indicates that anchors, installed in accordance with manufacturer's recommended procedures, perform satisfactorily under static and dynamic loading conditions. Finite element analysis is a useful tool to correctly analyze the expansion anchored plates subject to axial tension and biaxial moments, but it becomes expensive and time-consuming to apply this tool for a large number of plates. It is, therefore, advantageous to use a simplified method, even though it may be more conservative as compared to the exact method of analysis. This paper presents a design method referred to as the modified rigid plate analysis approach to simplify both the initial design and the review of as-built conditions

  5. Dilemmas in zirconia bonding: A review

    Directory of Open Access Journals (Sweden)

    Obradović-Đuričić Kosovka

    2013-01-01

    Full Text Available This article presents a literature review on the resin bond to zirconia ceramic. Modern esthetic dentistry has highly recognized zirconia, among other ceramic materials. Biocompatibility of zirconia, chemical and dimensional stability, excellent mechanical properties, all together could guarantee optimal therapeutical results in complex prosthodontic reconstruction. On the other hand, low thermal degradation, aging of zirconia as well as problematic bonding of zirconia framework to dental luting cements and tooth structures, opened the room for discussion concerning their clinical durability. The well known methods of mechanical and chemical bonding used on glass-ceramics are not applicable for use with zirconia. Therefore, under critical clinical situations, selection of the bonding mechanism should be focused on two important points: high initial bond strength value and long term bond strength between zirconia-resin interface. Also, this paper emphases the use of phosphate monomer luting cements on freshly air-abraded zirconia as the simplest and most effective way for zirconia cementation procedure today.

  6. BONDING ALUMINUM METALS

    Science.gov (United States)

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  7. Anchoring effect on first passage process in Taiwan financial market

    Science.gov (United States)

    Liu, Hsing; Liao, Chi-Yo; Ko, Jing-Yuan; Lih, Jiann-Shing

    2017-07-01

    Empirical analysis of the price fluctuations of financial markets has received extensive attention because a substantial amount of financial market data has been collected and because of advances in data-mining techniques. Price fluctuation trends can help investors to make informed trading decisions, but such decisions may also be affected by a psychological factors-the anchoring effect. This study explores the intraday price time series of Taiwan futures, and applies diffusion model and quantitative methods to analyze the relationship between the anchoring effect and price fluctuations during first passage process. Our results indicate that power-law scaling and anomalous diffusion for stock price fluctuations are related to the anchoring effect. Moreover, microscopic price fluctuations before switching point in first passage process correspond with long-term price fluctuations of Taiwan's stock market. We find that microscopic trends could provide useful information for understanding macroscopic trends in stock markets.

  8. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  9. Experimental investigation of bond strength under high loading rates

    Directory of Open Access Journals (Sweden)

    Michal Mathias

    2015-01-01

    Full Text Available The structural behaviour of reinforced concrete is governed significantly by the transmission of forces between steel and concrete. The bond is of special importance for the overlapping joint and anchoring of the reinforcement, where rigid bond is required. It also plays an important role in the rotational capacity of plastic hinges, where a ductile bond behaviour is preferable. Similar to the mechanical properties of concrete and steel also the characteristics of their interaction changes with the velocity of the applied loading. For smooth steel bars with its main bond mechanisms of adhesion and friction, nearly no influence of loading rate is reported in literature. In contrast, a high rate dependence can be found for the nowadays mainly used deformed bars. For mechanical interlock, where ribs of the reinforcing steel are bracing concrete material surrounding the bar, one reason can be assumed to be in direct connection with the increase of concrete compressive strength. For splitting failure of bond, characterized by the concrete tensile strength, an even higher dynamic increase is observed. For the design of Structures exposed to blast or impact loading the knowledge of a rate dependent bond stress-slip relationship is required to consider safety and economical aspects at the same time. The bond behaviour of reinforced concrete has been investigated with different experimental methods at the University of the Bundeswehr Munich (UniBw and the Joint Research Centre (JRC in Ispra. Both static and dynamic tests have been carried out, where innovative experimental apparatuses have been used. The bond stress-slip relationship and maximum pull-out-forces for varying diameter of the bar, concrete compressive strength and loading rates have been obtained. It is expected that these experimental results will contribute to a better understanding of the rate dependent bond behaviour and will serve for calibration of numerical models.

  10. Experimental Study on Bond-Slip Behavior of Bamboo Bolt-Modified Slurry Interface under Pull-Out Load

    Directory of Open Access Journals (Sweden)

    Wei Lu

    2018-01-01

    Full Text Available This paper presents an analysis of bamboo bolt-modified slurry interfaces based on 26 in situ axial pull-out tests intended to highlight the mechanical behavior of interface under a fracture mode. Three impact factors are analyzed: anchorage length, bolt diameter, and bolt hole diameter, using the same materials of bamboo and modified slurry. The result shows that the interface between the bamboo bolt and anchoring agent is the control interface of an anchorage system, and the local behavior of the interface involves four stages: elastic, soften, friction, and decoupling. Distribution law and change trend of slippage, stress, and strain of anchoring interface along with the axial direction of an anchor bolt were analyzed. The result shows that there is effective anchoring length limit in this kind of interface, and that the complete decoupling phenomenon should not be neglected. Through a comparative analysis of the existing bond-slip model and interface bond-slip curve, and considering the correspondence of the strain-slip curve and trilinear bond-slip model simultaneously, a modified trilinear bond-slip model has been proposed. The friction section of this model is limited, and shearing stress in the complete decoupling section is zero.

  11. Proteomic analysis of GPI-anchored membrane proteins

    DEFF Research Database (Denmark)

    Jung, Hye Ryung; Jensen, Ole Nørregaard

    2006-01-01

    Glycosyl-phosphatidyl-inositol-anchored proteins (GPI-APs) represent a subset of post-translationally modified proteins that are tethered to the outer leaflet of the plasma membrane via a C-terminal GPI anchor. GPI-APs are found in a variety of eukaryote species, from pathogenic microorganisms...... to humans. GPI-APs confer important cellular functions as receptors, enzymes and scaffolding molecules. Specific enzymes and detergent extraction methods combined with separation technologies and mass spectrometry permit proteomic analysis of GPI-APs from plasma membrane preparations to reveal cell...

