WorldWideScience

Sample records for chemical-agent-contaminated soil rocky

  1. Preliminary screening of alternative technologies to incineration for treatment of chemical-agent-contaminated soil, Rocky Mountain Arsenal

    Energy Technology Data Exchange (ETDEWEB)

    Shem, L.M.; Rosenblatt, D.H.; Smits, M.P.; Wilkey, P.L.; Ballou, S.W.

    1995-12-01

    In support of the U.S. Army`s efforts to determine the best technologies for remediation of soils, water, and structures contaminated with pesticides and chemical agents, Argonne National Laboratory has reviewed technologies for treating soils contaminated with mustard, lewisite, sarin, o-ethyl s-(2- (diisopropylamino)ethyl)methyl-phosphonothioate (VX), and their breakdown products. This report focuses on assessing alternatives to incineration for dealing with these contaminants. For each technology, a brief description is provided, its suitability and constraints on its use are identified, and its overall applicability for treating the agents of concern is summarized. Technologies that merit further investigation are identified.

  2. The removal of plutonium contaminants from Rocky Flats Plant soil

    International Nuclear Information System (INIS)

    Sunderland, N.R.

    1987-01-01

    This research was undertaken to determine if the TRUclean process could effectively remove radioactive elements from soils other than derived coral. This is an interim report prior to the project report and discusses the outcome of the tests of the Rocky Flats Plant (RFP) soil. The soil tested contained plutonium particulates in the micron and submicron range. Volume reduction and activity removal were accomplished with an overall efficiency of greater than 90%. The TRUclean process is a very practical and economical solution to soil contamination problems at the Rocky Flats Plant

  3. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunneling.

    Science.gov (United States)

    Baderna, Diego; Lomazzi, Eleonora; Passoni, Alice; Pogliaghi, Alberto; Petoumenou, Maria Ifigeneia; Bagnati, Renzo; Lodi, Marco; Viarengo, Aldo; Sforzini, Susanna; Benfenati, Emilio; Fanelli, Roberto

    2015-10-15

    The construction of tunnels and rocks with mechanized drills produces several tons of rocky debris that are today recycled as construction material or as soil replacement for covering rocky areas. The lack of accurate information about the environmental impact of these excavated rocks and foaming agents added during the excavation process has aroused increasing concern for ecosystems and human health. The present study proposes an integrated approach to the assessment of the potential environmental impact of three foaming agents containing different anionic surfactants and other polymers currently on the market and used in tunnel boring machines. The strategy includes chemical characterization with high resolution mass spectrometry techniques to identify the components of each product, the use of in silico tools to perform a similarity comparison among these compounds and some pollutants already listed in regulatory frameworks to identify possible threshold concentrations of contamination, and the application of a battery of ecotoxicological assays to investigate the impact of each foaming mixture on model organisms of soil (higher plants and Eisenia andrei) and water communities (Daphnia magna). The study identified eleven compounds not listed on the material safety data sheets for which we have identified possible concentrations of contamination based on existing regulatory references. The bioassays allowed us to determine the no effect concentrations (NOAECs) of the three mixtures, which were subsequently used as threshold concentration for the product in its entirety. The technical mixtures used in this study have a different degree of toxicity and the predicted environmental concentrations based on the conditions of use are lower than the NOAEC for soils but higher than the NOAEC for water, posing a potential risk to the waters due to the levels of foaming agents in the muck. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Baderna, Diego, E-mail: diego.baderna@marionegri.it [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Lomazzi, Eleonora [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Passoni, Alice [Unit of Analytical Instrumentation, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Pogliaghi, Alberto; Petoumenou, Maria Ifigeneia [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Bagnati, Renzo [Unit of Analytical Instrumentation, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Lodi, Marco [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Viarengo, Aldo; Sforzini, Susanna [Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale “A. Avogadro”, 15121 Alessandria (Italy); Benfenati, Emilio [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Fanelli, Roberto [Department of Environmental Health Sciences, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy)

    2015-10-15

    Highlights: • An integrated approach was applied to study three foaming agents. • Several compounds not reported on the safety data sheets were identified by HRMS. • Environmental impacts were investigated with a battery of biological assays. • An ecotoxicological ranking of the products was obtained. - Abstract: The construction of tunnels and rocks with mechanized drills produces several tons of rocky debris that are today recycled as construction material or as soil replacement for covering rocky areas. The lack of accurate information about the environmental impact of these excavated rocks and foaming agents added during the excavation process has aroused increasing concern for ecosystems and human health. The present study proposes an integrated approach to the assessment of the potential environmental impact of three foaming agents containing different anionic surfactants and other polymers currently on the market and used in tunnel boring machines. The strategy includes chemical characterization with high resolution mass spectrometry techniques to identify the components of each product, the use of in silico tools to perform a similarity comparison among these compounds and some pollutants already listed in regulatory frameworks to identify possible threshold concentrations of contamination, and the application of a battery of ecotoxicological assays to investigate the impact of each foaming mixture on model organisms of soil (higher plants and Eisenia andrei) and water communities (Daphnia magna). The study identified eleven compounds not listed on the material safety data sheets for which we have identified possible concentrations of contamination based on existing regulatory references. The bioassays allowed us to determine the no effect concentrations (NOAECs) of the three mixtures, which were subsequently used as threshold concentration for the product in its entirety. The technical mixtures used in this study have a different degree of toxicity

  5. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunneling

    International Nuclear Information System (INIS)

    Baderna, Diego; Lomazzi, Eleonora; Passoni, Alice; Pogliaghi, Alberto; Petoumenou, Maria Ifigeneia; Bagnati, Renzo; Lodi, Marco; Viarengo, Aldo; Sforzini, Susanna; Benfenati, Emilio; Fanelli, Roberto

    2015-01-01

    Highlights: • An integrated approach was applied to study three foaming agents. • Several compounds not reported on the safety data sheets were identified by HRMS. • Environmental impacts were investigated with a battery of biological assays. • An ecotoxicological ranking of the products was obtained. - Abstract: The construction of tunnels and rocks with mechanized drills produces several tons of rocky debris that are today recycled as construction material or as soil replacement for covering rocky areas. The lack of accurate information about the environmental impact of these excavated rocks and foaming agents added during the excavation process has aroused increasing concern for ecosystems and human health. The present study proposes an integrated approach to the assessment of the potential environmental impact of three foaming agents containing different anionic surfactants and other polymers currently on the market and used in tunnel boring machines. The strategy includes chemical characterization with high resolution mass spectrometry techniques to identify the components of each product, the use of in silico tools to perform a similarity comparison among these compounds and some pollutants already listed in regulatory frameworks to identify possible threshold concentrations of contamination, and the application of a battery of ecotoxicological assays to investigate the impact of each foaming mixture on model organisms of soil (higher plants and Eisenia andrei) and water communities (Daphnia magna). The study identified eleven compounds not listed on the material safety data sheets for which we have identified possible concentrations of contamination based on existing regulatory references. The bioassays allowed us to determine the no effect concentrations (NOAECs) of the three mixtures, which were subsequently used as threshold concentration for the product in its entirety. The technical mixtures used in this study have a different degree of toxicity

  6. Humic substances as a washing agent for Cd-contaminated soils.

    Science.gov (United States)

    Meng, Fande; Yuan, Guodong; Wei, Jing; Bi, Dongxue; Ok, Yong Sik; Wang, Hailong

    2017-08-01

    Cost-effective and eco-friendly washing agents are in demand for Cd contaminated soils. Here, we used leonardite-derived humic substances to wash different types of Cd-contaminated soils, namely, a silty loam (Soil 1), a silty clay loam (Soil 2), and a sandy loam (Soil 3). Washing conditions were investigated for their effects on Cd removal efficiency. Cadmium removal was enhanced by a high humic substance concentration, long washing time, near neutral pH, and large solution/soil ratio. Based on the tradeoff between efficiency and cost, an optimum working condition was established as follows: humic substance concentration (3150 mg C/L), solution pH (6.0), washing time (2 h) and a washing solution/soil ratio (5). A single washing removed 0.55 mg Cd/kg from Soil 1 (1.33 mg Cd/kg), 2.32 mg Cd/kg from Soil 2 (6.57 mg Cd/kg), and 1.97 mg Cd/kg from Soil 3 (2.63 mg Cd/kg). Cd in effluents was effectively treated by adding a small dose of calcium hydroxide, reducing its concentration below the discharge limit of 0.1 mg/L in China. Being cost-effective and safe, humic substances have a great potential to replace common washing agents for the remediation of Cd-contaminated soils. Besides being environmentally benign, humic substances can improve soil physical, chemical, and biological properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Chemical fingerprinting of hydrocarbon-contamination in soil.

    Science.gov (United States)

    Boll, Esther S; Nejrup, Jens; Jensen, Julie K; Christensen, Jan H

    2015-03-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic aromatic compounds (PACs), (iii) diagnostic ratios of selected PACs, and (iv) multivariate data analysis of sum-normalized PAC concentrations. The assessment criteria included quantitative analysis of 19 PACs and C1-C4 alkyl-substituted homologues of naphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene, and chrysene; and 13 oxygenated polycyclic aromatic compounds (O-PACs). The chemical composition of un-substituted and alkyl-substituted PACs and visual interpretation of GC-FID chromatograms were in combination successful in differentiating pyrogenic and petrogenic hydrocarbon sources and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends. Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl-substituted PACs are dominant in petrogenic sources, the evaluation of the total load of PACs based on EPAPAH16 was not representative. Likewise, the O-PACs are not

  8. Chemical fingerprinting of hydrocarbon-contamination in soil

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Nejrup, Jens; Jensen, Julie K.

    2015-01-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U...... and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends....... Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl...

  9. Responses of soil physical and chemical properties to karst rocky desertification evolution in typical karst valley area

    Science.gov (United States)

    Chen, Fei; Zhou, Dequan; Bai, Xiaoyong; zeng, Cheng; Xiao, Jianyong; Qian, Qinghuan; Luo, Guangjie

    2018-01-01

    In order to reveal the differences of soil physical and chemical properties and their response mechanism to the evolution of KRD. The characteristics of soil physical and chemical properties of different grades of KRD were studied by field sampling method to research different types of KRD in the typical karst valley of southern China. Instead of using space of time, to explore the response and the mechanisms of the soil physical and chemical properties at the different evolution process. The results showed that: (1) There were significant differences in organic matter, pH, total nitrogen, total phosphorus, total potassium, sediment concentration, clay content and AWHC in different levels of KRD environment. However, these indicators are not with increasing desertification degree has been degraded, but improved after a first degradation trends; (2) The correlation analysis showed that soil organic matter, acid, alkali, total nitrogen, total phosphorus, total potassium and clay contents were significantly correlated with other physical and chemical factors. They are the key factors of soil physical and chemical properties, play a key role in improving soil physical and chemical properties and promoting nutrient cycling; (3) The principal component analysis showed that the cumulative contribution rate of organic matter, pH, total nitrogen, total phosphorus, total potassium and sediment concentration was 80.26%, which was the key index to evaluate rocky desertification degree based on soil physical and chemical properties. The results have important theoretical and practical significance for the protection and restoration of rocky desertification ecosystem in southwest China.

  10. SITE Technology Capsule. Demonstration of Rocky Mountain Remediation Services Soil Amendment

    Science.gov (United States)

    This report briefly summarizes the Rocky Mountain Remediation Services treatment technology demonstration of a soil amendment process for lead contaminated soil at Roseville, OH. The evaluation included leaching, bioavailability, geotechnical, and geochemical methods.

  11. Chemical oxidation of cable insulating oil contaminated soil

    NARCIS (Netherlands)

    Jinlan Xu,; Pancras, T.; Grotenhuis, J.T.C.

    2011-01-01

    Leaking cable insulating oil is a common source of soil contamination of high-voltage underground electricity cables in many European countries. In situ remediation of these contaminations is very difficult, due to the nature of the contamination and the high concentrations present. Chemical

  12. Remediation of lead-contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.; Shem, L.

    1992-01-01

    Excavation and transport of soil contaminated with heavy metals has generally been the standard remediation technique for treatment of heavy-metal-contaminated soils. This approach is not a permanent solution; moreover, off-site shipment and disposal of contaminated soil involves high expense, liability, and appropriate regulatory approval. Recently, a number of other techniques have been investigated for treating such contaminated sites, including flotation, solidification/stabilization, vitrification, and chemical extraction. This paper reports the results of a laboratory investigation determining the efficiency of using chelating agents to extract lead from contaminated soils. Lead concentrations in the soils ranged from 500 to 10,000 mg/kg. Ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) were examined for their potential extractive capabilities. Concentrations of the chelating agents ranged from 0.01 to 0.10 M. The pH of the suspensions in which the extractions were performed ranged from 4 to 12. Results showed that the removal of lead using NTA and water was ph-dependent, whereas the removal of lead using EDTA was ph-insensitive. Maximum removals of lead were 68.7%,19.1%, and 7.3% using EDTA, NTA, and water, respectively (as compared with initial lead concentrations)

  13. Chelating impact assessment of biological ad chemical chelates on metal extraction from contaminated soils

    International Nuclear Information System (INIS)

    Manwar, S.; Iram, S.

    2014-01-01

    Soil contamination is the result of uncontrolled waste dumping and poor practices by humans. Of all the pollutants heavy metals are of particular concern due to their atmospheric deposition, leaching capacity and non-biodegradability. Heavy metal containing effluent is discharged into the agricultural fields and water bodies. This results in the accumulation of heavy metals in soil and the crops grown on that soil. Studies have revealed detrimental impacts on soil fertility and the poor health of animals and humans. Phytoextraction is widely researched for remediation of heavy metal contaminated soil. To enhance the effect of phytoextraction heavy metals have to be available to the plants in soluble form. In this study the potential of different chelating agents was assessed in solubilizing the heavy metals making easy for plants to uptake them. For this purpose efficient chemical and biological chelating agent had to be identified. Along with that an optimum dose and application time for chemical chelating agent was determined. Ethylenediamine tetraacetic acid (EDTA), Diethylene triamine pentaacetic acid (DTPA), Nitriloacetic acid (NTA) were applied to the soil, containing Pb, Cr, Cu and Cd, at different concentrations and application time. Aspergillus niger and Aspergillus flavus were incubated in soil for different time periods. In correspondence with findings of the study, Pb and Cr were best solubilized by 5mM EDTA. For Cd and Cu 5mM DTPA carried out efficient chelation. NTA showed relatively inadequate solubilisation, although for Cr it performed equal to EDTA. A. niger and A. flavus instead of solubilizing adsorbed the metals in their biomass. Adsorption was mainly carried out by A. niger. (author)

  14. Petroleum Contaminated Soil Treatment Using Surfactant and Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Ilza Lobo

    2010-12-01

    Full Text Available The process of washing soil with surfactants, sodium lauryl ether sulphate (LESS and sodium lauryl sulphate (SDS was combined with chemical oxidation using hydrogen peroxide, with a view to in situ remediation of clay soil contaminated with hydrocarbons oil. The evaluation of the efficiency of the procedure was the removal of polyaromatic hydrocarbons and the comparison of physical and chemical characteristics of contaminated soil and uncontaminated from the same region. The combination of these two techniques, soil washing and application of an oxidizing agent, presented as a process of effective remediation for soils contaminated with petroleum products in subtropical regions.

  15. Actinide migration from contaminated soil to surface water at the rocky flats environmental technology site

    International Nuclear Information System (INIS)

    Santschi, Peter H.; Roberts, Kimberly

    2002-01-01

    Surficial soils of the Rocky Flats Environmental Technology Site (RFETS) contain elevated levels of 239,240 Pu and 241 Am due to wind dispersal of soil particles, contaminated in the 1960's by leaking drums stored on the 903 Pad. Over the past 4 years, actinide mobility in the surface environment at RFETS, Golden, Colorado, USA, was examined through field and laboratory experiments. From measurements of total 239,240 Pu and 241 Am concentrations in storm runoff and pond discharge samples, collected during spring and summer times, it was established that most of the actinide transport from contaminated soils to streams occurred in the particulate (0.45μm) and colloidal (3kDa - 0.45μm) phases. Controlled laboratory investigations of soil resuspension, indicated that remobilization of colloid-bound Pu during soil erosion events can be enhanced by humic acids. 2-D Polyacrylamide Gel electrophoresis (PAGE) experiments of radiolabeled colloidal organic and inorganic matter, extracted from RFETS soils, suggested that colloidal Pu, which was focused at pH IEP of 4.5, is mainly associated with organic (humic acids) colloids of 10-15 kDa molecular weight. Pu(IV) oxide and inorganic colloids such as iron and aluminum oxides have pH IEP of 8-10. While some clay minerals also have pH IEP of 3-5, no Al was found coincident with Pu. This finding has important ramifications for possible remediation, erosion controls, and land-management strategies. (author)

  16. Plutonium contamination in soils in open space and residential areas near Rocky Flats, Colorado

    International Nuclear Information System (INIS)

    Litaor, M.I.

    1999-01-01

    Spatial analysis of the 240 Pu: 239 Pu isotopic ratio of 42 soil samples collected around Rocky Flats Plant near Golden, Colorado, was conducted to assess the effect of Rocky Flats Plant activity on the soil environment. Two probability maps that quantified the uncertainty of the spatial distribution of plutonium isotopic ratios were constructed using the sequential Gaussian simulation technique (sGs). Assuming a plutonium isotopic ratio range of 0.152 ± 0.003 to 0.169 ± 0.009 is characteristic to global fallout in Colorado, and a mean value of 0.155 is representative for the Rocky Flats Plant area, the main findings of the current work were (1) the areas northwest and southwest of Rocky Flats Plant exhibited a plutonium ratio ≥0.155, this were minimally impacted by the plant activity; (2) he study area east of Rocky Flats Plant exhibited a plutonium isotopic ratio ≤0.155, which is a definitive indicator of Rocky Flats Plant-derived plutonium; and (3) inventory calculations across the study area exhibited large standard error of estimates. These errors were originated from the high variability in plutonium activity over a small sampling scale and the uncertainty in the global fallout isotopic ratio. Using the mean simulated estimates of plutonium isotopic ratio, coupled with plutonium activity measured at 11 soil pits and additional plutonium information published elsewhere, the plutonium loading on the open space and residential areas amounted to 111.2 GBq, with a standard error of estimate of 50.8 GBq

  17. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  18. In situ chemical fixation of arsenic-contaminated soils: Anexperimental study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Donahoe, Rona J.; Redwine, James C.

    2007-03-27

    This paper reports the results of an experimentalstudytesting a low-cost in situ chemical fixation method designed to reclaimarsenic-contaminated subsurface soils. Subsurface soils from severalindustrial sites in southeastern U.S. were contaminated with arsenicthrough heavy application of herbicide containing arsenic trioxide. Themean concentrations of environmentally available arsenic in soilscollected from the two study sites, FW and BH, are 325 mg/kg and 900mg/kg, respectively. The soils are sandy loams with varying mineralogicaland organic contents. The previous study [Yang L, Donahoe RJ. The form,distribution and mobility of arsenic in soils contaminated by arsenictrioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341]indicated that a large portion of the arsenic in both soils is associatedwith amorphous aluminum and iron oxyhydroxides and shows very slowrelease against leaching by synthetic precipitation. The soil's amorphousaluminum and iron oxyhydroxides content was found to have the mostsignificant effect on its ability to retain arsenic.Based on thisobservation, contaminated soils were reacted with different treatmentsolutions in an effort to promote the formation of insolublearsenic-bearing phases and thereby decrease the leachability of arsenic.Ferrous sulfate, potassium permanganate and calcium carbonate were usedas the reagents for the chemical fixation solutions evaluated in threesets of batch experiments: (1) FeSO4; (2) FeSO4 and KMnO4; (3) FeSO4,KMnO4 and CaCO3. The optimum treatment solutions for each soil wereidentified based on the mobility of arsenic during sequential leaching oftreated and untreated soils using the fluids described in EPA Method 1311[USEPA. Method 1311: toxicity characteristic leaching procedure. Testmethods for evaluating solid waste, physical/chemical methods. 3rd ed.Washington, DC: U.S. Environmental Protection Agency, Office of SolidWaste. U.S. Government Printing Office; 1992]toxic characteristicsleaching

  19. Chelant extraction and REDOX manipulation for mobilization of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Brewster, M.D.; Peters, R.W.; Miller, G.A.; Patton, T.L.; Martino, L.E.

    1994-01-01

    Was the result of open burning and open detonation of chemical agents and munitions in the Toxic Burning Pits area at J-Field, located in the Edgewood Area of Aberdeen Proving Ground in Harford County, Maryland, soils have been contaminated with heavy metals. Simultaneous extraction is complicated because of the multitude of contaminant forms that exist. This paper uses data from a treatability study performed at Argonne National Laboratory to discuss and compare several treatment methods that were evaluated for remediating metals-contaminated soils. J-Field soils were subjected to a series of treatability experiments designed to determine the feasibility of using soil washing/soil flushing, enhancements to soil washing/soil flushing, solidification/stabilization, and electrokinetics for remediating soils contaminated with metals. Chelating and mobilizing agents evaluated included ammonium acetate, ethylenediaminetetraacetic acid, citric acid, Citranox, gluconic acid, phosphoric acid, oxalic acid, and nitrilotriacetic acid, in addition to pH-adjusted water. REDOX manipulation can maximize solubilities, increase desorption, and promote removal of heavy metal contaminants. Reducing agents that were studied included sodium borohydride, sodium metabisulfite, and thiourea dioxide. The oxidants studied included hydrogen peroxide, sodium percarbonate, sodium hypochlorite, and potassium permanganate. This paper summaries the results from the physical/chemical characterization, soil washing/soil flushing, and enhancements to soil washing/soil flushing portions of the study

  20. Water-soluble organo-building blocks of aminoclay as a soil-flushing agent for heavy metal contaminated soil

    International Nuclear Information System (INIS)

    Lee, Young-Chul; Kim, Eun Jung; Ko, Dong Ah; Yang, Ji-Won

    2011-01-01

    Highlights: ► Aminoclays have synthesized using centered metals with aminopropyl silane. ► Developed aminoclay has unique nano-sized and water-soluble properties. ► Aminoclay showed high heavy metal capacity with metal ions and its less toxicity. ► Aminoclay could be used to remediate heavy metals from soils an alternative soil-flushing agent. - Abstract: We demonstrated that water-soluble aminopropyl magnesium functionalized phyllosilicate could be used as a soil-flushing agent for heavy metal contaminated soils. Soil flushing has been an attractive means to remediate heavy metal contamination because it is less disruptive to the soil environment after the treatment was performed. However, development of efficient and non-toxic soil-flushing agents is still required. We have synthesized aminoclays with three different central metal ions such as magnesium, aluminum, and ferric ions and investigated applicability of aminoclays as soil flushing agents. Among them, magnesium (Mg)-centered aminoclay showed the smallest size distribution and superior water solubility, up to 100 mg/mL. Mg aminoclay exhibited cadmium and lead binding capacity of 26.50 and 91.31 mg/g of Mg clay, respectively, at near neutral pH, but it showed negligible binding affinity to metals in acidic conditions. For soil flushing with Mg clay at neutral pH showed cadmium and lead were efficiently extracted from soils by Mg clay, suggesting strong binding ability of Mg clay with cadmium and lead. As the organic matter and clay compositions increased in the soil, the removal efficiency by Mg clay decreased and the operation time increased.

  1. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  2. Waste management of actinide contaminated soil

    International Nuclear Information System (INIS)

    Navratil, J.D.; Thompson, G.H.; Kochen, R.L.

    1978-01-01

    Waste management processes have been developed to reduce the volume of Rocky Flats soil contaminated with plutonium and americium and to prepare the contaminated fraction for terminal storage. The primary process consists of wet-screening. The secondary process uses attrition scrubbing and wet screening with additives. The tertiary process involves volume reduction of the contaminated fraction by calcination, or fixation by conversion to glass. The results of laboratory scale testing of the processes are described

  3. Water-soluble organo-building blocks of aminoclay as a soil-flushing agent for heavy metal contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Chul [Department of Chemical and Biomolecular Engineering (BK21 program), KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Eun Jung [Advanced Biomass R and D Center, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Ko, Dong Ah [Department of Chemical and Biomolecular Engineering (BK21 program), KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Yang, Ji-Won, E-mail: jiwonyang@kaist.ac.kr [Department of Chemical and Biomolecular Engineering (BK21 program), KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Advanced Biomass R and D Center, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Aminoclays have synthesized using centered metals with aminopropyl silane. Black-Right-Pointing-Pointer Developed aminoclay has unique nano-sized and water-soluble properties. Black-Right-Pointing-Pointer Aminoclay showed high heavy metal capacity with metal ions and its less toxicity. Black-Right-Pointing-Pointer Aminoclay could be used to remediate heavy metals from soils an alternative soil-flushing agent. - Abstract: We demonstrated that water-soluble aminopropyl magnesium functionalized phyllosilicate could be used as a soil-flushing agent for heavy metal contaminated soils. Soil flushing has been an attractive means to remediate heavy metal contamination because it is less disruptive to the soil environment after the treatment was performed. However, development of efficient and non-toxic soil-flushing agents is still required. We have synthesized aminoclays with three different central metal ions such as magnesium, aluminum, and ferric ions and investigated applicability of aminoclays as soil flushing agents. Among them, magnesium (Mg)-centered aminoclay showed the smallest size distribution and superior water solubility, up to 100 mg/mL. Mg aminoclay exhibited cadmium and lead binding capacity of 26.50 and 91.31 mg/g of Mg clay, respectively, at near neutral pH, but it showed negligible binding affinity to metals in acidic conditions. For soil flushing with Mg clay at neutral pH showed cadmium and lead were efficiently extracted from soils by Mg clay, suggesting strong binding ability of Mg clay with cadmium and lead. As the organic matter and clay compositions increased in the soil, the removal efficiency by Mg clay decreased and the operation time increased.

  4. The behavior of radionuclides in the soils of Rocky Flats, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Litaor, M I [Tel-Hai Rodman Coll., Upper Galilee (Israel); Barth, G; Zika, E M; Litus, G; Moffitt, J; Daniels, H [Colorado Univ., Civil and Environmental Engineering Dept., Boulder, CO (United States)

    1998-05-01

    Radionuclide contamination of soils in Rocky Flats, Colorado, resulted from leaking drums of Pu-contaminated oil stored at an outdoor area. To evaluated the mechanisms of radionuclide transport from the contaminated soils to groundwater, an advanced monitoring system was installed across a toposequence. The impact of natural rain, snowmelt, and large-scale rain simulations on the mobility and distribution of the radionuclides in soil interstitial water was studied. The distribution of radionuclides during the monitoring period from 1993 to 1995 suggested that Pu-239 + 240 and Am-241 are largely immobile in semi-arid soils. Fractionation of Pu-239 + 240 and Am-241 to different particle sizes in the soil interstitial water suggested that most of the radionuclides (83-97%) were associated with suspended particles, whereas the level of radionuclides associated with colloidal (0.45 {mu}m > X > 1 nm) and nonfilterable (< 1 nm) fractions ranged from 1.5 to 15%. (author).

  5. Chemical and bioanalytical characterisation of PAHs in risk assessment of remediated PAH-contaminated soils.

    Science.gov (United States)

    Larsson, Maria; Hagberg, Jessika; Rotander, Anna; van Bavel, Bert; Engwall, Magnus

    2013-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in soil at former industrial areas; and in Sweden, some of the most contaminated sites are being remediated. Generic guideline values for soil use after so-called successful remediation actions of PAH-contaminated soil are based on the 16 EPA priority pollutants, which only constitute a small part of the complex cocktail of toxicants in many contaminated soils. The aim of the study was to elucidate if the actual toxicological risks of soil samples from successful remediation projects could be reflected by chemical determination of these PAHs. We compared chemical analysis (GC-MS) and bioassay analysis (H4IIE-luc) of a number of remediated PAH-contaminated soils. The H4IIE-luc bioassay is an aryl hydrocarbon (Ah) receptor-based assay that detects compounds that activate the Ah receptor, one important mechanism for PAH toxicity. Comparison of the results showed that the bioassay-determined toxicity in the remediated soil samples could only be explained to a minor extent by the concentrations of the 16 priority PAHs. The current risk assessment method for PAH-contaminated soil in use in Sweden along with other countries, based on chemical analysis of selected PAHs, is missing toxicologically relevant PAHs and other similar substances. It is therefore reasonable to include bioassays in risk assessment and in the classification of remediated PAH-contaminated soils. This could minimise environmental and human health risks and enable greater safety in subsequent reuse of remediated soils.

  6. The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents.

    Science.gov (United States)

    Zhu, Hao; Wu, Chunfa; Wang, Jun; Zhang, Xumei

    2018-04-16

    Stabilization technology is one of widely used remediation technologies for cadmium (Cd)-contaminated agricultural soils, but stabilized Cd in soil may be activated again when external conditions such as acid rain occurred. Therefore, it is necessary to study the effect of acid rain on the performance of different stabilizing agents on Cd-polluted agriculture soils. In this study, Cd-contaminated soils were treated with mono-calcium phosphate (MCP), mono-ammonium phosphate (MAP), and artificial zeolite (AZ) respectively and incubated 3 months. These treatments were followed by two types of simulated acid rain (sulfuric acid rain and mixed acid rain) with three levels of acidity (pH = 3.0, 4.0, and 5.6). The chemical forms of Cd in the soils were determined by Tessier's sequential extraction procedure, and the leaching toxicities of Cd in the soils were assessed by toxicity characteristic leaching procedure (TCLP). The results show that the three stabilizing agents could decrease the mobility of Cd in soil to some degree with or without simulated acid rain (SAR) treatment. The stabilization performances followed the order of AZ stabilized soil, and both anion composition and pH of acid rain were two important factors that influenced the stabilization effect of Cd.

  7. REMOVAL OF MERCURY FROM CONTAMINATED SOILS AT THE PAVLODAR CHEMICAL PLANT.

    Energy Technology Data Exchange (ETDEWEB)

    KHRAPUNOV, V. YE.; ISAKOVA, R.A.; LEVINTOV, B.L.; KALB, P.D.; KAMBEROV, I.M.; TREBUKHOV, A.

    2004-09-25

    Soils beneath and adjacent to the Pavlodar Chemical Plant in Kazakhstan have been contaminated with elemental mercury as a result of chlor alkali processing using mercury cathode cell technology. The work described in this paper was conducted in preparation for a demonstration of a technology to remove the mercury from the contaminated soils using a vacuum assisted thermal distillation process. The process can operate at temperatures from 250-500 C and pressures of 0.13kPa-1.33kPa. Following vaporization, the mercury vapor is cooled, condensed and concentrated back to liquid elemental mercury. It will then be treated using the Sulfur Polymer Stabilization/Solidification process developed at Brookhaven National Laboratory as described in a companion paper at this conference. The overall project objectives include chemical and physical characterization of the contaminated soils, study of the influence of the soil's physical-chemical and hydro dynamical characteristics on process parameters, and laboratory testing to optimize the mercury sublimation rate when heating in vacuum. Based on these laboratory and pilot-scale data, a full-scale production process will be designed for testing. This paper describes the soil characterization. This work is being sponsored by the International Science and Technology Center.

  8. Efficiency of modified chemical remediation techniques for soil contaminated by organochlorine pesticides

    Science.gov (United States)

    Correa-Torres, S. N.; Kopytko, M.; Avila, S.

    2016-07-01

    This study reports the optimization of innovation chemical techniques in order to improve the remediation of soils contaminated with organochloride pesticides. The techniques used for remediation were dehalogenation and chemical oxidation in soil contaminated by pesticides. These techniques were applied sequentially and combined to evaluate the design optimize the concentration and contact time variables. The soil of this study was collect in cotton crop zone in Agustin Codazzi municipality, Colombia, and its physical properties was measure. The modified dehalogenation technique of EPA was applied on the contaminated soil by adding Sodium Bicarbonate solution at different concentrations and rates during 4, 7 and 14 days, subsequently oxidation technique was implemented by applying a solution of KMnO4 at different concentration and reaction times. Organochlorine were detected by Gas Chromatography analysis coupled Mass Spectrometry and its removals were between 85.4- 90.0% of compounds such as 4, 4’-DDT, 4,4’-DDD, 4,4-DDE, trans-Clordane y Endrin. These results demonstrate that the technique of dehalogenation with oxidation chemistry can be used for remediation soils contaminated by organochloride pesticides.

  9. Finite element modeling of contaminant transport in soils including the effect of chemical reactions.

    Science.gov (United States)

    Javadi, A A; Al-Najjar, M M

    2007-05-17

    The movement of chemicals through soils to the groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. Recent studies have shown that the current models and methods are not able to adequately describe the leaching of nutrients through soils, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. Furthermore, the effect of chemical reactions on the fate and transport of contaminants is not included in many of the existing numerical models for contaminant transport. In this paper a numerical model is presented for simulation of the flow of water and air and contaminant transport through unsaturated soils with the main focus being on the effects of chemical reactions. The governing equations of miscible contaminant transport including advection, dispersion-diffusion and adsorption effects together with the effect of chemical reactions are presented. The mathematical framework and the numerical implementation of the model are described in detail. The model is validated by application to a number of test cases from the literature and is then applied to the simulation of a physical model test involving transport of contaminants in a block of soil with particular reference to the effects of chemical reactions. Comparison of the results of the numerical model with the experimental results shows that the model is capable of predicting the effects of chemical reactions with very high accuracy. The importance of consideration of the effects of chemical reactions is highlighted.

  10. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.

    Science.gov (United States)

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R

    2014-08-01

    In the event of alleged use of organophosphorus nerve agents, all kinds of environmental samples can be received for analysis. These might include decontaminated and charred matter collected from the site of a suspected chemical attack. In other scenarios, such matter might be sampled to confirm the site of a chemical weapon test or clandestine laboratory decontaminated and burned to prevent discovery. To provide an analytical capability for these contingencies, we present a preliminary investigation of the effect of accelerant-based fire and liquid decontamination on soil contaminated with the nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). The objectives were (a) to determine if VX or its degradation products were detectable in soil after an accelerant-based fire promoted by aviation fuel, including following decontamination with Decontamination Solution 2 (DS2) or aqueous sodium hypochlorite, (b) to develop analytical methods to support forensic analysis of accelerant-soaked, decontaminated and charred soil and (c) to inform the design of future experiments of this type to improve analytical fidelity. Our results show for the first time that modern analytical techniques can be used to identify residual VX and its degradation products in contaminated soil after an accelerant-based fire and after chemical decontamination and then fire. Comparison of the gas chromatography-mass spectrometry (GC-MS) profiles of VX and its impurities/degradation products from contaminated burnt soil, and burnt soil spiked with VX, indicated that the fire resulted in the production of diethyl methylphosphonate and O,S-diethyl methylphosphonothiolate (by an unknown mechanism). Other products identified were indicative of chemical decontamination, and some of these provided evidence of the decontaminant used, for example, ethyl 2-methoxyethyl methylphosphonate and bis(2-methoxyethyl) methylphosphonate following decontamination with DS2. Sample preparation

  11. The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Komarek, Michael [Department of Agrochemistry and Plant Nutrition, Czech University of Agriculture in Prague, Kamycka 129, 165 21, Prague 6 (Czech Republic)], E-mail: komarek@af.czu.cz; Tlustos, Pavel [Department of Agrochemistry and Plant Nutrition, Czech University of Agriculture in Prague, Kamycka 129, 165 21, Prague 6 (Czech Republic)], E-mail: tlustos@af.czu.cz; Szakova, Jirina [Department of Agrochemistry and Plant Nutrition, Czech University of Agriculture in Prague, Kamycka 129, 165 21, Prague 6 (Czech Republic)], E-mail: szakova@af.czu.cz; Chrastny, Vladislav [Department of Applied Chemistry and Chemistry Teaching, University of South Bohemia, Studentska 13, 370 05, Ceske Budejovice (Czech Republic)], E-mail: vladislavchrastny@seznam.cz

    2008-01-15

    The efficiency of poplar (Populus nigra L. x Populus maximowiczii Henry.) was assessed during a two-year chemically enhanced phytoextraction of metals from contaminated soils. The tested metal mobilizing agents were EDTA (ethylenediaminetetraacetic acid) and NH{sub 4}Cl. EDTA was more efficient than chlorides in solubilizing metals (especially Pb) from the soil matrix. The application of chlorides only increased the solubility of Cd and Zn. However, the increased uptake of metals after the application of higher concentrations of mobilizing agents was associated with low biomass yields of the poplar plants and the extraction efficiencies after the two vegetation periods were thus comparable to the untreated plants. Additionally, the application of mobilizing agents led to phytotoxicity effects and increased mobility of metals. Higher phytoextraction efficiencies were observed for Cd and Zn compared to Pb and Cu. Poplars are therefore not suitable for chemically enhanced phytoextraction of metals from severely contaminated agricultural soils. - Application of mobilizing agents is not optimal during a two-year phytoextraction of metals from severely contaminated soils using poplars.

  12. The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils

    International Nuclear Information System (INIS)

    Komarek, Michael; Tlustos, Pavel; Szakova, Jirina; Chrastny, Vladislav

    2008-01-01

    The efficiency of poplar (Populus nigra L. x Populus maximowiczii Henry.) was assessed during a two-year chemically enhanced phytoextraction of metals from contaminated soils. The tested metal mobilizing agents were EDTA (ethylenediaminetetraacetic acid) and NH 4 Cl. EDTA was more efficient than chlorides in solubilizing metals (especially Pb) from the soil matrix. The application of chlorides only increased the solubility of Cd and Zn. However, the increased uptake of metals after the application of higher concentrations of mobilizing agents was associated with low biomass yields of the poplar plants and the extraction efficiencies after the two vegetation periods were thus comparable to the untreated plants. Additionally, the application of mobilizing agents led to phytotoxicity effects and increased mobility of metals. Higher phytoextraction efficiencies were observed for Cd and Zn compared to Pb and Cu. Poplars are therefore not suitable for chemically enhanced phytoextraction of metals from severely contaminated agricultural soils. - Application of mobilizing agents is not optimal during a two-year phytoextraction of metals from severely contaminated soils using poplars

  13. The use of chelating agents in the remediation of metal-contaminated soils: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lestan, Domen [Agronomy Department, Centre for Soil and Environmental Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana (Slovenia); Luo Chunling [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)], E-mail: cexdli@polyu.edu.hk

    2008-05-15

    This paper reviews current remediation technologies that use chelating agents for the mobilization and removal of potentially toxic metals from contaminated soils. These processes can be done in situ as enhanced phytoextraction, chelant enhanced electrokinetic extraction and soil flushing, or ex situ as the extraction of soil slurry and soil heap/column leaching. Current proposals on how to treat and recycle waste washing solutions after soil is washed are discussed. The major controlling factors in phytoextraction and possible strategies for reducing the leaching of metals associated with the application of chelants are also reviewed. Finally, the possible impact of abiotic and biotic soil factors on the toxicity of metals left after the washing of soil and enhanced phytoextraction are briefly addressed. - The use of synthetic chelants for soil washing and enhanced phytoextraction by plants has been well studied for the remediation of metal-contaminated soils in the last two decades.

  14. The use of chelating agents in the remediation of metal-contaminated soils: A review

    International Nuclear Information System (INIS)

    Lestan, Domen; Luo Chunling; Li Xiangdong

    2008-01-01

    This paper reviews current remediation technologies that use chelating agents for the mobilization and removal of potentially toxic metals from contaminated soils. These processes can be done in situ as enhanced phytoextraction, chelant enhanced electrokinetic extraction and soil flushing, or ex situ as the extraction of soil slurry and soil heap/column leaching. Current proposals on how to treat and recycle waste washing solutions after soil is washed are discussed. The major controlling factors in phytoextraction and possible strategies for reducing the leaching of metals associated with the application of chelants are also reviewed. Finally, the possible impact of abiotic and biotic soil factors on the toxicity of metals left after the washing of soil and enhanced phytoextraction are briefly addressed. - The use of synthetic chelants for soil washing and enhanced phytoextraction by plants has been well studied for the remediation of metal-contaminated soils in the last two decades

  15. Basic radiological studies contamination control experiments

    International Nuclear Information System (INIS)

    Duce, S.W.; Winberg, M.R.; Freeman, A.L.

    1989-09-01

    This report describes the results of experiments relating to contamination control performed in support of the Environmental Restoration Programs Retrieval Project. During the years 1950 to 1970 waste contaminated with plutonium and other transuranic radionuclides was disposed of in shallow land-filled pits and trenches at the Idaho National Engineering Laboratory. Due to potential for migration of radionuclides to an existing aquifer the feasibility of retrieving and repackaging the waste for placement in a final repository is being examined as part of a retrieval project. Contamination control experiments were conducted to determine expected respirable and nonrespirable plutonium contaminated dust fractions and the effectiveness of various dust suppression techniques. Three soil types were tested to determine respirable fractions: Rocky Flats Plant generic soil, Radioactive Waste Management Complex generic soil, and a 1:1 blend of the two soil types. Overall, the average respirable fraction of airborne dust was 5.4% by weight. Three contamination control techniques were studied: soil fixative sprays, misting agents, and dust suppression agents. All of the tested agents proved to be effective in reducing dust in the air. Details of product performance and recommended usage are discussed

  16. Assessment of Hyporheic Zone, Flood-Plain, Soil-Gas, Soil, and Surface-Water Contamination at the McCoys Creek Chemical Training Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was

  17. Chemical-assisted phytoremediation of CD-PAHs contaminated soils using Solanum nigrum L.

    Science.gov (United States)

    Yang, Chuanjie; Zhou, Qixing; Wei, Shuhe; Hu, Yahu; Bao, Yanyu

    2011-09-01

    A well-characterized cadmium (Cd) hyperaccumulating plant Solanum nigrum was grown in Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil that was repeatedly amended with chemicals, including EDTA, cysteine (CY), salicylic acid (Sa), and Tween 80 (TW80), to test individual and combined treatment effects on phytoremediation of Cd-PAHs contaminated soils. Plant growth was negatively affected by exogenous chemicals except for EDTA. S. nigrum could accumulate Cd in tissues without assistant chemicals, while there was no visible effect on the degradation of PAHs. Cysteine had significant effects on phytoextraction of Cd and the highest metal extraction ratio (1.27%) was observed in 0.9 mmol/kg CY treatment. Both salicylic acid and Tween 80 had stimulative effects on the degradation of PAHs and there was the maximal degradation rate (52.6%) of total PAHs while 0.9 mmol/kg Sa was applied. Furthermore, the combined treatment T(0.1EDTA+0.9CY+0.5TW80) and T(0.5EDTA+0.9CY+03Sa) could not only increase the accumulation of Cd in plant tissues, but also promote the degradation of PAHs. These results indicated that S. nigrum might be effective in phytoextracting Cd and enhancing the biodegradation of PAHs in the co-contaminated soils with assistant chemicals.

  18. Chemical speciation and behaviour of cyanide in contaminated soils

    NARCIS (Netherlands)

    Meeussen, J.C.L.

    1992-01-01

    Cyanide is present as a contaminant of the soil on several hundred (former) industrial sites in the Netherlands. The risk for the occurrence of adverse effects on human health and the environment strongly depends on the chemical form in which cyanide is present and on the behaviour of this

  19. Remediation of cadmium contamination in paddy soils by washing with chemicals: Selection of washing chemicals

    International Nuclear Information System (INIS)

    Makino, Tomoyuki; Sugahara, Kazuo; Sakurai, Yasuhiro; Takano, Hiroyuki; Kamiya, Takashi; Sasaki, Kouta; Itou, Tadashi; Sekiya, Naoki

    2006-01-01

    The efficiencies of neutral salts, strong acids, and chelates were tested for extracting cadmium (Cd) from three paddy soils. The higher the selectivity of the cations of the added neutral salts toward soil adsorption sites, the lower the pH in the extracts and the more soil Cd could be extracted. In addition, soil carbon and nitrogen contents and mineral composition were closely associated with the amount of Cd extracted. Calcium chloride and iron(III) chloride were selected as wash chemicals to restore Cd-contaminated paddy soils in situ. Washing with calcium chloride led to the formation of Cd chloride complexes, enhancing Cd extraction from the soils. The washing also substantially decreased soil levels of exchangeable and acid-soluble Cd, which are the major forms of bioavailable Cd for rice (Oryza sativa L.). The optimum conditions for in situ soil washing were also determined for calcium chloride. - Calcium chloride and iron(III) chloride were useful for the in situ washing of Cd-contaminated paddy soils

  20. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    using two soils with different content of organic carbon (f(oc) of 1.5 and 6.5%, respectively). A quadruple blind test of the ER-V system using glass beads in stead of soil showed an acceptable recovery (65-85%) of all of the 11 VOCs tested. Only for the most volatile compound (heptane, K-H similar...... to 80) an unacceptable recovery was found (9%). The contact time needed for obtaining chemical equilibrium was tested in the ER-H system by performing five test with different duration (1, 2, 4, 7 and 19 days) using the low organic carbon soil. Seven days of contact time appeared sufficient...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...

  1. Assessment Bioremediation of Contaminated Soils to Petroleum Compounds and Role of Chemical Fertilizers in the Decomposition Process

    OpenAIRE

    H. Parvizi Mosaed; S. Sobhan Ardakani; M. Cheraghi

    2013-01-01

    Today oil removal from contaminated soil by new methods such as bioremediation is necessary.  In this paper, the effect of chemical fertilizers and aeration on bioremediation of oil-contaminated soil has been investigated. Also the control group, (bioremediation of petroleum hydrocarbons in contaminated soil without treatment by chemical fertilizers and aeration treatment was examined. The condition of experiment is as following: those were treated 70 days in glass columns (30×30×30cm dimensi...

  2. Soil decontamination at Rocky Flats

    International Nuclear Information System (INIS)

    Olsen, R.L.; Hayden, J.A.; Alford, C.E.; Kochen, R.L.; Stevens, J.R.

    1979-01-01

    A soils decontamination project was initiated, to remove actinides from soils at Rocky Flats. Wet screening, attrition scrubbing with Calgon at high pH, attrition scrubbing at low pH, and cationic flotation were investigated. Pilot plant studies were carried out. Conceptual designs have been generated for mounting the process in semi-trailers

  3. Assessing the potential of brachiaria decumbens as remediation agent for soil contaminated wit oil sludge

    International Nuclear Information System (INIS)

    Latiffah Norddin; Ahmad Nazrul Abd Wahid; Hazlina Abdullah; Abdul Razak Ruslan

    2005-01-01

    Bioremediation is a method of treatment of soil or water contaminated with toxic materials, involving the use of living organisms. Oil or petroleum sludge is a waste product of the petroleum refining industry, and is now accumulating at a fast rate at petroleum refinery sites in the country. Common components of oil sludge are mud and sand, containing toxic materials from hydrocarbons, heavy metals and radioactive elements from the seabed. In the present study, the oil sludge samples were obtained from barrels of the materials stored at the Radioactive Waste Treatment Centre, MINT. The samples were analysed of their compounds, elemental and radioactive contents. Trials on microbial degradation of the sludge materials were ongoing. This paper discusses the potential of a grass to remediate soils contaminated with petroleum sludge. Remediation of soils contaminated with organic compounds and heavy metals using plants, including grasses, including Vetiver, Lolium and Agrostis have been carried out in many countries. A greenhouse pot trial was conducted to assess the suitability of the pasture grass Brachiaria decumbens Stapf. and its mutant Brachiaria decumbens KLUANG Comel as a remediation agent for oil sludge contaminated soil. Samples of grasses and soils before planting, during growth stage and at end of experiment were analysed for the different toxicity. Although the grasses were promoted for use in pasture, and KLUANG Comel has good potential as an ornamental plant, too, their other potentials, including as phytoremediation agents need to be explored. (Author)

  4. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils

    International Nuclear Information System (INIS)

    Giannis, Apostolos; Nikolaou, Aris; Pentari, Despina; Gidarakos, Evangelos

    2009-01-01

    An integrated experimental program was conducted to remove Cd, Pb and Cu from contaminated soil. The chelate agents nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA) and ethyleneglycol tetraacetic acid (EGTA) were used as washing solutions under different pH conditions and concentrations. Results showed that the extraction efficiency for Cd in decreasing order was NTA > EGTA > DTPA, while for Pb and Cu it was DTPA > NTA > EGTA. The use of higher chelate concentrations did not necessarily result in greater extraction efficiency. Electrokinetic remediation was applied by conditioning anolyte-catholyte pH to neutral values in order to avoid any potential alterations to the physicochemical soil properties. The removal efficiency for Cd was 65-95%, for Cu 15-60%, but for Pb was less than 20%. The phytotoxicity of the treated soil showed that the soil samples from the anode section were less phytotoxic than the untreated soil, but the phytotoxicity was increased in the samples from the cathode section. - Cadmium, lead and copper were extracted from contaminated soil by integrated electrokinetic and soil washing studies.

  5. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Giannis, Apostolos, E-mail: apostolos.giannis@enveng.tuc.g [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Nikolaou, Aris [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Pentari, Despina [Laboratory of Inorganic and Organic Geochemistry and Organic Petrography, Department of Mineral Resources Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Gidarakos, Evangelos, E-mail: gidarako@mred.tuc.g [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece)

    2009-12-15

    An integrated experimental program was conducted to remove Cd, Pb and Cu from contaminated soil. The chelate agents nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA) and ethyleneglycol tetraacetic acid (EGTA) were used as washing solutions under different pH conditions and concentrations. Results showed that the extraction efficiency for Cd in decreasing order was NTA > EGTA > DTPA, while for Pb and Cu it was DTPA > NTA > EGTA. The use of higher chelate concentrations did not necessarily result in greater extraction efficiency. Electrokinetic remediation was applied by conditioning anolyte-catholyte pH to neutral values in order to avoid any potential alterations to the physicochemical soil properties. The removal efficiency for Cd was 65-95%, for Cu 15-60%, but for Pb was less than 20%. The phytotoxicity of the treated soil showed that the soil samples from the anode section were less phytotoxic than the untreated soil, but the phytotoxicity was increased in the samples from the cathode section. - Cadmium, lead and copper were extracted from contaminated soil by integrated electrokinetic and soil washing studies.

  6. Uptake of heavy metals by Brachiaria Decumbens and its mutant as a remediation agent for soil contaminated with oil sludge

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Latiffah Noordin; Abdul Razak Ruslan; Hazlina Abdullah; Khairuddin Abdul Rahim

    2006-01-01

    The Malaysian petroleum industry produces thousands of tonnes of oil sludge per year. Oil sludge is the residue accumulated during processing of petroleum at petroleum processing plants. Besides soil, mud and sand, oil sludge is often rich in radioactive substances, heavy metals and other toxic materials from hydrocarbon group which could contaminate and environment. In the present study the pasture grass Brachiaria decumbens and its mutant B. decumbens Kluang Comel were evaluated on their effectiveness as remediation agents for contaminated soils. The contaminating agent tested was the oil sludge with its hydrocarbons vaporised, obtained from the Waste Management Centre, MINT. Amongst the indicators for an effective remediation agent is the ability to accumulate heavy metals in their tissues without affecting their growth. This trial was conducted at MINT glasshouse, whereby the test plants were planted in pots in soil added with vaporised oil sludge. Analysis of heavy metals was through Inductive Coupled Plasma Mass Spectrometry (ICPMS) and Neutron Activation Analysis (NAA). This paper discusses the accumulation of heavy metals by B. decumbens and its mutant Kluang Comel and their growth performance, hence assessing their suitability as remediation agent in soil contaminated with oil sludge. (Author)

  7. Biological and chemical tests of contaminated soils to determine bioavailability and environmentally acceptable endpoints (EAE)

    International Nuclear Information System (INIS)

    Montgomery, C.R.; Menzie, C.A.; Pauwells, S.J.

    1995-01-01

    The understanding of the concept of bioavailability of soil contaminants to receptors and its use in supporting the development of EAE is growing but still incomplete. Nonetheless, there is increased awareness of the importance of such data to determine acceptable cleanup levels and achieve timely site closures. This presentation discusses a framework for biological and chemical testing of contaminated soils developed as part of a Gas Research Institute (GRI) project entitled ''Environmentally Acceptable Endpoints in Soil Using a Risk Based Approach to Contaminated Site Management Based on Bioavailability of Chemicals in Soil.'' The presentation reviews the GRI program, and summarizes the findings of the biological and chemical testing section published in the GRI report. The three primary components of the presentation are: (1) defining the concept of bioavailability within the existing risk assessment paradigm, (2) assessing the usefulness of the existing tests to measure bioavailability and test frameworks used to interpret these measurements, and (3) suggesting how a small selection of relevant tests could be incorporated into a flexible testing scheme for soils to address this issue

  8. Removal of Pb, Zn, and Cd from contaminated soil by new washing agent from plant material.

    Science.gov (United States)

    Cao, Yaru; Zhang, Shirong; Wang, Guiyin; Huang, Qinling; Li, Ting; Xu, Xiaoxun

    2017-03-01

    Soil washing is an effective approach to remove soil heavy metals, and the washing agent is generally regarded as one of the primary factors in the process, but there is still a lack of efficient and eco-friendly agents for this technique. Here, we showed that four plant washing agents-from water extracts of Coriaria nepalensis (CN), Clematis brevicaudata (CB), Pistacia weinmannifolia (PW), and Ricinus communis (RC)-could be feasible agents for the removal of soil lead (Pb), zinc (Zn), and cadmium (Cd). The metal removal efficiencies of the agents increased with their concentrations from 20 to 80 g L -1 , decreased with the increasing solution pH, and presented different trends with the reaction time increasing. CN among the four agents had the highest removal efficiencies of soil Pb (62.02%) and Zn (29.18%) but owned the relatively low Cd removal efficiencies (21.59%). The Fourier transform infrared spectroscopy showed that the abilities of plant washing agents for the removal of soil heavy metals may result from bioactive substances with specific functional groups such as -COOH, -NH 2 , and -OH. Our study provided CN as the best washing agents for the remediation of contaminated soil by heavy metals.

  9. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    International Nuclear Information System (INIS)

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-01-01

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application

  10. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?

    Science.gov (United States)

    Bolan, Nanthi; Kunhikrishnan, Anitha; Thangarajan, Ramya; Kumpiene, Jurate; Park, Jinhee; Makino, Tomoyuki; Kirkham, Mary Beth; Scheckel, Kirk

    2014-02-15

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Assessment of groundwater, soil-gas, and soil contamination at the Vietnam Armor Training Facility, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the groundwater, soil gas, and soil for contaminants at the Vietnam Armor Training Facility (VATF) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic compounds in the groundwater and soil gas, and inorganic compounds in the soil. In addition, organic contaminant assessment included organic compounds classified as explosives and chemical agents in selected areas. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Four passive samplers were deployed in groundwater wells at the VATF in Fort Gordon. Total petroleum hydrocarbons were detected above the method detection level at all four wells. The only other volatile organic compounds detected above their method detection level were undecane and pentadecane, which were detected in two of the four wells sampled. Soil-gas samplers were deployed at 72 locations in a grid pattern across the VATF. Total petroleum hydrocarbons were detected in 71 of the 72 samplers (one sampler was destroyed in the field and not analyzed) at levels above the method detection level, and the combined mass of benzene, toluene, ethylbenzene, and total xylene was detected above the detection level in 31 of the 71 samplers that were analyzed. Other volatile organic compounds detected above their respective method detection levels were naphthalene, 2-methyl-naphthalene, tridecane, 1,2,4-trimethylbenzene, and perchloroethene. Subsequent to the soil-gas survey, four areas determined to have elevated contaminant mass were selected and sampled for explosives and chemical agents. No detections of explosives or chemical agents above their

  12. The Use of Phosphate Amendments for Chemical Immobilization of Uranium in Contaminated Soil.

    Science.gov (United States)

    Baker, M.; Coutelot, F.; Seaman, J. C.

    2017-12-01

    Past Department of Energy (DOE) production of nuclear materials has resulted in uranium (U) contaminated soil and groundwater posing a significant risk to the environment and human health. In situ remediation strategies are typically less expensive and rely on the introduction of chemical additives in order to reduce contaminant migration and ultimately the associated exposure hazard. Phosphate addition to U-contaminated subsurface environments has been proposed as a U remediation strategy. Saturated and unsaturated batch experiments were performed to investigate the ability of three different phosphate source treatments: hydroxyapatite (HA), phytic acid (IP6) and sodium tripolyphosphate (TPP) to chemically immobilize U in contaminated Savannah River Site (SRS) soil (2,040 mg U/kg soil). Amendment treatments ranged from 925 to 4620 mg P /kg soil. Unsaturated test samples were equilibrated for 3 weeks at 60% of the soil's field capacity, followed by pore-water extraction by centrifugation to provide an indication of the remaining mobile U fraction. Saturated batch experiments were equilibrated on an orbital shaker for 30 days under both oxic and anoxic conditions, with aliquots taken at specific intervals for chemical analysis. In the saturated microcosms, HA decreased the mobile U concentration by 98% in both redox environments and at all treatment levels. IP6 and TPP were able to decrease the soluble U concentration at low treatment levels, but tended to release U at higher treatment levels compared to the control. Unsaturated microcosms also showed HA to be the most effective treatment for immobilizing U, but IP6 and TPP were as effective as HA at the lowest treatment level. The limited contaminant immobilization following TPP and IP6 amendments correlated with the dispersion of organic matter and organo-mineral colloids. For both experiment types, TPP and IP6 samples showed a very limited ortho-phosphate (PO4-) in the solution, indicating the slow mineralization

  13. Solid phase microextraction headspace sampling of chemical warfare agent contaminated samples : method development for GC-MS analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jackson Lepage, C.R.; Hancock, J.R. [Defence Research and Development Canada, Medicine Hat, AB (Canada); Wyatt, H.D.M. [Regina Univ., SK (Canada)

    2004-07-01

    Defence R and D Canada-Suffield (DRDC-Suffield) is responsible for analyzing samples that are suspected to contain chemical warfare agents, either collected by the Canadian Forces or by first-responders in the event of a terrorist attack in Canada. The analytical techniques used to identify the composition of the samples include gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), Fourier-transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy. GC-MS and LC-MS generally require solvent extraction and reconcentration, thereby increasing sample handling. The authors examined analytical techniques which reduce or eliminate sample manipulation. In particular, this paper presented a screening method based on solid phase microextraction (SPME) headspace sampling and GC-MS analysis for chemical warfare agents such as mustard, sarin, soman, and cyclohexyl methylphosphonofluoridate in contaminated soil samples. SPME is a method which uses small adsorbent polymer coated silica fibers that trap vaporous or liquid analytes for GC or LC analysis. Collection efficiency can be increased by adjusting sampling time and temperature. This method was tested on two real-world samples, one from excavated chemical munitions and the second from a caustic decontamination mixture. 7 refs., 2 tabs., 3 figs.

  14. Assessment Bioremediation of Contaminated Soils to Petroleum Compounds and Role of Chemical Fertilizers in the Decomposition Process

    Directory of Open Access Journals (Sweden)

    H. Parvizi Mosaed

    2013-06-01

    Full Text Available Today oil removal from contaminated soil by new methods such as bioremediation is necessary.  In this paper, the effect of chemical fertilizers and aeration on bioremediation of oil-contaminated soil has been investigated. Also the control group, (bioremediation of petroleum hydrocarbons in contaminated soil without treatment by chemical fertilizers and aeration treatment was examined. The condition of experiment is as following: those were treated 70 days in glass columns (30×30×30cm dimensions, ambient temperature (25-30 0C, relative humidity 70%, aeration operation with flow 0.7 lit/min.  The total number of heterotrophic bacteria of break down oil and the total of petroleum hydrocarbons were analyzed using gas chromatography analysis. all experiments were replicated three times. The microbial population results for control soil, treated soil by aeration and treated soil by aeration and chemical fertilizers columns are 2.3×105, 1.04×1010, and 1.14×1011 CFU/gr, respectively. The concentrations of total petroleum hydrocarbons of remaining are 46965, 38124, and 22187 mg kg-1respectively. The obtained results show that the aeration operation and chemical fertilizers have effective role on degradation of petroleum hydrocarbon by oil degrading bacteria from soil.

  15. Hybrid electrokinetic method applied to mix contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, H.; Maria, E. [Dept. of Building Civil and Environmental Engineering, Concordia Univ., Montreal (Canada)

    2001-07-01

    Several industrials and municipal areas in North America are contaminated with heavy metals and petroleum products. This mix contamination presents a particularly difficult task for remediation when is exposed in clayey soil. The objective of this research was to find a method to cleanup mix contaminated clayey soils. Finally, a multifunctional hybrid electrokinetic method was investigated. Clayey soil was contaminated with lead and nickel (heavy metals) at the level of 1000 ppm and phenanthrene (PAH) of 600 ppm. Electrokinetic surfactant supply system was applied to mobilize, transport and removal of phenanthrene. A chelation agent (EDTA) was also electrokinetically supplied to mobilize heavy metals. The studies were performed on 8 lab scale electrokinetic cells. The mix contaminated clayey soil was subjected to DC total voltage gradient of 0.3 V/cm. Supplied liquids (surfactant and EDTA) were introduced in different periods of time (22 days, 42 days) in order to optimize the most excessive removal of contaminants. The ph, electrical parameters, volume supplied, and volume discharged was monitored continuously during each experiment. At the end of these tests soil and cathalyte were subjected to physico-chemical analysis. The paper discusses results of experiments including the optimal energy use, removal efficiency of phenanthrene, as well, transport and removal of heavy metals. The results of this study can be applied for in-situ hybrid electrokinetic technology to remediate clayey sites contaminated with petroleum product mixed with heavy metals (e.g. manufacture Gas Plant Sites). (orig.)

  16. Bioremediation of contaminated soil

    International Nuclear Information System (INIS)

    Balba, M.T.; Ying, A.C.; McNeice, T.G.

    1992-01-01

    Microorganisms, especially bacteria, yeast and fungi are capable of degrading many kinds of xenobiotic compounds and toxic chemicals such as petroleum hydrocarbon compounds. These microorganisms are ubiquitous in nature and, despite their enormous versatility, there are numerous cases in which long-term contamination of soil and groundwater has been observed. The persistence of the contamination is usually caused by the inability of microorganisms to metabolize these compounds under the prevailing environmental condition. This paper reports on biological remediation of contaminated sites which can be accomplished by using naturally-occurring microorganisms to treat the contaminants. The development of a bioremediation program for a specific contaminated soil system usually includes: A thorough site/soil/waste characterization; Treatability studies

  17. Comparative scrub solution tests for decontamination of transuranic radionuclides from soils

    International Nuclear Information System (INIS)

    Stevens, J.R.; Kochen, R.L.; Rutherford, D.W.; Riordan, G.A.; Delaney, I.C.

    1982-08-01

    Soil decontamination tests were done using three scrubbing solutions on five different transuranic-contaminated soils from Department of Energy sites. The soils came from Rocky Flats, Colorado; Hanford, Washington; Mound Facility, Ohio; Idaho National Engineering Laboratory, Idaho; and Los Alamos National Laboratory, New Mexico. Decontamination was effected by physical and chemical means. A pH 12.5 scrub effected decontamination by serving as a hydraulic grading and attrition scrub medium; this solution did not solubilize the actinide contamination. A 2% HNO 3 , 0.2% HF, 2% pine oil, and 5% Calgon solution effected decontamination by physical and chemical means; this solution solubilized particulate actinide and actinide dispersed on the surface of soil particles. A 2N HCl scrub was also used to effect decontamination by physical and chemical means; this reagent solubilized soil constituents, removing contamination that had migrated into mineral surfaces. Only Rocky Flats soil was effectively decontaminated by the high pH solution although all soils had an enrichment of the activity in the -150 mesh fraction. Attrition scrubbing with both acid solutions had a better decontamination ability for the +150 mesh fraction for Hanford, INEL, and LANL soils. In addition, the acid solutions solubilized some of the plutonium and had a decontamination effect on the fine fractions

  18. METHOD FOR THE ESTIMATION OF SOIL VULNERABILITY AT THE CHEMICAL AGENTS IMPACT

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2006-10-01

    Full Text Available The negative effect induced to the soil by any impact, commonly chemical impact, defining the soil vulnerability to this impulse. To put in equation this soil characteristic, were chosen these physical and chemical indicators which determining the phenomenon intensity and its evolution direction, as: texture, pH (soil reaction, organic matter content, carbonates content and ion exchange capacity. Each of these indicators was divided into five classes, depending on the content in elements and/or chemical substances that defining any indicator, the specific indicator size, and on the direction and intensity of process generated by impact. Every of these five classes have been got marks from one to five according to soil capacity to putting up resistance to modification induced by impact. One mark reflecting the lowest impact resistance and five mark the highest ones. By summing of characteristic marks for each class resulted a scale from 5 to 25. According to this scale we could have very high soil vulnerability with only 5 points, and an invulnerable soil with 25 points. Analytical data of all these five physics and chemical indicators, determined for a specific territory, could be framing in vulnerability scale according to the presented methodology. This methodology permit to realize maps of the specific territories for soils vulnerability to impact of any nature chemical agents.

  19. Visualising the equilibrium distribution and mobility of organic contaminants in soil using the chemical partitioning space.

    Science.gov (United States)

    Wong, Fiona; Wania, Frank

    2011-06-01

    Assessing the behaviour of organic chemicals in soil is a complex task as it is governed by the physical chemical properties of the chemicals, the characteristics of the soil as well as the ambient conditions of the environment. The chemical partitioning space, defined by the air-water partition coefficient (K(AW)) and the soil organic carbon-water partition coefficient (K(OC)), was employed to visualize the equilibrium distribution of organic contaminants between the air-filled pores, the pore water and the solid phases of the bulk soil and the relative importance of the three transport processes removing contaminants from soil (evaporation, leaching and particle erosion). The partitioning properties of twenty neutral organic chemicals (i.e. herbicides, pharmaceuticals, polychlorinated biphenyls and volatile chemicals) were estimated using poly-parameter linear free energy relationships and superimposed onto these maps. This allows instantaneous estimation of the equilibrium phase distribution and mobility of neutral organic chemicals in soil. Although there is a link between the major phase and the dominant transport process, such that chemicals found in air-filled pore space are subject to evaporation, those in water-filled pore space undergo leaching and those in the sorbed phase are associated with particle erosion, the partitioning coefficient thresholds for distribution and mobility can often deviate by many orders of magnitude. In particular, even a small fraction of chemical in pore water or pore air allows for evaporation and leaching to dominate over solid phase transport. Multiple maps that represent soils that differ in the amount and type of soil organic matter, water saturation, temperature, depth of surface soil horizon, and mineral matters were evaluated.

  20. The rocky flats controversy on radionuclide soil action levels

    International Nuclear Information System (INIS)

    Earle, T.C.

    2004-01-01

    This report describes the Rocky Flats radionuclide soil action level controversy as a case study for the purpose of understanding the nature and value of stakeholder involvement in the management of radiological hazards. The report consists of three main sections. The first section outlines the Rocky Flats story, including the Cold War era, the post-Cold War era, and the transition between the two. This provides the context necessary to understand the radionuclide soil action level controversy, the main events of which are described in the second section. In the final section, the Rocky Flats case is briefly discussed within the framework of a general model of stakeholder involvement and the lessons learned from the case are identified. (author)

  1. Speciation of zinc in contaminated soils

    International Nuclear Information System (INIS)

    Stephan, Chadi H.; Courchesne, Francois; Hendershot, William H.; McGrath, Steve P.; Chaudri, Amar M.; Sappin-Didier, Valerie; Sauve, Sebastien

    2008-01-01

    The chemical speciation of zinc in soil solutions is critical to the understanding of its bioavailability and potential toxic effects. We studied the speciation of Zn in soil solution extracts from 66 contaminated soils representative of a wide range of field conditions in both North America and Europe. Within this dataset, we evaluated the links among the dissolved concentrations of zinc and the speciation of Zn 2+ , soil solution pH, total soil Zn, dissolved organic matter (DOM), soil organic matter (SOM) and the concentrations of different inorganic anions. The solid-liquid partitioning coefficient (K d ) for Zn ranged from 17 to 13,100 L kg -1 soil. The fraction of dissolved Zn bound to DOM varied from 60% to 98% and the soil solution free Zn 2+ varied from 40% to 60% of the labile Zn. Multiple regression equations to predict free Zn 2+ , dissolved Zn and the solid-liquid partitioning of Zn are given for potential use in environmental fate modeling and risk assessment. The multiple regressions also highlight some of the most important soil properties controlling the solubility and chemical speciation of zinc in contaminated soils. - We studied the relationships among the chemical speciation of Zn in soil solution extracts from 66 contaminated soils and various physicochemical properties of the soils

  2. A Study on the Removal of Cesium in Soil Contaminated with Radiation Using a Soil Washing Process

    International Nuclear Information System (INIS)

    Park, Ukryang; Kim, Gyenam; Kim, Seungsoo; Park, Hyemin; Kim, Wansuk; Moon, Jaikwon

    2013-01-01

    The first principle is related with the washing process which is carried out to transfer the contaminated mass from the soil to water by dissolving it with a cleansing solution. The second is concerned with the size of the separation process which focuses on the reduction of the volume by separating the subject matters based on the different sizes of the soil. The complex agents used in the soil washing process include HCl, Oxalic acid, Citric acid, CaCl 2 , BaCl 2 , NH 4 NO 3 , and NaOH. It is known that the complex-forming capacity of such complex agents and radionuclides influences the decontamination from the soil. Also, since the forms of the chemical species related with the complex agents and the surface potential of the soil vary based on the changes of acidity observed in the cleansing solution, the level of acidity in the cleansing solution can be regarded as a factor that influences the decontamination. Therefore, in this study, H 2 SO 4 was selected as the complex agent and used to check the influence of the temperature when the subject contaminated soil was washed. Then, by applying the sieve grading process with a sieve-shaker, the size separation process was carried out to measure the level of radiation for each size. By washing the contaminated soil separated into different sizes with the complex agent H 2 SO 4 , the different removal tendencies for each size were considered. After selecting the complex agent H 2 SO 4 and checking the influence of temperature when the contaminated soil was washed based on the solid-liquid ratio of 1g:2ml, it was found that the heat washing process at a temperature of 95 .deg. C showed a higher level of efficiency for the removal of Cs compared to the case of the non-heat washing process. Also, according to the results given by the process of considering the different removal tendencies for each size based on the heat washing process after the sieve grading process was applied with the sieve-shaker prior for the size

  3. Assessment of hyporheic zone, flood-plain, soil-gas, soil, and surface-water contamination at the Old Incinerator Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above

  4. Incorporating biomarkers in ecological risk assessment of chemical contaminants of soils

    Directory of Open Access Journals (Sweden)

    A. J. Reinecke

    2007-09-01

    Full Text Available Soil is an important but complex natural resource which is increasingly used as sink for chemicals. The monitoring of soil quality and the assessment of risks posed by contaminants have become crucial. This study deals with the potential use of biomarkers in the monitoring of soils and the assessment of risk resulting from contamination. Apart from an overview of the existing literature on biomarkers, the results of various of our field experiments in South African soils are discussed. Biomarkers may have potential in the assessment of risk because they can indicate at an early stage that exposure has taken place and that a toxic response has been initiated. It is therefore expected that early biomarkers will play an increasing role as diagnostic tools for determining exposure to chemicals and the resulting effects. They may have predictive value that can assist in the prevention or minimising of risks. The aim of this study was to investigate the possibilities of using our results on biomarker responses of soil dwelling organisms to predict changes at higher organisational levels (which may have ecological implications. Our recent experimental results on the evaluation of various biomarkers in both the laboratory and the field are interpreted and placed in perspective within the broader framework of response biology. The aim was further to contribute to the development and application of biomarkers in regulatory risk assessment schemes of soils. This critical review of our own and recent literature on biomarkers in ecotoxicology leads to the conclusion that biomarkers can, under certain conditions, be useful tools in risk assessment. Clear relationships between contamination loads in soil organisms and certain biomarker responses were determined in woodlice, earthworms and terrestrial snails. Clear correlations were also established in field experiments between biomarker responses and changes at the population level. This indicated that, in

  5. Assessment of groundwater, soil-gas, and soil contamination at the Vietnam Armor Training Facility, Fort Gordon, Georgia, 2009-2011

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the groundwater, soil gas, and soil for contaminants at the Vietnam Armor Training Facility (VATF) at Fort Gordon, from October 2009 to September 2011. The assessment included the detection of organic compounds in the groundwater and soil gas, and inorganic compounds in the soil. In addition, organic contaminant assessment included organic compounds classified as explosives and chemical agents in selected areas. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. This report is a revision of "Assessment of soil-gas, surface-water, and soil contamination at the Vietnam Armor Training Facility, Fort Gordon, Georgia, 2009-2010," Open-File Report 2011-1200, and supersedes that report to include results of additional samples collected in July 2011. Four passive samplers were deployed in groundwater wells at the VATF in Fort Gordon. Total petroleum hydrocarbons and benzene and octane were detected above the method detection level at all four wells. The only other volatile organic compounds detected above their method detection level were undecane and pentadecane, which were detected in two of the four wells. Soil-gas samplers were deployed at 72 locations in a grid pattern across the VATF on June 3, 2010, and then later retrieved on June 9, 2010. Total petroleum hydrocarbons were detected in 71 of the 72 samplers (one sampler was destroyed in the field and not analyzed) at levels above the method detection level, and the combined mass of benzene, toluene, ethylbenzene, and total xylene (BTEX) was detected above the detection level in 31 of the 71 samplers that were analyzed. Other volatile organic compounds

  6. Effect of thermal pre-treatment on the availability of PAHs for successive chemical oxidation in contaminated soils.

    Science.gov (United States)

    Usman, M; Chaudhary, A; Biache, C; Faure, P; Hanna, K

    2016-01-01

    This is the premier study designed to evaluate the impact of thermal pre-treatment on the availability of polycyclic aromatic hydrocarbons (PAHs) for successive removal by chemical oxidation. Experiments were conducted in two soils having different PAH distribution originating from former coking plant sites (Homécourt, H, and Neuves Maisons, NM) located in northeast of France. Soil samples were pre-heated at 60, 100, and 150 °C for 1 week under inert atmosphere (N2). Pre-heating resulted in slight removal of PAHs (soil samples were subjected to Fenton-like oxidation (H2O2 and magnetite) at room temperature. Chemical oxidation in soil without any pre-treatment showed almost no PAH degradation underscoring the unavailability of PAHs. However, chemical oxidation in pre-heated soils showed significant PAH degradation (19, 29, and 43% in NM soil and 31, 36, and 47% in H soil pre-treated at 60, 100, and 150 °C, respectively). No preferential removal of PAHs was observed after chemical oxidation in both soils. These results indicated the significant impact of pre-heating temperature on the availability of PAHs in contaminated soils and therefore may have strong implications in the remediation of contaminated soils especially where pollutant availability is a limiting factor.

  7. Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies

    International Nuclear Information System (INIS)

    Lau, Ee Von; Gan, Suyin; Ng, Hoon Kiat; Poh, Phaik Eong

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in soil have been recognised as a serious health and environmental issue due to their carcinogenic, mutagenic and teratogenic properties. One of the commonly employed soil remediation techniques to clean up such contamination is soil washing or solvent extraction. The main factor which governs the efficiency of this process is the solubility of PAHs in the extraction agent. Past field-scale soil washing treatments for PAH-contaminated soil have mainly employed organic solvents or water which is either toxic and costly or inefficient in removing higher molecular weight PAHs. Thus, the present article aims to provide a review and discussion of the alternative extraction agents that have been studied, including surfactants, biosurfactants, microemulsions, natural surfactants, cyclodextrins, vegetable oil and solution with solid phase particles. These extraction agents have been found to remove PAHs from soil at percentages ranging from 47 to 100% for various PAHs. -- Highlights: • The alternative and advancement in extraction agents to remove PAHs from soil using soil washing technology is summarised. • The soil regulations for PAH level in various countries are summarized for reference to researchers. • The concentration levels of PAHs in soil at present and the need for soil remediation is presented. -- The efficiency of the extraction agent plays a significant role in soil washing of PAH-contaminated soil

  8. Chemical Alterations of Pb using Flue Gas Desulfurization Gypsum (FGDG) in two contaminated soils

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data include chemical composition of Pb contaminated soils by adding FGDG as an amendment. The data shows the changes in Pb speciation to sulfur based minerals....

  9. [Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil].

    Science.gov (United States)

    Hao, Han-zhou; Chen, Tong-bin; Jin, Meng-gui; Lei, Mei; Liu, Cheng-wu; Zu, Wen-pu; Huang, Li-mi

    2011-03-01

    Remediation of heavy metals-contaminated soil is still a difficulty and a hotspot of international research projects. At present, the technologies commonly adopted for the remediation of contaminated sites mainly include excavation, solidification/stabilization (S/S), soil washing, soil vapor extraction (SVE), thermal treatment, and bioremediation. Based on the S/S technical guidelines of Unite State Environmental Protection Agency (EPA) and United Kingdom Environment Agency (EA) and the domestic and foreign patents, this paper introduced the concepts of S/S and its development status at home and abroad, and discussed its future development directions. Solidification refers to a process that binds contaminated media with a reagent, changing the media's physical properties via increasing its compressive strength, decreasing its permeability, and encapsulating the contaminants to form a solid material. Stabilization refers to the process that involves a chemical reaction which reduces the leachability of a waste, chemically immobilizes the waste and reduces its solubility, making the waste become less harmful or less mobile. S/S technology includes cement solidification, lime pozzolanic solidification, plastic materials stabilization, vitrification, and regent-based stabilization. Stabilization (or immobilization) treatment processes convert contaminants to less mobile forms through chemical or thermal interactions. In stabilization technology, the aim of adding agents is to change the soil physical and chemical properties through pH control technology, redox potential technology, precipitation techniques, adsorption technology, and ion-exchange technology that change the existing forms of heavy metals in soil, and thus, reduce the heavy metals bioavailability and mobility. This review also discussed the S/S evaluation methods, highlighted the need to enhance S/S technology in the molecular bonding, soil polymers, and formulation of China's S/S technical guidelines.

  10. A Study on the Removal of Cesium in Soil Contaminated with Radiation Using a Soil Washing Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ukryang; Kim, Gyenam; Kim, Seungsoo; Park, Hyemin; Kim, Wansuk; Moon, Jaikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The first principle is related with the washing process which is carried out to transfer the contaminated mass from the soil to water by dissolving it with a cleansing solution. The second is concerned with the size of the separation process which focuses on the reduction of the volume by separating the subject matters based on the different sizes of the soil. The complex agents used in the soil washing process include HCl, Oxalic acid, Citric acid, CaCl{sub 2}, BaCl{sub 2}, NH{sub 4}NO{sub 3}, and NaOH. It is known that the complex-forming capacity of such complex agents and radionuclides influences the decontamination from the soil. Also, since the forms of the chemical species related with the complex agents and the surface potential of the soil vary based on the changes of acidity observed in the cleansing solution, the level of acidity in the cleansing solution can be regarded as a factor that influences the decontamination. Therefore, in this study, H{sub 2}SO{sub 4} was selected as the complex agent and used to check the influence of the temperature when the subject contaminated soil was washed. Then, by applying the sieve grading process with a sieve-shaker, the size separation process was carried out to measure the level of radiation for each size. By washing the contaminated soil separated into different sizes with the complex agent H{sub 2}SO{sub 4}, the different removal tendencies for each size were considered. After selecting the complex agent H{sub 2}SO{sub 4} and checking the influence of temperature when the contaminated soil was washed based on the solid-liquid ratio of 1g:2ml, it was found that the heat washing process at a temperature of 95 .deg. C showed a higher level of efficiency for the removal of Cs compared to the case of the non-heat washing process. Also, according to the results given by the process of considering the different removal tendencies for each size based on the heat washing process after the sieve grading process was

  11. Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process.

    Science.gov (United States)

    Molina-Barahona, L; Vega-Loyo, L; Guerrero, M; Ramírez, S; Romero, I; Vega-Jarquín, C; Albores, A

    2005-02-01

    Evaluation of contaminated sites is usually performed by chemical analysis of pollutants in soil. This is not enough either to evaluate the environmental risk of contaminated soil nor to evaluate the efficiency of soil cleanup techniques. Information on the bioavailability of complex mixtures of xenobiotics and degradation products cannot be totally provided by chemical analytical data, but results from bioassays can integrate the effects of pollutants in complex mixtures. In the preservation of human health and environment quality, it is important to assess the ecotoxicological effects of contaminated soils to obtain a better evaluation of the healthiness of this system. The monitoring of a diesel-contaminated soil and the evaluation of a bioremediation technique conducted on a microcosm scale were performed by a battery of ecotoxicological tests including phytotoxicity, Daphnia magna, and nematode assays. In this study we biostimulated the native microflora of soil contaminated with diesel by adding nutrients and crop residue (corn straw) as a bulking agent and as a source of microorganisms and nutrients; in addition, moisture was adjusted to enhance diesel removal. The bioremediation process efficiency was evaluated directly by an innovative, simple phytotoxicity test system and the diesel extracts by Daphnia magna and nematode assays. Contaminated soil samples were revealed to have toxic effects on seed germination, seedling growth, and Daphnia survival. After biostimulation, the diesel concentration was reduced by 50.6%, and the soil samples showed a significant reduction in phytotoxicity (9%-15%) and Daphnia assays (3-fold), confirming the effectiveness of the bioremediation process. Results from our microcosm study suggest that in addition to the evaluation of the bioremediation processes efficiency, toxicity testing is different with organisms representative of diverse phylogenic levels. The integration of analytical, toxicological and bioremediation data

  12. Chemical and microbial properties in contaminated soils around a magnesite mine in northeast China

    Science.gov (United States)

    D Yang; D-H Zeng; J Zhang; L-J Li; R. Mao

    2012-01-01

    We measured soil chemical and microbial properties at a depth of 0–20 cm among mine tailings, abandoned mined land, contaminated cropland, and uncontaminated cropland around a magnesite mine near Haicheng City, Liaoning Province, China. The objective was to clarify the impact of Mg on the soils. We found that soluble Mg2+ concentration and pH...

  13. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction.

    Science.gov (United States)

    Crean, Daniel E; Livens, Francis R; Sajih, Mustafa; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C

    2013-12-15

    Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42-50% total DU extracted), citric acid (30-42% total DU) and sulphuric acid (13-19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68-87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Estimated general population control limits for unitary agents in drinking water, milk, soil, and unprocessed food items

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.; Adams, J.D.; Cerar, R.J.; Hess, T.L.; Kistner, S.L.; Leffingwell, S.S.; MacIntosh, R.G.; Ward, J.R.

    1992-01-01

    In the event of an unplanned release of chemical agent during any stage of the Chemical Stockpile Disposal Program (CSDP), the potential exists for contamination of drinking water, forage crops, grains, garden produce, and livestock. Persistent agents such as VX or sulfur mustard pose the greatest human health concern for reentry. This White Paper has been prepared to provide technical bases for these decisions by developing working estimates of agent control limits in selected environmental media considered principal sources of potential human exposure. To date, control limits for public exposure to unitary agents have been established for atmospheric concentrations only. The current analysis builds on previous work to calculate working estimates of control limits for ingestion and dermal exposure to potentially contaminated drinking water, milk, soil, and unprocessed food items such as garden produce. Information characterizing agent desorption from, and detection on or in, contaminated porous media are presently too developed to permit reasonable estimation of dermal exposure from this source. Thus, dermal contact with potentially contaminated porous surfaces is not considered in this document.

  15. X-ray Microspectroscopy and Chemical Reactions in Soil Microsites

    Energy Technology Data Exchange (ETDEWEB)

    D Hesterberg; M Duff; J Dixon; M Vepraskas

    2011-12-31

    Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants.

  16. A soil washing pilot plant for removing petroleum hydrocarbons from contaminated soils

    International Nuclear Information System (INIS)

    Toor, I.A.; Roehrig, G.R.

    1992-01-01

    A soil washing pilot plant was built and tested for its ability to remove petroleum hydrocarbons from certain soils. The ITEX soil washing pilot plant is a trailer mountable mobile unit which has a washing capacity of two tons per hour of contaminated soils. A benchscale study was carried out prior to the fabrication of the pilot plant. The first sample was contaminated with diesel fuel while the second sample was contaminated with crude oil. Various nonionic, cationic and anionic cleaning agents were evaluated for their ability to remove petroleum hydrocarbons from these materials. The nonionic cleaning agents were more successful in cleaning the soils in general. The ultimate surfactant choice was based on several factors including cost, biodegradability, cleaning efficiency and other technical considerations. The soil samples were characterized in terms of their particle size distributions. Commercial diesel fuel was carefully mixed in this sand to prepare a representative sample for the pilot plant study. Two pilot runs were made using this material. A multistage washing study was also conducted in the laboratory which indicates that the contamination level can be reduced to 100 ppm using only four stages. Because the pilot plant washing efficiency is twice as high, it is believed that ultimate contamination levels can be reduced to lower levels using the same number of stages. However, this hypothesis has not been demonstrated to date

  17. Reactive barrier technologies for treatment of contaminated groundwater at Rocky Flats

    International Nuclear Information System (INIS)

    Marozas, D.C.; Bujewski, G.E.; Castaneda, N.

    1997-01-01

    The U.S. Department of Energy (DOE) Office of Science and Technology Subsurface Contaminants Focus Area is supporting the investigation of reactive barrier technologies to mitigate the risks associated with mixed organic/radioactive waste at several DOE sites. Groundwater from a small contaminated plume at the Rocky Flats Environmental Technology Site (RFETS) is being used to evaluate passive reactive material treatment. Permeable reactive barriers which intercept contaminants and destroy the VOC component while containing radionuclides are attractive for a number of reasons relating to public and regulatory acceptance. In situ treatment keeps contaminants away from the earth's surface, there is no above-ground treatment equipment that could expose workers and the public and operational costs are expected to be lower than currently used technologies. This paper will present results from preliminary site characterization and in-field small-scale column testing of reactive materials at RFETS. Successful demonstration is expected to lead to full-scale implementation of the technology at several DOE sites, including Rocky Flats

  18. Stabilization of contaminated soil and wastewater with chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    At Argonne National Laboratory, we have developed chemically Bonded phosphate ceramic (CBPC) technology to stabilize the U.S. Department of Energy's problem mixed waste streams, for which no other stabilization technology is suitable. In this technology, solid waste is mixed with MgO and reacted with aqueous solutions of phosphoric acid or acid phosphates at room temperature to form a slurry that sets in ∼2 h into a hard and dense ceramic waste form. Initial studies involved stabilizing the surrogate waste streams and then testing the waste forms for leaching of contaminants. After achieving satisfactory performance of the waste forms, we next incorporated actual waste streams at bench scale and produced waste forms that were then tested with the Toxicity Characteristic Leaching Procedure (TCLP). This presentation deals with stabilization of soil contaminated with Cd, Cr, Pb, Ag, Ba, and Hg, and of low-level radioactive wastewater. To enhance the contaminant levels in the soil, we further spiked the soil with additional amounts of Cd, Cr, Pb, and Hg. Both the soil and the wastewater were incorporated in the same waste form by stabilizing them with the CBPC process. The waste forms had a total waste loading of ∼77 wt.% and were dense with an open porosity of 2.7 vol.% and a density of 2.17 g/cm 3 . Compression strength was 4910 psi. The TCLP results showed excellent immobilization of all the RCRA metals, and radioactive contaminant levels were below the detection limit of 0.2 pCi/mL. Long-term leaching studies using the ANS 16.1 procedure showed that the retention of contaminants is excellent and comparable to or better than most of other stabilization processes. These results demonstrate that the CBPC process is a very superior process for treatment of low level mixed wastes; we therefore conclude that the CBPC process is well suited to the treatment of low-level mixed waste streams with high waste loading

  19. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction

    Energy Technology Data Exchange (ETDEWEB)

    Crean, Daniel E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom); Centre for Radiochemistry Research, School of Chemistry, The University of Manchester (United Kingdom); Livens, Francis R.; Sajih, Mustafa [Centre for Radiochemistry Research, School of Chemistry, The University of Manchester (United Kingdom); Stennett, Martin C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom); Grolimund, Daniel; Borca, Camelia N. [Swiss Light Source, Paul Scherrer Institute, Villigen (Switzerland); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom)

    2013-12-15

    Highlights: • Batch leaching was examined to remediate soils contaminated with munitions depleted uranium. • Site specific maximum extraction was 42–50% total U in single batch with NH{sub 4}HCO{sub 3}. • Analysis of residues revealed partial leaching and secondary carbonate phases. • Sequential batch leaching alternating between NH{sub 4}HCO{sub 3} and citric acid was designed. • Site specific extraction was increased to 68–87% total U in three batch steps. -- Abstract: Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42–50% total DU extracted), citric acid (30–42% total DU) and sulphuric acid (13–19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68–87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents.

  20. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.

    Science.gov (United States)

    Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-03-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

  1. Microbial interactions with organic contaminants in soil: Definitions, processes and measurement

    International Nuclear Information System (INIS)

    Semple, Kirk T.; Doick, Kieron J.; Wick, Lukas Y.; Harms, Hauke

    2007-01-01

    There has been and continues to be considerable scientific interest in predicting bioremediation rates and endpoints. This requires the development of chemical techniques capable of reliably predicting the bioavailability of organic compounds to catabolically active soil microbes. A major issue in understanding the link between chemical extraction and bioavailability is the problem of definition; there are numerous definitions, of varying degrees of complexity and relevance, to the interaction between organic contaminants and microorganisms in soil. The aim of this review is to consider the bioavailability as a descriptor for the rate and extent of biodegradation and, in an applied sense, bioremediation of organic contaminants in soil. To address this, the review will (i) consider and clarify the numerous definitions of bioavailability and discuss the usefulness of the term 'bioaccessibility'; (ii) relate definition to the microbiological and chemical measurement of organic contaminants' bioavailability in soil, and (iii) explore the mechanisms employed by soil microorganisms to attack organic contaminants in soil. - Understanding organic contaminant's behaviour in soil is key to chemically predicting biodegradation

  2. The rocky flats controversy on radionuclide soil action levels

    International Nuclear Information System (INIS)

    Earle, T.C.

    2004-01-01

    This report describes how stakeholder involvement processes led to the successful resolution of a dispute over radionuclide soil action levels at the Rocky Flats Site near Denver, Colorado. During the Cold War Era, Rocky Flats, a plutonium fabrication plant, was part of the American government's multi-site nuclear weapons production facilities. Although the Rocky Flats plant had significant positive effects on the local economy, it became a target of public protest due to concerns over both public safety in the area surrounding the site and global nuclear proliferation. In the late 1980's, local safety concerns led to investigations by state and federal agencies. In 1992, with the Cold War ended, the Department of Energy decided to decommission the Rocky Flats site and to begin the long process of decontamination. (author)

  3. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent.

    Science.gov (United States)

    Gitipour, Saeid; Ahmadi, Soheil; Madadian, Edris; Ardestani, Mojtaba

    2016-01-01

    In this research, the effect of soil washing in the removal of chromium- and cadmium-contaminated sludge samples collected from Pond 2 of the Tehran Oil Refinery was investigated. These metals are considered as hazardous substances for human health and the environment. The carcinogenicity of chromate dust has been established for a long time. Cadmium is also a potential environmental toxicant. This study was carried out by collecting sludge samples from different locations in Pond 2. Soil washing was conducted to treat the samples. Chemical agents, such as acetic acid, ethylenediaminetetra acetic acid (EDTA) and hydrochloric acid, were used as washing solutions to remove chromium and cadmium from sludge samples. The results of this study indicated that the highest removal efficiencies from the sludge samples were achieved using a 0.3 M HCl solution with 82.69% and 74.47% for chromium and cadmium, respectively. EDTA (0.1 M) in the best condition extracted 66.81% of cadmium and 72.52% of chromium from the sludges. The lowest efficiency values for the samples, however, were achieved using 3 M acetic acid with 41.7% and 46.96% removals for cadmium and chromium, respectively. The analysis of washed sludge indicated that the heavy metals removal decreased in the order of 3 M acetic acid < 0.1 M EDTA<0.3 M HCl, thus hydrochloric acid appears to offer a greater potential as a washing agent in remediating the sludge samples.

  4. Review of chemical and electrokinetic remediation of PCBs contaminated soils and sediments.

    Science.gov (United States)

    Fan, Guangping; Wang, Yu; Fang, Guodong; Zhu, Xiangdong; Zhou, Dongmei

    2016-09-14

    Polychlorinated biphenyls (PCBs) are manmade organic compounds, and pollution due to PCBs has been a global environmental problem because of their persistence, long-range atmospheric transport and bioaccumulation. Many physical, chemical and biological technologies have been utilized to remediate PCBs contaminated soils and sediments, and there are some emerging new technologies and combined methods that may provide cost-effective alternatives to the existing remediation practice. This review provides a general overview on the recent developments in chemical treatment and electrokinetic remediation (EK) technologies related to PCBs remediation. In particular, four technologies including photocatalytic degradation of PCBs combined with soil washing, Fe-based reductive dechlorination, advanced oxidation process, and EK/integrated EK technology (e.g., EK coupled with chemical oxidation, nanotechnology and bioremediation) are reviewed in detail. We focus on the fundamental principles and governing factors of chemical technologies, and EK/integrated EK technologies. Comparative analysis of these technologies including their major advantages and disadvantages is summarized. The existing problems and future prospects of these technologies regarding PCBs remediation are further highlighted.

  5. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils.

    Science.gov (United States)

    Ranc, Bérénice; Faure, Pierre; Croze, Véronique; Lorgeoux, Catherine; Simonnot, Marie-Odile

    2017-04-01

    Thermal treatments prior or during chemical oxidation of aged polycyclic aromatic hydrocarbon (PAH)-contaminated soils have already shown their ability to increase oxidation effectiveness. However, they were never compared on the same soil. Furthermore, oxygenated polycyclic aromatic hydrocarbons (O-PACs), by-products of PAH oxidation which may be more toxic and mobile than the parent PAHs, were very little monitored. In this study, two aged PAH-contaminated soils were heated prior (60 or 90 °C under Ar for 1 week) or during oxidation (60 °C for 1 week) with permanganate and persulfate, and 11 O-PACs were monitored in addition to the 16 US Environmental Protection Agency (US EPA) PAHs. Oxidant doses were based on the stoichiometric oxidant demand of the extractable organic fraction of soils by using organic solvents, which is more representative of the actual contamination than only the 16 US EPA PAHs. Higher temperatures actually resulted in more pollutant degradation. Two treatments were about three times more effective than the others: soil heating to 60 °C during persulfate oxidation and soil preheating to 90 °C followed by permanganate oxidation. The results of this study showed that persulfate effectiveness was largely due to its thermal activation, whereas permanganate was more sensitive to PAH availability than persulfate. The technical feasibility of these two treatments will soon be field-tested in the unsaturated zone of one of the studied aged PAH-contaminated soils.

  6. Immobilization of uranium in contaminated soil by natural apatite addition

    International Nuclear Information System (INIS)

    Mrdakovic Popic, Jelena; Stojanovic, Mirjana; Milosevic, Sinisa; Iles, Deana; Zildzovic, Snezana

    2007-01-01

    Available in abstract form only. Full text of publication follows: The goal of this study was to evaluate the effectiveness of Serbian natural mineral apatite as soil additive for reducing the migration of uranium from contaminated sediments. In laboratory study we investigated the sorption properties of domestic apatite upon different experimental conditions, such as pH, adsorbent mass, reaction period, concentration of P 2 O 5 in apatite, solid/liquid ratio. In second part of study, we did the quantification of uranium in soil samples, taken from uranium mine site 'Kalna', by sequential extraction method. The same procedure was, also, used for uranium determination in contaminated soil samples after apatite addition, in order to determine the changes in U distribution in soil fraction. The obtained results showed the significant level of immobilization (96.7%) upon certain conditions. Increase of %P 2 O 5 in apatite and process of mechano-chemical activation led to increase of immobilization capacity from 17.50% till 91.64%. The best results for uranium binding were obtained at pH 5.5 and reaction period 60 days (98.04%) The sequential extraction showed the presence of uranium (48.2%) in potentially available soil fractions, but with the apatite addition uranium content in these fractions decreased (30.64%), what is considering environmental aspect significant fact. In situ immobilization of radionuclide using inexpensive sequestering agents, such as apatite, is very adequate for big contaminated areas of soil with low level of contamination. This investigation study on natural apatite from deposit 'Lisina' Serbia was the first one of this type in our country. Key words: apatite, uranium, immobilization, soil, contamination. (authors)

  7. Demonstration of the SOLTECR technology for the in situ physico-chemical treatment of a site contaminated by diesel oil

    International Nuclear Information System (INIS)

    Dufresne, P.; Tellier, J.G.; Michaud, J.R.

    1997-01-01

    The remediation of a diesel oil spill at one of the Alcan plants was discussed. The hydrocarbon spill affected the groundwater in an area of more than 6,000 m 2 . Only an in-situ treatment for remediation was practical because the residual contaminated soil was located mainly under buildings and represented a volume of 3,000 m 3 . Alcan proposed the development and demonstration of the SOLTEC R in-situ physico-chemical treatment technology which consists of injecting chemicals into the soil. The chemicals are a mixture of calcium based solids with liquid and gaseous oxidizing agents. The degradation of the hydrocarbons is by oxidation and is completed in the soil in less than 24 hours after injection. Monitoring of the groundwater was conducted for one year after the completion of the soil treatment. It was concluded that the SOLTEC R process decreased and even eliminated the toxicity and geotoxicity of the diesel-contaminated soils. A volume of 3,000 m 3 of contaminated soil was treated within three months. The efficiency of hydrocarbon destruction was more than 95 per cent. 3 refs., 1 tab

  8. Soil management planning for military installations: Strategy for identifying contaminated soils

    International Nuclear Information System (INIS)

    Makdisi, R.S.; Baskin, D.A.; Downey, D.; Taffinder, S.A.

    1992-01-01

    Numerous federal and state regulations mandate the proper handling and disposal and/or treatment of contaminated soils. The Land Disposal Ban and the increasing lack of new or proximal land disposal facilities, coupled with the increasing liability of off-site disposal, have created a need for altering the traditional methods of managing contaminated sods. To delineate soil management decisions, a Soil Management Plan (SMP) was developed which incorporates the substantive requirements of CERCLA/SARA and RCRA into the ongoing base activities (i.e., construction projects, utility repairs and maintenance) and other environmental projects (i.e., underground storage tank removals) that may involve contaminated soils. The decision-making process is developed to guide base personnel in recognizing contamination, following proper sampling and temporary storage procedures, preventing unnecessary human exposure and isolating soils for removal off-site or treatment on-site. The SMP also contains a comprehensive review of soil remediation technologies, such as biological treatment, soil vapor extraction, soil washing, biofiltering, thermal desorption, soil stabilization/solidification, chemical/physical treatment and incineration. Contaminant types expected at the federal military facility are cross-referenced to the appropriate remediation technologies to determine the specific base needs for a soil treatment unit. An example of a conceptual design for a hydrocarbon-contaminated soil treatment unit is presented for a base where underground fuel tanks are the principal source of soil contamination

  9. Assessment of Soil-Gas and Soil Contamination at the Former Military Police Range, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas and soil were assessed for organic and inorganic contaminants at the former military police range at Fort Gordon, Georgia, from May to September 2010. The assessment evaluated organic contaminants in soil-gas samplers and inorganic contaminants in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers deployed and collected from May 20 to 24, 2010, identified masses above method detection level for total petroleum hydrocarbons, gasoline-related and diesel-related compounds, and chloroform. Most of these detections were in the southwestern quarter of the study area and adjacent to the road on the eastern boundary of the site. Nine of the 11 chloroform detections were in the southern half of the study area. One soil-gas sampler deployed adjacent to the road on the southern boundary of the site detected a mass of tetrachloroethene greater than, but close to, the method detection level of 0.02 microgram. For soil-gas samplers deployed and collected from September 15 to 22, 2010, none of the selected organic compounds classified as chemical agents and explosives were detected above method detection levels. Inorganic concentrations in the five soil samples collected at the site did not exceed the U.S. Environmental Protection Agency regional screening levels for industrial soil and were at or below background levels for similar rocks and strata in South Carolina.

  10. 239Pu contamination in snakes inhabiting the Rocky Flats Plant site

    International Nuclear Information System (INIS)

    Geiger, R.A.; Winsor, T.F.

    1975-01-01

    For approximately four years studies have been under way at the Rocky Flats plant to determine contamination patterns and concentrations of Pu in the biota. Contamination of the Rocky Flats environs has resulted from at least three incidents, a September 1957 fire, a May 1969 fire, and leaking barrels containing plutonium-laden cutting oil. The latter incident was considered by far the major source of the plutonium contamination. Results are reported from a study conducted to determine whether snake tissues of the area contained detectable amounts of 239 Pu and, if so, at what concentrations. Eastern yellow-bellied racers (Coluber constrictor flaviventris, bullsnakes (Pituophis melanoleucus sayi, and prairie rattlesnakes (Crotalus viridis viridis, were collected for 239 Pu bioassay of lung, liver, and bone tissues. Snakes were captured using drift fences terminating in funnel traps and by opportunistic sampling. Results led to the conclusion that snakes are not an important organism in the redistribution of 239 Pu

  11. Bioremediation of PAH contaminated soil samples

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1994-01-01

    Soils contaminated with polynuclear aromatic hydrocarbons (PAHs) pose a hazard to life. The remediation of such sites can be done using physical, chemical, and biological treatment methods or a combination of them. It is of interest to study the decontamination of soil using bioremediation. The experiments were conducted using Acinetobacter (ATCC 31012) at room temperature without pH or temperature control. In the first series of experiments, contaminated soil samples obtained from Alberta Research Council were analyzed to determine the toxic contaminant and their composition in the soil. These samples were then treated using aerobic fermentation and removal efficiency for each contaminant was determined. In the second series of experiments, a single contaminant was used to prepare a synthetic soil sample. This sample of known composition was then treated using aerobic fermentation in continuously stirred flasks. In one set of flasks, contaminant was the only carbon source and in the other set, starch was an additional carbon source. In the third series of experiments, the synthetic contaminated soil sample was treated in continuously stirred flasks in the first set and in fixed bed in the second set and the removal efficiencies were compared. The removal efficiencies obtained indicated the extent of biodegradation for various contaminants, the effect of additional carbon source, and performance in fixed bed without external aeration

  12. Bioremediation of oil sludge contaminated soil using bulking agent mixture enriched consortia of microbial inoculants based by irradiated compost

    International Nuclear Information System (INIS)

    Tri Retno, D.L.; Mulyana, N.

    2013-01-01

    Bulking agent mixture enriched consortia of microbial inoculants based by irradiated compost was used on bioremediation of microcosm scale contaminated by hydrocarbon soil. Bioremediation composting was carried out for 42 days. Composting was done with a mixture of bulking agent (sawdust, residual sludge biogas and compost) by 30%, mud petroleum (oil sludge) by 20% and 50% of soil. Mixture of 80% soil and 20% oil sludge was used as a control. Irradiated compost was used as a carrier for consortia of microbial inoculants (F + B) which biodegradable hydrocarbons. Treatment variations include A1, A2, B1, B2, C1, C2, D1 and D2. Process parameters were observed to determine the optimal conditions include: temperature, pH, water content, TPC (Total Plate Count) and degradation of % TPH (Total Petroleum Hydrocarbon). Optimal conditions were achieved in the remediation of oil sludge contamination of 20% using the B2 treatment with the addition consortia of microbial inoculants based by irradiated compost of sawdust (bulking agentby 30% at concentrations of soil by 50% with TPH degradation optimal efficiency of 81.32%. The result of GC-MS analysis showed that bioremediation for 42 days by using a sawdust as a mixture of bulking agents which enriched consortia of microbial inoculants based by irradiated compost is biodegradeable, so initial hydrocarbons with the distribution of the carbon chain C-7 to C-54 into final hydrocarbons with the distribution of carbon chain C-6 to C-8. (author)

  13. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil

    NARCIS (Netherlands)

    Sutton, N.B.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton’s

  14. The Effect of Soil Contamination on Chemical Composition and Quality of Aronia (Aronia melanocarpa) Fruits

    OpenAIRE

    Violina R. Angelova; Sava G. Tabakov; Aleksander B. Peltekov; Krasimir I. Ivanov

    2017-01-01

    A field study was conducted to evaluate the chemical composition and quality of the Aronia fruits, as well as the possibilities of Aronia cultivation on soils contaminated with heavy metals. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (NFMW) near Plovdiv, Bulgaria. The study included four varieties of Aronia; Aron variety, Hugin variety, Viking variety and Nero variety. The Aronia was cultivated according to the conventional technology on ...

  15. Application of a coupled ecosystem-chemical equilibrium model, DayCent-Chem, to stream and soil chemistry in a Rocky Mountain watershed

    Science.gov (United States)

    Hartman, M.D.; Baron, Jill S.; Ojima, D.S.

    2007-01-01

    Atmospheric deposition of sulfur and nitrogen species have the potential to acidify terrestrial and aquatic ecosystems, but nitrate and ammonium are also critical nutrients for plant and microbial productivity. Both the ecological response and the hydrochemical response to atmospheric deposition are of interest to regulatory and land management agencies. We developed a non-spatial biogeochemical model to simulate soil and surface water chemistry by linking the daily version of the CENTURY ecosystem model (DayCent) with a low temperature aqueous geochemical model, PHREEQC. The coupled model, DayCent-Chem, simulates the daily dynamics of plant production, soil organic matter, cation exchange, mineral weathering, elution, stream discharge, and solute concentrations in soil water and stream flow. By aerially weighting the contributions of separate bedrock/talus and tundra simulations, the model was able to replicate the measured seasonal and annual stream chemistry for most solutes for Andrews Creek in Loch Vale watershed, Rocky Mountain National Park. Simulated soil chemistry, net primary production, live biomass, and soil organic matter for forest and tundra matched well with measurements. This model is appropriate for accurately describing ecosystem and surface water chemical response to atmospheric deposition and climate change. ?? 2006 Elsevier B.V. All rights reserved.

  16. Assessment of repeated harvests on mercury and arsenic phytoextraction in a multi-contaminated industrial soil

    Directory of Open Access Journals (Sweden)

    Martina Grifoni

    2017-02-01

    Full Text Available Mercury is widely distributed throughout the environment. In many contaminated soils other contaminants are present along with mercury; of these, arsenic is one of the most frequently found metals. In the presence of mixed contamination of this kind, remediation technologies must overcome many difficulties due to the different chemical characteristics of the various contaminants. In this study, repeated assisted phytoextraction cycles with Brassica juncea, were conducted on a laboratory scale to evaluate the removal efficiency of mercury and arsenic from a multi-contaminated industrial soil. The possibility of using only one additive, ammonium thiosulphate, to remove mercury and arsenic from co-contaminated soil simultaneously was also investigated. The thiosulfate addition greatly promoted the plant uptake of both contaminants, with an efficiency comparable to that of phosphate specifically used to mobilize specifically arsenic. Repeated additions of mobilizing agents increased metal availability in soil, promoted plant uptake and consequently increased the removal of contaminants in the studied soil. Repeated treatments with thiosulfate increased the concentration of mercury and arsenic in the Brassica juncea aerial part, but due to toxic effects of mercury that reduce biomass production, the total accumulation of both metals in plants tended to decrease at each subsequent re-growth.The use of a single additive to remove both contaminants simultaneously offers several new advantages to phytoextraction technology in terms of reducing cost and time.

  17. Bioremediation of Pyrene-Contaminated Soils Using Biosurfactant

    OpenAIRE

    Jorfi; Rezaee; Jaafarzadeh; Esrafili; Akbari; Moheb Ali

    2014-01-01

    Background Polycyclic aromatic hydrocarbons (PAHs) are persistence organic chemicals with proved carcinogenic and mutagenic hazards. These compounds are usually adsorbed in soils in vicinity of oil and gas industries. Bioremediation of PAHs contaminated soils is difficult due to hydrophobic nature of PAHs. Objectives The main purpose of the current study was to determine the pyrene removal efficiency in synthetically contaminated ...

  18. Availability of heavy metals in contaminated soil evidenced by chemical extractants

    Directory of Open Access Journals (Sweden)

    Maria Ligia de Souza Silva

    2012-06-01

    Full Text Available Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.

  19. [Relationships between soil and rocky desertification in typical karst mountain area based on redundancy analysis].

    Science.gov (United States)

    Long, Jian; Liao, Hong-Kai; Li, Juan; Chen, Cai-Yun

    2012-06-01

    Redundancy analysis (RDA) was employed to reveal the relationships between soil and rocky desertification through vegetation investigation and analysis of soil samples collected in typical karst mountain area of southwest Guizhou Province. The results showed that except TP, TK and ACa, all other variables including SOC, TN, MBC, ROC, DOC, available nutrients and basal respiration showed significant downward trends during the rocky desertification process. RDA results showed significant correlations between different types of desertification and soil variables, described as non-degraded > potential desertification > light desertification > moderate desertification > severe desertification. Moreover, RDA showed that using SOC, TN, AN, and BD as soil indicators, 74.4% of the variance information on soil and rocky desertification could be explained. Furthermore, the results of correlation analysis showed that soil variables were significantly affected by surface vegetation. Considering the ecological function of the aboveground vegetation and the soil quality, Zanthoxylum would be a good choice for restoration of local vegetation in karst mountain area.

  20. Achieving synergy between chemical oxidation and stabilization in a contaminated soil.

    Science.gov (United States)

    Srivastava, Vipul J; Hudson, Jeffrey Michael; Cassidy, Daniel P

    2016-07-01

    Eight in situ solidification/stabilization (ISS) amendments were tested to promote in situ chemical oxidation (ISCO) with activated persulfate (PS) in a contaminated soil. A 3% (by weight) dose of all ISS amendments selected for this study completely activated a 1.5% dose of PS within 3 h by raising temperatures above 30 °C (heat activation) and/or increasing pH above 10.5 (alkaline activation). Heat is released by the reaction of CaO with water, and pH increases because this reaction produces Ca(OH)2. Heat activation is preferred because it generates 2 mol of oxidizing radicals per mole of PS, whereas alkaline activation releases only 1. The relative contribution of heat vs. alkaline activation increased with CaO content of the ISS amendment, which was reflected by enhanced contaminant oxidation with increasing CaO content, and was confirmed by comparing to controls promoting purely heat or alkaline (NaOH) activation. The test soil was contaminated with benzene, toluene, ethylbenzene, and xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAH), particularly naphthalene (NAP). ISS-activated PS oxidized between 47% and 84% of the BTEX & NAP, and between 13% and 33% of the higher molecular weight PAH. ISS-activated PS reduced the leachability of BTEX & NAP by 76%-91% and of the 17 PAH by 83%-96%. Combined ISCO/ISS reduced contaminant leachability far than ISCO or ISS treatments alone, demonstrating the synergy that is possible with combined remedies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  2. Flotation separation of uranium from contaminated soils

    International Nuclear Information System (INIS)

    Misra, M.; Mehta, R.; Garcia, H.; Chai, C.D.; Smith, R.W.

    1995-01-01

    The volume of low-level contaminated soil at the Department of Energy's Nuclear Weapon Sites are in the order of several million tons. Most of the contaminants are uranium, plutonium, other heavy metals and organic compounds. Selected physical separation processes have shown demonstrated potential in concentrating the radionuclides in a small fraction of the soil. Depending upon the size, nature of bonding and distributions of radionuclides, more than 90% of the radionuclide activity can be concentrated in a small volume of fraction of the soil. The physico-chemical separation processes such as flotation in a mechanical and microbubble tall column cell have shown promising applications in cleaning up the high volume contaminated soil

  3. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Shem, L.

    1993-03-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  4. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Shem, L.

    1993-01-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  5. /sup 239/Pu contamination in snakes inhabiting the Rocky Flats Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, R.A.; Winsor, T.F.

    1975-01-01

    For approximately four years studies have been under way at the Rocky Flats plant to determine contamination patterns and concentrations of Pu in the biota. Contamination of the Rocky Flats environs has resulted from at least three incidents, a September 1957 fire, a May 1969 fire, and leaking barrels containing plutonium-laden cutting oil. The latter incident was considered by far the major source of the plutonium contamination. Results are reported from a study conducted to determine whether snake tissues of the area contained detectable amounts of /sup 239/Pu and, if so, at what concentrations. Eastern yellow-bellied racers (Coluber constrictor flaviventris, bullsnakes (Pituophis melanoleucus sayi, and prairie rattlesnakes (Crotalus viridis viridis, were collected for /sup 239/Pu bioassay of lung, liver, and bone tissues. Snakes were captured using drift fences terminating in funnel traps and by opportunistic sampling. Results led to the conclusion that snakes are not an important organism in the redistribution of /sup 239/Pu. (CH)

  6. Remediation techniques for heavy metal-contaminated soils: Principles and applicability.

    Science.gov (United States)

    Liu, Lianwen; Li, Wei; Song, Weiping; Guo, Mingxin

    2018-08-15

    Globally there are over 20millionha of land contaminated by the heavy metal(loid)s As, Cd, Cr, Hg, Pb, Co, Cu, Ni, Zn, and Se, with the present soil concentrations higher than the geo-baseline or regulatory levels. In-situ and ex-situ remediation techniques have been developed to rectify the heavy metal-contaminated sites, including surface capping, encapsulation, landfilling, soil flushing, soil washing, electrokinetic extraction, stabilization, solidification, vitrification, phytoremediation, and bioremediation. These remediation techniques employ containment, extraction/removal, and immobilization mechanisms to reduce the contamination effects through physical, chemical, biological, electrical, and thermal remedy processes. These techniques demonstrate specific advantages, disadvantages, and applicability. In general, in-situ soil remediation is more cost-effective than ex-situ treatment, and contaminant removal/extraction is more favorable than immobilization and containment. Among the available soil remediation techniques, electrokinetic extraction, chemical stabilization, and phytoremediation are at the development stage, while the others have been practiced at full, field scales. Comprehensive assessment indicates that chemical stabilization serves as a temporary soil remediation technique, phytoremediation needs improvement in efficiency, surface capping and landfilling are applicable to small, serious-contamination sites, while solidification and vitrification are the last remediation option. The cost and duration of soil remediation are technique-dependent and site-specific, up to $500ton -1 soil (or $1500m -3 soil or $100m -2 land) and 15years. Treatability studies are crucial to selecting feasible techniques for a soil remediation project, with considerations of the type and degree of contamination, remediation goals, site characteristics, cost effectiveness, implementation time, and public acceptability. Copyright © 2018 Elsevier B.V. All rights

  7. In situ vitrification: Test results for a contaminated soil-melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Timmerman, C.L.; Westsik, J.H. Jr.

    1989-10-01

    In situ vitrification (ISV) is being developed at Pacific Northwest Laboratory for the Department of Energy to stabilize soils and sludges that are contaminated with radioactive and hazardous chemical wastes. ISV is a process that immobilizes contaminated soil in place by converting it to a durable glass and crystalline product similar to obsidian and basalt. In June 1987, a large-scale test of the process was completed at a transuranic-contaminated soil site. The test constituted the first full-scale demonstration of ISV at an actual site. This paper summarizes the results of that test and describes the potential adaptation of the process to radioactive and hazardous chemical waste-contaminated soils. 15 refs., 9 figs., 3 tabs

  8. Clarification of Institutional Controls at the Rocky Flats Site Central Operable Unit and Implementation of the Soil Disturbance Review Plan - 13053

    Energy Technology Data Exchange (ETDEWEB)

    DiSalvo, Rick [Stoller LMS Team, 11025 Dover St, Suite 1000, Westminster, CO 80021 (United States); Surovchak, Scott [U.S. Department of Energy, Office of Legacy Management, 11025 Dover St, Suite 1000, Westminster, CO 80021 (United States); Spreng, Carl [Colorado Department of Public Health and Environment, 4300 Cherry Creek Dr. S, Denver, CO 80246-1530 (United States); Moritz, Vera [U.S. Environmental Protection Agency, Region 8, 1595 Wynkoop St., Denver, CO 80202-1129 (United States)

    2013-07-01

    Cleanup and closure of DOE's Rocky Flats Site in Colorado, which was placed on the CERCLA National Priority List in 1989, was accomplished under CERCLA, RCRA, and the Colorado Hazardous Waste Act (CHWA). The physical cleanup work was completed in late 2005 and all buildings and other structures that composed the Rocky Flats industrial complex were removed from the surface, but remnants remain in the subsurface. Other remaining features include two landfills closed in place with covers, four groundwater treatment systems, and surface water and groundwater monitoring systems. Under the 2006 Corrective Action Decision/Record of Decision for Rocky Flats Plant (US DOE) Peripheral Operable Unit and the Central Operable Unit (CAD/ROD), the response actions selected for the Central Operable Unit (OU) are institutional controls (ICs), physical controls, and continued monitoring and maintenance. The objectives of these ICs were to prevent unacceptable exposure to remaining subsurface contamination and to prevent contaminants from mobilizing to surface water and to prevent interfering with the proper functioning of the engineered components of the remedy. An amendment in 2011 of the 2006 CAD/ROD clarified the ICs to prevent misinterpretation that would prohibit work to manage and maintain the Central OU property. The 2011 amendment incorporated a protocol for a Soil Disturbance Review Plan for work subject to ICs that requires approval from the State and public notification by DOE prior to conducting approved soil-disturbing work. (authors)

  9. Enhancement of in situ Remediation of Hydrocarbon Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.

    2006-07-01

    Approximately 750 000 sites of contaminated land exist across Europe. The harmful chemicals found in Finnish soils include heavy metals, oil products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorophenols, and pesticides. Petroleum and petroleum products enter soil from ruptured oil pipelines, land disposal of refinery products, leaking storage tanks and through accidents. PAH contamination is caused by the spills of coal tar and creosote from coal gasification and wood treatment sites in addition to oil spills. Cleanup of soil by bioremediation is cheaper than by chemical and physical processes. However, the cleaning capacity of natural attenuation and in situ bioremediation is limited. The purpose of this thesis was to find feasible options to enhance in situ remediation of hydrocarbon contaminants. The aims were to increase the bioavailability of the contaminants and microbial activity at the subsurface in order to achieve higher contaminant removal efficiency than by intrinsic biodegradation alone. Enhancement of microbial activity and decrease of soil toxicity during remediation were estimated by using several biological assays. The performance of these assays was compared in order to find suitable indicators to follow the progress of remediation. Phytoremediation and chemical oxidation are promising in situ techniques to increase the degradation of hydrocarbons in soil. Phytoremediation is plant-enhanced decontamination of soil and water. Degradation of hydrocarbons is enhanced in the root zone by increased microbial activity and through the detoxifying enzymes of plants themselves. Chemical oxidation of contaminants by Fenton's reaction can produce degradation products which are more biodegradable than the parent compounds. Fenton's reaction and its modifications apply solutions of hydrogen peroxide and iron for the oxidation of organic chemicals. The cost of oxidation can be reduced by aiming at partial instead of full

  10. Bioremediation of contaminated soil: Strategy and case histories

    International Nuclear Information System (INIS)

    Balba, M.T.; Ying, A.C.; McNeice, T.G.

    1991-01-01

    Microorganisms are capable of degrading many kinds of xenobiotic compounds and toxic chemicals. These microorganisms are ubiquitous in nature and there are numerous cases in which long-term contamination of soil and groundwater has been observed. The persistence of the contamination is usually caused by the inability of micro-organisms to metabolize these compounds under the prevailing environmental conditions. Two general reasons account for the failure of microbes to degrade pollutants in any environment: (1) inherent molecular recalcitrance of the contaminants and (2) environmental factors. The inherent molecular recalcitrance is usually associated with xenobiotic compounds where the chemical structure of the molecule is such that microbes and enzymes required for its catabolism have not evolved yet in nature. The environmental factors include a range of physicochemical conditions which influence microbial growth and activity. Biological remediation of contaminated sites can be accomplished using naturally-occurring microorganisms to treat the contaminants. Only particular groups of microorganisms are capable of decomposing specific compounds. The development of a bioremediation program for a specific contaminated soil system usually includes: thorough site/soil/waste characterization; treatability studies; and design and implementation of the bioremediation plan. The results of in situ and ex situ treatment programs involving the cleanup of petroleum hydrocarbon-contaminated soil will be discussed in detail. The paper will address key issues affecting the success of the bioremediation process such as nutrient transport, metal precipitation and potential soil clogging, microbial inoculation, etc

  11. Sampling for Soil Carbon Stock Assessment in Rocky Agricultural Soils

    Science.gov (United States)

    Beem-Miller, Jeffrey P.; Kong, Angela Y. Y.; Ogle, Stephen; Wolfe, David

    2016-01-01

    Coring methods commonly employed in soil organic C (SOC) stock assessment may not accurately capture soil rock fragment (RF) content or soil bulk density (rho (sub b)) in rocky agricultural soils, potentially biasing SOC stock estimates. Quantitative pits are considered less biased than coring methods but are invasive and often cost-prohibitive. We compared fixed-depth and mass-based estimates of SOC stocks (0.3-meters depth) for hammer, hydraulic push, and rotary coring methods relative to quantitative pits at four agricultural sites ranging in RF content from less than 0.01 to 0.24 cubic meters per cubic meter. Sampling costs were also compared. Coring methods significantly underestimated RF content at all rocky sites, but significant differences (p is less than 0.05) in SOC stocks between pits and corers were only found with the hammer method using the fixed-depth approach at the less than 0.01 cubic meters per cubic meter RF site (pit, 5.80 kilograms C per square meter; hammer, 4.74 kilograms C per square meter) and at the 0.14 cubic meters per cubic meter RF site (pit, 8.81 kilograms C per square meter; hammer, 6.71 kilograms C per square meter). The hammer corer also underestimated rho (sub b) at all sites as did the hydraulic push corer at the 0.21 cubic meters per cubic meter RF site. No significant differences in mass-based SOC stock estimates were observed between pits and corers. Our results indicate that (i) calculating SOC stocks on a mass basis can overcome biases in RF and rho (sub b) estimates introduced by sampling equipment and (ii) a quantitative pit is the optimal sampling method for establishing reference soil masses, followed by rotary and then hydraulic push corers.

  12. Bioremediation of uranium contaminated soils and wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1998-01-01

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs

  13. Phyto-remediation of contaminated soils

    International Nuclear Information System (INIS)

    Chagvardieff, P.

    2014-01-01

    Some plants can be selected for their capacity to extract radionuclides from the soil, on the contrary other plants can be chosen for being able to produce food grade products in a contaminated environment. Modern genetic methods can be used to enhance these abilities and turn some plants into an efficient means in the managing of contaminated areas. The DEMETERRES project that gathers different research organisations like CEA, IRSN and INRA and industrial partners like AREVA and VEOLIA aims at developing innovative bio-technologies like phyto-extraction and environment friendly physico-chemical technologies for the remediation of contaminated soils. This project was launched in 2013 on a 5-year scheme and is expected to lead to industrial applications. (A.C.)

  14. Method of and apparatus for cleaning garments and soft goods contaminated with nuclear, chemical and/or biological contaminants

    International Nuclear Information System (INIS)

    Fowler, D.E.

    1989-01-01

    A method is described for decontaminating garments, soft good or mixtures thereof contaminated with radioactive particulates, toxin, chemical, and biological contaminants comprising the steps of: (a) depositing contaminated garments, soft goods or mixtures thereof in a cleaning drum; (b) charging the drum with a cleaning solvent in which the chemical contaminants are soluble; (c) agitating the drum during a wash cycle to separate radioactive, toxin, biological particulate matter of mixtures thereof from the garments; (d) draining the drum of the dry cleaning solvent which contains suspended particulate contaminants and dissolved chemical contaminants; (e) contacting the drained solvent with both a neutralizing agent and an oxidizing agent, the neutralizing agent being selected from the group consisting of sodium hydroxide, potassium hydroxide and mixtures thereof and having a concentration greater than one (1.0) normal; (f) rinsing the garments, soft goods or mixtures thereof by circulating clean solvent from a solvent tank through the drum thereby effecting additional removal and flushing of particulate and chemical contaminants; (g) filtering the circulated solvent to remove the particulate material suspended in the solvent prior to addition to the drum; and (h) preferentially adsorbing the chemical contaminants dissolved in the circulated solvent prior to addition to the drum

  15. The rocky flats controversy on radionuclide soil action levels

    International Nuclear Information System (INIS)

    Earle, T.C.

    2004-01-01

    An account of the Rocky Flats radionuclide soil action level controversy is presented as: a case study for the purpose of understanding the nature and value of stakeholder involvement in the management of radiological hazards. The report consists of three main sections. The first section outlines the Rocky Flats story, including the Cold War era, which was characterised by secrecy and distrust, the post-Cold War era, in which trust and co-operation between risk managers and the public began to develop. This contrast between these two historical periods provides the context necessary to understand the radionuclide soil action level controversy, the main events of which are described in the second section. In the final section, the Rocky Flats case is briefly discussed within the framework of a general model of stakeholder involvement and the lessons learned from the case are identified: (1) without a basis in shared values, collaborative public involvement in the management of radiological hazards is not possible; (2) given a basis in shared values, collaborative public involvement can lead to improved solutions to the management of radiological hazards; and (3) risk managers should therefore seek to understand the values of public stakeholders and to identify ways, through stakeholder involvement, that those values can be incorporated in management practice. (author)

  16. Investigations involving oxidation-reduction (REDOX) pretreatment in conjunction with biological remediation of contaminated soils

    International Nuclear Information System (INIS)

    Montemagno, C.D.; Peters, R.W.; Tyree, A.

    1991-01-01

    Oxidation-reduction (REDOX) reactions are among the most important reactions involved in the environmental engineering field. Oxidation is a reaction in which the oxidation state of the treated compound is increased, i.e., the material loses electrons. Reduction involves the addition of a chemical (reducing) agent which lowers the oxidation state of a substance, i.e., the material gains electrons. Both processes of oxidation and reduction occur together. All REDOX reactions are thermodynamically based. There are a number of oxidizing agents which have been reported in the technical literature for treatment of refractory organic compounds. Common oxidizing agents include: hydrogen peroxide, ozone, ultraviolet (UV) irradiation, and combinations thereof, such as UV/ozone and UV/peroxide. A gradient of REDOX reactions is possible, depending on such factors as the oxidation-reduction reaction conditions, the availability of electron donors and acceptors, and the nature of the organic compounds involved. A review of the technical literature revealed that the majority of the oxidation-reduction applications have been in the areas of wastewater treatment and groundwater remediation, with very little attention devoted to the potential of using REDOX technologies for remediation of hydrocarbon contaminated soils. In this particular study, feasibility studies were performed on gasoline- contaminated soil. These studies focused on three major phases: 1) containment of the contamination by addition of tailoring agents to the soil, 2) biological remediation either performed in situ or on-site (using a slurry reactor system), and 3) pretreatment of the contaminated soils using REDOX systems, prior to biological remediation. This particular paper focuses on the third phase of the project, aimed at ''softening'' the refractory organics resulting in the formation of organic compounds which are more amenable to biological degradation. This paper focuses its attention on the use of

  17. Investigations involving oxidation-reduction (REDOX) pretreatment in conjunction with biological remediation of contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Montemagno, C. D. [Argonne National Laboratory, Argonne, IL (United States); Peters, R. W.; Tyree, A.

    1991-07-01

    Oxidation-reduction (REDOX) reactions are among the most important reactions involved in the environmental engineering field. Oxidation is a reaction in which the oxidation state of the treated compound is increased, i.e., the material loses electrons. Reduction involves the addition of a chemical (reducing) agent which lowers the oxidation state of a substance, i.e., the material gains electrons. Both processes of oxidation and reduction occur together. All REDOX reactions are thermodynamically based. There are a number of oxidizing agents which have been reported in the technical literature for treatment of refractory organic compounds. Common oxidizing agents include: hydrogen peroxide, ozone, ultraviolet (UV) irradiation, and combinations thereof, such as UV/ozone and UV/peroxide. A gradient of REDOX reactions is possible, depending on such factors as the oxidation-reduction reaction conditions, the availability of electron donors and acceptors, and the nature of the organic compounds involved. A review of the technical literature revealed that the majority of the oxidation-reduction applications have been in the areas of wastewater treatment and groundwater remediation, with very little attention devoted to the potential of using REDOX technologies for remediation of hydrocarbon contaminated soils. In this particular study, feasibility studies were performed on gasoline- contaminated soil. These studies focused on three major phases: 1) containment of the contamination by addition of tailoring agents to the soil, 2) biological remediation either performed in situ or on-site (using a slurry reactor system), and 3) pretreatment of the contaminated soils using REDOX systems, prior to biological remediation. This particular paper focuses on the third phase of the project, aimed at ''softening'' the refractory organics resulting in the formation of organic compounds which are more amenable to biological degradation. This paper focuses its attention on the use of

  18. Effect of amendments on chemical immobilization of heavy metals in sugar mill contaminated soils

    Directory of Open Access Journals (Sweden)

    Mohammad Jamal Khan, Muhammad Tahir Azeem and Sajida Perveen1

    2012-05-01

    Full Text Available A bulk soil sample collected from the vicinity of PSM (Premier Sugar Mill Mardan was amended with diammonium phosphate (DAP, triple super phosphate (TSP, Farm Yard Manure (FYM and poultry manure (PM in 1.5 kg soil in a 2 L plastic pot. Both DAP and TSP were added at 230 mg kg 1 (460 kg ha 1 soil whereas the organic amendments (FYM and PM were added at the rate of 10% by weight of soil. The air dried samples in pots were brought to field moisture content (0.33 bar water content by the addition of either HIE (Hayatabad Industrial Estate or PSM in two separate sets of experiments. The experimental pots were arranged in randomized complete design with three replicates under laboratory conditions during March to May (Temperature varying between 25 to 30 °C. Treated and control pots were incubated for 90 days al 0.33 bar ca 25% moisture and the moisture deficit during the incubation time was adjusted by adding PSM and HIE effluents in their respective set of experimental pots. Soil samples were collected after 15, 30, 45 and 90 d to determine the effect of amendments on AB-DTPA extractable metals. The results showed that AB-DTPA extractable Cd, Or, Cu, Ni and Cd increased significantly with lime and the maximum values were noted after 90 days incubation whereas the Fe, Mn and Zn content in soil increased with time but the increase was not significant. It was further noted that the increase over time in metal was not pronounced when supplied with amendments indicating their ability to chemically stabilize it compared to unamended soils. Higher values of all the heavy metals were noted in unamended soil. By comparing the different amendments, it was observed that FYM was effective in reducing the extractability/phytoavailability of all the metals under study except Pb whereby DAP was most effective as a stabilizing agent in the soil. It was concluded that in calcareous soil, FYM and DAP can be used to reduce the risk of phytotoxicity of heavy metals in

  19. Application of autoradiographic methods for contaminant distribution studies in soils

    International Nuclear Information System (INIS)

    Povetko, O.G.; Higley, K.A.

    2000-01-01

    In order to determine physical location of contaminants in soil, solidified soil 'thin' sections, which preserve the undisturbed structural characteristics of the original soil, were prepared. This paper describes an application of different autoradiographic methods to identify the distribution of selected nuclides along key structural features of sample soils and sizes of 'hot particles' of contaminant. These autoradiographic methods included contact autoradiography using CR-39 (Homalite Plastics) plastic alpha track detectors and neutron-induced autoradiography that produced fission fragment tracks in Lexan (Thrust Industries, Inc.) plastic detectors. Intact soil samples containing weapons-grade plutonium from Rocky Flats Environmental Test Site and control samples from outside the site location were used in thin soil section preparation. Distribution of particles of actinides was observed and analyzed through the soil section depth profile from the surface to the 15-cm depth. The combination of two autoradiographic methods allowed to distinguish alpha- emitting particles of natural U, 239+240 Pu and non-fissile alpha-emitters. Locations of 990 alpha 'stars' caused by 239+240 Pu and 241 Am 'hot particles' were recorded, particles were sized, their size-frequency, depth and activity distributions were analyzed. Several large colloidal conglomerates of 239+240 Pu and 241 Am 'hot particles' were found in soil profile. Their alpha and fission fragment 'star' images were micro photographed. (author)

  20. Chemical and microbiological characterization of an aged PCB-contaminated soil.

    Science.gov (United States)

    Stella, T; Covino, S; Burianová, E; Filipová, A; Křesinová, Z; Voříšková, J; Větrovský, T; Baldrian, P; Cajthaml, T

    2015-11-15

    This study was aimed at complex characterization of three soil samples (bulk soil, topsoil and rhizosphere soil) from a site historically contaminated with polychlorinated biphenyls (PCB). The bulk soil was the most highly contaminated, with a PCB concentration of 705.95 mg kg(-1), while the rhizosphere soil was the least contaminated (169.36 mg kg(-1)). PCB degradation intermediates, namely chlorobenzoic acids (CBAs), were detected in all the soil samples, suggesting the occurrence of microbial transformation processes over time. The higher content of organic carbon in the topsoil and rhizosphere soil than in the bulk soil could be linked to the reduced bioaccessibility (bioavailability) of these chlorinated pollutants. However, different proportions of the PCB congener contents and different bioaccessibility of the PCB homologues indicate microbial biotransformation of the compounds. The higher content of organic carbon probably also promoted the growth of microorganisms, as revealed by phospholipid fatty acid (PFLA) quantification. Tag-encoded pyrosequencing analysis showed that the bacterial community structure was significantly similar among the three soils and was predominated by Proteobacteria (44-48%) in all cases. Moreover, analysis at lower taxonomic levels pointed to the presence of genera (Sphingomonas, Bulkholderia, Arthrobacter, Bacillus) including members with reported PCB removal abilities. The fungal community was mostly represented by Basidiomycota and Ascomycota, which accounted for >80% of all the sequences detected in the three soils. Fungal taxa with biodegradation potential (Paxillus, Cryptococcus, Phoma, Mortierella) were also found. These results highlight the potential of the indigenous consortia present at the site as a starting point for PCB bioremediation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Bioremediation of Pyrene-Contaminated Soils Using Biosurfactant

    Directory of Open Access Journals (Sweden)

    Jorfi

    2014-10-01

    Full Text Available Background Polycyclic aromatic hydrocarbons (PAHs are persistence organic chemicals with proved carcinogenic and mutagenic hazards. These compounds are usually adsorbed in soils in vicinity of oil and gas industries. Bioremediation of PAHs contaminated soils is difficult due to hydrophobic nature of PAHs. Objectives The main purpose of the current study was to determine the pyrene removal efficiency in synthetically contaminated soil, using biosurfactant. Materials and Methods Four pure bacterial strains capable of pyrene degradation were isolated from contaminated soils via enrichment techniques. The soil samples were spiked with an initial pyrene concentration of 500 mg/kg and subjected to bioremediation using a mixed culture comprised of previously isolated strains, in addition to application of biosurfactant during 63 days. Results The pyrene removal efficiency in samples containing biosurfactant, without biosurfactant and controls, were 86.4%, 59.8% and 14%, respectively, after 63 days. The difference of pyrene removal efficiency between the biosurfactant-containing samples and the ones without it was significant (P < 0.05. Conclusions Application of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa significantly improved pyrene removal in contaminated soils.