  12. A reusable suture anchor for arthroscopy psychomotor skills training.

    Science.gov (United States)

    Tillett, Edward D; Rogers, Rainie; Nyland, John

    2003-03-01

    For residents to adequately develop the early arthroscopy psychomotor skills required to better learn how to manage the improvisational situations they will encounter during actual patient cases, they need to experience sufficient practice repetitions within a contextually relevant environment. Unfortunately, the cost of suture anchors can be a practice repetition-limiting factor in learning arthroscopic knot-tying techniques. We describe a technique for creating inexpensive reusable suture anchors and provide an example of their application to repair the anterior glenoid labrum during an arthroscopy psychomotor skills laboratory training session.

  13. Bond energies of ThO+ and ThC+: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O2 and CO

    Science.gov (United States)

    Cox, Richard M.; Citir, Murat; Armentrout, P. B.; Battey, Samuel R.; Peterson, Kirk A.

    2016-05-01

    Kinetic energy dependent reactions of Th+ with O2 and CO are studied using a guided ion beam tandem mass spectrometer. The formation of ThO+ in the reaction of Th+ with O2 is observed to be exothermic and barrierless with a reaction efficiency at low energies of k/kLGS = 1.21 ± 0.24 similar to the efficiency observed in ion cyclotron resonance experiments. Formation of ThO+ and ThC+ in the reaction of Th+ with CO is endothermic in both cases. The kinetic energy dependent cross sections for formation of these product ions were evaluated to determine 0 K bond dissociation energies (BDEs) of D0(Th+-O) = 8.57 ± 0.14 eV and D0(Th+-C) = 4.82 ± 0.29 eV. The present value of D0 (Th+-O) is within experimental uncertainty of previously reported experimental values, whereas this is the first report of D0 (Th+-C). Both BDEs are observed to be larger than those of their transition metal congeners, TiL+, ZrL+, and HfL+ (L = O and C), believed to be a result of lanthanide contraction. Additionally, the reactions were explored by quantum chemical calculations, including a full Feller-Peterson-Dixon composite approach with correlation contributions up to coupled-cluster singles and doubles with iterative triples and quadruples (CCSDTQ) for ThC, ThC+, ThO, and ThO+, as well as more approximate CCSD with perturbative (triples) [CCSD(T)] calculations where a semi-empirical model was used to estimate spin-orbit energy contributions. Finally, the ThO+ BDE is compared to other actinide (An) oxide cation BDEs and a simple model utilizing An+ promotion energies to the reactive state is used to estimate AnO+ and AnC+ BDEs. For AnO+, this model yields predictions that are typically within experimental uncertainty and performs better than density functional theory calculations presented previously.

  14. Bond energies of ThO{sup +} and ThC{sup +}: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O{sub 2} and CO

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Richard M; Citir, Murat; Armentrout, P. B., E-mail: armentrout@chem.utah.edu [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850 (United States); Battey, Samuel R.; Peterson, Kirk A. [Department of Chemistry, Washington State University, Pullman, Washington 99164-4630 (United States)

    2016-05-14

    Kinetic energy dependent reactions of Th{sup +} with O{sub 2} and CO are studied using a guided ion beam tandem mass spectrometer. The formation of ThO{sup +} in the reaction of Th{sup +} with O{sub 2} is observed to be exothermic and barrierless with a reaction efficiency at low energies of k/k{sub LGS} = 1.21 ± 0.24 similar to the efficiency observed in ion cyclotron resonance experiments. Formation of ThO{sup +} and ThC{sup +} in the reaction of Th{sup +} with CO is endothermic in both cases. The kinetic energy dependent cross sections for formation of these product ions were evaluated to determine 0 K bond dissociation energies (BDEs) of D{sub 0}(Th{sup +}–O) = 8.57 ± 0.14 eV and D{sub 0}(Th{sup +}–C) = 4.82 ± 0.29 eV. The present value of D{sub 0} (Th{sup +}–O) is within experimental uncertainty of previously reported experimental values, whereas this is the first report of D{sub 0} (Th{sup +}–C). Both BDEs are observed to be larger than those of their transition metal congeners, TiL{sup +}, ZrL{sup +}, and HfL{sup +} (L = O and C), believed to be a result of lanthanide contraction. Additionally, the reactions were explored by quantum chemical calculations, including a full Feller-Peterson-Dixon composite approach with correlation contributions up to coupled-cluster singles and doubles with iterative triples and quadruples (CCSDTQ) for ThC, ThC{sup +}, ThO, and ThO{sup +}, as well as more approximate CCSD with perturbative (triples) [CCSD(T)] calculations where a semi-empirical model was used to estimate spin-orbit energy contributions. Finally, the ThO{sup +} BDE is compared to other actinide (An) oxide cation BDEs and a simple model utilizing An{sup +} promotion energies to the reactive state is used to estimate AnO{sup +} and AnC{sup +} BDEs. For AnO{sup +}, this model yields predictions that are typically within experimental uncertainty and performs better than density functional theory calculations presented previously.

  15. Synthesis, structure and chemical bonding of CaFe{sub 2−x}Rh{sub x}Si{sub 2} (x=0, 1.32, and 2) and SrCo{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hlukhyy, Viktor, E-mail: viktor.hlukhyy@lrz.tu-muenchen.de; Hoffmann, Andrea V.; Fässler, Thomas F.

    2013-07-15

    }. The crystal chemistry and chemical bonding in the title compounds are discussed in terms of LMTO band structure calculations and a topological analysis using the Electron Localization Function (ELF). - Graphical abstract: The SrCo{sub 2}Si{sub 2} and CaFe{sub 2−x}Rh{sub x}Si{sub 2} (x==0, 1.32, and 2) crystallize in the ThCr{sub 2}Si{sub 2}-type. The structure of SrCo{sub 2}Si{sub 2} contains isolated [Co{sub 2}Si{sub 2}]{sup 2−} layers in the ab-plane, whereas the [T{sub 2}Si{sub 2}] layers in CaFe{sub 2−x}Rh{sub x}Si{sub 2} are interconnected along the c-axis via Si3Si bonds resulting in a [T{sub 2}Si{sub 2}]{sup 2−} network. - Highlights: • Synthesis and structure of ternary silicides SrCo{sub 2}Si{sub 2} and CaFe{sub 2−x}Rh{sub x}Si{sub 2} (x=0, 1.32, and 2). • The SrCo{sub 2}Si{sub 2} and CaRh{sub 2}Si{sub 2} are isoelectronic to the parent 122 iron–pnictide superconductors AeFe{sub 2}As{sub 2}. • CaFe{sub 2}Si{sub 2} is a full substituted variant (As/Si) of superconductor CaFe{sub 2}As{sub 2}. • The title compounds demonstrate the tunable Si3Si distances.

  16. Synthesis, structure and chemical bonding of CaFe2−xRhxSi2 (x=0, 1.32, and 2) and SrCo2Si2

    International Nuclear Information System (INIS)

    Hlukhyy, Viktor; Hoffmann, Andrea V.; Fässler, Thomas F.

    2013-01-01

    The finding of superconductivity in Ba 0.6 K 0.4 Fe 2 As 2 put the attention on the investigation of compounds that crystallize with ThCr 2 Si 2 structure type such as AT 2 X 2 (A=alkali/alkaline earth/rare earth element; T=transition metal and X=element of the 13–15th group). In this context the silicides CaFe 2 Si 2 , CaFe 0.68(6) Rh 1.32(6) Si 2 , CaRh 2 Si 2 and SrCo 2 Si 2 have been synthesized by reaction of the elements under an argon atmosphere. Single crystals were obtained by special heat treatment in welded niobium/tantalum ampoules. The compounds were investigated by means of powder and single crystal X-ray diffraction. All compounds crystallize in the ThCr 2 Si 2 -type structure with space group I4/mmm (No. 139): a=3.939(1) Å, c=10.185(1) Å, R 1 =0.045, 85 F 2 values, 8 variable parameters for CaFe 2 Si 2 ; a=4.0590(2) Å, c=9.9390(8) Å, R 1 =0.030, 90 F 2 values, 10 variable parameters for CaFe 0.68(6) Rh 1.32(6) Si 2 ; a=4.0695(1) Å, c=9.9841(3) Å, R 1 =0.031, 114 F 2 values, 9 variable parameters for CaRh 2 Si 2 ; and a=3.974(1) Å, c=10.395(1) Å, R 1 =0.036, 95 F 2 values, 8 variable parameters for SrCo 2 Si 2 . The structure of SrCo 2 Si 2 contains isolated [Co 2 Si 2 ] 2− 2D-layers in the ab-plane whereas in CaFe 2−x Rh x Si 2 the [T 2 Si 2 ] layers (T=Fe and Rh) are interconnected along the c-axis via Si3Si bonds resulting in a three-dimentional (3D) [T 2 Si 2 ] 2− polyanions and therefore belong to the so-called collapsed form of the ThCr 2 Si 2 -type structure. The SrCo 2 Si 2 and CaRh 2 Si 2 are isoelectronic to the parent 122 iron–pnictide superconductors AeFe 2 As 2 (Ae=alkaline earth elements), whereas CaFe 2 Si 2 is a full substituted variant (As/Si) of CaFe 2 As 2 . The crystal chemistry and chemical bonding in the title compounds are discussed in terms of LMTO band structure calculations and a topological analysis using the Electron Localization Function (ELF). - Graphical abstract: The SrCo 2 Si 2 and CaFe 2−x Rh x Si

  17. Widespread Disulfide Bonding in Proteins from Thermophilic Archaea

    OpenAIRE

    Jorda, Julien; Yeates, Todd O.

    2011-01-01

    Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaea...

  18. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...

  19. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael

    2015-01-01

    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... to think in alternative ways such as issuing corporate bonds. A market for corporate bonds exists in countries such as Norway, Germany, France, the United Kingdom and the United States, while Denmark is still behind in this trend. Some large Danish corporations have instead used foreign corporate bonds...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...

  20. In vitro and in vivo Comparison of Orthodontic Indirect Bonding ...

    African Journals Online (AJOL)

    2018-05-22

    May 22, 2018 ... 2018 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ‑ Medknow. Objective: The aim of this study was to evaluate in vitro shear bond strength ... with indirect bonding resins that were either chemically or light-cured. ...... strength of composite, glass ionomer, and acidic primer adhesive.

  1. A Proteomics Investigation of Anchored PKA-RI Signaling

    NARCIS (Netherlands)

    Kovanich, D.

    2013-01-01

    Compartmentalization of kinases and phosphatases plays an important role in the specificity of second messenger mediated signaling events. Localization of the cAMP-dependent protein kinase is mediated by interaction of its regulatory subunit (PKA-R) with the versatile family of A-kinase anchoring

  2. 76 FR 10627 - Assumption Buster Workshop: Trust Anchors Are Invulnerable

    Science.gov (United States)

    2011-02-25

    ... day-long workshop on the pros and cons of the use and implementation of trust anchors. The workshop... National Coordination Office (NCO) for the Networking and Information Technology Research and Development... Coordination Office for the Networking and Information Technology Research and Development (NITRD) Program on...