  2. Experimental Investigation of Phenanthrene Pollutant Removal Efficiency for Contaminated Sandy Soil by Enhanced Soil Washing

    Directory of Open Access Journals (Sweden)

    Saif salah Alquzweeni

    2016-12-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are environmental concerns that must be removed to acceptable level. This research assesses two agents (Na2EDTA and SDS to remediate contaminated sandy soil, spiked with 500mg/kg phenanthrene. Five sets of experiments (batch are applied to investigate the optimal of five influencing factors on soil remediation: Na2EDTA-SDS concentration, liquid/Solid ratio, stirring speed, pH value of flushing solution and mixing time. The results of batch experiments showed that SDS has high phenanthrene removal efficiency (90%, while Na2EDTA shows no phenanthrene removal. pH has no effect on phenanthrene removal. To study the influence of flow rates on the removal efficiency of contaminants, two column tests with hydraulic gradient of 0.2 and 1.2 conducted by SDS solution. The results illustrate that high phenanthrene removal from soil obtained by 1.2 hydraulic gradient condition. The SDS flushing solution removed approximately 69% and 81% of phenanthrene from soil under low and high hydraulic gradients, respectively. It was concluded that phenanthrene removal depend on surfactant micelles formation. Overall, the study showed that soil flushing removal efficiency for contaminants depends on the flushing agents selectivity and affinity to the contaminants and the condition of hydraulic gradient.

  3. Estimated general population control limits for unitary agents in drinking water, milk, soil, and unprocessed food items. For use in reentry decision-making

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.; Adams, J.D.; Cerar, R.J.; Hess, T.L.; Kistner, S.L.; Leffingwell, S.S.; MacIntosh, R.G.; Ward, J.R.

    1992-01-01

    In the event of an unplanned release of chemical agent during any stage of the Chemical Stockpile Disposal Program (CSDP), the potential exists for contamination of drinking water, forage crops, grains, garden produce, and livestock. Persistent agents such as VX or sulfur mustard pose the greatest human health concern for reentry. This White Paper has been prepared to provide technical bases for these decisions by developing working estimates of agent control limits in selected environmental media considered principal sources of potential human exposure. To date, control limits for public exposure to unitary agents have been established for atmospheric concentrations only. The current analysis builds on previous work to calculate working estimates of control limits for ingestion and dermal exposure to potentially contaminated drinking water, milk, soil, and unprocessed food items such as garden produce. Information characterizing agent desorption from, and detection on or in, contaminated porous media are presently too developed to permit reasonable estimation of dermal exposure from this source. Thus, dermal contact with potentially contaminated porous surfaces is not considered in this document.

  4. Urban community gardeners' knowledge and perceptions of soil contaminant risks.

    Science.gov (United States)

    Kim, Brent F; Poulsen, Melissa N; Margulies, Jared D; Dix, Katie L; Palmer, Anne M; Nachman, Keeve E

    2014-01-01

    Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether.

  5. Urban community gardeners' knowledge and perceptions of soil contaminant risks.

    Directory of Open Access Journals (Sweden)

    Brent F Kim

    Full Text Available Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether.

  6. Carbon speciation in ash, residual waste and contaminated soil by thermal and chemical analyses.

    Science.gov (United States)

    Kumpiene, Jurate; Robinson, Ryan; Brännvall, Evelina; Nordmark, Désirée; Bjurström, Henrik; Andreas, Lale; Lagerkvist, Anders; Ecke, Holger

    2011-01-01

    Carbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses. The speciation of TOC by chemical degradation also showed a presence of a non-degradable C fraction in all materials (60% of TOC in ash, 30% in residual waste and 13% in soil), though in smaller amounts than those determined by TGA. In principle, chemical degradation method can give an indication of the presence of potentially inert C in various waste materials, while TGA is a more precise technique for C speciation, given that waste-specific method adjustments are made. The standard TOC measurement yields exaggerated estimates of organic carbon and may therefore overestimate the potential environmental impacts (e.g. landfill gas generation) of waste materials in a landfill environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Soil science basis and the effect of oil contamination on chemical properties of soils

    International Nuclear Information System (INIS)

    Wagner, A.; Miehlich, G.

    1993-01-01

    The changes in soil chemistry properties due to oil contamination and decontamination are examined. One main point of the work is the determination of the effect of oil on the availability of nutrients in the soil. Nutrients are not only present dissolved in the soil solution, but are for the most part reversibly adsorbed by exchangers on loaded surfaces. The clay minerals, the organic substance and iron and manganese oxide act as exchangers. Knowledge on surface structure and reactions in soils contaminated by oil is to be obtained via examination of the exchange behaviour of different bio-elements. The results supply the basis for the cleaning up technique, the judgement of cleaned materials and their reusability. (orig.) [de

  8. Effects of past copper contamination and soil structure on copper leaching from soil

    DEFF Research Database (Denmark)

    Paradelo, M; Møldrup, Per; Arthur, Emmanuel

    2013-01-01

    Copper contamination affects biological, chemical, and physical soil properties and associated ecological functions. Changes in soil pore organization as a result of Cu contamination can dramatically affect flow and contaminant transport in polluted soils. This study assessed the influence of soil...... structure on the movement of water and Cu in a long-term polluted soil. Undisturbed soil cores collected along a Cu gradient (from about 20 to about 3800 mg Cu kg−1 soil) were scanned using X-ray computed tomography (CT). Leaching experiments were performed to analyze tracer transport, colloid leaching......, and dissolved organic carbon (DOC) and Cu losses. The 5% arrival time (t0.05) and apparent dispersivity (λapp) for tracer breakthrough were calculated by fitting the experimental data to a nonparametric, double-lognormal probability density function. Soil bulk density, which did not follow the Cu gradient...

  9. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination

    International Nuclear Information System (INIS)

    Zarei, Mehdi; Hempel, Stefan; Wubet, Tesfaye; Schaefer, Tina; Savaghebi, Gholamreza; Jouzani, Gholamreza Salehi; Nekouei, Mojtaba Khayam; Buscot, Francois

    2010-01-01

    Abundance and diversity of arbuscular mycorrhizal fungi (AMF) associated with dominant plant species were studied along a transect from highly lead (Pb) and zinc (Zn) polluted to non-polluted soil at the Anguran open pit mine in Iran. Using an established primer set for AMF in the internal transcribed spacer (ITS) region of rDNA, nine different AMF sequence types were distinguished after phylogenetic analyses, showing remarkable differences in their distribution patterns along the transect. With decreasing Pb and Zn concentration, the number of AMF sequence types increased, however one sequence type was only found in the highly contaminated area. Multivariate statistical analysis revealed that further factors than HM soil concentration affect the AMF community at contaminated sites. Specifically, the soils' calcium carbonate equivalent and available P proved to be of importance, which illustrates that field studies on AMF distribution should also consider important environmental factors and their possible interactions. - The molecular diversity of AMF was found to be influenced by a combination of soil heavy metal and other soil chemical parameters.

  10. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Zarei, Mehdi [Department of Soil Science, College of Agriculture, University of Shiraz, Shiraz (Iran, Islamic Republic of); Hempel, Stefan, E-mail: hempel.stefan@googlemail.co [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany); Freie Universitaet Berlin, Institut fuer Biologie, Okologie der Pflanzen, Altensteinstrasse 6, 14195 Berlin (Germany); Wubet, Tesfaye; Schaefer, Tina [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany); Savaghebi, Gholamreza [Department of Soil Science Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj (Iran, Islamic Republic of); Jouzani, Gholamreza Salehi; Nekouei, Mojtaba Khayam [Agricultural Biotechnology Research Institute of Iran (ABRII), P.O. Box 31535-1897, Karaj (Iran, Islamic Republic of); Buscot, Francois [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany)

    2010-08-15

    Abundance and diversity of arbuscular mycorrhizal fungi (AMF) associated with dominant plant species were studied along a transect from highly lead (Pb) and zinc (Zn) polluted to non-polluted soil at the Anguran open pit mine in Iran. Using an established primer set for AMF in the internal transcribed spacer (ITS) region of rDNA, nine different AMF sequence types were distinguished after phylogenetic analyses, showing remarkable differences in their distribution patterns along the transect. With decreasing Pb and Zn concentration, the number of AMF sequence types increased, however one sequence type was only found in the highly contaminated area. Multivariate statistical analysis revealed that further factors than HM soil concentration affect the AMF community at contaminated sites. Specifically, the soils' calcium carbonate equivalent and available P proved to be of importance, which illustrates that field studies on AMF distribution should also consider important environmental factors and their possible interactions. - The molecular diversity of AMF was found to be influenced by a combination of soil heavy metal and other soil chemical parameters.

  11. EVALUATION OF SOLIDIFICATION/STABILIZATION AS A BEST DEMONSTRATED AVAILABLE TECHNOLOGY FOR CONTAMINATED SOILS

    Science.gov (United States)

    This project involved the evaluation of solidification/stabilization technology as a BDAT for contaminated soil. Three binding agents were used on four different synthetically contaminated soils. Performance evaluation data included unconfined compressive strength (UCS) and the T...

  12. Laser mass spectrometry of chemical warfare agents using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Weickhardt, C.; Grun, C.; Grotemeyer, J.

    1998-01-01

    Fast relaxation processes in excited molecules such as IC, ISC, and fragmentation are observed in many environmentally and technically relevant substances. They cause severe problems to resonance ionization mass spectrometry because they reduce the ionization yield and lead to mass spectra which do not allow the identification of the compound. By the use of ultrashort laser pulses these problems can be overcome and the advantages of REMPI over conventional ionization techniques in mass spectrometry can be regained. This is demonstrated using soil samples contaminated with a chemical warfare agent

  13. Some aspects of remediation of contaminated soils

    Science.gov (United States)

    Bech, Jaume; Korobova, Elena; Abreu, Manuela; Bini, Claudio; Chon, Hyo-Taek; Pérez-Sirvent, Carmen; Roca, Núria

    2014-05-01

    Soils are essential components of the environment, a limited precious and fragile resource, the quality of which should be preserved. The concentration, chemical form and distribution of potential harmful elements in soils depends on parent rocks, weathering, soil type and soil use. However, their concentration can be altered by mismanagement of industrial and mining activities, energy generation, traffic increase, overuse of agrochemicals, sewage sludge and waste disposal, causing contamination, environmental problems and health concerns. Heavy metals, some metalloids and radionuclides are persistent in the environment. This persistence hampers the cost/efficiency of remediation technologies. The choice of the most appropriate soil remediation techniques depends of many factors and essentially of the specific site. This contribution aims to offer an overview of the main remediation methods in contaminated soils. There are two main groups of technologies: the first group dealing with containment and confinement, minimizing their toxicity, mobility and bioavailability. Containment measures include covering, sealing, encapsulation and immobilization and stabilization. The second group, remediation with decontamination, is based on the remotion, clean up and/or destruction of contaminants. This group includes mechanical procedures, physical separations, chemical technologies such as soil washing with leaching or precipitation of harmful elements, soil flushing, thermal treatments and electrokinetic technologies. There are also two approaches of biological nature: bioremediation and phytoremediation. Case studies from Chile, Ecuador, Italy, Korea, Peru, Portugal, Russia and Spain, will be discussed in accordance with the time available.

  14. In Situ Vitrification: Recent test results for a contaminated soil melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Timmerman, C.L.; Westsik, J.H. Jr.

    1988-06-01

    In Situ Vitrification (ISV) is being developed at Pacific Northwest Laboratory for the Department of Energy and other clients for the stabilization of soils and sludges contaminated with radioactive and hazardous chemical wastes. ISV is a process that immobilizes contaminated soil in place by converting it to a durable glass and crystalline product that is similar to obsidian. In June 1987, a large-scale test of the process was completed at a transuranic- contaminated soil site. This constituted the first full-scale demonstration of the ISV process at an actual site. This paper summarizes the preliminary results of this test and describes the processes' potential adaptation to radioactive and hazardous chemical waste contaminated soils. 10 refs., 10 figs

  15. Chemically enhanced mixed region vapor stripping of TCE-contaminated saturated peat and silty clay soils

    International Nuclear Information System (INIS)

    West, O.R.; Cameron, P.A.; Lucero, A.J.; Koran, L.J. Jr.

    1996-01-01

    The objective of this study was to conduct further testing of MRVS, chemically enhanced with calcium oxide conditioning, on field- contaminated soils collected from beneath the NASA Michoud Rinsewater Impoundment. In this study, residual soil VOC levels as a function of vapor stripping time were measured to quantify VOC removal rates. Physical and chemical soil parameters expected to affect MRVS efficiency were measures. The effects of varying the calcium oxide loadings as well as varying the vapor stripping flow rates on VOC removal were also evaluated. The results of this study will be used to determine whether acceptable removals can be achieved within reasonable treatment times, remediation costs being directly proportional to the latter. The purpose of this report is to document the experimental results of this study, as well as to address issues that were raised after completion of the previous Michoud treatability work

  16. Fate of chemical warfare agents and toxic industrial chemicals in landfills.

    Science.gov (United States)

    Bartelt-Hunt, Shannon L; Barlaz, Morton A; Knappe, Detlef R U; Kjeldsen, Peter

    2006-07-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in MSW landfills was predicted with a mathematical model. Five blister agents [sulfur mustard (HD), nitrogen mustard (HN-2), lewisite (L), ethyldichloroarsine (ED), and phosgene oxime (CX)], eight nerve agents [tabun (GA), sarin (GB), soman (GD), GE, GF, VX, VG, and VM], one riot-control agent [CS], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis half-lives. Monte Carlo simulations were performed to assess the influence of uncertainty in model input parameters on CWA/TIC fate predictions. Correlation analyses showed that uncertainty in hydrolysis rate constants was the primary contributor to variance of CWA fate predictions, while uncertainty in the Henry's Law constant and landfill gas-production rate accounted for most of the variance of TIC fate predictions. CWA hydrolysates were more persistent than the parent CWAs, but limited information is available on abiotic or biotic transformation rates for these chemicals.

  17. Characterization of Uranium Contamination, Transport, and Remediation at Rocky Flats - Across Remediation into Post-Closure

    Science.gov (United States)

    Janecky, D. R.; Boylan, J.; Murrell, M. T.

    2009-12-01

    The Rocky Flats Site is a former nuclear weapons production facility approximately 16 miles northwest of Denver, Colorado. Built in 1952 and operated by the Atomic Energy Commission and then Department of Energy, the Site was remediated and closed in 2005, and is currently undergoing long-term surveillance and monitoring by the DOE Office of Legacy Management. Areas of contamination resulted from roughly fifty years of operation. Of greatest interest, surface soils were contaminated with plutonium, americium, and uranium; groundwater was contaminated with chlorinated solvents, uranium, and nitrates; and surface waters, as recipients of runoff and shallow groundwater discharge, have been contaminated by transport from both regimes. A region of economic mineralization that has been referred to as the Colorado Mineral Belt is nearby, and the Schwartzwalder uranium mine is approximately five miles upgradient of the Site. Background uranium concentrations are therefore elevated in many areas. Weapons-related activities included work with enriched and depleted uranium, contributing anthropogenic content to the environment. Using high-resolution isotopic analyses, Site-related contamination can be distinguished from natural uranium in water samples. This has been instrumental in defining remedy components, and long-term monitoring and surveillance strategies. Rocky Flats hydrology interlinks surface waters and shallow groundwater (which is very limited in volume and vertical and horizontal extent). Surface water transport pathways include several streams, constructed ponds, and facility surfaces. Shallow groundwater has no demonstrated connection to deep aquifers, and includes natural preferential pathways resulting primarily from porosity in the Rocky Flats alluvium, weathered bedrock, and discontinuous sandstones. In addition, building footings, drains, trenches, and remedial systems provide pathways for transport at the site. Removal of impermeable surfaces (buildings

  18. A method for assessing residual NAPL based on organic chemical concentrations in soil samples

    International Nuclear Information System (INIS)

    Feenstra, S.; Mackay, D.M.; Cherry, J.A.

    1991-01-01

    Ground water contamination by non-aqueous phase liquid (NAPL) chemicals is a serious concern at many industrial facilities and waste disposal sites. NAPL in the form of immobile residual contamination, or pools of mobile or potentially mobile NAPL, can represent continuing sources of ground water contamination. In order to develop rational and cost-effective plans for remediation of soil and ground water contamination at such sites, it is essential to determine if non-aqueous phase liquid (NAPL) chemicals are present in the subsurface and delineate the zones of NAPL contamination. Qualitatively, soil analyses that exhibit chemical concentrations in the percent range or >10,000 mg/kg would generally be considered to indicate the presence of NAPL. However, the results of soil analyses are seldom used in a quantitative manner to assess the possible presence of residual NAPL contamination when chemical concentrations are lower and the presence of NAPL is not obvious. The assessment of the presence of NAPL in soil samples is possible using the results of chemical and physical analyses of the soil, and the fundamental principles of chemical partitioning in unsaturated or saturated soil. The method requires information on the soil of the type typically considered in ground water contamination studies and provides a simple tool for the investigators of chemical spill and waste disposal sites to assess whether soil chemical analyses indicate the presence of residual NAPL in the subsurface

  19. Chemical Agents: Personal Cleaning and Disposal of Contaminated Clothing

    Science.gov (United States)

    ... What CDC is Doing Blog: Public Health Matters Chemical Agents: Facts About Personal Cleaning and Disposal of ... on Facebook Tweet Share Compartir Some kinds of chemical accidents or attacks may cause you to come ...

  20. BIOREMEDIATION OF CONTAMINATED SURFACE SOILS

    Science.gov (United States)

    Biological remediation of soils contaminated with organic chemicals is an alternative treatment technology that can often meet the goal of achieving a permanent clean-up remedy at hazardous waste sites, as encouraged by the U.S. Environmental Protection Agency (U.S. EPA) for impl...

  1. Managing long-term polycyclic aromatic hydrocarbon contaminated soils: a risk-based approach.

    Science.gov (United States)

    Duan, Luchun; Naidu, Ravi; Thavamani, Palanisami; Meaklim, Jean; Megharaj, Mallavarapu

    2015-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are a family of contaminants that consist of two or more aromatic rings fused together. Soils contaminated with PAHs pose significant risk to human and ecological health. Over the last 50 years, significant research has been directed towards the cleanup of PAH-contaminated soils to background level. However, this achieved only limited success especially with high molecular weight compounds. Notably, during the last 5-10 years, the approach to remediate PAH-contaminated soils has changed considerably. A risk-based prioritization of remediation interventions has become a valuable step in the management of contaminated sites. The hydrophobicity of PAHs underlines that their phase distribution in soil is strongly influenced by factors such as soil properties and ageing of PAHs within the soil. A risk-based approach recognizes that exposure and environmental effects of PAHs are not directly related to the commonly measured total chemical concentration. Thus, a bioavailability-based assessment using a combination of chemical analysis with toxicological assays and nonexhaustive extraction technique would serve as a valuable tool in risk-based approach for remediation of PAH-contaminated soils. In this paper, the fate and availability of PAHs in contaminated soils and their relevance to risk-based management of long-term contaminated soils are reviewed. This review may serve as guidance for the use of site-specific risk-based management methods.

  2. Aerobic biodegradation potential of endocrine-disrupting chemicals in surface-water sediment at Rocky Mountain National Park, USA.

    Science.gov (United States)

    Bradley, Paul M; Battaglin, William A; Iwanowicz, Luke R; Clark, Jimmy M; Journey, Celeste A

    2016-05-01

    Endocrine-disrupting chemicals (EDCs) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDCs, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountain National Park (Colorado, USA). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 (14) C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. Bed sediment microbial communities in Rocky Mountain National Park also effectively degraded the xenoestrogens bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The present study's results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  3. Prospects for separating heavy metal from contaminated soil

    International Nuclear Information System (INIS)

    Langen, M.; Hoberg, H.; Hamacher, B.

    1994-01-01

    For decades, large quantities of organic and inorganic pollutants have been brought into the soil as a result of the industrial operations of smelting and coking plants. This paper reports on the prospects of separating heavy metals from soil contaminated by smelting and coking plants by means of a physical/chemical washing procedure. Besides the description of virgin soil characteristics, cleaning results and process parameters of calssification, density separation and flotation processes are presented. It is shown that heavy metal pollution of virgin soil can be reduced by the classical process stages of soil washing. The metal content of virgin soil are critically assessed whereby the limits of the physical-chimical washing process will also be entered into. Emphasis is placed on the significance of the determination of limiting values for inorganic contamination, especially for soil contaminated with both organic and inorganic pollution. (orig.) [de

  4. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    Science.gov (United States)

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the

  5. Treatment of NORM contaminated soil from the oilfields.

    Science.gov (United States)

    Abdellah, W M; Al-Masri, M S

    2014-03-01

    Uncontrolled disposal of oilfield produced water in the surrounding environment could lead to soil contamination by naturally occurring radioactive materials (NORM). Large volumes of soil become highly contaminated with radium isotopes ((226)Ra and (228)Ra). In the present work, laboratory experiments have been conducted to reduce the activity concentration of (226)Ra in soil. Two techniques were used, namely mechanical separation and chemical treatment. Screening of contaminated soil using vibratory sieve shaker was performed to evaluate the feasibility of particle size separation. The fractions obtained were ranged from less than 38 μm to higher than 300 μm. The results show that (226)Ra activity concentrations vary widely from fraction to fraction. On the other hand, leaching of (226)Ra from soil by aqueous solutions (distilled water, mineral acids, alkaline medias and selective solvents) has been performed. In most cases, relatively low concentrations of radium were transferred to solutions, which indicates that only small portions of radium are present on the surface of soil particles (around 4.6%), while most radium located within soil particles; only concentrated nitric acid was most effective where 50% of (226)Ra was removed to aqueous phase. However, mechanical method was found to be easy and effective, taking into account safety procedures to be followed during the implementation of the blending and homogenization. Chemical extraction methods were found to be less effective. The results obtained in this study can be utilized to approach the final option for disposal of NORM contaminated soil in the oilfields. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Contaminant resorption during soil washing

    International Nuclear Information System (INIS)

    Gombert, D.

    1993-01-01

    To evaluate the applicability of soil washing to a specific site requires some basic research in how contaminants are bound. Much can be learned from sequential extraction methodology based on micronutrient bioavailability studies wherein the soil matrix is chemically dissected to selectively remove particular fixation mechanisms independently. This procedure uses a series of progressively more aggressive solvents to dissolve the principle phases that make up a soil, however, the published studies do not appear to consider the potential for a contaminant released from one type of site to resorb on another site during an extraction. This physical model assumes no ion exchange or adsorption at sites either previously occupied by other ions, or exposed by the dissolution. Therefore, to make engineering use of the sequential extraction data, the release of contamination must be evaluated relative to the effects of resorption. Time release studies were conducted to determine the optimum duration for extraction to maximize complete destruction of the target matrix fraction while minimizing contaminant resorption. Tests with and without a potassium brine present to inhibit cesium resorption indicated extraction efficiency could be enhanced by as much as a factor of ten using the brine

  7. Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils.

    Science.gov (United States)

    Balsamo, Ronald A; Kelly, William J; Satrio, Justinus A; Ruiz-Felix, M Nydia; Fetterman, Marisa; Wynn, Rodd; Hagel, Kristen

    2015-01-01

    This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil+biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.

  8. Plutonium in a grassland ecosystem. [Rocky Flats Plant

    Energy Technology Data Exchange (ETDEWEB)

    Little, C.A.

    1976-08-01

    A study was made of plutonium contamination of grassland at the Rocky Flats plant northwest of Denver, Colorado. Of interest were: the definition of major plutonium-containing ecosystem compartments; the relative amounts in those compartments; how those values related to studies done in other geographical areas; whether or not the predominant isotopes, /sup 238/Pu and /sup 239/Pu, behaved differently; and what mechanisms might have allowed for the observed patterns of contamination. Samples of soil, litter, vegetation, arthropods, and small mammals were collected for Pu analysis and mass determination from each of two macroplots. Small aliquots (5 g or less) were analyzed by a rapid liquid scintillation technique and by alpha spectrometry. Of the compartments sampled, greater than 99 percent of the total plutonium was contained in the soil and the concentrations were significantly inversely correlated with distance from the contamination source, depth of the sample, and particle size of the sieved soil samples. The soil data suggested that the distribution of contamination largely resulted from physical transport processes.

  9. XRF analysis of soils contaminated by dust falls

    International Nuclear Information System (INIS)

    Marumo, Katsumi; Onoki, Yuka; Wada, Nobuhiko; Okano, Hideki

    2013-01-01

    Dust falls from the chimneys of waste incineration plants, coal-fired power plants, and refineries may contaminate soil over vast areas. Using an auger machine at 72 sites around a refinery in the Kanto area, Japan, we obtained 216 soil samples for a screening survey of potentially contaminated land. Qualitative and quantitative chemical analyses of zinc, lead, and cadmium were performed using a transmission X-ray fluorescence spectrometer (TXRF). X-ray fluorescence (XRF) chemical analytical data suggested that contaminated soil extends up to 3 km away from the chimneys of the refinery. Using calibration curves for the intensity ratios of Zn Kα X-ray to Mo Kβ Compton scatter X-ray [(Zn Kα)/(Mo-Kβ-Compton)], Pb Lβ X-ray to Mo-Kβ-Compton scatter X-ray [(Pb Lβ)/(Mo-Kβ-Compton)], and Cd Kα X-ray to Mo-Kβ Compton scatter X-ray [(Cd Kβ)/(Mo-Kβ-Compton)] of 30 reference materials, we obtained the Zn, Pb, and Cd concentrations of these 216 soil samples. The Pb and Cd concentrations from the XRF chemical analytical data were very similar to the Pb and Cd leachabilities determined by 1 M HC1 leaching test (MOE-approved method No. 19), suggesting that the chemical forms in which Pb and Cd occur are an adsorbed phase and a carbonate phase, which can be easily dissolved by 1 M HC1. XRF spectra of individual soil particles, obtained by spot-sized X-ray beams passed through a 1.5-mm-diameter and a 0.5-mm-diameter collimators, suggested that most of the soil fractions contained Zn and Pb. The levels of brightness of the X-ray images of these Zn- and Pb-bearing fractions were monitored with an X-ray CCD camera attached to the TXRF. Most of the soil fractions were transparent at the maximum X-ray tube voltage (50 kV), suggesting that the soil samples are suitable for the quantitative XRF chemical analysis of Zn and Pb. (author)

  10. Effect of pre-heating on the chemical oxidation efficiency: implications for the PAH availability measurement in contaminated soils.

    Science.gov (United States)

    Biache, Coralie; Lorgeoux, Catherine; Andriatsihoarana, Sitraka; Colombano, Stéfan; Faure, Pierre

    2015-04-09

    Three chemical oxidation treatments (KMnO4, H2O2 and Fenton-like) were applied on three PAH-contaminated soils presenting different properties to determine the potential use of these treatments to evaluate the available PAH fraction. In order to increase the available fraction, a pre-heating (100 °C under N2 for one week) was also applied on the samples prior oxidant addition. PAH and extractable organic matter contents were determined before and after treatment applications. KMnO4 was efficient to degrade PAHs in all the soil samples and the pre-heating slightly improved its efficiency. H2O2 and Fenton-like treatments presented low efficiency to degrade PAH in the soil presenting poor PAH availability, however, the PAH degradation rates were improved with the pre-heating. Consequently H2O2-based treatments (including Fenton-like) are highly sensitive to contaminant availability and seem to be valid methods to estimate the available PAH fraction in contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Field demonstrations of passive detectors for screening of alpha contaminated soils

    International Nuclear Information System (INIS)

    Meyer, K.E.; Gammage, R.B.; Dudney, C.S.

    1994-01-01

    There are numerous sites around the country, DOE and otherwise, that are faced with the daunting task of remediating radiologically contaminated soils and groundwaters. Some of these sites, such as the Nevada Test Site and the Rocky Flats Plant, have contaminants that have been dispersed over wide areas. The costs of the characterization phase alone for such remediation programs can be prohibitive. Therefore there are pressing needs for testing and evaluation of new technologies for screening for radiological contaminants that may offer significant advantages in capital costs, ease of use, sensitivity, ruggedness, and/or reliability. This work reports on laboratory and Field tests of two types of passive alpha detectors, electret ionization chambers (EIC's) and alpha track detectors (ATD's), that have been commercially developed for indoor radon measurements. Previous work documented calibration and measurement protocols developed for these detectors for indoor surface contamination measurements

  12. Radionuclide contaminated soil: Laboratory study and economic analysis of soil washing. Final report

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Zhou, H.; Patel, B.; Bowerman, B.; Brower, J.

    1996-01-01

    The objective of the work discussed in this report is to determine if soil washing is a feasible method to remediate contaminated soils from the Hazardous Waste Management Facility (HWMF) at Brookhaven National Laboratory (BNL). The contaminants are predominantly Cs-137 and Sr-90. The authors have assumed that the target activity for Cs-137 is 50 pCi/g and that remediation is required for soils having greater activities. Cs-137 is the limiting contaminant because it is present in much greater quantities than Sr-90. This work was done in three parts, in which they: estimated the volume of contaminated soil as a function of Cs-137 content, determined if simple removal of the fine grained fraction of the soil (the material that is less than 0.063 mm) would effectively reduce the activity of the remaining soil to levels below the 50 pCi/g target, assessed the effectiveness of chemical and mechanical (as well as combinations of the two) methods of soil decontamination. From this analysis the authors were then able to develop a cost estimate for soil washing and for a baseline against which soil washing was compared

  13. Leaching of Contamination from Stabilization/Solidification Remediated Soils of Different Texture

    Science.gov (United States)

    Burlakovs, Juris; Kasparinskis, Raimonds; Klavins, Maris

    2012-09-01

    Development of soil and groundwater remediation technologies is a matter of great importance to eliminate historically and currently contaminated sites. Stabilization/solidification (S/S) refers to binding of waste contaminants to a more chemically stable form and thus diminishing leaching of contamination. It can be performed using cement with or without additives in order to stabilize and solidify soil with the contamination in matrix. A series of experiments were done to determine leaching properties of spiked soils of different texture bound with cement. Results of experiments showed, that soil texture (content of sand, silt and clay particles) affects the leaching of heavy metals from stabilized soils.

  14. Soil sampling for environmental contaminants

    International Nuclear Information System (INIS)

    2004-10-01

    The Consultants Meeting on Sampling Strategies, Sampling and Storage of Soil for Environmental Monitoring of Contaminants was organized by the International Atomic Energy Agency to evaluate methods for soil sampling in radionuclide monitoring and heavy metal surveys for identification of punctual contamination (hot particles) in large area surveys and screening experiments. A group of experts was invited by the IAEA to discuss and recommend methods for representative soil sampling for different kinds of environmental issues. The ultimate sinks for all kinds of contaminants dispersed within the natural environment through human activities are sediment and soil. Soil is a particularly difficult matrix for environmental pollution studies as it is generally composed of a multitude of geological and biological materials resulting from weathering and degradation, including particles of different sizes with varying surface and chemical properties. There are so many different soil types categorized according to their content of biological matter, from sandy soils to loam and peat soils, which make analytical characterization even more complicated. Soil sampling for environmental monitoring of pollutants, therefore, is still a matter of debate in the community of soil, environmental and analytical sciences. The scope of the consultants meeting included evaluating existing techniques with regard to their practicability, reliability and applicability to different purposes, developing strategies of representative soil sampling for cases not yet considered by current techniques and recommending validated techniques applicable to laboratories in developing Member States. This TECDOC includes a critical survey of existing approaches and their feasibility to be applied in developing countries. The report is valuable for radioanalytical laboratories in Member States. It would assist them in quality control and accreditation process

  15. Risk assessment of soil contamination criteria

    International Nuclear Information System (INIS)

    King, C.M.; Marter, W.L.; Montaque, D.F.; Holton, G.A.

    1987-06-01

    Criteria have been developed to select radioactive and nonradioactive contaminants at waste sites detailed analysis and risk assessment. These criteria were based on soil and water quality guidelines developed by various government agencies to determine if the criteria were appropriate. We performed a risk assessment of a hypothetical site which contained radioactive and nonradioactive contaminants at levels equal to the criteria values. Risks to the public from atmospheric, surface water, and groundwater exposure pathways were examined. Health risks to the public from atmospheric releases of radioactive and nonradioactive materials from a waste at soil criteria contamination levels are low. Health risks to the maximally exposed individual to chemical carcinogens are considerably below traditional EPA action levels. And health risks to the maximally exposed individual to atmospherically released radioactive contaminants is 1.88 x 10 -7 , more than a factor of 5 less than 10 -6 . Based on our atmospheric exposure pathways analysis and risk assessment, the applied soil criteria are appropriate for screening out unimportant risk contributors to human health from atmospheric exposure pathways. 13 refs., 3 figs., 7 tabs

  16. Bioremediation of oil%contaminated soil

    OpenAIRE

    Marchenko1, M.; Shuktueva, M.; Vinokurov, V.; Krasnopolskaya, L.

    2011-01-01

    Stocks of crude oil remains at a high level, does not stop the construction of new pipelines, increasing the output and at the same time the transportation of oil. At the same time, it gives rise to accidents resulting in oil and oil products fall in different ecosystems: the atmosphere, soil, waters. This paper provides an overview of the mechanical, physical, chemical, and biological methods for the elimination of oil-contaminated soils. Create optimal conditions for growth and development ...

  17. The status of soil contamination by semivolatile organic chemicals (SVOCs) in China: A review

    Energy Technology Data Exchange (ETDEWEB)

    Cai Quanying [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)], E-mail: cai_quanying@yahoo.com; Mo Cehui [Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China)], E-mail: tchmo@jnu.edu.cn; Wu Qitang [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China); Katsoyiannis, Athanasios [European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), Physical and Chemical Exposure Unit, Ispra (Vatican City State, Holy See,), TP-281, Via E. Fermi 1, I-21020 (Italy)], E-mail: athanasios.katsogiannis@jrc.it; Zeng Qiaoyun [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)

    2008-01-25

    This paper summarizes the published scientific data on the soil contamination by semivolatile organic chemicals (SVOCs) in China. Data has been found for more than 150 organic compounds which were grouped into six classes, namely, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and phthalic acid esters (PAEs). An overview of data collected from the literature is presented in this paper. The Chinese regulation and/or other maximum acceptable values for SVOCs were used for the characterization of soils. In general, the compounds that are mostly studied in Chinese soils are OCPs, PAHs and PCBs. According to the studies reviewed here, the most abundant compounds were PAEs and PAHs (up to 46 and 28 mg kg{sup -1} dry weight, respectively); PCBs and OCPs occurred generally at concentrations lower than 100 {mu}g kg{sup -1} dry weight. Nevertheless, quite high concentrations of PCDD/Fs, PCBs and PBDEs were observed in contaminated sites (e.g., the sites affected by electronic waste activities). The average concentrations of PAHs and OCPs in soils of North China were higher than those in South China. The principal component analysis demonstrated different distribution patterns for PAH, PCB and PCDD/F congeners and for the various sites/regions examined. The isomer ratios of DDTs and hexachlorocyclohexanes (HCHs) indicated different sources and residue levels in soils. Finally, this review has highlighted several areas where further research is considered necessary.

  18. Plant Mounds as Concentration and Stabilization Agents for Actinide Soil Contaminants in Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Shafer; J. Gommes

    2009-02-03

    Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around the base of shrubs and are common features in deserts in the southwestern United States. An important factor in their formation is that shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, 241Am, and U in plant mounds at safety experiment and storage-transportation test sites of nuclear devices. Although aerial concentrations of these contaminants were highest in the intershrub or desert pavement areas, the concentration in mounds were higher than in equal volumes of intershrub or desert pavement soil. The NAEG studies found the ratio of contaminant concentration of actinides in soil to be greater (1.6 to 2.0) in shrub mounds than in the surrounding areas of desert pavement. At Project 57 on the NTTR, 17 percent of the area was covered in mounds while at Clean Slate III on the TTR, 32 percent of the area was covered in mounds. If equivalent volumes of contaminated soil were compared between mounds and desert pavement areas at these sites, then the former might contain as much as 34 and 62 percent of the contaminant inventory, respectively. Not accounting for radionuclides associated with shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. In addition, preservation of shrub mounds could be important part of long-term stewardship if these sites are closed by fencing and posting with administrative controls.

  19. Degradation of tetraethyllead in leaded gasoline contaminated and uncontaminated soils

    International Nuclear Information System (INIS)

    Ou, L.; Jing, W.; Thomas, J.; Mulroy, P.

    1995-01-01

    For over 50 years, since its introduction in 1923 by General Motors, tetraethyllead (TEL) was the major antiknock agent used in leaded gasoline. Since the middle of 1970, use of leaded gasoline in automobiles was gradually phased out. The main objective of this study is to determine the degradation rates and metabolites of TEL in gasoline contaminated and uncontaminated soils. TEL in uncontaminated soils disappeared rapidly. Ionic triethyllead (TREL) was the major organolead metabolite in these soils, with ionic diethyllead (DEL) being the minor product. Nonsterile soils, but not autoclaved soils, had limited capacity to mineralize 14 C-TEL to 14 CO 2 , H 2 0, and Pb 2+ . Unlike TEL in uncontaminated soils, petroleum hydrocarbons protected TEL in leaded gasoline contaminated soils from being degraded. Both disappearance and mineralization rates of TEL in leaded gasoline contaminated soils decreased with the increase in gasoline concentration. It appears that TEL in leaded gasoline contaminated soils is relatively stable until the level of petroleum hydrocarbons falls below a critical value. TEL is then rapidly degraded. Hydrocarbon degrading microorganisms may be involved, to some extent, in the degradation of TEL

  20. Impact of chemical leaching on permeability and cadmium removal from fine-grained soils.

    Science.gov (United States)

    Lin, Zhongbing; Zhang, Renduo; Huang, Shuang; Wang, Kang

    2017-08-01

    The aim of this study was to investigate the influence of chemical leaching on permeability and Cd removal from fine-grained polluted soils. Column leaching experiments were conducted using two types of soils (i.e., artificially Cd-polluted loam and historically polluted silty loam). Chemical agents of CaCl 2 , FeCl 3 , citric acid, EDTA, rhamnolipid, and deionized water were used to leach Cd from the soils. Results showed that organic agents reduced permeability of both soils, and FeCl 3 reduced permeability of loam soil, compared with inorganic agents and deionized water. Entrapment and deposition of colloids generated from the organic agents and FeCl 3 treatments reduced the soil permeability. The peak Cd effluence from the artificially polluted loam columns was retarded. For the artificially polluted soils treated with EDTA and the historically polluted soils with FeCl 3 , Cd precipitates were observed at the bottom after chemical leaching. When Cd was associated with large colloid particles, the reduction of soil permeability caused Cd accumulation in deeper soil. In addition, the slow process of disintegration of soil clay during chemical leaching might result in the retardation of peak Cd effluence. These results suggest the need for caution when using chemical-leaching agents for Cd removal in fine-grained soils.

  1. Soil contamination in south Backa region of Serbia with dangerous and harmful substances

    Directory of Open Access Journals (Sweden)

    Maksimović Livija

    2012-01-01

    Full Text Available Soil samples in disturbed state were taken in order to control fertility and monitor contents of harmful and hazardous substances in Vojvodina soils and possibilities of soil degradation in general. Moderately contaminated soils were selected for examination. Microbial activity in contaminated soil and the impact of harmful and hazardous substances (pesticides on soil microorganisms were observed and most resistant microorganisms were isolated. Vegetation experiments were organized to study the effect of chelating agents EDTA and EDDS on copper adoption and translocation in rapeseed and sunflower. Importance of some ions in the complexation of copper chelators and their undesirable effects on copper uptake were established. Field trials were organized to study the effect of hydrogel on water uptakes by plants, increase in rate and the increase in rate of removal of hazardous and harmful substances from soil solution. At all phases of the project, we monitored the effectiveness of soil bioremediation soils by means of the application of chelating agents, stimulative preparations such as hydrogel and certain microorganisms. It effectiveness was measured in terms of plant growth rate and intensity in removal of hazardous and harmful substances from contaminated soil.

  2. Recent canadian experience in chemical warfare agent destruction. An overview

    Energy Technology Data Exchange (ETDEWEB)

    McAndless, J.M.

    1995-09-01

    A Canadian chemical warfare agent destruction project (Swiftsure) was recently completed in which stockpiles of aged mustard, lewisite, nerve agents and contaminated scrap metal were incinerated or chemically neutralized in a safe, environmentally-responsible manner. The project scope, destruction technologies, environmental monitoring and public consultation programs are described.

  3. Contaminant bioavailability in soils, sediments, and aquatic environments

    OpenAIRE

    Traina, Samuel J.; Laperche, Valérie

    1999-01-01

    The aqueous concentrations of heavy metals in soils, sediments, and aquatic environments frequently are controlled by the dissolution and precipitation of discrete mineral phases. Contaminant uptake by organisms as well as contaminant transport in natural systems typically occurs through the solution phase. Thus, the thermodynamic solubility of contaminant-containing minerals in these environments can directly influence the chemical reactivity, transport, and ecotoxici...

  4. Fate of chemical warfare agents and toxic indutrial chemicals in landfills

    DEFF Research Database (Denmark)

    Bartelt-Hunt, D.L.; Barlaz, M.A.; Knappe, D.R.U.

    2006-01-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs......], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from...... CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis halflives. Monte Carlo simulations were performed to assess...

  5. Stabilization of contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.

    1984-01-01

    In Situ Vitrification is an emerging technology developed by Pacific Northwest Laboratory for potential in-place immobilization of radioactive wastes. The contaminated soil is stabilized and converted to an inert glass form. This conversion is accomplished by inserting electrodes in the soil and establishing an electric current between the electrodes. The electrical energy causes a joule heating effect that melts the soil during processing. Any contaminants released from the melt are collected and routed to an off-gas treatment system. A stable and durable glass block is produced which chemically and physically encapsulates any residual waste components. In situ vitrification has been developed for the potential application to radioactive wastes, specifically, contaminated soil sites; however, it could possibly be applied to hazardous chemical and buried munitions waste sites. The technology has been developed and demonstrated to date through a series of 21 engineering-scale tests [producing 50 to 1000 kg (100 to 2000 lb) blocks] and seven pilot-scale tests [producing 9000 kg (20,000 lb) blocks], the most recent of which illustrated treatment of actual radioactively contaminated soil. Testing with some organic materials has shown relatively complete thermal destruction and incineration. Further experiments have documented the insensitivity of in situ vitrification to soil characteristics such as fusion temperature, specific heat, thermal conductivity, electrical resistivity, and moisture content. Soil inclusions such as metals, cements, ceramics, and combustibles normally present only minor process limitations. Costs for hazardous waste applications are estimated to be less than $175/m 3 ($5.00/ft 3 ) of material vitrified. For many applications, in situ vitrification can provide a cost-effective alternative to other disposal options. 13 references, 4 figures, 1 table

  6. A comparative study of 239,240Pu in soil near the former Rocky Flats Nuclear Weapons Facility, Golden, CO

    International Nuclear Information System (INIS)

    Margulies, Todd D.; Schonbeck, Niels D.; Morin-Voilleque, Normie C.; James, Katherine A.; LaVelle, James M.

    2004-01-01

    The Rocky Flats Nuclear Weapons Plant near Golden, CO released plutonium into the environment during almost 40 years of operation. Continuing concern over possible health impacts of these releases has been heightened by lack of public disclosure of the US Department of Energy (DOE) activities. A dose reconstruction study for the Rocky Flats facilities, begun in 1990, provided a unique opportunity for concerned citizens to design and implement field studies without participation of the DOE, its contractors, or other government agencies. The Citizens Environmental Sampling Committee was formed in late 1992 and conducted a field sampling program in 1994. Over 60 soil samples, including both surface and core samples, were collected from 28 locations where past human activities would have minimal influence on contaminant distributions in soil. Cesium-137 activity was used as a means to assess whether samples were collected in undisturbed locations. The distribution of plutonium (as 239,240 Pu) in soil was consistent with past sampling conducted by DOE, the Colorado Department of Public Health and Environment, and others. Elevated levels of 239,240 Pu were found immediately east of the Rocky Flats Plant, with concentrations falling rapidly with distance from the plant to levels consistent with background from fallout. Samples collected in areas south, west, and north of the plant were generally consistent with background from fallout. No biases in past sampling due to choice of sampling locations or sampling methodology were evident. The study shows that local citizens, when provided sufficient resources, can design and implement technical studies that directly address community concerns where trust in the regulated community and/or regulators is low

  7. Chelant extraction of heavy metals from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple

  8. Chelant extraction of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.

    1999-01-01

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  9. Decontamination of chemical agents from drinking water infrastructure: a literature review and summary.

    Science.gov (United States)

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of chemical contamination on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some chemical contaminants, but important data gaps remain. In general, data on chemical persistence on drinking water infrastructure is available for inorganics such as arsenic and mercury, as well as select organics such as petroleum products, pesticides and rodenticides. Data specific to chemical warfare agents and pharmaceuticals was not found and data on toxins is scant. Future research suggestions focus on expanding the available chemical persistence data to other common drinking water infrastructure materials. Decontaminating agents that successfully removed persistent contamination from one infrastructure material should be used in further studies. Methods for sampling or extracting chemical agents from water infrastructure surfaces are needed. Published by Elsevier Ltd.

  10. Leaching of Contamination from Stabilization/Solidification Remediated Soils of Different Texture

    OpenAIRE

    Burlakovs, J; Kasparinskis, R; Klavins, M

    2012-01-01

    Development of soil and groundwater remediation technologies is a matter of great importance to eliminate historically and currently contaminated sites. Stabilization/solidification (S/S) refers to binding of waste contaminants to a more chemically stable form and thus diminishing leaching of contamination. It can be performed using cement with or without additives in order to stabilize and solidify soil with the contamination in matrix. A series of experiments were done to determine leaching...

  11. Soil contamination with cadmium, consequences and remediation using organic amendments.

    Science.gov (United States)

    Khan, Muhammad Amjad; Khan, Sardar; Khan, Anwarzeb; Alam, Mehboob

    2017-12-01

    Cadmium (Cd) contamination of soil and food crops is a ubiquitous environmental problem that has resulted from uncontrolled industrialization, unsustainable urbanization and intensive agricultural practices. Being a toxic element, Cd poses high threats to soil quality, food safety, and human health. Land is the ultimate source of waste disposal and utilization therefore, Cd released from different sources (natural and anthropogenic), eventually reaches soil, and then subsequently bio-accumulates in food crops. The stabilization of Cd in contaminated soil using organic amendments is an environmentally friendly and cost effective technique used for remediation of moderate to high contaminated soil. Globally, substantial amounts of organic waste are generated every day that can be used as a source of nutrients, and also as conditioners to improve soil quality. This review paper focuses on the sources, generation, and use of different organic amendments to remediate Cd contaminated soil, discusses their effects on soil physical and chemical properties, Cd bioavailability, plant uptake, and human health risk. Moreover, it also provides an update of the most relevant findings about the application of organic amendments to remediate Cd contaminated soil and associated mechanisms. Finally, future research needs and directions for the remediation of Cd contaminated soil using organic amendments are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Optimization of surfactant-aided remediation of industrially contaminated soils

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1996-01-01

    Soil matrices contaminated with polycyclic aromatic hydrocarbons (PAHs) abound at the sites of coke-oven gas plants, refineries, and many other major chemical industries. The removal of PAHs from soil using pure water, via soil washing (ex situ) or soil flushing (in situ), is quite ineffective due to their low solubility and hydrophobicity. However, addition of suitable surfactant(s) has been shown to increase the removal efficiency several fold. For the present work, the removal of PAHs occurring in industrially contaminated soil was studied. The objective was to use a nonionic surfactant solution for in situ soil flushing and to evaluate the optimal range of process parameters that can significantly increase the removal efficiency. The process parameters chosen were surfactant concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant effect on PAH removal from the contaminated soil and an optimal range was determined for each parameter under given washing conditions

  13. Bioavailability assessment of contaminants in soils via respiration and nitrification tests

    International Nuclear Information System (INIS)

    Hund-Rinke, Kerstin; Simon, Markus

    2008-01-01

    For the assessment of contaminated soils ecotoxicological tests are used to estimate the bioavailability of contaminants in soil samples. Terrestrial tests reveal the habitat function of soils, and parameters applied in tests involving microorganisms include respiration activity and potential ammonium oxidation. For such tests, the threshold values needed to assess the results have already been established in guidelines ISO 17155 and ISO 15685. In this paper, we discuss about the respiration activity and potential ammonium oxidation results obtained from a wide variety of soils with different physico-chemical properties and levels of contamination. These results show that microbial respiration and potential ammonium oxidation have different sensitivities to various classes of contaminants. We demonstrated that both organic and inorganic contaminants influence potential ammonium oxidation, whereas microbial respiration is predominantly affected by biodegradable organic contaminants. These differences might be useful for more detailed assessments of soil contamination, leading to different recommended actions depending on which parameter is affected. - The paper provides a further criterion for a more detailed assessment of soil contamination, leading to different recommended actions depending on which parameter is affected

  14. Bioavailability assessment of contaminants in soils via respiration and nitrification tests

    Energy Technology Data Exchange (ETDEWEB)

    Hund-Rinke, Kerstin [Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg (Germany)], E-mail: kerstin.hund-rinke@ime.fraunhofer.de; Simon, Markus [Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg (Germany)], E-mail: markus.simon@ime.fraunhofer.de

    2008-05-15

    For the assessment of contaminated soils ecotoxicological tests are used to estimate the bioavailability of contaminants in soil samples. Terrestrial tests reveal the habitat function of soils, and parameters applied in tests involving microorganisms include respiration activity and potential ammonium oxidation. For such tests, the threshold values needed to assess the results have already been established in guidelines ISO 17155 and ISO 15685. In this paper, we discuss about the respiration activity and potential ammonium oxidation results obtained from a wide variety of soils with different physico-chemical properties and levels of contamination. These results show that microbial respiration and potential ammonium oxidation have different sensitivities to various classes of contaminants. We demonstrated that both organic and inorganic contaminants influence potential ammonium oxidation, whereas microbial respiration is predominantly affected by biodegradable organic contaminants. These differences might be useful for more detailed assessments of soil contamination, leading to different recommended actions depending on which parameter is affected. - The paper provides a further criterion for a more detailed assessment of soil contamination, leading to different recommended actions depending on which parameter is affected.

  15. Electromigration of Contaminated Soil by Electro-Bioremediation Technique

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Shaylinda, M. Z. N.; Azim, M. A. M.

    2016-07-01

    Soil contamination with heavy metals poses major environmental and human health problems. This problem needs an efficient method and affordable technological solution such as electro-bioremediation technique. The electro-bioremediation technique used in this study is the combination of bacteria and electrokinetic process. The aim of this study is to investigate the effectiveness of Pseudomonas putida bacteria as a biodegradation agent to remediate contaminated soil. 5 kg of kaolin soil was spiked with 5 g of zinc oxide. During this process, the anode reservoir was filled with Pseudomonas putida while the cathode was filled with distilled water for 5 days at 50 V of electrical gradient. The X-Ray Fluorescent (XRF) test indicated that there was a significant reduction of zinc concentration for the soil near the anode with 89% percentage removal. The bacteria count is high near the anode which is 1.3x107 cfu/gww whereas the bacteria count at the middle and near the cathode was 5.0x106 cfu/gww and 8.0x106 cfu/gww respectively. The migration of ions to the opposite charge of electrodes during the electrokinetic process resulted from the reduction of zinc. The results obtained proved that the electro-bioremediation reduced the level of contaminants in the soil sample. Thus, the electro-bioremediation technique has the potential to be used in the treatment of contaminated soil.

  16. Reevaluation of 1999 Health-Based Environmental Screening Levels (HBESLs) for Chemical Warfare Agents

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Annetta Paule [ORNL; Dolislager, Fredrick G [ORNL

    2007-05-01

    are also protective. When EPA finalizes and documents a position on the matter of indoor and outdoor worker screening assessments, site-specific risk assessments should make use of modified models and criteria. Screening values such as those presented in this report may be used to assess soil or other porous media to determine whether chemical warfare agent contamination is present as part of initial site investigations (whether due to intentional or accidental releases) and to determine whether weather/decontamination has adequately mitigated the presence of agent residual to below levels of concern. However, despite the availability of scientifically supported health-based criteria, there are significant resources needs that should be considered during sample planning. In particular, few analytical laboratories are likely to be able to meet these screening levels. Analyses will take time and usually have limited confidence at these concentrations. Therefore, and particularly for the more volatile agents, soil/destructive samples of porous media should be limited and instead enhanced with headspace monitoring and presence-absence wipe sampling.

  17. Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: Experimental study

    International Nuclear Information System (INIS)

    Viglianti, Christophe; Hanna, Khalil; Brauer, Christine de; Germain, Patrick

    2006-01-01

    The removal of polycyclic aromatic hydrocarbons (PAHs) from soil using water as flushing agent is relatively ineffective due to their low aqueous solubility. However, addition of cyclodextrin (CD) in washing solutions has been shown to increase the removal efficiency several times. Herein are investigated the effectiveness of cyclodextrin to remove PAH occurring in industrially aged-contaminated soil. β-Cyclodextrin (BCD), hydroxypropyl-β-cyclodextrin (HPCD) and methyl-β-cyclodextrin (MCD) solutions were used for soil flushing in column test to evaluate some influent parameters that can significantly increase the removal efficiency. The process parameters chosen were CD concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant and almost linear effect on PAH removal from the contaminated soil, except the temperature where no significant enhancement in PAH extraction was observed for temperature range from 5 to 35 o C. The PAHs extraction enhancement factor compared to water was about 200. - An innovative method using a biodegradable and non-toxic flushing agent for the depollution of industrially aged-contaminated soil

  18. Soil washing in combination with homogeneous Fenton-like oxidation for the removal of 2,4,4'-trichlorodiphenyl from soil contaminated with capacitor oil.

    Science.gov (United States)

    Ma, Xiao-Hong; Zhao, Ling; Lin, Zhi-Rong; Dong, Yuan-Hua

    2016-04-01

    Detoxification by chemical oxidation of polychlorinated biphenyls (PCBs) in contaminated soils is very difficult and inefficient because PCBs typically associate with the solid phase or exist as non-aqueous-phase liquids due to their low solubility and slow desorption rates, and thus, they are difficult to remove from soils by using traditional, water-based elution techniques. Surfactant can enhance washing efficiency of PCBs from contaminated soils. This study used Brij 58, Brij 30, Tween 80, and 2-hydroxypropyl-β-cyclodextrin (HPCD) to solubilize 2,4,4'-trichlorodiphenyl (PCB28) from soil contaminated with capacitor oil into solution. The feasibility of PCB28 oxidation in soil washing wastewater through a Fe(3+)-catalyzed Fenton-like reaction was subsequently examined. Washing with 10 g L(-1) Brij 58 solution showed the highest extraction efficiency (up to 61.5 %) compared with that of the three other surfactants. The total concentration of PCB28 in contaminated soil at 25 °C after 48-h extraction was 286 mg L(-1). In contrast to conditions in which no washing agent was added, addition of the four washing agents decreased the efficiency of PCB28 degradation by the Fenton-like reaction, with the decrease due to addition of 10 g L(-1) Brij 58 solution being the smallest. The optimal concentration of H2O2 for preventing its useless decomposition was found to be 50 mM. The efficiency of PCB28 removal was lower when the initial concentration of PCB28 treated in the Fenton-like reaction was higher. The degradation efficiencies of PCB28 at initial concentrations of 0.1, 10, and 176 mg L(-1) in 10 g L(-1) Brij 58 solution at 25 °C and pH 3.0 and 9 h of reaction using 50 mM H2O2 were 64.1, 42.0, and 34.6 %, respectively. This result indicates that soil washing combined with Fenton-like oxidation may be a practical approach for the remediation of PCB-contaminated soil.

  19. Chemical and toxicological characterization of slurry reactor biotreatment of explosives-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Stewart, A.J.; Vass, A.A.; Ho, C.H.

    1998-08-01

    Treatment of 2,4,6-trinitrotoluene (TNT)-contaminated soil in the Joliet Army Ammunition Plant (JAAP) soil slurry bioreactor (SSBR) eliminated detectable TNT but left trace levels of residual monoamino and diamino metabolites under some reactor operating conditions. The reduction of solvent-extractable bacterial mutagenicity in the TNT-contaminated soil was substantial and was similar to that achieved by static pile composts at the Umatilla Army Depot Activity (UMDA) field demonstration. Aquatic toxicity to Ceriodaphnia dubia from TNT in the leachates of TNT-contaminated soil was eliminated in the leachates of JAAP SSBR product soil. The toxicity of soil product leachates to Ceriodaphnia dubia was reasonably predicted using the specific toxicities of the components detected, weighted by their leachate concentrations. In samples where TNT metabolites were observed in the soil product and its leachates, this method determined that the contribution to predicted toxicity values was dominated by trace amounts of the diamino-metabolites, which are very toxic to ceriodaphnia dubia. When the SSBR operating conditions reduced the concentrations of TNT metabolites in the product soils and their leachates to undetectable concentrations, the main contributors to predicted aquatic toxicity values appeared to be molasses residues, potassium, and bicarbonate. Potassium and bicarbonate are beneficial or benign to the environment, and molasses residues are substantially degraded in the environment. Exotoxins, pathogenic bacteria, inorganic particles, ammonia, and dissolved metals did not appear to be important to soil product toxicity.

  20. Electrokinetic remediation of anionic contamination from unsaturated soil: Field application

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Mattson, E.D.

    1995-01-01

    Electrokinetic remediation is an in situ technique under development at Sandia National Laboratories for removal of ionic contaminants from soil. While to date most other studies of this technique have focused on saturated soils, usually clays, the work at Sandia has been to extend the process to unsaturated sandy soils typical of arid regions. The impetus for this study is a chromate plume located beneath an old Sandia chemical waste landfill. Working in unsaturated soils is complicated by moisture control requirements, both to prevent undesired hydraulic transport of contamination outside the treatment zone and to optimize soil properties for efficient electrokinetic remediation. Two field tests will be discussed. First, a field test in clean soil is in progress to demonstrate moisture control with the Sandia electrode system. The second field demonstration, planned to begin the Fall of 1995, involves chromate removal from a in a chemical waste landfill

  1. Effect of the ultrasound-Fenton oxidation process with the addition of a chelating agent on the removal of petroleum-based contaminants from soil.

    Science.gov (United States)

    Li, Ying; Li, Fangmin; Li, Fanxiu; Yuan, Fuqian; Wei, Pingfang

    2015-12-01

    The effects of ultrasonic irradiation, the chelating agent modified Fenton reaction, and a combination of ultrasound and the Fenton method in removing petroleum contaminants from a soil were studied. The results showed that the contaminant removal rate of the Fenton treatment combined with an oxalic acid chelating agent was 55.6% higher than that without a chelating agent. The average removal rate of the contaminants using the ultrasound-Fenton treatment was 59.0% higher than that without ultrasonic treatment. A combination of ultrasound and an Fe(2+)/Fe(3+)-oxalate complex-modified Fenton reagent resulted in significantly higher removal rates of n-alkanes (C(n)H(2n+2), n Fenton method. The Fenton reaction and the ultrasound-Fenton treatment can unselectively remove multiple components of residual hydrocarbons and a number of benzene rings in polycyclic aromatic hydrocarbons. The chemistry of the heterocyclic compounds and the position and number of substituents can affect the degradation process.

  2. NCRP soil contamination task group

    International Nuclear Information System (INIS)

    Jacobs, D.G.

    1987-01-01

    The National Council of Radiation Protection and Measurements (NCRP) has recently established a Task Group on Soil Contamination to describe and evaluate the migration pathways and modes of radiation exposure that can potentially arise due to radioactive contamination of soil. The purpose of this paper is to describe the scientific principles for evaluation of soil contamination which can be used as a basis for derivation of soil contamination limits for specific situations. This paper describes scenarios that can lead to soil contamination, important characteristics of soil contamination, the subsequent migration pathways and exposure modes, and the application of principles in the report in deriving soil contamination limits. The migration pathways and exposure modes discussed in this paper include: direct radiation exposure; and exhalation of gases

  3. Decontamination and Detoxification of Toxic Chemical Warfare Agents Using Polyurethane Sponges

    National Research Council Canada - National Science Library

    Gordon, Richard K; Gunduz, Alper T; Askins, LaTawnya Y; Strating, Simon J; Doctor, Bhupendra P; Clarkson, Edward D; Mitchelree, Larry W; Lukey, Brian; Railer, Roy; Schulz, Susan

    2003-01-01

    .... Another serious problem that may be encountered while caring for personnel contaminated with organophosphorus chemical warfare nerve agents is the possibility that there will be cross-contamination...

  4. Predicting arsenic bioavailability to hyperaccumulator Pteris vittata in arsenic-contaminated soils.

    Science.gov (United States)

    Gonzaga, Maria Isidória Silva; Ma, Lena Q; Pacheco, Edson Patto; dos Santos, Wallace Melo

    2012-12-01

    Using chemical extraction to evaluate plant arsenic availability in contaminated soils is important to estimate the time frame for site cleanup during phytoremediation. It is also of great value to assess As mobility in soil and its risk in environmental contamination. In this study, four conventional chemical extraction methods (water, ammonium sulfate, ammonium phosphate, and Mehlich III) and a new root-exudate based method were used to evaluate As extractability and to correlate it with As accumulation in P. vittata growing in five As-contaminated soils under greenhouse condition. The relationship between different soil properties, and As extractability and plant As accumulation was also investigated. Arsenic extractability was 4.6%, 7.0%, 18%, 21%, and 46% for water, ammonium sulfate, organic acids, ammonium phosphate, and Mehlich III, respectively. Root exudate (organic acids) solution was suitable for assessing As bioavailability (81%) in the soils while Mehlich III (31%) overestimated the amount of As taken up by plants. Soil organic matter, P and Mg concentrations were positively correlated to plant As accumulation whereas Ca concentration was negatively correlated. Further investigation is needed on the effect of Ca and Mg on As uptake by P. vittata. Moreover, additional As contaminated soils with different properties should be tested.

  5. Sorption ability of the soil and its impact on environmental contamination

    OpenAIRE

    H?ibov?, ??rka; Gargo?ov?, Helena Zl?malov?; V?vrov?, Milada

    2015-01-01

    From the physical point of view, soil is a heterogenic polydisperse system. It often becomes a place of a secondary contamination during extinguishing uncontrolled areal fires in nature. Foam extinguishing agents (FEAs), used at these events, basically contain surface active substances and perfluorinated compounds. These tend to be captured in the soil matrix due to their specific properties. Contaminants could be partly flushed out with rainwater, which causes several times dilution of conta...

  6. Uranium Leaching from Contaminated Soil Utilizing Rhamnolipid, EDTA, and Citric Acid

    Directory of Open Access Journals (Sweden)

    Sara Asselin

    2014-01-01

    Full Text Available Biosurfactants have recently gained attention as “green” agents that can be used to enhance the remediation of heavy metals and some organic matter in contaminated soils. The overall objective of this paper was to investigate rhamnolipid, a microbial produced biosurfactant, and its ability to leach uranium present in contaminated soil from an abandoned mine site. Soil samples were collected from two locations in northern Arizona: Cameron (site of open pit mining and Leupp (control—no mining. The approach taken was to first determine the total uranium content in each soil using a hydrofluoric acid digestion, then comparing the amount of metal removed by rhamnolipid to other chelating agents EDTA and citric acid, and finally determining the amount of soluble metal in the soil matrix using a sequential extraction. Results suggested a complex system for metal removal from soil utilizing rhamnolipid. It was determined that rhamnolipid at a concentration of 150 μM was as effective as EDTA but not as effective as citric acid for the removal of soluble uranium. However, the rhamnolipid was only slightly better at removing uranium from the mining soil compared to a purified water control. Overall, this study demonstrated that rhamnolipid ability to remove uranium from contaminated soil is comparable to EDTA and to a lesser extent citric acid, but, for the soils investigated, it is not significantly better than a simple water wash.

  7. Combined Effects of Biochar and Fertilizer on Cadmium Contaminated Soil Remediation

    Directory of Open Access Journals (Sweden)

    WANG Qi-kai

    2015-12-01

    Full Text Available The field experiment was employed to study on the combined effects of biochar and chicken manure and N, P and K compound chemical fertilizer on cadmium contaminated soil remediation, and the immobilization mechanism was elucidated through fractionation of cadmium in the tested soil. Results showed that the addition of these ammendments could significantly reduce the edible Cd accumulation in Lactuca sativa L., decreased from 32.6% to 54.8% compared with the control. The application of these additives could also significantly decrease extractable Cd concentration by 7.04%~21.85%. Biochar could significantly improve soil pH value, promote the inactivation of Cd contaminated soil, while the application of chicken manure significantly decreased soil pH value, which showed the effect of activating Cd in soil. Soil pH value had significant positive correlation with root Cd concentration of tested cultivars, but did not reach the significant effect level with the shoot Cd concentration. The research can provide a theoretical basis for the application of biochar combined with chicken manure and N, P and K compound chemical fertilizer on remediation of sewage irrigated Cd contaminated soil.