  3. Empirical evidence for resource-rational anchoring and adjustment.

    Science.gov (United States)

    Lieder, Falk; Griffiths, Thomas L; M Huys, Quentin J; Goodman, Noah D

    2018-04-01

    People's estimates of numerical quantities are systematically biased towards their initial guess. This anchoring bias is usually interpreted as sign of human irrationality, but it has recently been suggested that the anchoring bias instead results from people's rational use of their finite time and limited cognitive resources. If this were true, then adjustment should decrease with the relative cost of time. To test this hypothesis, we designed a new numerical estimation paradigm that controls people's knowledge and varies the cost of time and error independently while allowing people to invest as much or as little time and effort into refining their estimate as they wish. Two experiments confirmed the prediction that adjustment decreases with time cost but increases with error cost regardless of whether the anchor was self-generated or provided. These results support the hypothesis that people rationally adapt their number of adjustments to achieve a near-optimal speed-accuracy tradeoff. This suggests that the anchoring bias might be a signature of the rational use of finite time and limited cognitive resources rather than a sign of human irrationality.

  4. Fullerene-based Anchoring Groups for Molecular Electronics

    DEFF Research Database (Denmark)

    Martin, Christian A.; Ding, Dapeng; Sørensen, Jakob Kryger

    2008-01-01

    We present results on a new fullerene-based anchoring group for molecular electronics. Using lithographic mechanically controllable break junctions in vacuum we have determined the conductance and stability of single-molecule junctions of 1,4-bis(fullero[c]pyrrolidin-1-yl)benzene. The compound can...

  5. Ten Anchor Points for Teaching Principles of Marketing

    Science.gov (United States)

    Tomkovick, Chuck

    2004-01-01

    Effective marketing instructors commonly share a love for their students, an affinity for the subject matter, and a devotion to continuous quality improvement. The purpose of this article is to highlight 10 anchor points for teaching Principles of Marketing, which are designed to better engage students in the learning process. These anchor…

  6. Stable Pt clusters anchored to monovacancies on graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Medasani, Bharat K.; Liu, Jun; Sushko, Maria L.

    2017-10-09

    Abstract

    anchor'>

  7. Robust conductance of dumbbell molecular junctions with fullerene anchoring groups

    DEFF Research Database (Denmark)

    Markussen, Troels; Settnes, Mikkel; Thygesen, Kristian Sommer

    2011-01-01

    The conductance of a molecular wire connected to metallic electrodes is known to be sensitive to the atomic structure of the molecule-metal contact. This contact is to a large extent determined by the anchoring group linking the molecular wire to the metal. It has been found experimentally that a...

  8. Liquifying PLDLLA Anchor Fixation in Achilles Reconstruction for Insertional Tendinopathy.

    Science.gov (United States)

    Boden, Stephanie A; Boden, Allison L; Mignemi, Danielle; Bariteau, Jason T

    2018-04-01

    Insertional Achilles tendinopathy (IAT) is a frequent cause of posterior heel pain and is often associated with Haglund's deformity. Surgical correction for refractory cases of IAT has been well studied; however, the method of tendon fixation to bone in these procedures remains controversial, and to date, no standard technique has been identified for tendon fixation in these surgeries. Often, after Haglund's resection, there is large exposed cancellous surface for Achilles reattachment, which may require unique fixation to optimize outcomes. Previous studies have consistently demonstrated improved patient outcomes after Achilles tendon reconstruction with early rehabilitation with protected weight bearing, evidencing the need for a strong and stable anchoring of the Achilles tendon that allows early weight bearing without tendon morbidity. In this report, we highlight the design, biomechanics, and surgical technique of Achilles tendon reconstruction with Haglund's deformity using a novel technique that utilizes ultrasonic energy to liquefy the suture anchor, allowing it to incorporate into surrounding bone. Biomechanical studies have demonstrated superior strength of the suture anchor utilizing this novel technique as compared with prior techniques. However, future research is needed to ensure that outcomes of this technique are favorable when compared with outcomes using traditional suture anchoring methods. Level V: Operative technique.

  9. Local ecological knowledge (LEK) on fish behavior around anchored FADs

    NARCIS (Netherlands)

    Macusi, Edison D.; Abreo, Neil A.S.; Babaran, Ricardo P.

    2017-01-01

    The Fishing Industry in the Philippines plays an important role in the food and employment need of Filipino fishers. By using anchored Fish Aggregating Devices (FADs or payao), the Philippine tuna fisheries was transformed into a million-dollar industry. Minimal studies on exploitation rates and

  10. Culturally-Anchored Values and University Education Experience Perception

    Science.gov (United States)

    Mitsis, Ann; Foley, Patrick

    2009-01-01

    Purpose: The purpose of this paper is to examine whether business students' gender, age and culturally-anchored values affect their perceptions of their university course experience. Design/methodology/approach: Culturally diverse business students (n 1/4 548) studying at an Australian university were surveyed using previously established scales.…

  11. Memory for Dialogue: Recalling an Anchor through Talk and Response.

    Science.gov (United States)

    Beaver, Pam

    This paper reports on a project involving student recall of the dialogue in a movie and retention of the "anchor," which in this case refers to a videotape recording of "To Kill a Mockingbird." The project looked at how students retained knowledge over a few days and what kind of activities resulted from expertise with an…

  12. Experience-based, body-anchored qualitative research interviewing

    DEFF Research Database (Denmark)

    Stelter, Reinhard

    2010-01-01

    -anchored interviewing, and second, by an interview guide that explores a research participant's personal experience with mindfulness meditation. An excerpt from an interview is discussed to illustrate the advantages of this interview form, namely its value as a methodological instrument for qualitative research...

  13. Poor Anchoring Limits Dyslexics' Perceptual, Memory, and Reading Skills

    Science.gov (United States)

    Oganian, Yulia; Ahissar, Merav

    2012-01-01

    The basic deficits underlying the severe and persistent reading difficulties in dyslexia are still highly debated. One of the major topics of debate is whether these deficits are language specific, or affect both verbal and non-verbal stimuli. Recently, Ahissar and colleagues proposed the "anchoring-deficit hypothesis" (Ahissar, Lubin,…

  14. Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans.

    Science.gov (United States)

    Eigenheer, Richard A; Jin Lee, Young; Blumwald, Eduardo; Phinney, Brett S; Gelli, Angie

    2007-06-01

    Extracellular proteins of Cryptococcus neoformans are involved in the pathogenesis of cryptococcosis, and some are immunoreactive antigens that may potentially serve as candidates for vaccine development. To further study the extracellular proteome of the human fungal pathogen Cry. neoformans, we conducted a proteomic analysis of secreted and cell wall-bound proteins with an acapsular strain of Cry. neoformans. Proteins were identified from both intact cells and cell walls. In both cases, extracellular proteins were removed with trypsin or beta-glucanase, and then all proteins/peptides were purified by solid-phase extraction, spin dialysis, and HPLC, and identified by liquid chromatography-mass spectrometry. This study identified 29 extracellular proteins with a predicted N-terminal signal sequence and also a predicted glycosylphosphatidylinositol anchor motif in more than half. Among the novel proteins identified were five glycosylphosphatidylinositol-anchored proteins with extensive Ser/Thr-rich regions but no apparent functional domains, a glycosylphosphatidylinositol-anchored aspartic protease, and a metalloprotease with structural similarity to an elastinolytic metalloprotease of Aspergillus fumigatus. This study suggests that Cry. neoformans has the machinery required to target glycosylphosphatidylinositol-anchored proteins to the cell wall, and it confirms the extracellular proteolytic ability of Cry. neoformans.

  15. Outcomes of the modified Brostrom procedure using suture anchors for chronic lateral ankle instability--a prospective, randomized comparison between single and double suture anchors.

    Science.gov (United States)

    Cho, Byung-Ki; Kim, Yong-Min; Kim, Dong-Soo; Choi, Eui-Sung; Shon, Hyun-Chul; Park, Kyoung-Jin

    2013-01-01

    The present prospective, randomized study was conducted to compare the clinical outcomes of the modified Brostrom procedure using single and double suture anchors for chronic lateral ankle instability. A total of 50 patients were followed up for more than 2 years after undergoing the modified Brostrom procedure. Of the 50 procedures, 25 each were performed using single and double suture anchors by 1 surgeon. The Karlsson scale had improved significantly to 89.8 points and 90.6 points in the single and double anchor groups, respectively. Using the Sefton grading system, 23 cases (92%) in the single anchor group and 22 (88%) in the double anchor group achieved satisfactory results. The talar tilt angle and anterior talar translation on stress radiographs using the Telos device had improved significantly to an average of 5.7° and 4.6 mm in the single anchor group and 4.5° and 4.3 mm in the double anchor group, respectively. The double anchor technique was superior with respect to the postoperative talar tilt. The single and double suture anchor techniques produced similar clinical and functional outcomes, with the exception of talar tilt as a reference of mechanical stability. The modified Brostrom procedure using both single and double suture anchors appears to be an effective treatment method for chronic lateral ankle instability. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  16. On Moderator Detection in Anchoring Research: Implications of Ignoring Estimate Direction

    Directory of Open Access Journals (Sweden)

    Nathan N. Cheek

    2018-05-01

    Full Text Available Anchoring, whereby judgments assimilate to previously considered standards, is one of the most reliable effects in psychology. In the last decade, researchers have become increasingly interested in identifying moderators of anchoring effects. We argue that a drawback of traditional moderator analyses in the standard anchoring paradigm is that they ignore estimate direction—whether participants’ estimates are higher or lower than the anchor value. We suggest that failing to consider estimate direction can sometimes obscure moderation in anchoring tasks, and discuss three potential analytic solutions that take estimate direction into account. Understanding moderators of anchoring effects is essential for a basic understanding of anchoring and for applied research on reducing the influence of anchoring in real-world judgments. Considering estimate direction reduces the risk of failing to detect moderation.

  17. Career Anchors of United States Air Force Information Systems Workers: A Turnover Predictor

    National Research Council Canada - National Science Library

    Wynne, Lee

    2002-01-01

    ...) and the work of Schein (1987) to measure the career anchors, job satisfaction, and turnover intention of AF IS workers to determine if those whose job type and career anchor match report higher satisfaction and lower turnover...

  18. Functionalized Nanostructures: Redox-Active Porphyrin Anchors for Supramolecular DNA Assemblies

    KAUST Repository

    Börjesson, Karl; Wiberg, Joanna; El-Sagheer, Afaf H.; Ljungdahl, Thomas; Må rtensson, Jerker; Brown, Tom; Nordén, Bengt; Albinsson, Bo

    2010-01-01

    , such as orientation, strength, homogeneity, and binding site size, was determined, suggesting that the porphyrin is well suited as a photophysical and redox-active lipid anchor, in comparison to the inert cholesterol anchor commonly used today. Furthermore

  19. A Single-hole stone anchor from Kottapatnam: Early historic port site of Andhra Pradesh, India

    Digital Repository Service at National Institute of Oceanography (India)

    Tripati, S.; Rao, K.P.; Kumari, S.; Imsong, O.; Vanlalhruaitluangi, V.

    of Kottapatnam and this is the first stone anchor reported from Andhra coast. In this paper the single hole stone anchor has been detailed along with its probable period and the trade contacts of Kottapatnam as a port...

  20. Retractable Robotic Anchor for Hard Rock and Granular Soils, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC, is developing an innovative retractable robotic anchor that works in hard rock and granular soils permitting anchoring and subsequent...

  1. Steel shear strength of anchors with stand-off base plates.

    Science.gov (United States)

    2013-09-01

    Sign and signal structures are often connected to concrete foundations through a stand-off annular base plate with a double-nut anchor bolt connection, which leaves exposed anchor bolt lengths below leveling nuts used in these connections. Cantilever...