  8. Nitrogen isotope compositions and spatial distribution characteristics of soil in the process of karst rocky desertification

    International Nuclear Information System (INIS)

    Luo Xuqiang; Wang Shijie; Wang Chengyuan; Liang Yuhua; Liao Xinrong; Yang Hongyan

    2011-01-01

    Isotopic composition and spatial distribution characteristic of total nitrogen of the surficial soil in karst rocky desertification area, including different types, different grades and different disturbed modes karst rocky desertification within the same small catchment, which belong to the Wangjiazhai peak-cluster depression basin and located in Qingzhen City, Guizhou Province were discussed in this study. Results showed that δ 15 N values of total nitrogen in top soil in yellow soil area were mainly between +0.35‰ ∼ +6.82% with the average of +4.50‰, and between +2.70‰ ∼ +6.50‰ in black calcareous with the average of +4.27‰. In both yellow soil area and black calcareous area, there were no significant difference in the δ 15 N values of total nitrogen on sample lands of rocky desertification at different levels, different ways of interruption and different slope positions, and no obvious difference on the whole (P≤0.05), which is mainly due to the high habitat heterogeneity of karst area. (authors)

  9. Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils

    International Nuclear Information System (INIS)

    Conte, Pellegrino; Agretto, Anna; Spaccini, Riccardo; Piccolo, Alessandro

    2005-01-01

    The remediation of the highly contaminated site around the former chemical plant of ACNA (near Savona) in Northern Italy is a top priority in Italy. The aim of the present work was to contribute in finding innovative and environmental-friendly technology to remediate soils from the ACNA contaminated site. Two soils sampled from the ACNA site (A and B), differing in texture and amount and type of organic contaminants, were subjected to soil washings by comparing the removal efficiency of water, two synthetic surfactants, sodium dodecylsulphate (SDS) and Triton X-100 (TX100), and a solution of a natural surfactant, a humic acid (HA) at its critical micelle concentration (CMC). The extraction of pollutants by sonication and soxhlet was conducted before and after the soil washings. Soil A was richer in polycyclic aromatic hydrocarbons, whereas soil B had a larger content of thiophenes. Sonication resulted more analytically efficient in the fine-textured soil B. The coarse-textured soil A was extracted with a general equal efficiency also by soxhlet. Clean-up by water was unable to exhaustively remove contaminants from the two soils, whereas all the organic surfactants revealed very similar efficiencies (up to 90%) in the removal of the contaminants from the soils. Hence, the use of solutions of natural HAs appears as a better choice for soil washings of highly polluted soils due to their additional capacity to promote microbial activity, in contrast to synthetic surfactants, for a further natural attenuation in washed soils. - Solutions of natural humic acids appear to be a better choice for washing highly polluted soils

  10. Treatment of heavy metal contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Hansen, J.E.

    1991-01-01

    Contaminated soil site remediation objectives call for the destruction, removal, and/or immobilization of contaminant species. Destruction is applicable to hazardous compounds (e.g., hazardous organics such as PCBs; hazardous inorganics such as cyanide); however, it is not applicable to hazardous elements such as the heavy metals. Removal and/or immobilization are typical objectives for heavy metal contaminants present in soil. Many technologies have been developed specifically to meet these needs. One such technology is In Situ Vitrification (ISV), an innovative mobile, onsite, in situ solids remediation technology that has been available on a commercial basis for about two years. ISV holds potential for the safe and permanent treatment/remediation of previously disposed or current process solids waste (e.g., soil, sludge, sediment, tailings) contaminated with hazardous chemical and/or radioactive materials. This paper focuses on the application of ISV to heavy metal-contaminated soils

  11. Isolation of Mercury-Resistant Fungi from Mercury-Contaminated Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Reginawanti Hindersah

    2018-02-01

    Full Text Available Illegal gold mining and the resulting gold mine tailing ponds on Buru Island in Maluku, Indonesia have increased Mercury (Hg levels in agricultural soil and caused massive environmental damage. High levels of Hg in soil lowers plant productivity and threatens the equilibrium of the food web. One possible method of handling Hg-contaminated soils is through bioremediation, which could eliminate Hg from the rhizosphere (root zone. In this study, indigenous fungi isolated from Hg-contaminated soil exhibited Hg-resistance in vitro. Soil samples were collected from the rhizosphere of pioneer plants which grew naturally in areas contaminated with gold mine tailing. The fungi’s capacity for Hg-resistance was confirmed by their better growth in chloramphenicol-boosted potato dextrose agar media which contained various HgCl2 concentrations. Four isolates exhibited resistance of up to 25 mg kg−1 of Hg, and in an experiment with young Chinese cabbage (Brassica rapa L. test plants, two fungi species (including Aspergillus were demonstrated to increase the soil’s availability of Hg. The results suggest that Hg-resistant indigenous fungi can mobilize mercury in the soil and serve as potential bioremediation agents for contaminated agricultural land.

  12. Reentry planning: The technical basis for offsite recovery following warfare agent contamination

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.; Munro, N.B.

    1990-04-01

    In the event on an unplanned release of chemical agent during any stage of Chemical Stockpile Disposal Program (CSDP), the potential exists for contamination of drinking water, forage crops, grains, garden produce and livestock. Persistent agents, such as VX or sulfur mustard, pose the greatest human health concern for reentry. The purpose of this technical support study is to provide information and analyses that can be used by federal, state and local emergency planners in determining the safety or reentry to, as well as the potential for recovery of, contaminated or suspect areas beyond the installation boundary. Guidelines for disposition of livestock, agricultural crops and personal/real property are summarized. Advisories for ingestion of food crops, water, meat and milk from the affected zones are proposed. This document does not address potential adverse effects to, or agent contamination of, wild species of plants or animals. 80 refs., 4 figs., 29 tabs.

  13. Impact of long-term diesel contamination on soil microbial community structure

    DEFF Research Database (Denmark)

    Sutton, Nora; Maphosa, Farai; Morillo, Jose

    2013-01-01

    Microbial community composition and diversity at a diesel-contaminated railway site were investigated by pyrosequencing of bacterial and archaeal 16S rRNA gene fragments to understand the interrelationships among microbial community composition, pollution level, and soil geochemical and physical...... properties. To this end, 26 soil samples from four matrix types with various geochemical characteristics and contaminant concentrations were investigated. The presence of diesel contamination significantly impacted microbial community composition and diversity, regardless of the soil matrix type. Clean...... observed in contaminated samples. Redundancy analysis indicated that increased relative abundances of the phyla Chloroflexi, Firmicutes, and Euryarchaeota correlated with the presence of contamination. Shifts in the chemical composition of diesel constituents across the site and the abundance of specific...

  14. Estimating risk at a Superfund site contaminated with radiological and chemical wastes

    International Nuclear Information System (INIS)

    Temeshy, A.; Liedle, J.M.; Sims, L.M.; Efird, C.R.

    1992-01-01

    This paper describes the method and results for estimating carcinogenic and noncarcinogenic effects at a Superfund site that is radiologically and chemically contaminated. Risk to receptors from disposal of waste in soil and resulting contamination of groundwater, air, surface water, and sediment is quantified. Specific risk assessment components which are addressed are the exposure assessment, toxicity assessment, and the resulting risk characterization. In the exposure assessment, potential exposure pathways are identified using waste disposal inventory information for soil and modeled information for other media. Models are used to calculate future radionuclide concentrations in groundwater, soil, surface water and air. Chemical exposure concentrations are quantified using site characterization data. Models are used to determine concentrations of chemicals in surface water and in air. Toxicity parameters used to quantify the dose-response relationship associated with the carcinogenic contaminants are slope factors and with noncarcinogenic contaminants are reference doses. In the risk characterization step, results from the exposure assessment and toxicity assessment are summarized and integrated into quantitative risk estimates for carcinogens and hazard induces for noncarcinogens. Calculated risks for carcinogenic contaminants are compared with EPA's target risk range. At WAG 6, the risk from radionuclides and chemicals for an on-WAG homesteader exceeds EPA's target risk range. Hazard indices are compared to unity for noncarcinogenic contaminants. At WAG 6, the total pathway hazard index for the on-WAG homesteader exceeds unity

  15. DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites

    International Nuclear Information System (INIS)

    1989-03-01

    The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites

  16. Restoration of contaminated soils

    International Nuclear Information System (INIS)

    Miranda J, Jose Eduardo

    2009-01-01

    A great variety of techniques are used for the restoration of contaminated soils. The contamination is present by both organic and inorganic pollutants. Environmental conditions and soil characteristics should take into account in order to implement a remedial technique. The bioremediation technologies are showed as help to remove a variety of soil contaminants. (author) [es

  17. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISKIN OIL-IMPACTED SOILS

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Paterek; W.W.Bogan; V. Trbovic; W. Sullivan

    2003-01-07

    The drilling and operation of gas/petroleum exploratory wells and the operations of natural gas and petroleum production wells generate a number of waste materials that are usually stored and/or processed at the drilling/operations site. Contaminated soils result from drilling operations, production operations, and pipeline breaks or leaks where crude oil and petroleum products are released into the surrounding soil or sediments. In many cases, intrinsic biochemical remediation of these contaminated soils is either not effective or is too slow to be an acceptable approach. This project targeted petroleum-impacted soil and other wastes, such as soil contaminated by: accidental release of petroleum and natural gas-associated organic wastes from pipelines or during transport of crude oil or natural gas; production wastes (such as produced waters, and/or fuels or product gas). Our research evaluated the process designated Chemically-Accelerated Biotreatment (CAB) that can be applied to remediate contaminated matrices, either on-site or in situ. The Gas Technology Institute (GTI) had previously developed a form of CAB for the remediation of hydrocarbons and metals at Manufactured Gas Plant (MGP) sites and this research project expanded its application into Exploration and Production (E&P) sites. The CAB treatment was developed in this project using risk-based endpoints, a.k.a. environmentally acceptable endpoints (EAE) as the treatment goal. This goal was evaluated, compared, and correlated to traditional analytical methods (Gas Chromatography (GC), High Precision Liquid Chromatography (HPLC), or Gas Chromatography-Mass Spectrometry (CGMS)). This project proved that CAB can be applied to remediate E&P contaminated soils to EAE, i.e. those concentrations of chemical contaminants in soil below which there is no adverse affect to human health or the environment. Conventional approaches to risk assessment to determine ''how clean is clean'' for soils

  18. Influence of attrition scrubbing, ultrasonic treatment, and oxidant additions on uranium removal from contaminated soils

    International Nuclear Information System (INIS)

    Timpson, M.E.; Elless, M.P.; Francis, C.W.

    1994-01-01

    As part of the Uranium in Soils Integrated Demonstration Project being conducted by the US Department of Energy, bench-scale investigations of selective leaching of uranium from soils at the Fernald Environmental Management Project site in Ohio were conducted at Oak Ridge National Laboratory. Two soils (storage pad soil and incinerator soil), representing the major contaminant sources at the site, were extracted using carbonate- and citric acid-based lixiviants. Physical and chemical processes were used in combination with the two extractants to increase the rate of uranium release from these soils. Attrition scrubbing and ultrasonic dispersion were the two physical processes utilized. Potassium permanganate was used as an oxidizing agent to transform tetravalent uranium to the hexavalent state. Hexavalent uranium is easily complexed in solution by the carbonate radical. Attrition scrubbing increased the rate of uranium release from both soils when compared with rotary shaking. At equivalent extraction times and solids loadings, however, attrition scrubbing proved effective only on the incinerator soil. Ultrasonic treatments on the incinerator soil removed 71% of the uranium contamination in a single extraction. Multiple extractions of the same sample removed up to 90% of the uranium. Additions of potassium permanganate to the carbonate extractant resulted in significant changes in the extractability of uranium from the incinerator soil but had no effect on the storage pad soil

  19. White poplar (Populus alba L. - Litter impact on chemical and biochemical parameters related to nitrogen cycle in contaminated soils

    Directory of Open Access Journals (Sweden)

    Paula Madejon

    2014-04-01

    Full Text Available Aim of study: The aim of this study was to determine the effect of litter from Populus alba on chemical and biochemical properties related to the N cycle in soils with different pH values and trace element contents. We hypothesized that this litter would influence several parameters related to the N cycle and consequently to soil health.Area of study: we collected two reforested contaminated soils of different pH values (AZ pH 7.23 and DO pH = 2.66 and a non-contaminated soil (RHU pH 7.19.Materials and methods: Soil samples were placed in 2,000 cm3 microcosms and were incubated for 40 weeks in controlled conditions. Each soil was mixed with its corresponding litter, and soils without litter were also tested for comparison. Ammonium (NH4+-N and nitrate (NO3–-N content, potential nitrification rate (PNR, microbial biomass nitrogen (MBN, protease activity, and several chemical properties such as pH, available trace element concentrations (extracted with 0.01 M CaCl2 were determined at different times of incubation.Main results: Values of available trace elements did not vary during the incubation and were always higher in acid soil. In neutral soils litter presence increased values of Kjeldahl-N, NO3–-N content, potential nitrification rate (PNR, microbial biomass nitrogen (MBN and protease activity. Presence of trace elements in neutral soils did not alter the parameters studied. However, acidic pH and high content of available trace elements strongly affected NH4+-N andNO3–-N, microbial biomass N and protease activity.Research highlights: Our results showed the negative effect of the acidity and trace element availability in parameters related with the N-cycle.Key words: microbial biomass N; protease activity; soil pH; N mineralization; nitrification; phytoremediation.

  20. Evaluation of Physico-Chemical and Fungal Species Associated with Oil Contaminated Soil from Selected Automobile Garage in Sokoto Metropolis

    Directory of Open Access Journals (Sweden)

    Hassan Muhammad Maishanu

    2018-03-01

    Full Text Available This study was conducted with a view to evaluating the physicochemical and mycological properties of different oil contaminated soils collected from three different automobile garages in Sokoto Metropolis, and uncontaminated soil from the temporary site, Usmanu Danfodiyo University, Sokoto (UDUS was used as the control. The pH was determined using pH meter model Hanna (H1991301, quantity of mineral elements was evaluated in accordance with Murphy and Fungi were isolated from the three oil contaminated samples (A, B. and C and the uncontaminated (sample D as control, this was done by standard procedure using the method of P. Ren, T. Jankun & B. Leaderer. The physical, chemical, and mineral elements from the oil-contaminated soils of the three automobile garages and control. The results of particle soil analysis revealed the high content of sandy soil (96.2 to 87.3 and silt is the lowest with (2.5–0.6. Magnesium had the highest concentration of studied minerals, ranging from 193 to 649.2 mg/kg. while PH result revealed that the soil samples were pH value ranged from (16.85–16.20 in oil Contaminated samples, while the control had 15.90, and electrical conductivity ranged from 12.8–13.8 % and 28 % in control, four fungal isolates Aspergillus sp., Penicillum sp., Mucor sp. and Sporobolomyces sp. were identified based on colonial, sexual and morphological characteristics. These fungal strains can be used in bioremediation process and oil pollution reduction in aquatic ecosystems.

  1. Trichoderma reesei FS10-C enhances phytoremediation of Cd-contaminated soil by Sedum plumbizincicola and associated soil microbial activities

    Science.gov (United States)

    Teng, Ying; Luo, Yang; Ma, Wenting; Zhu, Lingjia; Ren, Wenjie; Luo, Yongming; Christie, Peter; Li, Zhengao

    2015-01-01

    This study aimed to explore the effects of Trichoderma reesei FS10-C on the phytoremediation of Cd-contaminated soil by the hyperaccumulator Sedum plumbizincicola and on soil fertility. The Cd tolerance of T. reesei FS10-C was characterized and then a pot experiment was conducted to investigate the growth and Cd uptake of S. plumbizincicola with the addition of inoculation agents in the presence and absence of T. reesei FS10-C. The results indicated that FS10-C possessed high Cd resistance (up to 300 mg L-1). All inoculation agents investigated enhanced plant shoot biomass by 6–53% of fresh weight and 16–61% of dry weight and Cd uptake by the shoots by 10–53% compared with the control. All inoculation agents also played critical roles in increasing soil microbial biomass and microbial activities (such as biomass C, dehydrogenase activity and fluorescein diacetate hydrolysis activity). Two inoculation agents accompanied by FS10-C were also superior to the inoculation agents, indicating that T. reesei FS10-C was effective in enhancing both Cd phytoremediation by S. plumbizincicola and soil fertility. Furthermore, solid fermentation powder of FS10-C showed the greatest capacity to enhance plant growth, Cd uptake, nutrient release, microbial biomass and activities, as indicated by its superior ability to promote colonization by Trichoderma. The solid fermentation powder of FS10-C might serve as a suitable inoculation agent for T. reesei FS10-C to enhance both the phytoremediation efficiency of Cd-contaminated soil and soil fertility. PMID:26113858

  2. Effects of chemical oxidation on sorption and desorption of PAHs in typical Chinese soils

    International Nuclear Information System (INIS)

    Chen Wei; Hou Lei; Luo Xiaoli; Zhu Lingyan

    2009-01-01

    In situ chemical oxidation is a commonly applied soil and groundwater remediation technology, but can have significant effects on soil properties, which in turn might affect fate and transport of organic contaminants. In this study, it was found that oxidation treatment resulted mainly in breakdown of soil organic matter (SOM) components. Sorption of naphthalene and phenanthrene to the original soils and the KMnO 4 -treated soils was linear, indicating that hydrophobic partitioning to SOM was the predominant mechanism for sorption. Desorption from the original and treated soils was highly resistant, and was well modeled with a biphasic desorption model. Desorption of residual naphthalene after treating naphthalene-contaminated soils with different doses of KMnO 4 also followed the biphasic desorption model very well. It appears that neither changes of soil properties caused by chemical oxidation nor direct chemical oxidation of contaminated soils had a noticeable effect on the nature of PAH-SOM interactions. - Chemical oxidation of soils had little effect on the mechanisms controlling sorption and desorption of PAHs.

  3. Aided Phytostabilization of Copper Contaminated Soils with L. Perenne and Mineral Sorbents as Soil Amendments

    Science.gov (United States)

    Radziemska, Maja

    2017-09-01

    The present study was designed to assess phytostabilization strategies for the treatment of soil co-contaminated by increasing levels of copper with the application mineral amendments (chalcedonite, zeolite, dolomite). From the results it will be possible to further elucidate the benefits or potential risks derived from the application of different types of mineral amendments in the remediation of a copper contaminated soil. A glasshouse pot experiment was designed to evaluate the potential use of different amendments as immobilizing agents in the aided phytostabilization of Cu-contaminated soil using ryegrass (Lolium perenne L.). The content of trace elements in plants and total in soil, were determined using the method of spectrophotometry. All of the investigated element contents in the tested parts of L. perenne were significantly different in the case of applying mineral amendments to the soil, as well as increasing concentrations of copper. The greatest average above-ground biomass was observed for soil amended with chalcedonite. In this experiment, all analyzed metals accumulated predominantly in the roots of the tested plant. In general, applying mineral amendments to soil contributed to decreased levels of copper concentrations.

  4. White popular (Populus alba L.) - Litter impact on chemical and biochemical parameters related to nitrogen cycle in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ciadamidaro, L.; Madejon, P.; Cabrera, F.; Madejon, E.

    2014-06-01

    Aim of study: The aim of this study was to determine the effect of litter from Populus alba on chemical and biochemical properties related to the N cycle in soils with different pH values and trace element contents. We hypothesized that this litter would influence several parameters related to the N cycle and consequently to soil health. Area of study: we collected two reforested contaminated soils of different pH values (AZ pH 7.23 and DO pH 2.66) and a non-contaminated soil (RHU pH 7.19). Materials and methods: Soil samples were placed in 2,000 cm{sup 3} microcosms and were incubated for 40 weeks in controlled conditions. Each soil was mixed with its corresponding litter, and soils without litter were also tested for comparison. Ammonium (NH{sub 4}{sup 4}+-N) and nitrate (NO{sub 3}{sup -} -N) content, potential nitrification rate (PNR), microbial biomass nitrogen (MBN), protease activity, and several chemical properties such as pH, available trace element concentrations (extracted with 0.01 M CaCl{sub 2}) were determined at different times of incubation. Main results: Values of available trace elements did not vary during the incubation and were always higher in acid soil. In neutral soils litter presence increased values of Kjeldahl-N, NO{sub 3} –-N content, potential nitrification rate (PNR), microbial biomass nitrogen (MBN) and protease activity. Presence of trace elements in neutral soils did not alter the parameters studied. However, acidic pH and high content of available trace elements strongly affected NH{sub 4}{sup +}-N and NO{sub 3}{sup -} -N, microbial biomass N and protease activity. Research highlights: Our results showed the negative effect of the acidity and trace element availability in parameters related with the N-cycle. (Author)

  5. Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis

    International Nuclear Information System (INIS)

    Hankard, Peter K.; Svendsen, Claus; Wright, Julian; Wienberg, Claire; Fishwick, Samantha K.; Spurgeon, David J.; Weeks, Jason M.

    2004-01-01

    Biological indicators can be used to assess polluted sites but their success depends on the availability of suitable assays. The aim of this study was to investigate the performance of two earthworm biomarkers, lysosomal membrane stability measured using the neutral red retention assay (NRR-T) and the total immune activity (TIA) assay, that have previously been established as responsive to chemical exposure. Responses of the two assays were measured following in situ exposure to complexly contaminated field soils at three industrial sites as well as urban and rural controls. The industrial sites were contaminated with a range of metal (cadmium, copper, lead, zinc, nickel and cobalt) and organic (including polycyclic aromatic hydrocarbons) contaminants, but at concentrations below the 'New Dutch List' Intervention concentrations. Exposed earthworms accumulated both metals and organic compounds at the contaminated sites, indicating that there was significant exposure. No effect on earthworm survival was found at any of the sites. Biomarker measurements, however, indicated significant effects, with lower NRR-T and TIA found in the contaminated soils when compared to the two controls. The results demonstrate that a comparison of soil pollutant concentrations with guideline values would not have unequivocally identified chemical exposure and toxic effect for soil organisms living in these soils. However, the earthworm biomarkers successfully identified significant exposure and biological effects caused by the mixture of chemicals present

  6. Toxicological benchmarks for screening potential contaminants of concern for effects on soil and litter invertebrates and heterotrophic process

    International Nuclear Information System (INIS)

    Will, M.E.; Suter, G.W. II.

    1994-09-01

    One of the initial stages in ecological risk assessments for hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration as open-quotes contaminants of potential concern.close quotes This process is termed open-quotes contaminant screening.close quotes It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to soil- and litter-dwelling invertebrates, including earthworms, other micro- and macroinvertebrates, or heterotrophic bacteria and fungi. This report presents a standard method for deriving benchmarks for this purpose, sets of data concerning effects of chemicals in soil on invertebrates and soil microbial processes, and benchmarks for chemicals potentially associated with United States Department of Energy sites. In addition, literature describing the experiments from which data were drawn for benchmark derivation. Chemicals that are found in soil at concentrations exceeding both the benchmarks and the background concentration for the soil type should be considered contaminants of potential concern

  7. Toxicological benchmarks for screening potential contaminants of concern for effects on soil and litter invertebrates and heterotrophic process

    Energy Technology Data Exchange (ETDEWEB)

    Will, M.E.; Suter, G.W. II

    1994-09-01

    One of the initial stages in ecological risk assessments for hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration as {open_quotes}contaminants of potential concern.{close_quotes} This process is termed {open_quotes}contaminant screening.{close_quotes} It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to soil- and litter-dwelling invertebrates, including earthworms, other micro- and macroinvertebrates, or heterotrophic bacteria and fungi. This report presents a standard method for deriving benchmarks for this purpose, sets of data concerning effects of chemicals in soil on invertebrates and soil microbial processes, and benchmarks for chemicals potentially associated with United States Department of Energy sites. In addition, literature describing the experiments from which data were drawn for benchmark derivation. Chemicals that are found in soil at concentrations exceeding both the benchmarks and the background concentration for the soil type should be considered contaminants of potential concern.

  8. Chelate-assisted phytoextraction of lead from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, E.M.; Sims, J.T.; Cunningham, S.D.; Huang, J.W.; Berti, W.R.

    1999-12-01

    Phytoextraction, a remediation strategy for lead (Pb)-contaminated soils that removes soil Pb through plant uptake and harvest, may be enhanced by use of synthetic chelates. The authors evaluated Pb desorption from four contaminated soils by seven chelates (CDTA, DTPA, EDDHA, EFTA, HEDTA, HEIDA, and NTA) at three rates. The three most effective chelates (CDTA, DTPA, and HEDTA) were used in greenhouse studies with an uncontaminated soil and a Pb-contaminated soil to determine the effect of chelate type and rate on growth, Pb uptake, and plant elemental composition. Lead desorption varied with chelate and soil and increased with chelate rate, averaging 948 mg Pb kg{sup {minus}1} at the 20 mmol kg{sup {minus}1} rate vs. 28 mg Pb kg{sup {minus}1} by the control. The general ranking of chelate effectiveness, based on total Pb desorbed, was HEDTA > CDTA > DTPA > EGTA > HEIDA > EDDHA {approximately} NTA. Plant uptake of Pb from the contaminated soil was enhanced by CDTA, DTPA, and HEDTA, but with even the most effective treatment (corn, high CDTA rate), the amount of Pb extracted by plants was rather low. Lead extractable by the Toxicity Characteristic Leaching Procedure (TCLP) was increased from 9 mg L{sup {minus}1} in the control to from 47 to 174 mg L{sup {minus}1} in soils treated with 20 mmol kg{sup {minus}1} CDTA or DTPA and chelates generally caused a shift in Pb from resistant to more soluble chemical fractions.

  9. From conceptual model to remediation: bioavailability, a key to clean up heavy metal contaminated soils.

    Science.gov (United States)

    Petruzzelli, Gianniantonio; Pedron, Francesca; Pezzarossa, Beatrice

    2013-04-01

    that aim to increase the bioavailability of pollutants are used in technologies which remove or destroy the solubilized contaminants. These procedures can increase mass transfer from the absorbed phase by means of sieving in order to decrease the diffusion processes (soil washing), by increasing the temperature (low temperature thermal desorption), or through the addition of chemical additives, such as chelating agents (Phytoextraction Elektrokinetic remediation). Concluding remarks Bioavailability should be a key component of the exposure evaluation in order to develop the conceptual model and to select the technology, in particular when: • only some chemical forms of contaminants are a source of risk for the site; • default assumptions regarding bioavailability are not suitable because of the site's specific characteristics; • the final destination of the site will not be modified at least in the near future.

  10. Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury.

    Science.gov (United States)

    Hseu, Zeng-Yei; Huang, Yu-Tuan; Hsi, Hsing-Cheng

    2014-09-01

    When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (> 50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550 degrees C with a heating rate of 5 degrees C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550 degrees C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg. Implications: A remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants.

  11. Organic and inorganic amendment application on mercury-polluted soils: effects on soil chemical and biochemical properties.

    Science.gov (United States)

    García-Sánchez, Mercedes; Klouza, Martin; Holečková, Zlata; Tlustoš, Pavel; Száková, Jiřina

    2016-07-01

    On the basis of a previous study performed in our laboratory, the use of organic and inorganic amendments can significantly modify the Hg mobility in soil. We have compared the effectiveness of organic and inorganic amendments such as digestate and fly ash, respectively, reducing the Hg mobility in Chernozem and Luvisol soils differing in their physicochemical properties. Hence, the aim of this work was to compare the impact of digestate and fly ash application on the chemical and biochemical parameters in these two mercury-contaminated soils in a model batch experiment. Chernozem and Luvisol soils were artificially contaminated with Hg and then incubated under controlled conditions for 21 days. Digestate and fly ash were applied to both soils in a dose of 10 and 1.5 %, respectively, and soil samples were collected after 1, 7, 14, and 21 days of incubation. The presence of Hg in both soils negatively affected to processes such as nitrification, provoked a decline in the soil microbial biomass C (soil microbial biomass C (MBC)), and the microbial activities (arylsulfatase, and β-glucosaminidase) in both soils. Meanwhile, the digestate addition to Chernozem and Luvisol soils contaminated with Hg improved the soil chemical properties (pH, dissolved organic carbon (DOC), N (Ntot), inorganic-N forms (N-NH4 (+) and N-NO3 (-))), as consequence of high content in C and N contained in digestate. Likewise, the soil MBC and soil microbial activities (dehydrogenase, arylsulfatase, and β-glucosaminidase) were greatly enhanced by the digestate application in both soils. In contrast, fly ash application did not have a remarkable positive effect when compared to digestate in Chernozem and Luvisol soil contaminated with mercury. These results may indicate that the use of organic amendments such as digestate considerably improved the soil health in Chernozem and Luvisol compared with fly ash, alleviating the detrimental impact of Hg. Probably, the chemical properties present in

  12. Stabilization of Rocky Flats combustible residues contaminated with plutonium metal and organic solvents

    International Nuclear Information System (INIS)

    Bowen, S.M.; Cisneros, M.R.; Jacobson, L.L.; Schroeder, N.C.; Ames, R.L.

    1998-01-01

    This report describes tests on a proposed flowsheet designed to stabilize combustible residues that were generated at the Rocky Flats Environmental Technology Site (RFETS) during the machining of plutonium metal. Combustible residues are essentially laboratory trash contaminated with halogenated organic solvents and plutonium metal. The proposed flowsheet, designed by RFETS, follows a glovebox procedure that includes (1) the sorting and shredding of materials, (2) a low temperature thermal desorption of solvents from the combustible materials, (3) an oxidation of plutonium metal with steam, and (4) packaging of the stabilized residues. The role of Los Alamos National Laboratory (LANL) in this study was to determine parameters for the low temperature thermal desorption and steam oxidation steps. Thermal desorption of carbon tetrachloride (CCl 4 ) was examined using a heated air stream on a Rocky Flats combustible residue surrogate contaminated with CCl 4 . Three types of plutonium metal were oxidized with steam in a LANL glovebox to determine the effectiveness of this procedure for residue stabilization. The results from these LANL experiments are used to recommend parameters for the proposed RFETS stabilization flowsheet

  13. Prediction of the effects of soil-based countermeasures on soil solution chemistry of soils contaminated with radiocesium using the hydrogeochemical code PHREEQC.

    Science.gov (United States)

    Hormann, Volker; Kirchner, Gerald

    2002-04-22

    For agriculturally used areas, which are contaminated by the debris from a nuclear accident, the use of chemical amendmends (e.g. potassium chloride and lime) is among the most common soil-based countermeasures. These countermeasures are intended to reduce the plant uptake of radionuclides (mainly 137Cs and 90Sr) by competitive inhibition by chemically similar ions. So far, the impacts of countermeasures on soil solution composition - and thus, their effectiveness - have almost exclusively been established experimentally, since they depend on mineral composition and chemical characteristics of the soil affected. In this study, which focuses on caesium contamination, the well-established code PHREEQC was used as a geochemical model to calculate the changes in the ionic compositions of soil solutions, which result from the application of potassium or ammonium in batch equilibrium experiments. The simple ion exchange model used by PHREEQC was improved by taking into account selective sorption of Cs+, NH4+ and K+ by clay minerals. Calculations were performed with three different initial soil solution compositions, corresponding to particular soil types (loam, sand, peat). For loamy and sandy soils, our calculational results agree well with experimental data reported by Nisbet (Effectiveness of soil-based countermeasures six months and one year after contamination of five diverse soil types with caesium-134 and strontium-90. Contract Report NRPB-M546, National Radiation Protection Board, Chilton, 1995.). For peat, discrepancies were found indicating that for organic soils a reliable set of exchange constants of the relevant cations still has to be determined experimentally. For cesium, however, these discrepancies almost disappeared if selective sites were assumed to be inaccessible. Additionally, results of sensitivity analyses are presented by which the influence of the main soil parameters on Cs+ concentrations in solution after soil treatment has been systematically

  14. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils.

    Science.gov (United States)

    Adetutu, Eric; Weber, John; Aleer, Sam; Dandie, Catherine E; Aburto-Medina, Arturo; Ball, Andrew S; Juhasz, Albert L

    2013-10-15

    In this study, impediments to hydrocarbon biodegradation in contaminated soils were assessed using chemical and molecular methodologies. Two long-term hydrocarbon contaminated soils were utilised which were similar in physico-chemical properties but differed in the extent of hydrocarbon (C10-C40) contamination (S1: 16.5 g kg(-1); S2: 68.9 g kg(-1)). Under enhanced natural attenuation (ENA) conditions, hydrocarbon biodegradation was observed in S1 microcosms (26.4% reduction in C10-C40 hydrocarbons), however, ENA was unable to stimulate degradation in S2. Although eubacterial communities (PCR-DGGE analysis) were similar for both soils, the alkB bacterial community was less diverse in S2 presumably due to impacts associated with elevated hydrocarbons. When hydrocarbon bioaccessibility was assessed using HP-β-CD extraction, large residual concentrations remained in the soil following the extraction procedure. However, when linear regression models were used to predict the endpoints of hydrocarbon degradation, there was no significant difference (P>0.05) between HP-β-CD predicted and microcosm measured biodegradation endpoints. This data suggested that the lack of hydrocarbon degradation in S2 resulted primarily from limited hydrocarbon bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Disposal of the radioactive contaminated soils from the NPP site

    International Nuclear Information System (INIS)

    Matusek, I.; Plsko, J.; Sajtlava, M.; Hulla, J.; Kovacs, T.

    2004-01-01

    Disposal of contaminated soils at site of NPP is one of the most important task within the frame of research and development tasks of the NPP decommissioning. The works within this field can be seen in several areas. Considered soil activity monitoring, observation of its geo-technical and geo-chemical parameters, volume balance, research of the radio nuclides behaviour in the soil and simulation of their influence on the surrounding environment with special emphasis on underground water, project studies and construction of the disposal facility for contaminated soils. This work presents overview of gained results in the mentioned areas of the research and development. (author)

  16. Bioavailability and mobility of organic contaminants in soil: new three-step ecotoxicological evaluation.

    Science.gov (United States)

    Prokop, Zbyněk; Nečasová, Anežka; Klánová, Jana; Čupr, Pavel

    2016-03-01

    A novel approach was developed for rapid assessment of bioavailability and potential mobility of contaminants in soil. The response of the same test organism to the organic extract, water extract and solid phase of soil was recorded and compared. This approach was designed to give an initial estimate of the total organic toxicity (response to organic extractable fraction), as well as the mobile (response to water extract) and bioavailable fraction (response to solid phase) of soil samples. Eighteen soil samples with different levels of pollution and content of organic carbon were selected to validate the novel three-step ecotoxicological evaluation approach. All samples were chemically analysed for priority contaminants, including aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), hexachlorocyclohexane (HCH) and dichlordiphenyltrichloroethane (DDT). The ecotoxicological evaluation involved determination of toxicity of the organic, mobile and bioavailable fractions of soil to the test organism, bacterium Bacillus cereus. We found a good correlation between the chemical analysis and the toxicity of organic extract. The low toxicity of water extracts indicated low water solubility, and thus, low potential mobility of toxic contaminants present in the soil samples. The toxicity of the bioavailable fraction was significantly greater than the toxicity of water-soluble (mobile) fraction of the contaminants as deduced from comparing untreated samples and water extracts. The bioavailability of the contaminants decreased with increasing concentrations of organic carbon in evaluated soil samples. In conclusion, the three-step ecotoxicological evaluation utilised in this study can give a quick insight into soil contamination in context with bioavailability and mobility of the contaminants present. This information can be useful for hazard identification and risk assessment of soil-associated contaminants. Graphical Abstract New three-step ecotoxicological

  17. Determination of chemical availability of cadmium and zinc in soils using inert soil moisture samplers.

    Science.gov (United States)

    Knight, B P; Chaudri, A M; McGrath, S P; Giller, K E

    1998-01-01

    A rapid method for extracting soil solutions using porous plastic soil-moisture samplers was combined with a cation resin equilibration based speciation technique to look at the chemical availability of metals in soil. Industrially polluted, metal sulphate amended and sewage sludge treated soils were used in our study. Cadmium sulphate amended and industrially contaminated soils all had > 65% of the total soil solution Cd present as free Cd2+. However, increasing total soil Cd concentrations by adding CdSO4 resulted in smaller total soil solution Cd. Consequently, the free Cd2+ concentrations in soil solutions extracted from these soils were smaller than in the same soil contaminated by sewage sludge addition. Amendment with ZnSO4 gave much greater concentrations of free Zn2+ in soil solutions compared with the same soil after long-term Zn contamination via sewage sludge additions. Our results demonstrate the difficulty in comparing total soil solution and free metal ion concentrations for soils from different areas with different physiochemical properties and sources of contamination. However, when comparing the same Woburn soil, Cd was much less available as Cd2+ in soil solution from the CdSO4 amended soils compared with soil contaminated by about 36 years of sewage sludge additions. In contrast, much more Zn was available in soil solution as free Zn2+ in the ZnSO4 amended soils compared with the sewage sludge treated soils.

  18. A critical assessment of asphalt batching as a viable remedial option for hydrocarbon contaminated soils

    International Nuclear Information System (INIS)

    Elliott, E.J.; Brashears, D.F.

    1991-01-01

    Hot mix asphalt production equipment has been successfully utilized in the remediation of soils contaminated with petroleum hydrocarbons. This paper reports that there are two major ways in which this equipment can be used to remediate the petroleum contaminated soils; by incorporating the contaminated soil in the hot mix asphalt product or by using the equipment to clean the soil thermally of the contaminant, leaving a clean soil material. Both of these processes have limitations encompassing technical, political, and certainly liability problems. The remediation of contaminated soil in hot mix asphalt facilities is primarily a physical phenomenon relying on laws of heat and mass transfer. Although chemical changes do occur, the primary function of the process is to cause a physical separation of the contaminant from the soils

  19. Plutonium concentrations in airborne soil at Rocky Flats and Hanford determined during resuspension experiments

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1978-01-01

    Plutonium resuspension results are summarized for experiments conducted by the author at Rocky Flats, onsite on the Hanford reservation, and for winds blowing from offsite onto the Hanford reservation near the Prosser barricade boundary. In each case, plutonium resuspension was shown by increased airborne plutonium concentrations as a function of either wind speed or as compared to fallout levels. All measured airborne concentrations were far below maximum permissible concentrations (MPC). Both plutonium and cesium concentrations on airborne soil were normalized by the quantity of airborne soil sampled. Airborne radionuclide concentrations in μCi/g were related to published values for radionuclide concentrations on surface soils. For this ratio of radionuclide concentration per gram on airborne soil divided by that for ground surface soil, there are eight orders of magnitude uncertainty from 10 -4 to 10 4 . This uncertainty in the equality between plutonium concentrations per gram on airborne and surface soils is caused by only a fraction of the collected airborne soil being transported from offsite rather than all being resuspended from each study site and also by the great variabilities in surface contamination. Horizontal plutonium fluxes on airborne nonrespirable soils at all three sites were bracketed within the same four orders of magnitude from 10 -7 to 10 -3 μCi/(m 2 day) for 239 Pu and 10 -8 to 10 -5 μCi/(m 2 day) for 238 Pu. Airborne respirable 239 Pu concentrations increased with wind speed for a southwest wind direction coming from offsite near the Hanford reservation Prosser barricade. Airborne plutonium fluxes on nonrespirable particles had isotopic ratios, 240 Pu/ 239 240 Pu, similar to weapons grade plutonium rather than fallout plutonium

  20. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production.

    Science.gov (United States)

    Kim, Kwon-Rae; Kim, Jeong-Gyu; Park, Jeong-Sik; Kim, Min-Suk; Owens, Gary; Youn, Gyu-Hoon; Lee, Jin-Su

    2012-07-15

    Production of food crops on metal contaminated agricultural soils is of concern because consumers are potentially exposed to hazardous metals via dietary intake of such crops or crop derived products. Therefore, the current study was conducted to develop management protocols for crop cultivation to allow safer food production. Metal uptake, as influenced by pH change-induced immobilizing agents (dolomite, steel slag, and agricultural lime) and sorption agents (zeolite and compost), was monitored in three common plants representative of leafy (Chinese cabbage), root (spring onion) and fruit (red pepper) vegetables, in a field experiment. The efficiency of the immobilizing agents was assessed by their ability to decrease the phytoavailability of metals (Cd, Pb, and Zn). The fruit vegetable (red pepper) showed the least accumulation of Cd (0.16-0.29 mgkg(-1) DW) and Pb (0.2-0.9 mgkg(-1) DW) in edible parts regardless of treatment, indicating selection of low metal accumulating crops was a reasonable strategy for safer food production. However, safer food production was more likely to be achievable by combining crop selection with immobilizing agent amendment of soils. Among the immobilizing agents, pH change-induced immobilizers were more effective than sorption agents, showing decreases in Cd and Pb concentrations in each plant well below standard limits. The efficiency of pH change-induced immobilizers was also comparable to reductions obtained by 'clean soil cover' where the total metal concentrations of the plow layer was reduced via capping the surface with uncontaminated soil, implying that pH change-induced immobilizers can be practically applied to metal contaminated agricultural soils for safer food production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil.

    Science.gov (United States)

    Sutton, Nora B; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-02-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. In-situ vitrification of radioactively contaminated soils: summary paper

    International Nuclear Information System (INIS)

    Buelt, J.L.; Fitzpatrick, V.F.

    1987-01-01

    The in-situ vitrification (ISV) process is a new technology that has been developed from its conceptual phase through selected field-scale application tests during the last six years. In situ vitrification converts contaminated soils and waste inclusions into a durable glass and crystalline waste form by in-place melting. Electrodes are inserted into the soil to be treated and an electrical current is passed through the soil to be treated and an electrical current is passed through the soil to melt it. After cooling, the process fixes (TRU) and fission product radionuclides making them relatively nonleachable, resistant to intrusion, and nondispersible when intentionally disturbed. Another application considered for isolation of radioactively contaminated soils, but not yet developed, is the generation of impermeable barrier walls to prevent ground water seepage into a site. The barrier technique could also be used over the surface of an existing disposal site to deter plant and animal intrusion. The development units have been extensively tested with many types of soils and waste inclusions such as concrete, buried metals, sealed containers, organic chemicals with high boiling points such as polychlorinated biphenyls, and inorganic chemicals, including toxic heavy metals, nitrates, and sulfates. Nitrates and organics are destroyed, while heavy metals and fluorides are retained to a high percentage within the molten soil during processing. At $200 to $300/m 3 for radioactive waste, the process is economically competitive with many alternative remediation processes. The ISV process has been developed to the point where it is ready for large-scale field testing at an actual TRU-contaminated soil site. 5 references, 2 figures, 2 tables

  3. The removal of mercury from solid mixed waste using chemical leaching processes

    International Nuclear Information System (INIS)

    Gates, D.D.; Chao, K.K.; Cameron, P.A.

    1995-07-01

    The focus of this research was to evaluate chemical leaching as a technique to treat soils, sediments, and glass contaminated with either elemental mercury or a combination of several mercury species. Potassium iodide/iodine solutions were investigated as chemical leaching agents for contaminated soils and sediments. Clean, synthetic soil material and surrogate storm sewer sediments contaminated with mercury were treated with KI/I 2 solutions. It was observed that these leaching solutions could reduce the mercury concentration in soil and sediments by 99.8%. Evaluation of selected posttreatment sediment samples revealed that leachable mercury levels in the treated solids exceeded RCRA requirements. The results of these studies suggest that KI/I 2 leaching is a treatment process that can be used to remove large quantities of mercury from contaminated soils and sediments and may be the only treatment required if treatment goals are established on Hg residual concentrations in solid matrices. Fluorescent bulbs were used to simulate mercury contaminated glass mixed waste. To achieve mercury contamination levels similar to those found in larger bulbs such as those used in DOE facilities a small amount of Hg was added to the crushed bulbs. The most effective agents for leaching mercury from the crushed fluorescent bulbs were KI/I 2 , NaOCl, and NaBr + acid. Radionuclide surrogates were added to both the EPA synthetic soil material and the crushed fluorescent bulbs to determine the fate of radionuclides following chemical leaching with the leaching agents determined to be the most promising. These experiments revealed that although over 98% of the dosed mercury solubilized and was found in the leaching solution, no Cerium was measured in the posttreatment leaching solution. This finding suggest that Uranium, for which Ce was used as a surrogate, would not solubilize during leaching of mercury contaminated soil or glass

  4. Cleanup levels for Am-241, Pu-239, U-234, U-235 and U-238 in soils at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Roberts, R.; Colby, B.; Brooks, L.; Slaten, S.

    1997-01-01

    This presentation briefly outlines a cleanup program at a Rocky Flats site through viewgraphs and an executive summary. Exposure pathway analyses to be performed are identified, and decontamination levels are listed for open space and office worker exposure areas. The executive summary very briefly describes the technical approach, RESRAD computer code to be used for analyses, recommendations for exposure levels, and application of action levels to multiple radionuclide contamination. Determination of action levels for surface and subsurface soils, based on radiation doses, is discussed. 1 tab

  5. Firm contracts for treatability tests on contaminated soils

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Geosafe Corporation, a Pacific Northwest-headquartered hazardous waste remediation company, announced that is has successfully completed treatability testing of contaminated soils under contract with Woodward Clyde Consultants of Denver, Colorado, the prime contractor for a major hazardous waste site in the Western United States. The tests are being conducted at the University of Washington with Geosafe's specially-designed test equipment. The recently concluded testing confirms the ability of Geosafe's patented in situ vitrification (ISV) technology to treat soils containing a variety of organic and inorganic contaminants. ISV, for which Geosafe has worldwide rights, is the only technology available today that will fully comply with the Superfund Amendments and Reauthorization Act. The ability of ISV to treat mixtures of organic, inorganic and radioactive wastes in situ, in a single process, offers distinct advantages over excavation, transportation and incineration. During the ISV process, organic contaminants are pyrolized and the inorganics present are chemically incorporated into the molten soil which, when cooled, resembles naturally-occurring obsidian

  6. The Combination of DGT Technique and Traditional Chemical Methods for Evaluation of Cadmium Bioavailability in Contaminated Soils with Organic Amendment

    Science.gov (United States)

    Yao, Yu; Sun, Qin; Wang, Chao; Wang, Pei-Fang; Miao, Ling-Zhan; Ding, Shi-Ming

    2016-01-01

    Organic amendments have been proposed as a means of remediation for Cd-contaminated soils. However, understanding the inhibitory effects of organic materials on metal immobilization requires further research. In this study colza cake, a typical organic amendment material, was investigated in order to elucidate the ability of this material to reduce toxicity of Cd-contaminated soil. Available concentrations of Cd in soils were measured using an in situ diffusive gradients in thin films (DGT) technique in combination with traditional chemical methods, such as HOAc (aqua regia), EDTA (ethylene diamine tetraacetic acid), NaOAc (sodium acetate), CaCl2, and labile Cd in pore water. These results were applied to predict the Cd bioavailability after the addition of colza cake to Cd-contaminated soil. Two commonly grown cash crops, wheat and maize, were selected for Cd accumulation studies, and were found to be sensitive to Cd bioavailability. Results showed that the addition of colza cake may inhibit the growth of wheat and maize. Furthermore, the addition of increasing colza cake doses led to decreasing shoot and root biomass accumulation. However, increasing colza cake doses did lead to the reduction of Cd accumulation in plant tissues, as indicated by the decreasing Cd concentrations in shoots and roots. The labile concentration of Cd obtained by DGT measurements and the traditional chemical extraction methods, showed the clear decrease of Cd with the addition of increasing colza cake doses. All indicators showed significant positive correlations (p soil solution decreased with increasing colza cake doses. This was reflected by the decreases in the ratio (R) value of CDGT to Csol. Our study suggests that the sharp decrease in R values could not only reflect the extremely low capability of labile Cd to be released from its solid phase, but may also be applied to evaluate the abnormal growth of the plants. PMID:27314376

  7. The Combination of DGT Technique and Traditional Chemical Methods for Evaluation of Cadmium Bioavailability in Contaminated Soils with Organic Amendment.

    Science.gov (United States)

    Yao, Yu; Sun, Qin; Wang, Chao; Wang, Pei-Fang; Miao, Ling-Zhan; Ding, Shi-Ming

    2016-06-15

    Organic amendments have been proposed as a means of remediation for Cd-contaminated soils. However, understanding the inhibitory effects of organic materials on metal immobilization requires further research. In this study colza cake, a typical organic amendment material, was investigated in order to elucidate the ability of this material to reduce toxicity of Cd-contaminated soil. Available concentrations of Cd in soils were measured using an in situ diffusive gradients in thin films (DGT) technique in combination with traditional chemical methods, such as HOAc (aqua regia), EDTA (ethylene diamine tetraacetic acid), NaOAc (sodium acetate), CaCl₂, and labile Cd in pore water. These results were applied to predict the Cd bioavailability after the addition of colza cake to Cd-contaminated soil. Two commonly grown cash crops, wheat and maize, were selected for Cd accumulation studies, and were found to be sensitive to Cd bioavailability. Results showed that the addition of colza cake may inhibit the growth of wheat and maize. Furthermore, the addition of increasing colza cake doses led to decreasing shoot and root biomass accumulation. However, increasing colza cake doses did lead to the reduction of Cd accumulation in plant tissues, as indicated by the decreasing Cd concentrations in shoots and roots. The labile concentration of Cd obtained by DGT measurements and the traditional chemical extraction methods, showed the clear decrease of Cd with the addition of increasing colza cake doses. All indicators showed significant positive correlations (p soil solution decreased with increasing colza cake doses. This was reflected by the decreases in the ratio (R) value of CDGT to Csol. Our study suggests that the sharp decrease in R values could not only reflect the extremely low capability of labile Cd to be released from its solid phase, but may also be applied to evaluate the abnormal growth of the plants.

  8. Chemical warfare agents.

    Science.gov (United States)

    Kuca, Kamil; Pohanka, Miroslav

    2010-01-01

    Chemical warfare agents are compounds of different chemical structures. Simple molecules such as chlorine as well as complex structures such as ricin belong to this group. Nerve agents, vesicants, incapacitating agents, blood agents, lung-damaging agents, riot-control agents and several toxins are among chemical warfare agents. Although the use of these compounds is strictly prohibited, the possible misuse by terrorist groups is a reality nowadays. Owing to this fact, knowledge of the basic properties of these substances is of a high importance. This chapter briefly introduces the separate groups of chemical warfare agents together with their members and the potential therapy that should be applied in case someone is intoxicated by these agents.

  9. Effect of crude oil contamination on the engineering behavior of clay soils

    International Nuclear Information System (INIS)

    Rehman, H.; Abdoljaowad, S.N.

    2005-01-01

    Humans are, unintentionally or intentionally contaminating soil from different sources. The contaminated soil are not only a challenge for the environmentalists but also for geotechnical engineers. When contaminated by crude oil, the soil is subjected to a change in its engineering properties. The soil, which is mostly affected by its environment, is clay, being active electro-chemically. So, a comprehensive laboratory-testing program was performed to compare the engineering properties of an uncontaminated and a contaminated clay. Laboratory tests included all basic and advanced geotechnical tests along with Scanning Electron Microscope (SEM). Crude oil was chosen as the contaminant. The clay was taken from the Al-Qatif area of the Eastern province of Saudi Arabia. The selected soil is considered to be highly expansive in nature. The comparison between uncontaminated and crude oil contaminated clay showed that there would be a significant change in the engineering behavior of the clay if it were contaminated by crude oil. The contaminated clay behaves more like sand, owing to the formation of agglomerates. The coarse-grained soil-like behavior was observed in the strength of the oil-contaminated clay. The contamination has affected the plasticity and the cation exchange capacity of the investigated clay. The swelling pressure of the contaminated clay is 1/3 of that of the uncontaminated clay while the swelling is almost the same. (author)

  10. Pyrene removal from contaminated soil using electrokinetic process combined with surfactant

    Directory of Open Access Journals (Sweden)

    Seyed Enayat Hashemi

    2015-07-01

    Full Text Available Background: Pyrene is one of the stable polycyclic aromatic hydrocarbons that is considered as an important pollutants, because of extensive distribution in the environment and carcinogenic and mutagenic properties. Among the various treatment techniques, electrokinetic method is an environmental- friendly process for organic and mineral pollutants adsorbed to soil with fine pore size the same as clay and low hydraulic conductivity soils. For improving the efficiency of pyrene removal from soil, soulobilization of pyrene from soil could be used by surfactants. Materials and Methods : In this study, clay soil was selected as model because of the specific properties. Combined method using surfactant and electrokinetic was applied for pyrene removal from soil. Experiments were designed using response surface methodology (RSM, and effect of three variables includes surfactant concentration, voltage and surfactant type were evaluated for pyrene removal from contaminated soil. Results: Pyrene removal using anionic surfactants(SDS and nonionic surfactants(TX100 as a solubilizing agents has high removal efficiency. In the optimum condition with 95% confidence coefficient, utilizing mixed surfactants of sodium dodecyl sulfate and triton X-100 with the same volume, induced of 18.54 volt and 6.53 percent surfactant concentration have 94.6% pyrene removal efficiency. Conclusion:: Results of this study shows that electrokinetic process combined with surfactant as solubilizing agent could be applied as an efficient method for treating the pyrene-contaminated soils.

  11. Deep soil mixing for reagent delivery and contaminant treatment

    International Nuclear Information System (INIS)

    Korte, N.; Gardner, F.G.; Cline, S.R.; West, O.R.

    1997-01-01

    Deep soil mixing was evaluated for treating clay soils contaminated with TCE and its byproducts at the Department of Energy's Kansas City Plant. The objective of the project was to evaluate the extent of limitations posed by the stiff, silty-clay soil. Three treatment approaches were tested. The first was vapor stripping. In contrast to previous work, however, laboratory treatability studies indicated that mixing saturated, clay soil was not efficient unless powdered lime was added. Thus, powder injection of lime was attempted in conjunction with the mixing/stripping operation. In separate treatment cells, potassium permanganate solution was mixed with the soil as a means of destroying contaminants in situ. Finally, microbial treatment was studied in a third treatment zone. The clay soil caused operational problems such as breakage of the shroud seal and frequent reagent blowouts. Nevertheless, treatment efficiencies of more than 70% were achieved in the saturated zone with chemical oxidation. Although expensive ($1128/yd 3 ), there are few alternatives for soils of this type

  12. Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays.

    Science.gov (United States)

    Hentati, Olfa; Lachhab, Radhia; Ayadi, Mariem; Ksibi, Mohamed

    2013-04-01

    The assessment of soil quality after a chemical or oil spill and/or remediation effort may be measured by evaluating the toxicity of soil organisms. To enhance our understanding of the soil quality resulting from laboratory and oil field spill remediation, we assessed toxicity levels by using earthworms and springtails testing and plant growth experiments. Total petroleum hydrocarbons (TPH)-contaminated soil samples were collected from an oilfield in Sfax, Tunisia. Two types of bioassays were performed. The first assessed the toxicity of spiked crude oil (API gravity 32) in Organization for Economic Co-operation and Development artificial soil. The second evaluated the habitat function through the avoidance responses of earthworms and springtails and the ability of Avena sativa to grow in TPH-contaminated soils diluted with farmland soil. The EC50 of petroleum-contaminated soil for earthworms was 644 mg of TPH/kg of soil at 14 days, with 67 % of the earthworms dying after 14 days when the TPH content reached 1,000 mg/kg. The average germination rate, calculated 8 days after sowing, varied between 64 and 74 % in low contaminated soils and less than 50 % in highly contaminated soils.

  13. Bench Scale Treatability Studies of Contaminated Soil Using Soil Washing Technique

    Directory of Open Access Journals (Sweden)

    M. K. Gupta

    2010-01-01

    Full Text Available Soil contamination is one of the most widespread and serious environmental problems confronting both the industrialized as well as developing nations like India. Different contaminants have different physicochemical properties, which influence the geochemical reactions induced in the soils and may bring about changes in their engineering and environmental behaviour. Several technologies exist for the remediation of contaminated soil and water. In the present study soil washing technique using plain water with surfactants as an enhancer was used to study the remediation of soil contaminated with (i an organic contaminant (engine lubricant oil and (ii an inorganic contaminant (heavy metal. The lubricant engine oil was used at different percentages (by dry weight of the soil to artificially contaminate the soil. It was found that geotechnical properties of the soil underwent large modifications on account of mixing with the lubricant oil. The sorption experiments were conducted with cadmium metal in aqueous medium at different initial concentration of the metal and at varying pH values of the sorbing medium. For the remediation of contaminated soil matrices, a nonionic surfactant was used for the restoration of geotechnical properties of lubricant oil contaminated soil samples, whereas an anionic surfactant was employed to desorb cadmium from the contaminated soil matrix. The surfactant in case of soil contaminated with the lubricant oil was able to restore properties to an extent of 98% vis-à-vis the virgin soil, while up to 54% cadmium was desorbed from the contaminated soil matrix in surfactant aided desorption experiments.

  14. Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil.

    Science.gov (United States)

    Pei, Guangpeng; Zhu, Yuen; Cai, Xiatong; Shi, Weiyu; Li, Hua

    2017-10-01

    Surfactant-enhanced remediation is used to treat dichlorobenzene (DCB) contaminated soil. In this study, soil column experiments were conducted to investigate the removal efficiencies of o-dichlorobenzene (o-DCB) and p-dichlorobenzene (p-DCB) from contaminated soil using micellar solutions of biosurfactants (saponin, alkyl polyglycoside) compare to a chemically synthetic surfactant (Tween 80). Leachate was collected and analyzed for o-DCB and p-DCB content. In addition, soil was analyzed to explore the effect of surfactants on soil enzyme activities. Results showed that the removal efficiency of o-DCB and p-DCB was highest for saponin followed by alkyl polyglycoside and Tween 80. The maximum o-DCB and p-DCB removal efficiencies of 76.34% and 80.43%, respectively, were achieved with 4 g L -1 saponin solution. However, an opposite result was observed in the cumulative mass of o-DCB and p-DCB in leachate. The cumulative extent of o-DCB and p-DCB removal by the biosurfactants saponin and alkyl polyglycoside was lower than that of the chemically synthetic surfactant Tween 80 in leachate. Soil was also analyzed to explore the effect of surfactants on soil enzyme activities. The results indicated that surfactants were potentially effective in facilitating soil enzyme activities. Thus, it was confirmed that the biosurfactants saponin and alkyl polyglycoside could be used for remediation of o-DCB and p-DCB contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Potential of Biological Agents in Decontamination of Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif Javaid

    2016-01-01

    Full Text Available Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  16. Potential of Biological Agents in Decontamination of Agricultural Soil.

    Science.gov (United States)

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  17. Soil Contamination With Eggs of Toxocara Species in Public Parks of Karaj, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Zibaei

    2017-05-01

    Full Text Available Background: Human toxocariasis is one of the zoonotic helminth diseases that is usually occurred with exposure to contaminated soil. Both Toxocara canis and Toxocara cati are considered the causative agents of Toxocara infection. Objectives: This survey was intended to provide data on the Toxocara species eggs contamination in soil samples in the public parks of Karaj, Iran. Materials and Methods: This study was carried out among 200 soil samples collected from 12 public parks between August and September 2016 to examine the soil contamination with Toxocara species eggs. Soil samples were tested for the presence of Toxocara eggs using sucrose flotation method. Results: Prevalence of Toxocara species eggs in soil samples collected from public parks was 36.4%. The highest number of eggs recovered from 200 g of soil was 20. A total of 200 eggs were recovered and 7.6% were fully developed to embryonated egg stages. The contamination rate in the third region in 4 studied areas was higher than the other regions. A similar tendency was observed in park areas, so that parks higher than 5000 m2 were highly contaminated. Conclusion: According to the results of this study, soils of the public parks in Karaj are one of the main risk factors for human toxocariasis.

  18. Electrochemical remediation of the phenol contaminated clay soils

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A.; Lazareva, E.V. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The study phenol migration induced by electric current is multiple analyze, because determine the governing factor of electrokinetic remediation is one more problem. The governing factor of phenol removal can be electroosmotic water transport, ionic migration or phenol destruction caused by electrolysis or oxidizing agents. Therefore research objective was study mechanism of removal phenol from soils with different mineral composition. To answer on set issue should be studied the effectiveness of electrochemcial remediation for contaminated soil and determination electrokinetic characteristics of interaction clay's particles with phenol solution. (orig.)

  19. Soil Contamination and Remediation Strategies. Current research and future challenge

    Science.gov (United States)

    Petruzzelli, G.

    2012-04-01

    Soil contamination: the heritage of industrial development Contamination is only a part of a whole set of soil degradation processes, but it is one of paramount importance since soil pollution greatly influences the quality of water, food and human health. Soil contamination has been identified as an important issue for action in the European strategy for soil protection, it has been estimated that 3.5 million of sites are potentially contaminated in Europe. Contaminated soils have been essentially discovered in industrial sites landfills and energy production plants, but accumulation of heavy metals and organic compounds can be found also in agricultural land . Remediation strategies. from incineration to bioremediation The assessment of soil contamination is followed by remedial action. The remediation of contaminated soils started using consolidates technologies (incineration inertization etc.) previously employed in waste treatment,. This has contributed to consider a contaminated soil as an hazardous waste. This rough approximation was unfortunately transferred in many legislations and on this basis soil knowledge have been used only marginally in the clean up procedures. For many years soil quality has been identified by a value of concentration of a contaminant and excavation and landfill disposal of soil has been largely used. In the last years the knowledge of remediation technology has rapidly grown, at present many treatment processes appear to be really feasible at field scale, and soil remediation is now based on risk assessment procedures. Innovative technologies, largely dependent on soil properties, such as in situ chemical oxidation, electroremediation, bioventing, soil vapor extraction etc. have been successfully applied. Hazardous organic compounds are commonly treated by biological technologies, biorememdiation and phytoremediation, being the last partially applied also for metals. Technologies selection is no longer exclusively based on

  20. Use of aqueous and solvent extraction to assess risk and bioavailability of contaminated soil

    International Nuclear Information System (INIS)

    Bordelon, N.; Huebner, H.; Washburn, K.; Donnelly, K.C.

    1995-01-01

    Contaminated media at Superfund sites typically consist of complex mixtures of organic and inorganic chemicals. These mixtures are difficult to characterize, both analytically and toxicologically, especially the complex mixtures of polycyclic aromatic hydrocarbons. The current approach to risk assessment assumes that all contaminants in the soil are available for human exposure. EPA protocol uses solvent extraction to remove chemicals from the soil as a basis for estimating risk to the human population. However, contaminants that can be recovered with a solvent extract may not represent chemicals that are available for exposure. A system using aqueous extraction provides a more realistic picture of what chemicals are bioavailable through leaching and ingestion. A study was conducted with coal tar contaminated soil spiked with benzo(a)pyrene, and trinitrotoluene. Samples were extracted with hexane:acetone and water titrated to pH 2 and pH 7. HPLC analysis demonstrated up to 35% and 29% recovery of contaminants from aqueous extracts with an estimated cancer risk one order of magnitude less than that for solvent extracts. Analysis using the Salmonella/microsome assay showed that solvent extracts were genotoxic with metabolic activation while aqueous extracts showed no genotoxicity. These results suggest that aqueous extraction may be useful in determining what contaminants are available for human exposure, as well as what compounds may pose a risk to human health

  1. Development of haemostatic decontaminants for the treatment of wounds contaminated with chemical warfare agents. 2: evaluation of in vitro topical decontamination efficacy using undamaged skin.

    Science.gov (United States)

    Dalton, Christopher H; Hall, Charlotte A; Lydon, Helen L; Chipman, J K; Graham, John S; Jenner, John; Chilcott, Robert P

    2015-05-01

    The risk of penetrating, traumatic injury occurring in a chemically contaminated environment cannot be discounted. Should a traumatic injury be contaminated with a chemical warfare (CW) agent, it is likely that standard haemostatic treatment options would be complicated by the need to decontaminate the wound milieu. Thus, there is a need to develop haemostatic products that can simultaneously arrest haemorrhage and decontaminate CW agents. The purpose of this study was to evaluate a number of candidate haemostats for efficacy as skin decontaminants against three CW agents (soman, VX and sulphur mustard) using an in vitro diffusion cell containing undamaged pig skin. One haemostatic product (WoundStat™) was shown to be as effective as the standard military decontaminants Fuller's earth and M291 for the decontamination of all three CW agents. The most effective haemostatic agents were powder-based and use fluid absorption as a mechanism of action to sequester CW agent (akin to the decontaminant Fuller's earth). The envisaged use of haemostatic decontaminants would be to decontaminate from within wounds and from damaged skin. Therefore, WoundStat™ should be subject to further evaluation using an in vitro model of damaged skin. Copyright © 2014 Crown copyright. Journal of Applied Toxicology © 2014 John Wiley & Sons, Ltd.

  2. The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity.

    Science.gov (United States)

    Rocha, L; Rodrigues, S M; Lopes, I; Soares, A M V M; Duarte, A C; Pereira, E

    2011-09-01

    To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTE's) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTE's only to a limited extent. The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Fe(ox)) and to the reactivity of PTE's in soils which in fact control the soluble fraction of the contaminants. The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTE's in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Microbial and chemical markers: runoff transfer in animal manure-amended soils.

    Science.gov (United States)

    Jaffrezic, Anne; Jardé, Emilie; Pourcher, Anne-Marie; Gourmelon, Michèle; Caprais, Marie-Paule; Heddadj, Djilali; Cottinet, Patrice; Bilal, Muhamad; Derrien, Morgane; Marti, Romain; Mieszkin, Sophie

    2011-01-01

    Fecal contamination of water resources is evaluated by the enumeration of the fecal coliforms and Enterococci. However, the enumeration of these indicators does not allow us to differentiate between the sources of fecal contamination. Therefore, it is important to use alternative indicators of fecal contamination to identify livestock contamination in surface waters. The concentration of fecal indicators (, enteroccoci, and F-specific bacteriophages), microbiological markers (Rum-2-bac, Pig-2-bac, and ), and chemical fingerprints (sterols and stanols and other chemical compounds analyzed by 3D-fluorescence excitation-matrix spectroscopy) were determined in runoff waters generated by an artificial rainfall simulator. Three replicate plot experiments were conducted with swine slurry and cattle manure at agronomic nitrogen application rates. Low amounts of bacterial indicators (1.9-4.7%) are released in runoff water from swine-slurry-amended soils, whereas greater amounts (1.1-28.3%) of these indicators are released in runoff water from cattle-manure-amended soils. Microbial and chemical markers from animal manure were transferred to runoff water, allowing discrimination between swine and cattle fecal contamination in the environment via runoff after manure spreading. Host-specific bacterial and chemical markers were quantified for the first time in runoff waters samples after the experimental spreading of swine slurry or cattle manure. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  4. Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions.

    Science.gov (United States)

    Jho, Eun Hea; Im, Jinwoo; Yang, Kyung; Kim, Young-Jin; Nam, Kyoungphile

    2015-01-01

    This study was set to investigate the changes in the toxicity of arsenic (As)-contaminated soils after washing with phosphate solutions. The soil samples collected from two locations (A: rice paddy and B: forest land) of a former smelter site were contaminated with a similar level of As. Soil washing (0.5 M phosphate solution for 2 h) removed 24.5% As, on average, in soil from both locations. Regardless of soil washing, Location A soil toxicities, determined using Microtox, were greater than that of Location B and this could be largely attributed to different soil particle size distribution. With soils from both locations, the changes in As chemical forms resulted in either similar or greater toxicities after washing. This emphasizes the importance of considering ecotoxicological aspects, which are likely to differ depending on soil particle size distribution and changes in As chemical forms, in addition to the total concentration based remedial goals, in producing ecotoxicologically-sound soils for reuse. In addition, calcium phosphate used as the washing solution seemed to contribute more on the toxic effects of the washed soils than potassium phosphate and ammonium phosphate. Therefore, it would be more appropriate to use potassium or ammonium phosphate than calcium phosphate for phosphate-aided soil washing of the As-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Development of haemostatic decontaminants for treatment of wounds contaminated with chemical warfare agents. 3: Evaluation of in vitro topical decontamination efficacy using damaged skin.

    Science.gov (United States)

    Lydon, Helen L; Hall, Charlotte A; Dalton, Christopher H; Chipman, J Kevin; Graham, John S; Chilcott, Robert P

    2017-08-01

    Previous studies have demonstrated that haemostatic products with an absorptive mechanism of action retain their clotting efficiency in the presence of toxic materials and are effective in decontaminating chemical warfare (CW) agents when applied to normal, intact skin. The purpose of this in vitro study was to assess three candidate haemostatic products for effectiveness in the decontamination of superficially damaged porcine skin exposed to the radiolabelled CW agents, soman (GD), VX and sulphur mustard (HD). Controlled physical damage (removal of the upper 100 μm skin layer) resulted in a significant enhancement of the dermal absorption of all three CW agents. Of the haemostatic products assessed, WoundStat™ was consistently the most effective, being equivalent in performance to a standard military decontaminant (fuller's earth). These data suggest that judicious application of haemostatic products to wounds contaminated with CW agents may be a viable option for the clinical management of casualties presenting with contaminated, haemorrhaging injuries. Further studies using a relevant animal model are required to confirm the potential clinical efficacy of WoundStat™ for treating wounds contaminated with CW agents. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Use of surfactants for the remediation of contaminated soils: a review.