  2. Arthroscopic repair of lateral ankle ligament complex by suture anchor.

    Science.gov (United States)

    Wang, Jingwei; Hua, Yinghui; Chen, Shiyi; Li, Hongyun; Zhang, Jian; Li, Yunxia

    2014-06-01

    Arthroscopic repair of the lateral ligament complex with suture anchors is increasingly used to treat chronic ankle instability (CAI). Our aims are (1) to analyze and evaluate the literature on arthroscopic suture anchor repair of the anterior talofibular ligament and (2) to conduct a systematic review of the clinical evidence on the reported outcomes and complications of treating CAI with this technique. We performed a systematic review of the literature using PubMed, Ovid, Elsevier ScienceDirect, Web of Science-Conference Proceedings Citation Index, and the Cochrane Database of Systematic Reviews from 1987 to September 2013. Clinical studies using the arthroscopic suture anchor technique to treat CAI were included. Outcome measures consisted of clinical assessment of postoperative ligament stability and complications. In addition, the methodologic quality of the included studies was assessed by use of the modified Coleman Methodology Score. After reviewing 371 studies, we identified 6 studies (5 retrospective case series and 1 prospective case series, all Level IV) that met the inclusion criteria, with a mean Coleman Methodology Score of 71.8 ± 7.52 (range, 63 to 82). In these studies 178 patients (179 ankles) underwent arthroscopic suture anchor repair of the anterior talofibular ligament with a mean follow-up period of 38.9 months (range, 6 to 117.6 months). All patients were reported to have subjective improvement of their ankle instability, with complications in 31 cases. Studies of arthroscopic suture anchor technique to treat CAI are sparse, with moderate mean methodologic quality. The included studies suggest that the arthroscopic technique is a feasible procedure to restore ankle stability; however, on the basis of our review, this technique seems to be associated with a relatively high complication rate. Extensive cadaveric studies, clinical trials, and comparative studies comparing arthroscopic and open repair should be performed in the future. Level

  3. Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects

    Science.gov (United States)

    Poddar, Antarip; Dhar, Jayabrata; Chakraborty, Suman

    2017-07-01

    Advent of nematic liquid crystal flows has attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electro-osmosis stands as one of the efficient flow actuation mechanisms through narrow confinements. In the present study, we explore the electrically actuated flow of an ordered nematic fluid with ionic inclusions, taking into account the influences from surface-induced elasticity and electrical double layer (EDL) phenomena. Toward this, we devise the coupled flow governing equations from fundamental free-energy analysis, considering the contributions from first- and second-order elastic, dielectric, flexoelectric, charged surface polarization, ionic and entropic energies. The present study focuses on the influence of surface charge and elasticity effects in the resulting linear electro-osmosis through a slit-type microchannel whose surfaces are chemically treated to display a homeotropic-type weak anchoring state. An optical periodic stripe configuration of the nematic director has been observed, especially for higher electric fields, wherein the Ericksen number for the dynamic study is restricted to the order of unity. Contrary to the isotropic electrolytes, the EDL potential in this case was found to be dependent on the external field strength. Through a systematic investigation, we brought out the fact that the wavelength of the oscillating patterns is dictated mainly by the external field, while the amplitude depends on most of the physical variables ranging from the anchoring strength and the flexoelectric coefficients to the surface charge density and electrical double layer thickness.

  4. Impact of Anchoring Groups on Ballistic Transport: Single Molecule vs Monolayer Junctions

    Science.gov (United States)

    2015-01-01

    Tuning the transport properties of molecular junctions by chemically modifying the molecular structure is one of the key challenges for advancing the field of molecular electronics. In the present contribution, we investigate current–voltage characteristics of differently linked metal–molecule–metal systems that comprise either a single molecule or a molecular assembly. This is achieved by employing density functional theory in conjunction with a Green’s function approach. We show that the conductance of a molecular system with a specific anchoring group is fundamentally different depending on whether a single molecule or a continuous monolayer forms the junction. This is a consequence of collective electrostatic effects that arise from dipolar elements contained in the monolayer and from interfacial charge rearrangements. As a consequence of these collective effects, the “ideal” choice for an anchoring group is clearly different for monolayer and single molecule devices. A particularly striking effect is observed for pyridine-docked systems. These are subject to Fermi-level pinning at high molecular packing densities, causing an abrupt increase of the junction current already at small voltages. PMID:26401191

  5. Synthesis, characterization, and chemical bonding analysis of the lithium alkaline-earth metal gallide nitrides Li{sub 2}(Ca{sub 3}N){sub 2}[Ga{sub 4}] and Li{sub 2}(Sr{sub 3}N){sub 2}[Ga{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Manisha; Bobnar, Matej; Ormeci, Alim; Hoehn, Peter [Chemische Metallkunde, Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Stoiber, Dominik; Niewa, Rainer [Institut fuer Anorganische Chemie, Universitaet Stuttgart (Germany); Ovchinnikov, Alexander [Chemische Metallkunde, Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Department of Chemistry and Biochemistry, University of Delaware, Newark, DE (United States)

    2017-11-17

    Large single crystals of Li{sub 2}(Ca{sub 3}N){sub 2}[Ga{sub 4}] and Li{sub 2}(Sr{sub 3}N){sub 2}[Ga{sub 4}] up to several mm in size were grown from mixtures of the respective elements and binary alkaline-earth metal nitrides in reactive lithium melts employing a modified high-temperature centrifugation-aided filtration (HTCAF) technique. The main structural features of these isotypic phases are stella quadrangula building units [Ga{sub 4}]Li{sub 4/2} and octahedra (Nae{sub 6/2}), which form two independent interpenetrating networks. The phases crystallize in the η-carbide structure and represent diamagnetic small bandgap semiconductors. Real-space chemical bonding analysis indicates predominantly ionic bonding. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Do budget balance rules anchor budget balance expectations? -- Some international evidence

    OpenAIRE

    Rülke, Jan-Christoph; Frenkel, Michael; Lis, Eliza

    2013-01-01

    This is the first study that analyzes whether budget balance expectations are anchored and whether budget balance rules effectively anchor expectations. To this end, we use a unique data set which covers budget balance expectations in 17 countries that implemented a budget balance rules. While our results are mixed concerning the general impact of budget balance rules on anchoring expectations, we do find that specific features of budget balance rules are important to successfully anchor budg...

  7. HKUST-1 Membranes Anchored on Porous Substrate by Hetero MIL-110 Nanorod Array Seeds.

    Science.gov (United States)

    Mao, Yiyin; Cao, Wei; Li, Junwei; Sun, Luwei; Peng, Xinsheng

    2013-09-02

    Great anchors and seeds: Hetero-seeding growth processes and anchored nanorod arrays were successfully utilized in the synthesis of HKUST-1 membranes. These arrays were firmly anchored on porous substrates by using a MIL-110 nanorod array as both the anchor and seed. The resulting HKUST-1 membranes demonstrated good separation factors for binary gases exceeding the Knudson selectivity. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Amino Acid Patterns around Disulfide Bonds

    Directory of Open Access Journals (Sweden)

    Brett Drury

    2010-11-01

    Full Text Available Disulfide bonds provide an inexhaustible source of information on molecular evolution and biological specificity. In this work, we described the amino acid composition around disulfide bonds in a set of disulfide-rich proteins using appropriate descriptors, based on ANOVA (for all twenty natural amino acids or classes of amino acids clustered according to their chemical similarities and Scheffé (for the disulfide-rich proteins superfamilies statistics. We found that weakly hydrophilic and aromatic amino acids are quite abundant in the regions around disulfide bonds, contrary to aliphatic and hydrophobic amino acids. The density distributions (as a function of the distance to the center of the disulfide bonds for all defined entities presented an overall unimodal behavior: the densities are null at short distances, have maxima at intermediate distances and decrease for long distances. In the end, the amino acid environment around the disulfide bonds was found to be different for different superfamilies, allowing the clustering of proteins in a biologically relevant way, suggesting that this type of chemical information might be used as a tool to assess the relationship between very divergent sets of disulfide-rich proteins.

  9. A group of 20 stone anchors from the waters of Dwarka, on the Gujarat Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S; Sundaresh; Tripati, S.; Gudigar, P.; Vora, K.H.; Bandodkar, S.N.

    A large number of stone anchors were discovered in a water depth of 10-14 m off Dwarka during the 1998-99 season. The seabed near the anchors consists of a ledge with an average height of 1 m. Several anchors were found trapped between the rocks...

  10. Conceptualization and Exploration of Composite Career Anchors: An Analysis of Information Systems Personnel.

    Science.gov (United States)

    Ramakrishna, Hindupur V.; Potosky, Denise

    2003-01-01

    Information systems professionals (n=163) completed measures of career anchors and outcomes (career/job satisfaction, job performance, perceived advancement prospects); 46% had multiple dominant anchors and these individuals did not have significantly different career outcomes than those with single dominant anchors. (Contains 26 references.) (SK)

  11. Management of subluxated capsular bag-fixated intraocular lenses using a capsular anchor

    NARCIS (Netherlands)

    Ton, Yokrat; Naftali, Modi; Lapid Gortzak, Ruth; Assia, Ehud I.

    2016-01-01

    We describe the use of the capsular anchor (AssiAnchor) to manage a subluxated intraocular lens (IOL) in the capsular bag. The anchor comprises 2 prongs that hold the anterior lens capsule and a central rod that is sutured to the scleral wall, enabling centration of the IOL-capsular bag complex. Six

  12. Atomic bonding between metal and graphene

    KAUST Repository

    Wang, Hongtao

    2013-03-07

    To understand structural and chemical properties of metal-graphene composites, it is crucial to unveil the chemical bonding along the interface. We provide direct experimental evidence of atomic bonding between typical metal nano structures and graphene, agreeing well with density functional theory studies. Single Cr atoms are located in the valleys of a zigzag edge, and few-atom ensembles preferentially form atomic chains by self-assembly. Low migration barriers lead to rich dynamics of metal atoms and clusters under electron irradiation. We demonstrate no electron-instigated interaction between Cr clusters and pristine graphene, though Cr has been reported to be highly reactive to graphene. The metal-mediated etching is a dynamic effect between metal clusters and pre-existing defects. The resolved atomic configurations of typical nano metal structures on graphene offer insight into modeling and simulations on properties of metal-decorated graphene for both catalysis and future carbon-based electronics. © 2013 American Chemical Society.

  13. Bond markets in Africa

    Directory of Open Access Journals (Sweden)

    Yibin Mu

    2013-07-01

    Full Text Available African bond markets have been steadily growing in recent years, but nonetheless remain undeveloped. African countries would benefit from greater access to financing and deeper financial markets. This paper compiles a unique set of data on government securities and corporate bond markets in Africa. It then applies an econometric model to analyze the key determinants of African government securities market and corporate bond market capitalization. Government securities market capitalization is directly related to better institutions and interest rate volatility, and inversely related to smaller fiscal deficits, higher interest rate spreads, exchange rate volatility, and current and capital account openness. Corporate bond market capitalization is directly linked to economic size, the level of development of the economy and financial markets, better institutions, and interest rate volatility, and inversely related to higher interest rate spreads and current account openness. Policy implications follow.

  14. Handbook of wafer bonding

    CERN Document Server

    Ramm, Peter; Taklo, Maaike M V

    2011-01-01

    Written by an author and editor team from microsystems companies and industry-near research organizations, this handbook and reference presents dependable, first-hand information on bonding technologies.In the first part, researchers from companies and institutions around the world discuss the most reliable and reproducible technologies for the production of bonded wafers. The second part is devoted to current and emerging applications, including microresonators, biosensors and precise measuring devices.

  15. Diffusion bonding techniques

    International Nuclear Information System (INIS)

    Peters, R.D.