    Science.gov (United States)

    Mao, Xuhui; Jiang, Rui; Xiao, Wei; Yu, Jiaguo

    2015-03-21

    Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Geochemical cartography as a tool for assessing the degree of soil contamination with heavy metals in Poland

    Science.gov (United States)

    Szymon Borkowski, Andrzej; Kwiatkowska-Malina, Jolanta

    2016-04-01

    Spatial disposition of chemical elements including heavy metals in the soil environment is a very important information during preparation of the thematic maps for the environmental protection and/or spatial planning. This knowledge is also essential for the earth's surface and soil's monitoring, designation of areas requiring improvement including remediation. The main source of anthropogenic pollution of soil with heavy metals are industry related to the mining coal and liquid fuels, mining and metallurgy, chemical industry, energy production, waste management, agriculture and transport. The geochemical maps as a kind of specific thematic maps made on the basis of datasets obtained from the Polish Geological Institute's resources allow to get to know the spatial distribution of different chemical elements including heavy metals in soil. The results of the research carried out by the Polish Geological Institute showed strong contamination in some regions in Poland mainly with arsenic, cadmium, lead and nickel. For this reason it was the point to prepare geochemical maps showing contamination of soil with heavy metals, and determine main sources of contamination and zones where heavy metals concentration was higher than acceptable contents. It was also presented a summary map of soil contamination with heavy metals. Additionally, location of highly contaminated zones was compiled with predominant in those areas types of arable soils and then results were thoroughly analyzed. This information can provide a base for further detailed studies on the soil contamination with heavy metals.

  8. Axial compressive bearing capacity of piles in oil-contaminated sandy soil using FCV

    NARCIS (Netherlands)

    Mohammadi, Amirhossein; Ebadi, Taghi; Eslami, Abolfazl; Zee, van der S.E.A.T.M.

    2018-01-01

    Oil and its derivatives contaminate many soils and not only affect their chemical and biological properties but also their geotechnical properties. As oil contamination may deteriorate the functioning of piles, this paper addresses the effects of oil contamination on soil–pile interactions. Axial

  9. Effects of lead mineralogy on soil washing enhanced by ferric salts as extracting and oxidizing agents.

    Science.gov (United States)

    Yoo, Jong-Chan; Park, Sang-Min; Yoon, Geun-Seok; Tsang, Daniel C W; Baek, Kitae

    2017-10-01

    In this study, we evaluated the feasibility of using ferric salts including FeCl 3 and Fe(NO 3 ) 3 as extracting and oxidizing agents for a soil washing process to remediate Pb-contaminated soils. We treated various Pb minerals including PbO, PbCO 3 , Pb 3 (CO 3 ) 2 (OH) 2 , PbSO 4 , PbS, and Pb 5 (PO 4 ) 3 (OH) using ferric salts, and compared our results with those obtained using common washing agents of HCl, HNO 3 , disodium-ethylenediaminetetra-acetic acid (Na 2 -EDTA), and citric acid. The use of 50 mM Fe(NO 3 ) 3 extracted significantly more Pb (above 96% extraction) from Pb minerals except PbSO 4 (below 55% extraction) compared to the other washing agents. In contrast, washing processes using FeCl 3 and HCl were not effective for extraction from Pb minerals because of PbCl 2 precipitation. Yet, the newly formed PbCl 2 could be dissolved by subsequent wash with distilled water under acidic conditions. When applying our washing method to remediate field-contaminated soil from a shooting range that had high concentrations of Pb 3 (CO 3 ) 2 (OH) 2 and PbCO 3 , we extracted more Pb (approximately 99% extraction) from the soil using 100 mM Fe(NO 3 ) 3 than other washing agents at the same process conditions. Our results show that ferric salts can be alternative washing agents for Pb-contaminated soils in view of their extracting and oxidizing abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Chemical and microbiological studies on petroleum contaminated soils after two years of biotreatment

    International Nuclear Information System (INIS)

    Bosecker, K.; Hollerbach, A.; Teschner, M.; Wehner, H.; Kassner, H.

    1993-01-01

    For reclamation of a former refinery area, five batches of 200--300 m 3 of contaminated soil were treated with indigenous or specially selected microorganisms. Partly, the beds were irrigated, nutrients were added or the test sites were heated. After two years of bioremediation soil samples were investigated by chemical and microbiological techniques. Within the period the total concentration of hydrocarbons decreased from 15,000--35,000 mg/kg weight to 3,750--9,400 mg/kg dry weight. The portion of saturated hydrocarbons was reduced by 20--60%. In parallel, the amount of heterocompounds and asphaltenes increased. Polycyclic aromatic hydrocarbons were in the range of 16--31 mg/kg dry weight, phenols were 130--170 μg/kg dry weight. Microbiological investigations resulted in a roughly similar distribution pattern of ecophysiological groups in all samples. Among the heterotrophic aerobes which ranged from 1.2 x 10 7 -- 1.2 x 10 8 cfu/ml oil degrading bacteria predominated (up to 9.4 x 10 7 cells/ml) showing high potential for degradation of saturated hydrocarbons under laboratory conditions

  11. Studies on soil contamination due to used motor oil and its remediation

    International Nuclear Information System (INIS)

    Singh, S.K.; John, S.; Srivastava, R.K.

    2009-01-01

    Used motor oil (UMO) contains lead, chromium, cadmium, naphthalene, chlorinated hydrocarbons and sulphur. Although UMO can be recycled if safely and properly collected, in many cases it is poured into open drains or thrown into the trash where it can contaminate the subsurface soil and ground water. A study was conducted to evaluate the changes in behaviour of soils due to interaction with UMO followed by its remediation. Different types of soils classified as clay with low plasticity, clay with high plasticity, and poorly graded sand were used for the study. Used motor oil was the contaminant and sodium dedecyl sulphate (SDS) was used as the surfactant for decontamination. In order to compare the geotechnical properties before and after contamination, laboratory studies were conducted on uncontaminated soil samples as well as on soil samples simulated to varying degrees of contamination. The contaminants in the soil matrix were held either by chemical adsorption or entrained within the pore space surrounding the soil grains. The study showed that the sensitivity of soil to the contaminants depends not only on the local environment, but also on the mineral structure, particle size, bonding and ion exchange capacity. It was observed that the original geotechnical properties of soils could be almost restored upon decontamination with SDS washing at an optimum dosage. 31 refs., 7 tabs., 3 figs

  12. Partitioning of heavy metals in a soil contaminated by slag: A redistribution study

    International Nuclear Information System (INIS)

    Bunzl, K.; Trautmannsheimer, M.; Schramel, P.

    1999-01-01

    In order to interpret reasonably the partitioning of heavy metals in a contaminated soil as observed from applying a sequential extraction procedure, information on possible redistribution processes of the metals during the various extraction steps is essential. For this purpose, sequential extraction was used to study the chemical partitioning of Ag, Cu, Ni, Pb, and Zn in a soil contaminated wither by a slag from coal firing or by a slag from pyrite roasting. Through additional application of sequential extraction to the pure slags as well as to the uncontaminated soil, it was shown that during the various extraction steps applied to the soil/slag mixtures, substantial redistribution processes of the metals between the slag- and soil particles can occur. In many cases, metals ions released during the extraction with acid hydroxylamine or acid hydrogen peroxide are partially readsorbed by solid constituents of the mixture and will therefore be found in the subsequent fractions extracted. As a result, one has to realize that (1) it will be difficult to predict the chemical partitioning of these metals in contaminated soils by investigating pure slags only, and (2) information on the partitioning of a metal in a slag contaminated soil will not necessarily give any relevant information on the form of this metal in the slag or in the slag/soil mixture, because the redistribution processes during sequential extraction will not be the same as those occurring in the soil solution under natural conditions

  13. Plutonium concentrations in airborne soil at Rocky Flats and Hanford determined during resuspension experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sehmel, G.A.

    1978-01-01

    Plutonium resuspension results are summarized for experiments conducted by the author at Rocky Flats, onsite on the Hanford reservation, and for winds blowing from offsite onto the Hanford reservation near the Prosser barricade boundary. In each case, plutonium resuspension was shown by increased airborne plutonium concentrations as a function of either wind speed or as compared to fallout levels. All measured airborne concentrations were far below maximum permissible concentrations (MPC). Both plutonium and cesium concentrations on airborne soil were normalized by the quantity of airborne soil sampled. Airborne radionuclide concentrations in ..mu..Ci/g were related to published values for radionuclide concentrations on surface soils. For this ratio of radionuclide concentration per gram on airborne soil divided by that for ground surface soil, there are eight orders of magnitude uncertainty from 10/sup -4/ to 10/sup 4/. This uncertainty in the equality between plutonium concentrations per gram on airborne and surface soils is caused by only a fraction of the collected airborne soil being transported from offsite rather than all being resuspended from each study site and also by the great variabilities in surface contamination. Horizontal plutonium fluxes on airborne nonrespirable soils at all three sites were bracketed within the same four orders of magnitude from 10/sup -7/ to 10/sup -3/ ..mu..Ci/(m/sup 2/ day) for /sup 239/Pu and 10/sup -8/ to 10/sup -5/ ..mu..Ci/(m/sup 2/ day) for /sup 238/Pu. Airborne respirable /sup 239/Pu concentrations increased with wind speed for a southwest wind direction coming from offsite near the Hanford reservation Prosser barricade. Airborne plutonium fluxes on nonrespirable particles had isotopic ratios, /sup 240/Pu//sup 239/ /sup 240/Pu, similar to weapons grade plutonium rather than fallout plutonium.

  14. Contaminants migration in the soil: the influence of transfer between the mobile and stationary phases

    International Nuclear Information System (INIS)

    Moreira, R.M.; Sabino, C.S.V.; Macedo, W.A.

    1996-01-01

    Three transport mechanisms control the contaminant migration in saturated soils: advection, diffusion and interchanges between liquid and solid phases. These interchanges define the retention by the soil and the contaminant delay related to the liquid phase flow. Therefore, the knowledge of the adsorption/desorption characteristics of the solute in solid surfaces is fundamental for the evaluation of toxic agent releases to the compartment soil. This communication reports the study which is being performed by the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) in this area, particularly with cesium and mercury by using X-ray absorption spectroscopy for contaminants migration

  15. Remediation of soil contaminated with pesticides by treatment with gamma radiation

    International Nuclear Information System (INIS)

    Santos, Janilson Silva

    2009-01-01

    The discharge of empty plastic packaging of pesticides can be an environmental concern mainly by soil contamination. Nowadays, Brazil figures in third place among the leading world pesticide markets. An understanding of the processes that affect the transport and fate of pesticides is crucial to assess their potential for contamination of soil and groundwater, and to develop efficient and cost-effective site management and soil remediation strategies. Due to its impact on soil remediation has made sorption a major topic of research on soil-pesticide interactions. The main objective of this study is the evaluation of the pesticides transferring from contaminated mixture of commercial polymeric packing of high-density polyethylene, HDPE, used in agriculture to soil and their removal by gamma irradiation. Two soil samples of argyles compositions and media composition were exposed to a mixture of commercial polymeric packing contaminated with the pesticides methomyl, dimethoate, carbofuran, methidathion, triazine, thiophos, atrazine, ametryne, endosulfan, chloropyrifos, thriazophos and trifluralin. The pesticides leaching from packaging to soil was homogeneous considering a experimental research. The radiation treatment presented high efficiency on removal pesticides from both soil, but it depends on the physical-chemical characteristics of the contaminated soil. The higher efficiency was obtained in soils with higher organic material and humidity. The higher efficiency was obtained for the medium texture soil, with 20 kGy all present pesticides were removed in all layers. In the case of argyles texture soil, it was necessary a 30 kGy to remove the totality of present pesticides. (author)

  16. Development of a Persistent Chemical Agent Simulator System (PCASS)

    Science.gov (United States)

    Mcginness, W. G.

    1983-01-01

    The development of a persistent chemical agent simulation system (PCASS) is described. This PCASS is to be used for the military training of troops to simulate actual chemical warfare. The purpose of this system is to facilitate in the determination of chemical contamination and effectiveness of decontamination for training purposes. The fluorescent tracer employed has no daylight activation, but yet is easily removed with a decontaminate solution or water and surfactants. Also employed is a time delayed color developing system. When an individual is subjected to the PCASS and does not decontaminate adequately, red blotches or red coloration will develop as a function of time and temperature. The intent of this is to simulate the delayed chemical reaction of mustard contaminates.

  17. [Decorporation agents for internal radioactive contamination].

    Science.gov (United States)

    Ohmachi, Yasushi

    2015-01-01

    When radionuclides are accidentally ingested or inhaled, blood circulation or tissue/organ deposition of the radionuclides causes systemic or local radiation effects. In such cases, decorporation therapy is used to reduce the health risks due to their intake. Decorporation therapy includes reduction and/or inhibition of absorption from the gastrointestinal tract, isotopic dilution, and the use of diuretics, adsorbents, and chelating agents. For example, penicillamine is recommended as a chelating agent for copper contamination, and diethylene triamine pentaacetic acid is approved for the treatment of internal contamination with plutonium. During chelation therapy, the removal effect of the drugs should be monitored using a whole-body counter and/or bioassay. Some authorities, such as the National Council on Radiation Protection and Measurements and International Atomic Energy Agency, have reported recommended decorporation agents for each radionuclide. However, few drugs are approved by the US Food and Drug Administration, and many are off-label-use agents. Because many decontamination agents are drugs that have been available for a long time and have limited efficacy, the development of new, higher-efficacy drugs has been carried out mainly in the USA and France. In this article, in addition to an outline of decorporation agents for internal radioactive contamination, an outline of our research on decorporation agents for actinide (uranium and plutonium) contamination and for radio-cesium contamination is also presented.

  18. A petroleum contaminated soil bioremediation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, K.; Hazen, T.

    1994-06-01

    The amount of petroleum contaminated soil (PCS) at the Savannah River site (SRS) that has been identified, excavated and is currently in storage has increased several fold during the last few years. Several factors have contributed to this problem: (1) South Carolina Department of Health ad Environmental control (SCDHEC) lowered the sanitary landfill maximum concentration for total petroleum hydrocarbons (TPH) in the soil from 500 to 100 parts per million (ppm), (2) removal and replacement of underground storage tanks at several sites, (3) most recently SCDHEC disallowed aeration for treatment of contaminated soil, and (4) discovery of several very large contaminated areas of soil associated with leaking underground storage tanks (LUST), leaking pipes, disposal areas, and spills. Thus, SRS has an urgent need to remediate large quantities of contaminated soil that are currently stockpiled and the anticipated contaminated soils to be generated from accidental spills. As long as we utilize petroleum based compounds at the site, we will continue to generate contaminated soil that will require remediation.

  19. A petroleum contaminated soil bioremediation facility

    International Nuclear Information System (INIS)

    Lombard, K.; Hazen, T.

    1994-01-01

    The amount of petroleum contaminated soil (PCS) at the Savannah River site (SRS) that has been identified, excavated and is currently in storage has increased several fold during the last few years. Several factors have contributed to this problem: (1) South Carolina Department of Health ad Environmental control (SCDHEC) lowered the sanitary landfill maximum concentration for total petroleum hydrocarbons (TPH) in the soil from 500 to 100 parts per million (ppm), (2) removal and replacement of underground storage tanks at several sites, (3) most recently SCDHEC disallowed aeration for treatment of contaminated soil, and (4) discovery of several very large contaminated areas of soil associated with leaking underground storage tanks (LUST), leaking pipes, disposal areas, and spills. Thus, SRS has an urgent need to remediate large quantities of contaminated soil that are currently stockpiled and the anticipated contaminated soils to be generated from accidental spills. As long as we utilize petroleum based compounds at the site, we will continue to generate contaminated soil that will require remediation

  20. Feasibility Study of the Use of Thiosulfate as Extractant Agent in the Electrokinetic Remediation of a Soil Contaminated by Mercury from Almadén

    DEFF Research Database (Denmark)

    Subires-Muñoz, José Diego; García-Rubio, Ana; Vereda-Alonso, Carlos

    2010-01-01

    Natural soils are rather complex, making the predictability of the behavior of some remediation techniques very complicated. In this paper, the remediation of a Hg contaminated soil close to Almadén using a thiosulfate solution as extractant agent is studied. In addition, the use of the BCR...... extraction procedure before and after the remediation was performed. Once again, a clear relationship between the remediation and the extraction results are observed, giving further support to the idea that BCR can be used as a reasonable tool for feasibility studies of EKR among other remediation techniques....

  1. Effect of new soil metal immobilizing agents on metal toxicity to terrestrial invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Lock, K.; Janssen, C.R

    2003-01-01

    Organisms with different exposure routes should be used to simultaneously assess risks of metals in soils. - Application of 5% (w:w) novel metal immobilizing agent reduced the water soluble, the calcium chloride extracted as well as the pore water concentration of zinc in soils from Maatheide, a metal contaminated site in the northeast of Belgium. Addition of the metal immobilizing agents also eliminated acute toxicity to the potworm Enchytraeus albidus and the earthworm Eisenia fetida and chronic toxicity to the springtail Folsomia candida. Cocoon production by E. fetida, however, was still adversely affected. These differences may be explained by the species dependent routes of metal uptake: F. candida is probably mainly exposed via pore water while in E. fetida dietary exposure is probably also important. From these results it is clear that organisms with different exposure routes should be used simultaneously to assess the environmental risk of metal contaminated soils.

  2. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In

  3. Chemical tailoring of steam to remediate underground mixed waste contaminents

    Science.gov (United States)

    Aines, Roger D.; Udell, Kent S.; Bruton, Carol J.; Carrigan, Charles R.

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  4. Aerobic biodegradation potential of endocrine disrupting chemicals in surface-water sediment at Rocky Mountains National Park, USA

    Science.gov (United States)

    Bradley, Paul M.; Battaglin, William A.; Iwanowicz, Luke R.; Clark, Jimmy M.; Journey, Celeste A.

    2016-01-01

    Endocrine disrupting chemicals (EDC) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDC, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountains National Park (ROMO). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 14C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. ROMO bed sediment microbial communities also effectively degraded the xenoestrogens, bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The current results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged.

  5. Removal of arsenic from Janghang smelter site and energy crops-grown soil with soil washing using magnetic iron oxide

    Science.gov (United States)

    Han, Jaemaro; Zhao, Xin; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Arsenic compounds are considered carcinogen and easily enter drinking water supplies with their natural abundance. US Environmental Protection Agency is finalizing a regulation to reduce the public health risks from arsenic in drinking water by revising the current drinking water standard for arsenic from 50 ppb to 10 ppb in 2001 (USEPA, 2001). Therefore, soil remediation is also growing field to prevent contamination of groundwater as well as crop cultivation. Soil washing is adjusted as ex-situ soil remediation technique which reduces volume of the contaminated soil. The technique is composed of physical separation and chemical extraction to extract target metal contamination in the soil. Chemical extraction methods have been developed solubilizing contaminants containing reagents such as acids or chelating agents. And acid extraction is proven as the most commonly used technology to treat heavy metals in soil, sediment, and sludge (FRTR, 2007). Due to the unique physical and chemical properties, magnetic iron oxide have been used in diverse areas including information technology and biomedicine. Magnetic iron oxides also can be used as adsorbent to heavy metal enhancing removal efficiency of arsenic concentration. In this study, magnetite is used as the washing agent with acid extraction condition so that the injected oxide can be separated by magnetic field. Soil samples were collected from three separate areas in the Janghang smelter site and energy crops-grown soil to have synergy effect with phytoremediation. Each sample was air-dried and sieved (2mm). Soil washing condition was adjusted on pH in the range of 0-12 with hydrogen chloride and sodium hydroxide. After performing soil washing procedure, arsenic-extracted samples were analyzed for arsenic concentration by inductively coupled plasma optical emission spectrometer (ICP-OES). All the soils have exceeded worrisome level of soil contamination for region 1 (25mg/kg) so the soil remediation techniques are

  6. Understanding Contaminant Transport Pathways at Rocky Flats - A Basis for the Remediation Strategy

    International Nuclear Information System (INIS)

    Paton, Ian

    2008-01-01

    The Rocky Flats Environmental Technology Site (RFETS) is a Department of Energy facility located approximately 16 miles northwest of Denver, Colorado. Processing and fabrication of nuclear weapons components occurred at Rocky Flats from 1952 through 1989. Operations at the Site included the use of several radionuclides, including plutonium-239/240 (Pu), americium-241 (Am), and various uranium (U) isotopes, as well as several types of chlorinated solvents. The historic operations resulted in legacy contamination, including contaminated facilities, process waste lines, buried wastes and surface soil contamination. Decontamination and removal of buildings at the site was completed in late 2005, culminating more than ten years of active environmental remediation work. The Corrective Action Decision/Record of Decision was subsequently approved in 2006, signifying regulatory approval and closure of the site. The use of RFETS as a National Wildlife Refuge is scheduled to be in full operation by 2012. To develop a plan for remediating different types of radionuclide contaminants present in the RFETS environment required understanding the different environmental transport pathways for the various actinides. Developing this understanding was the primary objective of the Actinide Migration Evaluation (AME) project. Findings from the AME studies were used in the development of RFETS remediation strategies. The AME project focused on issues of actinide behavior and mobility in surface water, groundwater, air, soil and biota at RFETS. For the purposes of the AME studies, actinide elements addressed included Pu, Am, and U. The AME program, funded by DOE, brought together personnel with a broad range of relevant expertise in technical investigations. The AME advisory panel identified research investigations and approaches that could be used to solve issues related to actinide migration at the Site. An initial step of the AME was to develop a conceptual model to provide a

  7. Enhancing Bioremediation of Oil-contaminated Soils by Controlling Nutrient Transport using Dual Characteristics of Soil Pore Structure

    Science.gov (United States)

    Mori, Y.; Suetsugu, A.; Matsumoto, Y.; Fujihara, A.; Suyama, K.; Miyamoto, T.

    2012-12-01

    Soil structure is heterogeneous with cracks or macropores allowing bypass flow, which may lead to applied chemicals avoiding interaction with soil particles or the contaminated area. We investigated the bioremediation efficiency of oil-contaminated soils by applying suction at the bottom of soil columns during bioremediation. Unsaturated flow conditions were investigated so as to avoid bypass flow and achieve sufficient dispersion of chemicals in the soil column. The boundary conditions at the bottom of the soil columns were 0 kPa and -3 kPa, and were applied to a volcanic ash soil with and without macropores. Unsaturated flow was achieved with -3 kPa and an injection rate of 1/10 of the saturated hydraulic conductivity. The resultant biological activities of the effluent increased dramatically in the unsaturated flow with macropores condition. Unsaturated conditions prevented bypass flow and allowed dispersion of the injected nutrients. Unsaturated flow achieved 60-80% of saturation, which enhanced biological activity in the soil column. Remediation results were better for unsaturated conditions because of higher biological activity. Moreover, unsaturated flow with macropores achieved uniform remediation efficiency from upper through lower positions in the column. Finally, taking the applied solution volume into consideration, unsaturated flow with -3 kPa achieved 10 times higher efficiency when compared with conventional saturated flow application. These results suggest that effective use of nutrients or remediation chemicals is possible by avoiding bypass flow and enhancing biological activity using relatively simple and inexpensive techniques.

  8. evaluation of different remediation methods of polluted soils using nuclear technique

    International Nuclear Information System (INIS)

    Moussa, I.E.A.

    2012-01-01

    Remediation of heavy metal contaminated has become a considerable task to introduce such marginal or waste lands into productive systems. Various techniques, i.e. chemical and organic agents, bio- and Phyto remediation including microorganisms and/or phyto plants are used to remediate such contaminated soils. The contamination of the soil with metals has become a widespread environmental problem in many industrialized countries. The fact that the Earth's surface is becoming increasingly polluted by human activities challenges society to develop strategies for sustainability that conserve nonrenewable natural resources such as soil. The aim of the present study is to investigate the effectiveness of (I) some chemical and organic amendments in remediation of heavy metals contaminated soil. At the same time, a follow up the effects of interaction between amendment concentration and incubation time intervals on bioavailability of tested heavy metals was taken into consideration. (II) Fungi inoculation in remediation of heavy metals contaminated soils. (III) Calcium carbonate on the potentiality of panikum and sudan grass (as hyper accumulators) in remediation of heavy metals contaminated soil. To fulfill this task, it was suggested to conduct three experiments, namely; (1) Chemical remediation of Contaminated Soils experiment (2) Bioremediation experiment (3) Phyto remediation Experiment

  9. Assessment of the mobility and bioavailability of 60 Co and 137 Cs in contaminated soils

    International Nuclear Information System (INIS)

    Wasserman, Maria Angelica; Bartoly, Flavia; Poquet, Isabel; Perez, Daniel V.

    2001-01-01

    Results of a classical sequential chemical extraction procedure for 137 Cs in an acid Oxisol showed that after 3 years of contamination radiocesium remains potentially available for transfer processes: 40% bio-available, 20% mobile under oxidizing conditions and 40% bound to Fe and Mn oxides (available under reducing conditions). At this time, the transfer factor obtained in this soil was higher than values obtained in basic Oxisol and was higher than values obtained in soils from temperate climate areas. Seven years after the contamination, the 137 Cs distribution in this acid Oxisol have been changed as consequence of changes in soil properties: 8% bioavailable, 16% mobile under oxidizing conditions, 43% bound to Fe and Mn oxides and 33% strongly bound to soil compounds. Changes in the 137 Cs distribution in this soil were followed by reductions in soil to plant transfer factor. Between 1996 and 2000, the 137 Cs distribution, 137 Cs soil to plant transfer factor and soil properties in the basic Oxisol remained almost the same. The 60 Co distribution showed that Mn oxides is the main sink for this element and four years after contamination no 60 Co was detected as bioavailable or detectable in plants. In this study the use of an alternative sequential chemical extraction protocol to evaluate 60 Co and 137 Cs mobility under a large range of physico-chemical soil properties has shown to be very consistent with soil to plant transfer factors data for maize. The knowledge of bio-geochemical behavior of radionuclides in soil system can be used for the risk assessment in the case of nuclear accident or contamination scenarios. (author)

  10. Characterization of contaminated soil and groundwater surrounding an illegal landfill (S. Giuliano, Venice, Italy) by principal component analysis and kriging

    International Nuclear Information System (INIS)

    Critto, Andrea; Carlon, Claudio; Marcomini, Antonio

    2003-01-01

    Information on soil and groundwater contamination was used to develop a site conceptual model and to identify exposure scenarios. - The characterization of a hydrologically complex contaminated site bordering the lagoon of Venice (Italy) was undertaken by investigating soils and groundwaters affected by the chemical contaminants originated by the wastes dumped into an illegal landfill. Statistical tools such as principal components analysis and geostatistical techniques were applied to obtain the spatial distribution of chemical contaminants. Dissolved organic carbon (DOC), SO 4 2- and Cl - were used to trace the migration of the contaminants from the top soil to the underlying groundwaters. The chemical and hydrogeological available information was assembled to obtain the schematic of the conceptual model of the contaminated site capable to support the formulation of major exposure scenarios, which are also provided

  11. Soil Contamination from Cassava Wastewater Discharges in a Rural ...

    African Journals Online (AJOL)

    Michael Horsfall

    KEY WORDS: Soil contamination; cassava wastewater; physico-chemical characteristics; cassava ... Na (r = 0.03); P (r = 0.08); N (r = 0.40); Organic Carbon (r = 0.08) and organic matter (r .... a neutral or higher pH into to ketones and the toxic.

  12. Remediation Of Radioactive Contaminated Soil in Oil Fields

    International Nuclear Information System (INIS)

    Taha, A.A.; Hassib, G.M.; Ibrahim, Z.A.

    2011-01-01

    Radioactive contamination by naturally occurring radioactive materials (NORM) in evaporation pond has been evaluated. At several onshore oil field locations, the produced water is discharged to form artificial lagoons or ponds. Subsequently, the released waters drain to the ground leaving radioactive deposits associated with the soil that eventually require remedial action in accordance with radiation protection principles. The present study aims to investigate the remediation of contaminated soil in some oil fields and in this concern, two scenarios were proposed. The first scenario is studying the feasibility of using soil washing technique (a physical-chemical separation process) for removing radium-226 from the contaminated soil samples collected from an evaporating pond. The size/activity distribution analyses were carried out. The data obtained showed that almost 68 % of the investigated soil was coarse sand (≥ 300 μm), 28 % was medium and fine sand (≤300 μm and (≥75 μm) and only small fraction of 4 % was silt and clay (≤75 μm). A series of mild acids such as HCl and mild NaCl/HCl (chloride washing) were used for washing the investigated soil fractions. The obtained data showed that the coarse fraction ≥ 300 μm can be re mediated below a regulatory level of 1Bq/g. and the radium from this coarse fraction could be easily removed by screening and chloride washing. For the remediation of (≤ 300 μm and (≥ 75 μm soil fractions, a series of mild chloride washing experiments also showed that the chloride base (NaCl/HCl) was found to be potentially useful. However, there was a difficulty in achieving a low radium value in the fine (≥ 75 μm size fractions using chloride washing. The second scenario is to get rid of all contaminated soil and store it in a concrete basin through the program of radiological protection of personnel and environment. Preliminary gamma survey of contaminated soil showed that the significant area of the investigated

  13. Extraction of rare earth elements from a contaminated cropland soil using nitric acid, citric acid, and EDTA.

    Science.gov (United States)

    Tang, Hailong; Shuai, Weitao; Wang, Xiaojing; Liu, Yangsheng

    2017-08-01

    Rare earth elements (REEs) contamination to the surrounding soil has increased the concerns of health risk to the local residents. Soil washing was first attempted in our study to remediate REEs-contaminated cropland soil using nitric acid, citric acid, and ethylene diamine tetraacetic acid (EDTA) for soil decontamination and possible recovery of REEs. The extraction time, washing agent concentration, and pH value of the washing solution were optimized. The sequential extraction analysis proposed by Tessier was adopted to study the speciation changes of the REEs before and after soil washing. The extract containing citric acid was dried to obtain solid for the X-ray fluorescence (XRF) analysis. The results revealed that the optimal extraction time was 72 h, and the REEs extraction efficiency increased as the agent concentration increased from 0.01 to 0.1 mol/L. EDTA was efficient to extract REEs over a wide range of pH values, while citric acid was around pH 6.0. Under optimized conditions, the average extraction efficiencies of the major REEs in the contaminated soil were 70.96%, 64.38%, and 62.12% by EDTA, nitric acid, and citric acid, respectively. The sequential extraction analyses revealed that most soil-bounded REEs were mobilized or extracted except for those in the residual fraction. Under a comprehensive consideration of the extraction efficiency and the environmental impact, citric acid was recommended as the most suitable agent for extraction of the REEs from the contaminated cropland soils. The XRF analysis revealed that Mn, Al, Si, Pb, Fe, and REEs were the major elements in the extract indicating a possibile recovery of the REEs.

  14. Characteristics of soil seed bank in plantation forest in the rocky mountain region of Beijing, China

    Institute of Scientific and Technical Information of China (English)

    HU Zeng-hui; YANG Yang; LENG Ping-sheng; DOU De-quan; ZHANG Bo; HOU Bing-fei

    2013-01-01

    We investigated characteristics (scales and composition) of soil seed banks at eight study sites in the rocky mountain region of Beijing by seed identification and germination monitoring.We also surveyed the vegetation communities at the eight study sites to explore the role of soil seed banks in vegetation restoration.The storage capacity of soil seed banks at the eight sites ranked from 766.26 to 2461.92 seedsm-2.A total of 23 plant species were found in soil seed banks,of which 63-80%of seeds were herbs in various soil layers and 60% of seeds were located in the soil layer at 0-5 cm depth.Biodiversity indices indicated clear differences in species diversity of soil seed banks among different plant communities.The species composition of aboveground vegetation showed low similarity with that based on soil seed banks.In the aboveground plant community,the afforestation tree species showed high importance values.The plant species originating from soil seed banks represented natural regeneration,which also showed relatively high importance values.This study suggests that in the rocky mountain region of Beijing the soil seed banks played a key role in the transformation from pure plantation forest to near-natural forest,promoting natural ecological processes,and the role of the seed banks in vegetation restoration was important to the improvement of ecological restoration methods.

  15. Investigation of plutonium behaviour in artificially contaminated soil

    International Nuclear Information System (INIS)

    Lukshiene, B.; Druteikiene, R.

    2006-01-01

    The vertical migration and transformation of plutonium chemical forms artificially supplied to sandy loam columns after its exposure to natural conditions for about one year was investigated. An analysis of artificially contaminated samples after one year had shown that 81% of 239 Pu 4+ and 44% of 239 Pu 3+ were accumulated in the 0-5 cm layer of sandy loam. The data of sequential analysis of the same type of soil at the adequate artificial contamination level after one month exposure under laboratory conditions are presented as well. Pu 239 binding to soil geochemical fractions was rather uneven. The largest amount of Pu 239 (60 %) was determined in the residual fraction. Consequently, it can be assumed that organic substances and some inorganic compounds, which usually are the main components of a residual fraction, affects the retention and migration of plutonium in the soil. (authors)

  16. Investigation of plutonium behaviour in artificially contaminated soil

    International Nuclear Information System (INIS)

    Luksiene, B.; Druteikiene, R.

    2006-01-01

    The vertical migration and transformation of plutonium chemical forms artificially supplied to sandy loam columns after its exposure to natural conditions for about one year was investigated. An analysis of artificially contaminated samples after one year had shown that 81% of 239 Pu 4+ and 44% of 239 Pu 3+ were accumulated in the 0-5 cm layer of sandy loam. The data of sequential analysis of the same type of soil at the adequate artificial contamination level after one month exposure under laboratory conditions are presented as well. Pu 239 binding to soil geochemical fractions was rather uneven. The largest amount of Pu 239 (60%) was determined in the residual fraction. Consequently, it can be assumed that organic substances and some inorganic compounds, which usually are the main components of a residual fraction, affects the retention and migration of plutonium in the soil. (authors)

  17. Field test of plutonium and thorium contaminated clay soils from the Mound Site using the ACT*DE*CON Process

    International Nuclear Information System (INIS)

    Johnson, J.O.; Swift, N.A.; Church, R.H.; Neff, R.A.

    1998-01-01

    A treatability test was run during the summer and fall of 1997 to demonstrate the effectiveness of ACT*DE*CON for removing plutonium and thorium from the clay soils around Mound. ACT*DE*CON is a proprietary solution patented by Selentec. The process utilized a highly selective dissolution of the contaminants by the use of a chemical wash. The pilot scale process involved pretreatment of the soil in an attrition scrubber with ACT*DE*CON solution. This blended solution was then passed through a counter-current extraction chamber where additional contact with ACT*DE*CON solution occurred, followed by a rinse cycle. During this process sand was added to aid contact of the solution with the soil particles. The sand is removed during the rinse step and reused. The chelating agent is separated from the contaminant and recycled back into the process, along with the reverse osmosis permeate. The resulting solution can be further treated to concentrate the contaminant. Three different types of environmental soils were tested -- plutonium and thorium contaminated soils with the natural clay content, and plutonium contaminated soils with a high percentage of fine clay particles. The goal of these tests was to reduce the plutonium levels from several hundreds of pCi/g to between 25 and 75 pCi/g and the thorium from a couple hundred pCi/g to less than 5 pCi/g. The results of these four tests are presented along with a discussion of the operating parameters and the lessons learned relating to full scale implementation at Mound as well as other potential applications of this process

  18. Tannic acid for remediation of historically arsenic-contaminated soils.

    Science.gov (United States)

    Gusiatin, Zygmunt Mariusz; Klik, Barbara; Kulikowska, Dorota

    2017-12-22

    Soil washing effectively and permanently decreases soil pollution. Thus, it can be considered for the removal of the most toxic elements, for example arsenic (As). In this study, historically As-contaminated soils (2041-4294 mg/kg) were remediated with tannic acid (TA) as the washing agent. The scope of this study included optimization of the operational conditions of As removal, determination of As distribution in soil before and after double soil washing, and measurement of TA loss during washing. The optimum conditions for As removal were 4% TA, pH 4 and 24 h washing time. The average As removal after single and double washings was 38% and 63%, respectively. TA decreased As content in amorphous and poorly crystalline oxides by >90%. Although TA increased the amount of As in the easily mobilizable As fraction, the stability of As in washed soils increased, with reduced partition indexes of 0.52-0.66 after washing. The maximum capacity of the soils to adsorb TA (q max ) was 50.2-70.4 g C/kg. TA sorption was higher at alkaline than at acidic conditions. Only TA removes As from soils effectively if the proportion of As in amorphous and poorly crystalline oxides is high. Thus, it can be considered for remediation of historically contaminated soils.

  19. Purification of soil contaminated by oil with microorganisms

    Directory of Open Access Journals (Sweden)

    Maira Kazankapova

    2013-05-01

    Full Text Available The paper presents the results of studying the influence of strains of Pseudomonas mendoсina H-3 and Oscillatoria С-3 on soil contaminated with petroleum and hydrocarbons. The changes in chemical composition of hydrocarbons were determined. The influence of strain on the soil was studied by IR spectroscopy and chromatography. It was found that microorganisms can break down paraffinic and aromatic petroleum hydrocarbons.

  20. Chemical and Toxicological Characterization of Slurry Reactor Biotreatment of Explosives-Contaminated Soils

    National Research Council Canada - National Science Library

    Griest, W

    1998-01-01

    .... The reduction of solvent-extractable bacterial mutagenicity in the TNT-contaminated soil was substantial and was similar to that achieved by static pile composts at the Umatilla Army Depot Activity (UMDA...

  1. Human exposure to soil contaminants in subarctic Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Ellen Stephanie Reyes

    2015-05-01

    Full Text Available Background: Chemical contaminants in the Canadian subarctic present a health risk with exposures primarily occurring via the food consumption. Objective: Characterization of soil contaminants is needed in northern Canada due to increased gardening and agricultural food security initiatives and the presence of known point sources of pollution. Design: A field study was conducted in the western James Bay Region of Ontario, Canada, to examine the concentrations of polychlorinated biphenyls, dichlorodiphenyltrichloroethane and its metabolites (ΣDDT, other organochlorines, and metals/metalloids in potentially contaminated agriculture sites. Methods: Exposure pathways were assessed by comparing the estimated daily intake to acceptable daily intake values. Ninety soil samples were collected at random (grid sampling from 3 plots (A, B, and C in Fort Albany (on the mainland, subarctic Ontario, Canada. The contaminated-soil samples were analysed by gas chromatography with an electron capture detector or inductively coupled plasma mass spectrometer. Results: The range of ΣDDT in 90 soil samples was below the limit of detection to 4.19 mg/kg. From the 3 soil plots analysed, Plot A had the highest ΣDDT mean concentration of 1.12 mg/kg, followed by Plot B and Plot C which had 0.09 and 0.01 mg/kg, respectively. Concentrations of other organic contaminants and metals in the soil samples were below the limit of detection or found in low concentrations in all plots and did not present a human health risk. Conclusions: Exposure analyses showed that the human risk was below regulatory thresholds. However, the ΣDDT concentration in Plot A exceeded soil guidelines set out by the Canadian Council of Ministers of the Environment of 0.7 mg/kg, and thus the land should not be used for agricultural or recreational purposes. Both Plots B and C were below threshold limits, and this land can be used for agricultural purposes.

  2. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactor integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.

  3. Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Janeen Denise [Univ. of New Mexico, Albuquerque, NM (United States)

    1999-02-01

    In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

  4. Remediation of Cd-contaminated soil around metal sulfide mines

    Science.gov (United States)

    Lu, Xinzhe; Hu, Xuefeng; Kang, Zhanjun; Luo, Fan

    2017-04-01

    The mines of metal sulfides are widely distributed in the southwestern part of Zhejiang Province, Southeast China. The activities of mining, however, often lead to the severe pollution of heavy metals in soils, especially Cd contamination. According to our field investigations, the spatial distribution of Cd-contaminated soils is highly consistent with the presence of metal sulfide mines in the areas, further proving that the mining activities are responsible for Cd accumulation in the soils. To study the remediation of Cd-contaminated soils, a paddy field nearby large sulfide mines, with soil pH 6 and Cd more than 1.56 mg kg-1, five times higher than the national recommended threshold, was selected. Plastic boards were deeply inserted into soil to separate the field and make experimental plots, with each plot being 4 m×4 m. Six treatments, TK01˜TK06, were designed to study the effects of different experimental materials on remediating Cd-contaminated soils. The treatment of TK01 was the addition of 100 kg zeolites to the plot; TK02, 100 kg apatites; TK03, 100 kg humid manure; TK04, 50 kg zeolites + 50 kg apatites; TK05, 50 kg zeolites + 50 kg humid manure; TK06 was blank control (CK). One month after the treatments, soil samples at the plots were collected to study the possible change of chemical forms of Cd in the soils. The results indicated that these treatments reduced the content of available Cd in the soils effectively, by a decreasing sequence of TK04 (33%) > TK02 (25%) > TK01 (23%) > TK05 (22%) > TK03 (15%), on the basis of CK. Correspondingly, the treatments also reduced the content of Cd in rice grains significantly, by a similar decreasing sequence of TK04 (83%) > TK02 (77%) > TK05 (63%) > TK01 (47%) > TK03 (27%). The content of Cd in the rice grains was 0.071 mg kg-1, 0.094 mg kg-1, 0.159 mg kg-1, 0.22 mg kg-1 and 0.306 mg kg-1, respectively, compared with CK, 0.418 mg kg-1. This experiment suggested that the reduction of available Cd in the soils is

  5. Phytoremediation of Soils Contaminated by Chlorinnated Hydrocarbons

    Science.gov (United States)

    Cho, C.; Sung, K.; Corapcioglu, M.

    2001-12-01

    In recent years, the possible use of deep rooted plants for phytoremediation of soil contaminants has been offered as a potential alternative for waste management, particularly for in situ remediation of large volumes of contaminated soils. Major objectives of this study are to evaluate the effectiveness of a warm season grass (Eastern Gamagrass) and a cool season prairie grass (Annual Ryegrass) in the phytoremediation of the soil contaminated with volatile organic compounds e.g., trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,1,1-trichloroethane (TCA) and to determine the main mechanisms of target contaminant dissipation. The preliminary tests and laboratory scale tests were conducted to identify the main mechanisms for phytoremediation of the target contaminants, and to apply the technique in green house application under field conditions. The results of microcosm and bioreactor experiments showed that volatilization can be the dominant pathway of the target contaminant mass losses in soils. Toxicity tests, conducted in nutrient solution in the growth room, and in the greenhouse, showed that both Eastern gamagrass and Annual ryegrass could grow without harmful effects at up to 400 ppm each of all three contaminants together. Preliminary greenhouse experimentw were conducted with the 1.5 m long and 0.3 m diameter PVC columns. Soil gas concentrations monitored and microbial biomass in bulk and rhizosphere soil, root properties, and contaminant concentration in soil after 100 days were analyzed. The results showed that the soil gas concentration of contaminants has rapidly decreased especially in the upper soil and the contaminant concentraitons in soil were also significantly decreased to 0.024, 0.228, and 0.002 of C/Co for TCE, PCE and TCA, respectively. Significant plant effects were not found however showed contaminant loss through volatilization and plant contamination by air.

  6. Ecotoxicological evaluation of in situ bioremediation of soils contaminated by the explosive 2,4,6-trinitrotoluene (TNT)

    International Nuclear Information System (INIS)

    Frische, Tobias

    2003-01-01

    The luminescent bacteria assay, using soil leachates, was the most sensitive toxicity indicator. - To evaluate the environmental relevance of in situ bioremediation of contaminated soils, effective and reliable monitoring approaches are of special importance. The presented study was conducted as part of a research project investigating in situ bioremediation of topsoils contaminated by the explosive 2,4,6-trinitrotoluene (TNT). Changes in soil toxicity within different experimental fields at a former ordnance factory were evaluated using a battery of five bioassays (plant growth, Collembola reproduction, soil respiration, luminescent bacteria acute toxicity and mutagenicity test) in combination to chemical contaminant analysis. Resulting data reveal clear differences in sensitivities between methods with the luminescent bacteria assay performed with soil leachates as most sensitive toxicity indicator. Complete test battery results are presented in so-called soil toxicity profiles to visualise and facilitate the interpretation of data. Both biological and chemical monitoring results indicate a reduction of soil toxicity within 17 months of remediation

  7. Terrestrial avoidance behaviour tests as screening tool to assess soil contamination

    International Nuclear Information System (INIS)

    Loureiro, Susana; Soares, Amadeu M.V.M.; Nogueira, Antonio J.A.

    2005-01-01

    To assess soil quality and risk assessment, bioassays can be useful tools to gauge the potential toxicity of contaminants focusing on their bioavailable fraction. A rapid and sublethal avoidance behaviour test was used as a screening tool with the earthworm Eisenia andrei and the isopod Porcellionides pruinosus, where organisms were exposed during 48 h to several chemicals (lindane, dimethoate and copper sulphate, for isopods and carbendazim, benomyl, dimethoate and copper sulphate for earthworms). Both species were also exposed to soils from an abandoned mine. For all bioassays a statistical approach was used to derive EC 50 values. Isopods and earthworms were able to perceive the presence of toxic compounds and escaping from contaminated to clean soil. Furthermore the behaviour parameter was equally or more sensitive then other sublethal parameters (e.g. reproduction or growth), expressing the advantages of Avoidance Behaviour Tests as screening tools in ERA. - Avoidance Behaviour Tests with earthworms and isopods can be used as screening tools in the evaluation of soil contamination

  8. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions.

    Science.gov (United States)

    Kuppusamy, Saranya; Thavamani, Palanisami; Venkateswarlu, Kadiyala; Lee, Yong Bok; Naidu, Ravi; Megharaj, Mallavarapu

    2017-02-01

    For more than a decade, the primary focus of environmental experts has been to adopt risk-based management approaches to cleanup PAH polluted sites that pose potentially destructive ecological consequences. This focus had led to the development of several physical, chemical, thermal and biological technologies that are widely implementable. Established remedial options available for treating PAH contaminated soils are incineration, thermal conduction, solvent extraction/soil washing, chemical oxidation, bioaugmentation, biostimulation, phytoremediation, composting/biopiles and bioreactors. Integrating physico-chemical and biological technologies is also widely practiced for better cleanup of PAH contaminated soils. Electrokinetic remediation, vermiremediation and biocatalyst assisted remediation are still at the development stage. Though several treatment methods to remediate PAH polluted soils currently exist, a comprehensive overview of all the available remediation technologies to date is necessary so that the right technology for field-level success is chosen. The objective of this review is to provide a critical overview in this respect, focusing only on the treatment options available for field soils and ignoring the spiked ones. The authors also propose the development of novel multifunctional green and sustainable systems like mixed cell culture system, biosurfactant flushing, transgenic approaches and nanoremediation in order to overcome the existing soil- contaminant- and microbial-associated technological limitations in tackling high molecular weight PAHs. The ultimate objective is to ensure the successful remediation of long-term PAH contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Use of passive sampling devices to determine soil contaminant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.A. [Clemson Univ., Pendleton, SC (United States)]|[Washington State Univ., Richland, WA (United States); Hooper, M.J. [Clemson Univ., Pendleton, SC (United States); Weisskopf, C.P. [Washington State Univ., Richland, WA (United States)

    1996-12-31

    The effective remediation of contaminated sites requires accurate identification of chemical distributions. A rapid sampling method using passive sampling devices (PSDs) can provide a thorough site assessment. We have been pursuing their application in terrestrial systems and have found that they increase the ease and speed of analysis, decrease solvent usage and overall cost, and minimize the transport of contaminated soils. Time and cost savings allow a higher sampling frequency than is generally the case using traditional methods. PSDs have been used in the field in soils of varying physical properties and have been successful in estimating soil concentrations ranging from 1 {mu}g/kg (parts per billion) to greater than 200 mg/kg (parts per million). They were also helpful in identifying hot spots within the sites. Passive sampling devices show extreme promise as an analytical tool to rapidly characterize contaminant distributions in soil. There are substantial time and cost savings in laboratory personnel and supplies. By selectively excluding common interferences that require sample cleanup, PSDs can be retrieved from the field and processed rapidly (one technician can process approximately 90 PSDs in an 8-h work day). The results of our studies indicate that PSDs can be used to accurately estimate soil contaminant concentrations and provide lower detection limits. Further, time and cost savings will allow a more thorough and detailed characterization of contaminant distributions. 13 refs., 4 figs., 2 tabs.

  10. Distribution and Source Identification of Pb Contamination in industrial soil

    Science.gov (United States)

    Ko, M. S.

    2017-12-01

    INTRODUCTION Lead (Pb) is toxic element that induce neurotoxic effect to human, because competition of Pb and Ca in nerve system. Lead is classified as a chalophile element and galena (PbS) is the major mineral. Although the Pb is not an abundant element in nature, various anthropogenic source has been enhanced Pb enrichment in the environment after the Industrial Revolution. The representative anthropogenic sources are batteries, paint, mining, smelting, and combustion of fossil fuel. Isotope analysis widely used to identify the Pb contamination source. The Pb has four stable isotopes that are 208Pb, 207Pb, 206Pb, and 204Pb in natural. The Pb is stable isotope and the ratios maintain during physical and chemical fractionation. Therefore, variations of Pb isotope abundance and relative ratios could imply the certain Pb contamination source. In this study, distributions and isotope ratios of Pb in industrial soil were used to identify the Pb contamination source and dispersion pathways. MATERIALS AND METHODS Soil samples were collected at depth 0­-6 m from an industrial area in Korea. The collected soil samples were dried and sieved under 2 mm. Soil pH, aqua-regia digestion and TCLP carried out using sieved soil sample. The isotope analysis was carried out to determine the abundance of Pb isotope. RESULTS AND DISCUSSION The study area was developed land for promotion of industrial facilities. The study area was forest in 1980, and the satellite image show the alterations of land use with time. The variations of land use imply the possibilities of bringing in external contaminated soil. The Pb concentrations in core samples revealed higher in lower soil compare with top soil. Especially, 4 m soil sample show highest Pb concentrations that are approximately 1500 mg/kg. This result indicated that certain Pb source existed at 4 m depth. CONCLUSIONS This study investigated the distribution and source identification of Pb in industrial soil. The land use and Pb

  11. Uranium-contaminated soil pilot treatment study

    International Nuclear Information System (INIS)

    Turney, W.R.J.R.; Mason, C.F.V.; Michelotti, R.A.

    1996-01-01

    A pilot treatment study is proving to be effective for the remediation of uranium-contaminated soil from a site at the Los Alamos National Laboratory by use of a two-step, zero-discharge, 100% recycle system. Candidate uranium-contaminated soils were characterized for uranium content, uranium speciation, organic content, size fractionization, and pH. Geochemical computer codes were used to forecast possible uranium leach scenarios. Uranium contamination was not homogenous throughout the soil. In the first step, following excavation, the soil was sorted by use of the ThemoNuclean Services segmented gate system. Following the sorting, uranium-contaminated soil was remediated in a containerized vat leach process by use of sodium-bicarbonate leach solution. Leach solution containing uranium-carbonate complexes is to be treated by use of ion-exchange media and then recycled. Following the treatment process the ion exchange media will be disposed of in an approved low-level radioactive landfill. It is anticipated that treated soils will meet Department of Energy site closure guidelines, and will be given open-quotes no further actionclose quotes status. Treated soils are to be returned to the excavation site. A volume reduction of contaminated soils will successfully be achieved by the treatment process. Cost of the treatment (per cubic meter) is comparable or less than other current popular methods of uranium-contamination remediation

  12. An Evaluation of Antifungal Agents for the Treatment of Fungal Contamination in Indoor Air Environments

    OpenAIRE

    Rogawansamy, Senthaamarai; Gaskin, Sharyn; Taylor, Michael; Pisaniello, Dino

    2015-01-01

    Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study wa...

  13. Citric-acid preacidification enhanced electrokinetic remediation for removal of chromium from chromium-residue-contaminated soil.

    Science.gov (United States)

    Meng, Fansheng; Xue, Hao; Wang, Yeyao; Zheng, Binghui; Wang, Juling

    2018-02-01

    Electrokinetic experiments were conducted on chromium-residue-contaminated soils collected from a chemical plant in China. Acidification-electrokinetic remediation technology was proposed in order to solve the problem of removing inefficient with ordinary electrokinetic. The results showed that electrokinetic remediation removal efficiency of chromium from chromium-contaminated soil was significantly enhanced with acidizing pretreatment. The total chromium [Cr(T)] and hexavalent chromium [Cr(VI)] removal rate of the group acidized by citric acid (0.9 mol/L) for 5 days was increased from 6.23% and 19.01% in the acid-free experiments to 26.97% and 77.66% in the acidification-treated experiments, respectively. In addition, part of chromium with the state of carbonate-combined will be converted into water-soluble state through acidification to improve the removal efficiency. Within the appropriate concentration range, the higher concentration of acid was, the more chromium was released. So the removal efficiency of chromium depended on the acid concentration. The citric acid is also a kind of complexing agent, which produced complexation with Cr that was released by the electrokinetic treatment and then enhanced the removal efficiency. The major speciation of chromium that was removed from soils by acidification-electrokinetics remediation was acid-soluble speciation, revivification speciation and oxidation speciation, which reduced biological availability of chromium.

  14. Phytoextraction of low level U-contaminated soil

    International Nuclear Information System (INIS)

    Vandenhove, H.A.; Hees, M. van

    2002-01-01

    The nuclear fuel cycle may be a source of environmental contamination. Uranium exploitation produces large quantities of wastes but also accidental spills at nuclear fuel production, reprocessing or waste treatment plants have led to soil contamination with uranium. U-contaminated soil is generally excavated, packaged and removed which is a costly enterprise. Soil washing has also shown promising in removing U from contaminated soil, but results in the generation of liquid wastes and the deterioration of soil properties. In contrast, phytoextraction, the use of plants to remove contaminants from polluted soil, allows for in situ treatment and does not generate liquid wastes. Furthermore, the contaminated site is covered by plants during phytoextraction and wind and water erosion will be reduced. The phytoextraction potential depends on the amount of radionuclides extracted and the biomass produced. Hyper-accumulating plants often have a low biomass production. Moreover, uranium soil-to-plant transfer factors (TF: ratio of U concentration in dry plant tissue to concentration in soil) rarely exceed a value of 0.1 gg -1 . With a TF of 0.1 gg -1 and a biomass yield of 15t dry weigh ha -1 only 0.1% of the soil uranium will be annually immobilised in the plant biomass. These figures clearly show that the phytoextraction option is not a feasible remediation option, unless the uranium bioavailability could be drastically increased. It was shown that citric acid addition to highly contaminated U contaminated soil increased the U-accumulation of Brassica juncea 1000-fold. The objective of the present paper is to find out if low level U contaminated soil can be phytoextracted in order to achieve proposed release limits

  15. Desorption and bioremediation of hydrocarbon contaminated soils

    International Nuclear Information System (INIS)

    Gray, M.R.

    1998-01-01

    A study was conducted in which the extent and pattern of contaminant biodegradation during bioremediation of four industrially-contaminated soils were examined to determine which factors control the ultimate extent of biodegradation and which limit the success of biological treatment. It was noted that although bioremediation is inexpensive and has low environmental impact, it often fails to completely remove the hydrocarbons in soils because of the complex interactions between contaminants, the soil environment, and the active microorganisms. In this study, the competency of the microorganisms in the soil to degrade the contaminants was examined. The equilibrium partitioning of the contaminants between the soil and the aqueous phase was also examined along with the transport of contaminants out of soil particles. The role of diffusion of compounds in the soil and the importance of direct contact between microorganisms and the hydrocarbons was determined. Methods for selecting suitable sites for biological treatment were also described

  16. Technologies for remediating radioactively contaminated land

    International Nuclear Information System (INIS)

    Pearl, M.

    2000-01-01

    This paper gives an overview of technologies that can be used for the remediation of radioactively contaminated ground. There are a wide variety of techniques available -most have established track records for contaminated ground, though in general many are only just being adapted to use for radioactively contaminated ground. 1) Remediation techniques for radioactively contaminated ground involve either removal of the contamination and transfer to a controlled/contained facility such as the national LLW repository at Drigg, or 2) immobilization, solidification and stabilization of the contamination where the physical nature of the soil is changed, or an 'agent' is added to the soil, to reduce the migration of the contaminants, or 3) isolation and containment of the contaminated ground to reduce contaminant migration and control potential detrimental effects to human health. Where contamination has to be removed, ex situ and in situ techniques are available which minimize the waste requiring disposal to an LLW repository. These techniques include: 1) detector-based segregation 2) soil washing by particle separations 3) oil washing with chemical leaching agents 4) electro remediation 5) phyto remediation. Although many technologies are potentially applicable, their application to the remediation of a specific contaminated site is dependent on a number of factors and related to detailed site characterization studies, results from development trials and BPEO (best practicable environmental option) studies. Those factors considered of particular importance are: 1) the clean-up target 2) technical feasibility relative to the particular site, soil and contaminant characteristics, and time frame 3) site infrastructure arrangements and needs, the working life of the site and the duration of institutional care 4) long-term monitoring arrangements for slow remedial techniques or for immobilization and containment techniques 5) validation of the remediation 6) health and

  17. Sorption of polar and nonpolar organic contaminants by oil-contaminated soil.

    Science.gov (United States)

    Chen, Hong; Chen, Shuo; Quan, Xie; Zhao, Huimin; Zhang, Yaobin

    2008-12-01

    Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil-water distribution coefficients (K(oil)). The resulting oil-contaminated soil-water distribution coefficients (K(d)) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (C(oil)) but sorption-reducing (competitive) effects at intermediate C(oil) (approximately 1 g kg(-1)). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in K(d) at C(oil) above approximately 1 g kg(-1) were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.

  18. Soil washing and post-wash biological treatment of petroleum hydrocarbon contaminated soils

    OpenAIRE

    Bhandari, Alok

    1992-01-01

    A laboratory scale study was conducted to investigate the treatability of petroleum contaminated soils by soil washing and subsequent biological treatment of the different soil fractions. In addition to soils obtained from contaminated sites, studies were also performed on soils contaminated in the laboratory. Soil washing was performed using a bench-scale soil washing system. Washing was carried out with simultaneous fractionation of the bulk soil into sand, silt and clay fractions. Cl...

  19. Thermal treatment of petroleum contaminated soils - A case study

    International Nuclear Information System (INIS)

    Bubier, T.W.; Bilello. C.M.

    1993-01-01

    Thermal treatment is a cost-effective treatment method for removing chemicals from contaminated soils. However, detailed applicability studies are lacking. The goals of this paper are to (1) present the results of a thermal treatment study and (2) discuss the specific elements which must be evaluated prior to determining whether thermal treatment is a feasible option for a remediation project. Results of data collected during a pilot study involving thermal treatment of petroleum contaminated soils at a Marine Terminal are presented. The pilot study consisted of thermally treating the C8 through C40 + (gasoline, kerosene, diesel, motor oil, bunker fuel, etc.) hydrocarbon contaminated soils at treatment temperatures ranging from 250 degrees Fahrenheit (degree F) up to 550 degrees F. The low-temperature thermal treatment unit consisted of a rotary kiln with a temperature capacity of approximately 600 degrees F, a baghouse, and a catalytic oxidizer. The soil was monitored for concentrations of petroleum hydrocarbons and volatile organic compounds before and after treatment. The results of the pilot study were used to determine if thermal treatment technology is a cost-efficient and effective option of remediating the estimated 300,000 tons of petroleum contaminated soil to acceptable cleanup levels. The low-temperature thermal treatment pilot study was effective in desorbing the short chain hydrocarbons (gasoline and diesel) but was not effective in desorbing the long-chain petroleum hydrocarbons, such as motor oils and bunker fuels, from the soil. This was primarily due to the boiling points of motor oil and bunker fuels which were higher than the temperature capacity of the pilot study treatment equipment. Additional factors that influenced the effectiveness of the desorption process included configuration of the treatment equipment, soil moisture content, soil particle size, and type and concentration of petroleum hydrocarbons

  20. FIELD ACTIVITIES AND PRELIMINARY RESULTS FROM THE INVESTIGATION OF WESTERN AIRBORNE CONTAMINANTS IN TWO HIGH ELEVATION WATERSHEDS OF ROCKY MOUNTAIN NATIONAL PARK

    Science.gov (United States)

    The National Park Service initiated the Western Airborne Contaminants Assessment Project (WACAP) in 2002 to determine if airborne contaminants from long-range transport and/or regional sources are having an impact on remote western ecosystems, including AK. Rocky Mountain Nation...

  1. Polyaspartate extraction of cadmium ions from contaminated soil: Evaluation and optimization using central composite design.

    Science.gov (United States)

    Mu'azu, Nuhu Dalhat; Haladu, Shamsuddeen A; Jarrah, Nabeel; Zubair, Mukarram; Essa, Mohammad H; Ali, Shaikh A

    2018-01-15

    The occurrences of heavy metal contaminated sites and soils and the need for devising environmentally friendly solutions have become global issues of serious concern. In this study, polyaspartate (a highly biodegradable agent) was synthesized using L-Aspartic acid via a new modified thermal procedure and employed for extraction of cadmium ions (Cd) from contaminated soil. Response surface methodology approach using 3 5 full faced centered central composite design was employed for modeling, evaluating and optimizing the influence of polyaspartate concentration (36-145mM), polyaspartate/soil ratio (5-25), initial heavy metal concentration (100-500mg/kg), initial pH (3-6) and extraction time (6-24h) on Cd ions extracted into the polyaspartate solution and its residual concentration in the treated soil. The Cd extraction efficacy obtained reached up to 98.8%. Increase in Cd extraction efficiency was associated with increase in the polyaspartate and Cd concentration coupled with lower polyaspertate/soil ratio and initial pH. Under the optimal conditions characterized with minimal utilization of the polyaspartate and high Cd ions removal, the extractible Cd in the polyaspartate solution reached up to 84.4mg/L which yielded 85% Cd extraction efficacy. This study demonstrates the suitability of using polyaspartate as an effective environmentally friendly chelating agent for Cd extraction from contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field.

    Science.gov (United States)

    Attinti, Ramesh; Barrett, Kirk R; Datta, Rupali; Sarkar, Dibyendu

    2017-06-01

    Phytoextraction is a green remediation technology for cleaning contaminated soils. Application of chelating agents increases metal solubility and enhances phytoextraction. Following a successful greenhouse experiment, a panel study under field weather elucidated the efficiency of the chelating agent ethylenediaminedisuccinic acid (EDDS) on phytoextraction of lead (Pb) by vetiver grass, a hyperaccumulator of Pb, and a nonaccumulator fescue grass from residential soils contaminated with Pb-based paint from Baltimore, MD and San Antonio, TX. Three soils from each city with Pb content between 1000 and 2400 mg kg -1 were chosen for the panel study. Sequential extraction revealed that Fe-Mn oxide (60-63%) and carbonate (25-33%) fractions of Pb dominated in Baltimore soils, whereas in San Antonio soils, Pb was primarily bound to the organic fraction (64-70%) because organic content was greater and, secondarily, to the Fe-Mn oxide (15-20%) fraction. Vetiver and fescue grasses were transplanted and grown on wood panels in the field with EDDS applied after 3 months and 13 months. Soil and leachate results indicated that EDDS applications increased Pb solubility in soils. Plant tissues results indicated enhanced the uptake of Pb by vetiver and showed that EDDS application promoted translocation of Pb from root to shoot. Average Pb concentration increased by 53% and 203% in shoots and by 73% and 84% in roots of vetiver after the first and second applications of EDDS, respectively. Concentrations in roots and shoots increased in all tested soils, regardless of soil pH or clay content. After the second application, average Pb concentrations in vetiver were higher than those in fescue by 3.6x in shoots and 8.3x in roots. Visual phytotoxic symptoms from increased bioavailable Pb from EDSS applications were observed in fescue but not in vetiver. This study demonstrated the potential of a chemically-catalyzed phytoremediation system as a cleanup method for lead-contaminated soils

  3. Chemical Warfare Agent Operational Exposure Hazard Assessment Research: FY07 Report and Analysis

    Science.gov (United States)

    2010-07-01

    agent migration rates. As stated by Armour and Sturgeon (1992), the extent of the contact hazard depends on the initial degree of contamination, the...with a contaminated surface. 2.1.5 Literature Cited 1. Armour , S.J; Sturgeon, W.R. Liquid Hazard from Chemical Warfare Agents for Pilots of High...the neck area was clipped and prepped with betadine, and the animal covered with a sterile surgical drape . The planned incision areas in the

  4. Use of surfactants for the remediation of contaminated soils: A review

    International Nuclear Information System (INIS)

    Mao, Xuhui; Jiang, Rui; Xiao, Wei; Yu, Jiaguo

    2015-01-01

    Highlights: • The recent advances in use of surfactant for soil remediation are reviewed. • The mechanisms of surfactant-based soil remediation are discussed. • A review on the application of different types of surfactants is made. • The future research direction of surfactant-based technologies is suggested. - Abstract: Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation

  5. Use of surfactants for the remediation of contaminated soils: A review

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Xuhui, E-mail: clab@whu.edu.cn [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Jiang, Rui; Xiao, Wei [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2015-03-21

    Highlights: • The recent advances in use of surfactant for soil remediation are reviewed. • The mechanisms of surfactant-based soil remediation are discussed. • A review on the application of different types of surfactants is made. • The future research direction of surfactant-based technologies is suggested. - Abstract: Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation.

  6. Removal of contaminants from fine grained soils using electrokinetic (EK) flushing. Final report, September 30, 1987--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B.E.; Berg, M.T.

    1993-10-01

    Recently, attention has focused on developing cost effective techniques to remove inorganic contaminants from soils in-situ. For most in-situ techniques hydraulic pressure is used to disperse the chemical additives and collect the contaminated groundwater. In-situ treatment technologies have had success at sites containing sandy soils but have not shown much promise for soils with large amounts of clay and silt. This is due primarily to difficulty in transporting groundwater, contaminants, and chemical additives through the subsurface. Unfortunately, soils high in clay and silt are known to sequester large quantities of inorganic and organic contaminants. Thus, soils having low hydraulic conductivity`s are generally efficient in sequestering pollutants but are resistant to standard in-situ remediation techniques because of the difficulty in transporting groundwater and contaminants. A candidate technology for the in-situ remediation of low permeability soils is electrokinetic (EK) soil flushing. In EK soil flushing, groundwater and contaminants are transported under an a plied voltage. The transport of groundwater electroosmotically does not depend directly on the soil`s hydraulic conductivity. Thus, soils that would otherwise require excavation and treatment can be remediated in-situ if electrokinetics is used as the driving force for liquid and contaminant transport. This report details the results from work conducted on the use of EK soil flushing to remediate a fine grained soil contaminated with lead. The first portion of the experimental work entailed soil collection and characterization, soil adsorption and desorption of lead, and EK reactor construction and testing. The second phase of the research consisted of investigating the efficacy of using EK soil flushing on an actual soil using bench-scale EK reactors. For the second phase of the research the affect of initial conditions on the efficiency of EK soil flushing was studied.

  7. Plant communities in relation to flooding and soil contamination in a lowland Rhine River floodplain

    International Nuclear Information System (INIS)

    Schipper, Aafke M.; Lotterman, Kim; Leuven, Rob S.E.W.; Ragas, Ad M.J.; Kroon, Hans de; Hendriks, A. Jan

    2011-01-01

    Using canonical correspondence analysis (CCA), relationships were investigated between plant species composition and flooding characteristics, heavy metal contamination and soil properties in a lowland floodplain of the Rhine River. Floodplain elevation and yearly average flooding duration turned out to be more important for explaining variation in plant species composition than soil heavy metal contamination. Nevertheless, plant species richness and diversity showed a significant decrease with the level of contamination. As single heavy metal concentrations seemed mostly too low for causing phytotoxic effects in plants, this trend is possibly explained by additive effects of multiple contaminants or by the concomitant influences of contamination and non-chemical stressors like flooding. These results suggest that impacts of soil contamination on plants in floodplains could be larger than expected from mere soil concentrations. In general, these findings emphasize the relevance of analyzing effects of toxic substances in concert with the effects of other relevant stressors. - Multiple contaminants and periodic flooding may pose cumulative stress to plants in lowland floodplains.

  8. The application of bioassays as indicators of petroleum-contaminated soil remediation.

    Science.gov (United States)

    Płaza, Grazyna; Nałecz-Jawecki, Grzegorz; Ulfig, Krzysztof; Brigmon, Robin L

    2005-04-01

    Bioremediation has proven successful in numerous applications to petroleum contaminated soils. However, questions remain as to the efficiency of bioremediation in lowering long-term soil toxicity. In the present study, the bioassays Spirotox, Microtox, Ostracodtoxkit F, umu-test with S-9 activation, and plant assays were applied, and compared to evaluate bioremediation processes in heavily petroleum contaminated soils. Six higher plant species (Secale cereale L., Lactuca sativa L., Zea mays L., Lepidium sativum L., Triticum vulgare L., Brassica oleracea L.) were used for bioassay tests based on seed germination and root elongation. The ecotoxicological analyses were made in DMSO/H2O and DCM/DMSO soil extracts. Soils were tested from two biopiles at the Czechowice oil refinery, Poland, that have been subjected to different bioremediation applications. In biopile 1 the active or engineered bioremediation process lasted four years, while biopile 2 was treated passively or non-engineered for eight months. The test species demonstrated varying sensitivity to soils from both biopiles. The effects on test organisms exposed to biopile 2 soils were several times higher compared to those in biopile 1 soils, which correlated with the soil contaminants concentration. Soil hydrocarbon concentrations indeed decreased an average of 81% in biopile 1, whereas in biopile 2 TPH/TPOC concentrations only decreased by 30% after eight months of bioremediation. The bioassays were presented to be sensitive indicators of soil quality and can be used to evaluate the quality of bioremediated soil. The study encourages the need to combine the bioassays with chemical monitoring for evaluation of the bioremediation effectiveness and assessing of the contaminated/remediated soils.

  9. Overview on Analysis of Free Metabolites for Detection of Exposure to Chemical Warfare Agents

    Directory of Open Access Journals (Sweden)

    Grigoriu Nicoleta

    2015-06-01

    Full Text Available Chemical warfare agents (CWA’s induce complex toxicological effects with major adverse consequences for those exposed. For many chemical agents there is a need for research and development of analytical toxicological methods for a rapid and certain confirmation of those exposures. The certain methods will help for establishing the laboratory diagnosis for applying the proper therapy; the treatment of only contaminated people, decreasing the stress level in the medical community in management of crisis situations, increasing the survival rate of the population exposed to the contamination, supervision of professional exposure, judicial analysis in case of suspicious terrorist activities.

  10. An improved SOIL*EX trademark process for the removal of hazardous and radioactive contaminants from soils, sludges and other materials

    International Nuclear Information System (INIS)

    Bloom, R.R.; Bonnema, B.E.; Navratil, J.D.; Falconer, K.L.; Van Vliet, J.A.; Diel, B.N.

    1995-01-01

    Rust's patented SOIL*EX process is designed to remove hazardous and radioactive contaminants from soils, sludges and a matrix of other materials while destroying volatile organic compounds often associated with contaminated soil and debris. The process is comprised of three major process operations. The first operation involves the dissolution of contaminants that are chemically or mechanically bonded to the solid phase. The second process operation involves separation of the solid phase from the dissolution solution (mother liquor), which contains the dissolved contaminants. The final operation concentrates and removes the contaminants from the mother liquor. A pilot-scale SOIL*EX system was constructed at Rust's Clemson Technical Center for a Proof-of-Process demonstration. The demonstration program included the design, fabrication, and operation of pilot scale and demonstration equipment and systems. The pilot plant, an accurate scaled-down version of a proposed full-scale treatment system, was operated for five months to demonstrate the efficiency of the overall process. The pilot plant test program focused on demonstrating that the SOIL*EX process would remove and concentrate the contaminants and destroy volatile organic compounds. The pilot plant processed nearly 20 tons of soils and sludges, and test results indicated that all contaminants of concern were removed. Additionally, Rust completed numerous bench scale tests to optimize the chemistry. This paper discusses the pilot plant test criteria and results along with the salient design features of the SOIL*EX system and planned improvements

  11. Fixation of soil surface contamination using natural polysaccharides

    International Nuclear Information System (INIS)

    Sackschewsky, M.R.

    1993-09-01

    Natural polysaccharides were evaluated as alternatives to commercially available dust-control agents for application in buried-waste and contaminated-soil remediation situations. Materials were identified and evaluated with specific criteria in mind: the materials must be environmentally benign and must not introduce any additional hazardous materials; they must be effective for at least 2 or 3 days, but they do not necessarily have to be effective for more than 2 to 3 weeks; they should be relatively resistant to light traffic; they must not interfere with subsequent soil treatment techniques, especially soil washing; and they must be relatively inexpensive. Two products, a pregelled potato starch and a mixture of carbohydrates derived from sugar beets, were selected for evaluation. Testing included small- and large-scale field demonstrations, laboratory physical property analyses, and wind-tunnel evaluations

  12. Bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    Autry, A.R.; Ellis, G.M.

    1992-01-01

    This paper reports on bioremediation, which offers a cost-competitive, effective remediation alternative for soil contaminated with petroleum products. These technologies involve using microorganisms to biologically degrade organic constituents in contaminated soil. All bioremediation applications must mitigate various environmental rate limiting factors so that the biodegradation rates for petroleum hydrocarbons are optimized in field-relevant situations. Traditional bioremediation applications include landfarming, bioreactors, and composting. A more recent bioremediation application that has proven successful involves excavation of contaminated soil. The process involves the placement of the soils into a powerscreen, where it is screened to remove rocks and larger debris. The screened soil is then conveyed to a ribbon blender, where it is mixed in batch with nutrient solution containing nitrogen, phosphorus, water, and surfactants. Each mixed soil batch is then placed in a curing pile, where it remains undisturbed for the remainder of the treatment process, during which time biodegradation by naturally occurring microorganisms, utilizing biochemical pathways mediated by enzymes, will occur

  13. Characterization of mercury forms in contaminated floodplain soils

    International Nuclear Information System (INIS)

    Barnett, M.O.; Turner, R.R.; Henson, T.J.; Harris, L.A.; Melton, R.E.; Stevenson, R.J.

    1994-01-01

    The chemical form or speciation of Hg in the floodplain soils of the East Fork Poplar Creek in Oak Ridge TN, a site contaminated from past industrial activity, was investigated. Hg speciation in the soils is an important factor in controlling the fate and effect of mercury at the site and in assessing human health and ecological risk. Application of 3 different sequential extraction speciation schemes indicated the Hg at the site was predominantly relatively insoluble mercuric sulfide or metallic Hg, though the relative proportions of each did not agree well between procedures. Application of x-ray and electron beam studies to site soils confirmed the presence of metacinnabar, a form of mercuric sulfide, the first known evidence of authigenic mercuric sulfide formation in soils

  14. The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments.

    Science.gov (United States)

    Kim, Min-Suk; Min, Hyun-Gi; Koo, Namin; Park, Jeongsik; Lee, Sang-Hwan; Bak, Gwan-In; Kim, Jeong-Gyu

    2014-12-15

    Spent coffee grounds (SCG) and charred spent coffee grounds (SCG-char) have been widely used to adsorb or to amend heavy metals that contaminate water or soil and their success is usually assessed by chemical analysis. In this work, the effects of SCG and SCG-char on metal-contaminated water and soil were evaluated using chemical and biological assessments; a phytotoxicity test using bok choy (Brassica campestris L. ssp. chinensis Jusl.) was conducted for the biological assessment. When SCG and SCG-char were applied to acid mine drainage, the heavy metal concentrations were decreased and the pH was increased. However, for SCG, the phytotoxicity increased because a massive amount of dissolved organic carbon was released from SCG. In contrast, SCG-char did not exhibit this phenomenon because any easily released organic matter was removed during pyrolysis. While the bioavailable heavy metal content decreased in soils treated with SCG or SCG-char, the phytotoxicity only rose after SCG treatment. According to our statistical methodology, bioavailable Pb, Cu and As, as well as the electrical conductivity representing an increase in organic content, affected the phytotoxicity of soil. Therefore, applying SCG during environment remediation requires careful biological assessments and evaluations of the efficiency of this remediation technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals.

    Science.gov (United States)

    Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae

    2017-01-15

    Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H 2 O 2 ) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H 2 O 2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  17. Assessment of chromium biostabilization in contaminated soils using standard leaching and sequential extraction techniques

    International Nuclear Information System (INIS)

    Papassiopi, Nymphodora; Kontoyianni, Athina; Vaxevanidou, Katerina; Xenidis, Anthimos

    2009-01-01

    The iron reducing microorganism Desulfuromonas palmitatis was evaluated as potential biostabilization agent for the remediation of chromate contaminated soils. D. palmitatis were used for the treatment of soil samples artificially contaminated with Cr(VI) at two levels, i.e. 200 and 500 mg kg -1 . The efficiency of the treatment was evaluated by applying several standard extraction techniques on the soil samples before and after treatment, such as the EN12457 standard leaching test, the US EPA 3060A alkaline digestion method and the BCR sequential extraction procedure. The water soluble chromium as evaluated with the EN leaching test, was found to decrease after the biostabilization treatment from 13 to less than 0.5 mg kg -1 and from 120 to 5.6 mg kg -1 for the soil samples contaminated with 200 and 500 mg Cr(VI) per kg soil respectively. The BCR sequential extraction scheme, although not providing accurate estimates about the initial chromium speciation in contaminated soils, proved to be a useful tool for monitoring the relative changes in element partitioning, as a consequence of the stabilization treatment. After bioreduction, the percentage of chromium retained in the two least soluble BCR fractions, i.e. the 'oxidizable' and 'residual' fractions, increased from 54 and 73% to more than 96% in both soils

  18. Role of reducing agent in extraction of arsenic and heavy metals from soils by use of EDTA.

    Science.gov (United States)

    Kim, Eun Jung; Jeon, Eun-Ki; Baek, Kitae

    2016-06-01

    Although many metal-contaminated sites contain both anionic arsenic and cationic heavy metals, the current remediation technologies are not effective for the simultaneous removal of both anionic and cationic elements from the contaminated sites due to their different characteristics. In this study, the role of reducing agent in simultaneous extraction of As, Cu, Pb, and Zn from contaminated soils was investigated using EDTA. The addition of reducing agents, which includes sodium oxalate (Na2C2O4), ascorbic acid (C6H8O6) and sodium dithionite (Na2S2O4), greatly enhanced the EDTA extraction of both As and heavy metals from the contaminated soils due to the increased mobility of the metals under the reduced conditions. The extent of the enhancement of the EDTA extraction was greatly affected by the reducing conditions. Strong reducing conditions (0.1 M of dithionite) were required for the extraction of metals strongly bound to the soil, while weak reducing conditions (0.01 M of dithionite or 0.1 M of oxalate/ascorbic acid) were sufficient for extraction of metals that were relatively weakly bound to the soil. An almost 90% extraction efficiency of total metals (As, Cu, Zn, and Pb) was obtained from the contaminated soils using the combination of dithionite and EDTA. Our results clearly showed that the combination of dithionite and EDTA can effectively extract As and heavy metals simultaneously from soils under a wide range of pH conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. CONTAMINATED SOIL VOLUME ESTIMATE TRACKING METHODOLOGY

    International Nuclear Information System (INIS)

    Durham, L.A.; Johnson, R.L.; Rieman, C.; Kenna, T.; Pilon, R.

    2003-01-01

    The U.S. Army Corps of Engineers (USACE) is conducting a cleanup of radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The largest cost element for most of the FUSRAP sites is the transportation and disposal of contaminated soil. Project managers and engineers need an estimate of the volume of contaminated soil to determine project costs and schedule. Once excavation activities begin and additional remedial action data are collected, the actual quantity of contaminated soil often deviates from the original estimate, resulting in cost and schedule impacts to the project. The project costs and schedule need to be frequently updated by tracking the actual quantities of excavated soil and contaminated soil remaining during the life of a remedial action project. A soil volume estimate tracking methodology was developed to provide a mechanism for project managers and engineers to create better project controls of costs and schedule. For the FUSRAP Linde site, an estimate of the initial volume of in situ soil above the specified cleanup guidelines was calculated on the basis of discrete soil sample data and other relevant data using indicator geostatistical techniques combined with Bayesian analysis. During the remedial action, updated volume estimates of remaining in situ soils requiring excavation were calculated on a periodic basis. In addition to taking into account the volume of soil that had been excavated, the updated volume estimates incorporated both new gamma walkover surveys and discrete sample data collected as part of the remedial action. A civil survey company provided periodic estimates of actual in situ excavated soil volumes. By using the results from the civil survey of actual in situ volumes excavated and the updated estimate of the remaining volume of contaminated soil requiring excavation, the USACE Buffalo District was able to forecast and update project costs and schedule. The soil volume

  20. The Combination of DGT Technique and Traditional Chemical Methods for Evaluation of Cadmium Bioavailability in Contaminated Soils with Organic Amendment

    Directory of Open Access Journals (Sweden)

    Yu Yao

    2016-06-01

    Full Text Available Organic amendments have been proposed as a means of remediation for Cd-contaminated soils. However, understanding the inhibitory effects of organic materials on metal immobilization requires further research. In this study colza cake, a typical organic amendment material, was investigated in order to elucidate the ability of this material to reduce toxicity of Cd-contaminated soil. Available concentrations of Cd in soils were measured using an in situ diffusive gradients in thin films (DGT technique in combination with traditional chemical methods, such as HOAc (aqua regia, EDTA (ethylene diamine tetraacetic acid, NaOAc (sodium acetate, CaCl2, and labile Cd in pore water. These results were applied to predict the Cd bioavailability after the addition of colza cake to Cd-contaminated soil. Two commonly grown cash crops, wheat and maize, were selected for Cd accumulation studies, and were found to be sensitive to Cd bioavailability. Results showed that the addition of colza cake may inhibit the growth of wheat and maize. Furthermore, the addition of increasing colza cake doses led to decreasing shoot and root biomass accumulation. However, increasing colza cake doses did lead to the reduction of Cd accumulation in plant tissues, as indicated by the decreasing Cd concentrations in shoots and roots. The labile concentration of Cd obtained by DGT measurements and the traditional chemical extraction methods, showed the clear decrease of Cd with the addition of increasing colza cake doses. All indicators showed significant positive correlations (p < 0.01 with the accumulation of Cd in plant tissues, however, all of the methods could not reflect plant growth status. Additionally, the capability of Cd to change from solid phase to become available in a soil solution decreased with increasing colza cake doses. This was reflected by the decreases in the ratio (R value of CDGT to Csol. Our study suggests that the sharp decrease in R values could not only

  1. Bench Scale Treatability Studies of Contaminated Soil Using Soil Washing Technique

    OpenAIRE

    Gupta, M. K.; Srivastava, R. K.; Singh, A. K.

    2010-01-01

    Soil contamination is one of the most widespread and serious environmental problems confronting both the industrialized as well as developing nations like India. Different contaminants have different physicochemical properties, which influence the geochemical reactions induced in the soils and may bring about changes in their engineering and environmental behaviour. Several technologies exist for the remediation of contaminated soil and water. In the present study soil washing technique using...

  2. Mutagenic hazards of complex polycyclic aromatic hydrocarbon mixtures in contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, C.L.; Lambert, A.B.; Lundstedt, S.; Tysklind, M.; White, P.A. [Health Canada, Ottawa, ON (Canada). Safe Environment Program

    2008-04-15

    The objective of the present study was to evaluate hazard/risk assessment methods for complex environmental mixtures that involve a targeted, priority chemical approach based on the cumulative hazard/risk of known mixture components or analyses of sufficiently similar mixtures. Ten polycyclic aromatic hydrocarbon (PAH)-contaminated soils were separated into nonpolar and semipolar fractions, and both fractions elicited positive responses on the Salmonella reverse mutation assay. Targeted and nontargeted methods of hazard prediction routinely overestimated mutagenic activities for the nonpolar soil fractions, suggesting nonadditive interactions of PAHs in complex mixtures. This suggests that current risk assessment methods for complex mixtures may provide conservative estimates regarding soils contaminated with priority PAHs alone. Significant underestimations of total risk, however, will be obtained if the soils also contain unidentified PAHs as well as polycyclic aromatic compounds and related compounds that contribute to the total mutagenic activity. Furthermore, estimates of excess lifetime cancer risk associated with the nondietary ingestion of the PAH-contaminated soils studied here indicate that a traditional risk assessment model based on identified priority PAHs and an assumption of additivity generally underestimates the risk associated with the nonpolar soil fractions (in comparison to bioassay-derived risk estimates). Additional cancer risk may be associated with the more polar compounds that also are found at these contaminated sites and that rarely are included in the standard risk assessment methodology.

  3. Simulating Mobility of Chemical Contaminants from Unconventional Gas Development for Protection of Water Resources

    Science.gov (United States)

    Kanno, C.; Edlin, D.; Borrillo-Hutter, T.; McCray, J. E.

    2014-12-01

    Potential contamination of ground water and surface water supplies from chemical contaminants in hydraulic fracturing fluids or in natural gas is of high public concern. However, quantitative assessments have rarely been conducted at specific energy-producing locations so that the true risk of contamination can be evaluated. The most likely pathways for contamination are surface spills and faulty well bores that leak production fluids directly into an aquifer. This study conducts fate and transport simulations of the most mobile chemical contaminants, based on reactivity to subsurface soils, degradation potential, and source concentration, to better understand which chemicals are most likely to contaminate water resources, and to provide information to planners who wish to be prepared for accidental releases. The simulations are intended to be most relevant to the Niobrara shale formation.

  4. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny

    OpenAIRE

    Bell, Terrence H; El-Din Hassan, Saad; Lauron-Moreau, Aurélien; Al-Otaibi, Fahad; Hijri, Mohamed; Yergeau, Etienne; St-Arnaud, Marc

    2013-01-01

    Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rh...

  5. Guide to treatment technology for contaminated soils

    International Nuclear Information System (INIS)

    Tran, H.; Aylward, R.

    1992-01-01

    This document is a guide for the screening of alternative treatment technologies for contaminated soils. The contents of this guide are organized into: 1. Introduction, II. Utilizing the table, III. Tables: Contamination Versus Technology, TV. Contaminant Waste Groups, and V. References. The four Contaminations Versus Technology tables are designed to identify the effectiveness and/or potential applicability of technologies to some or all compounds within specific waste groups. The tables also present limitations and special use considerations for the particular treatment technology. The phase of development of the technology is also included in the table. The phases are: Available, Innovative, and Emerging technologies. The technologies presented in this guide are organized according to the method of treatment. The four (4) treatment methods are Biological, Solidification/Stabilization, Thermal, and Chemical/Physical Treatment. There are several processing methods; some are well developed and proven, and others are in the development stage

  6. The organic contamination level based on the total soil mass is not a proper index of the soil contamination intensity

    Science.gov (United States)

    Hung, H.-W.; Daniel, Sheng G.; Lin, T.-F.; Su, Y.; Chiou, C.T.

    2009-01-01

    Concentrations of organic contaminants in common productive soils based on the total soil mass give a misleading account of actual contamination effects. This is attributed to the fact that productive soils are essentially water-saturated, with the result that the soil uptake of organic compounds occurs principally by partition into the soil organic matter (SOM). This report illustrates that the soil contamination intensity of a compound is governed by the concentration in the SOM (Com) rather than by the concentration in whole soil (Cs). Supporting data consist of the measured levels and toxicities of many pesticides in soils of widely differing SOM contents and the related levels in in-situ crops that defy explanation by the Cs values. This SOM-based index is timely needed for evaluating the contamination effects of food crops grown in different soils and for establishing a dependable priority ranking for intended remediation of numerous contamination sites.

  7. Long-term assessment of natural attenuation: statistical approach on soils with aged PAH contamination.

    Science.gov (United States)

    Ouvrard, Stéphanie; Chenot, Elodie-Denise; Masfaraud, Jean-François; Schwartz, Christophe

    2013-07-01

    Natural attenuation processes valorization for PAH-contaminated soil remediation has gained increasing interest from site owners. A misunderstanding of this method and a small amount of data available does not encourage its development. However, monitored natural attenuation (MNA) offers a valuable, cheaper and environmentally friendly alternative to more classical options such as physico-chemical treatments (e.g., chemical oxidation, thermal desorption). The present work proposes the results obtained during a long-term natural attenuation assessment of historically contaminated industrial soils under real climatic conditions. This study was performed after a 10 year natural attenuation period on 60 off-ground lysimeters filled with contaminated soils from different former industrial sites (coking industry, manufactured gas plants) whose initial concentration of PAH varied between 380 and 2,077 mg kg(-1). The analysed parameters included leached water characterization, soil PAH concentrations, evaluation of vegetation cover quality and quantity. Results showed a good efficiency of the PAH dissipation and limited transfer of contaminants to the environment. It also highlighted the importance of the fine soil fractions in controlling PAH reactivity. PAH dissipation through water leaching was limited and did not present a significant risk for the environment. This PAH water concentration appeared however as a good indicator of overall dissipation rate, thereby illustrating the importance of pollutant availability in predicting its degradation potential.

  8. Estimating areas threatened by contamination from leaking chemical warfare agents dumped into the Baltic Sea

    Science.gov (United States)

    Jakacki, Jaromir; Przyborska, Anna; Andrzejewski, Jan

    2017-04-01

    Approximately 60,000 tons of chemical munitions were dumped into the Baltic Sea after World War II (the exact amount is unknown and some sources estimate it as more than 200,000 tons). Dumped munitions still pose a risk of leakage caused by erosion and corrosion, and it is important to know the danger areas. Because of wide dispersion of the dumped munitions, modelling is only one tool that could provide wide image of physical state of the sea at all locations and which could also be used for analysing contamination during a potential leakage. Obviously, it is possible to take samples at each dumpsite, but modelling also allows to develop possible scenarios of leakages under specific physical conditions. For the purpose of analysis of potential leakage a high-resolution model (HRM) of the contamination will be embedded in the hydrodynamic model (HM) of the Baltic Sea. The HRM will use data from general circulation model results of estimated resolution of nearly 2 km. The Parallel Ocean Program will be implemented as the HM for the whole Baltic Sea. Atmospheric data from regional implementation of the Weather Research and Forecasting System (WRF) have been used as the top boundary conditions of the HM, and sea level data from Gothenburg had been included into model barotropic equation as lateral boundary conditions. Passive tracer will represent the contamination in the HRM and horizontal resolution of the HRM will be close to 50 meters. Passive tracers will also be implemented in the HM - for comparison of the results. For proper representation of potential leakage of chemical warfare agents the HRM will have included diffusion and advection processes. The results from the HM are going to be interpolated into the HRM domain and then integration will be performed. Based on the implemented simulations, estimated contaminated area and its comparison from the HRM as well as from the HM will be presented. The research work was fund by the European Union (European

  9. Sorption ability of the soil and its impact on environmental contamination

    Science.gov (United States)

    Gargošová, Helena Zlámalová; Vávrová, Milada

    2014-01-01

    From the physical point of view, soil is a heterogenic polydisperse system. It often becomes a place of a secondary contamination during extinguishing uncontrolled areal fires in nature. Foam extinguishing agents (FEAs), used at these events, basically contain surface active substances and perfluorinated compounds. These tend to be captured in the soil matrix due to their specific properties. Contaminants could be partly flushed out with rainwater, which causes several times dilution of contamination and lower ecotoxic activity. However in the dry season, foam solution infiltrates into the bed soil without any dilution. This study deals with the direct influence of soil the sorption complex on ecotoxicity of five selected FEAs, i.e. Expyrol F 15, Finiflam F 15, Moussol APS F 15, Pyrocool B and Sthamex F 15. The substances tested were prepared in concentration of work solution and then applied on standard soil matrix LUFA 2.3. For experimental purposes, a column infiltration apparatus was designed and compiled. Filtrates were collected and then tested using the plant organisms Sinapis alba and Allium cepa L. The study compared ecotoxicologic effects of filtrates with an original work solution. Moussol APS F 15 seems to be the least ecotoxic of the FEAs tested. A direct influence of soil sorption complex onto ecotoxicity reduction was also established. This finding demonstrates the sorption ability of soil particles and ion exchange activity of the soil matrix. It is a positive finding for biota of aquatic environment, yet at the expense of those in soil. PMID:26109897

  10. Comparison of Selected Methods for Individual Decontamination of Chemical Warfare Agents

    OpenAIRE

    Tomas Capoun; Jana Krykorkova

    2014-01-01

    This study addresses the individual decontamination of chemical warfare agents (CWA) and other hazardous substances. The individual decontamination applies to contaminated body surfaces, protective clothing and objects immediately after contamination, performed individually or by mutual assistance using prescribed or improvised devices. The article evaluates the importance of individual decontamination, security level for Fire and Rescue Service Units of the Czech Republic (FRS CR) and demons...

  11. Degradation of Total Petroleum Hydrocarbon (TPH) in Contaminated Soil Using Bacillus pumilus MVSV3.

    Science.gov (United States)

    Varma, Surendra Sheeba; Lakshmi, Mahalingam Brinda; Rajagopal, Perumalsam; Velan, Manickam

    2017-01-01

     A study on bioremediation of soil contaminated with petroleum sludge was performed using Bacillus pumilus/MVSV3 (Accession number JN089707). In this study, 5 kg of agricultural soil was mixed well with 5% oil sludge and fertilizers containing nitrogen, phosphorus and potassium (N:P:K). The treatment resulted in 97% removal of total petroleum hydrocarbon (TPH) in 122 d in bacteria mixed contaminated soil when compared to 12% removal of TPH in uninoculated contaminated soil. The population of the microorganism remained stable after introduced into the oil environment. The physical and chemical parameters of the soil mixed with sludge showed variation indicating improvement and the pH level decreased during the experiment period. Elemental analysis and Gas Chromatography-Mass Spectroscopy (GC-MS) analysis revealed the bacterial ability to degrade oil sludge components. Growth experiments with Trigonellafoenumgraecum (Fenugreek) showed the applicability of bioremediated soil for the production.

  12. Bioremediation of petroleum contaminated soil using vegetation--A technology transfer project

    International Nuclear Information System (INIS)

    Banks, M.K.; Schwab, A.P.; Govindaraju, R.S.; Chen, Z.

    1994-01-01

    A common environmental problem associated with the pumping and refining of crude oil is the disposal of petroleum sludge. Unfortunately, the biodegradation fate of more recalcitrant and potentially toxic contaminants, such as the polynuclear aromatic hydrocarbons (PNAs), is rapid at first but declines quickly. Biodegradation of these compounds is limited by their strong adsorption potential and low solubility. Recent research has suggested that vegetation may play an important role in the biodegradation of toxic organic chemicals, such as PNAs, in soil. The establishment of vegetation on hazardous waste sites may be an economic, effective, low maintenance approach to waste remediation and stabilization. Completed greenhouse studies have indicated that vegetative remediation is a feasible method for clean-up of surface soil contaminated with petroleum products. However, a field demonstration is needed to exhibit this new technology to the industrial community. In this project, several petroleum contaminated field sites will be chosen in collaboration with three industrial partners. These sites will be thoroughly characterized for chemical properties, physical properties, and initial PNA concentrations. A variety of plant species will be established on the sites, including warm and cool season grasses and alfalfa. Soil analyses for the target compounds over time will allow them to assess the efficiency and applicability of this remediation method

  13. Application of Bioassays for the Ecotoxicity Assessment of Contaminated Soils

    Science.gov (United States)

    Fernández, María D.; Babín, Mar; Tarazona, José V.

    The use of bioassays for soil characterization is receiving significant attention as a complementary tool to chemical analysis. Bioassays consist of direct toxicity assays of environmental samples that are transferred to the laboratory and analyzed for toxicity against selected organisms. Such soil samples contain the combination of the different pollutants present in situ and enable factors such as the bioavailability of contaminants or the interactions (synergic and antagonic) between them to be simultaneously studied.

  14. Caenorhabditis elegans Predation on Bacillus anthracis: Decontamination of Spore Contaminated Soil with Germinants and Nematodes.

    Science.gov (United States)

    Schelkle, Bettina; Choi, Young; Baillie, Leslie W; Richter, William; Buyuk, Fatih; Celik, Elif; Wendling, Morgan; Sahin, Mitat; Gallagher, Theresa

    2017-01-01

    Remediation of Bacillus anthracis -contaminated soil is challenging and approaches to reduce overall spore levels in environmentally contaminated soil or after intentional release of the infectious disease agent in a safe, low-cost manner are needed. B. anthracis spores are highly resistant to biocides, but once germinated they become susceptible to traditional biocides or potentially even natural predators such as nematodes in the soil environment. Here, we describe a two-step approach to reducing B. anthracis spore load in soil during laboratory trials, whereby germinants and Caenorhabditis elegans nematodes are applied concurrently. While the application of germinants reduced B. anthracis spore load by up to four logs depending on soil type, the addition of nematodes achieved a further log reduction in spore count. These laboratory based results suggest that the combined use of nematodes and germinants could represent a promising approach for the remediation of B. anthracis spore contaminated soil. Originality-Significance Statement: This study demonstrates for the first time the successful use of environmentally friendly decontamination methods to inactivate Bacillus anthracis spores in soil using natural predators of the bacterium, nematode worms.

  15. Pilot scale aided-phytoremediation of a co-contaminated soil.

    Science.gov (United States)

    Marchand, Charlotte; Mench, Michel; Jani, Yahya; Kaczala, Fabio; Notini, Peter; Hijri, Mohamed; Hogland, William

    2018-03-15

    A pilot scale experiment was conducted to investigate the aided-phytoextraction of metals and the aided-phytodegradation of petroleum hydrocarbons (PHC) in a co-contaminated soil. First, this soil was amended with compost (10% w/w) and assembled into piles (Unp-10%C). Then, a phyto-cap of Medicago sativa L. either in monoculture (MS-10%C) or co-cropped with Helianthus annuus L. as companion planting (MSHA-10%C) was sown on the topsoil. Physico-chemical parameters and contaminants in the soil and its leachates were measured at the beginning and the end of the first growth season (after five months). In parallel, residual soil ecotoxicity was assessed using the plant species Lepidium sativum L. and the earthworm Eisenia fetida Savigny, 1826, while the leachate ecotoxicity was assessed using Lemna minor L. After 5months, PH C10-C40, PAH-L, PAH-M PAH-H, Pb and Cu concentrations in the MS-10%C soil were significantly reduced as compared to the Unp-10%C soil. Metal uptake by alfalfa was low but their translocation to shoots was high for Mn, Cr, Co and Zn (transfer factor (TF) >1), except for Cu and Pb. Alfalfa in monoculture reduced electrical conductivity, total organic C and Cu concentration in the leachate while pH and dissolved oxygen increased. Alfalfa co-planting with sunflower did not affect the extraction of inorganic contaminants from the soil, the PAH (M and H) degradation and was less efficient for PH C10-C40 and PAH-L as compared to alfalfa monoculture. The co-planting reduced shoot and root Pb concentrations. The residual soil ecotoxicity after 5months showed a positive effect of co-planting on L. sativum shoot dry weight (DW) yield. However, high contaminant concentrations in soil and leachate still inhibited the L. sativum root DW yield, earthworm development, and L. minor growth rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Reactive skin decontamination lotion (RSDL) for the decontamination of chemical warfare agent (CWA) dermal exposure.

    Science.gov (United States)

    Schwartz, M D; Hurst, C G; Kirk, M A; Reedy, S J D; Braue, E H

    2012-08-01

    Rapid decontamination of the skin is the single most important action to prevent dermal absorption of chemical contaminants in persons exposed to chemical warfare agents (CWA) and toxic industrial chemicals (TICs) as a result of accidental or intentional release. Chemicals on the skin may be removed by mechanical means through the use of dry sorbents or water. Recent interest in decontamination systems which both partition contaminants away from the skin and actively neutralize the chemical has led to the development of several reactive decontamination solutions. This article will review the recently FDA-approved Reactive Skin Decontamination Lotion (RSDL) and will summarize the toxicity and efficacy studies conducted to date. Evidence of RSDL's superior performance against vesicant and organophosphorus chemical warfare agents compared to water, bleach, and dry sorbents, suggests that RSDL may have a role in mass human exposure chemical decontamination in both the military and civilian arenas.

  17. Greenhouse study on the phytoremediation potential of vetiver grass, Chrysopogon zizanioides L., in arsenic-contaminated soils.

    Science.gov (United States)

    Datta, Rupali; Quispe, Mario A; Sarkar, Dibyendu

    2011-01-01

    The purpose of this greenhouse study was to assess the capacity of vetiver grass to accumulate arsenic from pesticide-contaminated soils of varying physico-chemical properties. Results indicate that vetiver is capable of tolerating moderate levels of arsenic up to 225 mg/kg. Plant growth and arsenic removal efficiency was strongly influenced by soil properties. Arsenic removal was highest (10.6%) in Millhopper soil contaminated with 45 mg/kg arsenic, which decreased to 4.5 and 0.6% at 225 and 450 mg/kg, respectively. High biomass, widespread root system and environmental tolerance make this plant an attractive choice for the remediation of soils contaminated with moderate levels of arsenic.

  18. Stabilization/Solidification Remediation Method for Contaminated Soil: A Review

    Science.gov (United States)

    Tajudin, S. A. A.; Azmi, M. A. M.; Nabila, A. T. A.

    2016-07-01

    Stabilization/Solidification (S/S) is typically a process that involves a mixing of waste with binders to reduce the volume of contaminant leachability by means of physical and chemical characteristics to convert waste in the environment that goes to landfill or others possibly channels. Stabilization is attempts to reduce the solubility or chemical reactivity of the waste by changing the physical and chemical properties. While, solidification attempt to convert the waste into easily handled solids with low hazardous level. These two processes are often discussed together since they have a similar purpose of improvement than containment of potential pollutants in treated wastes. The primary objective of this review is to investigate the materials used as a binder in Stabilization/Solidification (S/S) method as well as the ability of these binders to remediate the contaminated soils especially by heavy metals.

  19. Decontamination of Soils Contaminated with Co and Cs by Using an Acid Leaching Process

    International Nuclear Information System (INIS)

    Jung-Joon, Lee; Gye-Nam, Kim; Jei-Kwon, Moon; Kune-Woo, Lee

    2009-01-01

    Acid leaching process has been adapted for the remediation of soils contaminated with heavy metals and radionuclides. This method has been reported to be simple, and economically promising. Moreover it can be applicable for on-site and off-site remediations as well. Investigations were conducted on an acid leaching process using surrogate contaminated soils. Size sieving, agglomeration and column leaching were carried out with soils artificially contaminated with Co and Cs, respectively. Size distribution was analyzed for a determination of the particle size required to be agglomerated. Because of the low water permeability of the soils due to their fine particles, they were sieved by using a sieve with a 0.075 mm size (No. 200 mesh) for an agglomeration. The soils with a size smaller than 0.075 mm were agglomerated by using 2 % sodium silicate (Na 2 SiO 3 ), while the soils with a size larger than 0.075 mm were used directly for the column leaching test. From the preliminary test (the batch scale leaching test), 0.1 M of HCl was determined as the effective leaching agent for Co and Cs. Finally, the soils mixed with the coarse soil and the agglomerated soil were decontaminated with 0.1 M HCl within 11.3 days and the removal efficiencies of Co and Cs were 94.0 % and 82.8 %, respectively. In conclusion, an acid leaching process could be applied for a remediation of soils contaminated with radionuclides such as Co and Cs. (authors)

  20. Remediation of Heavy Metal(loid)s Contaminated Soils – To Mobilize or To Immobilize?

    Science.gov (United States)

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy ...

  1. Potential and real ecological threat of heavy metals in contaminated soils

    Science.gov (United States)

    Motuzova, Galina; Barsova, Natalia; Makarichev, Ivan; Karpova, Elena

    2013-04-01

    organisms. Within the last 20-40 years a bulk of information has been accumulating to study the impact of technogenic sources on the HM content in soils and the ratio between their compounds. They serve as evidence that in the contaminated soils the total content of HM is several orders (2-3) higher than that in soils of natural landscapes. Based upon a comprehensive analysis of data obtained in field and laboratory it is possible to speak about following differences in soils of natural and technogenic landscapes. (1) The total content of HM in contaminated soils reveals weak connection with their content in soil-forming rocks being depended on technological and landscape-geochemical conditions. (2) A share of mobile forms of HM from their total content increases in comparison to that in natural soils, what is associated with soil contamination and even toxicity, because they can be easily taken up by plants and other living organisms. (3) The surplus of HM in soils leads to degradation of the most important properties so vital for soil fertility (acid base saturation, ion exchange capacity, the humus status, absorbing capacity and others). The enhanced knowledge of soil chemical properties which are subject to contamination by HM, regularities in sorption of heavy metals bond to soil components, the composition of compounds formed by soil with heavy metals allows forecasting the real ecological threat of landscape contamination with HM. The indices of the foregoing soil chemical properties serve as a basis for application of current technologies for soil remediation from HM. Acknowledgments. This work was supported by the Russian Found of Basic Researches (projects no. 06-05-48894, 09-05-00575, 11-05-90351)

  2. Hydrogeology and chemical quality of water and soil at Carroll Island, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, F.J.; Phillips, S.W.

    1996-01-01

    Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.

  3. [Decontamination of chemical and biological warfare agents].

    Science.gov (United States)

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis.

  4. Critical assessment of the available technologies for sanitation of contaminated soil and their limits of application

    International Nuclear Information System (INIS)

    Nussbaumer, M.; Glaeser, E.

    1993-01-01

    Sanitation of polluted land comprises safety measures and soil purification measures. Soil purification can take place either in situ, or on-site or off-site after digging up the contaminated soil. In-situ processes are soil deaeration, groundwater purification and biological methods. Soil deaeration is suited for volatile pollutants in the unsaturated zone of loose soils, while groundwater purification is commonly applied for water-soluble pollutants in the saturated zone of soils with a high k f value. On-site or off-site purification of contaminated soils can take place by thermal processes, by soil washing, by microorganisms, or by physical processes. Thermal processes have the widest range of applications; they are suited for most soils polluted with mostly organic pollutants, and the residual contamination is lowest. Soil washing is limited to sandy and noncohesive soils and for emulsifiable or elutable pollutants. Biological on-site and off-line methods are limited to biodegradable pollutants which are not in phase. Loosening agents may be added in order to overcome geotechnical limitations. Physical purification of soils is limited to specific applications e.g. removal of volatile hydrocarbons. (orig.) [de

  5. Remediation mechanisms for Cd-contaminated soil using natural sepiolite at the field scale.

    Science.gov (United States)

    Yin, Xiuling; Xu, Yingming; Huang, Rong; Huang, Qingqing; Xie, Zhonglei; Cai, Yanming; Liang, Xuefeng

    2017-12-13

    Remediation of heavy metal polluted agricultural soil is essential for human health and ecological safety and remediation mechanisms at the microscopic level are vital for their large-scale utilization. In this study, natural sepiolite was employed as an immobilization agent for in situ field-scale remediation of Cd-contaminated paddy soil and the remediation mechanisms were investigated in terms of soil chemistry and plant physiology. Natural sepiolite had a significant immobilization effect for bioavailable Cd contents in paddy soil, and consequently could lower the Cd concentrations of brown rice, husk, straw, and roots of rice plants by 54.7-73.7%, 44.0-62.5%, 26.5-67.2%, and 36.7-46.7%, respectively. Regarding soil chemistry, natural sepiolite increased the soil pH values and shifted the zeta potentials of soil particles to be more negative, enhancing the fixation or sorption of Cd on soil particles, and resulted in the reduction of HCl and DTPA extractable Cd concentrations in paddy soil. Natural sepiolite neither enhanced nor inhibited iron plaques on the rice root surface, but did change the chemical environments of Fe and S in rice root. Natural sepiolite improved the activities of antioxidant enzymes and enhanced the total antioxidant capacity to alleviate the stress of Cd. It also promotes the synthesis of GSH and NPT to complete the detoxification. In general, the remediation mechanisms of natural sepiolite for the Cd pollutant in paddy soil could be summarized as the collective effects of soil chemistry and plant physiology.

  6. Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes.

    Science.gov (United States)

    Zhang, Tao; Zou, Hua; Ji, Minhui; Li, Xiaolin; Li, Liqiao; Tang, Tang

    2014-02-01

    Optimizing process parameters that affect the remediation time and power consumption can improve the treatment efficiency of the electrokinetic remediation as well as determine the cost of a remediation action. Lab-scale electrokinetic remediation of Pb-contaminated soils was investigated for the effect of complexant ethylenediaminetetraacetic acid (EDTA) and acetic acid and approaching anode on the removal efficiency of Pb. When EDTA was added to the catholyte, EDTA dissolved insoluble Pb in soils to form soluble Pb-EDTA complexes, increasing Pb mobility and accordingly removal efficiency. The removal efficiency was enhanced from 47.8 to 61.5 % when the EDTA concentration was increased from 0.1 to 0.2 M, showing that EDTA played an important role in remediation. And the migration rate of Pb was increased to 72.3 % when both EDTA and acetic acid were used in the catholyte. The "approaching anode electrokinetic remediation" process in the presence of both EDTA and acetic acid had a higher Pb-removal efficiency with an average efficiency of 83.8 %. The efficiency of electrokinetic remediation was closely related to Pb speciation. Exchangeable and carbonate-bounded Pb were likely the forms which could be removed. All results indicate that the approaching anode method in the presence of EDTA and acetic acid is an advisable choice for electrokinetic remediation of Pb-contaminated soil.

  7. Treatment of chromium contaminated soil using bioremediation

    Science.gov (United States)

    Purwanti, Ipung Fitri; Putri, Tesya Paramita; Kurniawan, Setyo Budi

    2017-11-01

    Chromium contamination in soil occurs due to the disposal of chromium industrial wastewater or sludge that excess the quality standard. Chromium concentration in soil is ranged between 1 to 300 mg/kg while the maximum health standard is 2.5 mg/kg. Bioremediation is one of technology that could be used for remediating heavy metal contamination in soil. Bacteria have an ability to remove heavy metal from soil. One bacteria species that capable to remove chromium from soil is Bacillus subtilis. The aim of this research was to know the chromium removal percentage in contaminated soil by Bacillus subtilis. Artificial chromium contaminated soil was used by mixing 425gram sand and chromium trichloride solution. Concentration of chromium added into the spiked soil were 50, 75, and 100 mg/L. During 14 days, pH, soil temperature and soil moisture were tested. Initial and final number of bacterial colony and chromium concentration analysed. The result showed that the highest percentage of chromium removal was 11% at a chromium concentration of 75 mg/L

  8. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.

    Science.gov (United States)

    Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming

    2017-04-01

    Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.

  9. The tolerance efficiency of Panicum maximum and Helianthus annuus in TNT-contaminated soil and nZVI-contaminated soil.

    Science.gov (United States)

    Jiamjitrpanich, Waraporn; Parkpian, Preeda; Polprasert, Chongrak; Laurent, François; Kosanlavit, Rachain

    2012-01-01

    This study was designed to compare the initial method for phytoremediation involving germination and transplantation. The study was also to determine the tolerance efficiency of Panicum maximum (Purple guinea grass) and Helianthus annuus (Sunflower) in TNT-contaminated soil and nZVI-contaminated soil. It was found that the transplantation of Panicum maximum and Helianthus annuus was more suitable than germination as the initiate method of nano-phytoremediation potting test. The study also showed that Panicum maximum was more tolerance than Helianthus annuus in TNT and nZVI-contaminated soil. Therefore, Panicum maximum in the transplantation method should be selected as a hyperaccumulated plant for nano-phytoremediation potting tests. Maximum tolerance dosage of Panicum maximum to TNT-concentration soil was 320 mg/kg and nZVI-contaminated soil was 1000 mg/kg in the transplantation method.

  10. Importance of microscopy in durability studies of solidified and stabilized contaminated soils

    Science.gov (United States)

    Klich, I.; Wilding, L.P.; Drees, L.R.; Landa, E.R.

    1999-01-01

    Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or achieved in a laboratory warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical

  11. Surface contamination effects on leaf chemical composition in the Atlantic Forest

    International Nuclear Information System (INIS)

    Ferrari, A.A.; Franca, E.J.; Fernandes, E.A.N.; Bacchi, M.A.

    2006-01-01

    The exogenous material that adheres to the leaf surface affects the elemental composition of the plant itself, thereby constituting one of the major error sources in plant analysis. The present work investigated the surface contamination of leaves from the Atlantic Forest. Instrumental neutron activation analysis (INAA) was applied to assess the efficiency of leaf EDTA-washing. Chemical element concentrations were corrected using Sc (soil tracer) since resuspended soil is the main source of contamination in leaves. As a result, EDTA-washing should be used mainly for the evaluation of terrigenous elements, while the Sc-corrected concentrations are considered satisfactory for the other elements. (author)

  12. The use of municipal sewage sludge for the stabilization of soil contaminated by mining activities.

    Science.gov (United States)

    Theodoratos, P; Moirou, A; Xenidis, A; Paspaliaris, I

    2000-10-02

    The ability of municipal sewage sludge to immobilize Pb, Zn and Cd contained in contaminated soil originating from a former mining area in Lavrion, Greece was investigated. The soil was cured with sewage sludge in various proportions. The stabilization was evaluated primarily by applying chemical tests and complemented by the performance of additional biological tests. Application of the U.S. EPA Toxicity Characteristic Leaching Procedure (TCLP) on the stabilized mixtures proved that Pb, Zn and Cd solubility was reduced by 84%, 64% and 76%, respectively, at 15% w/w sludge addition, while a 10% w/w addition was sufficient to reduce Pb solubility below the U.S. EPA TCLP regulatory limit. The results of the extraction using EDTA solution showed the same trend, resulting in 26%, 36% and 53% reduction in the Pb, Zn and Cd extractable fractions, respectively. Speciation analysis of the treated soils revealed a significant decrease in the mobile fractions of heavy metals, which was attributed to their retention in sewage sludge by adsorption and organic complexation mechanisms. For the assessment of possible phytotoxicity, experiments including growing dwarf beans in the treated soil was carried out. It was found that sewage sludge addition had a positive effect on plant growth. Furthermore, the Pb and Zn uptake of plant leaves and roots was reduced, while Cd uptake was unaffected by the sludge treatment. The results of this study support the hypothesis that municipal sewage sludge is a potential effective stabilizing agent for contaminated soil containing Pb, Zn and Cd.

  13. PAHs contamination in urban soils from Lisbon: spatial variability and potential risks

    Science.gov (United States)

    Cachada, Anabela; Pereira, Ruth; Ferreira da Silva, Eduardo; Duarte, Armando

    2015-04-01

    Polycyclic Aromatic hydrocarbons (PAHs) can become major contaminants in urban and industrial areas, due to the existence of a plethora of diffuse and point sources. Particularly diffuse pollution, which is normally characterized by continuous and long-term emission of contaminants below risk levels, can be a major problem in urban areas. Since PAHs are persistent and tend to accumulate in soils, levels are often above the recommended guidelines indicating that ecological functions of soils may be affected. Moreover, due to the lipophilic nature, hydrophobicity and low chemical and biological degradation rates of PAHs, which leads to their bioconcentration and bioamplification, they may reach toxicological relevant concentrations in organisms. The importance and interest of studying this group of contaminants is magnified due to their carcinogenic, mutagenic and endocrine disrupting effects. In this study, a risk assessment framework has been followed in order to evaluate the potential hazards posed by the presence of PAHs in Lisbon urban soils. Hence, the first step consisted in screening the total concentrations of PAHs followed by the calculation of risks based on existing models. Considering these models several samples were identified as representing a potential risk when comparing with the guidelines for soil protection. Moreover, it was found that for 38% of samples more than 50% of species can be potentially affected by the mixture of PAHs. The use of geostatistical methods allowed to visualize the predicted distribution of PAHs in Lisbon area and identify the areas where possible risk to the environment are likely occurring However, it is known that total concentration may not allow a direct prediction of environmental risk, since in general only a fraction of total concentration is available for partitioning between soil and solution and thus to be uptake or transformed by organisms (bioacessible or bioavailable) or to be leached to groundwater. The

  14. [Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment].

    Science.gov (United States)

    Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José

    2004-09-01

    Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.

  15. Sampling design for use by the soil decontamination project

    International Nuclear Information System (INIS)

    Rutherford, D.W.; Stevens, J.R.

    1981-01-01

    This report proposes a general approach to the problem and discusses sampling of soil to map the contaminated area and to provide samples for characterizaton of soil components and contamination. Basic concepts in sample design are reviewed with reference to environmental transuranic studies. Common designs are reviewed and evaluated for use with specific objectives that might be required by the soil decontamination project. Examples of a hierarchial design pilot study and a combined hierarchial and grid study are proposed for the Rocky Flats 903 pad area

  16. Development and application of techniques for monitoring the bioremediation of petroleum hydrocarbon-contaminated soils

    International Nuclear Information System (INIS)

    Greer, C.; Hawar, J.; Samson, R.

    1994-01-01

    A series of tests was designed to examine bioremediation potential in soil and to monitor performance during the treatment operation. Physical and chemical characterization of the soil provides information on the types of organics, their concentrations, and whether interfering materials are present. Microbiological assessment involves culturing of bacterial populations in the soil and examination of the colonies to determine which have the genetic potential to degrade the soil contaminants. Catabolic gene probes are used to survey viable bacteria from petroleum hydrocarbon contaminated soils. Such soils consistently demonstrate the presence of bacteria possessing the genetic capability to degrade simple straight-chain alkanes and aromatics. Mineralization and respirometric studies are indicators of the biological activity in the soil, and can be directed at microbial activity towards specific substrates. Gene probe monitoring of a petroleum hydrocarbon contaminated soil during biopile treatment demonstrated that hydrocarbon-degrading bacterial numbers and activity were temperature dependent. The results showed that the activity of the indigenous bacteria as measured by hexadecane mineralization also correlated with the disappearance of the oil and grease. The application of this protocol has provided a useful means to screen contaminated soils for bacteria with desirable catabolic properties and to monitor pollutant-degrading bacteria during biotreatment. 15 refs., 10 figs

  17. Engineering-scale tests of in situ vitrification to PCB and radioactive contaminated soils

    International Nuclear Information System (INIS)

    Liikala, S.C.

    1991-01-01

    In Situ Vitrification (ISV) is a thermal treatment technology applicable to the remediation of hazardous chemical and radioactive contaminated soil and sludge sites. The ISV process utilizes electricity, through joule heating, to melt contaminated soil and form an inert glass and microcrystalline residual product. Applications of ISV to polychlorinated biphenyls (PCBs) and radionuclides have been demonstrated at engineering-scale in numerous tests (1,2,3). An updated evaluation of ISV applicability to treatment of PCBs and radionuclides, and recent test results are presented herein

  18. Phthalic acid and benzo[a]pyrene in soil-plant-water systems amended with contaminated sewage sludge

    DEFF Research Database (Denmark)

    Mougin, C.; Dappozze, F.; Brault, A.

    2006-01-01

    We studied the fate of C-14-labelled phthalic acid and benzo[a]pyrene applied to the soil by the way of contaminated sewage sludge in model ecosystems allowing the simultaneous assessment of physicochemical and biological descriptors. Here we show that the mineralisation of phthalic acid is highe......[a]pyrene is recalcitrant to biodegradation whatever the type of soil contamination. We show also that the chemicals present in the sludge are poorly transferred to soil leachates and plant seedlings....

  19. Effects of climate change and wildfire on soil loss in the Southern Rockies Ecoregion

    Science.gov (United States)

    S. E. Litschert; D. M. Theobald; T. C. Brown

    2014-01-01

    Forests in the Southern Rockies Ecoregion surround the headwaters of several major rivers in the western and central US. Future climatic changes will increase the incidence of wildfire in those forests, and will likely lead to changes in downstream water quality, including sediment loads.We estimated soil loss under the historic climate and two IPCC climate change...

  20. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation

    International Nuclear Information System (INIS)

    Madejon, Engracia; Perez de Mora, Alfredo; Felipe, Efrain; Burgos, Pilar; Cabrera, Francisco

    2006-01-01

    We tested the effects of three amendments (a biosolid compost, a sugar beet lime, and a combination of leonardite plus sugar beet lime) on trace element stabilisation and spontaneous revegetation of a trace element contaminated soil. Soil properties were analysed before and after amendment application. Spontaneous vegetation growing on the experimental plot was studied by three surveys in terms of number of taxa colonising, percentage vegetation cover and plant biomass. Macronutrients and trace element concentrations of the five most frequent species were analysed. The results showed a positive effect of the amendments both on soil chemical properties and vegetation. All amendments increased soil pH and TOC content and reduced CaCl 2 -soluble-trace element concentrations. Colonisation by wild plants was enhanced in all amended treatments. The nutritional status of the five species studied was improved in some cases, while a general reduction in trace element concentrations of the aboveground parts was observed in all treated plots. The results obtained show that natural assisted remediation has potential for success on a field scale reducing trace element entry in the food chain. - Soil amendments affect soil chemistry and allow revegetation of soils contaminated by trace elements

  1. A study on the assessment of treatment technologies for efficient remediation of radioactively-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jong Soon; Shin, Seung Su; KIm, Sun Il [Chosun University, Gwangju (Korea, Republic of)

    2016-09-15

    Soil can be contaminated by radioactive materials due to nuclide leakage following unexpected situations during the decommissioning of a nuclear power plant. Soil decontamination is necessary if contaminated land is to be reused for housing or industry. The present study classifies various soil remediation technologies into biological, physics/chemical and thermal treatment and analyzes their principles and treatment materials. Among these methods, this study selects technologies and categorizes the economics, applicability and technical characteristics of each technology into three levels of high, medium and low by weighting the various factors. Based on this analysis, the most applicable soil decontamination technology was identified.

  2. Schiff base: A high affinity chemical agent to decrease the concentration of aflatoxin M1 in raw milk contaminated artificially

    Directory of Open Access Journals (Sweden)

    Frane Delaš

    2012-03-01

    Full Text Available In the present study were conducted the effect of pH (5.5, 6.0 and 6.5 and concentration of new synthesized 3-/2-aminophenylimino-(p-toluoyl/-4-hydroxy-6-(p-tolyl-2H-pyrane-2-one (Schiff base on decrease the concentration of aflatoxin M1 (AFM1 in raw milk contaminated with known concentration of this toxin. Experiments were carried out at temperature of 4 °C during 35 days. At pH 5.5 Schiff base concentration of 0.1 µmol/L was lessening the concentration of AFM1 after 35 days by 55 %. However, at pH 6.5 the most effective concentration for lessening of AFM1 was 0.5 µmol/L. Schiff base was not effective at pH value of 7 or higher. The ability of Schiff base to act as antimycotoxigenic agent provides new perspective for possibly using this compound to control AFM1 contamination in milk and to extent shelf lives of this food. Detection of toxicity of investigated Schiff base was performed by using the brine shrimp (Artemia salina larvae as an biological indicator to determine their sensitivity to this chemical agent.

  3. Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment.

    Science.gov (United States)

    Beiyuan, Jingzi; Tsang, Daniel C W; Valix, Marjorie; Zhang, Weihua; Yang, Xin; Ok, Yong Sik; Li, Xiang-Dong

    2017-01-01

    To enhance extraction of strongly bound metals from oxide minerals and organic matter, this study examined the sequential use of reductants, oxidants, alkaline solvents and organic acids followed by a biodegradable chelating agent (EDDS, [S,S]-ethylene-diamine-disuccinic-acid) in a two-stage soil washing. The soil was contaminated by Cu, Zn, and Pb at an e-waste recycling site in Qingyuan city, China. In addition to extraction efficiency, this study also examined the fate of residual metals (e.g., leachability, bioaccessibility, and distribution) and the soil quality parameters (i.e., cytotoxicity, enzyme activities, and available nutrients). The reductants (dithionite-citrate-bicarbonate and hydroxylamine hydrochloride) effectively extracted metals by mineral dissolution, but elevated the leachability and bioaccessibility of metals due to the transformation from Fe/Mn oxides to labile fractions. Subsequent EDDS washing was found necessary to mitigate the residual risks. In comparison, prior washing by oxidants (persulphate, hypochlorite, and hydrogen peroxide) was marginally useful because of limited amount of soil organic matter. Prior washing by alkaline solvents (sodium hydroxide and sodium bicarbonate) was also ineffective due to metal precipitation. In contrast, prior washing by low-molecular-weight organic acids (citrate and oxalate) improved the extraction efficiency. Compared to hydroxylamine hydrochloride, citrate and oxalate induced lower cytotoxicity (Microtox) and allowed higher enzyme activities (dehydrogenase, acid phosphatase, and urease) and soil nutrients (available nitrogen and phosphorus), which would facilitate reuse of the treated soil. Therefore, while sequential washing proved to enhance extraction efficacy, the selection of chemical agents besides EDDS should also include the consideration of effects on metal leachability/bioaccessibility and soil quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Hydrogen peroxide treatment of TCE contaminated soil

    International Nuclear Information System (INIS)

    Hurst, D.H.; Robinson, K.G.; Siegrist, R.L.

    1993-01-01

    Solvent contaminated soils are ubiquitous in the industrial world and represent a significant environmental hazard due to their persistence and potentially negative impacts on human health and the environment. Environmental regulations favor treatment of soils with options which reduce the volume and toxicity of contaminants in place. One such treatment option is the in-situ application of hydrogen peroxide to soils contaminated with chlorinated solvents such as trichloroethylene (TCE). This study investigated hydrogen peroxide mass loading rates on removal of TCE from soils of varying organic matter content. Batch experiments conducted on contaminated loam samples using GC headspace analysis showed up to 80% TCE removal upon peroxide treatment. Column experiments conducted on sandy loam soils with high organic matter content showed only 25% TCE removal, even at hydrogen peroxide additions of 25 g peroxide per kg soil

  5. Developing an integration tool for soil contamination assessment

    Science.gov (United States)

    Anaya-Romero, Maria; Zingg, Felix; Pérez-Álvarez, José Miguel; Madejón, Paula; Kotb Abd-Elmabod, Sameh

    2015-04-01

    In the last decades, huge soil areas have been negatively influenced or altered in multiples forms. Soils and, consequently, underground water, have been contaminated by accumulation of contaminants from agricultural activities (fertilizers and pesticides) industrial activities (harmful material dumping, sludge, flying ashes) and urban activities (hydrocarbon, metals from vehicle traffic, urban waste dumping). In the framework of the RECARE project, local partners across Europe are focusing on a wide range of soil threats, as soil contamination, and aiming to develop effective prevention, remediation and restoration measures by designing and applying targeted land management strategies (van Lynden et al., 2013). In this context, the Guadiamar Green Corridor (Southern Spain) was used as a case study, aiming to obtain soil data and new information in order to assess soil contamination. The main threat in the Guadiamar valley is soil contamination after a mine spill occurred on April 1998. About four hm3 of acid waters and two hm3 of mud, rich in heavy metals, were released into the Agrio and Guadiamar rivers affecting more than 4,600 ha of agricultural and pasture land. Main trace elements contaminating soil and water were As, Cd, Cu, Pb, Tl and Zn. The objective of the present research is to develop informatics tools that integrate soil database, models and interactive platforms for soil contamination assessment. Preliminary results were obtained related to the compilation of harmonized databases including geographical, hydro-meteorological, soil and socio-economic variables based on spatial analysis and stakeholder's consultation. Further research will be modellization and upscaling at the European level, in order to obtain a scientifically-technical predictive tool for the assessment of soil contamination.

  6. [Remediation efficiency of lead-contaminated soil at an industrial site by ultrasonic-assisted chemical extraction].

    Science.gov (United States)

    Wang, Xin-jie; Huang, Jin-lou; Liu, Zhi-qiang; Yue, Xi

    2013-09-01

    This research chose five lead-contaminated sites of a lead-acid battery factory to analyze the speciation distribution and concentration of lead. Under the same conditions (0.1 mol x L(-1) EDTA,30 min, 25 degrees C), the removal effect of heavy metal was compared between ultrasonic-assisted chemical extraction (UCE) and conventional chemical extraction ( CCE), and the variation of lead speciation was further explored. The results showed that the lead removal efficiency of UCE was significantly better than CCE. The lead removal efficiency of WS, A, B, C and BZ was 10.06%, 48.29%, 48.69%, 53.28% and 36.26% under CCE. While the removal efficiency of the UCE was 22.42%, 69.31%, 71.00%, 74.49% and 71.58%, with the average efficiency higher by 22%. By comparing the speciation distribution of the two washing methods, it was found that the acid extractable content maintained or decreased after UCE, whereas it showed an increasing trend after CCE. The reduction effect of the reducible was as high as 98% by UCE. UCE also showed a more efficient reduction effect of the organic matter-sulfite bounded form and the residual form. Hence, it is feasible to improve the washing efficiency of heavy metal contained in soil by conducting the cleaning process with the help of ultrasonic wave, which is a simple and fast mean to remove lead from contaminated sites.

  7. Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas.

    Science.gov (United States)

    Radziemska, Maja; Koda, Eugeniusz; Bilgin, Ayla; Vaverková, Mgdalena D

    2017-12-23

    The experiment was carried out in order to evaluate the effects of trace element immobilizing soil amendments, i.e., chalcedonite, dolomite, halloysite, and diatomite on the chemical characteristics of soil contaminated with Cr and the uptake of metals by plants. The study utilized analysis of variance (ANOVA), principal component analysis (PCA) and Factor Analysis (FA). The content of trace elements in plants, pseudo-total and extracted by 0.01 M CaCl₂, were determined using the method of spectrophotometry. All of the investigated element contents in the tested parts of Indian mustard ( Brassica juncea L.) differed significantly in the case of applying amendments to the soil, as well as Cr contamination. The greatest average above-ground biomass was observed when halloysite and dolomite were amended to the soil. Halloysite caused significant increases of Cr concentrations in the roots. The obtained values of bioconcentration and translocation factors observed for halloysite treatment indicate the effectiveness of using Indian mustard in phytostabilization techniques. The addition of diatomite significantly increased soil pH. Halloysite and chalcedonite were shown to be the most effective and decreased the average Cr, Cu and Zn contents in soil.

  8. The effect of mycorrhizal inoculation on hybrid poplar fine root dynamics in hydrocarbon contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Gunderson, J.; Knight, J.D.; Van Rees, K.C.J. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Soil Science

    2006-07-01

    The biological remediation of contaminated soils using plants was discussed. Hybrid poplars are good candidates for phytoremediation because they root deeply, cycle large amounts of water and grow quickly. Their fine root system is pivotal in nutrient and water acquisition. Therefore, in order to maximize the phytoremediation potential, it is important to understand the response of the fine root system. In addition to degrading organic chemicals, ectomycorrhizal (ECM) fungi provide the host with greater access to nutrients. This study determined the relationship between residual soil hydrocarbons and soil properties at a field site. The effects of residual contamination on hybrid poplar fine root dynamics was also examined along with the effect of ectomycorrhizal colonization on hybrid poplar fine root dynamics when grown in diesel contaminated soil under controlled conditions. A minirhizotron camera inside a growth chamber captured images of mycorrhizal inoculation on hybrid poplar fine root production. Walker hybrid poplar seedlings were grown for 12 weeks in a control soil and also in a diesel contaminated soil. Seedlings were also grown in control and diesel contaminated, ectomycorrhizal inoculated soils. The inoculum was a mycorrhizal mix containing Pisolithus tinctorius and Rhizopogon spp. The images showed that colonization by ECM fungi increased hybrid poplar fine root production and aboveground biomass in a diesel contaminated soil compared to non-colonized trees in the same soil. Root:shoot ratios were much higher in the diesel contaminated/non-inoculated treatment than in either of the control soil treatments. Results of phytoremediation in diesel contaminated soil were better in the non-colonized treatment than in the colonized treatment. Both treatments removed more contaminants from the soil than the unplanted control. Much higher quantities of hydrocarbons were found sequestered in the roots from the inoculated treatment than from the non

  9. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment.

    Science.gov (United States)

    Peng, Shengwei; Zhou, Qixing; Cai, Zhang; Zhang, Zhineng

    2009-09-15

    Phytoremediation of soils contaminated by organic chemicals is a challenging problem in environmental science and engineering. On the basis of identifying remediation plants from ornamentals, the remediation capability of Mirabilis Jalapa L. to treat petroleum contaminated soil from the Shengli Oil Field in Dongying City, Shandong Province, China was further investigated using a field plot experiment carried out in a greenhouse. The results showed that the average efficiency of removing total petroleum hydrocarbons (TPHs) by M. jalapa over the 127-day culture period was high, up to 41.61-63.20%, when the removal rate by natural attenuation was only 19.75-37.92%. The maximum reduction occurred in the saturated hydrocarbon fraction compared with other components of petroleum contaminants. According to the qualitative and quantitative parameters including plant height, fresh weight, dry weight, root length, root weight and visual stress symptoms, it was indicated that M. jalapa had a peculiar tolerance to petroleum contamination and could effectively promote the degradation of TPHs when the concentration of petroleum hydrocarbons in soil was equal to and lower than 10,000 mg/kg. The population of living microorganisms in the planted soil could be also adaptive to contaminated soil. On the whole, M. jalapa is a widely spread species that can be effectively applied to phytoremediation of contaminated soil.

  10. Toxic Chemicals in the Soil Environment. Volume 2. Interactions of Some Toxic Chemicals/Chemical Warfare Agents and Soils

    Science.gov (United States)

    1985-06-01

    K., S. Barik , and N. Sethunathan. 1981. Stability of commercial formulations of fenitrothion, methyl parathion, and parathion in anaero- bic soils. J ...34 D(Cl - C2 )L where; J - rate of flow or flWx, or the 4mount of solute (chemical) diffuisiguuit ti= across a unit crossý-ectional area, D difffuoion...surfaces (coatentrations C, aud C2) varies vith the concentration gradient, tlus’: 3 - -D(dC/dx) Where: J * the flux in grams or moles in cm%1s- acroeas a

  11. Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation.