    1978-01-01

    The applications of diffusion bonding at the General Electric Neutron Devices Department are briefly discussed, with particular emphasis on the gold/gold or gold/indium joints made between metallized alumina ceramic parts in the vacuum switch tube and the crystal resonator programs. Fixtures which use the differential expansion of dissimilar metals are described and compared to one that uses hydraulic pressure to apply the necessary bonding force

  16. Optimal suture anchor direction in arthroscopic lateral ankle ligament repair.

    Science.gov (United States)

    Yoshimura, Ichiro; Hagio, Tomonobu; Noda, Masahiro; Kanazawa, Kazuki; Minokawa, So; Yamamoto, Takuaki

    2017-05-26

    In this study, the distance between the insertion point of the suture anchors and posterior surface of the fibula during arthroscopic lateral ankle ligament repair was investigated on computed tomography (CT) images. The hypothesis of this study was that there is an optimal insertional direction of the suture anchor to avoid anchor-related complications. One hundred eleven ankles of 98 patients who had undergone three-dimensional CT scans for foot or ankle disorders without deformity of the fibula were assessed (59 males, 52 females; median age 25.5 years; age range 12-78 years). The shortest distance from the insertion point of the suture anchor to the deepest point of the fossa/top of the convex aspect of the fibula was measured on the axial plane, tilting from the longitudinal axis of the fibula at 90°, 75°, 60°, and 45°. The distance from the insertion point of the suture anchor to the posterior surface of the fibula was also measured in a direction parallel to the sagittal plane of the lateral surface of the talus on the axial plane, tilting from the longitudinal axis of the fibula at 90°, 75°, 60°, and 45°. The posterior fossa was observed in all cases on the 90° and 75° images. The distance from the insertion point to the posterior surface of the fibula in the parallel direction was 15.0 ± 3.4 mm at 90°, 17.5 ± 3.2 mm at 75°, 21.7 ± 3.3 mm at 60°, and 25.7 ± 3.6 mm at 45°. The posterior points in the parallel direction were located on the posterior fossa in 36.0% of cases at 90°, in 12.6% at 75°, and in 0.0% at 60° and 45°. The suture anchor should be directed from anterior to posterior at an angle of <45° to the longitudinal axis of the fibula, parallel to the lateral surface of the talus, to avoid passing through the fibula. Cohort study, Level III.

  17. Constrained Active Learning for Anchor Link Prediction Across Multiple Heterogeneous Social Networks.

    Science.gov (United States)

    Zhu, Junxing; Zhang, Jiawei; Wu, Quanyuan; Jia, Yan; Zhou, Bin; Wei, Xiaokai; Yu, Philip S

    2017-08-03

    Nowadays, people are usually involved in multiple heterogeneous social networks simultaneously. Discovering the anchor links between the accounts owned by the same users across different social networks is crucial for many important inter-network applications, e.g., cross-network link transfer and cross-network recommendation. Many different supervised models have been proposed to predict anchor links so far, but they are effective only when the labeled anchor links are abundant. However, in real scenarios, such a requirement can hardly be met and most anchor links are unlabeled, since manually labeling the inter-network anchor links is quite costly and tedious. To overcome such a problem and utilize the numerous unlabeled anchor links in model building, in this paper, we introduce the active learning based anchor link prediction problem. Different from the traditional active learning problems, due to the one-to-one constraint on anchor links, if an unlabeled anchor link a = ( u , v ) is identified as positive (i.e., existing), all the other unlabeled anchor links incident to account u or account v will be negative (i.e., non-existing) automatically. Viewed in such a perspective, asking for the labels of potential positive anchor links in the unlabeled set will be rewarding in the active anchor link prediction problem. Various novel anchor link information gain measures are defined in this paper, based on which several constraint active anchor link prediction methods are introduced. Extensive experiments have been done on real-world social network datasets to compare the performance of these methods with state-of-art anchor link prediction methods. The experimental results show that the proposed Mean-entropy-based Constrained Active Learning (MC) method can outperform other methods with significant advantages.

  18. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes

    Science.gov (United States)

    Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-01

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and

  19. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres

    KAUST Repository

    An, Alicia Kyoungjin; Lee, Eui-Jong; Guo, Jiaxin; Jeong, Sanghyun; Lee, Jung Gil; Ghaffour, NorEddine

    2017-01-01

    To ascertain membrane distillation (MD) as an emerging desalination technology to meet the global water challenge, development of membranes with ideal material properties is crucial. Functionalized carbon nanotubes (CNTs) were anchored to nanofibres of electrospun membranes. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer membrane, resulting in well-aligned CNTs inside crystalline fibres with superhydrophobicity. Consideration for the chemical/physical properties of the CNT composite membranes and calculation of their theoretical fluxes revealed the mechanism of MD: CNTs facilitated the repulsive force for Knudsen and molecular diffusions, reduced the boundary-layer effect in viscous flow, and assisted surface diffusion, allowing for fast vapor transport with anti-wetting. This study shows that the role of CNTs and an optimal composite ratio can be used to reduce the gap between theoretical and experimental approaches to desalination.

  20. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres

    KAUST Repository

    An, Alicia Kyoungjin

    2017-01-30

    To ascertain membrane distillation (MD) as an emerging desalination technology to meet the global water challenge, development of membranes with ideal material properties is crucial. Functionalized carbon nanotubes (CNTs) were anchored to nanofibres of electrospun membranes. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer membrane, resulting in well-aligned CNTs inside crystalline fibres with superhydrophobicity. Consideration for the chemical/physical properties of the CNT composite membranes and calculation of their theoretical fluxes revealed the mechanism of MD: CNTs facilitated the repulsive force for Knudsen and molecular diffusions, reduced the boundary-layer effect in viscous flow, and assisted surface diffusion, allowing for fast vapor transport with anti-wetting. This study shows that the role of CNTs and an optimal composite ratio can be used to reduce the gap between theoretical and experimental approaches to desalination.