    Science.gov (United States)

    Pogrzeba, Marta; Rusinowski, Szymon; Sitko, Krzysztof; Krzyżak, Jacek; Skalska, Aleksandra; Małkowski, Eugeniusz; Ciszek, Dorota; Werle, Sebastian; McCalmont, Jon Paul; Mos, Michal; Kalaji, Hazem M

    2017-06-01

    Crop growth and development can be influenced by a range of parameters, soil health, cultivation and nutrient status all play a major role. Nutrient status of plants can be enhanced both through chemical fertiliser additions (e.g. N, P, K supplementation) or microbial fixation and mobilisation of naturally occurring nutrients. With current EU priorities discouraging the production of biomass on high quality soils there is a need to investigate the potential of more marginal soils to produce these feedstocks and the impacts of soil amendments on crop yields within them. This study investigated the potential for Miscanthus x giganteus to be grown in trace element (TE)-contaminated soils, ideally offering a mechanism to (phyto)manage these contaminated lands. Comprehensive surveys are needed to understand plant-soil interactions under these conditions. Here we studied the impacts of two fertiliser treatments on soil physico-chemical properties under Miscanthus x giganteus cultivated on Pb, Cd and Zn contaminated arable land. Results covered a range of parameters, including soil rhizosphere activity, arbuscular mycorrhization (AM), as well as plant physiological parameters associated with photosynthesis, TE leaf concentrations and growth performance. Fertilization increased growth and gas exchange capacity, enhanced rhizosphere microbial activity and increased Zn, Mg and N leaf concentration. Fertilization reduced root colonisation by AMF and caused higher chlorophyll concentration in plant leaves. Microbial inoculation seems to be a promising alternative for chemical fertilizers, especially due to an insignificant influence on the mobility of toxic trace elements (particularly Cd and Zn). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Biological detoxification of a hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Fabbri, F.; Lucchese, G.; Nardella, A.

    2005-01-01

    The soil quality of an industrial site chronically contaminated by 39000 mg/kg of oil was detrimentally affected. Soil treatments by bio-pile and land-farming resulted in a reduction of the level of contamination exceeding 90% of the original values, but without reaching regulatory limits. However, the bio-remediation treatments dramatically reduced the mobility of the contaminants and, accordingly, microbial tests clearly indicate that the soil quality improved to acceptable levels, similar to those typically observed in unaltered soils. Hydrocarbon mobility was estimated by the use of water and mild extractants (methanol and sodium dodecyl sulphate) to leach the contaminants from the soil; soil quality was evaluated by comparing the values of selected microbial and enzymatic parameters of the treated soil samples to reference values determined for natural soils. Microbial assessments included: measurement of the nitrification potential, dehydrogenase activity, measures of respiration and lipase activity, microbial counts (MPN on rich media) and Microtox TM assays of the water elutriate. Dermal absorption potential was evaluated using absorption on C 18 disks

  13. The role of soil quality maps in the reuse of lightly contaminated soil

    OpenAIRE

    Lamé, F.P.J.; Leenaers, H.; Zegwaard, J.

    2000-01-01

    In 1999 the Dutch government agreed on a new policy regarding the reuse of lightly contaminated soil. From now on, lightly contaminated soil may be reused under conditions of soil-quality management. The municipal authorities supervise the reuse under this new regime. Two basic criteria need to be met before reuse of lightly contaminated soil is allowed. Firstly, the quality of the soil has to be characterised on a soil quality map. Secondly, the soil that will be reused has to be of the same...

  14. Assessment of soil stabilization by chemical extraction and bioaccumulation using earthworm, Eisenia fetida

    Science.gov (United States)

    Lee, Byung-Tae; Abd Aziz, Azilah; Han, Heop Jo; Kim, Kyoung-Woong

    2014-05-01

    Soil stabilization does not remove heavy metals from contaminated soil, but lowers their exposures to ecosystem. Thus, it should be evaluated by measuring the fractions of heavy metals which are mobile and/or bioavailable in soils. The study compared several chemical extractions which intended to quantify the mobile or bioaccessible fractions with uptake and bioaccumulation by earthworm, Eisenia fetida. Soil samples were taken from the abandoned mine area contaminated with As, Cd, Cu, Pb and/or Zn. To stabilize heavy metals, the soils were amended with limestone and steel slag at 5% and 2% (w/w), respectively. All chemical extractions and earthworm tests were applied to both the contaminated and the stabilized soils with triplicates. The chemical extractions consisted of six single extractions which were 0.01M CaCl2 (unbufferred), EDTA or DTPA (chelating), TCLP (acidic), Mehlich 3 (mixture), and aqua regia (peudo-total). Sequential extractions were also applied to fractionate heavy metals in soils. In earthworm tests, worms were exposed to the soils for uptake of heavy metals. After 28 days of exposure to soils, worms were transferred to clean soils for elimination. During the tests, three worms were randomly collected at proper sampling events. Worms were rinsed with DI water and placed on moist filter paper for 48 h for depuration. Filter paper was renewed at 24 h to prevent coprophagy. The worms were killed with liquid nitrogen, dried in the oven, and digested with aqua regia for ICP-MS analysis. In addition to the bioaccumulation, several toxicity endpoints were observed such as burrowing time, mortality, cocoon production, and body weight changes. Toxicokinetics was applied to determine the uptake and elimination heavy metals by the earthworms. Bioaccumulation factor (BAF) was estimated using total metal concentrations and body burdens. Pearson correlation and simple linear regression were applied to evaluate the relationship between metal fractions by single

  15. Time-dependent changes of zinc speciation in four soils contaminated with zincite or sphalerite.

    Science.gov (United States)

    Voegelin, Andreas; Jacquat, Olivier; Pfister, Sabina; Barmettler, Kurt; Scheinost, Andreas C; Kretzschmar, Ruben

    2011-01-01

    species in soils. Important factors include the rate of Zn release from the contaminant phases and effects of the contaminant phase on bulk soil properties and on local chemical conditions around weathering contaminant particles.

  16. Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas

    OpenAIRE

    Radziemska, Maja; Koda, Eugeniusz; Bilgin, Ayla; Vaverková, Mgdalena D.

    2017-01-01

    The experiment was carried out in order to evaluate the effects of trace element immobilizing soil amendments, i.e., chalcedonite, dolomite, halloysite, and diatomite on the chemical characteristics of soil contaminated with Cr and the uptake of metals by plants. The study utilized analysis of variance (ANOVA), principal component analysis (PCA) and Factor Analysis (FA). The content of trace elements in plants, pseudo-total and extracted by 0.01 M CaCl2, were determined using the method of sp...

  17. Chemical stabilization of metals and arsenic in contaminated soils using oxides – A review

    International Nuclear Information System (INIS)

    Komárek, Michael; Vaněk, Aleš; Ettler, Vojtěch

    2013-01-01

    Oxides and their precursors have been extensively studied, either singly or in combination with other amendments promoting sorption, for in situ stabilization of metals and As in contaminated soils. This remediation option aims at reducing the available fraction of metal(loid)s, notably in the root zone, and thus lowering the risks associated with their leaching, ecotoxicity, plant uptake and human exposure. This review summarizes literature data on mechanisms involved in the immobilization process and presents results from laboratory and field experiments, including the subsequent influence on higher plants and aided phytostabilization. Despite the partial successes in the field, recent knowledge highlights the importance of long-term and large-scale field studies evaluating the stability of the oxide-based amendments in the treated soils and their efficiency in the long-term. - In situ stabilization of metals and As in contaminated soils using oxides combined with phytostabilization is a potential alternative to conventional remediation techniques.

  18. Economical and environmental valorization of compost: possible utilization for contaminated soil bioremediation

    International Nuclear Information System (INIS)

    Fontanarosa, E.; Belfiore, A.; Napoletano, M.; Gandolfi, I.; Sicolo, M.; Franzetti, A.; Santagostino, A.; Bestetti, G.; Centemero, M.

    2009-01-01

    The Bo.S.Co project (Bioremediation of contaminated soils by compost) aims at creating an innovative bioremediation technology ready-to-use and competitive in price. This technology use a particular kind of certified compost that optimizes cleaning processes. Compost, in fact, is a very rich matrix that can supply nutrients, used by the autochthonous microflora. In the present study compost was used to enhance diesel oil and PAHs degradation in two heavily contaminated soils; laboratory scale experiments were performed by preparing four soil-bio piles, under laboratory conditions chemical, microbiological and eco toxic parameters were analyzed at different times. Compost addition was effective in enhancing biodegradation of diesel oil compounds and simultaneous reduction of genotoxicity with respect to the control. [it

  19. Testing of multistep soil washing for radiocesium-contaminated soil containing plant matter

    International Nuclear Information System (INIS)

    Funakawa, Masafumi; Tagawa, Akihiro; Okuda, Nobuyasu

    2012-01-01

    Decontamination work following radiocesium exposure requires a vast reduction in the amount of contaminated soil generated. The current study subjected 4 types of contaminated soil with different properties to multistep soil washing under the same conditions. This study also determined the effectiveness of radiocesium decontamination and the extent to which the amount of contaminated soil was reduced. In addition, the effectiveness of plant matter separation, adsorbent addition, and grinding as part of multistep soil washing was determined using the same contaminated soil. Results of testing indicated that the rate of radiocesium decontamination ranged from 73.6 to 89.2% and the recovery rate ranged from 51.5 to 84.2% for twice-treated soil, regardless of the soil properties or cesium level. Plant matter in soil had a high radiocesium level. However, there was little plant matter in our soil sample. Therefore, plant matter separation had little effect on the improvement in the percentage of radiocesium decontamination of twice-treated soil. Soil surface grinding improved the rate of radiocesium decontamination of twice-treated soil. However, radiocesium in soil tightly bound with minerals in the soil; thus, the addition of an adsorbent also failed to improve the rate of radiocesium decontamination. (author)

  20. EDTA-induced phytoextraction of lead and barium by brachiaria (B. decumbens cv. Basilisk in soil contaminated by oil exploration drilling waste

    Directory of Open Access Journals (Sweden)

    André Fernão Martins de Andrade

    2014-08-01

    Full Text Available The phytoextraction of heavy metals using chelating agents has been widely studied for the remediation of contaminated soils. To evaluate the efficiency of EDTA-induced phytoextraction of Ba and Pb using Brachiaria decumbens for the remediation of soil contaminated by oil well drilling and exploration waste, an experiment was conducted by applying a single dose (6 mmol EDTA kg-1 soil and split doses of EDTA (three applications of 2 mmol EDTA kg-1 soil. The samples were subjected to sequential extractions using the method proposed by Ure et al. (1993 as modified by Rauret et al. (1999.The application of EDTA did not influence the distribution of Ba in various chemical fractions of the soil. The dry matter production did not differ significantly between the treatments and the control, thereby demonstrating the tolerance of plants to the experimental conditions. The absorption of Pb by plants was influenced by the application of EDTA. The application of a single dose of EDTA influenced the absorption of Pb and its translocation to the aerial plant parts. The application of split doses favoured higher accumulation of Pb in roots. Because of its tolerance to heavy metals and EDTA, B. decumbens has the potential to be used in phytostabilisation.

  1. Contaminant Gradients in Trees: Directional Tree Coring Reveals Boundaries of Soil and Soil-Gas Contamination with Potential Applications in Vapor Intrusion Assessment.

    Science.gov (United States)

    Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G

    2017-12-19

    Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.

  2. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil.

    Science.gov (United States)

    Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W

    2015-10-30

    Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Phytoremediation of soils contaminated with radionuclides

    International Nuclear Information System (INIS)

    Yamaguchi, Isamu

    2004-01-01

    Aiming at efficient phytoremediation of soils contaminated with radionuclides, we examined the effect of soil microbes on the uptake ability of plants using the multitracer technique to find that tomato rhizofungi in Fusarium spp. can stimulate the uptake of 85 Sr and 137 Cs by the plants. The synergic effect of a nonpathogenic strain of F. oxysporum on the uptake of radionuclides by plants proved to be enhanced by introducing a phytochelatin synthase gene into the fungus. Since soil contamination by radionuclides is still an unsolved problem in many parts of the world. Studies on phytoremediation of polluted soil environment will be important for developing effective strategies and devising adequate techniques to reduce human risks caused by food contamination of radionuclides. (author)

  4. Thermal remediation of tar-contaminated soil and oil-contaminated gravel

    International Nuclear Information System (INIS)

    Anthony, E.J.; Wang, J.

    2005-01-01

    High temperature treatments are commonly considered for the decontamination of soil as they have the advantages of reliability, high capacity, and effective destruction of hazardous materials with reduced long-term liability. This paper examined the remediation of soil contaminated by coal tar as well as gravel contaminated by oil. Pilot plant studies were conducted using 2 representative incineration technologies: rotary kiln and fluidized bed. The coal tar contaminated soil had accumulated over a few decades at a calcination plant in western Canada. The soil was sticky and could not be handled by conventional feeding and combustion systems. Crushed lignite was mixed with the soil as an auxiliary fuel and to reduce stickiness. A pilot plant furnace was used to evaluate the potential of decontamination in a rotary calciner. An analysis of both a modelling study and the test results showed that complete decontamination could be achieved in the targeted calciner. The results suggested that energy recovery was also possible, which could in turn make the remediation process more cost-effective. Decontamination of oil-contaminated gravel was conducted with a pilot plant fluidized bed combustor to study the feasibility of using incineration technology in the remediation of gravel and debris contaminated by oil spills. Results indicated that the gravel was decontaminated with acceptable emission performance. It was concluded that the study will be valuable to the application of commercial incineration processes for the remediation of polluted soils. It was observed that the weathering of the oiled gravel lowered the rate of decontamination. A small amount of salt water resulted in lowered decontamination rates, which may be an important factor for situations involving the remediation of shoreline gravel contaminated by oil. 24 refs., 6 tabs., 7 figs

  5. Investigation of ethyl lactate as a green solvent for desorption of total petroleum hydrocarbons (TPH) from contaminated soil.

    Science.gov (United States)

    Jalilian Ahmadkalaei, Seyedeh Pegah; Gan, Suyin; Ng, Hoon Kiat; Abdul Talib, Suhaimi

    2016-11-01

    Treatment of oil-contaminated soil is a major environmental concern worldwide. The aim of this study is to examine the applicability of a green solvent, ethyl lactate (EL), in desorption of diesel aliphatic fraction within total petroleum hydrocarbons (TPH) in contaminated soil and to determine the associated desorption kinetics. Batch desorption experiments were carried out on artificially contaminated soil at different EL solvent percentages (%). In analysing the diesel range of TPH, TPH was divided into three fractions and the effect of solvent extraction on each fraction was examined. The experimental results demonstrated that EL has a high and fast desorbing power. Pseudo-second order rate equation described the experimental desorption kinetics data well with correlation coefficient values, R 2 , between 0.9219 and 0.9999. The effects of EL percentage, initial contamination level of soil and liquid to solid ratio (L/S (v/w)) on initial desorption rate have also been evaluated. The effective desorption performance of ethyl lactate shows its potential as a removal agent for remediation of TPH-contaminated soil worldwide.

  6. Uptake by Plants of Radiostrontium from Contaminated Soils

    DEFF Research Database (Denmark)

    Andersen, A. J.

    1965-01-01

    In a recent report from this department it was shown that the extractability of radiostrontium from contaminated soil samples was effectively reduced by heat treatment and by the addition of phosphate to the soil. It was pointed out that, under emergency conditions, heat-treatment of the contamin......In a recent report from this department it was shown that the extractability of radiostrontium from contaminated soil samples was effectively reduced by heat treatment and by the addition of phosphate to the soil. It was pointed out that, under emergency conditions, heat......-treatment of the contaminated soil surface and heavy phosphate application might thus reduce the uptake by plants of radiostrontium more efficiently than liming, which is only effective in soils of low calcium status. In the investigation reviewed here the influence of heat treatment and superphosphate application on the plant...... uptake of radiostrontium was examined in pot experiments. For comparison the effect of applying calcium carbonate to the contaminated soil surface was also determined....

  7. Factors influencing the chemical extractability of 241Am from a contaminated soil

    International Nuclear Information System (INIS)

    Nishita, H.; Hamilton, M.

    1976-01-01

    Factors influencing the extractability of 241 Am from an artificially contaminated soil were investigated. This was done with an equilibrium batch technique using CH 3 COOH-NH 4 OH and HNO 3 -NaOH extracting systems. The influence of several soil components was determined indirectly by selectively removing them from the soil. The effect of water- and HCl-soluble salts and organic matter on 241 Am extractability was small. The most marked effect was due to the soil organic fraction that was not water- or HCl-soluble. This organic fraction was influential under both low and high pH conditions, but its influence was particularly marked under low pH conditions. The free iron-oxides had an appreciable effect under low pH conditions, but no observable effect in the high pH range. Though to a lesser extent, the free silica and alumina, amorphous alumino-silicate, and possibly residual organic matter also showed some influence. These results provide some implications on the conditions that influence the movement of 241 Am in soils and its availability to plants. A review of the literature on the behavior of Am in soils is included

  8. Polycyclic aromatic hydrocarbon removal from contaminated soils using fatty acid methyl esters.

    Science.gov (United States)

    Gong, Zongqiang; Wang, Xiaoguang; Tu, Ying; Wu, Jinbao; Sun, Yifei; Li, Peng

    2010-03-01

    In this study, solubilization of PAHs from a manufactured gas plant (MGP) soil and two artificially spiked soils using fatty acid methyl esters (FAME) was investigated. PAH removals from both the MGP and the spiked soils by FAME, methanol, soybean oil, hydroxypropyl-beta-cyclodextrin, Triton X-100, and Tween 80 were compared. The effect of FAME:MGP soil ratios on PAH removals was also investigated. Results showed that the FAME mixture synthesized by our lab was more efficient than the cyclodextrin and the two surfactants used for PAH removal from the spiked soils with individual PAH concentrations of 200 and 400 mg kg(-1). However, the difference among three PAH removals by the FAME, soybean oil and methanol was not quite pronounced. The FAME synthesized and market biodiesel exhibited better performance for PAH removals (46% and 35% of total PAH) from the weathered contaminated MGP soil when compared with the other agents (0-31%). Individual PAH removals from the weathered MGP soil were much lower than those from the spiked soils. The percentages of total PAH removals from the MGP soil were 59%, 46%, and 51% for the FAME:MGP soil ratios of 1:2, 1:1, and 2:1, respectively. These results showed that the FAME could be a more attractive alternative to conventional surfactants in ex situ washing of PAH-contaminated soils. 2010 Elsevier Ltd. All rights reserved.

  9. Bioavailability and bioaccessibility of petroleum hydrocarbons in contaminated site soils

    International Nuclear Information System (INIS)

    Stephenson, G.; Angell, R.; Strive, E.; Ma, W.

    2010-01-01

    Although the bioavailability and/or bioaccessibility of contaminants in soil can be measured by various ecological receptors, the methods that are suitable for metals do not necessarily work well for petroleum hydrocarbons (PHCs). In this study, several biological and chemical methods were used at various PHC contaminated sites to find the most fitting method for different soil types in terms of predicting the biological responses of organisms as measured by standard single species toxicity tests. Organisms such as plants, earthworms, and collembolan were exposed to soils with different PHC concentrations. Multiple endpoints were then measured to evaluate the biological responses. The exposure concentrations for the 4 CCME hydrocarbon fractions were measured using hexane:acetone extraction as well as extractions with cyclodextrin, and a mixture of enzymes to simulate the gastro-intestinal fluid of an earthworm. The estimated exposure concentrations depended on the extraction method. The study showed that existing methodologies must be modified in order to better estimate the biological effect of PHCs in soil. Comparative data was presented and discussed along with proposed methodological modifications.

  10. Bioavailability and bioaccessibility of petroleum hydrocarbons in contaminated site soils

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, G.; Angell, R.; Strive, E.; Ma, W. [Stantec Consulting Ltd., Surrey, BC (Canada)

    2010-07-01

    Although the bioavailability and/or bioaccessibility of contaminants in soil can be measured by various ecological receptors, the methods that are suitable for metals do not necessarily work well for petroleum hydrocarbons (PHCs). In this study, several biological and chemical methods were used at various PHC contaminated sites to find the most fitting method for different soil types in terms of predicting the biological responses of organisms as measured by standard single species toxicity tests. Organisms such as plants, earthworms, and collembolan were exposed to soils with different PHC concentrations. Multiple endpoints were then measured to evaluate the biological responses. The exposure concentrations for the 4 CCME hydrocarbon fractions were measured using hexane:acetone extraction as well as extractions with cyclodextrin, and a mixture of enzymes to simulate the gastro-intestinal fluid of an earthworm. The estimated exposure concentrations depended on the extraction method. The study showed that existing methodologies must be modified in order to better estimate the biological effect of PHCs in soil. Comparative data was presented and discussed along with proposed methodological modifications.

  11. Biological Treatment of Petroleum in Radiologically Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    BERRY, CHRISTOPHER

    2005-11-14

    This chapter describes ex situ bioremediation of the petroleum portion of radiologically co-contaminated soils using microorganisms isolated from a waste site and innovative bioreactor technology. Microorganisms first isolated and screened in the laboratory for bioremediation of petroleum were eventually used to treat soils in a bioreactor. The bioreactor treated soils contaminated with over 20,000 mg/kg total petroleum hydrocarbon and reduced the levels to less than 100 mg/kg in 22 months. After treatment, the soils were permanently disposed as low-level radiological waste. The petroleum and radiologically contaminated soil (PRCS) bioreactor operated using bioventing to control the supply of oxygen (air) to the soil being treated. The system treated 3.67 tons of PCRS amended with weathered compost, ammonium nitrate, fertilizer, and water. In addition, a consortium of microbes (patent pending) isolated at the Savannah River National Laboratory from a petroleum-contaminated site was added to the PRCS system. During operation, degradation of petroleum waste was accounted for through monitoring of carbon dioxide levels in the system effluent. The project demonstrated that co-contaminated soils could be successfully treated through bioventing and bioaugmentation to remove petroleum contamination to levels below 100 mg/kg while protecting workers and the environment from radiological contamination.

  12. Effects of Two Kinds of Biochars on Soil Cu Availability in Contaminated Soil

    Directory of Open Access Journals (Sweden)

    WANG Xiao-qi

    2016-07-01

    Full Text Available This paper is aimed to research the impacts of different biochars(0,1%,2%,4%, including maize biochar and phytolacca root biochar, on rape growth and the soil Cu availability in the Cu-contaminated red soil via a series of pot experiments. The results showed that, compared with the control, the addition of two kinds of biochars could increase the biomass of the rape. In low Cu-contaminated red soil, added 4% maize biochar and phytolacca root biochar increased the biomass by 21.2 times and 67.9 times; however, the biomass were increased by 8.6 times and 109.6 times under high Cu-contaminated soil. The addition of phytolacca root biochar could increase the soil pH significantly, which has been increased by 0.4~1.6 units with the addition of phytolacca root biochar in low Cu-contaminated red soil, and it had 0.25~1.35 units more than that with maize biochar; In high Cu-contaminated red soil, with the addition of phytolacca root biochar, soil pH was increased by 0.33~1.52 units, which was 0.3~1.25 units higher than maize biochar. There was a significant effect on reducing the soil Cu availability with the addition of the two biochars. Among them, 4% addition of maize biochar and phytolacca root biochar could reduce soil available Cu content by 21.9% and 45.2% in low Cu-contaminated soil, however, it was decreased by 41.9% and 53.8% in high Cu-contaminated soil. Both of the two biochars were able to reduce the Cu accumulation in rape, where there was a decrease by 21.2% and 67.8% with he addition of 4% maize biochar and phytolacca root biochar under low Cu-contaminated soil, and it was decreased by 19.9% and 66.8% in high Cu-contaminated soil respectively. Both of the biochars could ameliorate the acidity and Cu availability in the red soil, enhance the biomass of the rape and reduce the Cu accumulation in rape, but phytolacca root biochar had more effective influence than maize biochar.

  13. Carbonate heap leach of uranium-contaminated soils

    International Nuclear Information System (INIS)

    Turney, W.R.; Mason, C.F.V.; Longmire, P.

    1994-01-01

    A new approach to removal of uranium from soils based on existing heap leach mining technologies proved highly effective for remediation of soils from the Fernald Environmental Management Project (FEMP) near Cincinnati, Ohio. In laboratory tests, remediation of uranium-contaminated soils by heap leaching with carbonate salt solutions was demonstrated in column experiments. An understanding of the chemical processes that occur during carbonate leach of uranium from soils may lead to enhancement of uranium removal. Carbonate leaching requires the use of an integrated and closed circuit process, wherein the leach solutions are recycled and the reagents are reused, resulting in a minimum secondary waste stream. Carbonate salt leach solution has two important roles. Primarily, the formation of highly soluble anionic carbonate uranyl species, including uranyl dicarbonate (UO 2 CO 32 = ) and uranyl tricarbonate (UO 2 CO 33 4- ), allows for high concentration of uranium in a leachate solution. Secondly, carbonate salts are nearly selective for dissolution of uranium from uranium contaminated soils. Other advantages of the carbonate leaching process include (1) the high solubility, (2) the selectivity, (3) the purity of the solution produced, (4) the relative ease with which a uranium product can be precipitated directly from the leachate solution, and (5) the relatively non-corrosive and safe handling characteristics of carbonate solutions. Experiments conducted in the laboratory have demonstrated the effectiveness of carbonate leach. Efficiencies of uranium removal from the soils have been as high as 92 percent. Higher molar strength carbonate solutions (∼0.5M) proved more effective than lower molar strength solutions (∼ 0.1M). Uranium removal is also a function of lixiviant loading rate. Furthermore, agglomeration of the soils with cement resulted in less effective uranium removal

  14. A contribution towards the risk assessment of soils from the São Domingos Mine (Portugal): Chemical, microbial and ecotoxicological indicators

    International Nuclear Information System (INIS)

    Alvarenga, Paula; Palma, Patrícia; Varennes, Amarilis de; Cunha-Queda, Ana C.

    2012-01-01

    This study is a contribution towards a risk assessment of the São Domingos Mine area (Portugal), integrating information from: soil physicochemical characteristics, pseudo-total and bioavailable trace elements (As, Cd, Cr, Cu, Ni, Pb and Zn), ecotoxicological evaluation, and microbial indicators. The bioassays using soil eluates (seed germination, luminescent inhibition of Vibrio fischeri and Daphnia magna immobilization) confirmed the soil toxicity categorization obtained with the bioassays using soil (plant growth tests, Eisenia fetida mortality and avoidance behaviour). However, the soil identified as the most toxic using bioassays, was different from the expected when considering the results from pseudo-total and effective bioavailable trace elements. Taking in consideration the observations, it is highly recommended to complement the results from environmental chemistry with results from bioassays, in order to provide a more complete and relevant information on the bioavailability of contaminants and to characterize the risk of contaminated soils. - Highlights: ► Impaired soil retention and habitat functions for all tested soils. ► Aquatic and terrestrial bioassays agreed in the soil toxicity categorization. ► Do results obtained by chemical methods really translate into “biological availability”? ► In multi-contaminated sites, risk estimation based only on chemical methods is inadequate. ► Bioassays provide a more realistic risk assessment of contaminated sites. - Bioassays provide a more complete and relevant information to characterize the risk of contaminated soils, and should be used to complement chemical results.

  15. Organic contaminants in soil : desorption kinetics and microbial degradation

    NARCIS (Netherlands)

    Schlebaum, W.

    1999-01-01

    The availability of organic contaminants in soils or sediments for microbial degradation or removal by physical means (e.g.) soil washing or soil venting) depends on the desorption kinetics of these contaminants from the soil matrix. When the organic contaminants desorb very slow from the

  16. Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Francis, C. W.

    1993-09-01

    To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

  17. Surfactant screening of diesel-contaminated soil

    International Nuclear Information System (INIS)

    Peters, R.W.; Shem, L.; Montemagno, C.D.; Lewis, B.

    1991-01-01

    At one installation, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of the research program in which 21 surfactants were screened for possible use to mobilize the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on actual contaminated soil samples obtained from the site

  18. Geochemistry of soil around a fluoride contaminated area in Nayagarh District, Orissa, India: factor analytical appraisal.

    Science.gov (United States)

    Tripathy, S; Panigrahi, M K; Kundu, N

    2005-09-01

    Fluoride contamination in soil was studied in the vicinity of a hot spring in Nayagarh district of Orissa. Both bulk soil from 0 to 30 cm depth and profile soils from 0 to 90 cm depth were analyzed for total fluoride (F(t)) and 0.01 M CaCl(2) extractable fluoride (F(ca)), major elements, pH, EC and Organic Carbon (OC). High concentrations of both F(t) and F(ca) were observed in the area surrounding the hot spring and the village of Singhpur. Principal factor analysis (PFA) on the parameters of the bulk soils suggests that two major chemical processes due to three factors, control the soil geochemistry of the area. Factor-1 contributes 37.11% of the total variance and is strongly loaded with Al, Si, Fe, F(t)and F(ca), and explains the fluoride enrichment of the soil, whereas the second and the third factors contribute 16.6 and 12.2%, respectively and explain the controlling process of carbonate precipitation and soil alkalinity. Multiple regression analysis of the scores of the factors was performed to derive a fluoride contamination index in soil. The magnitude of the factor effect on the contamination index follows the order of Factor-1 > Factor-2 > Factor-3. The spatial distribution of the contamination index is used to classify the area into highly contaminated, moderately contaminated and uncontaminated zones.

  19. Some aspects of organic and inorganic particulate transport at Rocky Flats. Final report

    International Nuclear Information System (INIS)

    Nichols, H.

    Findings from the summer 1975 sampling program and the conclusions from the 1975-1976 winter sampling program are summarized. Large radionuclide particles were not found attached to pollen. Sampling the airborne pollen throughout the Rocky Flats area demonstrated that the Rocky Flats air samplers were deficient in their abilities to properly collect large lightweight pollen grains. This may not have serious consequences for the undetected transport of radionuclides by pollen, however, it has implications of sampling inefficiency in some particulate size ranges, and implies that if radionuclides are carried at times by larger particles, then the standard Rocky Flats air samplers are not sampling these materials efficiently. Some initial findings suggested that soil samples from downwind areas associated with winter snow accumulation had abnormally high fissile particle accumulations, and this suggested the need to sample these sites in winter. Areas of preferred particle accumulation such as snow banks had higher concentrations of radionuclide particles than surrounding areas which are more windswept. Any soil sampling program at Rocky Flats which seeks to monitor background radionuclide levels and movement of fissile particles across the site should take account of these topographically and wind-controlled accumulation areas, and not rely solely on a grid pattern of sampling. The snow samples contained radionuclide material in substantial quantities. In terms of fissile particulates smaller than 0.5 microns the snow banks three miles east of the plant site contained as much or more radionuclides than sites close to the Hot Spot contaminated area. The snow samples immediately east of the Hot Spot contained many more large particles (>0.5 m), as did soil samples from the upwind site next to the plant fence. The Hot Spot is clearly implicated again as the source of these materials

  20. Bioremediation of soils contaminated with fuel oils

    International Nuclear Information System (INIS)

    Baker, K.H.; Herson, D.S.; Vercellon-Smith, P.; Cronce, R.C.

    1991-01-01

    A utility company discovered soils in their plant contaminated with diesel fuel and related fuel oils (300-450 ppm). The soils were excavated and removed to a concrete pad for treatment. The authors conducted laboratory studies to determine if biostimulation or bioaugmentation would be appropriate for treating the soils. Microbial numbers and soil respiration were monitored in microcosms supplemented with: (1) organic nutrients, (2) inorganic nutrients, and (3) inorganic nutrients plus additional adapted microorganisms. Their studies indicated that biostimulation via the addition of inorganic nutrients would be appropriate at this site. Treatment cells for the contaminated soils were constructed. Initial data indicates that a 35% reduction in the concentration of contaminants has occurred within the first month of operation

  1. Active multispectral reflection fingerprinting of persistent chemical agents

    Science.gov (United States)

    Tholl, H. D.; Münzhuber, F.; Kunz, J.; Raab, M.; Rattunde, M.; Hugger, S.; Gutty, F.; Grisard, A.; Larat, C.; Papillon, D.; Schwarz, M.; Lallier, E.; Kastek, M.; Piatkowski, T.; Brygo, F.; Awanzino, C.; Wilsenack, F.; Lorenzen, A.

    2017-10-01

    Remote detection of toxic chemicals of very low vapour pressure deposited on surfaces in form of liquid films, droplets or powder is a capability that is needed to protect operators and equipment in chemical warfare scenarios and in industrial environments. Infrared spectroscopy is a suitable means to support this requirement. Available instruments based on passive emission spectroscopy have difficulties in discriminating the infrared emission spectrum of the surface background from that of the contamination. Separation of background and contamination is eased by illuminating the surface with a spectrally tune-able light source and by analyzing the reflectivity spectrum. The project AMURFOCAL (Active Multispectral Reflection Fingerprinting of Persistent Chemical Agents) has the research topic of stand-off detection and identification of chemical warfare agents (CWAs) with amplified quantum cascade laser technology in the long-wave infrared spectral range. The project was conducted under the Joint Investment Programme (JIP) on CBRN protection funded through the European Defence Agency (EDA). The AMURFOCAL instrument comprises a spectrally narrow tune-able light source with a broadband infrared detector and chemometric data analysis software. The light source combines an external cavity quantum cascade laser (EC-QCL) with an optical parametric amplifier (OPA) to boost the peak output power of a short laser pulse tune-able over the infrared fingerprint region. The laser beam is focused onto a target at a distance between 10 and 20 m. A 3D data cube is registered by tuning the wavelength of the laser emission while recording the received signal scattered off the target using a multi-element infrared detector. A particular chemical is identified through the extraction of its characteristic spectral fingerprint out of the measured data. The paper describes the AMURFOCAL instrument, its functional units, and its principles of operation.

  2. Physicochemical and mineralogical characterization of uranium-contaminated soils from the Fernald Integrated Demonstration Site

    International Nuclear Information System (INIS)

    Elless, M.P.; Lee, S.Y.; Timpson, M.E.

    1994-01-01

    An integrated approach that utilizes various characterization technologies has been developed for the Uranium Soil Integrated Demonstration program. The Fernald Environmental Restoration Management Corporation site near Cincinnati, Ohio, was selected as the host facility for this demonstration. Characterization of background, untreated contaminated, and treated contaminated soils was performed to assess the contamination and the effect of treatment efforts to remove uranium from these soils. Carbonate minerals were present in the contaminated soils (added for erosion control) but were absent in the nearby background soils. Because of the importance of the carbonate anion to uranium solubility, the occurrence of carbonate minerals in these soils will be an important factor in the development of a successful remediation technology. Uranium partitioning data among several particle-size fractions indicate that conventional soil washing will be ineffective for remediation of these soils and that chemical extraction will be necessary to lower the uranium concentration to the target level (52 mg/kg). Carbonate-based (sodium carbonate/bicarbonate) and acid-based (sulfuric and citric acids) lixiviants were employed for the selective removal of uranium from these soils. Characterization results have identified uranium phosphate minerals as the predominant uranium mineral form in both the untreated and treated soils. The low solubility associated with phosphate minerals is primarily responsible for their occurrence in the posttreated soils. Artificial weathering of the treated soils caused by the treatments, particularly acid-based lixiviants, was documented by their detrimental effects on several physicochemical characteristics of these soils (e.g., soil pH, particle-size distribution, and mineralogy)

  3. Occurrence and bioaccumulation of chemical contaminants in lettuce grown in peri-urban horticulture.

    Science.gov (United States)

    Margenat, Anna; Matamoros, Víctor; Díez, Sergi; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2018-05-14

    Peri-urban horticulture performs environmental and socio-economic functions and provides ecological services to nearby urban areas. Nevertheless, industrialization and water pollution have led to an increase in the exposure of peri-urban vegetables to contaminants such as trace elements (TEs) and organic microcontaminants (OMCs). In this study, the occurrence of chemical contaminants (i.e., 16 TEs, 33 OMCs) in soil and lettuce leaves from 4 farm fields in the peri-urban area of the city of Barcelona was assessed. A rural site, outside the peri-urban area of influence, was selected for comparison. The concentration of TEs and OMCs ranged from non-detectable to 803 mg/kg dw and from non-detectable to 397 μg/kg dw respectively in the peri-urban soil, and from 6 · 10 -5 to 4.91 mg/kg fw and from non-detectable to 193 μg/kg fw respectively in lettuce leaves. Although the concentration of Mo, Ni, Pb, and As in the soil of the peri-urban area exceeded the environmental quality guidelines, their occurrence in lettuce complied with human food standards (except for Pb). The many fungicides (carbendazim, dimetomorph, and methylparaben) and chemicals released by plastic pipelines (tris(1-chloro-2-propyl)phosphate, bisphenol F, and 2-mercaptobenzothiazole) used in agriculture were prevalent in the soil and the edible parts of the lettuce. The occurrence of these chemical pollutants in the peri-urban area did not affect the chlorophyll, lipid, or carbohydrate content of the lettuce leaves. PCA (Principal Component Analysis) showed that soil pollution, fungicide application, and irrigation water quality are the most relevant factors determining the presence of contaminants in crops. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Is the soil quality monitoring an effective tool in consumers' protection of agricultural crops from cadmium soil contamination?-a case of the Silesia region (Poland).

    Science.gov (United States)

    Piekut, Agata; Baranowska, Renata; Marchwińska-Wyrwał, Ewa; Ćwieląg-Drabek, Małgorzata; Hajok, Ilona; Dziubanek, Grzegorz; Grochowska-Niedworok, Elżbieta

    2017-12-16

    The monitoring of soil quality should be a control tool used to reduce the adverse health effects arising from exposure to toxic chemicals in soil through cultivated crop absorption. The aim of the study was to evaluate the effectiveness of the monitoring and control system of soil quality in Poland, in terms of consumer safety, for agricultural plants cultivated in areas with known serious cadmium contamination, such as Silesia Province. To achieve the objective, the contents of cadmium in soils and vegetables in the Silesia administrative area were examined. The obtained results were compared with the results of soil contamination from the quality monitoring of arable soil in Poland. The studies show a significant exceedance of the permissible values of cadmium in soil samples and the vegetables cultivated on that soil. The threat to consumer health is a valid concern, although this threat was not indicated by the results of the national monitoring of soil quality. The results indicated an unequal distribution of risk to consumers resulting from contaminated soil. Moreover, the monitoring systems should be designed at the local or regional scale to guarantee the safety of consumers of edible plants cultivated in the areas contaminated with cadmium.

  5. Chemical extraction to assess the bioavailability of chlorobenzenes in soil with different aging periods

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang; Wang, Fang; Yang, Xinglun; Liu, Cuiying; Jin, Xin; Jiang, Xin [Chinese Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture; Kengara, Fredrick Orori [Maseno Univ. (Kenya). Dept. of Chemistry

    2011-12-15

    Bioavailability is mainly influenced by aging and desorption of contaminants in soil. The purpose of this study was to investigate the desorption kinetics of chlorobenzenes (CBs) in soil and to investigate whether chemical extractions are suitable for the bioavailability assessment of CBs in soil. A soil spiked with CBs and aged for different periods was extracted with Tenax, hydroxypropyl-{beta}-cyclodextrin (HPCD), and butanol to assess the bioavailability of CBs in soil, respectively. Earthworm (Eisenia foetida) accumulation was used as bioassay in parallel experiments to evaluate the chemical extractions. The results showed that desorption of CBs from soil with consecutive Tenax extraction fitted into triphasic kinetics model. Different chemical methods extracted different amounts of CBs over different aging periods. For hexachlorobenzene (HCB), the extraction efficiency was in the order of butanol > Tenax-6h > HPCD extraction, while the order of butanol > HPCD > Tenax-6h extraction for pentachlorobenzene (PeCB). The bioaccumulation by earthworm decreased with increasing aging period and was significantly higher for HCB than for PeCB (p < 0.05). Earthworm accumulated CBs correlated well with all the three chemical extracted CBs. However, HPCD extraction showed the converse extraction tendency with earthworm uptake of CBs. Chemical extraction could be used to assess the bioavailability of contaminants in soil; however, they were method and compound specific. Tenax and butanol extractions were more reliable than HPCD extraction for bioavailability assessment of the tested CBs and the soil used since they showed the consistent extraction tendency with earthworm uptake of CBs.

  6. Assessment of water-soluble thiourea-formaldehyde (WTF) resin for stabilization/solidification (S/S) of heavy metal contaminated soils.

    Science.gov (United States)

    Liu, She-Jiang; Jiang, Jia-Yu; Wang, Shen; Guo, Yu-Peng; Ding, Hui

    2018-03-15

    Stabilization/Solidification (S/S) can be regarded as necessary for remediation of heavy metal contaminated soil. There is, however, solid agent is not very convenient to use. Water-soluble thiourea-formaldehyde (WTF) is a novel chelating agent, which has more practical applications. The process of WTF resin for S/S process of heavy metal contaminated soils was studied. Laboratory-prepared slurries, made of field soils spiked with Cd 2+ and Cr 6+ were treated with WTF resin. The toxicity characteristic leaching procedure (TCLP) showed that with 2 wt% WTF, in the neutral condition of soil after treatment for 7 d, the leaching concentrations of Cd 2+ and Cr 6+ in contaminated soil were decreased by 80.3% and 92.6% respectively. Moreover, Tessier sequence extraction procedure showed WTF resin reduced the leaching concentration by transforming heavy metal from exchange form to organic form. The structure of WTF is obtained according to elemental analysis result and reaction mechanism. Through analysis of the infrared spectrogram of WTF and WTF heavy mental chelating precipitation, WTF can form stable chelate with heavy mental through coordination. The significant groups are hydroxyl, nitrogen and sulphur function groups in WTF mainly. Toxicology test revealed that the WTF resin is nontoxic to microorganism in the soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Combined Effects of Biochar and Fertilizer on Cadmium Contaminated Soil Remediation

    OpenAIRE

    WANG Qi-kai; GUO Wen-juan; SUN Guo-hong; LIN Da-song; XU Ying-ming; LIU Jing-ru; YU Shi-lei

    2015-01-01

    The field experiment was employed to study on the combined effects of biochar and chicken manure and N, P and K compound chemical fertilizer on cadmium contaminated soil remediation, and the immobilization mechanism was elucidated through fractionation of cadmium in the tested soil. Results showed that the addition of these ammendments could significantly reduce the edible Cd accumulation in Lactuca sativa L., decreased from 32.6% to 54.8% compared with the control. The application of these a...

  8. A comparison of technologies for remediation of heavy metal contaminated soils

    OpenAIRE

    Khalid , Sana; Shahid , Muhammad; Niazi , Nabeel Khan; Murtaza , Behzad; Bibi , Irshad; Dumat , Camille

    2016-01-01

    International audience; Soil contamination with persistent and potentially (eco)toxic heavy metal(loid)s is ubiquitous around the globe. Concentration of these heavy metal(loid)s in soil has increased drastically over the last three decades, thus posing risk to the environment and human health. Some technologies have long been in use to remediate the hazardous heavy metal(loid)s. Conventional remediation methods for heavy metal(loid)s are generally based on physical, chemical and biological a...

  9. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils.

    Science.gov (United States)

    Sharma, Swati; Tiwari, Sakshi; Hasan, Abshar; Saxena, Varun; Pandey, Lalit M

    2018-04-01

    Remediation of heavy metal-contaminated soils has been drawing our attention toward it for quite some time now and a need for developing new methods toward reclamation has come up as the need of the hour. Conventional methods of heavy metal-contaminated soil remediation have been in use for decades and have shown great results, but they have their own setbacks. The chemical and physical techniques when used singularly generally generate by-products (toxic sludge or pollutants) and are not cost-effective, while the biological process is very slow and time-consuming. Hence to overcome them, an amalgamation of two or more techniques is being used. In view of the facts, new methods of biosorption, nanoremediation as well as microbial fuel cell techniques have been developed, which utilize the metabolic activities of microorganisms for bioremediation purpose. These are cost-effective and efficient methods of remediation, which are now becoming an integral part of all environmental and bioresource technology. In this contribution, we have highlighted various augmentations in physical, chemical, and biological methods for the remediation of heavy metal-contaminated soils, weighing up their pros and cons. Further, we have discussed the amalgamation of the above techniques such as physiochemical and physiobiological methods with recent literature for the removal of heavy metals from the contaminated soils. These combinations have showed synergetic effects with a many fold increase in removal efficiency of heavy metals along with economic feasibility.

  10. Bioremediation of petroleum-contaminated soil

    International Nuclear Information System (INIS)

    Pearce, K.; Snyman, H.G.; Oellermann, R.A.; Gerber, A.

    1995-01-01

    A pilot-scale study was conducted to evaluate the application of land-farming techniques in bioremediating a soil highly contaminated with petroleum products. A commercial biosupplement, and one prepared with indigenous microorganisms from the contaminated soil, were tested. Application of either of the biosupplements, in addition to the control of pH, moisture, and oxygen levels, resulted in a 94% reduction of the initial total petroleum hydrocarbon concentration (TPHC) (32% mass/mass) over a 70-day period. Implementation of these findings at full scale to bioremediate highly weathered petroleum products showed an average reduction of 89% over 5.5 months. Target levels of 1,400 mg/kg soil were reached from an initial average TPHC concentration of 12,200 mg/kg soil

  11. Effect of Applying Chemical Fertilizers on Concentration of Cd, Pb and Zn in Agricultural Soils

    Directory of Open Access Journals (Sweden)

    Hossein Pourmoghadas

    2017-03-01

    Full Text Available Background &Objective:  Nowadays uncontrolled uses of chemical fertilizers which have many heavy metals such as Cadmium, Lead and Zinc in addition have economic problems, cause to serious damages in the environment. Therefore uncontrolled application of fertilizers can cause accumulation contaminants in soil, water sources and increasing in plants and human & animals’ food chain. The main objective of this research was to investigate the effects of chemical fertilizers application to increase heavy metals in agricultural soils at directions to prevent contamination in water sources, agricultural products and the best uses of chemical fertilizers. Methods: In this study, 20 soil samples and 5 useful chemical fertilizer samples were collected and investigated. After fertilizer and soil samples were prepared, digested and filtered, heavy metals were determined with using atomic absorption. Results: The results of this study showed that, Cd in Diammonum phosphate  fertilizer 1.25 times, Super phosphate triple 1.7 times and in Macro granular fertilizer 1.5 times were as much as maximum acceptable concentration in chemical fertilizers. Cadmium concentration in all of the Jarghoye (Isfahan agricultural soil samples 3 to 7 times and in the Mobarake village (Najaf abad agricultural soil samples 10 to 35 times were as much as maximum acceptable concentration in agricultural soils. But Pb and Zn concentration in all of the agricultural soil samples was less than the amount of maximum acceptable concentration. Conclusion: Phosphate chemical fertilizers were positive effects to increase concentration of Pb and Zn in agricultural soils. Therefore, application of the fertilizer must be more attention because of increasing heavy metals in the agriculture soils and probably increasing heavy metals in food chain.  

  12. Estimating fate and transport of multiple contaminants in the vadose zone using a multi-layered soil column and three-phase equilibrium partitioning model

    International Nuclear Information System (INIS)

    Rucker, Gregory G.

    2007-01-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and pollute drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminants. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: decay processes, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use. (authors)

  13. Development of Decontamination Process for Soil Contaminated Uranium

    International Nuclear Information System (INIS)

    Kim, Gye-Nam; Kim, Seung-Soo; Park, Uk-Rang; Han, Gyu-Seong; Moon, Jei-Kwon

    2014-01-01

    Various experiments with full-scaled electrokinetic equipment, soil washing equipment, and gravel washing equipment were performed to remove 238 U from contaminated soils of below 0.4 Bq/g. The repetition number and the removal efficiencies of the soil and gravel washing equipment were evaluated. The decontamination periods by the soil and gravel electrokinetic equipment were evaluated. Finally, a work process of full-scaled decontamination equipment was developed. Contaminated soils were classified into soils and gravels using a 8.0 cm sieve. Soils were sent to the soil washing equipment, while gravels were sent to the gravel washing equipment. Soils sent to the soil washing equipment were sent to the soil electrokinetic equipment after soil washing. A repetition number of soil washing was two times. The washed gravels were sent to the gravel electrokinetic equipment. Gravel contaminated with a high concentration requires crushing after gravel washing

  14. Development of Decontamination Process for Soil Contaminated Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam; Kim, Seung-Soo; Park, Uk-Rang; Han, Gyu-Seong; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Various experiments with full-scaled electrokinetic equipment, soil washing equipment, and gravel washing equipment were performed to remove {sup 238}U from contaminated soils of below 0.4 Bq/g. The repetition number and the removal efficiencies of the soil and gravel washing equipment were evaluated. The decontamination periods by the soil and gravel electrokinetic equipment were evaluated. Finally, a work process of full-scaled decontamination equipment was developed. Contaminated soils were classified into soils and gravels using a 8.0 cm sieve. Soils were sent to the soil washing equipment, while gravels were sent to the gravel washing equipment. Soils sent to the soil washing equipment were sent to the soil electrokinetic equipment after soil washing. A repetition number of soil washing was two times. The washed gravels were sent to the gravel electrokinetic equipment. Gravel contaminated with a high concentration requires crushing after gravel washing.

  15. Ecotoxicological and analytical assessment of hydrocarbon-contaminated soils and application to ecological risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Saterbak, A.; Toy, R.J.; Wong, D.C.L.; McMain, B.J.; Williams, M.P.; Dorn, P.B.; Brzuzy, L.P.; Chai, E.Y.; Salanitro, J.P.

    1999-07-01

    Ecotoxicological assessments of contaminated soil aim to understand the effect of introduced chemicals on the soil flora and fauna. Ecotoxicity test methods were developed and conducted on hydrocarbon-contaminated soils and on adjacent uncontaminated control soils from eight field locations. Tests included 7-d, 14-d, and chronic survival tests and reproduction assays for the earthworm (Eisenia fetida) and seed germination, root length, and plant growth assays for corn, lettuce, mustard, and wheat. Species-specific responses were observed with no-observed effect concentrations (NOECs) ranging from <1 to 100% contaminated soil. The 14-d earthworm survival NOEC was equal to or greater than the reproduction NOEC values for numbers of cocoons and juveniles, which were similar to one another. Cocoon and juvenile production varied among the control soils. Germination and root length NOECs for mustard and lettuce were less than NOECs for corn and wheat. Root length NOECs were similar to or less than seed germination NOECs. Statistically significant correlations for earthworm survival and seed germination as a function of hydrocarbon measurements were found. The 14-d earthworm survival and the seed germination tests are recommended for use in the context of a risk-based framework for the ecological assessment of contaminated sites.

  16. Soil contamination issues at U.S. ports

    International Nuclear Information System (INIS)

    Rice, D.W.; Hagner, D.

    1991-01-01

    This paper reports that seven large and medium size west coast ports were surveyed during August 1990 to determine their involvement with hydrocarbon contaminated soils and activities associated with the characterization and remediation of these soils. All ports surveyed indicated that hey have hydrocarbon contaminated soil problems. Although other west coast ports do not have the scale of petroleum transfer and storage facilities that the Prot of Los Angeles has, all ports had tenants with bulk oil or fuel storage in aboveground tanks and were undertaking characterization and remediation work. Hydrocarbon contaminated soil problems were associated with these facilities or with decommissioned facilities of this type

  17. Analysis of soils contaminated with petroleum constituents

    International Nuclear Information System (INIS)

    O'Shay, T.A.; Hoddinott, K.

    1994-01-01

    This symposium was held in Atlanta, Georgia on June 24, 1993. The purpose of the symposium was to provide a forum for exchange of information on petroleum contaminated soils. When spilled on the ground, petroleum products can cause massive problems in the environment. In this Special Technical Publication (STP), papers were selected in two categories; the analytical procedures for soil contaminated with petroleum hydrocarbons and the behavior of hydrocarbon contaminated soils. Individual papers have been processed separately for inclusion in the appropriate data bases

  18. The Effects of Subsurface Bioremediation on Soil Structure, Colloid Formation, and Contaminant Transport

    Science.gov (United States)

    Wang, Y.; Liang, X.; Zhuang, J.; Radosevich, M.

    2016-12-01

    Anaerobic bioremediation is widely applied to create anaerobic subsurface conditions designed to stimulate microorganisms that degrade organic contaminants and immobilize toxic metals in situ. Anaerobic conditions that accompany such techniques also promotes microbially mediated Fe(III)-oxide mineral reduction. The reduction of Fe(III) could potentially cause soil structure breakdown, formation of clay colloids, and alternation of soil surface chemical properties. These processes could then affect bioremediation and the migration of contaminants. Column experiments were conducted to investigate the impact of anaerobic bioreduction on soil structure, hydraulic properties, colloid formation, and transport of three tracers (bromide, DFBA, and silica shelled silver nanoparticles). Columns packed with inoculated water stable soil aggregates were placed in anaerobic glovebox, and artificial groundwater media was pumped into the columns to simulate anaerobic bioreduction process for four weeks. Decent amount of soluble Fe(II) accompanied by colloids were detected in the effluent from bioreduction columns a week after initiation of bioreduction treatment, which demonstrated bioreduction of Fe(III) and formation of colloids. Transport experiments were performed in the columns before and after bioreduction process to assess the changes of hydraulic and surface chemical properties through bioreduction treatment. Earlier breakthrough of bromide and DFBA after treatment indicated alterations in flow paths (formation of preferential flow paths). Less dispersion of bromide and DFBA, and less tailing of DFBA after treatment implied breakdown of soil aggregates. Dramatically enhanced transport and early breakthrough of silica shelled silver nanoparticles after treatment supported the above conclusion of alterations in flow paths, and indicated changes of soil surface chemical properties.

  19. Bioremediation potential of diesel-contaminated Libyan soil.

    Science.gov (United States)

    Koshlaf, Eman; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Taha, Mohamed; Haleyur, Nagalakshmi; Makadia, Tanvi H; Morrison, Paul D; Ball, Andrew S

    2016-11-01

    Bioremediation is a broadly applied environmentally friendly and economical treatment for the clean-up of sites contaminated by petroleum hydrocarbons. However, the application of this technology to contaminated soil in Libya has not been fully exploited. In this study, the efficacy of different bioremediation processes (necrophytoremediation using pea straw, bioaugmentation and a combination of both treatments) together with natural attenuation were assessed in diesel contaminated Libyan soils. The addition of pea straw was found to be the best bioremediation treatment for cleaning up diesel contaminated Libyan soil after 12 weeks. The greatest TPH degradation, 96.1% (18,239.6mgkg(-1)) and 95% (17,991.14mgkg(-1)) were obtained when the soil was amended with pea straw alone and in combination with a hydrocarbonoclastic consortium respectively. In contrast, natural attenuation resulted in a significantly lower TPH reduction of 76% (14,444.5mgkg(-1)). The presence of pea straw also led to a significant increased recovery of hydrocarbon degraders; 5.7log CFU g(-1) dry soil, compared to 4.4log CFUg(-1) dry soil for the untreated (natural attenuation) soil. DGGE and Illumina 16S metagenomic analyses confirm shifts in bacterial communities compared with original soil after 12 weeks incubation. In addition, metagenomic analysis showed that original soil contained hydrocarbon degraders (e.g. Pseudoxanthomonas spp. and Alcanivorax spp.). However, they require a biostimulant (in this case pea straw) to become active. This study is the first to report successful oil bioremediation with pea straw in Libya. It demonstrates the effectiveness of pea straw in enhancing bioremediation of the diesel-contaminated Libyan soil. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Assessing soil and groundwater contamination from biofuel spills.

    Science.gov (United States)

    Chen, Colin S; Shu, Youn-Yuen; Wu, Suh-Huey; Tien, Chien-Jung

    2015-03-01

    Future modifications of fuels should include evaluation of the proposed constituents for their potential to damage environmental resources such as the subsurface environment. Batch and column experiments were designed to simulate biofuel spills in the subsurface environment and to evaluate the sorption and desorption behavior of target fuel constituents (i.e., monoaromatic and polyaromatic hydrocarbons) in soil. The extent and reversibility of the sorption of aromatic biofuel constituents onto soil were determined. When the ethanol content in ethanol-blended gasoline exceeded 25%, enhanced desorption of the aromatic constituents to water was observed. However, when biodiesel was added to diesel fuel, the sorption of target compounds was not affected. In addition, when the organic carbon content of the soil was higher, the desorption of target compounds into water was lower. The empirical relationships between the organic-carbon normalized sorption coefficient (Koc) and water solubility and between Koc and the octanol-water partition coefficient (Kow) were established. Column experiments were carried out for the comparison of column effluent concentration/mass from biofuel-contaminated soil. The dissolution of target components depended on chemical properties such as the hydrophobicity and total mass of biofuel. This study provides a basis for predicting the fate and transport of hydrophobic organic compounds in the event of a biofuel spill. The spill scenarios generated can assist in the assessment of biofuel-contaminated sites.

  1. Review of the ecotoxicological effects of emerging contaminants to soil biota.

    Science.gov (United States)

    Gomes, Ana R; Justino, Celine; Rocha-Santos, Teresa; Freitas, Ana C; Duarte, Armando C; Pereira, Ruth

    2017-08-24

    In recent years, emerging contaminants (e.g. pesticides and their metabolites, pharmaceuticals, personal and house care products, life-style compounds, food additives, industrial products and wastes, as well as nanomaterials) have become a problem to the environment. In fact, the cumulative use of a panoply of chemical substances in agriculture, industrial activities, in our homes and in health care services has led to their recent appearance in detectable levels in soils, surface, and groundwater resources, with unpredictable consequences for these ecosystems. Few data exist regarding the toxicity and potential for bioaccumulation in biota. When available, data were obtained only for some representatives of the main groups of chemical substances, and for a limited number of species, following non-standard protocols. This makes difficult the calculation of predicted no effect concentrations (PNEC) and the existence of sufficient data to set limits for their release into the environment. This is particularly concerning for the soil compartment, since only recently the scientific community, regulators, and the public have realised the importance of protecting this natural resource and its services to guarantee the sustainability of terrestrial ecosystems and human well-being. In this context, this review paper aims to identify the major groups of soil emerging contaminants, their sources, pathways and receptors, and in parallel to analyse existing ecotoxicological data for soil biota.

  2. Selection of mercury accumulator plants for gold mine tailing contaminated soils

    Directory of Open Access Journals (Sweden)

    N Muddarisna

    2015-04-01

    Full Text Available Phytoremediation, which is more efficient with less side effects than conventional physical and chemical methods, is increasing in popularity as a remediation system. This paper provides a brief overview of developments in research and application of phytoremediation of soil contaminated with gold mine tailings containing mercury. Lindernia crustacea L., Digitaria radicosa Presl. Miq., Zingiber purpurium L, Paspalum conjugatum Berg., Cyperus kyllingia Endl., and Caladium bicolor Vent., that were selected for this study were planted in the planting media consisting of soil (70% and tailings (30% for 9 weeks. The results showed that after 9 weeks of planting, Paspalum conjugatum had growth rate, biomass production, Hg accumulation, and ratio of shoot Hg : root Hg higher than those of other plant species tested, both in the media consisted of amalgamation and cyanidation tailings. It can thus be concluded that Paspalum conjugatum is potential plant species for remediating mercury-contaminated soil.

  3. Metal-contaminated soil remediation by means of paper mill sludges addition: chemical and ecotoxicological evaluation

    International Nuclear Information System (INIS)

    Calace, N.; Campisi, T.; Iacondini, A.; Leoni, M.; Petronio, B.M.; Pietroletti, M.

    2005-01-01

    Metal pollution of soils is a great environmental problem. The major risks due to metal pollution of soil consist of leaching to groundwater and potential toxicity to plants and/or animals. The objective of this study is to evaluate by means of chemical and ecotoxicological approach the effects of paper mill sludge addition on the mobile metal fraction of polluted metal soils. The study was carried out on acidic soil derived from mining activities and thus polluted with heavy metals, and on two paper mill sludges having different chemical features. The results obtained by leaching experiments showed that the addition of a paper mill sludge, consisting mainly of carbonates, silicates and organic matter, to a heavy-metal polluted soil produces a decrease of available metal forms. The carbonate content seems to play a key role in the chemical stabilisation of metals and consequently in a decrease of toxicity of soil. The leached solutions have a non-toxic effect. The mild remediation by addition of sludge has moreover a lasting effect. - Paper mill sludge decreased available metals

  4. Copper removal from contaminated soils by soil washing process using camellian-derived saponin

    Science.gov (United States)

    Reyes, Arturo; Fernanda Campos, Maria; Videla, Álvaro; Letelier, María Victoria; Fuentes, Bárbara

    2015-04-01

    Antofagasta Region in North of Chile has been the main copper producer district in the world. As a consequence of a lack of mining closure regulation, a large number of abandon small-to-medium size metal-contaminated sites have been identified in the last survey performed by the Chilean Government. Therefore, more research development on sustainable reclamation technologies must be made in this extreme arid-dry zone. The objective of this study is to test the effectiveness of soil remediation by washing contaminated soil using camellian-derived saponin for the mobilization of copper. Soil samples were taken from an abandoned copper mine site located at 30 km North Antofagasta city. They were dried and sieved at 75 µm for physico-chemical characterization. A commercial saponin extracted from camellias seed was used as biosurfactant. The soil used contains 67.4 % sand, 26.3 % silt and 6.3 % clay. The soil is highly saline (electric conductivity, 61 mScm-1), with low organic matter content (0.41%), with pH 7.30, and a high copper concentration (2200 mg Kg-1 soil). According to the sequential extraction procedure of the whole soil, copper species are mainly as exchangeable fraction (608.2 mg Kg-1 soil) and reducible fraction (787.3 mg Kg-1 soil), whereas the oxidizable and residual fractions are around 205.7 and 598.8 mg Kg-1 soil, respectively. Soil particles under 75 µm contain higher copper concentrations (1242 mg Kg-1 soil) than the particle fraction over 75 µm (912 mg Kg-1 soil). All washing assays were conducted in triplicate using a standard batch technique with and without pH adjustment. The testing protocols includes evaluation of four solid to liquid ratio (0.5:50; 1.0:50; 2.0:50, and 5.0:50) and three saponin concentrations (0, 1, and 4 mg L-1). After shaking (24 h, 20±1 °C) and subsequently filtration (0.45 µm), the supernatants were analyzed for copper and pH. The removal efficiencies of copper by saponin solutions were calculated in according to the

  5. SOIL WASHING TREATABILITY TESTS FOR PESTICIDE- CONTAMINATED SOIL

    Science.gov (United States)

    The 1987 Sand Creek Operable Unit 5 record of decision (ROD) identified soil washing as the selected technology to remediate soils contaminated with high levels of organochlorine pesticides, herbicides, and metals. Initial treatability tests conducted to assess the applicability...

  6. Modeling electrokinetic transport in phenol contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zorn, R.; Haus, R.; Czurda, K. [Dept. of Applied Geology, Univ. Karlsruhe (Germany)

    2001-07-01

    Numerical simulations are compared to laboratory experiments of electroremediation in soils contaminated by phenolic pollutants. The developing pH affects the electrokinetic transport behaviour of phenol. It is found that a water chemistry model must be included in an electrokinetic mass transport model to describe the process of electroremediation more accurately, if no buffering system is used at the electrodes. In the case of controlling the pH at the electrode compartments only a simplified chemical reaction model must be included in the numerical code to match the experimental phenolic transport. (orig.)

  7. Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction.

    Science.gov (United States)

    Wang, Jianxu; Xia, Jicheng; Feng, Xinbin

    2017-01-15

    Screening of optimal chelating ligands which not only have high capacities to enhance plant uptake of mercury (Hg) from soil but also can decrease bioavailable Hg concentration in soil is necessary to establish a viable chemically-assisted phytoextraction. Therefore, Brassica juncea was exposed to historically Hg-contaminated soil (total Hg, 90 mg kg -1 ) to investigate the efficiency of seven chelating agents [ammonium thiosulphate, sodium thiosulphate, ammonium sulfate, ammonium chloride, sodium nitrate, ethylenediaminetetraacetic acid (EDTA), and sodium sulfite] at enhancing Hg phytoextraction; the leaching of bioavailable Hg caused by these chelating agents was also investigated. The Hg concentration in control (treated with double-distilled water) plant tissues was below 1 mg kg -1 . The remarkably higher Hg concentration was found in plants receiving ammonium thiosulphate and sodium sulfite treatments. The bioaccumulation factors and translocation factors of ammonium thiosulphate and sodium sulfite treatments were significantly higher than those of the other treatments. The more efficient uptake of Hg by plants upon treatment with ammonium thiosulphate and sodium sulfite compared to the other treatments might be explained by the formation of special Hg-thiosulphate complexes that could be preferentially taken up by the roots and transported in plant tissues. The application of sulfite significantly increased bioavailable Hg concentration in soil compared with that in initial soil and control soil, whereas ammonium thiosulphate significantly decreased bioavailable Hg concentration. The apparent decrease of bioavailable Hg in ammonium thiosulphate-treated soil compared with that in sodium sulfite-treated soil might be attributable to the unstable Hg-thiosulphate complexes formed between thiosulphate and Hg; they could react to produce less bioavailable Hg in the soil. The results of this study indicate that ammonium thiosulphate may be an optimal chelating

  8. [Stabilization and long-term effect of chromium contaminated soil].

    Science.gov (United States)

    Wang, Jing; Luo, Qi-Shi; Zhang, Chang-Bo; Tan, Liang; Li, Xu

    2013-10-01

    Short-term (3 d and 28 d) and long-term (1 a) stabilization effects of Cr contaminated soil were investigated through nature curing, using four amendments including ferrous sulfide, ferrous sulfate, zero-valent iron and sodium dithionite. The results indicated that ferrous sulfide and zero-valent iron were not helpful for the stabilization of Cr(VI) when directly used because of their poor solubility and immobility. Ferrous sulfate could effectively and rapidly decrease total leaching Cr and Cr(VI) content. The stabilization effect was further promoted by the generation of iron hydroxides after long-term curing. Sodium dithionite also had positive effect on soil stabilization. Appropriate addition ratio of the two chemicals could help maintain the soil pH in range of 6-8.

  9. The Effects of Environmental Factors on Biological Remediation of Petroleum Hydrocarbon Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Mohammad reza Moslemi

    2005-09-01

    Full Text Available Among the consequences of discharging industrial wastes to land and water bodies, is the widespread accumulation and migration of toxic chemical mixtures in soil and groundwater resources. It is believed that the accumulation of contaminants in the environment constitutes a serious threat to ecological and human health. Bioremediation is an effective measure in dealing with such contaminations particularly those from petroleum hydrocarbon sources; moreover bioremediation is emerging as a promising technology for the treatment of soil and groundwater contamination. Therefore the goal of this study is discussing the theory and practice of biological remediation of petroleum hydrocarbon contaminated soils and assessing the effects of operational conditions and parameters such as: temperature, dissolved oxygen concentration and  pH on the removal rate of the target contaminant which is handled in the designed reactor. Due to large production and consumption rate of diesel fuel inIran and many other countries, diesel fuel has been selected as target contaminant. In this study TOC and COD testing methods have been used to measure and assess the removal rate of the contaminant in the reactor. The experimental results indicate that, considering the operational conditions the indigenous microorganisms which have been separated from the soil are able to remove 50 to 83 percent of the contaminant after 30 days. Thereafter on the base of the results and considering the laboratorial specifications and conditions applied in this project, the optimum values of temperature, dissolved oxygen concentration andpH were respectively determined as 35°C, 4mg/L and 7.

  10. Chemical Speciation and Quantitative Evaluation of Heavy Metal Pollution Hazards in Two Army Shooting Range Backstop Soils.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Nguyen, Xuan Phuc; Jung, Ho-Young; Park, Jeong-Hun

    2016-02-01

    The chemical speciation and ecological risk assessment of heavy metals in two shooting range backstop soils in Korea were studied. Both soils were highly contaminated with Cd, Cu, Pb, and Sb. The chemical speciation of heavy metals reflected the present status of contamination, which could help in promoting management practices. We-rye soil had a higher proportion of exchangeable and carbonate bound metals and water-extractable Cd and Sb than the Cho-do soil. Bioavailable Pb represented 42 % of the total Pb content in both soils. A significant amount of Sb was found in the two most bioavailable fractions, amounting to ~32 % in the soil samples, in good agreement with the batch leaching test using water. Based on the values of ecological risk indices, both soils showed extremely high potential risk and may represent serious environmental problems.

  11. Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area

    International Nuclear Information System (INIS)

    Chaignon, V.; Sanchez-Neira, I.; Herrmann, P.; Jaillard, B.; Hinsinger, P.

    2003-01-01

    Root Cu concentration is a good indicator of soil Cu bioavailability. - Vineyard soils have been contaminated by Cu as a consequence of the long-term use of Cu salts as fungicides against mildew. This work aimed at identifying which soil parameters were the best related to Cu bioavailability, as assessed by measuring the concentrations of Cu in shoots and roots of tomato cropped (in lab conditions) over a range of 29 (24 calcareous and five acidic) Cu-contaminated topsoils from a vine-growing area (22-398 mg Cu kg -1 ). Copper concentrations in tomato shoots remained in the adequate range and were independent of soil properties and soil Cu content. Conversely, strong, positive correlations were found between root Cu concentration, total soil Cu, EDTA- or K-pyrophosphate-extractable Cu and organic C contents in the 24 calcareous soils, suggesting a prominent role of organic matter in the retention and bioavailability of Cu. Such relations were not observed when including the five acidic soils in the investigated population, suggesting a major pH effect. Root Cu concentration appeared as a much more sensitive indicator of soil Cu bioavailability than shoot Cu concentration. Simple extractions routinely used in soil testing procedures (total and EDTA-extractable Cu) were adequate indicators of Cu bioavailability for the investigated calcareous soils, but not when different soil types were considered (e.g. acidic versus calcareous soils)

  12. Laboratory and field evaluation of the gas treatment approach for insitu remediation of chromate-contaminated soils

    International Nuclear Information System (INIS)

    Thornton, E.C.; Jackson, R.L.

    1994-04-01

    Laboratory scale soil treatment tests have been conducted as part of an effort to develop and implement an in situ chemical treatment approach to the remediation of chromate-contaminated soils through the use of reactive gases. These tests involved three different soil samples that were contaminated with Cr(VI) at the 200 ppM level. Treatment of the contaminated soils was performed by passing 100 ppM and 2000 ppM concentrations of hydrogen sulfide in nitrogen through soil columns until a S:Cr mole ratio of 10:1 was achieved. The treated soils were then leached with groundwater or deionized water and analyzed to assess the extent of chromium immobilization. Test results indicate >90% immobilization of chromium and demonstrate that the treatment process is irreversible. Ongoing developmental efforts are being directed towards the demonstration and evaluation of the gas treatment approach in a field test at a chromate-contaminated site. Major planned activities associated with this demonstration include laboratory testing of waste site soil samples, design of the treatment system and injection/extraction well network, geotechnical and geochemical characterization of the test site, and identification and resolution of regulatory and safety requirements

  13. Laboratory evaluation of the in situ chemical treatment approach to soil and groundwater remediation

    International Nuclear Information System (INIS)

    Thorton, E.C.; Trader, D.E.

    1993-10-01

    Results of initial proof of principle laboratory testing activities successfully demonstrated the viability of the in situ chemical treatment approach for remediation of soil and groundwater contaminated by hexavalent chromium. Testing activities currently in progress further indicate that soils contaminated with hexavalent chromium and uranium at concentrations of several hundred parts per million can be successfully treated with 100 ppM hydrogen sulfide gas mixtures. Greater than 90% immobilization of hexavalent chromium and 50% immobilization of uranium have been achieved in these tests after a treatment period of one day. Activities associated with further development and implementation of the in situ chemical treatment approach include conducting additional bench scale tests with contaminated geomedia, and undertaking scale-up laboratory tests and a field demonstration. This report discusses the testing and further development of this process

  14. Industrial experience feedback of a geostatistical estimation of contaminated soil volumes - 59181

    International Nuclear Information System (INIS)

    Faucheux, Claire; Jeannee, Nicolas

    2012-01-01

    Geo-statistics meets a growing interest for the remediation forecast of potentially contaminated sites, by providing adapted methods to perform both chemical and radiological pollution mapping, to estimate contaminated volumes, potentially integrating auxiliary information, and to set up adaptive sampling strategies. As part of demonstration studies carried out for GeoSiPol (Geo-statistics for Polluted Sites), geo-statistics has been applied for the detailed diagnosis of a former oil depot in France. The ability within the geo-statistical framework to generate pessimistic / probable / optimistic scenarios for the contaminated volumes allows a quantification of the risks associated to the remediation process: e.g. the financial risk to excavate clean soils, the sanitary risk to leave contaminated soils in place. After a first mapping, an iterative approach leads to collect additional samples in areas previously identified as highly uncertain. Estimated volumes are then updated and compared to the volumes actually excavated. This benchmarking therefore provides a practical feedback on the performance of the geo-statistical methodology. (authors)

  15. A reactive transport model for mercury fate in contaminated soil--sensitivity analysis.

    Science.gov (United States)

    Leterme, Bertrand; Jacques, Diederik

    2015-11-01

    We present a sensitivity analysis of a reactive transport model of mercury (Hg) fate in contaminated soil systems. The one-dimensional model, presented in Leterme et al. (2014), couples water flow in variably saturated conditions with Hg physico-chemical reactions. The sensitivity of Hg leaching and volatilisation to parameter uncertainty is examined using the elementary effect method. A test case is built using a hypothetical 1-m depth sandy soil and a 50-year time series of daily precipitation and evapotranspiration. Hg anthropogenic contamination is simulated in the topsoil by separately considering three different sources: cinnabar, non-aqueous phase liquid and aqueous mercuric chloride. The model sensitivity to a set of 13 input parameters is assessed, using three different model outputs (volatilized Hg, leached Hg, Hg still present in the contaminated soil horizon). Results show that dissolved organic matter (DOM) concentration in soil solution and the binding constant to DOM thiol groups are critical parameters, as well as parameters related to Hg sorption to humic and fulvic acids in solid organic matter. Initial Hg concentration is also identified as a sensitive parameter. The sensitivity analysis also brings out non-monotonic model behaviour for certain parameters.

  16. Isotopic ratio method for determining uranium contamination

    International Nuclear Information System (INIS)

    Miles, R.E.; Sieben, A.K.

    1994-01-01

    The presence of high concentrations of uranium in the subsurface can be attributed either to contamination from uranium processing activities or to naturally occurring uranium. A mathematical method has been employed to evaluate the isotope ratios from subsurface soils at the Rocky Flats Nuclear Weapons Plant (RFP) and demonstrates conclusively that the soil contains uranium from a natural source and has not been contaminated with enriched uranium resulting from RFP releases. This paper describes the method used in this determination which has widespread application in site characterizations and can be adapted to other radioisotopes used in manufacturing industries. The determination of radioisotope source can lead to a reduction of the remediation effort

  17. Fate of polycyclic aromatic hydrocarbons in plant-soil systems: Plant responses to a chemical stress in the root zone

    Energy Technology Data Exchange (ETDEWEB)

    Hoylman, Anne M. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    Under laboratory conditions selected to maximize root uptake, plant tissue distribution of PAH-derived 14C was largely limited to root tissue of Malilotus alba. These results suggest that plant uptake of PAHs from contaminated soil via roots, and translocation to aboveground plant tissues (stems and leaves), is a limited mechanism for transport into terrestrial food chains. However, these data also indicate that root surface sorption of PAHs may be important for plants grown in soils containing elevated concentration PAHs. Root surface sorption of PAHs may be an important route of exposure for plants in soils containing elevated concentrations of PAHS. Consequently, the root-soil interface may be the site of plant-microbial interactions in response to a chemical stress. In this study, evidence of a shift in carbon allocation to the root zone of plants exposed to phenanthrene and corresponding increases in soil respiration and heterotrophic plate counts provide evidence of a plant-microbial response to a chemical stress. The results of this study establish the importance of the root-soil interface for plants growing in PAH contaminated soil and indicate the existence of plant-microbial interactions in response to a chemical stress. These results may provide new avenues of inquiry for studies of plant toxicology, plant-microbial interactions in the rhizosphere, and environmental fates of soil contaminants. In addition, the utilization of plants to enhance the biodegradation of soil contaminants may require evaluation of plant physiological changes and plant shifts in resource allocation.

  18. Characterizing Soil Lead Contamination Near Streams in Oakland, California

    Science.gov (United States)

    Tanouye, D.

    2017-12-01

    Lead (Pb) contamination of soils, groundwater, and surface waters is a major concern because of the potential health risks related to accumulation of high levels of lead in blood. This is a pervasive issue in many low-income neighborhoods throughout the United States, and is documented to be particularly acute in West Oakland, California. The fate and transport of lead in the environment is largely dependent on how it will bind to various solids and compounds in solution. These adsorption mechanisms are a principal aspect of metal dissolution and chemical speciation. Stream channels are natural drainage areas for urban runoff, and may represent a hot spot for increased levels of lead. This study evaluates the environmental conditions at 15 sites near streams in West Oakland using in-situ soil sampling with the handheld X-Ray Fluorescence (XRF) analyzer to measure concentrations of lead in soil. Results from this study suggest that the levels of lead in soils near stream channels are generally lower than the regional regulatory screening level of 80 milligrams per kilogram (mg/kg), but the highest concentrations are found near stream banks. The spatial distribution can be explained by a contaminant transport process related to the presence of fluvial channels.

  19. Algal tests with soil suspensions and elutriates: A comparative evaluation for PAH contaminated soils

    DEFF Research Database (Denmark)

    Baun, Anders; Justesen, Kasper Bo; Nyholm, Niels

    2002-01-01

    An algal growth inhibition test procedure with soil suspensions is proposed and evaluated for PAH-contaminated soil. The growth rate reduction of the standard freshwater green alga Pseudokirchneriella subcapitata (formerly known as Selenastrum capricornutum) was used as the toxicity endpoint......, and was quantified by measuring the fluorescence of solvent-extracted algal pigments. No growth rate reduction was detected for soil contents up to 20 g/l testing five non-contaminated Danish soils. Comparative testing with PAH-contaminated soil elutriates and soil suspensions showed that the suspensions had...

  20. Extractability and bioavailability of Pb and As in historically contaminated orchard soil: Effects of compost amendments

    International Nuclear Information System (INIS)

    Fleming, Margaret; Tai, Yiping; Zhuang, Ping; McBride, Murray B.

    2013-01-01

    The availability of Pb and As in an historically contaminated orchard soil, after amendment with compost and aging in the field, was determined by single-step chemical extraction with 1.0 M ammonium acetate at pH 4.8, sequential extraction using the modified BCR test, and a redworm bioassay in the laboratory. The efficiency of soil Pb extraction by ammonium acetate was greater at higher total soil Pb but was reduced by compost amendment. Conversely, the extraction efficiency of total soil As increased with compost amendment, but was not sensitive to total soil As. The redworm bioassay indicated Pb (but not As) bioavailability to be reduced by soil amendment with compost, a result consistent with the ammonium acetate extraction test but not reflected in modified BCR test. Electron microprobe studies of the orchard soil revealed Pb and As to be spatially associated in discrete particles along with phosphorus and iron. -- Highlights: ► Soil Pb and As in an old orchard were concentrated in discrete particles. ► Compost amendment of contaminated soil reduced Pb bioavailability. ► Compost amendment of contaminated soil did not reduce As bioavailability. ► Ammonium acetate extraction test reflected bioavailability of soil Pb and As. -- Remediating metal-contaminated orchard soils with compost reduced lead bioavailability but had little effect on arsenic

  1. Biological Remediation of Petroleum Contaminants

    Science.gov (United States)

    Kuhad, Ramesh Chander; Gupta, Rishi

    Large volumes of hazardous wastes are generated in the form of oily sludges and contaminated soils during crude oil transportation and processing. Although many physical, chemical and biological treatment technologies are available for petroleum contaminants petroleum contaminants in soil, biological methods have been considered the most cost-effective. Practical biological remediation methods typically involve direct use of the microbes naturally occurring in the contaminated environment and/or cultured indigenous or modified microorganisms. Environmental and nutritional factors, including the properties of the soil, the chemical structure of the hydrocarbon(s), oxygen, water, nutrient availability, pH, temperature, and contaminant bioavailability, can significantly affect the rate and the extent of hydrocarbon biodegradation hydrocarbon biodegradation by microorganisms in contaminated soils. This chapter concisely discusses the major aspects of bioremediation of petroleum contaminants.

  2. Bioremediation of petroleum-contaminated soil: A Review

    Science.gov (United States)

    Yuniati, M. D.

    2018-02-01

    Petroleum is the major source of energy for various industries and daily life. Releasing petroleum into the environment whether accidentally or due to human activities is a main cause of soil pollution. Soil contaminated with petroleum has a serious hazard to human health and causes environmental problems as well. Petroleum pollutants, mainly hydrocarbon, are classified as priority pollutants. The application of microorganisms or microbial processes to remove or degrade contaminants from soil is called bioremediation. This microbiological decontamination is claimed to be an efficient, economic and versatile alternative to physicochemical treatment. This article presents an overview about bioremediation of petroleum-contaminated soil. It also includes an explanation about the types of bioremediation technologies as well as the processes.

  3. KINETIC MODELLING AND HALF LIFE STUDY OF ADSORPTIVE BIOREMEDIATION OF SOIL ARTIFICIALLY CONTAMINATED WITH BONNY LIGHT CRUDE OIL

    Directory of Open Access Journals (Sweden)

    Samuel Enahoro Agarry

    2015-06-01

    Full Text Available In this study, comparative potential effects of commercial activated carbon (CAC and plantain peel-derived biochar (PPBC of different particle sizes and dosage to stimulate petroleum hydrocarbon biodegradation in soil were investigated. Microcosms containing soil were spiked with weathered Bonny light crude oil (WBLCO (10% w/w and amended with different particle sizes (0.02, 0.07 and 0.48 mm and dosage (20, 30 and 40 g of CAC and PPBC, respectively. The bioremediation experiments were carried out for a period of 28 days under laboratory conditions. The results showed that there was a positive relationship between the rate of petroleum hydrocarbons reduction and presence of the CAC and PPBC in crude oil contaminated soil microcosms. The WBLCO biodegradation data fitted well to the first-order kinetic model. The model revealed that WBLCO contaminated-soil microcosms amended with CAC and PPBC had higher biodegradation rate constants (k as well as lower half-life times (t1/2 than unamended soil (natural attenuation remediation system. The rate constants increased while half-life times decreased with decreased particle size and increased dosage of amendment agents. ANOVA statistical analysis revealed that WBLCO biodegradation in soil was significantly (p = 0.05 influenced by the addition of CAC and biochar amendment agents, respectively. However, Tukey’s post hoc test (at p = 0.05 showed that there was no significant difference in the bioremediation efficiency of CAC and PPBC. Thus, amendment of soils with biochar has the potential to be an inexpensive, efficient, environmentally friendly and relatively novel strategy to mitigate organic compound-contaminated soil.

  4. Predicting soil, water, and air concentrations of environmental contaminants locally and regionally: Multimedia transport and transformation models

    International Nuclear Information System (INIS)

    McKone, T.E.; Daniels, J.I.

    1991-10-01

    Environmental scientists recognize that the environment functions as a complex, interconnected system. A realistic risk-management strategy for many contaminants requires a comprehensive and integrated assessment of local and regional transport and transformation processes. In response to this need, we have developed multimedia models that simulate the movement and transformation of chemicals as they spread through air, water, biota, soils, sediments, surface water, and ground water. Each component of the environment is treated as a homogeneous subsystem that can exchange water, nutrients, and chemical contaminants with other adjacent compartments. In this paper, we illustrate the use of multimedia models and measurements as tools for screening the potential risks of contaminants released to air and deposited onto soil and plants. The contaminant list includes the volatile organic compounds (VOCs) tetrachloroethylene (PCE) and trichloroethylene (TCE), the semi-volatile organic compound benzo(a)pyrene, and the radionuclides tritium and uranium-238. We examine how chemical properties effect both the ultimate route and quantity of human and ecosystem contact and identify sensitivities and uncertainties in the model results

  5. Bioremediation of uranium contaminated Fernald soils

    International Nuclear Information System (INIS)

    Delwiche, M.E.; Wey, J.E.; Torma, A.E.

    1994-01-01

    This study investigated the use of microbial bioleaching for removal of uranium from contaminated soils. The ability of bacteria to assist in oxidation and solubilization of uranium was compared to the ability of fungi to produce complexing compounds which have the same effect. Biosorption of uranium by fungi was also measured. Soil samples were examined for changes in mineralogical properties due to these processes. On the basis of these laboratory scale studies a generalized flow sheet is proposed for bioremediation of contaminated Fernald soils

  6. Review in Strengthening Technology for Phytoremediation of Soil Contaminated by Heavy Metals

    Science.gov (United States)

    Wu, Chishan; Zhang, Xingfeng; Deng, Yang

    2017-07-01

    In view of current problems of phytoremediation technology, this paper summarizes research progress for phytoremediation technology of heavy metal contaminated soil. When the efficiency of phytoremediation may not meet the demand in practice of contaminated soil or water. Effective measures should be taken to improve the plant uptake and translocation. This paper focuses on strengthening technology mechanism, which can not only increase the biomass of plant and hyperaccumulators, but also enhance the tolerance and resistance to heavy metals, and application effect of phytoremediation, including agronomic methods, earthworm bioremediation and chemical induction technology. In the end of paper, deficiencies of each methods also be discussed, methods of strengthening technology for phytoremediation need further research.

  7. Field demonstration of ex situ biological treatability of contaminated groundwater at the Strachan gas plant

    International Nuclear Information System (INIS)

    Kurz, M.D.; Stepan, D.J.

    1997-03-01

    A multi-phase study was conducted to deal with the issues of groundwater and soil contamination by sour gas processing plants in Alberta. Phase One consisted of a review of all soil and groundwater monitoring data submitted to Alberta Environment by sour gas plants in accordance with the Canadian Clean Water Act. The current phase involves the development, evaluation and demonstration of selected remediation technologies to address subsurface contamination of sediments and groundwater at sour gas treatment plants with special attention to the presence of natural gas condensate in the subsurface. Results are presented from a pilot-scale biological treatability test that was performed at the Gulf Strachan Natural Gas Processing Plant in Rocky Mountain House, Alberta, where contaminated groundwater from the plant was being pumped to the surface through many recovery wells to control contaminant migration. The recovered groundwater was directed to a pump-and-treat system that consisted of oil-water separation, iron removal, hardness removal, and air stripping, before being reinjected. The pilot-scale biological treatability testing was conducted to evaluate process stability in treating groundwater without pretreatment for iron and hardness reduction and to evaluate the removal of organic contaminants. Results of a groundwater characterization analysis are discussed. Chemical characteristics of the groundwater at the Strachan Gas Plant showed that an ex situ remediation technology would address the dissolved volatile and semi-volatile organic contamination from natural gas condensates, as well as the nitrogenous compounds resulting from the use of amine-based process chemicals. 4 refs., 5 tabs., 4 figs

  8. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China.

    Science.gov (United States)

    Liu, Geng; Niu, Junjie; Guo, Wenjiong; An, Xiangsheng; Zhao, Long

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) from chemical plants can cause serious pollution of surrounding agricultural soils. A comprehensive study of agricultural soils was conducted in the vicinity of a chemical plant in China to characterize the soil PAH concentration, as well as their composition and sources. Human health and a screening-level ecological risk assessment were conducted for PAH contamination in agricultural soils. The results showed that the total concentrations of 16 priority PAHs ranged from 250.49 to 9387.26 ng g(-1), with an average of 2780.42 ng g(-1). High molecular weight PAHs (four to six rings) were the dominant component, accounting for more than 60% of all PAHs. Principal component analysis (PCA) and positive matrix factorization model (PMF) suggested that diesel emissions, coal combustion, coke ovens, and fuel combustion and gasoline emissions were the main sources of PAHs in agricultural soils. The ecological risk assessment results based on the effects range-low (ERL), the effects range-median (ERM), and the ecological screening levels (ESL) indicated that the exposure to ∑PAH16 was >ERL, >ERM, and ≥ERL and ESL at 78.1% of the soil sampling stations, and could induce biological effects in mammals. The Bapeq concentrations posed a potential carcinogenic risk to humans. Further risk management and control of soil PAHs in these agricultural soils is required to ensure the safety of the biocoenosis and human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Removal of heavy metals from contaminated soil by electrodialytic remediation enhanced with organic acids.

    Science.gov (United States)

    Merdoud, Ouarda; Cameselle, Claudio; Boulakradeche, Mohamed Oualid; Akretche, Djamal Eddine

    2016-11-09

    The soil from an industrial area in Algeria was contaminated with Cr (8370 mg kg -1 ), Ni (1135 mg kg -1 ) and zinc (1200 mg kg -1 ). The electrodialytic remediation of this soil was studied using citric acid and EDTA as facilitating agents. 0.1 M citric acid or EDTA was added directly to the soil before it was introduced in an electrodialytic cell in an attempt to enhance the heavy metal solubility in the interstitial fluid. The more acidic pH in the soil when citric acid was used as the facilitating agent was not enough to mobilize and remove the metals from the soil. Only 7.2% of Ni and 6.7% of Zn were removed from the soil in the test with citric acid. The best results were found with EDTA, which was able to solubilize and complex Zn and Ni forming negatively charged complexes that were transported and accumulated in the anolyte. Complete removal was observed for Ni and Zn in the electrodialytic treatment with EDTA. Minor amounts of Cr were removed with both EDTA and citric acid.

  10. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides.

    Science.gov (United States)

    Li, Xiaomin; Peng, Weihua; Jia, Yingying; Lu, Lin; Fan, Wenhong

    2016-08-01

    Bioremediation with microorganisms is a promising technique for heavy metal contaminated soil. Rhodobacter sphaeroides was previously isolated from oil field injection water and used for bioremediation of lead (Pb) contaminated soil in the present study. Based on the investigation of the optimum culturing conditions and the tolerance to Pb, we employed the microorganism for the remediation of Pb contaminated soil simulated at different contamination levels. It was found that the optimum temperature, pH, and inoculum size for R. sphaeroides is 30-35 °C, 7, and 2 × 10(8) mL(-1), respectively. Rhodobacter sphaeroides did not remove the Pb from soil but did change its speciation. During the bioremediation process, more available fractions were transformed to less accessible and inert fractions; in particular, the exchangeable phase was dramatically decreased while the residual phase was substantially increased. A wheat seedling growing experiment showed that Pb phytoavailability was reduced in amended soils. Results inferred that the main mechanism by which R. sphaeroides treats Pb contaminated soil is the precipitation formation of inert compounds, including lead sulfate and lead sulfide. Although the Pb bioremediation efficiency on wheat was not very high (14.78% root and 24.01% in leaf), R. sphaeroides remains a promising alternative for Pb remediation in contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Reduction in bioavailability of arsenic in contaminated irrigated soil using zinc and organic manure

    International Nuclear Information System (INIS)

    Batool, S.Q.

    2012-01-01

    The experiments were conducted to reduce the bioavailability of arsenic with application of organic and inorganic materials from contaminated soils irrigated with arsenic contaminated water. The results showed that the amount of extractable arsenic increased with submergence and decreased with application of organic material. However, amount of such decrease altered with inorganic material i.e. zinc and decrease was greater with As5Zn10 (0.17 to 0.0 mg/kg) where zinc was applied at the rate of 10 mg/kg. Among the different organic materials, arsenic content in soil remarkably decreased with application of farmyard manure. The decrease in arsenic content was less than upper toxic limit of arsenic in soil i.e.10mg/kg for paddy soils. Other manures also showed decrease in arsenic concentration but with desorption after half interval of treatment. Best remediating agents used for arsenic retention was zinc sulphate> organic compost >farmyard manure. (author)

  12. Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals.

    Science.gov (United States)

    Schmidt, Ulrich

    2003-01-01

    For heavy metal-contaminated agricultural land, low-cost, plant-based phytoextraction measures can be a key element for a new land management strategy. When agents are applied into the soil, the solubility of heavy metals and their subsequent accumulation by plants can be increased, and, therefore, phytoextraction enhanced. An overview is given of the state of the art of enhancing heavy metal solubility in soils, increasing the heavy metal accumulation of several high-biomass-yielding and metal-tolerant plants, and the effect of these measures on the risk of heavy metal leaching. Several organic as well as inorganic agents can effectively and specifically increase solubility and, therefore, accumulation of heavy metals by several plant species. Crops like willow (Salix viminalis L.), Indian mustard [Brassica juncea (L.) Czern.], corn (Zea mays L.), and sunflower (Helianthus annuus L.) show high tolerance to heavy metals and are, therefore, to a certain extent able to use the surpluses that originate from soil manipulation. More than 100-fold increases of lead concentrations in the biomass of crops were reported, when ethylenediaminetetraacetic acid (EDTA) was applied to contaminated soils. Uranium concentrations could be strongly increased when citric acid was applied. Cadmium and zinc concentrations could be enhanced by inorganic agents like elemental sulfur or ammonium sulfate. However, leaching of heavy metals due to increased mobility in soils cannot be excluded. Thus, implementation on the field scale must consider measures to minimize leaching. So, the application of more than 1 g EDTA kg(-1) becomes inefficient as lead concentration in crops is not enhanced and leaching rate increases. Moreover, for large-scale applications, agricultural measures as placement of agents, dosage splitting, the kind and amount of agents applied, and the soil properties are important factors governing plant growth, heavy metal concentrations, and leaching rates. Effective

  13. Remediation of diesel-oil-contaminated soil using peat

    International Nuclear Information System (INIS)

    Ghaly, R.A.; Pyke, J.B.; Ghaly, A.E.; Ugursal, V.I.

    1999-01-01

    We investigated a remediation process for diesel-contaminated soil, in which water was used to remove the diesel from the soil and peat was used to absorb the diesel layer formed on the surface of the water. The percolation of water through the soil was uniform. The time required for water to percolate the soil and for the layers (soil, water, and diesel) to separate depended on the soil depth. Both the depth of soil and mixing affected the thickness of the diesel layer and thus diesel recovery from the contaminated soil. Higher diesel recovery was achieved with smaller soil depth and mixing. The initial moisture content and the lower heating value of the peat were 7.1% and 17.65 MJ/kg, respectively. The final moisture content and lower heating value of the diesel-contaminated peat obtained from the experiment with mixing were 8.65 - 10.80% and 32.57 - 35.81 MJ/kg, respectively. The energy content of the diesel-contaminated peat is much higher than that of coal, and the moisture content is within the range recommended for biomass gasification. (author)

  14. Establish an Agent-Simulant Technology Relationship (ASTR)

    Science.gov (United States)

    2017-04-14

    collective protection; CP; decontamination ; decon; contamination avoidance; CA; chemical biological radiological; CBR 16. SECURITY CLASSIFICATION...Within chemical defense, the individual protection (IP), collective protection (CP), decontamination (decon), and contamination avoidance (CA...OT). c. Testing may use chemical warfare agent (CWA), biological warfare agent (BWA), radiological agent, or simulant (surrogate). A simulant is a

  15. Ecological Role of Soils upon Radioactive Contamination

    Science.gov (United States)

    Tsvetnov, Evgeny; Shcheglov, Alexei; Tsvenova, Olga

    2016-04-01

    The ecological role of soils upon radioactive contamination is clearly manifested in the system of notions about ecosystems services, i.e., benefits gained by humans from ecosystems and their components, including soils (Millennium Ecosystem Assessment, 2005). For the soils, these services are considered on the basis of soil functions in the biosphere that belong to the protective ecosystem functions within the group of soil functions known under the names of "Buffer and protective biogeocenotic shield" (at the level of particular biogeocenoses) and "Protective shield of the biosphere" (at the global biospheric level) (according to Dobrovol'skii & Nikitin, 2005). With respect to radionuclides, this group includes (1) the depositing function, i.e., the accumulation and long-term sequestration of radioactive substances by the soil after atmospheric fallout; (2) the geochemical function, i.e., the regulation of horizontal and vertical fluxes of radionuclides in the system of geochemically conjugated landscapes and in the soil-groundwater and soil-plant systems; and (3) the dose-forming function that is manifested by the shielding capacity of the soil with respect to the external ionizing radiation (lowering of the dose from external radiation) and by the regulation of the migration of radionuclides in the trophic chain (lowering of the dose from internal radiation). The depositing and geochemical functions of the soils are interrelated, which is seen from quantitative estimates of the dynamics of the fluxes of radionuclides in the considered systems (soil-plant, soil-groundwater, etc.). The downward migration of radionuclides into the lower soil layers proceeds very slowly: for decades, more than 90% of the pool of radionuclides is stored in the topmost 10 cm of the soil profile. In the first 3-5 years after the fallout, the downward migration of radionuclides with infiltrating water flows decreases from several percent to decimals and hundredths of percent from the

  16. Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO).

    Science.gov (United States)

    Kumpiene, Jurate; Bert, Valérie; Dimitriou, Ioannis; Eriksson, Jan; Friesl-Hanl, Wolfgang; Galazka, Rafal; Herzig, Rolf; Janssen, Jolien; Kidd, Petra; Mench, Michel; Müller, Ingo; Neu, Silke; Oustriere, Nadège; Puschenreiter, Markus; Renella, Giancarlo; Roumier, Pierre-Hervé; Siebielec, Grzegorz; Vangronsveld, Jaco; Manier, Nicolas

    2014-10-15

    During the past decades a number of field trials with gentle remediation options (GRO) have been established on trace element (TE) contaminated sites throughout Europe. Each research group selects different methods to assess the remediation success making it difficult to compare efficacy between various sites and treatments. This study aimed at selecting a minimum risk assessment battery combining chemical and ecotoxicological assays for assessing and comparing the effectiveness of GRO implemented in seven European case studies. Two test batteries were pre-selected; a chemical one for quantifying TE exposure in untreated soils and GRO-managed soils and a biological one for characterizing soil functionality and ecotoxicity. Soil samples from field studies representing one of the main GROs (phytoextraction in Belgium, Sweden, Germany and Switzerland, aided phytoextraction in France, and aided phytostabilization or in situ stabilization/phytoexclusion in Poland, France and Austria) were collected and assessed using the selected test batteries. The best correlations were obtained between NH4NO3-extractable, followed by NaNO3-extractable TE and the ecotoxicological responses. Biometrical parameters and biomarkers of dwarf beans were the most responsive indicators for the soil treatments and changes in soil TE exposures. Plant growth was inhibited at the higher extractable TE concentrations, while plant stress enzyme activities increased with the higher TE extractability. Based on these results, a minimum risk assessment battery to compare/biomonitor the sites phytomanaged by GROs might consist of the NH4NO3 extraction and the bean Plantox test including the stress enzyme activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil.

    Science.gov (United States)

    Guan, Zhuo; Tang, Xiang-Yu; Nishimura, Taku; Katou, Hidetaka; Liu, Hui-Yun; Qing, Jing

    2018-02-01

    Soil contamination by diesel has been often reported as a result of accidental spillage, leakage and inappropriate use. Surfactant-enhanced soil flushing is a common remediation technique for soils contaminated by hydrophobic organic chemicals. In this study, soil flushing with linear alkylbenzene sulfonates (LAS, an anionic surfactant) was conducted for intact columns (15cm in diameter and 12cm in length) of diesel-contaminated farmland purple soil aged for one year in the field. Dynamics of colloid concentration in column outflow during flushing, diesel removal rate and resulting soil macroporosity change by flushing were analyzed. Removal rate of n-alkanes (representing the diesel) varied with the depth of the topsoil in the range of 14%-96% while the n-alkanes present at low concentrations in the subsoil were completely removed by LAS-enhanced flushing. Much higher colloid concentrations and larger colloid sizes were observed during LAS flushing in column outflow compared to water flushing. The X-ray micro-computed tomography analysis of flushed and unflushed soil cores showed that the proportion of fine macropores (30-250μm in diameter) was reduced significantly by LAS flushing treatment. This phenomenon can be attributed to enhanced clogging of fine macropores by colloids which exhibited higher concentration due to better dispersion by LAS. It can be inferred from this study that the application of LAS-enhanced flushing technique in the purple soil region should be cautious regarding the possibility of rapid colloid-associated contaminant transport via preferential pathways in the subsurface and the clogging of water-conducting soil pores. Copyright © 2017. Published by Elsevier B.V.

  18. Remediation of contaminated soil by cement treatment

    International Nuclear Information System (INIS)

    Dimovic, S.

    2004-01-01

    This manuscript presents the most applicable remedial technologies for contaminated soil with focus on cement stabilisation/solidification treatment. These technologies are examined in the light of soil contamination with depleted uranium in the large area of south Serbia,after Nato bombing 1999. (author) [sr

  19. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification

  20. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

  1. Chemical profiling of chemical warfare agents for forensic purposes

    NARCIS (Netherlands)

    Noort, D.; Reuver, L.P.J. de; Fidder, A.; Tromp, M.; Verschraagen, M.

    2010-01-01

    A program has been initiated towards the chemical profiling of chemical warfare agents, in order to support forensic investigations towards synthesis routes, production sites and suspect chemical suppliers. Within the first stage of the project various chemical warfare agents (VX, sulfur mustard,

  2. Screening of plants for phytoremediation of oil-contaminated soil.

    Science.gov (United States)

    Ikeura, Hiromi; Kawasaki, Yu; Kaimi, Etsuko; Nishiwaki, Junko; Noborio, Kosuke; Tamaki, Masahiko

    2016-01-01

    Several species of ornamental flowering plants were evaluated regarding their phytoremediation ability for the cleanup of oil-contaminated soil in Japanese environmental conditions. Thirty-three species of plants were grown in oil-contaminated soil, and Mimosa, Zinnia, Gazania, and cypress vine were selected for further assessment on the basis of their favorable initial growth. No significant difference was observed in the above-ground and under-ground dry matter weight of Gazania 180 days after sowing between contaminated and non-contaminated plots. However, the other 3 species of plants died by the 180th day, indicating that Gazania has an especially strong tolerance for oil-contaminated soil. The total petroleum hydrocarbon concentration of the soils in which the 4 species of plants were grown decreased by 45-49% by the 180th day. Compared to an irrigated plot, the dehydrogenase activity of the contaminated soil also increased significantly, indicating a phytoremediation effect by the 4 tested plants. Mimosa, Zinnia, and cypress vine all died by the 180th day after seeding, but the roots themselves became a source of nutrients for the soil microorganisms, which led to a phytoremediation effect by increase in the oil degradation activity. It has been indicated that Gazania is most appropriate for phytoremediation of oil-contaminated soil.

  3. Contact angles at the water-air interface of hydrocarbon-contaminated soils and clay minerals

    Science.gov (United States)

    Sofinskaya, O. A.; Kosterin, A. V.; Kosterina, E. A.

    2016-12-01

    Contact angles at the water-air interface have been measured for triturated preparations of clays and soils in order to assess changes in their hydrophobic properties under the effect of oil hydrocarbons. Tasks have been to determine the dynamics of contact angle under soil wetting conditions and to reveal the effect of chemical removal of organic matter from soils on the hydrophilicity of preparations. The potentialities of static and dynamic drop tests for assessing the hydrophilic-hydrophobic properties of soils have been estimated. Clays (kaolinite, gumbrine, and argillite) have been investigated, as well as plow horizons of soils from the Republic of Tatarstan: heavy loamy leached chernozem, medium loamy dark gray forest soil, and light loamy soddy-calcareous soil. The soils have been contaminated with raw oil and kerosene at rates of 0.1-3 wt %. In the uncontaminated and contaminated chernozem, capillary water capacity has been maintained for 250 days. The contact angles have been found to depend on the degree of dispersion of powdered preparation, the main type of clay minerals in the soil, the presence and amount of oxidation-resistant soil organic matter, and the soil-water contact time. Characteristic parameters of mathematical models for drop behavior on triturated preparations have been calculated. Contamination with hydrocarbons has resulted in a reliable increase in the contact angles of soil preparations. The hydrophobization of soil surface in chernozem is more active than in soils poorer in organic matter. The complete restoration of the hydrophilic properties of soils after hydrocarbon contamination is due to the oxidation of easily oxidizable organic matter at the low content of humus, or to wetting during several months in the absence of the mazut fraction.

  4. Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing

    International Nuclear Information System (INIS)

    Francis, C.W.

    1993-09-01

    To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil's physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques

  5. Design and Development of a Continuous-Flow Countercurrent Metal Extraction System to Remove Heavy Metals from Contaminated Soils

    National Research Council Canada - National Science Library

    Neale, Christopher M. U

    1997-01-01

    .... The research focused on eight contaminated soils from Army installations and the metal extraction capabilities of eight extracting agents including HNO3, HCI, fluorosilicic acid, citric acid, EDTA, DTPA, NTA, and NaOH...

  6. Surface soil contamination standards

    International Nuclear Information System (INIS)

    Boothe, G.F.

    1979-01-01

    The purpose of this document is to define surface soil contamination limits for radioactive materials below which posting, restrictions and environmental controls are not necessary in order to protect personnel and the environment. The standards can also be used to determine if solid waste or other material is contaminated relative to disposal requirements. The derivation of the standards is given

  7. Sorption of Emerging Organic Wastewater Contaminants to Four Soils

    Directory of Open Access Journals (Sweden)

    Sarah Roberts

    2014-04-01

    Full Text Available Conventional onsite wastewater treatment system design relies on a septic tank and soil treatment unit (STU for treatment of wastewater and integration of the final effluent into the environment. Organic water contaminants (OWCs, chemicals found in pharmaceutical drugs, detergents, surfactants, and other personal care and cleaning products, have been observed in septic tank effluent and the environment. Sorption of OWC mass to soil is a key mechanism in the removal and retardation of many of these chemicals in effluent as it travels through an STU. The primary purpose of this study was to investigate the relationship between the fraction of organic carbon of soil and the equilibrium sorption partitioning coefficient of a selected group of relevant and diverse OWCs. A secondary goal is to evaluate current methods of modeling the sorption of selected OWCs in soil. Five point Freundlich isotherms were constructed from equilibrium sorption batch tests for target OWCs with four different soils. For soils with organic carbon fraction between 0.021 and 0.054, Kd values were calculated between 60 and 185 for 4-nonylphenol, 75 to 260 for triclosan, 115 to 270 for bisphenol-A, 3 to 255 for 17β-estradiol, 40 to 55 for 17α-ethynylestradiol, and 28 to 70 for estrone. An empirically derived, direct relationship between foc and Kd may be a useful approach to estimating sorption for a soil based on organic carbon content.

  8. INFLUENCE OF HEXAVALENT CHROMIUM INITIAL CONCENTRATION ON RETARDATION FACTOR AND CONTAMINANT VELOCITY IN A SOIL MEDIA

    Directory of Open Access Journals (Sweden)

    K. SHIVA PRASHANTH KUMAR

    2016-02-01

    Full Text Available Sources of soil and ground water contamination are many and include many folds of accidental spills and leaks of toxic and hazardous chemicals. Preparation of ground water contamination model needs good understanding of the behavior of contaminant transport through soil media for predicting the level of contamination of ground water in the near future at the intended site conditions. Sorption is a natural process; due to its presence, the contaminant can move slowly as compared to the ground water and hence the effects of sorption must be taken into consideration while predicting the travel time of the contaminant to reach the ground water sources. This paper discusses the results of column test studies carried out in the laboratory under controlled conditions about the spreading of contaminant (Hexavalent chromium, Cr (VI through the clay mixed red soil at two different initial concentrations (800 mg/L and 4200 mg/L. The variations of the contaminant flow velocity and retardation factor for two different initial concentrations of contaminant were brought out and discussed. The contaminant flow velocity drastically coming down for a relative concentration of 0 to 0.2 and beyond this range, the contaminant flow velocity value is decreasing in a slow rate for both the lower and higher initial contaminant concentrations tested. At the lower relative concentration, the higher retardation factor was observed and it may be due to slowly filling the available sorption sites in the soil column.

  9. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Daniel P., E-mail: daniel.cassidy@wmich.edu [Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008 (United States); Srivastava, Vipul J., E-mail: vipul.srivastava@ch2m.com [CH2M HILL, 125S Wacker, Ste 3000, Chicago, IL 60606 (United States); Dombrowski, Frank J., E-mail: frank.dombrowski@we-energies.com [We Energies, 333W Everett St., A231, Milwaukee, WI 53203 (United States); Lingle, James W., E-mail: jlingle@epri.com [Electric Power Research Institute (EPRI), 4927W Willow Road, Brown Deer, WI 53223 (United States)

    2015-10-30

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks.

  10. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    International Nuclear Information System (INIS)

    Cassidy, Daniel P.; Srivastava, Vipul J.; Dombrowski, Frank J.; Lingle, James W.

    2015-01-01

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks

  11. Soil contamination studies

    International Nuclear Information System (INIS)

    1997-06-01

    The objective of this project was to develop a quick screening method that accurately identifies and quantifies the amount of alpha-emitting radionuclides in infinitely-thick soil samples using a Frisch grid ionization chamber. An additional objective of the work was to provide the US Department of Energy, Nevada Operations Office and its contractors with information on the theoretical and actual measured results of atmospheric testing contamination of soil and water at the Nevada Test Site through a comprehensive search of existing literature

  12. Hazard evaluation of soil contaminants from an abandoned oil refinery site with chemical and biological assays

    International Nuclear Information System (INIS)

    Ramanathan, A.; Yates, C.W.; Burks, S.L.

    1993-01-01

    The phytotoxic characteristics of soil and leachates of soil from an abandoned oil refinery site were evaluated with rice (Oryza sativa L.) seed germinations and root elongation assays. Toxicity of soil leachates to aquatic animals was determined with acute and martial chronic toxicity tests with Ceriodaphnia dubia, fathead minnows, and Microtox reg-sign. Soil samples from uncontaminated (control) and selected contaminated areas within the old refinery were extracted with Toxic Characteristics Leachate Procedure (TCLP), an aqueous procedure and a supercritical carbon dioxide method. Aqueous extracts of soil from the oil leaded gasoline storage area exhibited greatest effects in all tests. Aqueous extracts from this site also caused a significant reduction in rice root development. Supercritical carbon dioxide extraction proved to be a quick and non-toxic procedure for isolating non-polar organics for assay with aquatic toxicity tests. Subsequent supercritical extracts collected in solvent can help characterize the class of toxicants through HPLC and Gas Chromatography. The toxic constituents were characterized with a Toxicity Identification/Toxicity Reduction Evaluation protocol to fractionate the contaminants into conventional non-polar organics, weak acids, base-neutrals, or heavy metals for subsequent analysis

  13. Soil bioindicators as a usefull tools for land management and spatial planning processes: a case-study of prioritization of contaminated soil remediation

    Science.gov (United States)

    Grand, Cécile; Pauget, Benjamin; Villenave, Cécile; Le Guédard, Marina; Piron, Denis; Nau, Jean-François; Pérès, Guénola

    2017-04-01

    When setting up new land management, contaminated site remediation or soil use change are sometimes necessary to ensure soil quality and the restoration of the ecosystem services. The biological characterization of the soil can be used as complementary information to chemical data in order to better define the conditions for operating. Then, in the context of urban areas, elements on the soil biological quality can be taken into consideration to guide the land development. To assess this "biological state of soil health", some biological tools, called bioindicators, could provide comprehensive information to understand and predict the functioning of the soil ecosystem. In this context, a city of 200 thousand inhabitants has decided to integrate soil bioindicators in their soil diagnostic for their soil urban management. This city had to elaborate a spatial soil management in urban areas which presented soil contamination linked to a complex industrial history associated with bad uses of gardens not always safe for the environment. The project will lead to establish a Natural Urban Park (PNU) in order to develop recreational and leisure activities in a quality environment. In order to complete the knowledge of soil contamination and to assess the transfer of contaminants to the terrestrial ecosystem, a biological characterization of soils located in different areas was carried out using six bioindicators: bioindicators of accumulation which allowed to evaluate the transfers of soil contaminants towards the first 2 steps of a trophic chain (plants and soil fauna, e.g. snails), bioindicators of effects (Omega 3 index was used to assess the effects of soil contamination and to measure their impact on plants), bioindicators of soil functioning (measurement of microbial biomass, nematodes and earthworm community) ; the interest of these last bioindicators is that they also act on the functioning of ecosystems as on the dynamics of organic matter (mineralization) but also

  14. Pilot-scale incineration of comtaminated soils from the drake chemical superfund site. Final report

    International Nuclear Information System (INIS)

    King, C.; Lee, J.W.; Waterland, L.R.

    1993-03-01

    A series of pilot-scale incineration tests were performed at the U.S. Environmental Protection Agency's (EPA's) Incineration Research Facility to evaluate the potential of incineration as an option to treat contaminated soils from the Drake Chemical Superfund site in Lock Haven, Pennsylvania. The soils at the Drake site are reported to be contaminated to varying degrees with various organic constituents and several hazardous constituent trace metals. The purpose of the test program was to evaluate the incinerability of selected site soils in terms of the destruction of contaminant organic constituents and the fate of contaminant trace metals. All tests were conducted in the rotary kiln incineration system at the IRF. Test results show that greater than 99.995 percent principal organic hazardous constituent (POHC) destruction and removal efficiencies (DRE) can be achieved at kiln exit gas temperatures of nominally 816 C (1,500 F) and 538 C (1,000 F). Complete soil decontamination of semivolatile organics was achieved; however, kiln ash levels of three volatile organic constituents remained comparable to soil levels

  15. Rocky desertification in Southwest China: Impacts, causes, and restoration

    Science.gov (United States)

    Jiang, Zhongcheng; Lian, Yanqing; Qin, Xiaoqun

    2014-05-01

    Rocky desertification, which is relatively less well known than desertification, refers to the processes and human activities that transform a karst area covered by vegetation and soil into a rocky landscape. It has occurred in various countries and regions, including the European Mediterranean and Dinaric Karst regions of the Balkan Peninsula, Southwest China on a large scale, and alarmingly, even in tropical rainforests such as Haiti and Barbados, and has had tremendous negative impacts to the environment and social and economic conditions at local and regional scales. The goal of this paper is to provide a thorough review of the impacts, causes, and restoration measures of rocky desertification based on decades of studies in the southwest karst area of China and reviews of studies in Europe and other parts of the world. The low soil formation rate and high permeability of carbonate rocks create a fragile and vulnerable environment that is susceptible to deforestation and soil erosion. Other natural processes related to hydrology and ecology could exacerbate rocky desertification. However, disturbances from a wide variety of human activities are ultimately responsible for rocky desertification wherever it has occurred. This review shows that reforestation can be successful in Southwest China and even in the Dinaric Karst region when the land, people, water, and other resources are managed cohesively. However, new challenges may arise as more frequent droughts and extreme floods induced by global climate change and variability may slow the recovery process or even expand rocky desertification. This review is intended to bring attention to this challenging issue and provide information needed to advance research and engineering practices to combat rocky desertification and to aid in sustainable development.

  16. Statistical sampling strategies for survey of soil contamination

    NARCIS (Netherlands)

    Brus, D.J.

    2011-01-01

    This chapter reviews methods for selecting sampling locations in contaminated soils for three situations. In the first situation a global estimate of the soil contamination in an area is required. The result of the surey is a number or a series of numbers per contaminant, e.g. the estimated mean

  17. Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil.

    Science.gov (United States)

    Luo, Y M; Christie, P; Baker, A J

    2000-07-01

    Temporal changes in soil solution properties and metal speciation were studied in non-rhizosphere soil and in the rhizosphere of the hyperaccumulator Thlaspi caerulescens J. & C. Presl (population from Prayon, Belgium) grown in a Zn- and Cd-contaminated soil. This paper focuses on soil solution Zn and pH dynamics during phytoextraction. The concentration of Zn in both non-rhizosphere and rhizosphere soil solutions decreased from 23 mg/l at the beginning to 2 mg/l at the end of the experiment (84 days after transplanting of seedlings), mainly due to chemical sorption. There was no significant difference in overall Zn concentration between the planted and the unplanted soil solutions (P > 0.05). Soil solution pH decreased initially and then increased slightly in both planted and unplanted soil zones. From 60 to 84 days after transplanting, the pH of the rhizosphere soil solution was higher than that of non-rhizosphere soil solution (P<0.05). Zn uptake by the hyperaccumulator plants was 8.8 mg per pot (each containing 1 kg oven-dry soil) on average. The data indicate that the potential of T. caerulescens to remove Zn from contaminated soil may not be related to acidification of the rhizosphere.

  18. Bioremediation of soil contaminated crude oil by Agaricomycetes.

    Science.gov (United States)

    Mohammadi-Sichani, M Maryam; Assadi, M Mazaheri; Farazmand, A; Kianirad, M; Ahadi, A M; Ghahderijani, H Hadian

    2017-01-01

    One of the most important environmental problems is the decontamination of petroleum hydrocarbons polluted soil, particularly in the oil-rich country. Bioremediation is the most effective way to remove these pollutants in the soil. Spent mushroom compost has great ability to decompose lignin-like pollution. The purpose of this study was the bioremediation of soil contaminated with crude oil by an Agaricomycetes . Soil sample amended with spent mushroom compost into 3%, 5% and 10% (w/w) with or without fertilizer. Ecotoxicity germination test was conducted with Lipidium sativa . The amplified fragment (18 s rDNA) sequence of this mushroom confirmed that the strain belonged to Pleurotus ostreatus species with complete homology (100% identity). All tests experiment sets were effective at supporting the degradation of petroleum hydrocarbons contaminated soil after three months. Petroleum contaminated soil amended with Spent mushroom compost 10% and fertilizer removed 64.7% of total petroleum hydrocarbons compared control. The germination index (%) in ecotoxicity tests ranged from 60.4 to 93.8%. This showed that the petroleum hydrocarbons contaminated soil amended with 10% Spent mushroom compost had higher bioremediation ability and reduced soil toxicity in less than three months.

  19. Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Fogh, C.L.; Kucera, J.

    2003-01-01

    Soil samples from areas in Belarus, Russia and Sweden contaminated by the Chernobyl accident were analysed for I-129 by radiochemical neutron activation analysis, as well as for Cs-137 by gamma-spectrometry. The atomic ratio of I-129/(CS)-C-137 in the upper layer of the examined soil cores ranged...... from 0.10 to 0.30, with an average of 0.18, and no correlation between I-129/Cs-137 ratio and the distance from Chernobyl reactor to sampling location was observed. It seems feasible to use the I-129/Cs-137 ratio to reconstruct the deposition pattern of I-131 in these areas. The association of I-129...... and (CS)-C-137 in the Chernobyl soil and Irish Sea sediment was investigated by a sequential extraction method. Similar speciation of I-129 in the Chernobyl soil and Irish Sea sediment was found. Approximately 70% of I-129 is bound to oxides and organic matter, and 10-20% is in the readily available phase...

  20. Remediation of soil contaminated with polycyclic aromatic ...

    African Journals Online (AJOL)

    user

    2011-02-14

    Feb 14, 2011 ... The aim of this study was to determine ways of remediating soils contaminated with polycyclic aromatic hydrocarbons (PAHs) associated with crude oil. The study involves the use of planted cowpeas, mushrooms, algae, dead vegetable and live earthworm, and fire-heating of the contaminated garden soil ...

  1. Evaluation of hydrophobicity in PAH-contaminated soils during phytoremediation

    International Nuclear Information System (INIS)

    Cofield, Naressa; Banks, M. Katherine; Schwab, A. Paul

    2007-01-01

    The impact of recalcitrant organic compounds on soil hydrophobicity was evaluated in contaminated soil from a manufactured gas plant site following 12 months of phytoremediation. Significant reduction in soil wetting and water retention was observed in contaminated soil compared to an uncontaminated control. Phytoremediation was effective at reducing total PAHs by 69% with corresponding changes in soil classification from extremely hydrophobic (initial sample) to moderately-strongly hydrophobic (planted) and hydrophilic-very hydrophilic (unplanted) after 12 months. The greatest reduction in soil hydrophobicity was observed in the unplanted, unfertilized treatments that had the lowest removal rate of PAHs. The presence of plants may contribute to hydrophobicity in contaminated soil. - The presence of recalcitrant hydrophobic organic pollutants may enhance soil hydrophobicity

  2. Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils

    International Nuclear Information System (INIS)

    Gomez-Eyles, Jose L.; Collins, Chris D.; Hodson, Mark E.

    2011-01-01

    Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: → Isotope ratios can be used to evaluate chemical methods to predict bioavailability. → Chemical methods predicted bioavailability better than exhaustive extractions. → Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.

  3. Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Eyles, Jose L., E-mail: j.l.gomezeyles@reading.ac.uk [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom); Collins, Chris D.; Hodson, Mark E. [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom)

    2011-04-15

    Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: > Isotope ratios can be used to evaluate chemical methods to predict bioavailability. > Chemical methods predicted bioavailability better than exhaustive extractions. > Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.

  4. New strains of oil-degrading microorganisms for treating contaminated soils and wastes

    Science.gov (United States)

    Muratova, A. Yu; Panchenko, L. V.; Semina, D. V.; Golubev, S. N.; Turkovskaya, O. V.

    2018-01-01

    Two new strains Achromobacter marplatensis101n and Acinetobacter sp. S-33, capable of degrading 49 and 46% of oil within 7 days were isolated, identified, and characterized. The application of A. marplatensis 101n in combination with ammonium nitrate (100 mg·kg-1) for 30 days of cultivation resulted in the degradation of 49% of the initial total petroleum hydrocarbon content (274 g·kg-1) in the original highly acid (pH 4.9) oil-contaminated waste. Up to 30% of oil sludge added to a liquid mineral medium at a concentration of 15% was degraded after 10 days of cultivation of A. marplatensis 101n. Application of yellow alfalfa (Medicago falcata L.) plants with Acinetobacter sp. S-33 for bioremediation of oil-sludge-contaminated soil improved the quality of cleanup in comparison with the bacterium- or plant-only treatment. Inoculation of Acinetobacter sp. S-33 increased the growth of both roots and shoots by more than 40%, and positively influenced the soil microflora. We conclude that the new oil-degrading strains, Acinetobacter sp. S-33 and A. marplatensis 101n, can serve as the basis for new bioremediation agents for the treatment of oil contaminated soils and waste.

  5. Fixation of petroleum contaminated soils via cold-mix asphalt for use as a liner

    International Nuclear Information System (INIS)

    Testa, S.M.; Patton, D.L.; Conca, J.L.

    1992-01-01

    This paper reports on several methodologies which are available for the remediation of petroleum hydrocarbon-affected soils (PHAS) including bioremediation vapor extraction, chemical fixation and direct disposal. A proven alternative for the fixation of petroleum-contaminated soils is via combination with cold-mix asphalt. One viable and creative use which is within the intent and spirit of current regulations is producing, in lieu of a landfill waste, an end-product for use as a cap, liner or other site-specific application. Consideration of certain factors including durability, aging, permeability and leachability suggests that cold-mix asphalt incorporation petroleum-contaminated soils will perform more than adequately under normal conditions for a long period of time - probably more than 1,000 years

  6. The role of soil quality maps in the reuse of lightly contaminated soil

    NARCIS (Netherlands)

    Lamé, F.P.J.; Leenaers, H.; Zegwaard, J.

    2000-01-01

    In 1999 the Dutch government agreed on a new policy regarding the reuse of lightly contaminated soil. From now on, lightly contaminated soil may be reused under conditions of soil-quality management. The municipal authorities supervise the reuse under this new regime. Two basic criteria need to be

  7. Surfactant screening of diesel-contaminated soil

    International Nuclear Information System (INIS)

    Peters, R.W.; Montemagno, C.D.; Shem, L.; Lewis, B.-A.

    1992-01-01

    At one installation in California, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, resulting in contamination at depths from 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. This paper summarizes a surfactant screening/surfactant flooding research program in which 22 surfactants were screened for their effectiveness in mobilizing the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on contaminated soil samples obtained from the site

  8. Sorption of BTX mixtures to contaminated and uncontaminated site soils

    International Nuclear Information System (INIS)

    Uchrin, C.G.; Koshy, K.; Wojtenko, I.

    1995-01-01

    Both adsorption and desorption studies are being performed examining benzene, toluene, and meta-xylene (BTX) as single components, binary mixtures, and trinary mixture onto both existing contaminated soils as well as some uncontaminated reference soils. The contaminated soils were obtained from an oil refinery site and another industrial site in New Jersey. The oil refinery site soil did not exhibit significant amounts of either benzene, toluene or xylene but was contaminated with other compounds while the other industrial site soil was contaminated with toluene among other compounds. The organic carbon content of the soils ranged from 0.14 to 2.91 percent. Preliminary adsorption studies showed BTX to strongly sorb to these soils. The adsorption studies onto the reference soils also demonstrated the effect of organic matter on adsorption. Sequential batch desorption studies show the BTX to desorb quickly, reaching equilibrium within 48 hours. Long-term uptake and release were not noted with these soil/contaminant systems

  9. Enhanced bioremediation of PAH contaminated soils from coal processing sites

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1995-01-01

    The polycyclic aromatic hydrocarbons (PAH) are a potential hazard to health due to their carcinogenic, mutagenic nature and acute toxicity and there is an imminent need for remediation of PAH contaminated soils abounding the several coke oven and town gas sites. Aerobic biological degradation of PAHs is an innovative technology and has shown high decontamination efficiencies, complete mineralization of contaminants, and is environmentally safe. The present study investigates the remediation of PAH contaminated soils achieved using Acinetobacter species and fungal strain Phanerochaete Chrysosporium. The soil used for the experiments was an industrially contaminated soil obtained from Alberta Research Council (ARC) primary cleanup facility, Alberta, Canada. Soil characterization was done using High Performance Liquid Chromatography (HPLC) to qualitatively and quantitatively determine the contaminants in the soil. Artificially contaminated soil was also used for some experiments. All the experiments were conducted under completely mixed conditions with suitable oxygen and nutrient amendments. The removal efficiency obtained for various PAHs using the two microorganisms was compared

  10. Stabilization/solidification of lead-contaminated soil using cement and rice husk ash.

    Science.gov (United States)

    Yin, Chun-Yang; Mahmud, Hilmi Bin; Shaaban, Md Ghazaly

    2006-10-11

    This paper presents the findings of a study on solidification/stabilization (S/S) of lead-contaminated soil using ordinary Portland cement (OPC) and rice husk ash (RHA). The effects of varying lead concentrations (in the form of nitrates) in soil samples on the physical properties of their stabilized forms, namely unconfined compressive strength (UCS), setting times of early mixtures and changes in crystalline phases as well as chemical properties such as leachability of lead, pH and alkalinity of leachates are studied. Results have indicated that usage of OPC with RHA as an overall binder system for S/S of lead-contaminated soils is more favorable in reducing the leachability of lead from the treated samples than a binder system with standalone OPC. On the other hand, partial replacement of OPC with RHA in the binder system has reduced the UCS of solidified samples.

  11. Application of compost for effective bioremediation of organic contaminants and pollutants in soil.

    Science.gov (United States)

    Kästner, Matthias; Miltner, Anja

    2016-04-01

    Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as 'stimulants' of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a 'metabolic memory' within developing and mature

  12. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type

    DEFF Research Database (Denmark)

    Gomes, Helena I.; Dias-Ferreira, Celia; Ottosen, Lisbeth M.

    2015-01-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero...... nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used...... as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two...

  13. Evaluation of soil flushing of complex contaminated soil: An experimental and modeling simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sung Mi; Kang, Christina S. [Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Kim, Jonghwa [Department of Industrial Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Kim, Han S., E-mail: hankim@konkuk.ac.kr [Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)

    2015-04-28

    Highlights: • Remediation of complex contaminated soil achieved by sequential soil flushing. • Removal of Zn, Pb, and heavy petroleum oils using 0.05 M citric acid and 2% SDS. • Unified desorption distribution coefficients modeled and experimentally determined. • Nonequilibrium models for the transport behavior of complex contaminants in soils. - Abstract: The removal of heavy metals (Zn and Pb) and heavy petroleum oils (HPOs) from a soil with complex contamination was examined by soil flushing. Desorption and transport behaviors of the complex contaminants were assessed by batch and continuous flow reactor experiments and through modeling simulations. Flushing a one-dimensional flow column packed with complex contaminated soil sequentially with citric acid then a surfactant resulted in the removal of 85.6% of Zn, 62% of Pb, and 31.6% of HPO. The desorption distribution coefficients, K{sub Ubatch} and K{sub Lbatch}, converged to constant values as C{sub e} increased. An equilibrium model (ADR) and nonequilibrium models (TSNE and TRNE) were used to predict the desorption and transport of complex contaminants. The nonequilibrium models demonstrated better fits with the experimental values obtained from the column test than the equilibrium model. The ranges of K{sub Ubatch} and K{sub Lbatch} were very close to those of K{sub Ufit} and K{sub Lfit} determined from model simulations. The parameters (R, β, ω, α, and f) determined from model simulations were useful for characterizing the transport of contaminants within the soil matrix. The results of this study provide useful information for the operational parameters of the flushing process for soils with complex contamination.

  14. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger

    International Nuclear Information System (INIS)

    Ren Wanxia; Li Peijun; Geng Yong; Li Xiaojun

    2009-01-01

    Bioleaching of heavy metals from a contaminated soil in an industrial area using metabolites, mainly weak organic acids, produced by a fungus Aspergillus niger was investigated. Batch experiments were performed to compare the leaching efficiencies of one-step and two-step processes and to determine the transformation of heavy metal chemical forms during the bioleaching process. After the one or two-step processes, the metal removals were compared using analysis of variance (ANOVA) and least-significance difference (LSD). A. niger exhibits a good potential in generating a variety of organic acids effective for metal solubilisation. Results showed that after the one-step process, maximum removals of 56%, 100%, 30% and 19% were achieved for copper, cadmium, lead and zinc, respectively. After the two-step process, highest removals of 97.5% Cu, 88.2% Cd, 26% Pb, and 14.5% Zn were obtained. Results of sequential extraction showed that organic acids produced by A. niger were effective in removing the exchangeable, carbonate, and Fe/Mn oxide fractions of Cu, Cd, Pb and Zn; and after both processes the metals remaining in the soil were mainly bound in stable fractions. Such a treatment procedure indicated that leaching of heavy metals from contaminated soil using A. niger has the potential for use in remediation of contaminated soils.

  15. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Ren Wanxia, E-mail: ren_laura@163.com [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Li Peijun, E-mail: lipeijun@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Geng Yong; Li Xiaojun [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2009-08-15

    Bioleaching of heavy metals from a contaminated soil in an industrial area using metabolites, mainly weak organic acids, produced by a fungus Aspergillus niger was investigated. Batch experiments were performed to compare the leaching efficiencies of one-step and two-step processes and to determine the transformation of heavy metal chemical forms during the bioleaching process. After the one or two-step processes, the metal removals were compared using analysis of variance (ANOVA) and least-significance difference (LSD). A. niger exhibits a good potential in generating a variety of organic acids effective for metal solubilisation. Results showed that after the one-step process, maximum removals of 56%, 100%, 30% and 19% were achieved for copper, cadmium, lead and zinc, respectively. After the two-step process, highest removals of 97.5% Cu, 88.2% Cd, 26% Pb, and 14.5% Zn were obtained. Results of sequential extraction showed that organic acids produced by A. niger were effective in removing the exchangeable, carbonate, and Fe/Mn oxide fractions of Cu, Cd, Pb and Zn; and after both processes the metals remaining in the soil were mainly bound in stable fractions. Such a treatment procedure indicated that leaching of heavy metals from contaminated soil using A. niger has the potential for use in remediation of contaminated soils.

  16. EXTRACTION, RECOVERY, AND BIOSTABILITY OF EDTA FOR REMEDIATION OF HEAVY METAL-CONTAMINATED SOIL. (R825549C052)

    Science.gov (United States)

    Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability o...

  17. Testing Single and Combinations of Amendments for Stabilization of Metals in Contrasting Extremely Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Siebielec G.

    2013-04-01

    Full Text Available Metals can be stabilized by soil amendments that increase metals adsorption or alter their chemical forms. Such treatments may limit the risk related to the contamination through reduction of metal transfer to the food chain (reduction of metal uptake by plants and its availability to soil organisms and metals migration within the environment. There is a need for experiments comparing various soil amendments available at reasonable amounts under similar environmental conditions. The other question is whether all components of soil environment or soil functions are similarly protected after remediation treatment. We conducted a series of pot studies to test some traditional and novel amendments and their combinations. The treatments were tested for several highly Zn/Cd/Pb contaminated soils. Among traditional amendments composts were the most effective – they ensured plant growth, increased soil microbial activity, reduced Cd in earthworms, reduced Pb bioaccessibility and increased share of unavailable forms of Cd and Pb.

  18. Leaching of heavy metals from contaminated soils: An experimental and modeling study

    NARCIS (Netherlands)

    Dijkstra, J.J.; Meeussen, J.C.L.; Comans, R.N.J.

    2004-01-01

    In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling.

  19. Enhanced ex-situ bioremediation of soil contaminated with ...

    African Journals Online (AJOL)

    contaminated soil. Thus, the objective of this study was to investigate the feasibility and effectiveness of using electrical biostimulation processes to enhance ex-situ bioremediation of soils contaminated with organic pollutants. The effect of ...

  20. Biomimetic Hydrogel Composites for Soil Stabilization and Contaminant Mitigation.

    Science.gov (United States)

    Zhao, Zhi; Hamdan, Nasser; Shen, Li; Nan, Hanqing; Almajed, Abdullah; Kavazanjian, Edward; He, Ximin

    2016-11-15

    We have developed a novel method to synthesize a hyper-branched biomimetic hydrogel network across a soil matrix to improve the mechanical strength of the loose soil and simultaneously mitigate potential contamination due to excessive ammonium. This method successfully yielded a hierarchical structure that possesses the water retention, ion absorption, and soil aggregation capabilities of plant root systems in a chemically controllable manner. Inspired by the robust organic-inorganic composites found in many living organisms, we have combined this hydrogel network with a calcite biomineralization process to stabilize soil. Our experiments demonstrate that poly(acrylic acid) (PAA) can work synergistically with enzyme-induced carbonate precipitation (EICP) to render a versatile, high-performance soil stabilization method. PAA-enhanced EICP provides multiple benefits including lengthening of water supply time, localization of cementation reactions, reduction of harmful byproduct ammonium, and achievement of ultrahigh soil strength. Soil crusts we have obtained can sustain up to 4.8 × 10 3 kPa pressure, a level comparable to cementitious materials. An ammonium removal rate of 96% has also been achieved. These results demonstrate the potential for hydrogel-assisted EICP to provide effective soil improvement and ammonium mitigation for wind erosion control and other applications.